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Stellingen

behorende bij het proefschrift:
"Making a difference: On automatic transcription and modeling of Dutch pronunciation

variation for automatic speech recognition", door Judith Kessens

1. Automatische spraakherkenners kunnen gebruikt worden om te bepalen welke van een
beperkt aantal plausibele fonetische transcripties van een spraakuiting het beste bij het
spraaksignaal past. De kwaliteit van deze automatisch gegenereerde transcripties is
vergelijkbaar met de kwaliteit van transcripties die gemaakt zijn door ervaren menselijke
transcribenten.

Dit proefschrift, artikel l

2. Het percentage fout herkende woorden is niet altijd een goede maat om de kwaliteit te
voorspellen van automatische fonetische transcripties die met dezelfde spraakherkenner
kunnen worden gegenereerd.

Dit proefschrift, artikel 2

3. Het gelijktijdig modelleren van uitspraakvariatie in alle modules van een automatische
spraakherkenner (lexicon, foonmodellen en taalmodel) leidt tot verbeteringen in
herkenprestaties.

Dit proef schrift, artikel 3

4. Als een herkenlexicon wordt geëxpandeerd met een groot aantal uitspraakvarianten, is het
belangrijk om tijdens decodering de a priori waarschijnlijkheden voor deze
uitspraakvarianten te gebruiken.

Dit proefschrift, artikel 3

5. Voor het modelleren van uitspraakvariatie geldt de "wet van behoud van ellende":
Verbeteringen gaan altijd gepaard met verslechteringen.

Dit proefschrift, artikel 4, Figuur 6
Murhphys law 13: "Every solution breeds new problems", E. A. Murphy Jr

6. In veel onderzoek naar automatische spraakherkenning wordt geen aandacht besteed aan
statistische betrouwbaarheid. Als dat wel gedaan wordt, worden vaak combinaties van
evaluatiematen en statistische toetsen gebruikt waarvan de aannames geschonden worden.

Strik, H., Cucchiarini, C. and Kessens, J.M., 2001, Proc. of Eurospeech, pp. 2091-2094

7. Geluidloze "spraakherkenning" (bijv. automatische üpbewegingherkenning) voor mobiele
telefonie geeft de mens meer privacy.

8. De NS zorgt voor meer tijdverlies dan het treinreizen de reiziger volgens de speciale
relativiteitstheorie1 aan tijdwinst oplevert.

9. Onderzoek doen is als het leven; de uitkomst is vaak onverwacht.

10. Het leven is niet als onderzoek doen; omdat de mens slechts één leven heeft bestaat er
geen enkele mogelijkheid om experimenten uit te voeren waarmee hij alternatieve
hypotheses omtrent zijn leven kan verifiëren.

Milan Kundera, "Nesnesitelnâ lehkost byti" ("De ondraaglijke lichtheid van het bestaan")

11. De meeste stellingen zijn goedkoper dan een proefschrift.

A. Einstein, 1905: At?12end=Ati„stilstmd/(l-v
2/c2)0-5,

met c=3.0xl08 m/s (lichtsnelheid), v=snelheid van de trein(reiziger)
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Een woord van dank

Nu dit boek voltooid is, kan ik dan eindelijk iedereen bedanken die een positieve
bijdrage heeft geleverd aan de totstandkoming ervan. De eerste persoon die ik wil
bedanken is mijn begeleider en copromotor Heimer Strik. Helmer, de manier waarop
je me begeleid hebt in het onderzoek heb ik als zeer prettig ervaren. Je gaf me
voldoende sturing, maar ook behoorlijk veel vrijheid, zodat ik zelf de richting van mijn
onderzoek kon bepalen. Voor mij is weer eens bewezen dat promotie-onderzoek staat
(of valt) bij een goede begeleiding. Wat ik het meest aan jou gewaardeerd heb, is dat je
niet alleen geïnteresseerd was in mijn werk, maar ook in mij als persoon; jouw steun
en begrip tijdens moeilijke momenten in mijn leven waren voor mij erg belangrijk.
Verder ben ik mijn promotor Loe Boves veel dank verschuldigd. Loe, ik heb het
enorm gewaardeerd dat je veel van je (kostbare) tijd hebt vrijgemaakt om mijn werk te
kunnen voorzien van nuttig commentaar. ledere keer bleek weer dat jij de vinger
precies op de zere plek wist te leggen (ook al deed dat af en toe best een beetje pijn).
Een derde persoon die ik wil bedanken, is Mirjam Wester. Mirjam, onderzoek doen
met jou was absoluut niet saai! Op onze kamer was het nooit stil; ik denk terug aan
vele gesprekken die vaak over het werk gingen, maar ook over dingen die niets met
het werk te maken hadden. Bedankt voor de goede discussies en alle lol! Tenslotte heb
ik veel samengewerkt met Catia Cucchiarini. Catia, de samenwerking met jou was
altijd zeer prettig. De vele discussies over het onderzoek waren altijd inspirerend en
leerzaam. Vooral op momenten dat ik minder blij was met mijn onderzoeksresultaten
lukte het jou altijd weer om mij te inspireren door jouw enthousiasme.

Ik kijk terug op een leerzame en boeiende periode van onderzoek, aan de
afdeling Taal & Spraak van de Katholieke Universiteit Nijmegen. De goede sfeer op
de afdeling heeft zeker een positieve bijdrage geleverd aan mijn proefschrift! Daarom
wil ik iedereen van de afdeling Taal & Spraak bedanken voor de gezellige
koffiepauzes en de gezamenlijke lunches in "de Refter". Toen ik voor het eerst in
Nijmegen kwam, had ik nog nooit van een "hidden Markov model" gehoord. Nu ben
ik voorzien van een grote bagage kennis over automatische spraakherkenning. Dit is
zeker te danken aan de inspirerende werkomgeving en de mensen die er werken (en
gewerkt hebben). De interdisciplinaire werkomgeving bij Taal & Spraak heeft ertoe
geleid dat ik me breder heb kunnen ontwikkelen dan alleen op het gebied van de
spraaktechnologie. Veel van mijn spraaktechnologische kennis heb ik te danken aan
A2RT. Daarom wil ik alle (ex) A2RT-ers speciaal bedanken voor het lezen van de vele
papers en artikelen, de discussies over mijn onderzoek en de nuttige feedback op
proefpresentaties.

Verder wil ik NWO, Shell Nederland B.V. en "the International Speech
Communication Association" (ISCA) bedanken voor de financiële bijdragen aan
verschillende congresbezoeken.
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Dan zijn er nog mensen die ik extra dank verschuldigd ben. Roei, voor alle
geduld en steun die je mij hebt gegeven tijdens het merendeel van mijn promotie-
onderzoek. David en Maike voor het bewijs dat liefde geen grenzen kent. Bernard,
omdat je mijn soulbrother en ceremoniemeester bent, en Ruth voor de dubbele
gezinsuitbreiding. Yke, omdat je er altijd voor me bent. Maaike voor je vriendschap en
voor het ontwerp van de kaft van dit proefschrift. Al mijn vrienden, voor de nodige
gezelligheid en ontspanning. Diana, Dorota, Janienke, Simo en Mieke, voor alle
bijzondere trein-, fiets-, Bruna- en Etos-momenten. Mijn kamergenoten Mirjam en
Mieke, voor de gezelligheid. "Janimfke" en "Di Para" omdat jullie mijn paranimfen
willen zijn. Mirjam, Catia, Febe, Janienke, Johan en Henk, voor het lezen van het
eerste deel van dit proefschrift.

Tenslotte wil ik mijn ouders bedanken, zonder hen was ik nooit zover gekomen
als nu. Zij hebben me altijd in woord en daad gesteund en mij gemotiveerd en
gestimuleerd. Lieve Josephine, bedankt voor je onvoorwaardelijke steun en liefde.
Zelfs op momenten die voor jou heel moeilijk waren, speelde je het voor elkaar om er
voor mij te zijn. Lieve Joop, ik ben er dankbaar voor dat je het eerste jaar van mijn
promotie nog hebt mee kunnen maken. Ik weet zeker dat je absoluut trots op me zou
zijn geweest; minstens zo trots als jouw vader, omdat die tweede dr. Kessens er dan
toch eindelijk is!

Nijmegen, april 2002,

Judith Kessens.
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Making a difference

For human beings, speech constitutes a very efficient means of communication. This
has induced many people to think that speech might also be a very efficient means of
communication between human beings and machines. For this reason, attempts have
been made to use speech as input to computers. The term Automatic Speech
Recognition (ASR) is used for the technology that is required to transform 'speech'
into 'text'. Since the emergence of the first automatic speech recognizer in 1952
(Davis et al., 1952), substantial progress has been made in the field of ASR. What
started as recognition of ten digits spoken in isolation by a single speaker has now
evolved to speaker-independent, large-vocabulary recognition of fluent,
extemporaneous speech. In spite of the progress that has been made, a gap still exists
between the performance of human beings and machines on speech recognition. For
instance, Lippmann (1997) showed that the performance of present-day speech
recognizers is at best one order of magnitude worse than human speech recognition on
similar tasks.

There are a number of differences in the way speech is decoded by human
beings and by machines that could explain why ASR performance has not yet reached
the same level of performance as human speech recognition. One of the main
differences between human and machine speech recognition is that human beings use
much more information for speech decoding than machines do. For instance, most
human beings use two ears for hearing, whereas speech recognizers usually process a
single stream of speech. Furthermore, a speech recognizer can only recognize the
words that are contained in its vocabulary. Another difference is that human beings
have certain expectations on the kind of speech that is likely to be produced. These
expectations can be flexibly and quickly adjusted, depending on the speaker who is
talking and the topic of the conversation. This kind of quick adaptation is hardly used
in ASR systems. Other examples of information that machines can use only to a
limited extent compared to human beings is information on intonation, stress, speaking
rate, and pronunciation variation.

Pronunciation variation refers to the fact that words can be pronounced in many
different ways. Differences exist hi the way speech is pronounced by various speakers,
but even if the same speaker utters a word more than once, it will never be pronounced
in exactly the same way. Humans usually have no difficulties in processing different
pronunciation variants of the same word, since they have knowledge of pronunciation
variation. However, for speech recognizers, pronunciation variation forms a problem,
because, in general, speech recognizers do not explicitly take into account the different
ways in which words can be pronounced. In the beginning of ASR research, the
amount of variation in pronunciation was limited by using only isolated words. Since
then, the type of speech that can be processed has evolved from isolated words to
spontaneous speech. Especially in spontaneous speech the amount of pronunciation
variation is very large. Words are more connected to each other in spontaneous speech.
As a consequence, the pronunciation of one word is influenced by that of adjacent
words. Furthermore, words are usually articulated less carefully in spontaneous
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speech. Modeling pronunciation variation is seen as a possible way of improving the
performance of ASR systems that handle spontaneous speech. The research described
in this thesis constitutes an attempt to find an adequate way of explicitly modeling
Dutch pronunciation variation in order to improve the performance of ASR.

The body of this thesis consists of four articles describing research related to
modeling pronunciation variation. The articles are preceded by six chapters that
provide the context for the research reported on in this thesis. The organization of
these chapters is as follows. Chapter 1 explains the operation and architecture of the
speech recognizer that is used in this research. Chapter 2 deals with the various
sources of pronunciation variation, and explains why pronunciation variation is
problematic for ASR. Chapter 3 describes the goals and the general research
methodology. Subsequently, the articles are summarized in Chapter 4, and the results
are discussed in Chapter 5. Finally, the major conclusions are given in Chapter 6,
together with some recommendations for future research.

The main part of this thesis consists of four articles that are published in or
submitted to scientific journals. Our general method of modeling pronunciation
variation requires information on the occurrence of the pronunciation variation to be
modeled. In order to obtain this information, we use our speech recognizer to make
transcriptions of large amounts of speech material. This procedure is called automatic
transcription. During automatic transcription, the CSR decides which of a number of
possible variants best matches the actual pronunciation. The first two articles of this
thesis are concerned with this kind of automatic transcription. The goal of the first
article is to assess the quality of the automatic transcriptions made by the speech
recognizer by comparing them with transcriptions made by expert linguists. In the
second article, some of the properties of the speech recognizer that influence the
quality of automatic transcriptions are investigated in order to obtain better quality
automatic transcriptions. Both articles show that our method of obtaining automatic
transcriptions can be used meaningfully in the research on modeling pronunciation
variation. The automatic transcription procedure is used as part of a general method of
modeling pronunciation variation that is employed in the last two articles. In the third
article, pronunciation variation is modeled in a knowledge-based manner. To this end,
we selected five frequently occurring phonological processes to be modeled in our
speech recognizer. However, not all pronunciation variation that is present in our
speech material is described in the literature. For this reason, in addition to our
knowledge-based approach, we also adopted a data-driven approach to model
pronunciation variation. In the data-driven approach, the speech recognizer is used in
order to obtain transcriptions of the pronunciation variation that is present in our
speech material. The work on data-driven modeling of pronunciation variation is
described in the fourth article.

The research on modeling pronunciation variation showed that both our
knowledge-based and our data-driven approaches for modeling pronunciation
variation lead to improvements in recognition performance. In other words: Making a
difference (differentiating) between various pronunciation variants does indeed make a
difference in the performance of automatic speech recognition.



Chapter 1

1 Speech recognizer and speech material

The research described in this thesis was carried out within the framework of the
Priority Programme Language and Speech Technology (PP-TST1) of the Dutch
Organization for Scientific Research (NWO2). The PP-TST started in 1995 and
finished in 2000. The programme was carried out at the University of Nijmegen
(KUN), the Center for Research on User-System Interaction (IPO), the University of
Amsterdam (UvA), and the University of Groningen (RUG), in close collaboration
with Philips Corporate Research and KPN Research. The goal of the PP-TST was to -
conduct fundamental and applied research in the context of a spoken dialogue system.
The spoken dialogue system that was developed provides information on train
timetables in the Netherlands over the telephone, and is called OVIS. OVIS is an
acronym for 'Openbaar Vervoer Informatie Systeem' ('Public Transportation
Information System'). The OVIS spoken dialogue system is briefly described in
section 1.1. The research in this thesis is only concerned with the speech recognition
component of OVIS. The architecture and operation of the speech recognition
component are explained in more detail in section 1.2. Finally, section 1.3 describes
the speech material that has been used for the experiments in this thesis.

1.1 The OVIS spoken dialogue system

The architecture of OVIS is shown in Figure 1. To illustrate how the system operates, I
will use an example. A person (the user) calls OVIS to obtain a travel advice. First, the
system has to detect that there is a telephone call coming in. This interaction between
the telephone line and OVIS is handled by the Telephone Interface. When the call is
established OVIS replies with a welcome message, and asks the following question:

OVIS: "From which station to which station would you like to travel?"

The user responds to the system by giving information on the desired connection, e.g.:

user: "I want to travel from Utrecht to Nijmegen"

The user's utterance is processed by the Speech Recognition module. This component
converts the incoming speech signal into a sequence of words. The recognized
sequence of words are passed to the Natural Language Processing module (Bonnema
et al., 1997; Van Noord et al., 1999), which searches for relevant information in the
sequence of recognized words. Not all words contain relevant information. In the
example, 'from Utrecht', 'to Nijmegen' are the relevant words in the sentence, because
it can be inferred from these words that 'Utrecht' is the departure station and that
'Nijmegen' is the destination station. The Dialogue Management module (Veldhuijzen
van Zanten, 1998) checks whether the information provided by the user is complete.
The departure time is unknown in the example. Thus, the Dialog Management module
passes a message to the Natural Language Generation module (Theune, 2000),

1 Prioriteitprogramma Taal- en Spiaak Technologie
2 Nederlandse organisatie voor Wetenschappelijk Onderzoek
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containing information about the data that is still missing. The Natural Language
Generation module then formulates a question (text), which is converted into a speech
signal by the Speech Synthesis module (Klabbers, 2000). Finally, the speech is sent to
the Telephone Interface and the user will hear the following question:

O VIS: "At what time do you want to travel from Utrecht to Nijmegen?"

Figurel: Architecture of the OVIS Spoken Dialogue System

Suppose the user answers this question as follows:

user: "I want to depart tomorrow, at eight o'clock in the morning"

Now, the whole process is repeated: the Speech Recognition module recognizes the
words, the Natural Language Processing module searches for the relevant
information, and the Dialogue Management module checks whether the travel inquiry
of the user is completely specified. Since the user has now provided all information,
the timetable information is looked up in the Database, and the travel advice is
formulated (text) by the Natural Language Generation module. Finally, the speech
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signal generated by the Speech Synthesis module is passed to the Telephone Interface,
resulting in the following travel advice:

O VIS: "The train from Utrecht to Nijmegen departs at ten to eight from
platform eleven. It arrives in Nijmegen at a quarter to nine on platform one."

After giving the travel advice, the system will enquire whether the user wants
additional or other information. If the user does not want more information, the system
will thank the user and the connection will be closed. Otherwise, the whole process
starts all over again.

1.2 The speech recognition component

The research described in this thesis is only concerned with the Speech Recognition
component of the OVIS system, i.e., a Continuous Speech Recognizer (CSR) that
converts an incoming speech signal into a corresponding sequence of words (text).
Before a CSR can process a speech signal, the signal needs to be converted into a
representation that is suitable for automatic speech recognition. Section 1.2.1 describes
this conversion, which is called acoustic pre-processing. Furthermore, a speech
recognizer can only be used if it is trained. The training procedure is described in
section 1.2.2. Finally, in section 1.2.3, the whole recognition process is described in
more detail.

1.2.1 Acoustic pre-processing

The most common approach to acoustic pre-processing is to convert the speech
waveform into a sequence of acoustic feature vectors, which together form a compact
representation of the spectral characteristics of the speech. Figure 2 shows an overview
of the acoustic pre-processing that is used in our speech recognizer. The acoustic
features that we used are Mel Frequency Cepstral Coefficients (MFCCs).

The first step is to convert the analog speech signal into a digital representation.
To this end, the pressure (or voltage) value of the speech waveform is determined at
equally spaced time points. The telephone speech that enters the CSR component in
OVIS is already digitized. A sample is taken 8 times per ms; thus the sample
frequency is 8 kHz (step ® hi Figure 2). The second step is to extract the speech
waveform for (overlapping) short time intervals; this is called Time Windowing (step
® in Figure 2). In our CSR, the acoustic features are calculated every 10 ms for time
intervals of 16 ms. The speech signal is also pre-emphasized by applying high-
frequency amplification to compensate for the attenuation caused by the radiation from
the lips. The next step is the calculation of the spectral characteristics of the speech
signal. To this end, a Fast Fourier Transform (FFT) of the windowed speech signal is
calculated to obtain the FFT-based spectrum (step CD in Figure 2). Next, Mel-Scaled
Filters are applied (step ® in Figure 2). Mel-scaling approximates the frequency
resolution of the human ear. In order to make the statistics of the speech power
spectrum approximately Gaussian, log compression is applied (step © in Figure 2). A
Discrete Cosine Transform (DCT) is applied to the filterbank outputs in order to
decorrelate the spectral representation of the speech signal (step © in Figure 2). By
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using the DCT, the number of spectral parameters representing the speech is reduced,
but as much as possible of the relevant information is retained. For historical reasons
the result of the DCT is called cepstral coefficients. Finally, the first 14 cepstral
coefficients and the 14 corresponding time differentials (©in Figure 2) are retained,
thus obtaining a 28-element acoustic vector.

Analog speech signal

©
Log

13
14
15

27

Digital speech signal

Time windowed signal

FFT based spectrum

Mel Scaled spectrum

28 Element
Acoustic Vector

Figure 2: Acoustic pre-processing f or obtaining MFCC -based feature vectors.
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1.2.2 Training

Nowadays, CSRs are probabilistic engines. This means that a CSR calculates the
probability of a word sequence W given the acoustic signal X: P(W\X). From among
all possible word sequences, the word sequence W with the highest probability is the
one that is recognized:

W=argmax P(W\X) (1)
W

According to Bayes' theorem, this can be written as follows:

* P(X\W)P(W) . ,_.
W = argmax ' ' (2)

w p(x>

Since P(X) is independent of W:

A

W = argmax P(X I W)P(W) (3)
W

This means that maximizing P(W\X) is equal to maximizing the product of the
following two probabilities:

• P(X\W): The probability of observing a sequence of acoustic vectors given the
hypothesized sequence of words. This term can only be computed after the fact,
i.e., after the observation of a specific speech signal.

• P(W): The probability of observing the hypothesized sequence of words. This
probability is independent of the observed acoustic vectors. Therefore, this term
represents the prior probability.

The statistical model that we use to estimate the acoustic probability P(X\W) is called
the acoustic model. Acoustic models are trained for all basic sound units of Dutch and
for some non-speech sounds (see Appendix A). The basic sound units are very similar
to what linguists call the phonemes of a language. As the Dutch phonemes /!/ and hi
have different acoustic properties depending on their position in the syllable (post- or
pre-vocalic), we distinguish between two types of IM and hi. Different realizations of
the same phoneme are also called allophones. The term phones is used to refer to the
basic sound units in this thesis, as it covers both allophones and phonemes. The
procedure for training the acoustic models is schematically presented in Figure 3.

In order to estimate the parameters of the acoustic models, it is necessary to
have a large amount of recorded speech material with corresponding orthographic

transcriptions. Orthographic transcriptions describe the words that are spoken in each
utterance (text). In addition to the training material, a training lexicon is needed, which

lists all words occurring in the training material together with aphone transcription.
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Training material

Speech Text

Y*AAAA/ /,„ii /

wil >.

Training lexicon

ik
wil
reizen

/Ik/
/wIL/
/rEiz@/

-

TRAINING

Viterbi Alignment
iteration

/Wl

wwv
ni\fu r:

Model estimation

/L/

HMMs

Figure 3: Training the acoustic models

A phone transcription is the sequence of phones that represents the pronunciation of
the word. For each utterance in the training material, the phone transcriptions of the
words are looked up in the training lexicon. The speech signal together with the
concatenated phone transcriptions of the individual words serve as input for training
the acoustic models. The training procedure consists of the following two steps:

• Viterbi alignment. The goal of alignment is to segment the speech, i.e. given the
speech signal and corresponding phone transcription it is determined which parts of
the speech signal corresponds to which phone in the phone transcription. An
efficient algorithm for finding the optimal alignment is the Viterbi algorithm. The
Viterbi algorithm finds the optimal alignment based on maximal (acoustic)
likelihood.
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• Model estimation. After alignment, all parts of the speech material that correspond
to the same phone are statistically processed. This results in a stochastic model -
called a hidden Markov model (HMM) - for each basic recognition unit (see
Appendix A). Each HMM consists of a sequence of states connected by arcs. Each
state consists of an N-dimensional probability density function (pdf), where N is
the number of elements in the acoustic vectors. To obtain reliable estimates of the
parameters of the pdfs, it is necessary to use a large number of realizations of each
phone.

Since no HMMs are available for the calculation of the acoustic likelihoods the first
time the Viterbi alignment is made, one usually starts with a linear segmentation, i.e.
each phone is assigned an equal duration. Based on this linear segmentation, the initial
HMMs are estimated. These HMMs can subsequently be used to make a new Viterbi
alignment. Next, the HMMs can be re-estimated based on the new alignment. During
each iteration, the likelihood that the models generate the observations increases. The
process continues until the likelihood improvements drop below a certain threshold or
until a pre-defined number of iterations is reached.

The prior probability P(W) is estimated by the language model. A simple but
effective way of doing this is to use N-grams, in which it is assumed that the
probability of a word is dependent on the previous (N-l) words. To estimate the N-
gram probabilities, large amounts of text data are usually used. Our CSR uses a
unigram (N=l) and bigram (N=2) language model, which are estimated from the
orthographic transcriptions of the training material. The material to train the language
model should ideally be recorded with an online version of the application. However,
this is a circular problem since a language model is needed in order to be able to use
the application. In order to solve this problem, a bootstrap method is often used. This
means that an initial language model is constructed (for instance manually), and using
this initial language model new material is collected that can subsequently be used to
improve the language model. Both the acoustic models and the language model were
bootstrapped in OVIS (see section 1.3). In research situations, a speech database is
usually divided into two parts: The first part is used to train the acoustic models and
the language model (training material), whereas the second part is used for
recognition experiments (test material).

1.2.3 Recognition

Once the acoustic models and language model of the CSR have been trained, the CSR
can be used for recognition. An overview of the recognition process is given in Figure
4. Since the CSR can only recognize words that are present in the lexicon, the lexicon
needs to contain all the words that one can expect to be used by the people who are
addressing OVIS. For instance, all train station names and all days of the week are
included in the OVIS recognition lexicon. During the recognition phase, the CSR
attempts to recognize an unknown sequence of words. To this end, all possible
sequences of words allowed by the lexicon and the language model are generated. If
all possible sequences of words had to be evaluated for the full duration of the
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utterance, the computational requirements would be prohibitive. Therefore, all
hypotheses are scored according to their likelihood. This score is a combination of two
scores: the acoustic score determined by the HMMs, and the language model score.
The majority of the hypotheses are less likely than the best one, and therefore they can
safely be removed from the list of possible solutions. Finally, the output of the
recognition process is the most likely sequence of words.

RECOGNITION
Recognition

Lexicon

speech
signal

Acoustic
Preprocessing

Search

r
recognized
utterance

Acoustic
Models

Language
Model

Figure 4: Recognition process

1.3 The VIOS speech material

The first version of OVIS was put into use in December 1995. This version was
gradually improved by means of a bootstrap method (Strik et al., 1997). The first
version of the phone models was trained using 2,500 Polyphone utterances (den Os et
al., 1995). The initial language model was trained on answers of people who addressed
a version of OVIS in which - instead of speech - text was used as input for the system.
Next, a small group of people received the telephone number of OVIS and were
requested to call it regularly. Whenever a sufficient amount of new data was collected,
language models and acoustic models were retrained. In this way, the acoustic and
language models were gradually improved. From April to June 1997, new speech
material was recorded. During this recording period, people from all over the
Netherlands were invited to call the system. Compared to the people who called the
first version of OVIS, this second group of people is much more heterogeneous and
also more representative of the potential users of the OVIS system. The database that
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is recorded with OVIS is called 'VIOS'. The VIOS material was orthographically
transcribed by native speakers of Dutch. The output of the CSR (the sequence of
words with the highest score) was used as a starting point for transcription by
manually correcting it if necessary. The sex of the speakers was determined by the
transcribers through auditory impression. Table 1 summarizes the main characteristics
of the OVIS speech material.

Table 1: Characteristics of VIOS material

name
recording period
# dialogs
# utterances
# words
# phones 1}

male speakers
female speakers
other speakers 2)

speech
silence
total duration

VIOS1
Dec. '95-Jun. '96

3,531
33,471
108,844
431,536

57%
42%
1%

45%
55%

25.0 hours

VOIS 2
Apr. '96-Jun. '97

7,190
65,929
184,513
718,282

75%
19%
6%

42%
58%

42.6 hours

VIOS 1+2
Dec. '95-Jun. '97

10,721
99,400
293,357
1,149,818

68%
29%
3%

43%
57%

67.6 hours
l) based on canonical transcriptions,2) children, mixed speakers or speaker sex unknown

Table 2 shows the selections of the VIOS material used for the various experiments. In
the column 'VIOS' the recording period is denoted (see Table 1): '1' denotes the first
recording period and '2' the second. The column '#utts' shows the number of
utterances. For the recognition experiments, the test set perplexity is given in the
column "PP". In article 3, the same material was used for the recognition experiments
as for error analysis, whereas in article 4 different sets of material were used. No
overlap exists between the material used for training and performing the recognition
experiments and the material used for error analysis.

Table2: Selections of VIOS material used in the four articles

article 1
article 2
articles
article 4

training

#utts VIOS
25,104 1
25,104 1
25,104 1
59,640 1+2

recognition experiments

#utts VIOS PP

482 1+2 33
6,276 1 30
19,880 1+2 28

error analysis

#utts VIOS

6,276 1
19,880 1+2

phonetic
transcriptions
#utts VIOS
186 1+2
482 1+2
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Figure 5 shows the cumulative proportion of the total VIOS material as a function of
word frequency rank. It can be seen that the 10 most frequent words make up about
40% of the total material. They are all short words consisting of one syllable ('nee',
'ja', 'naar', 'uur', 'van', 'ik', 'wil', 'om', 'u', 'dank').

0.8

I0-6
a
Q<
CD

•a 0.4
03

0.2 -

10 100 1000

Word frequency rank

10000

Figure 5: Cumulative distribution of word frequency rank

Figure 6 shows the cumulative proportion of the VIOS utterances as a function of
utterance length, i.e. the number of words per utterance. It can be seen that 40% of the
utterances consist of a single word.

0.6

0.4

0.2

1 2 3 4 5 6 7 8 9 > 1 0

Utterance length (#words)

Figure 6: Cumulative distribution of utterance length
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2 Pronunciation Variation

When listening to the VIOS speech material, it is immediately clear that words are
pronounced in many different ways. The fact that words can be pronounced differently
depending on various factors is called pronunciation variation. Different sources of
pronunciation variation can be distinguished. The distinction given here is adopted
from Strik and Cucchiarini (1999).

2.1 Sources of pronunciation variation

A first major distinction can be drawn between interspeaker and intraspeaker
pronunciation variation, /wterspeaker variation refers to variation in pronunciation of
different speakers, whereas «fraspeaker variation refers to pronunciation variation of
the same speaker. To a large degree interspeaker variation is caused by anatomical
differences between speakers. For example, male and female speakers and children
have different speech characteristics. Interspeaker variation also exists due to the fact
that speakers of the same language may speak different dialects or speak with a
different accent (Laver, 1994). The accent will depend on factors such as region of
origin, socioeconomic background, level of education, sex and age. In addition to the
factors mentioned so far, another important source of variation is the interlocutor,
since it is known that speakers are influenced by the person they are talking to. The
interlocutor is a computer in O VIS. However, part of the callers to the system seem to
behave as if they were talking to a human being. For instance, people say: "I don't
want to go there, madam3 ".

infraspeaker pronunciation variation also depends on many different factors.
The first factor is the extent to which words are connected to each other. If words are
pronounced in isolation, there is almost no interaction between the words.
Furthermore, people tend to articulate isolated words more carefully. On the other
hand, in connected speech all sorts of interactions may take place such as assimilation,
co-articulation, reduction, or deletions and insertions of phones. The degree to which
these phenomena occur will vary, depending on the style of speaking. As speech
becomes less formal, the syllable structure of words may be reorganized, and there
may be changes in pitch and loudness (Laver, 1994, pp. 66-69). The VIOS data show
that the manner in which people address the system varies, ranging from very sloppy
articulation to hyper-articulation. Another factor that influences the way people speak
is their emotional state (Murray and Arnott, 1993). This source of variation is present
in the VIOS material. For instance, if the system misunderstands what has been said,
people tend to get irritated, which influences the way they speak. A non-linguistic
factor that influences the way people speak is background noise. People tend to speak
differently in the presence of background noise (Lombard effect). Some environmental
noise is present in the VIOS material, e.g. music, other people talking, car noise, or
noise due to a low-quality telephone connection.

3 "Daar wil ik niet naar toe, mevrouw"
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The OVIS speech recognizer is an example of a recognizer that handles
extemporaneous speech. Furthermore, OVIS can be called nation-wide, and speakers
of different sex and age call the system. For all of these reasons it is clear that all the
above-mentioned factors that influence the way people speak will vary over a wide
range for the VIOS speech material. Therefore, the VIOS material is a good
framework for studying the effect of pronunciation variation on the performance of
ASR systems. In the next section, we will explain why pronunciation variation is
problematic for ASR.

2.2 Why is pronunciation variation problematic for ASR?

In the baseline system, both the lexicons for training and recognition contain a single
phone transcription for each word. This phone transcription is the most likely
pronunciation according to the linguistic literature and is called the canonical phone
transcription. Using a lexicon with only one phone transcription per word leads to
suboptimal performance when words are not pronounced canonically: Fosler-Lussier
(1999, pp.63-64) and McAllaster et al. (1998) showed that the word accuracy on
Switchboard data is 11-12% lower for the words that are not pronounced canonically.
This degradation in recognition performance is caused by a mismatch between the
actual pronunciation of the word and the pronunciation as denoted in the lexicon. This
mismatch causes problems both during recognition and training.

To explain why the mismatch is problematic, an example of a non-canonical
pronunciation is given in Figure 7. Suppose that the canonical pronunciation of the
Dutch city 'Delft' is /dElf t/ (phone transcriptions are given in SAMPA4 notation).
An example of a non-canonical pronunciation is /dEl@f/. In the realized
pronunciation, the speech sound /©/ is inserted between the /!/ and the If.I, and the
final Itl is deleted.

Canonical pronunciation: d E l - f t
Realized pronunciation: d E l @ f -

t l
l@l inserted | /t/deleted

Figure 7: Example of a non-canonical pronunciation (/dEl@f/)

During recognition, the total acoustic score of the realized pronunciation of the word
Delft (/dEl@f/) is lower than it would have been if the spoken phone sequence had
been exactly equal to the canonical phone transcription in the lexicon (/dELf t/). The
acoustic scores for /!/ and If.I are likely to be lower, because the part of the acoustic
signal that is used to calculate an acoustic score for the phones /!/ and If.I contains the
acoustic signal of the inserted /§/. Furthermore, the acoustic score for the /t/ is also
likely to be lower since no /t/ is pronounced, and consequently, parts of the speech

4 http://www.phon.ucl.ac.uk/home/sampa/dutch.htm
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signal of the /f / may be used to calculate the acoustic score for the phone /t/. Figure 8
shows the mismatch due to the non-canonical pronunciation /dEl@f/. The parts of the
realized pronunciation that do not match the canonical pronunciation are indicated
with grey; these parts of the speech signal will have a low acoustic score.

Figure 8: Mismatch due to non-canonical pronunciation (/dEl @ f/)

The low acoustic score that is assigned to the mismatching parts might degrade
recognition performance. Suppose that there is another word in the lexicon that does
not differ very much from the word Delft, for example elf5 (/El f/). This word differs
only in two phones from the realized pronunciation (/dElif/), since the deletion of
the /d/ and /@/ in /dEl@f/ results in the pronunciation /Elf/. If the acoustic score for
the word, /Elf/ , is higher than the acoustic score of /dELf t/, the incorrect word
/Elf/ might be recognized.

During training, the mismatch between the actual pronunciation and the
canonical pronunciation in the training lexicon will result in contaminated acoustic
models. Let us consider the same example and suppose the realized pronunciation is
/dEl@f/. During training, the canonical phone transcription is looked up in the
training lexicon. Next, the Viterbi algorithm is used to align the canonical transcription
with the speech signal. Suppose the alignment between the speech signal and the
canonical phone transcription is as given in Figure 8. Since the HMMs are trained on
the Viterbi alignments, this means that three HMMs may become contaminated: the
/1/-HMM and /f/-HMM are contaminated with parts of the speech signal of the
inserted /@/, and the /t/-HMM is contaminated with the acoustic signal of the /f/ or
with the acoustic signal of the word that follows 'Delft' in the utterance. The
contamination of the HMMs might lead to recognition errors as the contaminated
HMMs are less discriminative.

The kind of pronunciation variation described in this section is an example of
segmental variation: It can be described as substitutions, insertions and deletions of
phones. In this thesis, pronunciation variation is described in this way. In other words;
the pronunciation variation is modeled at the level of the phones. Alternatives to phone
level pronunciation variation modeling will be discussed in section 5.2.3.

5 eleven
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2.3 Overview of methods to model pronunciation variation in ASR

Strik and Cucchiarini (1999) give an overview of the literature on modeling
pronunciation variation for ASR. It is difficult to give a precise definition of
pronunciation variation for ASR. Strictly speaking, one could say that almost all ASR
research is about modeling pronunciation variation. For example, HMM modeling is a
way of accounting for segmental and temporal variation. In this section, the research
described in this thesis will be positioned in the categorical framework Strik and
Cucchiarini (1999) present.

A first distinction is based on whether the pronunciation variation occurs within
words or across word boundaries. In article 3, we modeled both within-word and
cross-word variation. We started off by modeling within-word variation. The CSR
used in this research employs a single-pass search. This type of decoding helps to limit
computing time, but one of the limitations of strict single-pass search is that it is
difficult to model cross-word processes. To model cross-word variation we employed
two methods that can be used in our single-pass decoder. To this end, we selected
frequent word sequences from the VIOS-material. Next, a number of phonological
cross-word phenomena were applied to these word sequences in order to obtain cross-
word variants. For the first method, the cross-word variants of individual words in the
word sequences were added to the lexicon. For the second method, the word sequences
were joined together, thus forming multi-words, and the multi-words and their variants
were added to the lexicon.

A second distinction that Strik and Cucchiarini (1999) make concerns the
source from which the information on pronunciation variation is retrieved. Two types
of information sources are distinguished: In knowledge-based studies, information on
possible pronunciation variation is primarily derived from sources that are already
available in the literature. In data-driven studies, the information on possible
pronunciation variation is obtained from the speech in the training database. In this
thesis both approaches are used. Article 3 describes a knowledge-based method of
modeling pronunciation, whereas article 4 concerns a data-driven method of modeling
pronunciation variation.

A third distinction that is made concerns the information representation. The
information about pronunciation variation can be formalized or not. In general,
formalization means that a more abstract and compact representation is chosen. Data-
driven information on pronunciation variation can be formalized, e.g. by rewrite rules,
artificial neural networks, phone confusion matrices, or decision trees. We use rewrite
rules in the data-driven approach described in article 4. In knowledge-based studies,
the information on possible pronunciation variation obtained from linguistic studies
can be formalized in the form of phonological rules. In general, these are optional
phonological rules concerning deletions, insertions, and substitutions of phones. We
used five optional phonological rules in the knowledge-based approach described in
article 3. The obvious alternative to using formalizations is using an approach in which
all possible variants are generated without recourse to some form of rules. Generation
can be a manual process, or transcriptions observed in a database can be used. The
most important difference between using formalizations or not is the way in which
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variants can be generated for a specific task. One of the advantages of using
formalizations is that variants can be generated for unseen and new words. However, a
disadvantage of employing formalizations is possible undergeneration and
overgeneration of variants. (Cohen, 1989; Strik and Cucchiarini, 1999)

The last distinction that Strik and Cucchiarini (1999) make concerns the level of
modeling. Most CSRs consist of three levels: the lexicon, the phone models and the
language model. Pronunciation variation is modeled at all these three levels in this
thesis. Section 3.2.2 explains the general method of modeling pronunciation at all
three levels of the CSR. This general method is used both in the knowledge-based and
in the data-driven methods.

For both the knowledge-based and the data-driven method, information is
needed on the frequency and identity of the pronunciation variants that occur in the
training data. In order to obtain this information on pronunciation variation, usually
phonetic transcriptions of the training material are made. These transcriptions can be
obtained manually, but the use of automatically obtained phonetic transcriptions is
becoming more common (Strik and Cucchiarini, 1999). An important advantages of
making automatic phonetic transcriptions is that it is less time-consuming, and
therefore, less costly than making manual transcriptions. Another argument in favor of
automatic transcriptions is that they are more in une with the phone strings obtained
later during recognition in the system (see Riley et al., 1999). For these reasons, we
used automatically obtained phonetic transcriptions in the research reported in this
thesis. A detailed analysis of the automatic transcription procedure is presented in
article 1 and article 2.

Strik and Cucchiarini (1999) observe that in most studies the emphasis is on
reduction of the error rates. In order to find out how and why improvements are
obtained, recognition errors should be studied in more detail, i.e. a more detailed error
analysis should be carried out. In the research reported in this thesis, we do not limit
ourselves to measure performance improvement in terms of Word Error Rate (WER),
but an attempt is also made to understand how the recognition process is affected by
modeling pronunciation variation. To this end, error-analysis of the results of
modeling pronunciation variation is performed; see article 3 and article 4.
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3 Goals and methodology

3.1 Goals

The first goal of this thesis is to investigate whether the performance of ASR can be
improved by explicit modeling of segmental pronunciation variation. Besides
improving recognition performance we also hope to gain more insight into the effect
of modeling pronunciation. Furthermore, since automatic phonetic transcription of
pronunciation variants forms a vital component of the research methodology, a second
goal is to assess the quality of our automatic transcriptions and to investigate how they
may best be obtained. In the next two sections, the method for obtaining automatic
phonetic transcriptions and the general method for modeling pronunciation variation is
explained.

3.2 Methodology

3.2.1 Automatic phonetic transcription

Phonetic transcriptions are needed for two purposes in the research described in this
thesis. First of all, for the data-driven method to model pronunciation variation, the
pronunciation variants need to be obtained. To this end, phonetic transcriptions of the
training material are made. Second, our general method of modeling pronunciation
variation requires information on the occurrence of the pronunciation variants to be
modeled. In order to obtain this information, phonetic transcriptions are also needed.
In this thesis, the phonetic transcriptions are made automatically, i.e. by a speech
recognizer. Almost invariably, the automatic phonetic transcriptions are 'broad
phonetic', or phonemic transcriptions.

Automatic phonetic transcriptions can be made in several ways. One approach
that has been used is to perform phone recognition. In this kind of recognition, phones
are recognized instead of words. The recognizer is often constrained by a phone N-
gram, and by penalties on the generation of sequences comprising many short phones.
However, the content of speech (the orthographic transcription) is often available. In
this case, the corresponding canonical phonetic transcription can be used as a starting
point for automatic transcription. The phonetic transcription is looked up in a lexicon.
Based on this phonetic transcription a limited number of possible pronunciation
variants are generated by applying some kind of rules, e.g. phonological rules (e.g.
Lamel and Adda, 1996), data-derived rules (e.g. Kessens et al., 2000), or by using
decision trees (e.g. Riley et al., 1999). The task of the CSR is now to decide for each
word which of the possible variants best matches the acoustic signal. This approach to
obtaining automatic phonetic transcriptions is called forced recognition (or forced
alignment) and is used in this thesis.

During forced recognition/alignment a Viterbi alignment of the speech material
is made for all possible sequences of pronunciation variants and the sequence of
variants with the highest likelihood is chosen. If the prior probabilities of the
pronunciation variants of the same word are exactly equal during forced
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recognition/alignment, the choice for a specific variant is determined solely by the
acoustic likelihoods. However, sometimes weighted prior probabilities for the
pronunciation variants are used during forced recognition/alignment. Kipp et al.
(1997) use manually labeled data in order to obtain the prior probabilities for the
pronunciation variants. Riley et al. (1999) and Saraçlar (2000) use the pronunciation
probabilities derived from decision trees as weights during alignment. In our automatic
transcription procedure, the CSR is forced to choose between the various
pronunciation variants by using an utterance specific language model. This language
model is trained for each individual utterance on a corpus consisting of 100,000
repetitions of the utterance. In this way, the weight of the language model is largely
increased, making it virtually impossible to recognize other words than the ones
present in the utterance. During forced recognition, all variants of the same word are
assigned equal prior probabilities, thus the choice for a specific pronunciation variant
is solely determined by the acoustics.

For the data-driven method to model pronunciation variation, forced
recognition is performed twice. The first time, forced recognition is performed in order
to obtain transcriptions of the pronunciation variation occurring in the training
material. The pronunciation variants that can be chosen during forced recognition are
obtained by starting with a canonical phone transcription for each word. Next, a very
large number of hypothetical variants are generated. This is done by generating all
possible variants in which one or more phones in the canonical phone transcription are
deleted. For each utterance, the automatic transcriptions are aligned with the
concatenation of the canonical transcriptions of the words in the utterance. On the
basis of these alignments, data-driven rules are derived. Next, the data-driven rules are
selected and used to generate pronunciation variants. Subsequently, the resulting set of
variants is used in a second forced recognition that is carried out to obtain information
on the frequency of occurrence of the variants. With the same aim, forced recognition
is performed for the knowledge-based method. The pronunciation variants are
automatically obtained by applying five phonological rules to the canonical
transcriptions of the words in the lexicon. In the next section, it is explained how the
information on the occurrence of the variants is used in our general method to model
pronunciation variation.

3.2.2 Modeling pronunciation variation

For both the knowledge-based (article 3) and the data-driven approach (article 4), a
general method of modeling pronunciation variation was used. This method implies
incorporating pronunciation variation at all three levels in the CSR: the lexicon, the
phone models, and the language model.

• Modeling pronunciation at the level of the lexicon ;
Pronunciation variants are added to the baseline recognition lexicon. In this way, a
lexicon is obtained that contains multiple pronunciations for some of the words. By
using the multiple pronunciation lexicon, we expect recognition performance to
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improve, because the mismatch between the realized pronunciation and the
pronunciation in the lexicon is reduced.

For modeling pronunciation variation at the other two levels of the CSR, an extra step
is needed. This step consists of obtaining automatic phonetic transcriptions of the
training corpus by performing forced recognition (see section 3.2.1).

• Modeling pronunciation variation at the level of the phone models :
The phone models are retrained on the new automatic phonetic transcriptions of the
training corpus. Since we expect that there will be less mismatch between the new
phone transcriptions and the acoustic signals, the retrained phone models should be
less contaminated, and should therefore perform better.

• Modeling pronunciation variation at the level of the language model :
A new language model is calculated from the new automatic transcriptions of the
training corpus. In the baseline language model, all pronunciation variants of the
same word are assigned equal prior probabilities. However, in the new language
model, different variants of the same word are assigned their own specific
probabilities. These probabilities are estimated from the automatic transcriptions of
the training corpus.

3.2.3 Evaluation

The first objective of this thesis is to improve the recognition performance of our CSR
by modeling pronunciation variation. As a measure of recognition performance, we
used the WER, which is defined as follows:

. WER = S+D+IxlOO% (4)
N

where S is the number of substitutions, D the number of deletions, I the number of
insertions, and N the total number of words.

The second objective of this thesis is to assess the quality of our automatic phonetic
transcriptions and to investigate how they can best be obtained. As a measure of
quality, we used agreement between the automatic phonetic transcriptions and human
reference transcriptions; the higher the agreement, the better the quality of the
automatic phonetic transcriptions. As a measure of agreement we used Cohen's kappa
(K), which corrects for chance agreement (Cohen, 1968):

• Cohen's K = PO~PC (5)
100-PC ^ '

P o = percentage of agreeing pairs of judgements (observed agreement)
PC = percentage of agreeing pairs on the basis of chance (expected agreement)
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where, Pc is calculated as follows:

• ^ = £^.xlOO% (6)

PL = marginal fraction of row i (n,./2V)
P.] = marginal fraction of column j (n./N)
N = number of judged objects
v = number of categories

When the distribution of scores across the different categories substantially differs
from uniformity, Pc is high. The examples given in Table 6 clarify this point. Example
A shows a situation in which much more 0-s than 1-s are used. In this case, Pc is
90.5%. Example B shows a situation in which the 0-s and 1-s are more uniformly
distributed: Pc is 50%.

Table 6: Two examples of distributions of scores amongst the two judgers (humans
and CSR)

A

CSR

humans

U
0
1

P.j

0
.9
.05
.95

1
.05
0

.05

Pi.
.95
.05

B

CSR

humans

ij
0
1

P.j

0
.45
.05
.5

1
.05
45
.5

PL
.5
.5

In the extreme case that all objects are assigned to the same category, K cannot be
calculated. The values of K range from -1 (total disagreement) to 1 (perfect
agreement).
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4 Summaries of the articles

4.1 Summary 1

"Obtaining phonetic transcriptions: a comparison between expert listeners and a
continuous speech recognizer", published in Language & Speech 44 (3), pp. 377-403.

In this article, we investigate whether a continuous speech recognizer (CSR) can be
used to obtain automatic phonetic transcriptions of speech. The automatic
transcriptions were made by using the CSR in forced recognition mode. During forced
recognition, the CSR chooses the variant that best matches the acoustic signal from
among a number of possible pronunciation variants. The pronunciation variants were
automatically generated by applying the following five optional phonological rules to
the words in the baseline lexicon: /n/-deletion, /r/-deletion, /t/-deletion, /©/-deletion
and /©/-insertion (Booij, 1995; Cucchiarini and van den Heuvel, 1999). Two
experiments were carried out in which the performance of the CSR was compared to
the performance of expert listeners. However, given that human listeners can make
mistakes it is not possible to obtain a completely error free human reference
transcription with which the automatic transcriptions can be compared (Cucchiarini,
1993). To (partly) circumvent this problem, two strategies were used to obtain a
human reference transcription. In the first experiment, a majority vote procedure was
used, i.e., the reference transcription is based on the judgment of the majority in a
group of listeners. In the second experiment, a consensus transcription was made, i.e.,
two (or three) transcribers have to agree on each individual symbol to be transcribed.
For evaluation, binary scores were derived: "1" if the rule was applied, or "0" if the
rule was not applied. As a measure of agreement we used Cohen's kappa (K) (see
section 3.2.3).

Experiment 1
The manual transcriptions in the first experiment were made by nine expert linguists
who all have experience in making phonetic transcriptions for their own
investigations. The transcription task was exactly the same for the transcribers and the
CSR, namely a forced choice from among a number of possible pronunciation
variants. For the 291 words for which the variants had to be chosen, 467 binary scores
per subject were obtained. Different reference transcriptions were obtained, depending
on the minimum number of listeners that had to agree. The transcriptions for which the
minimum number of agreeing listeners is not reached were excluded from analysis.
This means that the higher the minimum number of listeners, the stricter the reference
transcription, and the more transcriptions are excluded from analysis.

Four types of comparisons were performed in which the CSR's transcriptions
were compared to the transcriptions made by the linguists. First, a pairwise
comparison was performed for each pair of listeners and for each CSR-listener pair.
This comparison showed that the agreement values for six of the listeners do not differ
significantly from each other, whereas the agreement values of two listeners are
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significantly higher and those of one of the listeners and the CSR are significantly
lower than the rest. The average K-value for the listener-listener pairs is 0.63, whereas
the average K-value for the CSR-listener pairs is 0.55. Second, we compared the
listeners' and the CSR's transcriptions to reference transcriptions with varying degrees
of strictness. We found that the CSR's agreement values increased if a stricter
reference transcription was used. In a third comparison, we investigated the agreement
values for the individual rules. This comparison revealed that the results are rule-
dependent: the absolute agreement values for both listeners and CSR vary per rule; the
differences in agreement values between CSR and listeners vary per rule, and the
range in agreement values for the listeners is quite variable per rule. Finally, in a
fourth comparison we examined the differences in transcriptions between the listeners
and the CSR. We found that the human transcribers scored a phone as present more
often than the CSR did. As we hypothesize that this difference might be of durational
nature and as the difference is especially large for the /©/-deletion rule, we determined
the duration of the /@/s in the context of the /©/-deletion rule based on an automatic
segmentation of the transcription material. This analysis showed that half of the /@/s
with a very short duration are detected by the humans, but not by the CSR. This result
indicates that the human listeners and the CSR may have a different durational
threshold for detecting the l@l in the context of the /©/-deletion rule.

Experiment 2
In order to investigate why the results were quite different for /©/-deletion as opposed
to /©/-insertion, we conducted a second experiment. To this end, consensus
transcriptions were made for words for which the /©/-deletion and /©/-insertion rule
are applicable. Five duos and one trio were asked to reach consensus on the
transcription (using IPA6 symbols) of what was articulated at the indicated spot hi the
word, i.e., where the conditions for application of the rule were met. The transcribers
were students who had all followed the same transcription course. Comparison of the
consensus transcriptions with the automatic transcriptions revealed that most of the
/@/s that have a short duration according to the listeners were denoted as 'not present'
by the CSR. This is further evidence that the listeners and the CSR may have different
durational thresholds for detecting the phone /©/. Furthermore, we found that for the
/@/s in the context of the /©/-deletion rule often something other than deletion or l@l
was transcribed, indicating that /©/-deletion is a more variable process than /©/-
insertion.

The two experiments conducted in this study revealed that overall the machine's
transcription performance is significantly different from the listener's performance.
However, if we consider the individual rules, not all differences appeared to be
significant. Furthermore, it should be kept in mind that significant lower agreement
values were also found for one of the listeners. Although there are significant
differences between the CSR and the listeners, the difference in performance may be
acceptable, depending on what the transcriptions are needed for.

s IPA=International Phonetic Alphabet, see http://www2.arts.gla.ac.uk/lPA/fullchart.html
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4.2 Summary 2

"On automatic phonetic transcription quality: Lower WERs do not guarantee better
transcriptions", submitted to Computer, Speech & Language.

In this study, we investigated a number of issues related to the quality of automatic
phonetic transcriptions obtained by using the CSR hi forced recognition mode. The
pronunciation variants were automatically generated by applying the same five
phonological rules as in article 1 to the words in the canonical lexicon. For each phone
that could possibly be deleted or inserted, a binary score was obtained: (1) if the rule
was applied and (0) if this was not the case. As a quality measure of the automatic
transcriptions, we used agreement between the automatic transcriptions and the human
reference transcriptions: The higher the agreement with the human reference
transcriptions, the better the quality of the automatic transcriptions. As in article 1,
Cohen's kappa (K) was used as a measure of agreement (see section 3.2.3).

Both majority vote and consensus reference transcriptions have been used. The
majority vote reference transcriptions were identical to those in article 1; thus, in total,
467 binary scores were obtained. The consensus transcriptions were made by the same
students as in article 1. However, a difference is that the transcriptions in this study are
made for whole utterances. In total, 770 binary scores were obtained from these
utterances, as the context for one of the five rules applying was met 770 times.

Properties of a CSR versus transcription quality
The first goal of this investigation was to determine how various properties of a CSR
affect the quality of the resulting automatic transcriptions. The properties of the CSR
that were investigated are all related to the acoustic models (HMMs). The first
property concerns the HMM topology. In article 1, we found indications that the
human listeners and the CSR have a different durational threshold for detecting the
phone l@l. Furthermore, Brugnara et al. (1993) found that a better phone accuracy is
obtained when HMMs are used with a minimum duration that is shorter than the
duration of our baseline HMMs. For these reasons, we investigated whether
agreement could be increased by using an HMM topology for the l@l that has a
shorter minimum duration than the baseline /@/-HMM. The results show that the CSR
does indeed detect more /@/s when the HMM with a shorter minimum duration is
used. However, the increase in the overall agreement values is not very large.

The second property that we investigated concerns the degree of contamination
in the HMMs. Since the speech material used for training contains a great deal of
variation in pronunciation, but the baseline training lexicon contains only one
canonical transcription for each word, the HMMs are contaminated. One of the
approaches we used to reduce the contamination due to this mismatch is retraining the
phone models using automatic transcriptions of the training material which were
obtained through forced recognition in previous research (Wester et al., 1998a). If we
use the HMMs from this research to make automatic transcriptions, the overall
agreement values improved. Similar results have been reported by Saraçlar (2000). A
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second way of reducing the part of the mismatch between the transcription of the
training material and the actual pronunciation is to take the most frequently occurring
pronunciation to train the HMMs. These HMMs also improved the overall agreement
values. A third way of reducing the mismatch is to train the HMMs on read speech
instead of on spontaneous speech. As the amount of variation in spontaneous speech
tends to be larger than in read speech, it is to be expected that HMMs trained on read
speech will also be less contaminated. Our results indeed show that higher agreement
values are found for the read speech HMMs.

The third property that we investigated concerns the type of HMMs, namely
context-independent (CI) versus context-dependent (CD) HMMs. Since CD-HMMs
generally yield lower WERs, one could expect that CD-HMMs would also improve
transcription quality. Compared to using CI-HMMs, the agreement values for the CD-
HMMs deteriorated for the majority vote material, whereas a small improvement was
found for the consensus material. The deterioration in agreement for the majority vote
material is mainly caused by the /r/-deletion rule. Using CD-HMMs, the CSR unjustly
detects more /r/s. The different /r/-deletion results for the majority vote and the
consensus material are probably related to the fact that the words for which the
transcriptions of /r/-deletion were made are considerably different in the two types of
material.

Finally, we also investigated the effect of combinations of properties. If CD-
HMMs are trained on automatic transcriptions (obtained through forced recognition)
instead of training them on canonical transcriptions, the contamination within the CD-
HMMs is reduced and the quality of the transcriptions is improved. The combination
of two other properties, namely pronunciation variation modeling and using a 'short'
HMM for the phone l@l, also resulted in a further improvement of transcription
quality.

In this study, the quality of the automatic transcriptions was evaluated by
measuring agreement with human reference transcriptions based on a majority vote
principle and with consensus reference transcriptions. For the majority vote
transcriptions, the overall K-value (all rules) varies between 0.46 and 0.63. For the
consensus transcriptions, the overall K-value varies between 0.43 and 0.51. The
difference in absolute agreement values might be explained by the transcribers'
differences in level of experience, by the fact that the focus in the two transcription
tasks was different, and by differences in the number of transcribers that were used to
obtain the reference transcriptions. Although the absolute agreement values varied for
the two types of reference transcriptions, the general trends that we observed were
very similar. To conclude, we have shown that changing the properties of a CSR can
improve the quality of the automatic transcriptions produced. Furthermore, we found
that by combining these changes in properties the quality of automatic transcription
can be improved even further: The K-values could be improved by 0.08 for the
consensus transcriptions, and by 0.125 for the majority vote transcriptions.



26 Summaries of articles

WER versus transcription quality
Intuitively one might expect that the CSR that obtains the lowest WER on some
reference recognition task will also yield the best automatic transcriptions. However,
on second thoughts, speech recognition may well be quite a different task from
automatic transcription. Therefore, our second goal was to investigate whether lower
WERs do indeed predict higher quality automatic transcriptions. We observed that
there is no clear relation between the WER obtained with a certain CSR and its
transcription quality. Therefore, we can conclude that for obtaining automatic
transcriptions, taking the CSR with the lowest WER is not always the optimal solution.
Rather, one should concentrate on the properties that the CSR should have in order to
make optimal transcriptions. The best thing to do is to use a CSR that is optimized for
making automatic transcriptions.

4.3 Summary 3

"Improving the performance of a Dut ch CSR by modeling within-word and cross-
word pronunciation variation", published in Speech Communication 29, pp. 193-207.

Modeling within-word and cross-word pronunciation variation
This article describes how the performance of our CSR was improved by modeling
within- and cross-word pronunciation variation. We propose a general procedure for
modeling pronunciation variation (see section 3.2.2). In short, it consists of adding
pronunciation variants to the lexicon, retraining the phone models and using variant-
specific (prior) probabilities. Within-word pronunciation variants were generated by
applying the same five phonological rules as in article 1 to the words in the lexicon.
These rules all concern frequent phonological processes. The type of cross-word
processes we focused on were contraction, reduction and cliticization (Booij, 1995). It
is not straightforward to model variation that occurs across word boundaries in our
recognizer, as it uses a single pass search algorithm. Therefore, we employed two
methods to model cross-word variation suitable for our single-pass decoder. In the first
method a limited number of cross-word processes were modeled by directly adding the
cross-word variants to the lexicon. The second method models cross-word variation by
using multi-words. We tested the within-word and cross-word methods in isolation, as
well as the combinations of the within-word method with each of the cross-word
methods.

The recognition experiments that we conducted yielded the following results.
We measured a WER of 12.75% for the baseline system in which no pronunciation
variants were used. Adding pronunciation variants to the lexicon (without changes
elsewhere in the system) did not always result in an improvement of recognition
performance. When, on top of adding variants to the lexicon, retrained phone models
are used, the WERs for almost all approaches (and combinations of approaches) are
improved compared to using the baseline phone models. However, retraining the
phone models does not alleviate all the deterioration that is caused by the expansion of
the lexicon: Compared to the baseline system, there are still deteriorations. When, in
addition to retraining the phone models, variant-specific prior probabilities are
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employed, the WERs for all methods improve. Moreover, all WERs are lower than in
the baseline system, and the absolute improvements are generally larger than the
improvements obtained through using multiple variants in the lexicon or retraining the
phone models. These results indicate that employing prior probabilities for the variants
is essential when pronunciation variants are added to the lexicon. Comparison of the
two cross-word methods revealed that cross-word method 2 performs better than
cross-word method 1. The better recognition performance of cross-word method 2 can
mainly be attributed to the use of multi-words in the language model, as multi-words
increase the span of the language model for the word sequences in the training and test
material that occur most frequently. Finally, our results showed that the combination
of the within-word method and the cross-word method 2 led to the best results: A total
improvement in WER of 1.1% absolute, or 8.8% relative was obtained.

Combination versus isolation
In this article, we also compared the recognition results of the cross-word methods
tested in isolation and tested in combination with the within-word method.
Furthermore, we tested the five within-word rules in isolation, and we compared the
results of these tests to the recognition result of the experiment in which the
combination of all five rules is tested. This investigation revealed that the results
obtained for testing various sets of pronunciation variants in isolation did not add up to
the result of testing the combination of the sets of variants. This is due to a number of
factors. First of all, different rules can apply to the same word. Consequently, when
the five rules are used in combination, pronunciation variants are generated which are
not generated for any of the rules in isolation. Furthermore, the words in the utterances
are not recognized independently of each other; thus, interaction between
pronunciation variants can occur. The implication of these findings is that it will not
suffice to study the effect of modeling pronunciation variants in isolation. Instead,
combinations of pronunciation variants have to be studied. However, this poses a
practical problem, as there are many possible combinations.

Error analysis
In many studies about modeling pronunciation variation, WER is used as the only
measure for performance evaluation. Although this measure gives a global idea of the
merits of a method, it certainly does not reveal all details of the effect a method has.
This became clear through the error analysis that we conducted, since it revealed that
14.7% of the recognized utterances changed, whereas a net improvement of only 1.3%
in the sentence error rate was found. Therefore, it is clear that a more detailed error
analysis is necessary to gain real insight into the effects of a certain approach.



28 Summaries of articles

4.4 Summary 4

"A data-driven method for modeling pronunciation variation", submitted, reviewed
and resubmitted to Speech Communication.

In this article, we describe a data-driven method for modeling pronunciation variation.
For two reasons, the kind of pronunciation variation that we modeled was limited to
deletion processes. First, we expected deletions (and insertions) to be more important
than substitutions, since substitutions can implicitly be modelled in the phone models.
Second, deletion processes occur frequently in our speech material (see Wester et al.,
1998c). The deletion processes were described by rules that were derived in a data-
driven manner. In the first step of the rule-extraction procedure, we generated all
possible deletion variants by allowing each phone in the canonical transcription to be
deleted. The variants generated in this way are used during forced recognition which
was carried out in order to determine which of the possible variants best matches the
acoustic signal (see section 3.2.1). The second step was an alignment of the automatic
phone transcriptions with a concatenation of canonical phone transcriptions of the
words in the utterance. The alignments were used to formulate candidate rules which
describe the contexts in which the phones are deleted. Finally, 91 rules were selected
by excluding the rules that have a low absolute frequency of rule application (Fabs).
The main reason for selecting the frequent rules is to filter out rules that might be
based on transcription errors. Since it can be expected that transcription errors occur
randomly, the rules that are the result of transcription errors are probably not as
frequent as the rules that are based on genuine deletion processes.

Reduction in WER through data-driven modeling of pronunciation variation
The first goal of this study is to find out whether the data-driven method used for
modeling pronunciation variation leads to improved recognition performance. We
tested different subsets of the 91 rules by selecting them based on the relative
frequency of rule application (Fref), which is defined as the number of times a rule was
applied (Fab,) divided by the number of times the rule could have been applied. We
started off by testing the rules with the highest Frei and gradually increased the number
of rules by lowering the threshold for Frd. We employed the same general method of
modeling pronunciation variation as in article 1 (see section 3.2.2). The pronunciation
variants were generated by applying the selected set of rules to the words in the
lexicon. For the baseline system, in which no pronunciation variants are used, the
WER is 16.94%. This WER is higher than the WER for the baseline system in article
3. Two explanations can be given for this difference. First, the test set contains out-of-
vocabulary words in this study, whereas this is not the case in article 3. Second, the
test set is mainly taken from the second set of VIOS data, in which the variability in
the speakers is much larger than in the first set, from which the test set in article 3 is
taken (see section 1.3). The recognition experiments revealed results comparable to
those presented in article 3. As hi article 3 we found that only adding pronunciation
variants to the lexicon can deteriorate recognition performance. If the number of added
variants is small, the WERs improve compared to the baseline. However, with an
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increasing number of added variants, the improvements become smaller until a
deterioration in WER is found. This deterioration rapidly increases as a function of the
number of added variants. Furthermore, as in article 1, we found that retraining the
phone models is only of little benefit. The WERs slightly improve when, in addition to
expanding the lexicon, the phone models are retrained. When variant-specific prior
probabilities are also used, the WERs improve. For all sets of variants, improvements
are found compared to the baseline system using variant-specific prior probabilities.
For the best testing condition, a total improvement in WER of 1.2% absolute or 7.3%
relative was found. To conclude, our data-driven method of modeling pronunciation
variation indeed leads to improvements in recognition performance, provided that
prior probabilities for the variants are used.

Error analysis
The second goal of this research is to find out how the changes in WER came about,
by performing an error analysis procedure. In this investigation, error analysis was
performed at word level, whereas in article 3 error analysis was performed at sentence
level. A commonality is that we found that besides improvements, also deteriorations
were introduced through the modeling of pronunciation variation. These deteriorations
are almost as large as the improvements, so that the total net improvement in
SER/WER is small. The current error analysis also gave some new results. Two-thirds
of the words that were recognized differently were not recognized as one of the added
pronunciation variants. For the other one third of differently recognized words, we
could determine which rules caused the change in recognition result. On the basis of
this analysis, we determined the number of improvements and deteriorations per rule.
A strong correlation between the number of improvements and deteriorations per rule
was found, indicating that it is not possible to improve performance by excluding the
rules that cause many deteriorations, because these rules also produce a considerable
number of improvements. Finally, we found that the contribution to the changes in
WER differs per rule. The total improvement in WER could be ascribed to one quarter
of the rules. The most important rule was the deletion of word final /n/ preceded by a
/@/7. To conclude, our error analysis reveals that the gain in recognition performance
could be improved by making the balance between introducing and solving errors
more positive. However, this cannot be achieved by excluding rules that introduce
many errors.

Three criteria for rule selection
The third goal of this study was to examine the adequacy of three criteria for rule
selection. In this way, it would be possible to make more sound choices about which
rules (or which pronunciation variants) to select. To this end, the following three
measures were calculated:

7 This rule parallels the /undeletion rule used in the knowledge-based approach (article 3)



30 Summaries of articles

2) Freh and
3) 'net result of variants'.

The 'net result of variants' was obtained as follows. For the differently recognized
words that were recognized as a variant, we determined which rule(s) generated the
variant. In this way, it is possible to determine the total number of improvements and
deteriorations per rule. The 'net result of variants' is defined as the difference between
the number of improvements and the number of deteriorations. The 'net result of
variants' is more difficult to obtain, since an error-analysis is necessary to calculate
this measure. Fflfa and Fru are relatively easy to obtain, since they can be calculated
from the automatically obtained phone transcriptions of the training material. In order
to test the adequacy of the three measures, we selected sets of rules on the basis of the
three criteria and measured WER on an independent test set. Next, we calculated the
correlation between each of the criteria and the measured WERs. This correlation was
highest for Fafcf (0.92) and 'net result of variants' (0.85). Since F^ is easier to obtain,
this measure is to be preferred as a criterion for rule selection. To conclude, our results
indicate that rules can best be selected based on the absolute frequency of application
(Fobs). By selecting the rules on the basis of Fafo, in the best testing condition, a total
improvement in WER of 1.4% absolute, or 8.2% relative was obtained.



Chapters 31_

5 Discussion

5.1 Automatic phonetic transcription

The first two articles in this thesis concern automatic phonetic transcription of speech.
The differences between automatic versus manually obtained transcriptions will be
discussed in section 5.1.1. Next, in section 5.1.2,1 will discuss the differences between
making automatic transcriptions and performing a normal recognition task. Finally, the
last section explains some application areas for automatic transcription.

5.1.1 Automatic versus manual phonetic transcription

The results of the research described in this thesis show that there are differences
between the transcriptions made by human transcribers and the transcriptions made the
CSR: The average K-value for the listener-listener pairs was 0.63, whereas the average
K-value for the CSR-listener pairs was 0.55 (article 1). Furthermore, we showed that
changing the properties of the CSR can make the CSR's transcriptions more similar to
the human transcriptions: The K-values could be improved by 0.08 for the consensus
transcriptions, and by 0.125 for the majority vote transcriptions (article 2). Although
we showed that the degree of agreement between phonetic transcriptions made by
humans and automatic transcriptions can be diminished, I think it is not possible to
eliminate all differences completely.

A reason for believing that there will always be differences between manual
and automatic transcriptions is that humans do not even agree on which transcription is
'the correct one'. In the first experiment of article 1, for instance, inter-listener
agreement varied between 75% and 82% (Wester et al., 1998b). Kipp et al. (1997)
found an inter-labeler agreement ranging from 79% to 83% (Verbmobil corpus). For
the Switchboard corpus, inter-labeler agreement (at the phonetic segment level)
between highly experienced transcribers varied.between 72% and 80% (Greenberg,
1999). If humans do not agree, it cannot be expected that the CSR is able to produce a
transcription that can be expected to be the 'correct one'.

One of the reasons why making phonetic transcriptions of speech is so difficult
(for both humans and the CSR), is that the continuously changing signal has to be
divided into discrete non-overlapping segments. In non-linear, auto-segmental
phonology, a representation has been proposed in which speech is represented by
many parallel tiers, representing the parallel activities of the articulators in speech that
do not necessarily begin and end simultaneously (Goldsmith, 1990). Some other
authors state that speech cannot be described fully in terms of sequential units (see e.g.
Greenberg, 1997).

Besides the non-sequential and continuous character of speech that poses
problems for both humans and the CSR in making phonetic transcriptions, there are
also differences in the way transcriptions are made by human listeners and CSRs. First
of all, humans and CSRs analyze the speech signal differently. For example, Strik
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(2001) states that several important assumptions for signal analysis are made in
standard CSRs, which do not correspond to the way humans perceive speech. For
instance, the analysis window for which feature values are calculated is usually very
short. Although some dynamic information can be obtained from the derivatives of
these features, humans may very well rely on information from a wider time span for
speech recognition. A second factor that causes-differences between automatic and
manual phonetic transcriptions is that human listeners are influenced by various
factors, for instance, spelling, phonotactics, semantics, fatigue and level of experience
(for an overview see Cucchiarini, 1993). These factors do not influence the
transcriptions made by the CSR, or when they do (as is usually the case for
phonotactics) they are likely to have different effects.

5.1.2 Automatic transcription quality versus recognition performance

One of the main conclusions of article 2 is that there is no clear relation between the
WER obtained with a certain CSR and its transcription quality. Saraçlar (2000)
reported similar results showing that better quality transcriptions do not always lead to
improved WERs. In my view, these results are not surprising, since automatic
transcription and automatic recognition are completely different tasks. For automatic
transcription, we performed forced recognition. The phone-level constraints applied
during forced recognition are different than the word-level constraints applied during a
normal recognition task. The sequences of words that can be recognized during a
normal recognition task are constrained by the lexicon and the language model. During
forced recognition, the phone sequences for each word are restricted to the
pronunciation variants contained hi the lexicon. Consequently, other causes of errors
play a role during a normal recognition task than during forced recognition: For
instance, lexical confusability is a great source of errors in a normal recognition task
(words are recognized incorrectly), whereas lexical confusability cannot cause errors
during forced recognition. However, I do not think automatic transcription quality and
recognition performance are completely uncorrelated. In order to make good quality
transcriptions a certain level of recognition performance is necessary, and the other
way around, a CSR that performs very badly is useless for making high quality
transcriptions.

5.1.3 Application areas of automatic phonetic transcription

Although there are significant differences between the CSR and the listeners, the
difference in performance may be acceptable, depending on what the transcriptions are
needed for. The question that arises then is for what applications our automatic
transcription tool can be used. It is obvious that it cannot be used to obtain phonetic
transcriptions from scratch, but it is clearly limited to hypothesis verification. A first
application of our automatic transcription tool, of course, is our research on modeling
pronunciation variation (articles 3+4). Second, it could be used in various fields of
linguistics, like phonetics, phonology, sociolinguistics, and dialectology. In practice,
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this tool could be a useful aid in all research situations hi which phonetic transcriptions
have to be made by one person, since this tool could resolve possible doubts about
what was actually realized. Given that a CSR does not suffer from fatigue and loss of
concentration, it could assist the transcriber who is likely to make mistakes owing to
concentration loss. By comparing his/her own transcriptions with those produced by
the CSR a transcriber could spot possible errors that are due to absent-mindedness.
Furthermore, a transcriber may be biased by his/her own hypotheses and expectations
with obvious consequences for the transcriptions, while the biases for the automatic
tool may be controlled. Checking the automatic transcriptions may help discover
possible biases in the listener's data. Finally, an important contribution of automatic
transcription to linguistics would be that it makes it easier to use existing (very large)
speech databases for the purpose of linguistic research. With this tool, large amounts
of material can be analyzed in a relatively short time (about 2x real time), and at
relatively low costs. Although the CSR is not infallible, the advantages of a very large
dataset might very well outweigh the errors introduced by the occasional mistakes of
the CSR.

5.2 Modeling pronunciation variation

The last two articles in this thesis concern pronunciation variation modeling. In section
5.2.1, the general method that we employed for modeling of pronunciation variation
will be discussed. Next, in section 5.2.2, it will be discussed why the improvements
that we found were small. Finally, alternatives to phone level modeling of
pronunciation variation will be discussed in section 5.2.3.

5.2.1 General method of modeling pronunciation variation

The general method of modeling pronunciation variation consisted of incorporating
pronunciation variation at all three levels of the CSR (i.e. the lexicon, the phone
models and the language model). In this section, the results of modeling pronunciation
variation at each of the levels will be discussed. An essential part of our general
method is to make automatic transcriptions of the training material. The new
transcriptions are used to re-estimate the phone models and the language model. This
process can be repeated iteratively. To this end, the retrained phone models are used to
make new transcriptions. The new transcriptions are used in turn to train new phone
models and to re-estimate the prior probabilities of the variants. The results of iteration
will be discussed in the last paragraph of this section.

Adding variants to the lexicon
Adding pronunciation variants to the recognition lexicon without changes elsewhere in
the system was not always beneficial to recognition performance (articles 3+4). In
article 4 we found that, if a small number of variants are added to the lexicon,
recognition performance improves, but with an increasing number of added variants
the gain in recognition performance becomes smaller. Above a certain number of
added variants (an average of 2.5 variants per word), a deterioration in recognition
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performance is found. This deterioration rapidly increases as a function of the number
of added variants. These results are comparable with the results of Yang and Martens
(2000) and Fukada (1999).

Retraining the phone models
In the studies reported in this thesis, recognition performance generally improved if in
addition to expanding the lexicon, the phone models were retrained. Several other
authors also found improvements in recognition performance by retraining the phone
models (e.g. Aubert and Dugast, 1995; Lamel and Adda, 1996; Riley et al., 1999).
However, the improvements in recognition performance are generally not very large.
Other authors even found deteriorations in recognition performance when retrained
phone models were used (Beulen et al., 1998; Wester, 2001).

Our research (Kessens et al., 1997; Wester et al., 1998a) and other research (e.g.
Lamel and Adda, 1996; Schiel et al., 1998) revealed that retraining the phone models
is only beneficial if the pronunciation variants which are used during training are also
used during recognition (by including variants in the lexicon). This result can be
explained as follows. By retraining the phone models, part of the contamination within
the phone models disappears. Consequently, the phone models can better discriminate
between various pronunciation variants. However, during recognition this greater
discriminative ability cannot be used, since no alternative pronunciation variants are
present in the lexicon. Moreover, if a word is not pronounced canonically, the acoustic
likelihood scores for the mismatching parts of the speech are probably lower than the
acoustic likelihood scores obtained with the 'contaminated' baseline phone models.
Therefore, the risk of the recognition of an incorrect word is increased.

Incorporating pronunciation variants in the language model
The difference between incorporating pronunciation variants in the language model or
not is that in the first case the variants are assigned their own specific prior
probabilities, whereas in the second case each variant is assumed to be equally likely.
The level of the CSR in which prior probabilities are used is system dependent. For
instance, in our system the prior probabilities are defined in the language model,
whereas prior probabilities can also be defined in the lexicon (see e.g. Fosler-Lussier,
1999; Wester and Fosler-Lussier, 2000). The results reported in this thesis show that
using prior probabilities for pronunciation variants is crucial when modeling
pronunciation variation. We found that the positive effect of adding variants to the
lexicon is much larger when prior probabilities are assigned to the variants. A possible
explanation for the importance of employing variant-specific probabilities is as
follows. By adding variants to the lexicon, a number of recognition errors are solved,
as the variants match the actual pronunciation for some of the words better. On the
other hand, new errors are introduced because lexical confusability increases. By
treating each pronunciation variant as being equally likely, the damage done by the
increase in lexical confusability is probably large, since the probabilistic framework of
the speech recognizer is violated: Pronunciation variants of frequently occurring words
are assigned high prior probabilities, despite the fact that they may be highly unlikely.



Chapter 5 35

Consequently, these variants might introduce more errors than they correct. Many
other authors have reported on the importance of prior probabilities for pronunciation
variants (e.g. Fukada et al., 1999; Peskin et al., 2000; Saraçlar, 2000, pp. 118; Yang
and Martens, 2000; Jurafsky et al., 2001).

Iteration
The results of our research (Kessens and Wester, 1997; Kessens et al., 1999) show that
iteration only has small effects on recognition performance: Most of the changes in the
transcriptions and WERs occur the first time an improved transcription is made. After
the first iteration, the transcriptions and WERs do not change very much. Beringer and
Schiel (1999) calculated phone error rates of automatic transcriptions (compared to
manual transcriptions). As no further improvements in phone error rates were
observed in later iterations, Beringer and Schiel conclude that the process of iterative
transcription converges after the second iteration. To conclude, the process of iterative
transcription seems to converge very fast (after one or two iterations).

5.2.2 Why are the improvements so small?

In this thesis we have shown that recognition performance can be improved by
modeling pronunciation variation at the level of the phones. However, the
improvements obtained were, in general, not very large (relative reductions of 8-9% in
WER). This observation is not restricted to the research reported in this thesis, but
seems to be a general finding among the researchers in the field of pronunciation
variation modeling. In 1998, an ESCA workshop "Modeling Pronunciation Variation
for ASR" was held at Rolduc, Kerkrade, in the Netherlands. As a result of this
workshop a special issue of Speech Communication was published. The relative
reductions in WER reported in that journal issue ranged between 0 and 20% (Strik and
Cucchiarini, 1999). Since then,only Yang and Martens (2000) reported larger
improvements (30-45% relative WER reduction). However, the results of Yang and
Martens are found for read speech material (TIMIT); such large reductions in WER
have not yet been obtained for spontaneous speech. There are a number of factors that
could explain why the improvements due to modeling pronunciation variation are
generally not very large. These factors will be discussed below.

One of the factors that play a role is that not all variants that occur in the test set
are included in the lexicon (undercoverage), and the other way around: variants that
do not occur in the test set are included in the lexicon (pvercoverage). Saraçlar (2000)
performed 'cheating' experiments that revealed that if one were able to construct a
lexicon that has no undercoverage and overcoverage, a relative reduction in WER of
19% can be obtained. Similar results have been reported by McAllaster et al. (1998).
These authors performed recognition experiments on simulated speech data fabricated
from the acoustic models. Using the simulated data, a relative reduction of 24-42% in
WER can be obtained if a lexicon is used that contains all and only the variants in the
test set.

In the two approaches for modeling pronunciation variation used in this thesis,
the degree of mismatch between the lexicon and the test sets is different. One of the
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drawbacks of knowledge-based modeling of pronunciation variation is that the
knowledge on pronunciation variation that can be found in the literature is incomplete
(see e.g. Strik and Cucchiarini, 1999). In our data-driven method, the information on
the pronunciation variation is derived from exactly the same kind of speech as the
material that is used for the recognition experiments. Consequently, the coverage is
expected to be better. However, since we only concentrated on deletion processes, not
all variation in the data is covered. Moreover, both in the knowledge-based and the
data-driven approach we used rules to generate possible variants. One of the
advantages of using rules is that they generalize to unseen contexts and that they are
not corpus/task dependent. A disadvantage of employing rules is possible
undergeneration and overgeneration of variants due to incorrect specifications of the
rules applied (Cohen, 1989; Strik and Cucchiarini, 1999). To conclude, I hypothesize
that the coverage for both approaches could be improved; for the knowledge-based
method by modeling more pronunciation variation, and for the data-driven method by
extending the method to substitutions and insertions of phones and by refining the way
the rules are defined (e.g. by using more context information).

Coverage is not the only (and maybe not even the most important) factor that
plays a role. This is suggested by the results of the error analysis that we performed in
this thesis (articles 3+4). Despite the fact that we used prior probabilities for the
pronunciation variants (thus reducing the negative effects of overcoverage), new errors
are also introduced due to the addition of pronunciation variants: These deteriorations
counterbalance part of the improvements, so that only a small total net improvement in
SER/WER is obtained. A possible explanation for the introduction of new errors is
lexical conßisability: (sequences of) pronunciation variants of incorrect words are
confused with (sequences of) correct words. Some researches have tried to estimate
the amount of lexical confusability of pronunciation variants (Sloboda, 1995; Torre et
al., 1997; Wester and Fosler-Lussier, 2000). There are various reasons that could
explain why attempts to reduce confusability do not always translate to large
reductions in WER. First of all, lexical confusability will always exist, since
homophony (and near homophony) is part of the language. By excluding confusable
variants, the benefits that these variants could have for recognition performance also
disappear. Second, it is difficult to find a measure that takes completely into account
all factors that explain lexical confusability. For instance, the confusability measure of
Wester and Fosler-Lussier (2000) only takes into account confusions between words
that exactly match (parts of) other words, whereas most of the recognition errors
concerns confusions of words that do not exactly match.

In addition to coverage and lexical confusability, there is a third factor that
partly explains why the improvements in recognition performance are not very large
for our method of pronunciation variation modeling. An implicit assumption in our
method is that pronunciation variation can be modeled at the level of the phones. This
means that a phone can be deleted, substituted or inserted; no intermediate models are
used. This way of modeling pronunciation is obviously a simplification of what
actually happens, since changes in pronunciation are not discrete, but rather gradual in
nature (see e.g. Saraçlar, 2000).
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5.2.3 Alternatives to phone level modeling of pronunciation variation

A way of partially circumventing the problems connected with phone level modeling
of pronunciation variation is by modeling the variation implicitly in the acoustic
models. In this way, the level of modeling the pronunciation variation has shifted from
the phone level to the level of states or densities. One way of implicitly modeling
pronunciation variation in the phone models is by using context-dependent (CD)
phone models. The recognition results presented in article 2 of this thesis (Figure 16)
show that the amount of improvement obtained by using context-dependent phone
models is about equal to the improvement in recognition result obtained with a
combination of context-independent phone modeling and pronunciation variation
modeling. Furthermore, hi article 2, it was also shown that pronunciation variation in
combination with context-dependent phone models does not improve recognition
performance. These results are in line with the results of Ma (1998), since Ma showed
that the gain in recognition performance from pronunciation variation modeling
reduces if CD models are used and if the complexity of the models is increased.
However, not all pronunciation variation is well captured by CD models: Jurafsky et
al. (2001) showed that phone substitutions and vowel reduction can be adequately
captured in CD models, but syllable deletions are poorly modeled.

Another way of modeling pronunciation variation implicitly in the phone
models is to use a State-Level Pronunciation Model (SLPM) (Saraçlar, 2000). Saraçlar
showed that the improvements in recognition performance are larger for state-level
modeling of pronunciation variation than for phone-level modeling, but the differences
were not very large. Lee and Wellekens (2001b) also used a SLPM, but the
improvements were not very large.

Pronunciation variation can also be modeled implicitly in the acoustic models
by using larger basic units than phones, like (demi-)syllables (see e.g. Heine et al.,
1998; Wu, 1998; Greenberg, 1999; Ganapathiraju et al., 2001) or even whole word
models. In this way, the pronunciation variation contained in the syllable/word is
captured within the acoustic model. However, a problem with using larger basic units
is that for large vocabulary tasks, the number of syllables/words is much larger than
the number of phones. As a consequence, the number of model parameters is also
larger, and the danger of under-training increases. Furthermore, these larger basic units
do not provide a solution for cross-word or cross-syllable pronunciation variation.
These two limitations are probably the reasons why using larger basic units does not
often result in large improvements in recognition performance.

An approach that can perhaps be used to describe pronunciation variation in a
more appropriate manner is to use articulatory features. Compared to phones,
articulatory features provide a more adequate description of pronunciation variation, as
the variation can be described in terms of feature spreading and assimilation, instead
of categorical phone substitutions, deletions and insertions. Articulatory features are
often used as sub-phonemic units, as an intermediate level between the level of the
acoustically-based features and the phone level, which makes it necessary to transform
the articulatory-based features into phonetic segments. Although high frame-level
feature classification accuracies are found, it appears to be difficult to transform the
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frame-level transcriptions into phone/word-level transcriptions with higher word
accuracy (King et al. 1998; Kirchhoff 1999; Koreman et al. 1999). However,
Kirchhoff (1999) has shown that articulatory features provide complementary
information to acoustically-based features. This suggests that combining articulatory
features with other acoustic input could possibly improve pronunciation variation
modeling.
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6 Conclusions and future work

6.1 Conclusions

Several conclusions can be drawn from the results presented in this thesis. One of the
goals of this thesis was to assess the quality of our automatic transcription procedure.
The first conclusion is that it is possible to use the CSR for automatic transcription.
Whether the differences in performance between the machine and the human
transcribers are acceptable, depends on the purpose for which the transcriptions are
needed. Furthermore, we conclude that using the CSR with the lowest WER measured
on an independent test set does not guarantee that optimal automatic transcriptions are
obtained. In order to obtain optimal automatic transcriptions, one should rather
concentrate on those properties of the CSR that are important for automatic
transcription. The quality of the automatic transcriptions can be improved by using
'short' HMMs and by reducing the amount of contamination in the HMMs.
Furthermore, it appeared that CD-HMMs should not be trained on canonical
transcriptions, since the transcriptions obtained with these HMMs are too much biased
towards the canonical transcriptions. We also found that by combining these changes
in properties of the CSR the quality of automatic transcription can be further
improved.

Another goal of this thesis was to investigate whether the recognition
performance of our CSR could be improved by modeling pronunciation variation at
the level of the phones. We conclude that with our general approach to model
pronunciation variation it is indeed possible to improve recognition performance.
Knowledge-based and data-driven modeling of pronunciation variation led to the same
degree of improvement in recognition performance. However, the degree of
improvement was generally not very large.

Our general method of modeling pronunciation variation involves all three
levels of the CSR. More specific conclusions can be drawn concerning the results of
modeling pronunciation variation at each level. First of all, expanding the lexicon by
adding pronunciation variants is no guarantee for improved recognition performance.
Second, retraining the phone models on (iterative) automatic transcription of the
training material has only very small effects on recognition performance. A third
important conclusion is that it is crucial to use prior probabilities for the pronunciation
variants in order to ensure improvements in recognition performance.

6.2 Future work

6.2.1 Automatic phonetic transcription

In the literature, only few examples of optimising automatic phonetic transcriptions
can be found. In my view, more work should be done in that direction. The goal of this
kind of research should not be to minimize the differences between automatic and
manual phonetic transcriptions, but rather to find out in what respect manual and
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automatic transcriptions are different. A question that is worth investigating is whether
the differences that we found between the manual and automatic transcriptions are
caused by the CSR, the human transcribers, or both, or whether it is not possible to say
what caused the difference. In articles 1 and 2, for instance, we showed that part of the
difference between the transcriptions made by the CSR and the human transcribers is
due to a bias of the CSR towards the deletion of segments. Furthermore, we found
indications that part of this bias of the CSR is of durational nature. Another example of
research that provided more insight into what respect manual and automatic
transcriptions are different is the work of Saraclar (2000). His work shows that the
phone error rate between human and automatic transcriptions dramatically increases
(>60%) for the proportion of transcriptions where the human transcribers disagree.

Furthermore, I think it is worthwhile to investigate whether measures can be
developed to assess the quality of automatic transcriptions beforehand, i.e. without
comparing them to manual transcriptions. In ASR, confidence measures are often used
in order to estimate the reliability of correctness of the recognition output. Confidence
measures might also appear to be useful in order to estimate the reliability of
automatic transcriptions. Using such a kind of measure makes it easier to quantify the
differences between automatic transcriptions and manual transcriptions. As a
consequence, it will be less difficult to decide in what research situations automatic
transcriptions can be used.

6.2.2 Improving pronunciation variation modeling

There are many differences in the way that people and machines perceive and process
speech. One of the main differences between human and machine speech decoding is
that humans use multiple sources of information in parallel. Linguistic theory assumes
that language is represented on many organizational tiers. If information from one of
the tiers is damaged or completely missing, human beings tend to use cues from other
tiers. In contrast, current ASR-systems focus on just a few of the linguistically relevant
tiers. For this reason, many authors have suggested that speech recognition could be
improved by performing many parallel analyses at the various linguistic levels, for
instance analyses at the articulatory-acoustic, phonological, grammatical, and semantic
levels (e.g. Greenberg, 1997; Pols, 1999). Some researchers have already investigated
whether using information from other linguistic tiers can help to rule out some of the
errors that are introduced by modeling pronunciation variation. For instance, Fosler-
Lussier (1999) investigated the dependence of pronunciation variation on word-
predictability and speaking rate. Jurafsky et al. (1998) investigated how filled pauses,
disfluencies, segmental context, speaking rate and word predictability relate to the
realization of the ten most common function words in the Switchboard corpus. Finke
and Waibel (1997) have introduced speaking mode as means to reduce confusability
by probabilistically weighting alternative variants depending on the speaking style.
These studies found correlations between each of the investigated factors and
pronunciation variability, but the interactions seem to be interdependent. For instance,
Fosler-Lussier (1999) found that a combination of word predictability and speaking
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rate can best explain pronunciation phenomena. For this reason, I think it is important
to investigate how the various factors that can predict pronunciation variability
interact.

Another important difference between human speech perception and the way
speech recognizers process speech, is that human speech recognition is much more
flexible. Humans continually adapt the prior probabilities in their lexicon depending
on various factors like the person(s) they are talking to, the situations they are in, and
the state of the conversation. In many speech recognition systems, however, the words
that can be recognized (and their corresponding prior probabilities) are fixed. By
dynamically adapting the language model (and/or the lexicon), recognition
performance can be improved. For instance, in applications like spoken dialogue
systems, the language model can be adapted depending on the dialogue state, which
results in a decrease in task perplexity and error rates (Popovici and Baggia, 1997;
Baggia et al., 1999; Wessel and Baader, 1999).

Besides the positive effects that dynamic modeling has on speech recognition in
general, I think it can be especially beneficial to pronunciation variation modeling. A
major problem connected with adding pronunciation variants to the lexicon is that
lexical confusability is increased. In my view, the best way to combat this lexical
confusability is by dynamic modeling of pronunciation variation. An approach to
dynamic modeling of pronunciation variation is to perform two-pass decoding. In the
second pass, the lattice (or list) of N-best hypotheses from the first pass is expanded
with pronunciation variants. Next, the expanded lattice is re-scored and the best
hypothesis is selected. Saraçlar (2000) showed that if the lattice is only expanded with
pronunciation variants that actually occur in the utterance, recognition performance is
considerably improved compared to using a static lexicon; the WER reduced from
38% to 27%. This result shows that a large gain can be expected by dynamic
pronunciation variation modeling. Some authors reported small improvements for
dynamic modeling of pronunciation variation compared to static modeling (see e.g.
Weintraub et al., 1996; Fosler-Lussier, 1999; Lee and Wellekens, 2001b), but recently
Lee and Wellekens (2001a) found a much larger relative improvement of 16.7% WER
for dynamic versus static modeling of pronunciation variation. In my view, dynamic
modeling of pronunciation variation is a promising research direction, especially if it is
combined with information from other linguistic tiers (e.g. phone context, speaking
rate, word predictability, stress and the presence of disfluencies).

6.2.3 Comparison of methods

In the literature almost no research can be found in which various techniques for
modeling pronunciation variation are compared. Strik and Cucchiarini (1999) mention
in their overview article that several factors make it difficult to compare methods,
namely differences between corpora and ASR systems, differences in the measures
used for evaluation, and differences in the baseline system. I agree with Strik and
Cucchiarini (1999) that it is advisable to strive towards an objective evaluation of
methods. In my opinion, just reporting WERs is not sufficient, as WERs only reveal
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the net changes. In order to make it easier to compare the effects of different methods,
it is important to separate the effects of the different factors that can influence the
amount of improvement that can be obtained with a certain method of modeling
pronunciation variation. Questions that could help to compare various methods are the
following:

• What is the amount of undercoverage and overcoverage?
• How many changes occur due to pronunciation variation modeling? How many

improvements and how many deteriorations? Which part of the errors in the
baseline system is affected by pronunciation variation modeling?

• How dependent are the results on the average number of variants per word in the
lexicon? Is there an optimum?

• How system and language dependent are the results?
• How corpus dependent are the results? Does the type of speech play a role?

Error analysis as done in this thesis and by others (e.g. Weintraub et al., 1996; Fosler-
Lussier, 1999) and 'cheating' experiments like McAllaster et al. (1998) and Saraçlar,
(2000) may shed more light on the possibilities of different methods of modeling
pronunciation variation.
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Appendix A

Set of Dutch phones and other speech sounds for which HMMs are trained

Dutch phones
# SAMPA1 Example

Vowels
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

I
E
A
O
Y
@
i
y
u
a:
e:
2:
o:
Ei
9y
Au

pit
pet
pat
pot
put

gemak
vier
vuur
voer
naam
veer
deur
voor
fijn
huis
goud

Plosives
17
18
19
20
21

P
b
t
d
k

pak
bak
tak
dak
kap

Dutch phones
# SAMPA1 Example

Fricatives
22
23
24
25
26
27
28

f
V

s
z
X

h
S

fel
vel
sein
zijn
toch
hand
show

Nasals, liquids, glides
29
30
31
322

332

342

352

36
37

m
n
N
1
L
r
R
W

j

met
net

bang
land
hal

rand
tor
wit
ja

Other speech sounds
#
38
39
403

symbol
<n>
<sil>
@=

description
noise

silence
filled pause

See http://www.phon.ucl.ac.uk/home/sampa/dutch.htm
In article 2, no distinction is made between post- and prevocalic III and /r/
Only used in article 2
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Key words Abstract

automatic In this article, we address the issue of using a continuous speech recognition
transcription tool to obtain phonetic or phonological representations of speech. Two exper-

iments were carried out in which the performance of a continuous speech
recognizer (CSR) was compared to the performance of expert listeners in a task
of judging whether a number of prespecified phones had been realized in an
utterance. In the first experiment, nine expert listeners and the CSR carried out
exactly the same task: deciding whether a segment was present or not in 467
cases. In the second experiment, we expanded on the first experiment by
focusing on two phonological processes: schwa-deletion and schwa-insertion.
The results of these experiments show that significant differences in perform-

ance were found between the CSR and the listeners, but also between individual listeners. Although
some of these differences appeared to be statistically significant, their magnitude is such that they
may very well be acceptable depending on what the transcriptions are needed for. In other words, although
the CSR is not infallible, it makes it possible to explore large datasets, which might outweigh the errors
introduced by the mistakes the CSR makes. For these reasons, we can conclude that the CSR can be
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Introduction

In the last decade, an increasing number of databases have been recorded for the purpose
of speech technology research (see for instance: <http://www.ldc.upenn.edu> and
<http://www.icp.inpg.fr/ELRA/ >). What started out as recordings of isolated words in
restricted domains has now evolved to recordings of spontaneous speech in numerous
domains. Since these databases contain a wealth of information concerning human language
and speech, it seems that they should somehow be made available for linguistic research
in addition to the speech technology research for which they were originally constructed
and are currently being employed.

The use of such databases for linguistic research has at least two important advan-
tages. First, many of them contain spontaneous speech. Most of the knowledge on speech
production and perception is based on so-called "laboratory speech," while spontaneous
speech is still under-researched (Cutler, 1998; Duez, 1998; Mehta& Cutler, 1988; Rischel,
1992; Swerts & Collier, 1992). Since it is questionable whether the findings concerning
laboratory speech generalize to spontaneous speech, it seems that more emphasis should
be placed on studying spontaneous speech. Second, these databases contain large amounts
of speech material, which bodes well for the generalizability of the results of research that
uses these databases as input.

Recent studies that have made use of such large databases of spontaneous speech reveal
that this line of research is worth pursuing (Greenberg, 1999; Keating, 1997). On the basis
of these observations one could get the impression that analysis of the speech data contained
in such databases is within the reach of any linguist. Unfortunately, this is not true. The
information stored in these databases is not always represented in a way that is most suit-
able for linguistic research. In general, before the speech material contained in the databases
can be used for linguistic research it has to be phonetically transcribed (see, for instance,
Greenberg, 1999). Phonetic transcriptions are obtained by analyzing an utterance audito-
rily into a sequence of speech units represented by phonetic symbols and making them is
therefore extremely time-consuming. For this reason, linguists often decide not to have
whole utterances transcribed, but only those parts of the utterance where the phenomenon
under study is expected to take place (e.g., Kuijpers & van Donselaar, 1997). In this way,
the amount of material to be transcribed can be limited in a way that is least detrimental
for the investigation being carried out. Nevertheless, even with this restriction, making
phonetic transcriptions remains a time-consuming, costly and often tedious task.

Another problem with manual phonetic transcriptions is that they tend to contain an
element of subjectivity (Amorosa, von Benda, Wagner, & Keck, 1985; Laver, 1965; Oller
& Eilers, 1975; Pye, Wilcox, & Siren, 1988; Shriberg & Lof, 1991; Ting, 1970; Witting,
1962). These studies reveal that transcriptions of the same utterance may show consider-
able differences, either when they are made by different transcribers (between-subjects
variation) or when they are made by the same transcriber, but at different times or under
different conditions (within-subjects variation). Since the presence of such discrepancies
throws doubt on the reliability of phonetic transcription, it has become customary among
researchers who use transcription data for their studies to have more than one person tran-
scribe the speech material (e.g., Kuijpers & van Donselaar, 1997). This of course makes
the task of transcribing speech even more time-consuming and costly.
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To summarize, the problems connected with obtaining good manual phonetic tran-
scriptions impose limitations on the amount of material that can be analyzed in linguistic
research, with obvious consequences for the generalizability of the results. This suggests
that if it were possible to obtain good phonetic transcriptions automatically, linguistic
research would be made easier. Furthermore, in this way linguistic research could make
profitable use of the large speech databases.

In speech technology, various tools have been developed that go some way toward
obtaining phonetic representations of speech in an automatic manner. It is possible to
obtain complete unrestricted phone-level transcriptions from scratch. However, phone
accuracy turns out to vary between approximately 50% and 70%. For our continuous
speech recognizer, we measured a phone accuracy level of 63% (Wester, Kessens, & Strik,
1998). In general, such levels of phone accuracy are too low for many applications. Therefore,
to achieve acceptable recognition results, top-down constraints are usually applied.

The top-down constraints generally used in standard CSRs are a lexicon and a language
model. With these constraints, word accuracy levels are obtained which are higher than the
phone accuracy levels just mentioned. However, the transcriptions obtained with standard
CSRs are not suitable for linguistic research because complete words are recognized,
leading to transcriptions that are not detailed enough. The transcriptions thus obtained are
simply the canonical transcriptions that are present in the lexicon. More often than not, the
lexicon contains only one entry for each word thus always leading to the same transcrip-
tion for a word regardless of pronunciation variation, whereas for linguistic research it is
precisely this detail, a phone-level transcription, which is needed.

A way of obtaining a representation that approaches phonetic transcription is by
using forced recognition, also known as forced (Viterbi) alignment. In forced recognition,
the CSR is constrained by only allowing it to recognize the words present in the utterance
being recognized. Therefore, in order to perform forced recognition, the orthographic tran-
scription of the utterance is needed. The forced choice entails choosing between several
pronunciation variants for each of the words present in the utterance. In this way, the vari-
ants that most closely resemble what was said in an utterance can be chosen. In other
words, by choosing alternative variants that differ from each other in the representation of
one specific segment, the CSR can be forced, as it were, to choose between different tran-
scriptions ofthat specific segment thus leading to a transcription which is more detailed
than a simple word-level transcription.

A problem of automatic transcription is the evaluation of the results. Given that there
is no absolute truth of the matter as to what phones a person has produced, there is also
no reference transcription that can be considered correct and with which the automatic tran-
scription can be compared (Cucchiarini, 1993, pp. 11-13). To try and circumvent this
problem as much as possible, different procedures have been devised to obtain reference
transcriptions. One possibility consists in using a consensus transcription, which is a tran-
scription made by several transcribers after they have agreed on each individual symbol
(Shriberg, Kwiaikowski, & Hoffman, 1984). Another option is to have more than one tran-
scriber transcribe the material and to use only that part of the material for which all
transcribers agree or at least the majority of them (Knijpers & van Donselaar, 1997).

The issues of automatic transcription and its evaluation have been addressed for
example, by Kipp, Wesenick, and Schiel (1997) within the framework of the Munich
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Automatic Segmentation System. The performance of MAUS has been evaluated by
comparing the automatically obtained transcriptions with transcriptions made by three
experts. The three manual transcriptions were not used to compose a reference transcrip-
tion, but were compared pairwise with each other and with the automatic transcriptions to
determine the degree of agreement. The results showed that the percentage agreement
ranged from 78.8% to 82.6% for the three human transcribers, while agreement between
MAUS and any of the human transcriptions ranged from 74.9% to 80.3% using data-driven
rules, and from 72.5% to 77.2% using rules compiled by an experienced phonetician.
These results indicate how the degree of agreement differs between expert transcribers
and an automatic system, and, in a sense, this is a way of showing that the machine is just
one of the transcribers. However, this is not sufficient because it does not say much about
the quality of the transcriptions of the individual transcribers. Therefore, we propose the
use of a reference transcription.

The aim of our research is to determine whether the automatic techniques that have
been developed to obtain some sort of phonetic transcriptions for CSR can also be used
meaningfully, in spite of their limitations, to obtain phonetic transcriptions for linguistic
research. To answer this question, we started from an analysis of the common practice in
many (socio/psycho) linguistic studies in which, as mentioned above, only specific parts
of the speech material have to be transcribed. In addition, we further restricted the scope
of our study by limiting it to insertion and deletion phenomena, which is to say that we did
not investigate substitutions. The rationale behind this choice is that it should be easier for
a CSR to determine whether a segment is present or not than to determine which one of
several variants of a given segment has been realized. If the technique presented here turns
out to work for deletions and insertions it could then be extended to other processes. In
other words, our starting point was a clear awareness of the limitations of current CSR
systems, and an appreciation of the potentials that CSR techniques, despite their present
limitations, could have for linguistic research.

In this study, we describe two experiments in which different comparisons are carried
out between the automatically obtained transcriptions and the transcriptions made by
human transcribers. In these experiments the two most common approaches to obtaining
a reference transcription are used: the majority vote procedure and the consensus tran-
scription.

In the first experiment, four kinds of comparisons are carried out to study how the
machine's performance relates to that of nine listeners. First of all the degree of agreement
in machine-listener pairs is compared to the degree of agreement in listener-listener pairs,
as in the Kipp et al. (1997) study. Second, in order to be able to say more about the quality
of the machine's transcriptions and the transcriptions by the nine listeners, they are all
compared to a reference transcription (majority vote procedure). Third, because it can be
expected that not all processes give the same results, the comparisons with the reference
transcription are carried out for each individual process of deletion and insertion. Fourth,
a more detailed comparison of the choices made by the machine and by the listeners is carried
out to get a better understanding of the differences between the machine's performance and
that of the listeners.

The results of this last comparison show that the CSR systematically tends to choose
for deletion (non-insertion) of phones more often than listeners do. To analyze this to a further
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extent, we carried out a second experiment in order to find out why and in what way the
detection of a phone is different for the CSR and for the listeners. In order to study this, a
more detailed reference transcription was needed. Therefore, we used a consensus transcription
instead of a majority vote procedure to obtain a reference transcription.

The organization of this article is as follows: First, the methodology of the first experi-
ment is explained followed by the presentation of the results. Before going on to the second
experiment a discussion of the results of Experiment 1 is given. Following on from this,
the methodology of the second experiment is explained, subsequently the results are shown
and also discussed. Finally, conclusions are drawn as to the merits and usability of our
automatic transcription tool.

Experiment 1

2.1
Method and Material

2.1.1
Phonological variation

The processes we chose to study concern insertions and deletions of phones within words
(i.e., alterations in the number of segments). Five phonological processes were selected for
investigation: /n/-deletion, /r/-deletion, /t/-deletion, schwa-deletion and schwa-insertion.
The main reasons for selecting these five phonological processes are that they occur
frequently in Dutch and are well described in the linguistic literature. Furthermore, these
phonological processes typically occur in fast or extemporaneous speech, but to a lesser
extent in careful speech; therefore it is to be expected that they will occur in our speech
material (for more details on the speech material, see the following section).

The following description of the four processes: /n/-deletion, /t/-deletion, schwa-dele-
tion and schwa-insertion is according to Booij (1995), and the description of the /r/-deletion
process is according to Cucchiarini and van den Heuvel (1999). The descriptions given here
are not exhaustive, but describe the conditions of rule application which we formulated to
generate the variants of the phonological processes.

1. /n/-deletion:

In standard Dutch, syllable-final /n/ can be dropped after a schwa, except if that syllable
is a verbal stem or if it is the indefinite article een [an] 'a'. For many speakers, in partic-
ular in the western part of the Netherlands, the deletion of/n/ is obligatory.

Example: reizen [reizan] -» [reiza] 'to travel'
2. /r/-deletion:

According to Cucchiarini and van den Heuvel (1999), /r/-deletion can take place in Dutch
when /i/ is preceded by a vowel and followed by a consonant in a word. Although this phenom-
enon is attested in various contexts, it appears to be significantly more frequent when the
vowel preceding the /r/ is a schwa.

Example: Amsterdam [omstardom] -» [amstadom] 'Amsterdam'
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3. /t/-deletion:

If a /t/ in a coda is preceded by an obstruent, and followed by another consonant, the /t/
may be deleted.

Example: rechtstreeks [rextstreks] —» [rexstreks] 'directly'

If the preceding consonant is a sonorant, /t/-deletion is possible, but then the following
consonant must be an obstruent (unless the obstruent is a /k/).

Example: 's avonds [savDnts] —» [savons] 'in the evening'

Finally, we also included /t/-deletion in word-final position following an obstruent.

Example: Utrecht [ytrext] -» [ytrex] 'Utrecht'

4. schwa-deletion:

When a Dutch word has two consecutive syllables headed by a schwa, the first schwa may
be deleted, provided that the resulting onset consonant cluster consists of an obstruent
followed by a liquid.

Example: latere [latara] -» [latra] 'later'

5. schwa-insertion:

In nonhomorganic consonant clusters in coda position schwa may be inserted. Schwa-
insertion is not possible if the second of the two consonants involved is an /s/ or a /t/, or
if the cluster is a nasal followed by a homorganic consonant.

Example: Delft [delft] -» [debft] 'Delft'

2.1.2
Selection of speech materiel

The speech material used in the experiments was selected from a Dutch database called
VIOS, which contains a large number of telephone calls recorded with the on-line version
of a spoken dialog system called OVIS (Strik, Rüssel, Van Den Heuvel, Cucchiarini, &
Boves, 1997). OVIS is employed to automate part of an existing Dutch public transport
information service. The speech material consists of interactions between man and machine,
and can be described as extemporaneous speech.

The phonological rules described in the previous section were used to automatically
generate pronunciation variants for the words being studied. In some cases, it was possible
to apply more than one rule to the same word. However, in order to keep the task relatively
easy for the listeners we decided to limit to two the number of rules which could apply to
a single word.

From the VIOS corpus, 186 utterances were selected. These utterances contain 379
words with relevant contexts for one or two rules to apply. For 88 words, the conditions
for rule application were met for two rules simultaneously and thus four pronunciation vari-
ants were generated. For the other 291 words, only one condition of rule application was
relevant and two variants were generated. Consequently, the total number of instances in
which a rule could be applied is 467. Table 1 shows the number of items for each of the
different rules and the percentages of the total number of items. This distribution (columns 2
and 3) is not uniform, because the distribution in the VIOS corpus (columns 4 and 5) is
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TABLE 1
Number of items selected per process for Experiment 1, and the percentage of the total number
of items in Experiment 1. Number of items and their corresponding percentages in the VIOS
corpus, for each process

phonological
process

/n/-deletion

/r/-deletion

/t/-deletion

schwa-deletion

schwa-insertion

#Exp.l

155

127

84

53

48

%Exp.l

33.2

27.2

18.0

11.3

10.3

# VIOS corpus

10,694

7,145

3,665

275

1,871

%VIOS corpus

45.2

30.2

15.5

1.2

7.9

not uniform. However, we tried to ensure a more even distribution by having at least a 10%
representation for each phonological process in the material which was selected for
Experiment 1.

2.1.3
Experimental procedure

Nine expert listeners and the continuous speech recognizer (CSR) carried out the same task,
that is, deciding for the 379 words which pronunciation variant best matched the word
that had been realized in the spoken utterances (forced choice).

Listeners. The nine expert listeners are all linguists who were selected to participate in this
experiment because they have all carried out similar tasks for their own investigations.
For this reason, they are representative of the kind of people that make phonetic tran-
scriptions and who may benefit from automatic ways of obtaining such transcriptions.
The 186 utterances were presented to them over headphones, in three sessions, with the possi-
bility of a short break between successive sessions. The orthographic representation of the
whole utterance was shown on screen, see Figure 1. The words which had to be judged were
indicated by an asterisk. Beneath the utterance, the phonemic transcriptions of the pronun-
ciation variants were shown. The listeners' task was to indicate for each word which of the
phonemic transcriptions presented best corresponded to the spoken word. The listener
could listen to an utterance as often as he/she felt was necessary in order to judge which
pronunciation variant had been realized.

CSR. The utterances presented to the listeners were also used as input to the CSR which
is part of the spoken dialog system OVIS (Strik et al., 1997). The orthography of the utter-
ances was available to the CSR. The main components of the CSR are a lexicon, a language
model, and acoustic models.

For the automatic transcription task, the CSR was used in forced recognition mode.
In this type of recognition, the CSR is "forced" to choose between different pronunciations
of a word instead of between different words. Hence, a lexicon with more than one possible
pronunciation per word was needed. This lexicon was made by generating pronunciation
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Ik wil om "negen uur *vertrekken

nege
negen

vertrekken
vertrekke
vetrekken
vetrekke

'I want to leave at nine o'clock'

'nine'

'leave'

Figure 1
Pronunciation variant selection by the nine expert listeners. The left-hand panel shows an
example of the manner in which the utterances were visually presented to the listeners. The
right-hand panel shows the translation

variants for the words in the lexicon using the five phonological rules described earlier.
Pronunciation variants were only generated for the 379 words under investigation, for the
other words present in the 186 utterances the canonical transcription was sufficient. The
canonical phone transcription is the phone transcription generated with the Text-to-Speech
system developed at the University of Nijmegen (Kerkhoff & Rietveld, 1994). The language
model (unigram and bigram) was restricted in that it only contained the words present in
the utterance which was being recognized.

Feature extraction was done every 10ms for frames with a width of 16ms. The first
step in feature analysis was an FFT analysis to calculate the spectrum. Next, the energy
in 14 mel-scaled filter bands between 350 and 3400 Hz was calculated. The next processing
stage was the application of a discrete cosine transformation on the log filterband coeffi-
cients. Besides 14 cepstral coefficients (c0-c13), 14 delta coefficients were also used.
Thus, a total of 28 feature coefficients were used.

The acoustic models which we used are monophone hidden Markov models (HMM).
The topology of the HMMs is as follows: Each HMM is made up of six states, and consists
of three parts. Each of the parts has two identical states, one of which can be skipped
(Steinbiss et al., 1993). In total, 40 HMMs were trained. For 33 of the phonemes, one
context-independent HMM was used. For the /!/ and the /r/, separate models were trained
depending on their position in the syllable, that is, different models were trained for prevo-
calic andpostvocalic position. In addition to these 37 acoustic models, three other models
were trained: an HMM for filled pauses, one for nonspeech sounds and a one-state HMM
to model silence. Furthermore, the acoustic models which were used for the automatic
transcription task were "retrained" models. Retrained acoustic models, in our case, are
HMMs which are trained on a training corpus in which pronunciation variation has been
transcribed. This is accomplished by performing forced recognition of the training corpus
using a lexicon which contains pronunciation variants, thus adding variants to the training
corpus at the appropriate places. Subsequently, the resulting corpus is then used to retrain
the HMMs. The main reason for using retrained acoustic models is that we expect these
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models to be more precise and therefore better suited to the task. For more details on this
procedure see Kessens, Wester, and Strik (1999).

Note that we use monophone models rather than diphone or triphone models although
in state-of-the-art recognition systems diphone and triphone models have proven to out-
perform monophone models. This is the case in a recognition task, but not necessarily in
forced recognition.

2.1.4
Evaluation

Binary scores. On the basis of the judgments made by the listeners and the CSR, scores
were assigned to each item. For each of the rules two categories were defined: (1) "rule
applied" and (0) "rule not applied." For 88 words four variants were present, as mentioned
earlier. For each of these words two binary scores were obtained, that is, for each of the
two underlying rules it was determined whether the rule was applied (1 ) or not (0). For each
of the remaining 291 words one binary score was obtained. Thus, 467 binary scores were
obtained for each of the listeners and for the CSR.

Agreement. We used Cohen's kappa (Cohen, 1968) to calculate the degree of agreement
between listeners and the CSR. The reason we chose to use Cohen's K instead of for instance
percentage agreement is that the distributions of the binary scores may differ for the various
phonological processes, and in that case, it is necessary to correct for chance agreement
in order to be able to compare the processes to each other. Cohen's K is a measure which
corrects for chance:

(P0 - P,.) P0=observed proportion of agreement
K= n _ p \ - 1 £ K < 1 where: pc=proportion of agreement on the basis

of chance

Table 2 shows the qualifications for K-values greater than zero, to indicate how the
K-values should be interpreted (taken from Landis & Koch, 1977).

TABLE 2
Qualifications for K-values >0

k-value

0.00 - 0.20

0.21-0.40

0.41-0.60

0.61-0.80

0.81 - 1.00

qualification

slight

fair

moderate

substantial

almost perfect

Reference transcriptions. In the introduction, we mentioned various strategies that can be
used to obtain a reference transcription. In this first experiment, we used the majority vote
procedure. Two types of reference transcriptions were composed using the majority vote
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procedure: 1) reference transcriptions based on eight listeners, and 2) a reference tran-
scription based on all nine listeners.

The reference transcriptions based on eight listeners were used to compare the
performance of each individual listener to the performance of the CSR. For each listener,
the reference transcription was based on the other eight listeners. By using a reference
transcription based on eight listeners, it is possible to compare the CSR and an individual
listener to exactly the same reference transcription, thus ensuring a fair and correct
comparison. If, instead, one were to use a reference transcription based on all nine listeners,
the comparison would not be as fair because, in effect, the listener would be compared to
herself/himself due to the fact that the results ofthat individual listener would be included
in the reference transcription.

Consequently, nine sets of reference transcriptions were compiled each with four
different degrees of strictness. The different degrees of strictness which we used were A: a
majority of at least five out of eight listeners agreeing, B: six out of eight, C: seven out of
eight, and finally D: only those cases in which all eight listeners agree. Subsequently, the
degree of agreement for an individual listener with the reference transcription was calcu-
lated and the same was done for the CSR with the various sets of reference transcriptions.

The reference transcription based on nine listeners was used to analyze the differences
between the listeners and the CSR. In this case, it is also possible to use different degrees
of strictness. However, for the sake of brevity, we only show the results for a majority of
five out of nine listeners agreeing. The reason for choosing five out of nine is that as the
reference becomes stricter, the number of items in it reduces, whereas, for this degree of
strictness all items (467) are present.

2.2
Results

Analysis of the results was done by carrying out four comparisons. First, pairwise agree-
ment was calculated for the various listeners and for the listeners and the CSR. Pairwise
agreement gives an indication of how well the results of the listeners compare to each
other and to the results of the CSR. However, as we explained in the introduction, pairwise
agreement is not the most optimal type of comparison, as the transcriptions of individual
transcribers may be incorrect. To circumvent this problem as much as possible, we used
the majority vote procedure to obtain reference transcriptions. Thus, we also calculated the
degree of agreement between the individual listeners and a reference transcription based
on the other eight listeners and between the CSR and the same sets of reference tran-
scriptions. These results give a further indication of how well the listeners and the CSR compare
to each other, but we were also curious whether the same pattern exists for the various
phonological processes. Therefore, for the third comparison, the data were split up for the
separate processes and the degree of agreement between the CSR and the reference tran-
scriptions was calculated for each of the phonological processes. These data showed that
there are indeed differences between the various phonological processes. In an attempt to
understand the differences, we analyzed the discrepancies between the CSR and the listeners.
In 1his final analysis, the reference transcription based on a majority of five out of nine listeners
agreeing was employed.
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2.2.1
Pairwise agreement between CSR and listeners

For each listener, pairwise agreement was calculated for each pair of listeners and for each
CSR-listener pair. In this analysis, no reference transcription was used. Figure 2 shows
the results of the pairwise comparisons. For instance, in the first "column" in Figure 2, the
crosses (x) indicate the comparison between listener 1 and each of the other listeners, the
square (•) shows the median for all listener pairs, and the circle (•) indicates the degree
of agreement between the CSR and listener 1.

The results for pairwise agreement in Figure 2 show that there is quite some variation
among the diiferent listener pairs. The K-values vary between 0.49 and 0.73, and the median
for all listener pairs is 0.63. The median K-value for all nine listener-CSR pairs is 0.55. In
Figure 2, it can also be seen that the degree of agreement between each of the listeners and
the CSR is lower than the median K-value for the listeners. Statistical tests (Mann-Whitney
test, p < .05) show that the CSR and listeners 1,3, and 6 behave significantly different from
the other listeners. For both the CSR and listener 1, agreement is significantly lower than
for the rest of the listeners whereas for listeners 3 and 6 agreement is significantly higher.

2.2.2
Agreement with reference transcriptions with varying degrees of strictness

In order to further compare the CSR's performance to the listeners', nine sets of reference
transcriptions were compiled, each based on eight listeners and with four difFerent degrees
of strictness. With an increasingly stricter reference transcription, the differences between
listeners are gradually eliminated from the set of judgments under investigation. It is to be
expected that if we compare the performance of the CSR with the reference transcriptions
of type A, B, C, and D, the degree of agreement between the CSR and the reference
transcription will increase when going from A to D. The rationale behind this is that those
cases for which a greater number of listeners agree should be easier to judge for the listeners.
Therefore, it can be expected that those cases should be easier for the CSR too. In going
fromAtoDthe number of cases involved is reduced(see Appendix 1 for details on numbers).
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Figure 3 shows the K-values obtained by comparing each of the listener's transcrip-
tions to the relevant set of reference transcriptions (x) and the median for all listeners (•).
In addition, the K-values obtained by comparing the CSR's transcriptions to each of the sets
of reference transcriptions (O), and the median for all the CSR's K-values (+) are shown.
It can be seen that in most cases the degree of agreement between the different sets of
reference transcriptions and the listeners is higher than the degree of agreement between
the reference transcriptions and the CSR. These differences between the CSR and the
listeners are significant. (Wilcoxon signed ranks test,p <.05.) However, as we expected,
the degree of agreement between the reference transcription and both the listeners and the
CSR gradually increases, as the reference transcription becomes stricter.

2.2.3
Agreement with reference transcription for the separate phonological processes

In the previous section, we compared results in which items of the various phonological
processes were pooled. However, it is possible that the CSR and the nine listeners perform
differently on different phonological processes. Therefore, we also calculated the results
for the five phonological processes separately, once again using a majority vote based on
eight listeners (see Appendix 2 for the number of items in each set of reference transcrip-
tions). The results are shown in Figure 4. For each process, the degree of agreement between
each of the sets of reference transcriptions and the nine listeners (X) and the CSR (o) is
shown, first for all of the processes together and then for the individual processes. The
median for the nine listeners (•) and the median for the results of the CSR (*) are also
shown. Furthermore, for three of the listeners, the data points have been joined to give an
indication of how an individual listener performs on the different processes in relation to
the other listeners.

For instance, if we look at the data points for listener A (dotted line) we see that this
listener reaches the highest K-values for all processes except for /n/-deletion in which case
the listener is bottom of the group of listeners. The data points for listener B (solid line)
fall in the middle of the group of listeners, except for the processes of/r/-deletion and /t/-
deletion, where this listener is bottom of the group. The data points for listener C (dashed
line) show a poor performance on schwa-insertion and schwa-deletion compared to the
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rest of the listeners, but a more or less average performance on the other processes. These
three examples indicate that none of the listeners is consistently better or worse than the
others in judging the various phonological processes. Furthermore, on the basis of the
medians for the listeners, we can conclude that /n/-deletion and schwa-insertion are the
easiest processes to judge, whereas the processes of /r/-deletion, /t/-deletion and schwa-
deletion are more difficult processes for listeners to judge. This is also the case for the
CSR.

As far as the difference between the CSR and the listeners is concerned, statistical
analysis (Wilcoxon signed ranks test, p < .05) shows that for the phonological processes of
/r/-deletion and schwa-insertion there is no significant difference between the CSR and
the listeners. For the other three processes the difference is significant, and this is also the
case for all of the phonological processes grouped together. This is also reflected in Figure 4,
as there is almost no difference in the median for the CSR and the listeners for /r/-deletion
(0.01) and for schwa-insertion (0.08). For /n/-deletion (0.15) and /t/-deletion (0.11), the
difference is larger, and comparable to the results found for all rules pooled together (0.12),
leaving the main difference in the performance of the listeners and the CSR to be found
for schwa-deletion (0.34).

2.2.4
Differences between CSR and listeners

The results in the previous section give rise to the question of why the results are different
for various phonological processes and what causes the differences in results between the
listeners and the CSR. In this section, we try to answer the question of what causes the discrep-
ancy, by looking more carefully at the differences in transcriptions found for the listeners
and the CSR. In these analyses, we used the reference transcription based on a majority of
five out of nine listeners agreeing. The reason we use five of nine instead of five of eight
is because we wanted to include all of the material used in the experiment in this analysis.
Furthermore, instead of using the categorization "rule applied" and "rule not applied" the
categories "phone present" and "phone not present" are used to facilitate presentation and
interpretation of the data. Each item was categorized according to whether agreement was
found between the CSR and the reference transcription or not.
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Figure 5 shows the percentages of phone present according to the reference tran-
scription (RT, dark gray bar) and the CSR (gray bar). It also shows the percentages of
phone present for which the RT and CSR agree (white bar). For exact counts and further
details, see Appendix 3. It can be seen in Figure 5 that, for all phonological processes
pooled, the phones in question are realized in 65% of all cases according to the reference
transcription and in 55% of the cases according to the CSR. In fact for every process the
same trend can be seen: The RT bar is always higher than the CSR bar. Furthermore, the
CSR bar is never much higher than the RT-CSR bar, which indicates that the CSR rarely
chooses phone present when the RT chooses phone not present. The differences between
the CSR and the listeners are significant for /r/-deletion, for schwa-deletion and for all
rules pooled (Wilcoxon signed ranks test, p <.05).

An explanation for the differences between the CSR and the listeners may be that they
have different durational thresholds for detecting a phone, in the sense that phones with a
duration that falls under a certain threshold are less likely to be detected. This sounds
plausible if we consider the topology of the HMMs. The HMMs we use have at least three
states, thus phones which last less than 30ms are less likely to be detected. (Feature extrac-
tion is done every 10ms.)

To investigate whether this explanation is correct, we analyzed the data for schwa-
deletion and /r/-deletion in terms of the duration of the phones. The speech material was
automatically segmented to obtain the durations of the phones. The segmentation was
carried out using a transcription that did not contain deletions to ensure that durations
could be measured for each phone. Due to the typology of the HMMs durations shorter
than 30 ms are also classified as 30 ms As a result, the 30 ms category may contain phones
that are shorter in length.

Figures 6 and 7 show the results for schwa-deletion and /r/-deletion, respectively. These
figures show that the longer the phone is the less likely that the CSR and the listeners
consider it deleted, and the higher the degree of agreement between the CSR and the
listeners is. Furthermore, the results for schwa-deletion seem to indicate that the listeners
and the CSR do indeed have a different threshold for detecting a phone. Figure 6 shows
that the listeners perceive more than 50% of the schwas that are 30ms or less long, whereas
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the CSR does not detect any of them. However, for /r/-deletion this is not quite the case
as neither the CSR nor the listeners detect most of the /r/s with a duration of 30ms or less.

2.3
Discussion

The results concerning pairwise agreement between the listeners and the CSR show that
the agreement values obtained for the machine differ significantly from the agreement
values obtained for the listeners. However, the results of three of the listeners also differ
significantly from the rest. Thus, leaving a middle group of six listeners that do not signif-
icantly differ from each other. On the basis of these pairwise agreement results, we must
conclude that the CSR does not perform the same as the listeners, and what is more that
not all of the listeners perform the same either.

A significant difference between the machine's performance and the listeners' perform-
ance also appeared when both the CSR transcription and those of the nine listeners were
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compared with reference transcriptions of various degrees of strictness. However, the cases
that were apparently easier to judge for the listeners, that is, a greater number of them
agreed, also presented fewer difficulties for the CSR.

The degrees of agreement observed in this experiment, both between listeners and
between listeners and machine, are relatively high. This is all the more so if we consider
that the degree of agreement was not calculated over all speech material, as in the Kipp et
al. (1997) study, but only for specific cases which are considered to be among the most diffi-
cult ones. As a matter of fact, all processes investigated in these experiments are typical
connected speech processes that in general have a gradual nature and are therefore diffi-
cult to describe in categorical terms (Booij, 1995; Kerswill & Wright, 1990).

In addition, more detailed analyses of the degree of agreement between humans and
machine for the various processes revealed that among the phenomena investigated in
these experiments there are differences in degree of difficulty. Also in this case the machine's
performance turned out to be similar to the listeners', in the sense that the processes that
presented more difficulties for the listeners also appeared to be more difficult for the
machine. Statistical analyses were carried out for the various phonological processes. The
results of these tests are shown in Table 3.

TABLE 3
Results of the statistical analyses for the individual phonological processes from Figure 4 and
Figure 5. S=significant; N=not significant difference

Figure /n/-deletion Irl-deletion /1/-deletion schwa-deletion schwa-insertion

4 S N S S N
5 N S N S N

Table 3 shows that the comparisons carried out for the individual processes do not
present a very clear picture. For schwa-deletion the differences are always significant and
for schwa-insertion they are always not significant. For the remaining three processes, the
results of the statistical analyses seem to contradict each other. This is maybe less puzzling
than it seems if we consider that the comparisons that were made are of a totally different
nature. In Figure 4, nine pairs of kappas were compared to each other and in Figure 5, many
pairs of "rule applied" and "rule not applied" were compared (the number varies per rule).
Still the question remains how we are to interpret these results. The objective was to find
out whether the CSR differs significantly from the listeners or not. If we look at the global
picture of all rules pooled together then we must conclude that this is indeed the case; the
CSR differs significantly from the listeners. However, if we consider the individual processes,
we find that the differences for schwa-deletion are significant, for schwa-insertion they are
not and that for the other three processes no definite conclusion can be drawn, as it depends
on the type of analysis. In other words, only in the case of schwa-deletion are the results
of the CSR significantly different from the results of the listeners.

The fact that the degree of agreement between the various listeners and the reference
transcriptions turned out to be so variable depending on the process investigated deserves
attention, because, in general, the capabilities of transcribers are evaluated in terms of
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global measures of performance calculated across all kinds of speech processes, and not
as a function of the process under investigation (Shriberg, Kwiatowski, & Hoffman, 1984).
However, this experiment has shown that the differences in degree of agreement between
the various processes can be substantial.

These results could be related to those presented by Eisen, Tillman, and Draxler (1992)
about the variability of interrater and intrarater agreement as a function of the sounds tran-
scribed, although there are some differences in methodology between our experiment
and theirs. First, Eisen et al. (1992) did not analyze whether a given segment had been
deleted/inserted or not, but whether the same phonetic symbol had been used by different
subjects or by the same subject at different times. The degree of agreement in this latter
case is directly influenced by the number of possible alternatives, which may be different
for the various sounds. In our experiment, on the other hand, this number is constant over
all cases. Furthermore, the relative difficulty in determining which particular type of nasal
consonant has been realized may be different from the difficulty in determining whether
a given nasal consonant is present or not. Second, these authors expressed the degree of
agreement using percentage agreement, which, as explained above, does not take chance
agreement into account, and therefore makes comparisons rather spurious. In general,
however, Eisen et al. (1992) found that consonants were more consistently transcribed than
vowels. In our experiment, there is no clear indication that this is the case. Within the class
of consonants, Eisen et al. (1992) found that laterals and nasals were more consistently tran-
scribed than fricatives and plosives, which is in line with our findings that higher degrees
of agreement were found for /n/-deletion than for /t/-deletion. For liquids no comparison
can be made because these were not included in the Eisen et al. (1992) study. As to the vowels,
Eisen et al. (1992) found that central vowels were more difficult to transcribe. In our study
we cannot make comparisons between different vowel types because only central vowels
were involved. In any case, this provides further evidence for the fact that the processes
studied in our experiments are among those considered to be more difficult to analyze.

Another important observation to be made on the basis of the results of this experi-
ment is that apparently it is not only the sound in question that counts, be it an /n/ or a
schwa, but rather the process being investigated. This is borne out by the fact that the
results are so different for schwa-deletion as opposed to schwa-insertion. This point deserves
further investigation.

The fourth comparison carried out in Experiment 1 was aimed at obtaining more
insight into the differences between the machine's choices and the listeners' choices. These
analyses revealed that these differences were systematic and not randomly distributed over
presence or absence of the phone hi question. Across-the-board the listeners registered
more instances of insertion and fewer instances of deletion than the machine did, thus
showing a stronger tendency to perceive the presence of a phone than the machine. Although
this finding was consistent over the various processes, it was most pronounced for schwa-
deletion.

In view of these results, we investigated whether the CSR and the listeners possibly
have different durational thresholds in detecting the presence of a phone. This analysis
showed that it is clear that duration does certainly play a role, but there is no unambiguous
threshold which holds for all phones.
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Another possible explanation for these results could be the very nature of the HMMs.
These models do not take much account of neighboring sounds. This is certainly true in
our case as we used context independent phones, but even when context dependent phone
models are used this is still the case. With respect to human perception, on the other hand,
we know that the way one sound is perceived very much depends on the identity of the adja-
cent sounds and the transitions between the sounds. If the presence of a given phone is signaled
by cues that are contained in adjacent sounds, the phone in question is perceived as being
present by human listeners, but would probably be absent for the machine that does not
make use of such cues. A third possible explanation for the discrepancies between the
machine response and the listeners' responses lies in the fact that listeners can be influ-
enced by a variety of factors (Cucchiarini, 1993, p. 55), among which spelling and phonotactics
are particularly relevant to our study. Since in our experiments the subjects listened to
whole utterances, they knew which words the speaker was uttering and this might have induced
them to actually "hear" an /r/, a /t/, an /n/ or a schwa when in fact they were not there.
In other words, the choice for a nondeletion could indeed be motivated by the fact that the
listener knew which phones were supposed to be present rather than by what was actually
realized by the speaker. This kind of influence is known to be present even hi experienced
listeners like those in our experiments. A problem with this argument is that while it can
explain the lower percentages of deletion by the humans, it does not explain the higher percent-
ages of insertions. A further complicating factor in our case is that the listeners are linguists
and may therefore be influenced by then- knowledge and expectations about the processes
under investigation. Finally, schwa-insertion happens to be a phenomenon that is more
common than schwa-deletion (Kuijpers & Van Donselaar, 1997) which could explain part
of the discrepancy found for the two processes.

Experiment 2

In Experiment 1, analysis of the separate processes showed that both for listeners and the
CSR some processes are more easily agreed on than others. Closer inspection of the differ-
ences showed that the CSR systematically tends to choose for deletion (non-insertion) of
phones more often than listeners do. This finding was consistent over the various processes
and most pronounced for schwa-deletion. Furthermore, we found that the results were
quite different for schwa-deletion as opposed to schwa-insertion. To investigate the processes
concerning schwa to a further extent, a second experiment was carried out in which we focused
on schwa-deletion and schwa-insertion. The first question we would like to see answered
pertains to the detectability of schwa: is the difference between listeners and machine truly
of a durational nature? In order to try to answer this question, it was necessary to make
use of a more detailed transcription in which it was possible for transcribers to indicate
durational aspects and other characteristics of schwa more precisely. To achieve this, we
used the method of consensus transcriptions to obtain reference transcriptions of the speech
material.

The second question is why the processes of schwa-deletion and schwa-insertion
lead to such different results. In Experiment 1, the machine achieved almost perfect agree-
ment with listeners on judging the presence of schwa in the case of schwa-insertion, whereas
only fan- agreement was achieved in the case of schwa-deletion. This difference is quite
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large and it is not clear why it exists. Looking at these two processes in more detail could
shed light on the matter.

3.1
Method and Material

3.1.1
Phonological variation and selection of speech material

As was mentioned above, in this second experiment, we concentrated on the phonological
processes of schwa-deletion and schwa-insertion. For both processes the material from
Experiment 1 was used and both sets were enlarged to include 75 items.

3.1.2
Experimental procedure

Listeners. The main difference in the experimental procedure, compared to the previous
experiment, is that the consensus transcription method was used instead of the majority vote
procedure to obtain a reference transcription. The listeners that participated in this exper-
iment were all Language and Speech Pathology students at the University of Nijmegen.
All had attended the same transcription course. The transcriptions used in this experiment
were made as a part of the course examination. Six groups of listeners (5 duos and 1 trio,
i.e., 13 listeners) were each asked to judge a portion of the 75 schwa-deletion cases and
the 75 schwa-insertion cases. The words were presented to the groups in the context of the
full utterance. They were instructed to judge each word by reaching consensus of tran-
scription for what was said at the indicated spot in the word (where the conditions for
application of the rule were met). The groups were free to transcribe what they heard using
a narrow phonetic transcription.

CSR. The CSR was employed in the same fashion as it was in the first experiment; the task
was to choose whether a phone was present or not. Because of this, the tasks for the listeners
and the machine were not exactly the same. The listeners were not restricted to choosing
whether a phone was present or not as the CSR was, but were free to transcribe whatever
they heard.

Evaluation. By allowing the listeners to use a narrow phonetic transcription instead of a
forced choice, the consensus transcriptions resulted in more categories than the binary
categories used previously: "rule applied" and "rule not applied." This is what we antici-
pated and an advantage in the sense that the transcription is bound to be more precise. However,
in order to be compared with the CSR transcriptions, the multivalued transcriptions of the
transcribers have to be reduced to dichotomous variables of the kind "rule applied" and
"rule not applied." In doing this different options can be taken which lead to different
mappings between the listeners' transcriptions and the CSR's and possibly to different
results. Below, two different mappings are presented. Furthermore, for the analysis of these
data, we once again chose to use the categories "phone present" and "phone not present"
to facilitate the comparison of the processes of deletion and insertion.
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The transcriptions pertaining to schwa-deletion obtained with the consensus method
were: deletion: 0, different realizations of schwa: a, 3, a, a, y, and other vowels: B, 3'. There
were fewer transcriptions pertaining to schwa-insertion, viz. : not present: 0, different real-
izations of schwa: a, 5 and other vowels: c, i. The mappings chosen in this case were based
on the idea that duration may be the cause of the difference between man and machine.
Thus, for both processes, we used the following two mappings:

I. deletions (0) are classified as "phone not present" and the rest is classified as "phone
present" [a, a, a, a., a-, £, 3, B, i ]

II. deletions (0) and short schwas (a) are classified as "phone not present" and the rest is
classified as "phone present": [ a, a, 5, a*, B, a, e, i ]

3.2
Results

Tables 4 and 5 show the different transcriptions given by the transcribers for schwa-dele-
tion and schwa-insertion, respectively. The first row shows which transcriptions were used,
the second row shows the number of times they were used by the transcribers, the third row
indicates the number of times the CSR judged the item as phone present and the last row
shows the number of times the CSR judged the item as phone not present. These tables show
that deletion, schwa and short schwa were used most frequently, thus the choice of the
two mappings is justified as the number of times other transcriptions occurred is too small
to have any significant impact on further types of possible mappings.

TABLE 4
Reference transcriptions obtained for the process of schwa-deletion, and the classification of
these items by the CSR as present or not present

RT
phone present
phone not present

0

18
1

17

a

37
21
16

3

15
5

10

a

1
-
1

? a1

1 1
1 1
-

ë

1
-
1

3

1

1

-

total

75
30
45

TABLE 5
Reference transcriptions obtained for the process of schwa-insertion and the classification of
these items by the CSR as present or not present

0 a a i u total

RT
phone present
phone not present

32
6

26

32
28
4

8
3
5

2
2
-

1 75
39

1 36

Figure 8 shows the percentage of schwas present in the CSR's transcriptions and in
the reference transcriptions for the processes of schwa-deletion and schwa-insertion, for
both mappings. Comparing the CSR's transcriptions to the reference transcriptions once



Article 1 73

dell del II CSR(del) ins I

Process + mappings

»JIT mes«.

ins II CSR(ins)

Figure 8
Percentage schwas
present for the reference
transcription (RT) and
for the CSR, for different
mappings for the
processes of deletion and
insertion

again shows that the CSR's threshold for recognizing a schwa is different from the listeners'.
In the case of schwa-deletion, this difference becomes smaller when mapping I is replaced
by mapping II. For schwa-insertion, replacing mapping I with mapping II leads to a situ-
ation where the CSR goes from having a lower percentage of schwa present to having a
higher percentage of schwa present than the reference transcription. The difference between
the CSR and the reference transcription is significant for schwa-deletion and not signifi-
cant for schwa-insertion (Wilcoxon, p < .05).

Tables 6 and 7 illustrate more precisely what actually occurs. The difference in phone
detection between the CSR and the listeners becomes smaller for schwa-deletion (Table 6)
if mapping II is used. For this mapping, § is classified as "phone not present" which causes
the degree of agreement between the CSR and the reference transcription to increase.
However, it is not the case that all short schwas were classified as "phone not present" by
the CSR.

For schwa-insertion (Table 7), the differences in classification by the CSR and by the
listeners are not as large. In this case, when the 8 is classified as "phone not present" the
CSR shows fewer instances of schwa present than the listeners do.

3.3
Discussion

The results of this experiment underpin our earlier statement that the CSR and the listeners
have different durational thresholds for detecting a phone. A different mapping between
the machine and the listeners' results can bring the degree of agreement between the two
sets of data closer to each other. It should be noted that the CSR used in this experiment
was not optimized for the task, we simply employed the CSR which performed best on a
task of pronunciation variation modeling (Kessens, Wester, & Strik, 1999). Although this
has not been tested in the present experiment, it seems that changing the machine in such
a way that it is able to detect shorter phones more easily should lead to automatic tran-
scriptions that are more similar to those of humans. In other words, in addition to showing
how machine and human transcriptions differ from each other, these results also indicate
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TABLE 6
Counts of agreement/disagreement CSR and reference transcription (RT) for different mappings
of RT categories, for schwa-deletion. Y(es) phone present, and N(o) phone not present

Mappings

%
U

Y
N

SUM

Y

29
28

57

RTI

N

1
17

18

SUM

30
45

75

Y

24
18

42

RTII

N

6
27

33

SUM

30
45

75

TABLE 7
Counts of agreement/disagreement CSR and reference transcription (RT) for different mappings
of RT categories, for schwa-insertion. Y(es) phone present, and N (o) phone not present

§3
u

Y
N

SUM

Y

33
10

43

RTI

N

6
26

32

SUM

39
36

75

Y

30
5

35

RTII

N

9
31

40

SUM

39
36

75

how the former could be brought closer to the latter. For instance, the topology of the
HMM could be changed by defining fewer states, or by allowing states to be skipped, thus
facilitating the recognition of shorter segments.

Although schwa is involved in both cases in this experiment, not much light is shed
on the issue of why the processes of insertion and deletion lead to such different results.
A possible explanation as far as the listeners are concerned could be the following: For 20
of the schwa-deletion cases, something other than deletion or schwa was transcribed by the
listeners compared to nine such cases for schwa-insertion. This indicates that schwa-dele-
tion may be a less straightforward and more variable process. Furthermore, as was mentioned
earlier, schwa-deletion is less common than schwa-insertion, which might also influence
the judgments of the listeners. So there are two issues playing a role here; the process of
deletion might be more gradual and variable than the process of insertion and the listeners
may have more difficulties because schwa-deletion is a less frequently occurring process.

Another explanation for the difference is that there is an extra cue for judging the process
of schwa-insertion. When schwa-insertion takes place, the /!/ and /r/, which are the left
context for schwa-insertion, change from postvocalic to prevocalic position (see Table 8).
This change in position within the syllable also entails a change in the phonetic properties
of these phones. In general postvocalic /1/s tend to be velarized while postvocalic /r/s tend
to be vocalized or to disappear. This is not the case for schwa-deletion, whether or not the
schwa is deleted does not influence the type of/!/ or /r/ concerned. These extra cues
regarding the specific properties of/!/ and /r/ can be utilized quite easily by listeners, and
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TABLES
Examples of application of schwa-deletion and schwa-insertion. Syllable markers indicate pre-
and postvocalic position of/!/ and /r/

base form rule applied

schwa-deletion

schwa-insertion

[la-ta-ra]

[delft]

[la-tra]

[de-laft]

most probably are. They can also be utilized by our CSR because different monophone models
were trained for /!/ and /r/ in pre- and post-vocalic position. Thus, whether a schwa is inserted
may be easier to judge than whether a schwa is deleted due to these extra cues.

£§ General discussion

In this paper, we explored the potential that a technique developed for CSR could have for
linguistic research. In particular, we investigated whether and to what extent a tool devel-
oped for selecting the pronunciation variant that best matches an input signal could be
employed to automatically obtain phonetic transcriptions for the purpose of linguistic
research.

To this end, two experiments were carried out in which the performance of a machine
in selecting pronunciation variants was compared to that of various listeners who carried
out the same task or a similar one. The results of these experiments show that overall the
machine's performance is significantly different from the listeners' performance. However,
when we consider the individual processes, not all the differences between the machine and
the listeners appear to be significant. Furthermore, although there are significant differ-
ences between the CSR and the listeners, the differences in performance may well be
acceptable depending on what the transcriptions are needed for. Once again it should be
kept in mind that the differences that we found between the CSR and the listeners were
also in part found between the listeners.

In order to try and understand the differences in degree of agreement between listeners
and machine, we carried out further analyses. The important outcome of these analyses is
that the differences between the listeners' performance and the machine's did not have a
random character, but were of a systematic nature. In particular, the machine was found
to have a stronger tendency to choose for absence of a phone than the listeners: the machine
signaled more instances of deletion and fewer instances of insertion. Furthermore, in the
second experiment, we found that the majority of instances where there was a discrepancy
between the CSR's judgments and listeners', it was due to the listeners choosing a short
schwa and the CSR choosing a deletion. This underpins the idea that durational effects are
playing a role.

In a sense these findings are encouraging because they indicate that the difference
between humans and machine is a question of using different thresholds and that by
adjusting these thresholds some sort of tuning could be achieved so that the machine's
performance becomes more similar to the listeners'. The question is of course whether
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this is desirable or not. On the one hand, the answer should be affirmative, because this is
also in line with the approach adopted in our research. In order to determine whether the
machine's performance is acceptable we compare it with the listeners' performance, which,
in the absence of a better alternative, constitutes the point of reference. The corollary of
this view is that we should try to bring the machine's performance closer to the listeners'
performance. On the other hand, we have pointed out above that human performance does
not guarantee hundred percent accuracy. Since we are perfectly aware of the shortcomings
of human performance in this respect, we should seriously consider the various cases
before unconditionally accepting human performance as the authoritative source.

To summarize, the results of the more detailed analyses of human and machine
performance do not immediately suggest that by using an optimization procedure that
brings the machine's performance closer to the listeners', better machine transcriptions would
be obtained. This brings us back to the point where we started, namely taking human
performance as the reference. If it is true that there are systematic differences between human
and machine, as appeared from our analyses, then it is not surprising that all agreement
measures between listeners were higher than those between listeners and machine.
Furthermore, if we have reasons to question the validity of the human responses, at least
for some of the cases investigated, it follows that the machine's performance may indeed
be better than we have assumed so far.

Going back to the central question in this study, namely whether the techniques that
have been developed in CSR to obtain some sort of phonetic transcriptions can be mean-
ingfully used to obtain phonetic transcriptions for linguistic research, we can conclude
that the results of our experiments indicate that the automatic tool proposed in this paper
can be used effectively to obtain phonetic transcriptions of deletion and insertion processes.
It remains to be seen whether these techniques can be extended to other processes.

Another question that arises at this point is how this automatic tool can be used in
linguistic studies. It is obvious that it cannot be used to obtain phonetic transcriptions of
complete utterances from scratch, but is clearly limited to hypothesis verification, which
is probably the most common way of using phonetic transcriptions in various fields of
linguistics, like phonetics, phonology, sociolinguistics, and dialectology. In practice, this
tool could be used in all research situations in which the phonetic transcriptions have to
be made by one person. Given that a CSR does not suffer from tiredness and loss of concen-
tration, it could assist the transcriber who is likely to make mistakes owing to concentration
loss. By comparing his/her own transcriptions with those produced by the CSR a
transcriber could spot possible errors that are due to absent-mindedness.

Furthermore, this kind of comparison could be useful for other reasons. For instance,
a transcriber may be biased by his / her own hypotheses and expectations with obvious conse-
quences for the transcriptions, while the biases which an automatic tool may have can
be controlled. Checking the automatic transcriptions may help discover possible
biases in the listener's data. In addition, an automatic transcription tool could be employed
in those situations in which more than one transcriber is involved; in order to solve possible
doubts about what was actually realized. It should be noted that using an automatic transcription
tool will be less expensive than having an extra transcriber carry out the same task.

Finally, an important contribution of automatic transcription to linguistics would be
that it makes it possible to use existing speech databases for the purpose of linguistic
research. The fact that these large amounts of material can be analyzed in a relatively short
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time, and with relatively low costs makes automatic transcription even more important (see
for instance Cucchiarini & van den Heuvel, 1999). The importance of this aspect for the
generalizability of the results cannot be overestimated. And although the CSR is not infal-
lible, the advantages of a very large dataset might very well outweigh the errors introduced
by the mistakes the CSR makes.
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Appendix 1
Number of items in each reference transcription set per excluded listener

Set of reference transcriptions

RT Strictness 1 2 3 4 5 6

5 of 8

6 of 8

7 of 8

8 of 8

445

407

353

273

448

399

349

249

449

395

340

251

443

403

341

256

449

407

345

250

454

399

338

250

453

403

347

262

454

404

348

254

448

398

354

258
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Appendix 2

Number of items in each reference transcription set per excluded listener for each of the phonological
processes. (Strictness: 5 out of 8 listeners agreeing)

Set of reference transcriptions

Phonological
processes

/n/-del

/r/-del

/tf-del

schwa-del

schwa-ins

1

152

116

79

51

47

2

151

120

80

50

47

3

155

115

81

51

47

4

151

114

79

51

48

5

153

117

80

51

48

6

152

120

82

52

48

7

154

117

82

53

47

8

153

121

80

52

48

9

154

118

78

51

47

Appendix 3
Counts (percentages between brackets) of agreement/disagreement CSR and reference transcription
(RT) based on a majority of 5 of 9 listeners agreeing, for all items together and split up for each of
the processes. Phone present = Y, and phone not present = N

phonological processes

all Inl-del Irl-del Itl-del schwa-del schwa-ins

RT=Y, CSR=Y

RT=N, CSR=N

RT=Y, CSR=N

RT=N, CSR=Y

Total RT=Y

Total CSR=Y

Total items

235 (50)

143 (31)

67(14)

22 (5)

302 (65)

257 (55)

467 (100)

86 (55)

53 (34)

9 (6)

7 (5)

95 (61)

93 (60)

155 (100)

52(41)

44 (35)

26 (20)

5 (4)

78 (61)

57(45)

127 (100)

59 (70)

9(11)

11 (13)

5 (6)

70 (83)

64(76)

84 (100)

18(34)

14(26)

20 (38)

1 (2)

38 (72)

19(36)

53 (100)

23 (48)

20 (42)

4 (8)

1 (2)

27 (56)

24 (50)

48 (100)
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Abstract

The first goal of this study is to investigate the effect of several properties of a
continuous speech recognizer (CSR) on automatic phonetic transcription. Our results
show that changing certain properties of the CSR affects the resulting automatic
transcriptions. The quality of the automatic transcriptions can be improved by using
'short' HMMs and by reducing the amount of contamination in the HMMs. The
amount of contamination can be reduced by training the HMMs on the basis of a
transcription that better matches the actual pronunciation, e.g. by modeling
pronunciation variation or by training HMMs on read speech. Furthermore, it appeared
that context-dependent HMMs should not be trained on canonical transcriptions since
the transcriptions obtained with these HMMs are too much biased towards the
canonical transcriptions. Finally, we found that by combining these changes in
properties of the CSR the quality of automatic transcription can be further improved.

The second goal of this study is to find out whether there exists a relation
between the word error rate (WER) and transcription quality. As no clear relation was
found, we conclude that in order to obtain automatic transcriptions taking the CSR
with the lowest WER does not always provide the optimal solution.

1. Introduction
Phonetic Transcriptions (PTs) of speech are needed in many disciplines. In linguistic
research, for instance phonetics, phonology, sociolinguistics, and dialectology, PTs
form a vital component of the research methodology. In speech pathology, PTs are
needed in research and in clinical practice. In clinical applications, PTs are used for
diagnostic purposes in order to measure the severity of the handicap or disability
(Shriberg & Lof, 1991), and during treatment programmes, to monitor and document
progress (or lack thereof). Furthermore, PTs are used in speech technology, both in
speech synthesis and in automatic speech recognition (ASR). For the development of
speech synthesis systems, a phonetically transcribed database is needed from which
diphones and/or larger concatenation segments can be extracted, and of which the
segmentation can be used for duration modeling of the concatenation units (Ljolje,
Hirschberg, & van Santen, 1997). During the last decades, one of the approaches that
has been used to improve ASR is by modeling pronunciation variation (for an
overview see Strik and Cucchiarini, 1999). Reliable and accurate PTs of speech form
an essential resource for this type of research.

PTs can be obtained in two ways. Manual Phonetic Transcriptions (MPTs) are
made by experts who listen to an utterance and transcribe it into a sequence of speech
units represented by phonetic symbols. These experts may use the full set of IPA8

symbols, including diacritics, to produce what is known as 'narrow phonetic
transcriptions'. However, making MPTs is extremely time-consuming and therefore
costly. Moreover, MPTs tend to contain an element of subjectivity (Shriberg & Lof,
1991). The time needed to make MPTs can be reduced by limiting the transcription

* http://www2.arts.gla.ac.uk/IPA/ipa.html
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process to a few phenomena that are of special interest for the study at hand, such as
the presence or absence of the vowel schwa (Kuijpers & van Donselaar, 1997). Time
investment can also be diminished - and accuracy improved (see Shriberg & Lof,
1991) - by using broad phonetic transcriptions, i.e. transcriptions in which only the
subset of the symbols is used that correspond to the phonemes of the language.

PTs can also be made automatically, i.e. by a speech recognizer: This results
in what we will call Automatic Phonetic Transcriptions (APTs) in this paper. Almost
invariably, APTs are 'broad phonetic', or phonemic transcriptions. This is a direct
consequence of the fact that virtually all operational ASR systems are trained to handle
only the 'phonemes' of the target language. APTs are much faster to make, and
therefore much cheaper, than MPTs. However, before APTs of large corpora can be
used as the raw data for research in speech science or technology, many questions
about accuracy and also reliability must be answered. APTs are certainly reliable in
the sense that the same material transcribed by the same A~SR will result in identical
output. However, it is much less self-evident that transcriptions of the same material
by different ASR systems will show a high degree of agreement. Differences between
the transcriptions of ASR systems parallel the subjectivity that is inherent in MPTs.

APTs can be made in various ways. One approach is to perform phone
recognition. In this kind of recognition, instead of words - as is the case during a
normal recognition task - phones are recognized. Often, the recognizer is constrained
by a phone N-gram, and by penalties on the generation of many short sequences of
phones. In the cases when the content of an utterance (the orthographic transcription)
is available, a second kind of APTs can be made. The phonetic transcriptions of the
words in the utterance are then used as a starting point for automatic transcription.
This phonetic transcription can be looked up in a lexicon or can be obtained by means
of a grapheme-phoneme converter. Next, a number of possible pronunciation variants
are generated on the basis of the phonetic transcription, e.g. by applying phonological
rules (e.g. Adda-Decker & Lamel, 1998), data-derived rules (e.g. Kessens & Strik,
2001) or by means of D-trees (e.g. Riley et al., 1998). The task of the recognizer is
then to decide for each word, which of the variants best matches the acoustic signal.
This study is an example of this second kind of APT. The number of transcription
variants is restricted by allowing only pronunciation variants generated by applying
five phonological rules to the canonical transcriptions. Other research (Wester,
Kessens, Cucchiarini, & Strik, 2001; Saraclar, 2000) showed that for such a
transcription task, APTs can be made that form acceptable substitutes for MPTs.

In order to evaluate the quality of our APTs, each APT is compared to a human
Reference Transcription (RT). However, given that humans can make mistakes there is
no completely error free RT with which the automatic transcriptions can be compared
(Cucchiarini, 1993: 11-13). To circumvent this problem (at least partly), the following
two strategies have been devised for obtaining a human RT:

1) A consensus transcription is used, which is a transcription made by several
transcribers after they have agreed on each individual symbol (Shriberg,
Kwiatkowski & Hoffman, 1984).
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2) A majority vote principle is used, which means that the material is transcribed by
more than one transcriber and that only the part of the material is used for which
all transcribers agree (Kuijpers & van Donselaar, 1997), or at least the majority of
them (Wester et al., 2001).

In this paper, both strategies to obtain RTs are used. We use agreement between the
APTs and the human RTs as a measure of quality for the various APTs; the higher the
agreement with the human RTs, the better the quality of the APT.

In our previous study (Wester et al., 2001), we simply employed the CSR used
in other research without trying to optimize it to make the CSR's transcriptions more
similar to the human transcriptions. It is likely that properties of the CSR, such as for
instance the speech material used for training and the procedure to estimate the
acoustic models, all influence the APTs. This holds true for phone recognition and for
selection of pre-defined pronunciation variants. Some research on this issue has
already been carried out. In the study reported in Saraçlar (2000a) and Saraçlar, Nock
& Khudanpur (2000b) different techniques to improve APTs are investigated. For
evaluation, phone accuracy is calculated with MPTs as the reference. These
experiments reveal that the following techniques hardly influence the accuracy of the
APTs: speaker and channel adaptation, acoustic models with lower resolution (less
Gaussian mixtures) and jack-knifing, i.e. one half of the training data is used to
transcribe the other half. They conclude that it is quite difficult to further improve
automatic phonetic transcription using acoustic models trained on canonical
transcriptions. For this reason, acoustic models are trained on hand-labeled data or on
data for which automatic transcriptions are made using a pronunciation model based
on the same hand-labeled data. These acoustic models appeared to substantially
improve automatic transcription compared to the baseline models that are trained on
canonical transcription of the training material. Another study is conducted by Cox,
Brady & Jackson (1998). These authors compared various automatic transcription
systems by calculating phone accuracy between APTs and MPTs made by a
professional phonetician. They found that speaker adaptation improves the quality of
APTs. Besides adaptation, they used confidence measures to label phones, and trained
acoustic models using the phones for which the confidence value exceeded a certain
threshold. These acoustic models further improved the quality of the APTs. Finally,
the work of Brugnara, Falavigna & Omologo (1993) is mainly concerned with
segmentation of speech. As part of this research, these authors investigated the effects
of the topology of the HMMs with phone accuracy as evaluation criterion. They found
an optimal accuracy for HMMs that have a minimum duration of 20 ms.

The first goal of this paper is to investigate and compare a number of properties
of ASR systems for their effects on the quality of APTs. In addition to some of the
properties described above, we will also investigate the impact of the type of acoustic
models (e.g., context dependent versus context independent models) and the type of
speech material used to train these models.
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In previous research on APT (Wester et al., 2001), we simply took the CSR
with the lowest Word Error Rate (WER) that was available from our research on
pronunciation variation modeling. In other research on APT, the choice of the CSR
usually is not clearly motivated. Intuitively one might expect that the ASR system that
obtains the lowest WER on some reference recognition task will also yield the best
APTs. However, on second thoughts (automatic) speech recognition may well appear
to be quite a different task than (automatic) phonetic transcription. Therefore, it is
worthwhile to investigate whether lower WERs do indeed indicate higher quality
APTs. This is the second goal of the research reported here.

This paper is organized as follows: In section 2, the method that we employed is
illustrated. Subsequently, in section 3, we present the results for each of the properties
of the ASR system that are investigated. The relation between degree of agreement
and WER is examined in section 4. Finally, in section 5, we discuss the results, while
in section 6 we present our general conclusions.

2. Method
As explained in the introduction, the focus of this study is a restricted form of
automatic transcription. Only the pronunciation variants that are automatically
generated by the application of five phonological rules to the canonical transcriptions
can be chosen by the recognizer. In section 2.1, we will first explain which
pronunciation variants are selected for transcription. Next, in section 2.2, we will
describe the speech material and our CSR. Section 2.3 describes how the APTs and
the two kinds of RTs are obtained and what the differences are between the two kinds
of transcription tasks. For evaluation of the various APTs, we calculate agreement
between the various APTs and human RTs, as will be explained in section 2.4.

2.1 Pronunciation variants

The pronunciation variants were automatically generated by applying a set of
phonological rules to the canonical transcriptions of the words that occur in the
transcription material. For variant generation, we used five phonological rules
concerning deletions and insertions of phones: /n/-deletion, /r/-deletion, /t/-deletion,
/©/-deletion and /©/-insertion (SAMPA notation is used throughout this paper). The
main reasons for selecting these five phonological processes are that they occur
frequently in Dutch and are well described in the linguistic literature. Furthermore,
these phonological processes typically occur in fast or extemporaneous speech;
therefore, it is to be expected that they will occur in the speech material that we use
(see section 2.2). Table 1 provides an example of each rule. The deleted phones are
shown between '(..)', and the inserted phone is indicated by '[..]'. For more details
and a description of the five phonological rules, see Wester et al. (2001).

'http://www.phon.ucl.ac.uk/home/sampa/dutch.htm
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Table 1: Examples of the five phonological rules

Rule
/nAdeletion
/r/-deletion
/t/-deletion
/©/-deletion
/©/-insertion

Example
rEiz@(n) -> rEiz@
Amst@(r)dAm -» Amst@dAm
sa:vOn(t)s — > sa:vOns
la:t(@)r@ -> la:tr@
dElft -> dEl[@]ft

Orthography
reizen
Amsterdam
's avonds
latere
Delft

Translation
to travel
Dutch city: 'Amsterdam'
in the evening
later
Dutch city: 'Delft'

The transcription task can be considered to be a binary decision task, since the CSR
(and the humans in one of the two approaches used to produce RTs) must decide
whether a rule was applied or not. For analysis purposes, we treated the transcription
task as a binary decision task: For each phone that can possibly be deleted or inserted
since the condition for one of the five rules is met, a binary score is obtained: (1) if the
rule is applied and (0) if this is not the case. To clarify this, let us consider the
following example: For the word /dELft/ ('Delft') the rule conditions for the /t/-
deletion and the /©/-insertion are met; thus, four pronunciation variants are generated.
Table 2 shows the four variants (column 1), the rules that are applied (column 2), and
the corresponding binary scores (column 3).

Table 2: Example of pronunciation variants and corresponding binary scores

pronunciation variant
/dELft/
/dElf/
/dEl@ft/
/dEl@f/

rules that are applied
none
/t/-deletion
/©/-insertion
/©/-insertion + /t/-deletion

binary scores
/t/-deletion=0, /@/-insertion=0
/t/-deletion=l, /@/-insertion=0
/t/-deletion=0, /@/-insertion=l
/t/-deletion=l, /@/-insertion=l

2.2 Speech material and CSR

The speech material used in the experiments is taken from a Dutch database, which
contains a large number of telephone calls recorded with the on-line version of a
spoken dialogue system called OVIS (Strik, Rüssel, van den Heuvel, Cucchiarini &
Boves, 1997). OVIS is employed to automate part of an operational Dutch public
transport information service. The speech material consists of interactions between
man and machine, and can be described as extemporaneous or spontaneous. From the
VIOS material, two sets of data are selected and for each data set a different kind of
human RT is obtained. For the first set, a reference transcription is employed based on
a majority vote procedure. This set is equal to the one that was used in Wester et al.
(2001). For the second set, a consensus transcription is made. The statistics of the two
sets of transcription material are given in Table 3. In the column '#utts' and '#words',
the number of utterances and words in the set is given. The remaining columns display
the number of times a condition for rule application is met, and thus the number of
binary scores that are obtained. The two sets of material are selected in such a way
that the relative frequencies of potential and actual application of the rules correspond
more or less to the relative rule frequencies in the training material. For the l@l-
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deletion and /©/-insertion rules, the relative frequencies of potential application are
higher so as to obtain a sufficiently high number of observations.

Table 3: Statistics of transcription material
set
1
2

reference
majority vote

consensus
TOTAL:

#utts
186
296
482

# words
1208
2035
3243

/n/-del
155
287
442

/r/-del
127
230
357

/t/-del
84
109
193

/@/-del
53
41
94

/@/-ins
48
103
151

all
467
770
1237

We used a standard CSR that is part of the spoken dialogue system OVIS (Strik et al.,
1997). The baseline phone models are continuous density HMMs with 32 Gaussians
per state. Every 10 ms, 14 cepstral coefficients (including c0) and their deltas are
calculated for frames with a width of 16 ms. The HMMs are trained on 25,104 VIOS
utterances (81,090 words), which do not overlap with the material that was manually
transcribed. The baseline HMMs consist of a tripartite structure; each of the three
parts consists of two identical states, one of which can be skipped (Steinbiss et al.,
1993). In total, 38 HMMs are trained. For 35 of the phonemes, context-independent
HMMs are trained. In addition, one model is trained for non-speech sounds, one
model is used for filled pauses, and a model consisting of one state is employed to
model silence. The baseline lexicon contains one transcription for each word. These
canonical transcriptions are obtained using the grapheme-phoneme-converter which is
part of a Text-to-Speech system for Dutch (Kerkhoff & Rietveld, 1994), followed by a
manual correction. The only rule that is applied in the canonical transcriptions is the
/nAdeletion rule, since the pronunciation without the IrJ is considered to be the most
likely pronunciation according to the linguistic literature (van de Velde, 1996). The
CSR uses a unigram and bigram language model, which is trained on the same 25,104
VIOS utterances used to train the acoustic models.

2.3 Automatic transcriptions and human reference transcriptions

2.3.1 Automatic transcriptions

The CSR is used to make the APTs. To this end, pronunciation variants are
automatically generated by applying the five phonological rules (see section 2.1) to the
canonical transcriptions of the words. The task of the CSR is to determine which of the
generated variants best matches the acoustic signal. We refer to this type of
recognition as forced recognition, since the CSR is forced to choose among a number
of pronunciation variants. During forced recognition, all variants of the same words
are assigned the same language model probability; thus, variant selection is completely
determined by the acoustics. For more details on our approach to forced recognition,
see Wester et al. (2001). The details on each investigated property of the CSR are
given together with the results in section 3.
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2.3.2 Majority vote reference transcriptions

The majority vote reference transcriptions are identical to those made in Wester et al.
(2001). We briefly summarize the relevant points of this transcription task; for more
details, see Wester et al. (2001). The transcriptions were made by nine expert listeners
who listened to the speech signal and decided which pronunciation variant best
matched the realization that they had just heard for each of the 379 words in Table 3.
In this sense, their task was exactly the same as the CSR's, i.e. deciding which
pronunciation variant best matched the speech signal. The listeners were selected to
participate in this experiment because they all had carried out similar tasks for their
own investigations. For this reason, they are representative of the kind of people who
may benefit from automatic ways of obtaining such transcriptions. The RTs were
determined by a majority vote procedure, which implies that the transcription that is
produced by the majority of the listeners (5 or more out of 9) is taken to be the human
RT.

2.3.3 Consensus reference transcriptions

The transcribers who made the consensus reference transcriptions are Language and
Speech Pathology students at the University of Nijmegen. They had all attended the
same transcription course including 32 hours contact time. The transcriptions used in
this experiment were made as part of the final examination. The IPA transcription
alphabet is used in this course. The transcribers all worked in one of 12 groups of two
or three people (eleven duos and one trio) and based their transcriptions on auditory
analysis of the full utterances without any kind of visual support. The groups of
listeners made consensus transcriptions for whole utterances, which implies that two
(or three) listeners had to agree on each symbol in the utterance. The utterances of the
transcription material were distributed over the groups in such a way that the number
of words that each group had to transcribe was about equal. No overlap existed
between the transcription material of the different groups.

The consensus transcriptions cannot directly be used for analysis, as they are
produced using the whole range of IPA symbols and diacritics, whereas the CSR uses
a limited set of SAMPA symbols. For this reason, the diacritics are discarded and the
IPA-symbols are mapped to SAMPA symbols, as is shown in Table 4.

Table 4: mapping of IPA to SAMPA symbols

IPA
SAMPA

n, m*
n

r, R, K, r, 1 , i , i
r

t
t

9-3
@

* the Aa/ is only allowed in case of nasal assimilation

The different IPA symbols shown in Table 4 are all allophonic variants of the phone
that is represented by the corresponding SAMPA symbol. In case the consensus
transcription is not an allophonic variant but a different phoneme, then this
transcription is excluded from further analysis. In total 22 consensus transcriptions
were excluded: 1 /nAdeletion, 16 /r/-deletion, 2 /t/-deletion, 2 /©/-deletion and 1 /@/-
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insertion transcriptions. This results in the number of transcribed phones as presented
in Table 3.

2.3.4 Differences between majority vote and consensus reference transcriptions

As mentioned above, the two transcription procedures described in the previous
sections are two attempts of obtaining human transcriptions that approach the actual
speech realisations as much as possible. However, there are differences between these
two procedures, which might have effects on the results obtained. First, the majority
vote transcription is based on transcriptions that are made independently by various
transcribers, whereas in the consensus transcription task the transcribers work together
to produce one single transcription. In other words, in the first case the transcribers do
not influence each other, while in the second case they do. This form of influence
between transcribers may work either positively or negatively. It has been reported
that if one of the transcribers is clearly more experienced and competent than the
others, "the consensus transcription may be biased to reflect the judgements of the
more competent, higher ranked, or 'forceful' transcriber" (Shriberg et al., 1984: 458).
However, in many cases this influence helps resolve cases of disagreement between
transcribers that are caused by the fact that one of the transcribers was "inattentive to a
particular phonetic behaviour, which was immediately obvious upon replay" (Shriberg
et al. 1984: 464).

Another difference between the two procedures as they were applied in our
experiments is that the transcribers that made the majority vote transcriptions
(linguists) were much more experienced than those who made the consensus
transcriptions (Language and Speech Pathology students). In view of the possibilities
of having bias in the data when transcribers of different status make the consensus
transcription, this choice appears to be a plausible one, as status differences seem
more likely among linguists than among students. However, the differences in degree
of experience may affect the results in another way. For example, it seems reasonable
to assume that linguists will be much more aware of the various phonological
processes that can occur in Dutch than students are. As a consequence they may be
more attentive to details that are otherwise ignored by students. However, these types
of expectations may also bias their transcriptions.

Furthermore, an important difference between these two procedures concern
the number of subjects involved. The majority vote transcription was based on input
from nine subjects, whereas the consensus transcription was produced by two and, in
one case, by three subjects. Given the differences in procedure, this seems logical, as
it would be very time-consuming to obtain a consensus transcription from nine people.
However, we have to realise that this has methodological consequences in terms of
transcription reliability. The notion of reliability in relation to phonetic transcription is
described hi Cucchiarini (1993: 10): 'The reliability of a measuring instrument
represents the degree of consistency observed between repeated measurements of the
same object made with that instrument. It is an indication of the degree of accuracy of a
measuring device [...] The notion of reliability is related to the idea that each
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measurement is subject to some degree of error and, therefore, each score can be seen as
a combination of error and true value [...] Mathematically, the true value is defined as the
limit of the average as the number of observations approaches infinity. " It follows that a
measurement based on larger number of observations is bound to be more accurate than
one based on a smaller number of observations. Therefore, in our case the majority vote
transcription can be assumed to be more accurate than the consensus transcription.

Finally, the last difference is that the two transcription tasks were quite different.
The majority vote transcribers were specifically instructed to decide whether one of
the five optional phonological rules under investigation was (or was not) applied in
specific words in the utterance. The consensus transcribers, on the other hand, were
not aware of the purpose of the investigation. Their task consisted of transcribing all
sounds in the utterances, which means that they had to pay attention to all phonetic
phenomena in the utterances. Through this difference in focus, the majority vote
transcribers probably base their decisions on more subtle differences than the listeners
who make the consensus transcriptions. Furthermore, by focusing on a few
phenomena, the reliability of the transcriptions might also be improved.

2.4 Evaluation of the APTs

The APTs are evaluated by comparing them to the human RTs. To this end, the binary
scores of the APTs are compared to the binary scores that are derived from the RTs.
As a measure of agreement between the APTs and the RTs we use Cohen's K, which
corrects percentage agreement for chance agreement (Cohen, 1968):

Cohen's K = Po-Pc

100-Pc
(1)

PC = percentage agreement on the basis of chance

P0=100%x
#agreements

#agreements+#disagreements
(2)

Table 5 shows the qualifications for K-values greater than zero, to indicate how the K-
values should be interpreted (taken from Landis & Koch, 1977).

Table 5: qualifications for K-values > 0

K-value
0.00 - 0.20
0.21 - 0.40
0.41 - 0.60
0.61 - 0.80
0.81 - 1.00

qualification

slight
fair
moderate
substantial
almost perfect
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3 Results
The first aim of this investigation is to determine how various properties of ASR
systems affect the quality of APTs. The properties of the CSR that are investigated are
all related to the HMMs. The general procedure is to take our baseline CSR and
substitute it with a different set of HMMs for which each of the following properties is
changed:

1 ) HMM topology (section 3.1)
2) Degree of contamination of the HMMs (section 3.2)
3) Context-independent versus context-dependent HMMs (section 3.3)
4) Combinations of 1) to 3) (section 3.4)

Each section in this chapter starts with a description of the investigated property of the
CSR. As there are differences between the majority vote en consensus transcription
procedures (see section 2.3.4), we present K-values for the two sets of material
separately. Both the total agreement values (^agreement for all rules) and the
agreement values per rule are presented. Finally, each section ends with a discussion
of the results and some concluding remarks.

3.1 Topology of the HMMs

In Wester et al. ( 2001), we found that, in general, our CSR detects fewer phones as
present than the humans do. Figure 1 shows the percentages 'phone present' in the
human RTs and in the APTs made with the baseline HMMs. In Figure 1, these
percentages are given for: a) the majority vote material, and b) the consensus material.
Figure 1 shows that for all rules and in each of the data sets the humans tend to detect
more phones than the CSR. For the majority vote material, the difference is largest for
the /©/-deletion and /©/-insertion rules, whereas for the consensus material the
differences in percentages 'phone present' are comparable across rules.

majority vote

/n/-del /r/-del /t/-del /@/-del /@/-ins all

g APT s • human RTs

Figure la: Percentages 'phone present'
for the majority vote material

40

20 -

0 4-

/n/-del /r/-del /t/-del /@/-del /@/-ins all
öAPTs g human RTs

Figure Ib: Percentages 'phone present'
for the consensus material
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The results in Wester et al. (2001) showed that agreement between the APTs
and the human RTs (consensus transcriptions) increased if the /@/s which were judged
to be short in duration by the humans were denoted as 'not present'. This could be an
indication that the minimum duration associated with the HMM topology is too long,
with the consequence that it may be difficult for the CSR to detect short duration /@/s.
In this paper, we define topology length as the duration corresponding to the minimum
number of states to visit from the beginning to the end of the HMM model. Since the
baseline HMMs consists of 6 states of which 3 can be skipped, the topology length of
the baseline l@l HMM is 3 states, or 30 ms.

Brugnara et al. (1993) pointed out that topology length is a critical point for
automatic segmentation of speech. The topology length of an HMM should be shorter
than the minimum phone duration in order to avoid skipping of models. However,
using a too short topology length (without any duration model) can cause a high
insertion rate. In order to investigate the optimal topology length, Brugnara et al.
(1993) compared various HMM topologies, with phone recognition rate as an
evaluation criterion. They found an optimal accuracy for HMMs that have a minimum
duration of 20 ms. This result might be an indication that our HMM topology length of
30 ms is suboptimal for the task of automatic transcription.

We decided to investigate the effect of using HMMs with topology lengths
shorter than 30 ms on the task of automatic transcription. For two reasons, we started
off by only changing the HMM topology for the phone l@l. First, the majority vote
transcriptions showed very large differences in the numbers of /@/s that are denoted as
present by the CSR and by the humans. Second, the results reported in Wester et al.
(2001) indicate that duration might be a factor that plays a role in the difference in the
number of /@/s transcribed by humans and CSR. For training of the short l@l HMMs,
we first made a segmentation of the training material using the baseline HMMs. In
order to determine the duration of the phone l@l in the training material, the l@l must
be present in the transcriptions used for segmentation. Therefore, the canonical
transcriptions were used for all words, except for those to which the /©/-insertion rule
is applicable. For these words, we inserted a l@l at all places where the rule condition
for /©/-insertion was met. Subsequently, we determined the number of frames that
were assigned to each l@l. Next, we divided the /@/-s into two categories:

1. short/®/: the duration in the segmentation is exactly 3 frames (30 ms); 1796 /@/s
2. long/@/: the duration in the segmentation is > 3 frames (>30 ms);18,640 /@/s

All short /@/s were then used to train an HMM consisting of 1 segment (2 identical
states of which one can be skipped), with a topology length of 10 ms. The long /@/s
were used for training the long-/®/ HMM, consisting of 3 segments. In addition to this
HMM set, another set of HMMs was trained. For this model set the short l@l HMM
has a 2 segment topology, and thus a topology length of 20 ms.

In order to find out whether using a short l@l HMM indeed results in higher
frequencies of l@l in the APTs, which in turn increases agreement, the results of the
/©/-deletion and /©/-insertion rule are investigated in more detail. First of all, we
expect that by using the short /©/ HMM, more /@/s will be transcribed by the CSR.
Table 6 shows the percentage of /@/s that are denoted as 'present' by the CSR. The
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following abbreviations are used: '3seg' denotes the baseline HMMs with a 3-segment
topology for the phone /©/, '2seg' denotes the 2-segment topology, and 'Iseg'
denotes the 1 segment topology. In Table 6, it can be seen that the percentages 7@/
present' indeed increase when using the short-®/ HMM. Especially for the /©/-
deletions of the majority vote material the discrepancy between the percentages '/©/
present' is decreased (the percentages 'phone present' are doubled).

Table 6: Percentages '/©/ present' for HMMs with various topology lengths and
human RTs

rule

/©/-deletion
/©/-insertion

majority vote

APTs
3seg

32%
29%

2seg

57%
33%

1 seg
68%
38%

human
RTs

72%
56%

consensus

APTs
3 seg

49%
23%

2 seg
51%
32%

1 seg

61%
33%

human
RTs

68%
37%

Second, we expect that agreement will increase for the /©/-deletion and /©/-insertion
rule. Figure 2 shows the agreement values per rule. These data reveal that the increase
in the number of /@/s that are detected by the CSR (as shown in Table 6) does not
necessarily mean that agreement is also increased: There is a decrease in agreement
for the majority vote transcriptions of the /©/-insertion rule. Another observation that
can be made from Figure 2 is that the use of a shorter topology length for the phone
/©/ also influences the agreement values for the other rules.

0.9

0.6

0.3

consensus majority vote

I
/n/-del /r/-del /t/-del /©/-del /@/-ins

• 3seg • 2seg D Iseg

Figure 2a: Agreement values per rule
majority vote transcriptions

o 4-
/n/-del /r/-del /t/-del /@/-del /@/-ins

S 3seg • 2seg D Iseg

Figure 2b: Agreement values per rule
for consensus transcriptions

In Figure 3, the total agreement values are given for HMMs with various
topology lengths for the phone /©/. As agreement deteriorates for the /©/-insertion
rule of the majority vote material and also for some of the other rules (see Figure 2), it
is not surprising that the improvement in the total agreement values is not very large
when a short /©/ HMM is used. Another observation that can be made from Figure 3
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is that for the consensus transcriptions an HMM topology length of 2 segments - or 20
ms - performs slightly better than the two other lengths. This is in line with the results
of Brugnara et al. (1993), since they also found an optimal topology length of 20 ms.

all rules

o

majority vote consensus

E3seg B2segDlseg

Figure 3: Total agreement values for HMMs with various topology lengths

The question that arises is why the agreement values for the /©/-insertion rule do not
increase for the majority vote transcriptions while they do increase for the consensus
transcriptions. This difference in result can probably be attributed to the listeners. It is
striking that the listeners in the majority vote transcription task tend to choose for
considerably more /©/-insertions (56%) than the humans who make the consensus
transcriptions (37%) (see Figure 1). This difference in result might be explained by a
difference in experience level between the majority vote and consensus transcribers.
Furthermore, the different way in which the two kinds of transcriptions are made is
probably another factor that is playing a role (see section 2.3.4).

To conclude, using a shorter topology length for the phone l@l improves the
total agreement values, but the improvements are very small. Furthermore, agreement
is improved for the /©/-insertion rule of the consensus material, whereas this is not
the case for the majority vote transcriptions. As mentioned in section 2.3.4, it seems
reasonable to assume that the linguists who made the majority vote transcriptions will
be much more aware of the various phonological processes that can occur in Dutch
than the students who made the consensus transcriptions. This bias through
expectation might be strong for the /©/-insertion rule as it is a frequently occurring
process (Kuipers & van Donselaar, 1997). Another factor mentioned in section 2.3.4
is that the majority vote transcribers were aware of the purpose of this investigation.
This difference of focus might bias the majority vote transcribers towards more /©/-
insertions.

3.2 Degree of contamination of the HMMs

The speech material used for training contains much variation in pronunciation,
whereas the baseline training lexicon contains only one canonical transcription for
each word. Therefore, some of the transcriptions used for training the baseline HMMs
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will be incorrect, e.g. a phone is present in the transcription but has not been realized.
Through this mismatch between transcription and pronunciation the HMMs get
contaminated. Subsequently, the contamination can lead to errors in the automatic
transcriptions. The effect of contamination of the HMMs on automatic transcription
will probably be that the APTs are more biased towards the transcriptions on which
the HMMs are trained. To better illustrate our point, we can look at the following
example: We train our baseline HMMs on the basis of canonical transcriptions of the
training corpus in which /©/-insertion is not applied. Consequently, if the l@l is
present ('inserted') in the pronunciation, the HMM of the adjacent phones get
contaminated with acoustic signal of the/®/. Through this contamination, the baseline
CSR probably tends to choose less easily for /©/-insertion: If the l@l is pronounced it
can still be transcribed as not since the HMM for the adjacent phones contains
acoustic information of the l@l.

The effect of contamination of our baseline HMMs probably will be that they
are biased towards the transcriptions on which the HMMs are trained, i.e. the
canonical transcriptions. By removing (some of) the mismatch between the
transcription on which the HMMs are trained and the actual pronunciation, the bias
can be reduced. Saraçlar (2000a) reported that this is indeed the case: The baseline
HMMs that are trained on canonical transcriptions produce more canonical APTs than
HMMs that are trained on the basis of automatic or manual transcriptions of the
training material in which pronunciation variation is transcribed.

In this section, we will investigate whether using less contaminated HMMs is
beneficial to automatic transcription. To this end, we used two kinds of HMMs that
we expect to be less contaminated than the baseline HMMs, namely HMMs from
pronunciation variation modeling research and HMMs that are trained on read speech
material.

3.2.1 Modeling of pronunciation variation

One of the approaches we used to minimize the mismatch in the training corpus
consists of modeling pronunciation variation (Wester, Kessens & Strik, 1998). In this
research, automatic transcriptions of pronunciation variation are made by means of
forced recognition. The new automatic transcriptions are then used to train new
HMMs. From this pronunciation variation research, two sets of HMMs were taken
that were used in addition to the baseline HMMs for making automatic transcriptions:

1. HMMs trained on a corpus for which automatic transcriptions of within-word
pronunciation variants are made ('within HMMs'). These variants are generated
using the same five within-word phonological rules as mentioned in section 2.1.

2. HMMs trained on a corpus for which also cross-word variation is transcribed
('within + cross HMMs'). For more details on the cross-word variation modeled,
see Wester et al., 1998.
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Figure 4 shows thé total agreement values for the baseline HMMs and the
HMMs from pronunciation variation research. It can be seen that for both data sets the
total agreement values increase when less contaminated HMMs are used. These
results are in line with the findings of Saraçlar (2000a).

all rule s

majority vote consensus

B baseline • within D within+cross

Figure 4: Total agreement values for the baseline HMMs and for HMMs from
pronunciation variation research

Saraçlar (2000a) also showed that the pronunciation variation HMMs are less biased
towards the canonical transcriptions than baseline HMMs. Closer inspection of our
data reveals that also in our material the CSR tends to choose less often for canonical
transcriptions; the percentage of canonical APTs for all rules decreases from 57.9%
for the baseline HMMs, to 50.6% and 50.8% for respectively the 'within' and the
'within+cross' HMMs. This tendency is also observed per rule (see Appendix 1).

0.9

0.6 —{

0.3 -

consensus

/n/-del /r/-del /t/-del /@/-del /@/-ins

d baseline • within D within+cross

Figure 5a: Agreement values per rule
for the majority vote transcriptions

/n/-del /r/-del /t/-del /@/-del /@/-ins

S baseline B within D within+cross

Figure 5b: Agreement values per rule
for the consensus transcriptions
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As the total agreement values increase if pronunciation variation HMMs are
used, one could easily conclude that the contamination of the baseline HMMs indeed
leads to transcription errors. However, the results per rule do not confirm this
hypothesis unconditionally since agreement is not increased for all rules (see Figure
5).

Another observation that can be made from Figure 5 is that the agreement
values are considerably increased for the /©/-insertion rule of the majority vote
material, whereas this is not the case for the consensus material. The fact that we
again find discrepancies in the results of the majority vote and consensus
transcriptions of the /©/-insertion rule confirms our hypothesis that the way in which
the transcribers decide on the application of this rule is different in the two
transcription tasks.

Finally, it should be noted that the increase in agreement values is mainly
caused by an increase in agreement for the /nAdeletion rule (see Figure 5). Another
way of modeling pronunciation variation is to take the most frequent transcription of a
word as the transcription in the lexicon (Cohen, 1989). If the most frequent
transcription of a word is used in the training lexicon, the number of words for which
there is a mismatch between the transcription and the realized pronunciation is
reduced, which probably leads to better transcription quality. The /n/-deletion rule is
the only rule for which the canonical transcription is not the most frequent one
according to the human transcribers: The baseline HMMs are trained on transcriptions
in which /n/-deletion is applied, whereas in our speech material the percentage of /n/-
deletions according to the transcribers is less than 50% (see Figure 1). In order to
investigate whether HMMs trained on the most frequent transcription of a word is
beneficial to automatic transcription quality, we trained new HMMs on the basis of
transcriptions in which /nAdeletion is not applied. To this end, we re-inserted all the
/n/s in the transcriptions of the training material and we then train new HMMs. The
new HMMs are referred to as V@n#/' ('#'= word boundary) whereas the baseline
HMMs are referred to as V@-#/' ('-' = deletion).

Besides the effect that the V@n#/' HMMs are probably less contaminated,
they are also contaminated in a different way. For the V@n#/' HMMs, the HMM for
the phone /n/ will be contaminated with acoustic signal of the l@l, whereas for the
V@-#/' HMMs the HMM for the phone l@l will be contaminated with acoustic signal
of the /n/. This different kind of contamination will probably bias the CSR to choose
more transcriptions containing the /n/. As expected, by using the new V@n#/' HMMs
considerably more /n/s are detected by the CSR; 71 more /n/s for the majority vote
transcriptions, and 60 more /n/s for the consensus transcriptions (see Appendix 1).
Figure 6 shows that the total agreement values increase using the V@n#/' instead of
the V@-#/' HMMs.
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al rules

0.2

majority vote consensus

• /@-#/B/@n#/

Figure 6: Total agreement values for 7@-#/' and 7@n#/' HMMs

Figure 7 shows the agreement values per rule. It can be seen that using the V@n#/'
HMMs instead of 7@-#/' HMMs increases agreement not only for the /n/-deletion
rule, but also for some of the other rules. Furthermore, Figure 7 shows that especially
for the /nAdeletion rale of the consensus transcriptions, the agreement values are
improved. The agreement values for the V@n#/' HMMs are even higher than for the
'within+cross' HMMs. Since we expect that the amount of contamination in the
'within+cross' HMMs is smaller than that in the Y@n#/' HMMs, one should expect
that the agreement values are also higher for the 'within+cross' HMMs. A factor that
might partly explain this result is that the V@-#/' HMMs that were used for automatic
transcription of the within- and cross-word pronunciation variation are contaminated.
For this reason, the 'within+cross' HMMs that are trained on the basis of these partly
incorrect automatic transcriptions are also (indirectly) contaminated.

majority vote consensus

o -

/n/-del /r/-del /t/-del /@/-del /@/-ins

H/@-#/B/@n#/

Figure 7a: Agreement values per rule
for the majority vote transcriptions

o
/n/-del /r/-del /t/-del /@/-del/@/-ins

mi@-#i •/@n#/
Figure 7b: Agreement values per rule
for the consensus transcriptions

3.2.2 Spontaneous versus read speech for model training

It is well known that the amount of pronunciation variation tends to be larger in
spontaneous than in read speech. Consequently, fewer mismatches should be found
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between the speech signal and the transcriptions in read speech. Thus, it is to be
expected that HMMs trained on read speech will be less contaminated than those
trained on spontaneous speech. Since in the previous section it was shown that less
contaminated HMMs can yield better results, we decided to use HMMs trained on
read speech for automatic transcription. The HMMs were trained on 18,000
phonetically rich read sentences of the Dutch Polyphone corpus (den Os, 1995)
containing about twice as many words as the VIOS training material.

Figure 8 shows that the total agreement values are higher when we use HMMs
trained on read speech (Polyphone) instead of on spontaneous speech (VIOS). The
total agreement values are also improved compared to the V@n#/' HMMs.

all rules

majority vote consensus

D /<§>-#/ • /@n#/ D read speech

Figure 8: Total agreement values for read speech HMMs

Figure 9 shows that the trends in the results of the read speech HMMs are very similar
to those obtained for the pronunciation variation HMMs: Agreement values mainly
increase for the /n/-deletion rule and for the /©/-insertion rule. Furthermore, also the
read speech HMMs are less biased towards the canonical transcriptions than the
baseline HMMs: The percentage of canonical transcriptions for all rules decreases
from 57.9% for the baseline HMMs, to 51.0% for read speech HMMs (see Appendix
1). The increase in overall agreement values could be caused by the larger amount of
training material used to train the read speech HMMs. However, since the trends for
the pronunciation variation HMMs and the read speech HMMs are very similar, the
kind of contamination that is contained in the baseline HMMs is probably absent in
both the pronunciation variation HMMs and the read speech HMMs.

The results presented in this section show that contamination of the HMMs due
to pronunciation variation affects the overall quality of automatic transcription. The
quality of automatic transcription can be improved by reducing the amount of
contamination. This can be achieved by using pronunciation variation modeling
HMMs or HMMs trained on read speech.
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/n/-del /rAdel /t/-del /@/-del /@/-ins

E3 spontaneous • read

Figure 9a: Agreement values per rule
for the majority vote transcriptions
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/n/-del /r/-del /t/-del /@/-del /@/-ins

B spontaneous Bread

Figure 9b: Agreement values per rule
for the consensus transcriptions

3.3 Context-independent vs. context-dependent HMMs

As CD-HMMs take account of the context in which a phone occurs, CD-HMMs are
better equipped for modeling context effects such as transitions and co-articulation
between phones. For this reason, CD-HMMs generally yield lower WERs (see e.g.
Schwartz, Chow, Roucos, Krasner, Makhoul, 1984) and one could expect that CD-
HMMs also produce better quality transcriptions. However, we hypothesize that CD-
HMMs do not necessarily generate better transcriptions. As mentioned in section 3.2,
the effect of contamination of the HMMs on automatic transcription is that the APTs
are more biased towards the transcriptions on which the HMMs are trained. This
means that if CD-HMMs are trained on the basis of canonical transcriptions of the
training material, the CD-HMMs will produce APTs that are biased towards the
canonical transcriptions. We hypothesize that the bias towards the canonical
transcriptions is sometimes larger for the CD-HMMs than for the CI-HMMs. To
illustrate this point, let us consider the following example. Suppose we train CD-
HMMs on the basis of transcriptions of the training corpus in which /rAdeletion is not
applied. In these transcriptions of the VIOS training corpus 30,018 /r/s are transcribed,
of which 1,813 occur in the context /@rd/. However, a large part of these /r/s are not
realized since for all words in our material that contain /@rd/, the rule conditions for
the /r/-deletion rule are met. According to the human listeners, /r/-deletion is applied
in about 1/3 of the cases (see Figure 2), thus of the /r/s in the context /@rd/ about 1/3
are not pronounced. This percentage corresponds to 2% of all /r/s in the training
material. Consequently, if a CD-HMM is trained for /@rd/, then the /r/ is not present
in 1/3 of the training tokens, which corresponds to 2% of the training tokens for the
CI-HMM. This means that the CD-HMM for the context /@rd/ is more contaminated
than the CI-HMM for the /r/. For this reason, the bias towards canonical transcriptions
is larger for the CD-HMM (for the context /@rd/) than for the CI-HMM for the /r/. As
the results in section 3.2 show that removing (part of) the bias towards the canonical
transcriptions is beneficial for automatic transcription, we expect that enlarging the
bias towards the canonical transcriptions will reduce the agreement values.
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In order to investigate the effect of CD-HMMs on automatic transcription,
state-tied CD-HMMs are trained on the basis of the canonical transcriptions of our
training material. Since our HMMs have a tripartite structure and each of the three
parts (or segments) consists of two identical states, state-tying is performed by tying
segments. For state-tying it is assumed that all first segments are dependent on the left
context of the phone, all middle segments are independent of the context, and all last
segments are dependent on the right context. For this reason, all middle segments of
each phone are clustered to train a Cl-model for all middle segments of the same
phone. Left and right CD-models are trained for clusters of first and last segments
with equal left or right contexts. Each cluster of first and last segments contains at
least 200 observations. All left and right contexts with less than 200 observations are
clustered to train two backing off models: one for all first and one for all last segments
with less than 200 observations. In total, 237 left CD-models and 227 right CD-
models are trained. If we then look at the training corpus consisting of 326,494
phones, and thus 326,494 left and right contexts, we see that 94.3% and 94.4% of
these contexts are covered by the right and left CD-models, respectively.

all rules

0.2

majority vote

• CI-HMMs

consensus

1 CD-HMMs

Figure 10: Agreement values for CI- versus CD-HMMs

Figure 10 shows that the agreement values are lower if CD-HMMs are used to obtain
automatic transcriptions of the majority vote material, whereas for the consensus
transcriptions a small improvement in the total agreement values is found. Figure 11
shows that agreement increases for some of the rules (viz. the /t/- and /©/-deletion
rules), but decreases for others (viz. the /r/-deletion and /©/-insertion rules).
Especially for the /r/-deletion rule of the majority vote material a large decrease in
agreement is found. Due to this large decrease in agreement for the /r/-deletion rule,
the total agreement value decreases for the majority vote transcriptions. If we look at
the numbers of detected /r/s using CD-HMMs, it is striking that this number is
extremely large for the majority vote transcriptions (see Appendix 1). The large
deterioration in agreement for the /r/-deletion rule is indeed mainly caused by a large



Article 2 103

• 7 YOU: consensus

v 0.4 --

/n/-del W-del /t/-del /@/-del /©/-ins

• CI-HMMs • CD-HMMs

Figure lia: Agreement values per rule
for the majority vote transcriptions

/n/-del /r/-del /t/-del /@/-del /©/-ins

• CI-HMMs • CD-HMMs

Figure lib: Agreement values per rule
for the consensus transcriptions

bias towards the canonical transcriptions (i.e. the transcription in which the /r/ is
present): For the majority vote material, more /r/s are unjustly denoted as present by
the CSR using CD-HMMs instead of CI-HMMs. The different /r/-deletion results for
the majority vote and the consensus material is probably related to the fact the /r/-
deletion rule is the only rule for which there exist a considerably difference in the
identity and frequency of the words that are contained in the two types of material.
Therefore, for obtaining the automatic transcription of /r/-deletion, CD-HMMs are
used that concern other contexts. Probably, the amount of contamination in these
different contexts varies and thus, also agreement varies.

Another observation that can be made from Figure 11 is that there is a large
increase in agreement values for the /©/-deletion rule. Closer inspection of the l@l-
deletion transcriptions reveal that this increase is caused by an increase in the number
of detected /@/s: Nearly all extra /@/s that are now detected by the CSR concern /@/s
that are denoted as present by the human transcribers.

To conclude, using CD-HMMs for automatic transcription causes a
deterioration in the total agreement for the majority vote transcriptions, whereas a
small improvement is found for the consensus transcriptions. The deterioration in
agreement values for the majority vote transcriptions is mainly caused by an increase
in the number of /r/s that are unjustly detected by the CSR. The difference in result for
the two sets of materials with respect to the /r/-deletion rule can probably by explained
by the fact that the identity and frequency of the words that are contained in the two
types of material are different for this rule.

3.4 Combinations of properties

In this section, we will investigate the effect of two combinations of properties, on the
assumption that some properties will be (partly) complementary in terms of their
ability to improve automatic transcription quality.
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3.4.1 Combination of pronunciation variation modeling and a short l@l HMM

First, we investigate a combination of using a shorter topology length for the phone
l@l (see section 3.1) and pronunciation variation modeling (see section 3.2). It can be
expected that these properties benefit from each other. On the one hand, pronunciation
variation modeling removes the /©/-transcriptions for the /@/s that are not
pronounced, thus making the short /<§>/ HMMs less contaminated. On the other hand,
the short l@l HMM will probably make better automatic transcriptions of the within-
and cross-word pronunciation variation (recall that the agreement values are higher
using the short l@l HMM).

In order to train the combination HMMs, we make a new transcription of the
within- and cross-word variation in the training material using the set of HMMs that
contains the short l@l HMM with the highest total agreement values (the short /©/
HMM consisting of 2 segments). Next, the new transcriptions are used to train a new
set of HMMs.

aH rules

majority vote consensus

D base • short /<§>/ D proavar. • combi

Figure 12: Total agreement for the combination of pronunciation variation modeling
and short/@/HMMs

Figure 12 shows the total agreement values for the baseline HMMs ('base'),
the agreement values for changing the separate properties ('short /©/' and
'pron.var.'), and the agreement values for changing the two properties simultaneously
('combi'). It can be seen that the combination of the two properties results in higher
agreement values than each property separately.

Figure 13 shows that - compared to the baseline - agreement is largely
improved for the /n/-deletion rule and the /©/-insertion rule. This increase in
agreement for the /nAdeletion rule can be attributed to the pronunciation variation
modeling since the increase in agreement was also found for the pronunciation
variation HMMs. The two rules that especially benefit from the combination of the
two properties are the /©/-deletion and /©/-insertion rules: For both rules the
combination results are better than the results of the individual properties.
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0.3

consensus

O

/n/-del /r/-del /t/-del /@/-del /@/-ins

H base • short l@l D pron.var. H combi

Figure 13a: Agreement values per rule
for the majority vote transcriptions

/n/-del /r/-del /t/-del /@/-del/@/-ins

D base • short /(§>/ D proavar. • combi

Figure 13b: Agreement values per rule
for the consensus transcriptions

3.4.2 Combination of pronunciation variation modeling and CD-HMMs

Another combination of properties that could enhance the system's transcription
quality is pronunciation variation modeling (section 3.2) and CD-HMMs (section 3.3).
Due to modeling of pronunciation variation, part of the mismatch between the
phonetic transcriptions of the training material and the actual pronunciation is
removed, thus the CD-HMMs are less contaminated.

In order to train the combination HMMs, we make an automatic transcription
of the within- and cross-word variation in the training material using the baseline
HMMs. On the basis of this transcription, state-tied CD-HMMs are trained (see
section 3.3 for more details on the state-tying procedure). Figure 14 shows the
agreement values for the pronunciation variation HMMs ('pron.var.') and CD-HMMs
('CD') and the combination of pronunciation variation modeling and CD-HMMs
('combi'). In general, the combination of the two properties results in higher total
agreement values than the agreement values for each property separately.

all rules

majority vote consensus

• base • CD D pron.var. • combi

Figure 14: Total agreement values for combination of pronunciation variation and
CD-HMMs
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majority vote

/n/-del /r/-del /t/-del /@/-del /@/-ins
B base BCD Dpron.var. M combi

Figure 15a: Agreement values per rule
for the majority vote transcriptions

/n/-del /r/-del /t/-del /@/-del /@/-ins

D base HCD Dpron.var. •combi

Figure 15b: Agreement values per rule
for the consensus transcriptions

Figure 15 reveals that CD-HMMs can indeed benefit from pronunciation variation
modeling: The large decreases in agreement values that were found for the majority
vote transcriptions of the /r/-deletion rule disappear. Furthermore, for the l@l-
insertion rule the combination results are better than the individual results. Clearly,
context-dependent modeling improves upon pronunciation variation modeling. The
/©/-deletion rule is the only rale for which the combination results substantially
deteriorates compared to the results of each individual property. This result might be
explained as follows: As the automatic transcriptions of the /©/-deletion variants are
obtained with the baseline HMMs and as low agreement values are found for the l@l-
deletion rule (the K values are qualified as 'slight' and 'fair' for the baseline HMMs),
the pronunciation variation modeling might deteriorate the context-dependent
modeling.

4 Agreement and WER
In other research on APT, the choice of the speech recognizer is usually not clearly
motivated. Most probably, one generally takes the speech recognizer with the lowest
WER. Obviously, the assumption on which this choice rests is that a recognizer with a
lower WER will produce better APTs. To investigate whether a recognizer with lower
WERs indeed produces better quality transcriptions, we looked at the relation between
WER on the one hand, and the agreement values between the APTs and human RTs
on the other hand. We measured WER on the total transcription material (majority
vote + consensus) for all sets of HMMs that are used in this article. The lexicon used
in the recognition experiments contains 1,154 words, to which 1,119 pronunciation
variants were added. The variants were automatically generated by applying the five
phonological rales (see section 2.1) to the canonical transcriptions of the words, thus
obtaining a lexicon containing 2273 entries. A language model is employed that
distinguishes between different variants of the same word. For more details on this
kind of language model, see Kessens et al. (1999). For more details on the CSR, see
section 2.2. The WER is defined as follows:
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N
xlOO% (3)

where S is the number of substitutions, D the number of deletions, I the number of
insertions, and N the total number of words. As a measure of agreement we used the
total K, which is the K for the two data sets pooled together. In Figure 16, the scatter
plot of the total K as a function of WER is given.
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A section 3.4: pron.var. + CD-HMMs
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21 22

Figure 16: Scatter plot of total K and WER on transcription data

The relation between K and WER that we would expect is: The lower the WER, the
higher K. Figure 3 shows that this trend is not present. If we had selected the HMMs
with the lowest WER ('within + cross HMMs') for automatic transcription, we would
not have obtained the most optimal APTs. Furthermore, the HMMs that produce the
optimal APTs (combination of pronunciation variation modeling and CD-HMMs) do
not yield the lowest WERs. One could argue that it is not correct to use the total K as a
measure of agreement, since the agreement values are different for the two data sets.
However, even when the two sets of data sets are treated separately, the expected
relation between WER and K is not found either. For both data sets the best agreement
values are found for the combination of pronunciation variation modeling and CD-
HMMs, whereas the lowest WERs are found for the pronunciation variation HMMs.

Saraçlar (2000a) and Saraçlar et al. (2000b) also reported results showing that
a better transcription accuracy does not imply that the WER is also improved. They
found that HMMs trained on automatic transcriptions of pronunciation variation
improve transcription accuracy by 4.5% compared to using baseline HMMs, whereas
the WER deteriorates by 1.4%. They conclude that this result can be explained by an
increased lexical confusion: "Since our decision tree pronunciation model allows
words to have a large number of pronunciations, many of which overlap with
pronunciations of other words, 'recovering' the right word strings from more accurate
phone recognition is difficult". We think that also another factor also plays a role. The
sequences of phones that can be recognized during a normal recognition task are
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constrained by the lexicon and the (word-level) language model. Through these
constraints, it is impossible or less likely to recognize some sequences of phones
during a conventional recognition task. During automatic transcription, however, the
lexicon and the language model do not influence the resulting transcription and thus,
these constraints do not influence transcription quality.

These results illustrate that recognition and automatic transcription are different
tasks and should be optimized in different ways. For this reason, for automatic
transcription one should not select the speech recognizer with the highest recognition
performance in a conventional recognition task, but one should rather concentrate on
the properties that the recognizer should have for making optimal APTs.

5. Discussion
In this paper, we evaluated the quality of APTs by measuring agreement with two
kinds of human RTs, namely RTs based on a majority vote principle and consensus
RTs. The agreement values for the consensus transcriptions were, in general, lower
than the agreement values for the majority vote transcriptions. There are various
possible explanations for the difference in absolute agreement values. First of all, the
experience level of the students who made the consensus transcribers is probably
lower than that of the majority vote transcribers. It seems reasonable to assume that
linguists will be much more aware of the five phonological processes that were the
focus of this study. As a consequence they may be more attentive to details that might
be ignored by the students. Second, as the number of subjects involved in making the
consensus transcriptions is smaller than the number of transcribers that made the
majority vote transcriptions, the consensus transcriptions are probably less accurate.
Third, the consensus transcribers were not specifically instructed to decide whether
one of the five optional phonological rules under investigation was (or was not)
applied in specific words in the utterance, whereas the majority vote transcribers were
aware of the purpose of the investigation. Through this difference in focus, the
reliability of the majority vote transcriptions might also be improved.

Although the absolute agreement values vary for the two types of human RTs,
the general trends that we observe are very similar. There are two exceptions. First of
all, for the /©/-insertion rule, the majority vote and consensus transcriptions reveal
contradictory trends: Using a short l@l HMM, agreement values deteriorate for the
majority vote material, whereas agreement values increase for the consensus material.
Furthermore, pronunciation variation HMMs lead to lower agreement values for the
consensus transcriptions, whereas it is the other way around for the majority vote
transcriptions. A possible explanation for the opposite results is that the majority vote
transcribers are more biased towards /©/-insertion since they expect this process to
occur. Since the consensus transcribers are probably less familiar with the /<§>/-
insertion rule, they are probable less biased. Second, we found contradictory results
for the CD-HMMs: Compared to using CI-HMMs, agreement values are lower for the
majority vote material whereas the agreement values are higher for the consensus
material. Probably, this difference is not related to the way the manual transcriptions
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are made, but is probably due to the fact that the two types of material contain
different words for the /r/-deletion rule.

The results that we obtained in this investigation are in concordance with the
results reported by other authors. We observed that a topology length of 20 ms for the
phone l@l results in better quality APTs than the baseline topology length of 30 ms,
which confirms the results reported by Brugnara et al. (1993). Furthermore, we found
that pronunciation variation HMMs yield better quality APTs, a result that has also
been reported by Saraçlar (2000a) and Saraçlar et al. (2000b). These authors also
showed that the pronunciation variation HMMs were less biased towards canonical
transcriptions than the baseline HMMs; this trend was also observed in our data.

Closer inspection of our data reveals that the results vary per rule. For this
reason, we now discuss the results per rule. For the /n/-deletion rule, the baseline
HMMs seem to contain contamination which results in a bias towards the deletion of
/n/. This contamination can be reduced by training HMMs on the basis of a
transcription of the training material in which the /n/-deletion rule is not applied since
according to the humans /n/-deletion is applied in less than half of the cases.
Furthermore, the contamination can be reduced by training HMMs on automatic
transcriptions of pronunciation variation. Finally, by training the HMMs on read
speech material the amount of contamination hi the HMMs is also reduced. For the /r/-
deletion rule, the most striking result is that agreement is considerably reduced by
context-dependent modeling. This is mainly caused by a large bias of the CD-HMMs
towards the canonical transcriptions. Consequently, more Ms are unjustly detected
using the CD-HMMs compared to using the CI-HMMs. The deterioration in
agreement for the CD-HMMs can be reduced if the context-dependent modeling is
combined with pronunciation variation modeling. For the /t/-deletion rule the only
clear trend is that context-dependent pronunciation modeling seems to give the highest
agreement values. For the /©/-deletion rule, the discrepancy between the number of
detected phones by humans and CSR seems to be partly of a durational nature, since
using a short l@l HMM improves agreement values. The /©/-deletion rule is the only
rule for which the combination of pronunciation modeling and CD-HMMs results in
considerably lower agreement values than the agreement values for CD-HMMs
without pronunciation variation modeling. A possible explanation for this result is that
the quality of the automatic transcriptions of the /©/-deletion variants is low as they
are obtained with the baseline HMMs (the K values are qualified as 'slight' and 'fair'
for the baseline HMMs). Finally, for the /©/-insertion rule we find differences in
results for the majority vote and consensus transcriptions. In general, the number of
phones that are denoted as present is higher for the humans than for the CSR. For the
majority vote transcriptions this difference in detected phones becomes smaller if the
amount of contamination contained in the HMMs is reduced, whereas for the
consensus transcriptions, the topology length of the /©/ HMM seems to play a role.
The fact that we find discrepancies in the results of the majority vote and consensus
transcriptions of the /©/-insertion rule probably means that the way in which the
humans decide on the application of this rule is different in the two transcription tasks.
A way of limiting the discrepancy between the number of detected phones by CSR
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and humans and increasing agreement for both materials is to use a combination of
pronunciation variation modeling and a short l@l HMM.

6 Conclusions
In this study, we have shown that changing the properties of a CSR does influence the
degree of agreement between the automatic transcriptions and the reference
transcription: For the majority vote transcriptions, the overall K-value varies between
0.464 and 0.629. For the consensus transcriptions, the overall K-value varies between
0.426 and 0.505. Although the absolute agreement values for the two kinds of human
RTs differ, the general trends are very similar. Our results indicate that the quality of
the automatic transcriptions can be improved by using 'short' HMMs. The quality of
automatic transcription can also be improved by reducing the amount of
contamination due to pronunciation variation. This can be achieved by using HMMs
trained on the most frequently observed transcription, by using HMMs trained on
automatic transcriptions of pronunciation variation, or by using HMMs trained on
read speech. Furthermore, we found that CD-HMMs should not be trained on the
baseline transcriptions, since for these transcriptions there is a mismatch between the
phonetic transcriptions of the speech material and the realized pronunciation. If CD-
HMMs are trained on automatic transcriptions of pronunciation variation, the
mismatch is reduced, resulting in better quality transcriptions. The combination of two
other properties, namely pronunciation variation modeling and 'short' HMMs, results
in higher agreement values than those obtained with the individual properties. Finally,
we found mat by combining properties the quality of automatic transcription can be
improved even further. For both data sets, the lowest total agreement values are
obtained for the baseline HMMs, whereas the highest values are obtained for a
combination of pronunciation variation modeling and CD-HMMs.

Finally, we observed that there is no clear relation between the WER of a CSR
and the K-values. Therefore, we can conclude that for obtaining automatic
transcriptions, using the CSR with the lowest WER is not always the optimal solution.
It appears that for this specific purpose, CSRs should be used that have been specially
optimized for automatic transcription.
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Appendix 1: Numbers APTs in which the relevant phone is 'present'. For the M-, ft/-
and /@/-deletion rules the APTs in which the relevant phone are 'present' are the
canonical transcriptions. For the /«/-deletion rule and/©/-insertion rule, the APTs in
which the relevant phones are 'present' are the non-canonical transcriptions.
Therefore, for the /n/-deletion rule and /©/-insertion rule the numbers of canonical
transcriptions are given between brackets. In the last row, the numbers are given for
the human RTs.

Table Al.l: Numbers of 'phone present' for me majority vote material.
section

3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.3
3.4
3.4

HMMs
3seg (baseline)
2seg
Iseg
within
within+cross
/@n#/
read speech
CD
pron.var. & short /<§>/
pron.var & CD
human RTs

/n/-del
72 (83)
77 (78)
79 (76)
90 (65)
90 (65)
110(45)
96 (59)
83 (72)
96 (59)
95 (60)
95 (60)

/r/-del
66
73
83
58
57
68
69
107
61
67
78

/t/-del
64
63
66
62
63
66
63
71
62
66
70

/©/-del
17
30
36
16
19
20
19
29
31
19
38

/@/-ins
14 (34)
16 (32)
18 (30)
18 (30)
17 (31)
11 (37)
20 (28)
8(40)

29 (19)
19 (29)
27 (21)

all
233 (264)
259 (276)
282 (291)
244(231)
246 (235)
275 (236)
267 (238)
298 (319)
279 (232)
266 (241)
308 (267)

Table A1.2: Numbers of 'phone present' for the consensus material.
section

3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.3
3.4
3.4

HMMs
3seg (baseline)
2seg
Iseg
within
within+cross
/@n#/
read speech
CD
pron.var. & short l@l
pron.var & CD
human RTs

/n/-del
121 (166)
136(151)
137 (150)
146 (141)
148 (139)
181 (106)
164 (123)
150 (137)
151 (136)
158 (129)
181 (106)

/r/-del
123
129
148
109
110
131
120
172
123
124
155

/t/-del
64
62
64
57
59
66
62
72
63
69
83

/@/-del
20
21
25
18
15
17
21
25
22
19
28

/@/-ins
24(79)
33 (70)
34 (69)
33 (70)
32(71)
27 (76)
36 (67)
15 (88)
41 (62)
35 (68)
38 (65)

all
352 (452)
381 (433)
408 (456)
363 (395)
364 (394)
422 (396)
403 (393)
434 (494)
400 (406)
405 (409)
485 (437)
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Appendix 2: Agreement values for all sets ofHMMs

Table A2.1: Agreement values for majority vote material
section

3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.3
3.4

3.4

HMMs

3seg (baseline)
2seg

Iseg

within

within+cross

/@n#/

read speech
CD

pron.var. & short l@l

pron.var. & CD

/n/-del

0.632
0.691

0.689

0.799

0.799

0.672

0.795

0.607

0.795

0.810

/r/-del

0.555
0.495

0.509

0.568

0.585

0.520

0.566

0.309

0.547

0.633

/t/-del

0.488
0.464

0.462

0.372

0.393

0.538
0.464

0.515

0.442

0.538

/@/-del

0.184
0.279

0.285

0.163

0.227

0.250

0.159

0.488

0.307

0.294

/@/-ins

0.327
0.240

0.152

0.475

0.517

0.376

0.469

0.269

0.658

0.517

all
0.504
0.517

0.518

0.559
0.584

0.518

0.571

0.464

0.619

0.629

Table A2.2: Agreement values for consensus material
section

3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.3

3.4
3.4

HMMs

3seg (baseline)
2seg
Iseg
within
within+cross
/@n#/
read speech
CD

pron.var. & short l@l
pron.var. & CD

/n/-del

0.504
0.567
0.545
0.573
0.600
0.626
0.616
0.528
0.661
0.664

/r/-del

0.323
0.292
0.256
0.300
0.306
0.306
0.338
0.317

0.287
0.312

/t/-del

0.414
0.466
0.374
0.398
0.463
0.484
0.387
0.449
0.441

0.488

/@/-del

0.323
0.360
0.310
0.253
0.245
0.311
0.262

0.417
0.399
0.192

/@/-ins

0.458
0.507
0.531
0.464
0.440
0.401
0.578
0.356
0.651
0.640

all
0.426
0.455

0.429
0.432
0.447
0.459
0.474
0.438
0.504
0.505
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Abstract

This article describes how the performance of a Dutch continuous speech recognizer was improved by modeling
pronunciation variation. We propose a general procedure for modeling pronunciation variation. In short, it consists of
adding pronunciation variants to the lexicon, retraining phone models and using language models to which the pro-
nunciation variants have been added. First, within-word pronunciation variants were generated by applying a set of five
optional phonological rules to the words in the baseline lexicon. Next, a limited number of cross-word processes were
modeled, using two different methods. In the first approach, cross-word processes were modeled by directly adding the
cross-word variants to the lexicon, and in the second approach this was done by using multi-words. Finally, the
combination of the within-word method with the two cross-word methods was tested. The word error rate (WER)
measured for the baseline system was 12.75%. Compared to the baseline, a small but statistically significant im-
provement of 0.68% in WER was measured for the within-word method, whereas both cross-word methods in isolation
led to small, non-significant improvements. The combination of the within-word method and cross-word method 2 led
to the best result: an absolute improvement of 1.12% in WER was found compared to the baseline, which is a relative
improvement of 8.8% in WER. © 1999 Eisevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel beschreibt, wie die Leistung eines automatischen Spracherkenners, der niederländische gesprochene
Sprache erkennt, mit Hilfe der Modellierung von Aussprachevarianten verbessert wurde. Für diese Modellformung
wird eine allgemeine Prozedur vorgeschlagen, die - kurz gesagt - darin besteht, dem Lexikon Aussprachevarianten
hinzuzufügen, die Phonmodelle erneut einer Lernphase zu unterziehen und Sprachmodelle dabei zu verwenden, in
denen die Aussprachevarianten mithineinbezogen wurden. Durch Anwendung einer Gruppe von fünf optionalen
phonologischen Regeln wurden im Basislexikon zunächst Aussprachevarianten innerhalb von Wörtern generiert. Dann
wurde mit Hilfe zweier Methoden eine begrenzte Anzahl von Sandhiprozessen (Prozesse auf Wordgrenzen) modelliert.
Die erste bestand darin, die Sandhivarianten direkt dem Lexikon hinzuzufügen und bei der zweiten wurden Multiwörter
gebraucht. Letztendlich wurden die wortinternen Ausprachevarianten mit den zwei Sandhivarianten kombiniert gete-
stet. Die Basisleistung des Spracherkenners, d.h. ohne Anwendung des Modells der Aussprachevariation, betrug 12.75%
"word error rate" (WER). Bei Anwendung der wortinternen Aussprachevarianten wurde eine geringe, aber statistisch
signifikante Verbesserung von 0.68% WER gemessen. Die Anwendung der zwei SandhimodeUe hingegen ergab einen
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sehr kleinen, nicht signifikanten Verbesserung. Die Kombination des wortinternen Modells mit dem zweiten Sand-
himodell hingegen ergab schließlich das beste Ergebnis: eine absolute Verbesserung von 1.12% WER, was einer rela-
tiven Verbesserung von 8.8% WER entspricht. © 1999 Eisevier Science B.V. All rights reserved.

Cet article décrit comment les performances d'un reconnaisseur de parole continue (CSR) pour le néerlandais ont
été améliorées en modelant la variation de prononciation. Nous proposons une procédure générale pour modeler
cette variation. En bref, elle consiste à ajouter des variantes de prononciation au lexique et dans le ré-apprentissage
des modèles de phones en utilisant des modèles de langage auxquels les variantes de prononciation ont été ajoutées.
D'abord, des variantes de prononciation à l'intérieur de mot ont été produites en appliquant un ensemble de cinq
règles phonologiques optionnelles aux mots dans le lexique de base. Ensuite, un nombre limité de processus entre-
mots ont été modelés, en utilisant deux méthodes différentes. Dans la première approche, des processus entre-mots
ont été modelés en ajoutant directement les variantes "entre-mots" au lexique, et dans la deuxième approche ceci a
été fait en utilisant des "mots-multiples". En conclusion, la combinaison de la méthode qui se limite aux processus à
l'intérieur de mot avec les deux méthodes "entre-mots" a été testée. La performance de base était un taux d'erreur de
12.75% mots (WER); comparée à cette performance de base, une amélioration petite mais significative de 0.68% dans
WER a été obtenue avec la méthode 'à l'intérieur de mot', tandis que les deux méthodes d'entre-mots en isolation ont
mené à des petites améliorations non significatives. La combinaison de la méthode "à l'intérieur de mot" avec la
méthode 2 "entre-mots" a mené au meilleur résultat: une amélioration absolue de 1.12% dans le WER a été trouvée
comparée à la ligne de base, qui est une amélioration relative de 8.8% dans le WER. © 1999 Eisevier Science B.V.
All rights reserved.

Keywords: Continuous speech recognition; Modeling pronunciation variation; Within-word variation; Cross-word variation

1. Introduction

The present research concerns the continuous
speech recognition component of a spoken dialog
system called OVIS (Strik et al., 1997). OVIS is
employed to automate part of an existing Dutch
public transport information service. A large
number of telephone calls of the on-line version of
OVIS have been recorded and are stored in a da-
tabase called VIOS. The speech material consists
of interactions between man and machine. The
data clearly show that the manner in which people
speak to OVIS varies, ranging from using hypo-
articulated speech to hyper-articulated speech. As
pronunciation variation degrades the performance
of a continuous speech recognizer (CSR) - if it is
not properly accounted for - solutions must be
found to deal with this problem. We expect that by
explicitly modeling pronunciation variation some
of the errors introduced by the various ways in
which people address the system will be corrected.
Hence, our ultimate aim is to develop a method for
modeling Dutch pronunciation variation which

can be used to tackle the problem of pronunciation
variation for Dutch CSRs.

Since the early seventies, attempts have been
made to model pronunciation variation for auto-
matic speech recognition (for an overview see
(Strik and Cucchiarini, 1998)). As most speech
recognizers make use of a lexicon, a much used
approach to modeling pronunciation variation has
been to model it at the level of the lexicon. This
can be done by using rules to generate variants
which are then added to the lexicon (e.g. Cohen
and Mercer, 1974; Cohen, 1989; Lamel and Adda,
1996). In our research, we also adopted this ap-
proach. First, we used four phonological rules se-
lected from Booij (1995), which describe frequently
occurring within-word pronunciation variation
processes (Kessens and Wester, 1997). The results
of these preliminary experiments were promising
and suggested that this rule-based approach is
suitable for modeling pronunciation variation.
Therefore, we decided to pursue this approach and
for the current research another frequent rule was
added: the /r/-deletion rule (Cucchiarini and van
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den Heuvel, 1995). Our long-term goal is to find
the set of rules which is optimal for modeling
pronunciation variation.

Our experiments showed that modeling within-
word pronunciation variation in the lexicon im-
proves the CSR's performance. However, in con-
tinuous speech there is also a lot of variation which
occurs over word boundaries. For modeling cross-
word variation, various methods have been tested
in the past (see e.g. Cremelie and Martens, 1998;
Perennou and Brieussel-Pousse, 1998; Wiseman
and Downey, 1998). In our previous research
(Kessens and Wester, 1997), we showed that add-
ing multi-words (i.e. sequences of words) and their
variants to the lexicon can be beneficial. Therefore,
we decided to retain this approach in the current
research. However, we also tested a second method
for modeling cross-word variation. For this
method, we selected from the multi-words the set
of words which are sensitive to the cross-word
processes that we focus on; cliticization, reduction
and contraction (Booij, 1995). Next, the variants
of these words are added to the lexicon. In other
words, in this approach no multi-words (or their
variants) are added to the lexicon.

In this paper, we propose a general procedure
for modeling pronunciation variation. This pro-
cedure affects all three levels of the CSR at which
modeling can take place: i.e. the lexicon, the phone
models and the language models (Strik and Cuc-
chiarini, 1998). Table 1 shows at which levels
pronunciation variation can be incorporated in the
recognition process, and the different test condi-
tions which are used to measure the effect of
adding pronunciation variation. In the abbreviat-
ions used in Table 1, the first letter indicates which
type of recognition lexicon was used; either a lex-
icon with single (S) or multiple (M) pronunciations
per word. The second letter indicates whether

single (S) or multiple (M) pronunciations per word
were present in the corpus used for training the
phone models. The third letter indicates whether
the language model was based on words (S) or on
the pronunciation variants of the words (M).

The general procedure is employed to test the
method for modeling within-word variation, as
well as the two methods for modeling cross-word
variation. First of all, the three methods were
tested in isolation. We were however also inter-
ested in the results obtained when combining the
different methods. Therefore, we tested a combi-
nation of modeling within-word variation together
with each of the methods we used to model cross-
word variation.

The question which arises here is whether the
trends in recognition results measured when test-
ing different methods for modeling pronunciation
variation in isolation are the same when testing
them in combination. More precisely, the question
is whether the sum of the effects of the methods in
isolation is (almost) the same as the total effect of
the combination of the methods. The answer to
this question has implications for our own re-
search and the research on modeling pronuncia-
tion variation in general. If there are no differences
in results between testing methods in isolation or
in combination, it would suffice to test each
method in isolation. However, if this is not the
case, then all combinations will have to be tested
(which poses a large practical problem, because
potentially numerous combinations are possible).

This issue is important when combining meth-
ods for modeling within-and cross-word variation,
but the problem can also exist within one method.
Above we already mentioned that our ultimate
goal is to find the optimal set of rules which des-
cribe Dutch pronunciation variation appropriate-
ly. Indeed, finding an optimal set of rules is the

Table 1
The test conditions used to measure the effect modeling pronunciation variation

Baseline
1
2
3

Test condition

SSS
MSS
MMS
MMM

Lexicon

S
M
M
M

Phone models

S
S
M
M

Language models

S
S
S
M
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goal of many rule-based approaches. If each rule
can be tested in isolation the way forward is quite
obvious. If, however, the outcome of modeling
pronunciation variation is enormously influenced
by interaction between rules, the way forward is
much less straightforward. That is why we decided
to pay attention to this issue.

The outline of our article is as follows. In Sec-
tion 2, the CSR's baseline performance and the
general procedure which we used for modeling
pronunciation variation are described. A detailed
description of the approaches which we used to
model pronunciation variation is provided. Sub-
sequently, in Section 3, more details about the
CSR and the speech material which we used for
our experiments are given. The results obtained
with these methods are presented in Section 4.
Finally, in Section 5, we discuss the results and
their implications.

2. Method

In our research, we tested a method for mod-
eling within-word variation (Section 2.3) and two
methods for modeling cross-word variation (Sec-
tion 2.4). We also tested the combination of the
within-word method with each of the cross-word
methods (Section 2.5). For all methods, in isola-
tion and in combination, we employed the same
general procedure. This general procedure is de-
scribed in Section 2.2. The starting point, our
CSR's baseline performance, is described hi Sec-
tion 2.1.

2.1. Baseline

The starting point of our research was to mea-
sure the CSR's baseline performance. It is crucial
to have a well-defined lexicon to start out with,
since any improvements or deteriorations in rec-
ognition performance due to modeling pronunci-
ation variation are measured compared to the
results obtained using this lexicon. Our baseline
lexicon contains one pronunciation for each word.
It was automatically generated using the tran-
scription module of the Text-to-Speech (TTS)
system developed at the University of Nijmegen

(Kerkhoff and Rietveld, 1994). In this transcrip-
tion module, phone transcriptions of words were
obtained by looking up the transcriptions in two
lexica: ONOMASTICA l and CELEX (Baayen,
1991). A grapheme-to-phoneme converter was
employed whenever a word could not be found in
either of the lexica. All transcriptions were man-
ually checked and corrected if necessary. By using
this transcription module, transcriptions of the
words were obtained automatically, and consis-
tency was achieved. A further advantage of this
procedure is that it can also easily be used to add
transcriptions of new words to the lexicon.

The phone models were trained on the basis of a
training corpus in which the baseline transcrip-
tions were used (see Sections 3.1 and 3.2). The
language models were trained on the orthographic
representation of the words in the training mate-
rial. The baseline performance of the CSR was
measured by carrying out a recognition test using
the lexicon, phone models, and language model
described above (test condition: SSS).

2.2. General procedure

Our general procedure for testing methods of
modeling pronunciation variation consists of three
steps:
1. In the first step, the baseline lexicon is expanded

by adding pronunciation variants to it, thus cre-
ating a multiple pronunciation lexicon. Using
the baseline phone models, baseline language
model and this multiple pronunciation lexicon
a recognition test is carried out (test condition:
MSS).

2. In the second step, the multiple pronunciation
lexicon is used to perform a forced recognition.
In this type of recognition the CSR is "forced"
to choose between different pronunciation vari-
ants of a word instead of between different
words. Forced recognition is imposed through
the language model. For each utterance, the
language model is derived on the basis of
100000 repetitions of the same utterance. This

1 http://www2.echo.lu/langeng/prqjects/onomastica/
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means that it is virtually impossible for the CSR
to choose other words than the ones present in
the utterance. Still, a small percentage of sen-
tences (0.4-0.5%) are incorrectly recognized.
In those cases, the baseline transcriptions are
retained in the corpus. In all other cases, the
baseline transcriptions are replaced by the tran-
scription of the recognized pronunciation vari-
ants. A new set of phone models is trained on
the basis of the resulting corpus containing pro-
nunciation variants. We expect that by carrying
out a forced recognition, the transcriptions of
the words in the training corpus will match
more accurately with the spoken utterance.
Consequently, the phone models trained on
the basis of this corpus will be more precise.
A recognition test is performed using the multi-
ple pronunciation lexicon, the retrained phone
models and the baseline language model (test
condition: MMS).

3. In the third step, the language model is altered.
To calculate the baseline language model the
orthographic representation of the words in
the training corpus is used. Because there is
only one variant per word this suffices. How-
ever, when a multiple pronunciation lexicon is
used during recognition and the language mod-
el is trained on the orthographic representation
of the words, all variants of the same word will
have equal a priori probabilities (this probabil-
ity is determined by the language model). A
drawback of this is that a sporadically occur-
ring variant may have a high a priori probabil-
ity because it is a variant of a frequently
occurring word, whereas the variant should
have a lower a priori probability on the basis
of its occurrence. Consequently, the variant
may be easily confused with other words in
the lexicon. A way of reducing this confusabil-
ity is to base the calculation of the language
model on the phone transcription of the words
instead of on the orthographic transcription,
i.e. on the basis of the phone transcriptions of
the corpus obtained through forced recogni-
tion. A recognition test is performed using this
language model, the multiple pronunciation
lexicon and the updated phone models (test
condition: MMM).

2.3. Method for modeling within-word pronuncia-
tion variation

The general procedure, described above, was
employed to model within-word pronunciation
variation. Pronunciation variants were automati-
cally generated by applying a set of optional
phonological rules for Dutch to the transcriptions
in the baseline lexicon. The rules were applied to
all words in the lexicon wherever it was possible
and in no specific order, using a script in which the
rules and conditions were specified. All of the
variants generated by the script were added to the
baseline lexicon, thus creating a multiple pronun-
ciation lexicon. We modeled within-word variation
using five optional phonological rules concerning:
/n/-deletion, /r/-deletion, /t/-deletion, /©/-deletion
and /©/-insertion (SAMPA 2-notation is used
throughout this article). These rules were chosen
according to the following four criteria.

First, we decided to start with rules concerning
those phenomena that are known to be most det-
rimental to CSR. Of the three possible processes,
i.e. insertions, deletions and substitutions, we ex-
pect the first two to have the largest consequences
for speech recognition, because they affect the
number of segments present in different realiza-
tions of the same word. Therefore, using rules
concerning insertions and deletions was the first
criterion we adopted. The second criterion was to
choose rules that are frequently applied. Fre-
quently applied is amenable to two interpretations.
On the one hand, a rule can be frequent because it
is applied whenever the context for its application
is met, which means that the most frequent form
would probably suffice as sole transcription. On
the other hand, a rule can be frequent because the
context in which the rule can be applied is very
frequent (even though the rule is applied e.g. only
in 50% of the cases). It is this type of frequent
occurrence which is interesting because in this case
it is difficult to predict which variant should be
taken as the baseline form. Therefore, all possible
variants should probably be included in the lexi-
con. The third criterion (related to the previous

2 http://www.phon.ucl.ac.uk/home/sampa/dutch.htm
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one) was that the rules should be relevant to
phones that are relatively frequent in Dutch, since
rules that concern infrequent phones probably
have fewer consequences for the recognizer's per-
formance. Finally, we decided to start with rules
that have been extensively described in the litera-
ture, so as to avoid possible effects of overgener-
ation and undergeneration due to incorrect
specification of the rules.

The description of the four rules: /undeletion,
/(/-deletion, /©/-deletion and /©/-insertion is ac-
cording to Booij (1995), and the description of the
/r/-deletion rule is according to Cucchiarini and
van den Heuvel (1995). The descriptions given here
are not exhaustive, but describe how we imple-
mented the rules.

(1) /n/-deletion: In standard Dutch, syllable-fi-
nal /n/ can be dropped after a schwa, except if that
syllable is a verbal stem or if it is the indefinite
article een /@n/ "a". For many speakers, in par-
ticular in the western part of the Netherlands, the
deletion of /n/ is obligatory. For example:

reizen /rEiz@n/ -» /rEiz@/

(2) /r/-deletion: The rule for /r/-deletion can be
divided into three parts based on the type of vowel
preceding the /r/. First, /r/-deletion may occur if it
is in the coda, preceded by a schwa and followed
by a consonant. For example:

Amsterdam /Amst@rdAm/ -» /Amst@dAm/

Second, for the cases where /r/ follows a short
vowel, Cucchiarini and van den Heuvel (1995)
make a distinction between unstressed and stressed
short vowels. They state that after a short, stressed
vowel in coda position, /r/-weakening can take
place, but /r/-deletion is not allowed. However, we
decided to treat /r/-weakening in the same way as
/r/-deletion because there is no intermediate phone
model in our phone set which describes /^-weak-
ening. Thus, we created pronunciation variants
which, based on the rules, might be improbable,
but we decided to give the CSR the possibility to
choose. For example:

stressed: Arnhem /ARnEm/ —» /AnEm/

unstressed: Leeuwarden
/le:wARd@n/ -> /le:wAd@n/

Third, /r/-deletion may occur if it is in the coda,
preceded by a long vowel and followed by a con-
sonant. For example:

Haarlem /ha:RlEm/ -> /ha:lEm/

(3) /t/-deletion: The process of/t/-deletion is one
of the processes that typically occurs in fast
speech, but to a lesser extent in careful speech. If a
lit in a coda is preceded by an obstruent, and
followed by another consonant, the /t/ may be
deleted. For example:

rechtstreeks /rExtstre:ks/ -» /rExstre:ks/

If the preceding consonant is a sonorant, /t/-dele-
tion is possible, but then the following consonant
must be an obstruent (unless the obstruent is a /k/).
For example:

's avonds /sa:vOnts/ —» /sa:vOns/

Although Booij does not mention that in some
regional variants /t/-deletion also occurs in word-
final position, we decided to apply the /t/-deletion
rule in word-final position following an obstruent
(unless the obstruent is an /s/). For example:

Utrecht /ytrExt/ -» /ytrEx/

(4) /©/-deletion: When a Dutch word has two
consecutive syllables headed by a schwa, the first
schwa may be deleted, provided that the resulting
onset consonant cluster consists of an obstruent
followed by a liquid. For example:

latere /la:t@r@/ -» /la:tr@/

(5) /©/-insertion: In nonhomorganic consonant
clusters in coda position schwa may be inserted. If
the second of the two consonants involved is an Is/
or a /t/, or if the cluster is a nasal followed by a
homorganic consonant, /©/-insertion is not pos-
sible. Example:

Delft /dELft/->/dEl@ft/

Each of the rules described above was tested in
isolation by adding the variants to the lexicon and
carrying out a recognition test. Tests were also
carried out for all five rules together. In this case,
all the steps of the general procedure were carried
out.
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2.4. Modeling cross-word pronunciation variation

The two different methods we used to model
cross-word pronunciation variation are explained
below. The type of cross-word variation which we
modeled concerns processes of cliticization, con-
traction and reduction (Booij, 1995).

2.4.1. Method 1 for modeling cross-word pronunci-
ation variation

The first step in cross-word method 1 consisted
of selecting the 50 most frequently occurring word
sequences from our training material. Next, from
those 50 word sequences we chose those words
which are sensitive to the cross-word processes
cliticization, contraction and reduction. This led to
the selection of seven words which made up 9% of
all the words in the training corpus (see Table 2).
The variants of these words were added to the
lexicon and the rest of the steps of the general
procedure were carried out (see Section 2.2). Table
2 shows the selected words (column 1), the total
number of times the word occurs in the training
material (column 2), their baseline transcriptions
(column 3) and their added cross-word variants
(column 4).

2.4.2. Method 2 for modeling cross-word pronunci-
ation variation

The second method which we adopted for
modeling cross-word variation was to maie use of
multi-words. Multi-words are word sequences
which are joined together and added as separate
entities to the lexicon. In order to be able to
compare the results of this method to the results of
the previous one, the same cross-word processes

Table 2
The words selected for cross-word method 1, their counts in the
training material, baseline transcriptions and added cross-word
variants

Selected word

ik
dat
niet
is
de
het
dit

Count

3578
1207
1145
643
415
382
141

Baseline

Ik
dAt
nit
Is
d@
@t
dit

Variants)

k
dA
ni
s
d
hEt, t
dl

were modeled in both methods. On the basis of the
seven words from cross-word method 1, multi-
words were selected from the list of 50 word se-
quences. Only those word sequences in which at
least one of the seven words was present could be
chosen. Thus, 22 multi-words were selected. Sub-
sequently, these multi-words were added to the
lexicon and the language model. It was necessary
for us to also add the multi-words to the language
model, because effectively, for our CSR they are
"new" words. Next, the cross-word variants of the
multi-words were also added to the lexicon, and
the remaining steps of the general procedure were
carried out (see Section 2.2).

All of the selected multi-words have at least two
pronunciations. If the parts of the multi-words are
counted as separate words, the total number of
words which could have a pronunciation variant
covers 6% of the total number of words in the
training corpus. This percentage is lower than that
for cross-word method 1 due to the contextual
constraints imposed by the multi-words. Table 3
shows the multi-words (column 1), the total
number of times the multi-word occurs in the
training material (column 2), their baseline tran-
scriptions (column 3) and their added cross-word
variants (column 4).

2.5. Combination of the within-word and cross-word
methods

In addition to testing the within-word method
and the two cross-word methods in isolation, we
also employed the general procedure to test the
combination of the within-word method and
cross-word method 1, and the combination of the
within-word method and cross-word method 2. In
these experiments the within-word pronunciation
variants and the cross-word pronunciation vari-
ants were added to the lexica simultaneously.

For the combination of the within-word meth-
od with cross-word method 2, an extra set of ex-
periments was carried out. This was necessary in
order to be able to split the effect of adding multi-
words from the effect of adding the multi-words'
pronunciation variants. To achieve this, the
experiments for the within-word method were
repeated with the multi-words added to the lexica.
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Table 3
The multi-words selected for cross-word method 2, their counts in the training material, baseline transcriptions and added cross-word
variants

Multi-word

ik_wil
datjs
ja_dat_klopt
niet_nodig
wiLik
dat_hoeft_niet

ikjieb
niet_naar
het_is
ditjs
niet_vanuit
de_eerste
ikjzou
ik_weet
ik_wilde
nietjneer
ikjioef
ikjmoet
dit_was
ik_zei
heb_ik
is_het

Count

2782
345
228
224
196
181

164
122
74
74
72
45
40
38
35
31
31
26
25
24
22
20

Baseline

Ikwll
dAtls
ja:dAtklOpt
nitno:d@x
wlUk
dAthuftnit

IkhEp
nitna:R
@tls
dltls
nitvAn9yt
d@e:Rst@
IkzAu
Ikwe:t
Ikwlld®
nitmerR
Ikhuf
Ikmut
dltwAs
IkzEi
hEpIk
Is@t

Variant(s)

kwll
dAIs, dAs
ja:dAklOpt
nino:d@x
wllk
dAhuftnit, dAhuftni,
dAthuftni
khEp
nina:R
hEtls, tls
dlls, dis
nivAn9yt
de:Rst@
kzAu
kwe:t
kwlld®
nime:R
khuf
kmut
dlwAs
kzEi
hEpk
IshEt, 1st

The effect of the inclusion of multi-words in the
language model and the lexica could then be
measured by comparing these results to the results
of the within-word method in isolation.

3. CSR and material

3.1. CSR

The main characteristics of the CSR are as
follows. The input signals consist of 8 kHz, 8 bit
A-law coded samples. Feature extraction is done
every 10 ms for 16 ms frames. The first step in
feature analysis is an FFT analysis to calculate the
spectrum. In the following step, the energy in 14
mel-scaled filter bands between 350 and 3400 Hz is
calculated. Next, a discrete cosine transformation
is applied to the log filterband coeflScients. The
final processing stage is a running cepstral mean
substraction. Besides 14 cepstral coefficients
(CD — CH), 14 delta coefficients are also used. This
makes a total of 28 feature coefficients.

The CSR uses acoustic models, word-based
language models (unigram and bigram) and a
lexicon. The acoustic models are continuous den-
sity hidden Markov models (HMMs) with 32
Gaussians per state. The topology of the HMMs is
as follows: each HMM consists of six states, three
parts of two identical states, one of which can be
skipped (Steinbiss et al., 1993). In total, 39 HMMs
were trained. For each of the phonemes /!/ and III,
two models were trained, because a distinction was
made between prevocalic (IV and /if) and postvo-
calic position (IU and /R/). For each of the other
33 phonemes context-independent models were
trained. In addition, one model was trained for
non-speech sounds and a model consisting of only
one state was employed to model silence.

3.2. Material

Our training and test material, selected from the
VIOS database (Strik et al., 1997), consisted of
25104 utterances (81090 words) and 6267 utter-
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ances (21106 words), respectively. Recordings with
a high level of background noise were excluded.

The baseline training lexicon contains 1412 en-
tries, which are all the words in the training ma-
terial. Adding pronunciation variants generated by
the five phonological rules (within-word method)
increases the size of the lexicon to 2729 entries (an
average of about 2 entries per word). The maxi-
mum number of variants that occurs for a single
word is 16. For cross-word method 1, eight vari-
ants were added to the lexicon. For cross-word
method 2, 22 multi-words and 28 variants of the
multi-words were added to the lexicon.

The baseline test lexicon contains 1154 entries,
which are all the words in the test corpus, plus a
number of words which must be in the lexicon be-
cause they are part of the domain of the applica-
tion, e.g. station names. The test corpus does not
contain any out-of-vocabulary words. This is a
somewhat artificial situation, but we did not want
the CSR's performance to be influenced by words
which could never be recognized correctly, simply
because they were not present in the lexicon. Add-
ing pronunciation variants generated by the five
phonological rules (within-word method) leads to a
lexicon with 2273 entries (also an average of about
2 entries per word). For cross-word methods 1 and
2, the same variants were added to the test lexicon
as those which were added to the training lexicon.

4. Results

The results in this section are presented as best
sentence word error rates (WER). The percentage
WER is determined by

where S is the number of substitutions, D the
number of deletions, ƒ the number of insertions and
Nis the total number of words. During the scoring
procedure only the orthographic representation
was used. Whether or not the correct pronuncia-
tion variant was recognized was not taken into
account. Furthermore, before scoring took place,
the multi-words were split into the separate words
they consist of. The significance of differences in
WER was calculated with a ?-test for comparison
of means (p = 0.05) for independent samples.

Table 4 shows the results for modeling pro-
nunciation variation for all methods in isolation,
and the various combinations of methods. In
Section 4.1, the results for the within-word method
are described, and in Section 4.2, this is done for
the two cross-word methods. Subsequently, the
results of combining the within-word method with
each of the cross-word methods are described in
Section 4.3. In Section 4.4, a comparison is made
between testing the methods in isolation and in
combination. Finally, the overall results are pre-
sented in Section 4.5.

4.1. Modeling within-word pronunciation variation

Row 2 in Table 4 (within) shows the results of
modeling within-word pronunciation variation. In
column 2, the WER for the baseline condition
(SSS) is given. Adding pronunciation variants to
the lexicon (MSS) leads to an improvement of
0.31% in WER compared to the baseline (SSS).
When, in addition, retrained phone models are

Table 4
WER for the within-word method (within), cross-word method 1 (cross 1), cross-word method 2 (cross 2), the within-word method
with multi-words added to the lexicon and language model (within + multi), and the combination of the within-word method with
cross-word method 1 (within + cross 1) and cross-word method 2 (within + cross 2)

SSS MSS MMS MMM

within
cross 1
cross 2
within + multi
within + cross 1
within + cross 2

12.75
12.75
12.41-
12.41"
12.75
12.41*

12.44
13.00
12.74
12.05
12.70
12.37

12.22
12.89
12.99
11.81
12.58
12.30

12.07
12.59
12.45
11.72
12.14
11.63

Multi-words added to the lexicon and the language model.



126 Speech Communication 29 (1999) 193-207

used (MMS), a further improvement of 0.22% is
found compared to the MSS condition. Finally,
incorporating variants into the language model
leads to an improvement of 0.15% compared to the
MMS condition. In total, a significant improve-
ment of 0.68% was found (SSS -> MMM) for
modeling within-word pronunciation variation.

4.2. Modeling cross-word pronunciation variation

Rows 3 (cross 1) and 4 (cross 2) in Table 4 show
the results for each of the cross-word methods
tested in isolation. It is important to note that the
SSS condition for cross-word method 2 is different
from the SSS condition for cross-word method 1.
This is due to adding multi-words to the lexicon
and the language model, which is indicated by an
asterisk in Table 4. Adding multi-words to the
lexicon and language model leads to an improve-
ment of 0.34% (SSS -» SSS*).

In contrast to the within-word method, adding
variants to the lexicon leads to deteriorations of
0.25% and 0.33% WER for cross-word methods 1
and 2, respectively (SSS -» MSS, SSS* -» MSS).
Although for cross-word method 1, part of the
deterioration is eliminated when retrained phone
models are used (MMS), there is still an increase of
0.14% in WER compared to the baseline (SSS).
Using retrained phone models for cross-word
method 2 leads to a further deterioration in WER
of 0.25% (MSS -» MMS). Adding pronunciation
variants to the language model (MMM) leads to
improvements of 0.30% and 0.54% for cross-word
method 1 and 2 respectively, compared to the
MMS condition.

Compared to the baseline, the total improve-
ment is 0.16% for cross-word method 1, and 0.30%
for cross-word method 2 (SSS -> MMM). However,
when the result of cross-word method 2 is compared
to the SSS* condition (multi-words included), a
deterioration of 0.04% is found (SSS* -» MMM).

4.3. Modeling within-word and cross-word pronun-
ciation variation

As was explained in Section 2.5, two processes
play a role when using multi-words to model cross-

word pronunciation variation, i.e., firstly, adding
the multi-words and, secondly, adding variants of
the multi-words. To measure the effect of only
adding the multi-words (without variants), the
experiments for within-word variation were re-
peated with the multi-words added to the lexicon
and the language model. Row 5 in Table 4 (with-
in + multi) shows the results of these experiments.
The effect of the multi-words can be seen by
comparing these results to the results of the within-
word method (row 2 in Table 4). The comparison
clearly shows that adding multi-words to the lex-
icon and the language model leads to improve-
ments for all conditions. The improvements range
from 0.34% to 0.41% for the different conditions.

In row 6 (within + cross 1) and row 7 (with-
in + cross 2) of Table 4, the results of combining
the within-word method with the two cross-word
methods are shown. It can be seen that adding
variants to the lexicon improves the CSR's per-
formance by 0.05% and 0.04% for cross-word
methods 1 and 2, respectively (SSS -» MSS, SSS*
—» MSS). Using retrained phone models (MSS —»
MMM) improves the WER by another 0.12% for
cross-word method 1, and 0.07% for cross-word
method 2. Finally, the improvements are largest
when the pronunciation variants are used in the
language model too (MMM). For cross-word
method 1, a further improvement of 0.44% is
found compared to MMS, and for cross-word
method 2, an even larger improvement of 0.67% is
found.

For the combination of the within-word meth-
od with cross-word method 1, a total improvement
of 0.61% is found for the test condition MMM
compared to the baseline (SSS). For the same test
condition, the combination of the within-word
method with cross-word method 2 leads to a total
improvement of 0.78% compared to the SSS*
condition.

4.4. Comparing methods in isolation and in combi-
nation

In order to get a clearer picture of the differ-
ences in results obtained when modeling pronun-
ciation variation in isolation and in combination,
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the results presented in the previous sections were
analyzed to a further extent.

First, the difference in WER (AWER) between
each of the methods tested in isolation and the
baseline was calculated. Next, the AWER for each
of the cross-word methods in isolation was added
to the AWER for the within-word method in iso-
lation. The results of these summations are indi-
cated by the "sum" bars in Figs. 1 and 2. The
differences in WER between the baseline and the

1.25
Cross-word method 1

MSS MMS

I sum [fj] combi

MMM

Fig. 1. Improvements (WER) for cross-word method 1 com-
bined with the within-word method and the sum of the two
methods in isolation.

combinations of within-word and cross-word
methods 1 and 2 were also calculated. These re-
sults are shown in Figs. 1 and 2 and are indicated
by the "combi" bars. Fig. 1 shows the results for
cross-word method 1, and Fig. 2 shows the results
for cross-word method 2.

In these figures, it can be seen that the sum of
the improvements for the two methods tested in
isolation is not the same as the improvement ob-
tained when testing the combinations of the
methods. For cross-word method 1, the sum of the
methods in isolation gives better results, whereas
for cross-word method 2, the combination leads to
higher improvements.

Fig. 3 shows the differences in WER between
the results of adding variants of each of the five
phonological rules to the lexicon separately, the
summation of these results ("sum") and the result
of the combination of all five rules ("combi"). The
differences shown in Fig. 3 are all on the basis of
the MSS condition, i.e. variants are only added to
the lexicon. In isolation, the rule for /n/-deletion
leads to an improvement. The variants generated
by the rules for /r/-deletion and /©/-deletion seem
to have almost no effect at all. The variants for /t/-
deletion and /©/-insertion have some effect, but
lead to a deterioration in WER compared to the
baseline. The sum of these results is a deterioration

1.25

Cross-word method 2

Fig. 2. Improvements (WER) for cross-word method 2 com-
bined with the within-word method and the sum of the two
methods in isolation.

0.4

0.3

M
(S

0.2

I 0.1 -

-0.1

Within-word method

u
/n/-del /r/-del /t/-del /@/-del /@/-ins sum combi

Fig. 3. Difference in WER between the baseline result and re-
sults of adding variants of separate rules to the lexicon, sum of
those results, and combination result of all rules.
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in WER of 0.02%. However, combining all meth-
ods, leads to an improvement of 0.31% compared
to the baseline.

4.5. Overall results

For all methods, the best results are obtained
when pronunciation variants are used during
training and recognition, and when they are added
to the language model (MMM). All methods lead
to an improvement in the CSR's performance
when their results are compared to the result of the
baseline (SSS). These improvements are summed
up in Table 5. Modeling within-word variation in
isolation gives a significant improvement of 0.68%,
and in combination with cross-word method 2, the
improvement is also significant.

Up until now we have only presented our re-
sults in terms of WER (as is done in most studies).
WERs give an indication of the net change in the
performance of one CSR compared to another
one. However, they do not provide more detailed
information on how the recognition results of the
two CSRs differ. Since this kind of detailed infor-
mation is needed to gain more insight, we carried
out a partial error analysis. To this end, we com-
pared the utterances recognized with the baseline
test to those recognized with our best test (MMM
for within + cross 2 in Table 4). For the moment,
we have restricted our error analysis to the level of
the whole utterance, mainly for practical reasons.
In the near future, we plan to do it at the word
level too.

The results in Table 6 show how many utter-
ances in the test corpus are actually recognized
correctly or incorrectly in the two tests. These re-

Table 6
Comparison between baseline test and final test condition:
number of correct utterances, incorrect utterances, improve-
ments and deteriorations (percentages between brackets)

Baseline test

Correct Incorrect

Final test Correct
Incorrect

4743(75.7%)
183 (2.9%)

267 (4.3%)
1083(17.3%)

suits show that 75.7% of the utterances are rec-
ognized correctly in both conditions (baseline test
correct, final test correct), and 17.3% of the ut-
terances are recognized incorrectly in both condi-
tions. Improvements are found for 4.3% of the
utterances (baseline test incorrect, final test cor-
rect), and deteriorations are found for 2.9% of the
utterances (baseline test correct, final test incor-
rect).

The comparison of the utterances recognized
differently in the two conditions can also be used
to study how many changes truly occur. These
results are presented in Table 7. The group of 1083
utterances (17.3%) which are recognized incor-
rectly in both tests (see Table 6) consist of 609
utterances (9.7%) for which both tests produce the
same incorrect recognition results and 474 utter-
ances (17.3 - 9.7 = 7.6%) with different mistakes.
In addition, improvements were found for 267
utterances (4.3%) and deteriorations for 183 ut-
terances (2.9%), as was already mentioned above.
Consequently, the net result is an improvement for
only 84 utterances (267 - 183), whereas in total
the recognition result changes for 924 utterances
(474 + 267 + 183). These changes are a conse-
quence of our methods of modeling pronunciation
variation, but they cannot be seen in the WER.

Table 5
AWER for condition MMM compared to the baseline (SSS) for
all methods

Method AWER

within
cross 1
cross 2
within + cross 1
within + cross 2

0.68"
0.16
0.30
0.61
1.12"

* Significant improvements.

Table 7
Type of change in utterances going from baseline condition to
final test condition (percentages between brackets)

Type of change Number of
utterances

Same utterance, different mistake 474 (7.6%)
Improvements 267 (4.3%)
Deteriorations 183 (2.9%)
Net result +84(1.3%)
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The WER only reflects the net result obtained, and
our error analysis has shown that this is only a
fraction of what actually happens due to applying
our methods.

In this research, we attempted to model two
types of variation: within-word variation and
cross-word variation. To this end, we used a
general procedure in which pronunciation varia-
tion was modeled at the three different levels in
the CSR: the lexicon, the phone models and the
language model. We found that the best results
were obtained when all of the steps of the general
procedure were carried out, i.e. when pronuncia-
tion variants were incorporated at all three levels.
Below, the results of incorporating pronunciation
variants at all three levels are successively
discussed.

In the first step, variants were only incorporated
at the level of the lexicon. Compared to the base-
line (SSS -» MSS), an improvement was found for
the within-word method and for the within-word
method in combination with each of the two cross-
word methods. However, a deterioration was
found for the two cross-word methods in isolation.
A possible explanation for the deterioration for
cross-word method 1 is related to the fact that the
pronunciation variants of cross-word method 1 are
very short (see Table 2); some of them consist of
only one phone. Such short variants can easily be
inserted; for instance, the plosives /k/ and /t/ might
occasionally be inserted at places where clicks in
the signal occur. Furthermore, this effect is facili-
tated by the high frequency of occurrence of the
words involved, i.e. they are favored by the lan-
guage model. Similar things might happen for
cross-word method 2. Let us give an example to
illustrate this: A possible variant of the multi-word
"ik_wil" /Ikwll/ is /kwll/. The latter might occa-
sionally be confused with the word "wil" /wil/.
This confusion leads to a substitution, but effec-
tively it is the insertion of the phone /k/. Conse-
quently, insertion of /k/ and other phones is also
possible hi cross-word method 2, and this could

explain the deterioration found for cross-word
method 2.

When, in the second step, pronunciation vari-
ation is also incorporated at the level of the phone
models (MSS -> MMS), the CSR's performance
improved in all cases, except in the case of cross-
word method 2. A possible cause of this deterio-
ration in performance could be that the phone
models were not retrained properly. During forced
recognition, the option for recognizing a pause
between the separate parts of the multi-words was
not given. As a consequence, if a pause occurred in
the acoustic signal of a multi-word, the pause was
used to train the surrounding phone models, which
results in contaminated phone models. Error-
analysis revealed that in 5% of the cases a pause
was indeed present within the multi-words in our
training material. Further research will have to
show whether this was the only cause of the de-
terioration in performance or whether there are
other reasons why retraining phone models using
multi-words did not lead to improvements.

In the third step, pronunciation variants were
also incorporated at the level of the language model
(MMS —» MMM), which is beneficial to all
methods. Moreover, the effect of adding variants
to the language model is much larger for the cross-
word methods than for the within-word method.
This is probably due to the fact that many recog-
nition errors introduced in the first step (see above)
are corrected when variants are also included in
the language model. When cross-word variants are
added to the lexicon (step 1), short sequences of
only one or two phones long (like e.g. the phone
/k/) can easily be inserted, as was argued above.
The output of forced recognition reveals that the
cross-word variants occur less frequently than the
canonical pronunciations present in the baseline
lexicon: on average in about 13% of the cases for
cross-word method 1, and 9% for cross-word
method 2. In the language model with cross-word
variants included, the probability of these cross-
word variants is thus lower than in the original
language model and, consequently, it is most likely
that they will be inserted less often.

One of the questions we posed in the intro-
duction was what the best way of modeling cross-
word variation is. On the basis of our results we
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can conclude that when cross-word variation is
modeled in isolation, cross-word method 2 per-
forms better than cross-word method 1, but the
difference is non-significant. In combination with
the within-word method, cross-word method 2
leads to an improvement compared to the within-
word method in isolation. This is not the case for
cross-word method 1, which leads to a degradation
in WER. Therefore, it seems that cross-word
method 2 is more suitable for modeling cross-word
pronunciation variation. It should be noted,
however, that most of the improvements gained
with cross-word method 2 are due to adding the
multi-words to the lexicon and the language
model. An explanation for these improvements is
that by adding multi-words to the language model
the span of the unigram and bigram increases for
the most frequent word sequences in the training
corpus. Thus, more context information can be
used during the recognition process. Furthermore,
it should also be noted that only a small amount of
data was involved in the cross-word processes
which were studied; only 6-9% of the words in the
training corpus were affected by these processes.
Therefore, we plan to test cross-word methods 1
and 2 for a larger amount of data and a larger
number of cross-word processes.

In Section 4.4, it was shown that testing the
within-word method and cross-word method 2 in
combination leads to better results than the sum of
the results of testing the two methods in isolation.
For cross-word method 1 the opposite is true, the
within-word method in isolation leads to better
results. The results for the within-word method
show the difference which exists between testing
methods in isolation or in combination even more
clearly. The sum of the results for separate rules
leads to a degradation in WER (compared to the
baseline), whereas the combination leads to an
improvement. It is clear that the principle of su-
perposition does not apply here, neither for the
five rules of the within-word method nor for the
within-word method in combination with each of
the two cross-word methods. This is due to a
number of factors. First of all, different rules can
apply to the same words. Consequently, when the
five rules are used in combination, pronunciation
variants are generated which are not generated for

any of the rules in isolation. Furthermore, when
methods are employed in combination, confusion
can occur between pronunciation variants of each
of the different methods. It is obvious that this
confusion cannot occur when methods are tested
in isolation. Finally, during decoding, the words in
the utterances are not recognized independently of
each other, and thus, interaction between pro-
nunciation variants can occur. The implication of
these findings is that it will not suffice to study
methods in isolation. Instead, they will have to be
studied in combination. However, this poses a
practical problem as there are many possible
combinations.

In Sections 4.1-4.4, various methods and their
combinations were tested. This was done by cal-
culating the WER after a method had been ap-
plied, and comparing this number to the WER of
the baseline system. This amount of reduction in
WER is a measure which is used in many studies
about modeling pronunciation variation (see Strik
and Cucchiarini, 1998). Although this measure
gives a global idea of the merits of a method, it
certainly does not reveal all details of the effect a
method has. This became clear through the error
analysis which we conducted (see Section 4.4).
This error analysis showed that 14.7% of the rec-
ognized utterances changed, whereas a net im-
provement of only 1.3% in the sentence error rate
was found (and 1.12% in the WER). Therefore, it
is clear that a more detailed error analysis is nec-
essary to obtain real insight into the effect of a
certain method.

That is why we intend to carry out more de-
tailed error analyses in the near future. Such a
detailed error analysis should not be carried out on
the test corpus, because then the test corpus is no
longer an independent test set. Therefore, we will
be using a development test set to do error anal-
ysis. Furthermore, instead of analyzing errors at
the level of the whole utterance, we will be looking
at the word level, and if necessary at the level of
the phones. Through an error analysis, the effect of
testing methods in isolation and in combination
can be analyzed. It is hoped that this will yield the
tools which are needed to decide beforehand which
types of pronunciation variation should be mod-
eled and how they should be tested.
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To summarize, we obtained the best results
when within-word pronunciation variation and
cross-word pronunciation variation using multi-
words were modeled in combination, and all the
steps of the general procedure had been carried
out. Using only five phonological rules and 22
multi-words a relative improvement of 8.8% was
found (12.75%-! 1.63%).
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Abstract

This paper describes a rule-based data-driven (DD) method to modeling pronunciation
variation in automatic speech recognition (ASR). the DD-method consists of the
following steps. First, the possible pronunciation variants are generated by making
each phone in the canonical transcription of the word optional. Next, forced
recognition is performed in order determine which variant best matches the acoustic
signal. Finally, the rules are derived by aligning the best matching variant with the
canonical transcription of the variant. Error analysis is performed in order to gain
insight into the process of pronunciation modeling. This analysis shows that although
modeling pronunciation variation brings about improvements, also deteriorations are
introduced. A strong correlation is found between the number of improvements and
deteriorations per rule. This result indicates that it is not possible to improve ASR
performance by excluding the rules that cause deteriorations, because these rules also
produce a considerable number of improvements. Filially, we compare three different
criteria for rule selection. This comparison indicates triât the absolute frequency of rule
application (F^) is the most suitable criterion for rule selection. For the best testing
condition, a statistically significant reduction in Word Error Rate (WER) of 1.4%
absolutely, or 8.2% relatively, is found.

1. INTRODUCTION

As has been widely recognized in the last two decades, the enormous variation in
pronunciation among speakers of the same language or even the same language variety
constitutes a serious challenge to automatic speech récognition (for an overview, see
Strik and Cucchiarini, 1999). For this reason, researchers have been looking for ways
to model at least part of this variation in order to improve the performance of ASR
systems.

In previous papers (Kessens et al, 1999; Wester et al, 1998), we reported on our
attempts to model pronunciation variation on the basis1 of phonological knowledge. We
showed that this kind of knowledge can indeed be used to improve the recognition
performance of our Dutch continuous speech recogniser (CSR) significantly.
However, comprehensive inventories of systematic pronunciation variation do not
exist in the literature. In particular, this applies to the type of speech we are dealing
with, i.e. extemporaneous/spontaneous speech. As is well known, spontaneous speech
is still an under-researched area at the moment (Strik and Cucchiarini, 1999), with the
result that the kind of information we would like to have cannot be found in the
literature. For this reason, we have been looking for alternative ways of obtaining
information on pronunciation variation. !

A method that we have investigated, and that has been used by other authors too
(see e.g. Cremelie and Martens, 1999; Fukada et al, 1999; Williams and Renais, 1998;
Schiel et al, 1998; Amdal et al., 2000), consists in trying to obtain this information
directly from the speech signal, i.e. in a data-driven (DD) manner. As in most DD
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methods, we use the CSR to get a transcription of the speech signal. However, this is
not straightforward. Of course it is possible to carry out unconstrained phone
recognition by using the acoustic models alone, i.e. without the top-down constrictions
of language model and lexicon, but phone accuracy appears to be only 50-70% in this
case, and this is not enough for most purposes. For this reason, the results of free
phone recognition is usually filtered or smoothed (see e.g. Riley et al., 1999; Fosler-
Lussier, 1999). In the present study, however, we use another approach, namely forced
recognition. Forced recognition means that the CSR has to decide for each word in
each utterance which pronunciation variant best matches the acoustic signal. Usually,
the number of variants that can be chosen during forced recognition is limited to a
small number of variants. For example, in our knowledge-based approach to modeling
pronunciation variation, maximally 16 variants per word were obtained (Kessens et al.,
1999). In the approach that we use in this study, however, the number of variants that
can be chosen is much larger. By increasing the number of possible variants that can
be chosen during forced recognition, the CSR is less constrained and forced
recognition more and more resembles phone recognition.

There are two main reasons why we chose only to focus on deletion processes.
The first one is that we expect deletions (and insertions) to be more important than
substitutions, since substitutions can implicitly be modelled in the phone models. The
second reason for choosing deletions, as opposed to or in addition to insertions, is that
we expect deletion processes to be more frequent in our speech material. A reason for
expecting deletions to be more frequent is that we are dealing with
extemporaneous/spontaneous speech. Furthermore, we started off with a lexicon
containing a single canonical pronunciation for each word. This canonical
pronunciation is a kind of citation form, which contains no deletions except deletions
due to a number of obligatory deletion rules (e.g. degemination).

In many data-driven approaches, the new pronunciation variants found by the
CSR are directly added to the lexicon. In some studies, the new information is
implemented in terms of rules, which are subsequently used to generate pronunciation
variants (e.g. Cremelie and Martens, 1999; Amdal et al., 2000). In the present study,
we employ data-derived rules. The main reason for using rules instead of adding the
variants directly to the lexicon is that it is easier to draw conclusions in terms of rules
than in terms of the individual pronunciation variants, since there are more
observations available per rule than per individual variant.

The aim of the present paper is threefold. First, we analyse whether the DD
method of modeling pronunciation variation that we have adopted leads to a reduction
in the WER. Second, since we are convinced that just reporting on decreased WERs
does not contribute very much to our understanding of pronunciation variation
modeling and the way this can improve CSR performance, we carried out an error
analysis at word level. The goal of this error analysis is to determine how the changes
in WER came about. It should be noted that this kind of analysis is seldom done in
pronunciation variation modeling research (but Ravishankar and Eskenazi, 1997;
Kessens et al., 1999; and Wester et al., 2000b), despite its indisputable importance for
understanding what is really going on. However, limitations of these error analyses are
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that they are performed manually, with the consequence that only limited numbers of
variants/rules can be analyzed. Since the present error analysis is performed
automatically, much larger amounts of material can be analysed. The third goal of this
paper is examine the adequacy of three criteria for rule selection. In this way it would
be possible to make more sound choices about which rules (or which pronunciation
variants) to model.

The three goals described above will be dealt with in sections 3, 4 and 5 of this
paper, preceded by section 2, in which details are given about the speech material and
the CSR we used. Section 6 contains a general discussion of the findings presented in
this paper, while the main conclusions are drawn in Section 7.

2. SPEECH MATERIAL AND CSR

2.1 Speech material

Our speech material was selected from the VIOS database, which contains a large
number of telephone calls recorded with the on-line version of a spoken dialogue
system called OVIS (Strik et al, 1997). OVIS is employed to automate part of an
existing Dutch public transport information service. The total VIOS material was
divided into three non-overlapping corpora. Table 1 shows the statistics of these three
corpora. The second column displays the number of utterances that are included in
each corpus (# utterances). The third column shows the number of words (# words),
and the last column displays the percentage of the total VIOS database (percentage).

Table 1: Statistics of the three corpora
corpus

training
test
error analysis

TOTAL

# utterances

59,640
19,880
19,880

99,400

# words

176,080
58,647
58,630

293,357

percentage

60%
20%
20%

100%

2.2 CSR

The main characteristics of the CSR are as follows. The input signals were sampled at
8 kHz using 8 bit A-law coding. The front-end acoustic processing consists of
calculating 14 MFCCs plus their deltas, every 10 ms for 16 ms frames. The topology
of the HMMs is as follows: each HMM consists of six states, three parts of two
identical states, one of which can be skipped (Steinbiss et al, 1993). In total, 39 HMMs
were trained. For each of the phonemes N and /r/, two models were trained, because a
distinction was made between prevocalic (HI and /r/) and postvocalic position (/L/ and
/R/). For each of the other 33 phonemes context-independent models were trained. In
addition, one model was trained for non-speech sounds and a model consisting of only
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one state was employed to model silence. For more details on the CSR, see Strik et al
(1997). The test and training lexica contain 1288 words and 1465 words, respectively,
plus three entries; one for noise and two for filled pauses. In the baseline system, for
each word, one transcription is present in the lexicon. This so-called 'canonical
transcription' was obtained using a Text-to-Speech system (TTS) for Dutch (Kerkhoff
and Rietveld, 1994) followed by a manual correction. The acoustic models and
language models (unigram and bigram) are estimated on the training material.

3. WER REDUCTION THROUGH DATA DRIVEN MODELING OF
PRONUNCIATION VARIATION

The goal of the first phase of the research is to analyse whether the DD method of
modeling pronunciation variation that we have adopted indeed leads to a reduction in
the WER. The pronunciation variants that we use in the recognition experiments are
generated using rules that are derived on the basis of automatic transcriptions of the
training data. In section 3.1, the automatic rule extraction procedure and the procedure
for selection of the candidate rules are described. This is followed by a description of
the recognition experiments in section 3.2. Subsequently, in section 3.3, the results are
presented. Finally, in section 3.4 we discuss the results and we draw conclusions.

3.1 Obtaining the rules

3.1.1 Automatic extraction of candidate rules

The candidate rules were extracted from automatic transcriptions of all the utterances
in the training corpus. As was mentioned in the introduction, in this research we
limited ourselves by looking only at deletions of phones, and thus only deletion rules
were obtained. The following five steps describe the whole procedure of automatic
extraction of the candidate rules:

1. For each word in an utterance, the so-called 'canonical transcription' (Tcan) is
looked up in the baseline lexicon.

2. Pronunciation variants are generated by making each phone in Tcan optional, with
the constraint that one phone per syllable should remain present. For example:
Suppose Tcan is "AvIL/" (want), then the following pronunciation variants were
generated for this word: /wDL/, /wl/, /wL/, /IL/, /w/, IM and /L/.

3. With all the generated pronunciation variants, forced recognition is performed
using the baseline phone models. During forced recognition, the CSR does not
choose between all the words in the lexicon, instead, for each word in the
utterance, it has to determine which pronunciation variant best matches the acoustic
signal. In this way, data-driven transcriptions (Tdd) of all the utterances of the
training corpus are obtained.

4. A dynamic programming algorithm is used to align Tcan with Tdd. An example of
the alignment of Tcan with T^ is the following:
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Tcan 1 v @ R b ! n d I N I Y t r E x t I ( ' | ' = word boundary)
Tdd l v @ - b I n - I N I Y t r E - - I ( ' - '= deletion)

5. Using the alignments obtained in step 4, we formulate candidate deletion rules.
These rules are defined in the following manner:

/L F R/can -> /L - R/dd

This means that the focus phone F in Tcan following the phone L (left context) and
preceding the phone R (right context) is deleted in Tdd. The left and right context
can be a phone or a word boundary. These kinds of rules are referred to in the
literature as 'rewrite rules', see Strik and Cucchiarini (1999). It should be noted
that this rule formalism is different from the one that is normally adopted in
knowledge-based studies. The most striking difference is that knowledge-based
rules are usually more generally formulated. For example, L and R can be classes
of phones, instead of one single phone.

6. For each candidate rule, we calculate three frequency measures:
• Fcond- the number of times the condition for the rule (/L F R/) ismetinTcan,
• Fabs: the number of times a rule is applied in Tdd, and
« Frei- Fahs/Fcond(0<Frel<l).

3.1.2 Motivations for performing rule selection

Before using the rules in order to generate variants for the recognition experiments, we
made a selection on the set of candidate rules. In the research on modeling of
pronunciation variation, rule (or variant) selection forms a vital part of the research
methodology (for an overview of rule selection procedures, see Strik, 2001). There are
various motivations for performing rule/variant selection. First of all, the addition of
pronunciation variants to the lexicon increases confusability, especially if the lexicon
is large. This means that the more variants are included in the lexicon, the more lexical
confusability increases due the addition of variants. The large increase confusability is
probably the reason why usually only small improvements or even deteriorations are
found if the number of variants that has been included in the lexicon is very large. By
making an appropriate selection of the pronunciation variants, the balance between
solving and introducing errors is probably more positive. A second reason for
constraining the number of variants is to limit the decoding time, since decoding time
is directly related to the size of the lexicon. Third, in data-driven approaches, the data-
derived variants are usually selected or filtered, as the variants might be based on
artefacts of the CSR (e.g. contamination of the acoustic models) instead of based on
genuine pronunciation variation. In this paper, there are two extra reasons for
performing rale selection. First of all, we carried out an error analysis procedure at rale
level. In order to ensure that substantial changes in WER are measured, it is necessary
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to select the rules that are most 'promising' in this respect. Second, we estimate prior
probabilities of pronunciation variants based on automatic transcriptions of the training
material (obtained through forced recognition). In order to reliably estimate the prior
probabilities, the number of observed variants may not be too small.

Several measures have been used to select rules or variants, e.g.: confidence
measures (e.g. Wiliams, 1999), a maximum likelihood criterion (e.g. Holter and
Svendsen, 1999), confusability measures (Wester and Fossler-Lussier, 2000), and
entropy (Yang and Martens, 2000a). In this paper, we concentrate on frequency
measures to select the rules. One is inclined to think that the most frequent rules
should be selected, but rules can be frequent in three different ways: 1) because the
condition for rule application occurs frequently (Fcond is large), 2) because the rule is
frequently applied (F^ is large), and 3) because the rule is frequently applied in
relation to the number of times its condition for application is met (Frei is large).
Several other authors have used frequency measures for rule or variant selection, or
have used frequency measures as part of the selection procedure. For instance, Riley et
al (1998) and Lehtinen et al (1998) use Frei to select variants. Others, like Williams
and Renais (1998), use Fafa as part of their variant selection method. Furthermore, a
combination of ¥rd and F^ is also used as a criterion to select variants (Schiel et al,
1998; Ravishankar and Eskenazi, 1997). For rule selection, Fret is probably used more
often (see e.g. Cremelie and Martens, 1999; Amdal et al., 2000).

3.1.3 Details on the rule selection procedure

The first criterion we applied was to select the rules for which Foip^lOO. This was
done for various reasons. First, the data-driven transcriptions may contain errors due to
artefacts of the CSR. Since it can be expected that transcription errors occur randomly,
the rules that are based on transcription errors are probably not as frequent as the rules
that are based on genuine deletion processes. For this reason, we expect them to be
filtered out if the threshold for Fabs is set to 100. Furthermore, we expect that a
minimum number of occurrences of 100 is enough to ensure substantial changes in
WER and to reliably estimate the probabilities of the pronunciation variants. The
second criterion we applied was to exclude the rules for which either the left or the
right context was deleted, or in other words, we excluded the rules based on
transcriptions with two or more deletions in a row. This is done because these
deletions occur probably less often, and the occurrence of two deletions in a row might
be an indication of an error.

After applying the automatic rule extraction procedure to the training corpus, in
total 2,951 candidate rules were obtained, which together describe the deletions of
8.5% of the total number of 686,909 phones in the training corpus. If the two selection
criteria are applied simultaneously, about half of the deletions are covered, whereas the
size of the rule set is reduced to 3% of the original size. The first selection criterion
(^ofo>100) appears to be the strictest pruning measure, since it excludes 20% more
rules than the second selection criterion (L and R not deleted). By applying the two
selection criteria simultaneously, 91 of the 2,951 rules are selected. In Appendix 1, the
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statistics of the 91 selected rules are given. A number of the rules that are found are
related to phonological processes described in the literature. For example, rule 9 (word
final deletion of /n/ after /@/) is very similar to the process of /n/-deletion (Booij,
1995). More examples of plausible deletion rules are described in Kessens et al.
(2000).

3.2 Recognition experiments

The 91 selected rules are tested in recognition experiments by composing various sets
of rules. At this point of the research, we had no certainty about the optimal criterion
for rule selection. As Frei is probably used most often for rule selection, we used F«/
for selection of the various rules sets. Seven sets of rules were selected by varying the
threshold for Fre/. These threshold values are shown in the second column of Table 2
(Frei >). Next, we applied the selected rules to the transcriptions in the baseline test
lexicon in order to generate pronunciation variants. By adding these variants to the
baseline test lexicon, different multiple pronunciation lexica were obtained. In Table 2,
the statistics of the multiple pronunciation lexica are given. The third column displays
the number of rules that were selected (# rules). The fourth column shows the number
of added variants (# added variants), and column five displays the average number of
pronunciation variants per word present in the recognition lexicon (<variants/word>).
Finally, in the last column, the maximum number of pronunciation variants per word is
given (max.).

Table 2: Statistics of the multiple pronunciation lexica

1
2

3
4

5

6
7

Frel>

0.50

0.40

0.30

0.20

0.15

0.10

0

# rules

7
10
16
25

38

53

91

# added variants

81
322
466
702
993
1896

3528

<variants/word>

1.06

1.25

1.36

1.54

1.77

2.47

3.73

max.

4
8
12
12
12
64
128

The selected sets of rules were tested in recognition experiments. As in Kessens et al
(1999) three other testing conditions were used in addition to the baseline testing
condition (SSS). In short, these testing conditions imply incorporating the
pronunciation variants at all three levels of the CSR: the lexicon, the phone models
and the language model:

• Testing condition MSS :
The lexicon is expanded by adding pronunciation variants to it, thus creating a
multiple pronunciation lexicon. The only difference with the baseline testing
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condition S SS is that in testing condition MS S the baseline lexicon is replaced by a
multiple pronunciation lexicon.

For the other two testing conditions, an extra step is needed. In this step, pronunciation
variants are automatically transcribed in the training corpus. This is accomplished by
performing forced recognition with the baseline phone models and the set of variants
which have been automatically generated with the selected set of rules.

• Testing condition MMS :
The phone models are retrained on the basis of the new transcription of the training
corpus. The only difference with testing condition MS S is that in testing condition
MMS the baseline phone models are replaced by the retrained phone models.

• Testing condition MMM:
A new language model is calculated on the basis of automatic transcriptions of the
pronunciation variants in the training corpus. In the baseline language model all
pronunciation variants of the same word are assigned equal prior probabilities. In
the new language model, however, different variants of the same word are assigned
their own specific prior probabilities. These prior probabilities are calculated on the
basis of the automatic transcriptions of the pronunciation variants in the training
corpus. The only difference with testing condition MMS is that in testing condition
MMM the baseline language model is replaced by the new language model.

3.3 Results of recognition experiments

The WER is defined as follows:

(1)
N

where S is the number of substitutions, D the number of deletions, I the number of
insertions, and N the total number of words. The WER of 16.94% for our baseline
system (SSS) is indicated by the symbol '•' in Figure 1. Furthermore, the WERs for
the three testing conditions are plotted as a function of the average number of variants
per word in the lexicon (for the correspondence between the average number of
variants per word and the number of rules, see Table 2). The reason for using the
average number of variants per word is that this measure is directly related to the size
of the. lexicon, and thus to decoding time. Figure 1 shows the following trends when
going from using 1 variant/word to 3.7 variants/word:

1) Testing condition MSS: The WER first decreases, but if more than 1.5
variants/word (25 rules) are used the WER increases until the level of the
baseline system is reached for 2.5 variants/word (53 rules). When 3.7
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variants/word are used (91 rules), a large increase in WER is measured
compared to the baseline (S S S or 1 variant/word).

2) Testing condition MMS: The same trend is observed as for testing condition
MSS, but the absolute values of the WERs are somewhat lower.

3) Testing condition MMM: As opposed to the previous testing conditions, the
WERs are always lower than the WER for the baseline testing condition. The
reduction in WER is significant (t-test, oc=0,05) for 1.25 variants/word (or: 10
or more rales). Furthermore, it can be seen that the decrease in WER becomes
smaller with an increasing average number of variants per word. This means
that a similar gain in performance will cost more and more in terms of decoding
time.

1 2 3 4

number of variants per word

• SSS MSS -*-MMS -B-MMM

Figure 1: WERs for the different testing conditions

3.4 Discussion and conclusions

The recognition experiments demonstrated that the DD rules can be used effectively to
improve recognition performance. Our results showed that only adding variants to the
lexicon (MSS) does not always lead to a reduction in WER. The WERs were only
slightly lower when also retrained phone models were used (MMS). The best results
were obtained when, in addition to the new lexicon and phone models, variant-specific
probabilities were used in the language model (MMM). The difference in recognition
result between testing condition MMM on the one hand and testing condition MSS and
MMS on the other hand was largest for the set of 91 rules; without using variant-
specific probabilities in the language model (MSS and MMS), a significant deterioration
in recognition result is obtained, whereas the opposite is true if each variant is
associated with its corresponding probability in the language model (MMM). In previous
research in which we used knowledge-based rules, we also found that testing condition
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MMM yields the best results (Kessens et al, 1999), but we did not find significant
deteriorations for the other two testing conditions. Yang and Martens (2000b) have
reported on recognition experiments in which the probabilities of the variants were
removed. They found that recognition performance rapidly decreases with an
increasing number of variants per word in the lexicon. With more than 3 variants per
word, the system with variants performed even worse than the baseline system. These
results are very comparable to our results, since we found a decrease in recognition
performance if more than 2.5 variants per word are used in the lexicon.

For the best testing condition (MMM, 91 rules), we measured a significant
improvement in WER of 1.2% absolutely or 7.3% relatively compared to the baseline
(SSS). However, at this point it is not clear whether an even larger improvement could
be obtained by using more rules. Since we are not only interested in reducing the
WER, we do not try to further improve recognition performance. At this moment, we
first try to understand how exactly the changes in WER came about. In this way we
hope to gain insight that might be used to further improve recognition performance.

4. ANALYSIS OF THE REDUCTION IN WER

The goal of this phase of the research is to find out how exactly the reduction in WER
came about. This is accomplished by carrying out an error analysis at word level. In
section 4.1, the method of error analysis is described and this method is compared with
a method used in a previous study (Kessens et al, 1999). In section 4.2, the results of
the error analysis are presented. Finally, in section 4.3 we will discuss the results and
summarize our conclusions.

4.1.1 Method of error analysis

During error analysis, we analysed the changes in recognition result by comparing the
recognition result of testing condition MMM to the baseline testing condition SSS. The
following four steps describe the automatic error analysis procedure:

1. Automatic alignment
The recognition results of MMM and SSS were aligned with the spoken utterance.
This step is necessary in order to determine whether a word is recognized correctly
or not (and thus to calculate the WER). An example of the alignment result is
given in Table 3. The first column indicates the word number, whereas the second
column shows the word that is spoken (SPOKEN). The third column displays the
recognized word in the baseline testing condition (SSS), and the fourth column
shows the recognized word in testing condition MMM. Between 'o' the
transcription of the recognized word is given.
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2. Type of change
Each change was labelled as 'improvement' (SSS=incorrect, MMM=correct),
'deterioration' (SSS=correct, MMM=incorrect), as 'no-change' (SSS=correct,
MMM=correct), or as 'different error' (SSS=incorrect, MMM=incorrect). An example
of this labelling is shown in column 5 of Table 3.

3. Category of change
Since we are only interested in changes in recognition result that have a direct
consequence on the WER, we excluded the 'different errors' from further analysis.
Each change (improvement or deterioration) was classified in one out of two
categories: the change was labelled as 'variant' if the recognized word was a
variant, or 'no-variant' if this was not the case, e.g. word 4 was labelled as
'variant', whereas words 2 and 3 were labelled as 'no-variant' (see column 6 of
Table 3).

4. Contributions per rule
For each change that is labelled as 'variant', it was determined by which rule the
variant was generated. For example, the variant 'naar<na:>' was generated by
applying rule 64 to the word 'naar<na:R>' (see last column of Table 3). In this
way, we were able to count the number of times that an improvement or
deterioration in recognition result was caused by a specific rule. If more than one
rule applied, the count was equally distributed over the rules: If N rules applied to
the recognized word, each of these rules was assigned a score of i..

Table 3: Changes in recognition result between testing condition MMMand S S3
OT"i/"\TTf XT t~i f~i (*i nirujru/r A. A_-__-_,

1
2

3

4

5

SPOKEN

Ik

wil

-

naar
Eist

SSS

ik<Ik>
wil<wIL>
ik<Ik>
Maarn<ma : Rn>
Delft<dELft>

MMM

ik<Ik>
-
-
naarxna : >
Ede<e:d@>

type
no-change
deterioration
improvement
improvement
different error

category
-
no-variant
no-variant
variant
-

rule
-
•
-
64
-

4.1.2 Comparison with previous error analysis

In Kessens et al (1999), we also reported on an error analysis that was carried out to
analyse the effect of modeling pronunciation variation. The error analysis that we
perform in the present study is different from the previous one in various ways. A first
difference is that error analysis was performed at sentence level, whereas in this study
it is done at word level. In Kessens et al (1999) we noted that error analysis should not
be carried out on the test corpus, because then the test corpus is no longer an
independent test set. Therefore, error analysis is now performed on an independent
error analysis corpus. Furthermore, in Kessens et al (1999) we concluded that due to
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interaction between pronunciation variants it will not suffice to study rules in isolation.
For this reason, in this study we analyse the results of different combinations of rales,
and we determine the contribution per rale. Finally, in the current error analysis, we
analyse changes in recognition result for the best testing condition 'MMM' instead of for
the sub-optimal testing condition 'MSS', as we did in the previous study.

4.2 Results of error analysis

In section 4.2.1, we present the WERs measured on the error analysis corpus and
compare them to the results measured on the test corpus. Next, in the three following
sections, the results are given for the four different steps of the error analysis
procedure.

4.2.1 Automatic alignment: WERs

The WER for the baseline testing condition measured on the error analysis corpus is
16.49%. In Figure 2, the WERs are given for testing condition MMM measured on the
test and error analysis corpus, plotted as a function of the average number of variants
in the lexicon. It can be seen that the WERs are in general somewhat lower for the
error analysis corpus compared to the test corpus. However, in general the same trend
is observed: For an increasing number of variants per word the WER decreases, but
the decrease in WER becomes smaller if the average number of variants per word is
increased.

• SSS error-analysis corpus

» SSS test corpus

*— MSS error-analysis corpus

* MSS test corpus

2 3

average number of variants per word

Figure 2: WERs for testing condition MMM measured on test- and error analysis
corpus
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4.2.2 Type of change

WERs only reflect the net result of the changes in recognition result. To gain more
insight, we analysed the different types of changes that actually occur. Figure 3 shows
the different types of changes. Furthermore, the 'total net result' is shown, which is
defined as the difference between the number of improvements and the number of
deteriorations. The total net result is directly related to the reduction in WER:

reduction in WER = WERsss -WERMMM = 100% x
total net result

total number of words
(2)

Figure 3 shows that many changes occur, whereas the total net result or the reduction
in WER is very small. To give an example: For the set of 91 rules, 2219 words
improve, 1613 deteriorate, and 2185 'different errors' occur. The improvements
correspond to an absolute WER reduction of 3.8%, and the deteriorations to an
increase in WER of 2.8%. The total net result or the reduction in WER is (3.8%-
2.8%=) 1%. These results show that it is in principle possible to obtain a larger gain in
recognition performance if one could find a way to make the balance between solving
and introducing errors more positive.

1 2 3 4

average number of variants per word

- - - - - - - improvements »-- deteriorations

—*— different errors • - - * - - . total net result

Figure 3: Different types of changes for testing condition MMM compared to SSS
measured on error analysis corpus
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4.2.3 Category of change

The next step in the error analysis procedure is a further analysis of the total net result.
This was done by dividing all changes into the two categories of changes: 'variant'
and 'no-variant'. The net result for each category of changes was obtained by
subtracting the number of deteriorations from the number of improvements for that
category. The distribution of the total net result over the two categories of changes is
given in Figure 4.

7 10 16 25 38 53 91

number of rules

• variant Ü no-variant

Figure 4: Distribution of the total net result over the two categories of changes for all
rule sets
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3
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'net result of variants'

200

Figure 5: Regression line for correlation between 'net result of variants' at rule set
level and the total net result

The category changes with the label 'variant' (black bars in Figure 4) contribute for
21-33% to the total net result. For this category of changes we can determine the
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contributions per rule, whereas this cannot be done for the 'no-variant' category of
changes. The net result of the category of changes with the label 'variant' will be
referred to as 'net result of variants' in the rest of this paper. Figure 5 shows the
regression line between the 'net result of variants' and the total net result. Such a
strong correlation (0.98) indicates that the total net result (or WER, see (2)) can be
predicted quite well on the basis of the 'net result of variants'.

4.2.4 Contributions per rule

We further analysed the contributions of the different rules to the 'net result of
variants'. To this end, we took the changes that were labelled as 'variant'. Next, we
counted for each rule (in each of the 7 rule sets) how many deteriorations and
improvements the rule caused. Finally, the net result per rule was determined by
subtracting the number of deteriorations from the number of improvements.

Figure 6 displays the number of improvements as a function of the number of
deteriorations for each rule in each of the seven rule sets (240 data points). There
exists a high correlation between the number of improvements and deteriorations
caused by a specific rule (Pearson's correlation is 0.98). The regression line in Figure
6 might give the impression that the high correlation between deteriorations and
improvements is mainly determined by a small number of points, namely the six data-
points in the right upper half of Figure 6. This is not the case, since Pearson's
correlation is still fairly high (0.77) if these six data-points are excluded. Figure 6 also
shows that, in general, more improvements are introduced than deteriorations, which
means that the net result per rule is in general an improvement (thus a reduction in
WER, see (2)).

0

0 15050 100

number of deteriorations

Figure 6: Correlation between improvements and deteriorations
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In Figure 7, the contributions to the net result are plotted for each specific rule
in each of the seven rule sets. In order to make it easier to interpret this figure, we only
plotted the rules for which the absolute value of the net result is > 5 in one of the rule
sets (this was the case for 21 rules). On the horizontal axis, the rules are plotted
together with the rule number and the context. On the vertical axis the change in net
result is plotted ('+' = improvement, '-' = deterioration).

rule number and rule condition

• 7B10D16H25IJ38H53B91

Figure 7: Contributions of each individual rule to the net result

In Figure 7, it can be observed that not all rules contribute equally to the net result as
the total net result is mainly determined by about 1/4 of the rules (plotted in Figure 7).
Among these rules, rule 9 (@ n I) makes the largest positive contribution. Rules 20 (E
R t) and 64 (n a: R) are the only rules that have a negative net result of more than 5
deteriorations.

4.3 Discussion and conclusions of error analysis

The error analysis that we performed in this study clearly has some advantages
compared to the error analysis that we performed in our previous study (Kessens et al,
1999). The present error analysis revealed some differences and commonalities with
the previous one, but also some new results. In our previous study we found that the
results for the various rules tested in isolation cannot predict the results for the rules
tested in combination. In this study, we tested different combinations of rules and for
each rule we determined the contribution to the total net result. These results show that
indeed the contribution in WER reduction per rule is different in each set of rules, but
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the differences are not very large. Three remarks concerning this apparent discrepancy
in result have to be made. First of all, another study (Wester et al, 2000b) revealed that
the differences in SER (=number of incorrect sentences) for rules tested in isolation
and in combination are corpus dependent. Second, one has to take into account that
SERs/WERs cannot be simply summed up. Different rules can solve or introduce
exactly the same errors when they are tested in isolation, whereas when the same rules
are tested in combination, the error can be solved or introduced only once. Second, as
we already mentioned in the previous study, interaction between pronunciation
variants can occur, whereas this interaction is not possible when the rules are tested in
isolation.

A commonality between the results of the two error analyses is that besides
improvements, also deteriorations are introduced through the modeling of
pronunciation variation. These deteriorations substantially negate the improvements,
resulting in a small total net improvement in SERAVER. The results are also in line
with the error analysis results of Ravishankar and Eskenazi (1999). These authors
found that the number of errors corrected through the modeling of pronunciation
variation are quite significant, but at the same time also new errors were introduced,
substantially or completely negating the gains.

The current error analysis also revealed some new results. We found that about
1/3 of the reduction in WER was obtained because a variant was recognized. For this
category of changes we can directly determine which rules caused the changes. For the
other 2/3 of the reduction in WER we cannot directly determine which rules caused the
changes. At rule set level, a high correlation was found between the net result of the
category changes that were labelled as 'variant' and the total net result (Pearson's
correlation is 0.98). This finding is encouraging, since it suggests that the total
recognition result can be predicted on the basis of the recognition result of the category
of changes labelled as 'variant'.

Furthermore, analysis of changes labelled as 'varianf revealed that the
contribution to the total net result differs per rule: In total, the net improvement was
mainly determined by only 1/4 of the rules, the other 3/4 of the rules had a very small
effect on the total net result. Furthermore, it turned out that the number of
improvements and the number of deteriorations per individual rule are highly
correlated. This result is somewhat disappointing, since it means that by leaving out a
rule that causes many deteriorations, the number of improvements is also reduced.
However, the positive message is that most of the time there are more improvements
than deteriorations, which means that the total net result is an improvement.

Since the results of error-analysis indicate that the number of improvements and
deteriorations are highly correlated, excluding rules that cause many deteriorations is
not a solution for obtaining maximal WER reduction. The question that remains is
what criteria are most suitable for selecting an optimal set of rules, since there is a
practical constraint on the number of variants that can be included in the lexicon as
decoding time is increased if the lexicon is expanded. This question will be addressed
in the following section.
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5. CRITERIA FOR OPTIMAL RULE SELECTION

5.1 The three selection criteria

In section 4.2.2, we saw that the correlation between the 'net result of variants' and the
total net result at rule set level is very high (Pearson's correlation is 0.98). Since the
total net result is directly related to the reduction in WER (see formula 2), this
indicates that the 'net result of variants' could be used to predict the reduction in
WER. For this reason, the first obvious criterion to select the rules seems to be 'net
result of variants'.

A disadvantage of using 'net result of variants' as a selection criterion is that it
is always necessary to perform error analysis to be able to select the optimal set of
rules, while it would be better to have a measure that does not require the two extra
steps of performing a recognition experiment and error analysis. We used two rule-
related frequency measures, namely Frei and Fab,, to select the rules (see section 3.1.2).
These two measures were determined directly from the DD transcriptions obtained
during automatic extraction of the candidate rules (see step 3 described in section
3.1.1). Since it is to be expected that the frequency of application of a rule is related to
the reduction in WER, we investigated the adequacy of the two frequency measures
Fab, and Frei as selection criteria for the rules.

We examined the adequacy of the three criteria in the following way: Rules are
selected on the basis of different criteria and for each set of rules the WER is
calculated. In section 5.2, we first present the results of the recognition experiments.
Subsequently, the relation between the reduction in WER and each investigated
criterion is presented. Next, in section 5.3, we compare the results and we will draw
conclusions on the adequacy of each criterion investigated.

5.2 Results

5.2.1 Recognition experiments

The 'net result of variants' was determined on the basis of the recognition experiment
carried out with all 91 rules (see Figure 7 for the values of the 'net result of variants'
per rule). Rule selection was performed by including those rules for which the 'net
result of variants' was larger than the threshold value. First, we selected the rule with
the largest net result (rule 9) and then, we added rules by lowering the threshold for the
net result. The following values of 'net result of variants' were used as a threshold: 45,
10, 5, 1, 0, -1. To investigate the adequacy of F^, we composed different rule sets by
varying the threshold for F^s- The following values of F^ were used as a threshold:
5000, 500, 400, 300, 200, 140. Since we already used Frei as a selection criterion, we
did not repeat the recognition experiments, and simply used the results reported in
section 3.3.



Article 4 153

Figure 8 presents the WERs measured for the rule sets obtained by selecting the
rules on the basis of the three different selection criteria. It can be seen that for all
selection criteria, apart from slight fluctuations, the WER decreases when the average
number of variants per word is increased. Furthermore, in general, the reduction in
WER becomes smaller if the average number of variants per word is increased.

16.5

15.5

• SSS

-»— net result of variants

-•—Fabs

-A---Frei

1 2 3 4

number of variants per word

Figure 8: WERs for rules selected on the basis ofFai,s, Frei and 'net result of variants'

5.2.2 Correlations at rule set level

The reduction in WER was calculated by subtracting all the WERs plotted in Figure 8
from the WER measured for the baseline (16.94%). Since correlations are calculated at
rule set level, it was necessary to determine the values of the three criteria at rule set
level. In total, 19 rule sets were selected: 6 rule sets based on 'net result of variants', 6
rule sets based on Fabs, and 7 rule sets based on Fret. For each of the 19 rule sets, the
values of the three selection criteria were determined in the following manner. The
'net result of variants' at rule set level ('net result of variants . ruie set') was obtained by
summing the net result of all rules in the set. Fahs at rule set level (Fahs.mie set) was
obtained by summing the values of Fabs for all the rules in the set. Fre! at rule set level
(Frei-ruie sei) was obtained by dividing Fabs.rute set by Fcond.mie set. Fcond (see Section 3.1.1,
step 6) at rule set level (Fcond.ruie set) was obtained by summing the values of Fcond for all
the rules in the set.

Figure 9 shows the values of the reduction in WER and the corresponding
measures at rule set level, together with the regression lines based on all 19 data
points. In Figure 9, 'A' indicates the rule sets selected on the basis of 'net result of
variants', ' + ' indicates the rule sets that are selected on the basis of Fabs and '•'
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indicates the rule sets selected on the basis of Fre/. In Figure 9, going from left to right
means that the number of rules in the set is increased. The regression lines of all
selection criteria show the trend that the reduction in WER increases as the number of
rules is increased.

In Figure 9a, it can be seen that if 'net result of variants. ra/e set' is increased, the
reduction in WER becomes larger, and the correlation is high (0.86). Figure 9b shows
that if Fobs-rule set is increased, the reduction in WER is also larger, and the correlation is
even higher (0.93). The strong correlation between Fafa.rate set and reduction in WER
can be explained by the results that we found earlier. Error analysis revealed that the
improvements and deteriorations per rule are highly correlated, but the net result is an
improvement (see Figure 6). This means that the more rules are used, and thus the
higher Fobs-rule set, the larger is the total net improvement.

1.5 i
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0.5 -
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0 50 100 150 200 250

'net result of variants . mfe set '

Figure 9a: Relation between 'net result of variants.^ set' and reduction in WER
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Figure 9b: Relation between Fobs-rule set and reduction in WER
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In Figure 9c, it can be seen that the reduction in WER is increased if Fre/.rafe set

becomes smaller (Pearson's correlation is -0.83). This is against expectation, as one
would expect the reduction in WER to be larger if the relative frequency of application
of the rules in the set is increased. A possible explanation for this result is that two
criteria play a role, namely Fre,_rak „, and Fafcs_rete set: If Fre/_rete set becomes smaller, F^.
nie set increases, and we observed that the reduction in WER is larger if Fafa.rate set is
increased.

1

1.5

1

0.5

L o
0.65 0.45 0.25 0.05

'F i '1 rel - rule set

Figure 9c: Relation between FTei-niesei and reduction in WER

5.3 Discussion and conclusions on rule selection criteria

Our results indicate that F^ and 'net result of variants' are better criteria for selecting
the rules than Frei. Let us try to understand why F^ is probably a better predictor of
the reduction in WER than Fret. A specific value of Fre/ could be the result of two
completely different situations. To illustrate, an Fre; value of 50% could be obtained in
the following two situations:

2. Fabs = 10,000 and Fcond = 20,000.

It is easy to imagine that in relation to the total amount of material, situation 2 is
bound to have a much greater effect on recognition performance than situation 1.
While this difference clearly emerges from F^, it is completely blotted out in Fre(,
which in turn explains why Fabs appeared to be a better predictor of the reduction in
WER.

The question that remains is which of the two measures Fafa and 'net result of
variants' is the better criterion. Let us compare the results of the two criteria. First of
all, the correlation with the reduction in WER is higher for Fabs (0.93) than for 'net
result of variants' (0.86). Second, the 'net result of variants' clearly has the
disadvantage that it can only be used after performing a recognition experiment and
carrying out an error analysis. F^, on the other hand, can be directly determined on
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the basis of the transcriptions used for automatic rule extraction. Third, for Fabs the
optimal WER is obtained using an average of two variants/word in the lexicon,
whereas three variants/word are needed to obtain optimal WER when 'net result of
variants' is used as a selection criterion (see Figure 8). Since decoding time is
correlated with the number of entries in the lexicon, this means that the decoding time
is shorter when the optimal rule set is obtained by selecting the rules on the basis of
Fobs than on the basis of 'net result of variants'. For all of these reasons, F^s seems to
be the most suitable criterion for rule selection.

GENERAL DISCUSSION

The results presented in this paper indicate that F^ is an adequate predictor of
recognition performance, and can therefore be used to select pronunciation rules. The
question arises whether the recognition performance could be further improved by
using more rules. If indeed a linear relation exists between Föfo.r„k set and reduction in
WER, as plotted in Figure 9a, then recognition performance could be further improved
by increasing Fobs-rule set- Two remarks should be made about this point. The first
remark concerns the linear relationship between Fafa.rafe set and the reduction in WER.
We expect that the relationship between F^s-ruie set and reduction in WER cannot be
modelled by a simple straight line. For higher values of Fabs-nte set we expect the
straight line to flatten out. It might even be the case that recognition performance
decreases for very high F .̂̂  set values. A first reason for expecting that the gain in
recognition performance will be limited is that probably more unreliable rules are
introduced by lowering the threshold for F^, as we expect that the rules based on
transcription errors will have a low F^. A second reason is that, if the threshold for
Fobs is lowered, the probabilities of the variants are estimated on the basis of smaller
numbers, and the risk of not properly estimating the variant probabilities increases.

The second remark that should be made is that for our material, the relation
between Fabs-mie set and the average number of variants per word in the lexicon is not
linear, as is shown in Figure 10. As a consequence, although we have indications that
including more variants (by lowering the threshold for Fabs) can lower the WER, we
know that the gain in performance will cost more and more in terms of decoding time.

For all these reasons, only a limited further improvement in recognition
performance can be expected. The optimal value for Fabs will clearly be database and
language specific, and for this reason, information concerning the values of Fabs can
probably not be generalized to other contexts. In this connection, it would be
interesting to devise a relative measure that can be more easily interpreted in other
situations. Examples of such measures are: Fabs divided by the total number of deleted
phones (e.g. for Faip»100, this measure would have the value 0.51), Fafes divided by the
total number of phones (e.g. for F^p-lOO, this measure would have the value 0.04). An
interesting research question would be to investigate whether more general
conclusions can be drawn on the basis of this kind of relative measures by calculating
them for different kinds of speech material, and comparing the values to each other.
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Figure 10: Relation between Fabs-nOe set and the average number of variants per word in
the lexicon. Fai,s.mieset = 0 corresponds to the baseline system (SSS)

7. GENERAL CONCLUSIONS

As mentioned in the introduction, the aim of the present paper was threefold. First, we
analysed whether the data-driven method of modeling pronunciation we adopted does
indeed lead to improvements in recognition performance. Since we found a total,
statistically significant improvement of 1.4% WER absolutely, or 8% relatively for the
best testing condition compared to the baseline testing condition, we conclude that the
data-driven method of modeling pronunciation we adopted does indeed lead to
improvements in recognition performance. Furthermore, we conclude that hi order to
ensure improvements in recognition performance, prior probabilities of the
pronunciation variants need to be incorporated in the decoding process.

The second goal was to determine how exactly the reduction in WER came
about. We found that besides improvements, also deteriorations were introduced
through the modeling of pronunciation variation. These deteriorations substantially
negate the improvements, resulting in a small total net improvement in WER. These
results show that it is in principle possible to obtain a larger gain in recognition
performance if one could find a way to make the balance between solving and
introducing errors more positive. Furthermore, we showed that about 1/3 of the
reduction in WER can be directly assigned to the rules, since the recognized words are
variants, whereas for the other 2/3 of the changes, we could not determine which rule
caused the change. However, since we found a high correlation between the number of
changes labelled as 'variant' and the total number of changes, it might be possible to
predict the reduction in WER on the basis of the changes labeled as 'variant'. For this
category of changes, the contribution to the net result differs per rule. Unfortunately,
the number of improvements and the number of deteriorations per rule are highly
correlated, but the positive message is that the net result per rule is, in general, an
improvement.
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Finally, the third goal was to find criteria that could be used for optimal rule
selection. On the basis of our results, Fabs seems to be a more suitable criterion for
optimal rule selection than Frei and 'net result of variants'.
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Appendix l

Table 4: Statistics of the 91 selected rules, ordered according to descending Fre{. In the
column 'Context', the rule context is given (/L F R /can, see section 3.1.1 step 5).
Furthermore, the relative (FreJ) and absolute (F^) frequencies of rule application are
given for each rule.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Context Frei Fobs
m e r 0.88 225
n d I 0.66 174
9 R m 0.61 272
9 R t 0.57 638
ê n v 0.53 131
A L s 0.53 1 1 0
S R b 0.51 151
9 R d 0.48 2031
9 n 1 0.43 5339
W A R 0.42 2 3 4
n d e 0.34 417
x @ v 0.34 109
S R s 0.33 158

1 h E 0.32 266
r y w 0.31 147
d e r 0.30 333
s t @ 0.29 777
v @ r 0.28 555
R n 1 0.27 131

l_E R t 0.27 272
1 d @ 0.26 205

@ n t 0.25 528
@ n s 0.23 106
f t 1 0.22 235

1 h u 0.22 156
R d @ 0.19 137
S R 1 0.19 244

1 I s 0.19 186
ci S 1 0.19 317
t w I 0.18 226

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Context Frei Fobs
i. t 1 0.18 416

1 n i 0.18 442
1 S t 0.18 102
n t s 0.17 165
t A S 0.16 186

1 w E 0.15 196
A t 1 0.15 310
m a: R 0.15 117
s t A 0.14 1 7 3
p t 1 0.14 118

1 r 0 0.14 175
x t 1 0.13 498
n t @ 0.13 187
R t 1 0.13 209
E n 1 0.13 310
v S n 0.12 212
n t 1 0.11 128
w i n 0.11 1 4 9

n I N 0.11 124
t e x 0.11 221

1 s t 0.10 147
o: n I 0.10 104
a: R 1 0.10 1089
0 n 1 0.09 117
A n 1 0.09 736
I L 1 0.09 481
d A t 0.09 160
t e r 0.09 3 7 8
R x @ 0.08 177
@ x 1 0.08 194

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

Context Frei Fobs
e: n 1 0.08 106
w I L 0.08 404
n d A 0.07 118
n a: R 0.07 678
o: R 1 0.07 101
0 R x 0.07 145

1 0 m 0.07 300
s E n 0.07 136
x e n 0.07 328
a: x 1 0.06 237
i n 1 0.06 187
E n t 0.06 1 1 8

1 d A 0.06 276
y R 1 0.06 490

1 0 p 0.06 123
1 I k 0.06 390
d A N 0.06 159
a: L 1 0.05 108
v A n 0.05 463

1 w I 0.04 233
1 v A 0.04 370

1 n a: 0.04 379
N k 1 0.04 106

1 d E 0.04 129
A N k 0.04 108
A x 1 0.03 130
0 m 1 0.03 130
I k 1 0.03 199
d A x 0.03 142

1 ne: 0.01 155
j a: 1 0.01 150
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Samenvatting

Spraak is voor mensen een zeer natuurlijke en efficiënte manier van communiceren.
Tegenwoordig is het mogelijk om met behulp van een computer spraak automatisch
om te zetten in tekst. Deze techniek wordt automatische spraakherkenning (ASH)
genoemd. Sinds de komst van de eerste automatische spraakherkenners zijn de
herkenprestaties en mogelijkheden van automatische spraakherkenners enorm
verbeterd. In het verleden was het alleen mogelijk om een beperkte set van geïsoleerd
uitgesproken woorden te herkennen (bijvoorbeeld de cijfers 0-10). Huidige
spraakherkenners daarentegen hebben een veel grotere woordenschat en kunnen ook
omgaan met continue spraak. Bij continue spraak gaat het om complete uitingen,
waarbij de woorden niet los, maar aan elkaar uitgesproken worden. De
herkenprestaties van huidige spraakherkenners zijn zo goed dat het mogeh'jk is om
spraak in te zetten als communicatiemiddel tussen mens en machine. De
mogelijkheden van het gebruik van ASH zijn echter beperkt, omdat ASH niet altijd
foutloos werkt.

Ondanks de snelle ontwikkeling van ASH blijken mensen nog steeds beter te
zijn in spraakverstaan dan computers. Dit is echter niet zo verwonderlijk, aangezien
mensen veel meer (en andere) informatie gebruiken dan spraakherkenners bij de
decodering van spraak. Eén van de moeilijkheden van het herkennen van continue
spraak is dat de manier waarop woorden worden uitgesproken erg variabel is. Als twee
woorden bijvoorbeeld achter elkaar worden gesproken, kan het gebeuren dat sommige
klanken niet (of niet volledig) worden uitgesproken, bijvoorbeeld, "dat is" kan
uitgesproken worden als "da's". Het verschijnsel dat woorden op verschillende
manieren kunnen worden uitgesproken wordt ook wel uitspraakvariatie genoemd.
Mensen hebben meestal geen moeite om de verschillende uitspraken van een woord te
herleiden tot één en hetzelfde woord, maar hoe ze dat precies voor elkaar krijgen is
niet bekend. Van spraakherkenners weten we wel precies hoe ze werken en dus ook
hoe ze zouden kunnen omgaan met uitspraakvariatie. De huidige spraakherkenners
maken echter niet altijd expliciet gebruik van de verschillende manieren waarop
woorden uitgesproken kunnen worden, waardoor uitspraakvariatie kan leiden tot
herkenfouten. In dit onderzoek is daarom nagegaan of het modelleren van
uitspraakvariatie in spraakherkenners de herkenprestaties ervan kan verbeteren.

Het proefschrift bestaat uit een viertal artikelen die onderzoek beschrijven dat
gerelateerd is aan het modelleren van uitspraakvariatie. De vier artikelen worden
voorafgegaan door zes inleidende hoofdstukken die een kader scheppen voor het
onderzoek dat beschreven is in de artikelen. In Hoofdstuk l worden de basisprincipes
van ASH in het kort uitgelegd aan de hand van werking van de automatische
spraakherkenner die gebruikt is in dit onderzoek. In Hoofdstuk 2 wordt beschreven
welke bronnen van uitspraakvariatie te onderscheiden zijn en wordt uitgelegd waarom
uitspraakvariatie kan leiden tot herkenfouten. In Hoofdstuk 3 worden het doel van het
onderzoek en de gebruikte onderzoeksmethodologie beschreven. Hoofdstuk 4 bestaat
uit de samenvattingen van de vier artikelen. In Hoofdstuk 5 worden de
onderzoeksresultaten bediscussieerd. Tenslotte worden in Hoofdstuk 6 de conclusies
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van dit proefschrift beschreven, samen met aanbevelingen voor verder onderzoek. De
inleidende hoofdstukken worden hieronder kort besproken, gevolgd door
samenvattingen van de vier artikelen. Tenslotte worden de algemene conclusies van dit
proefschrift en suggesties voor toekomstig onderzoek gegeven.

Automatische spraakherkenning
De werking van een automatische spraakherkenner kan in het kort als volgt uitgelegd
worden. Een spraakherkenner kan opgebouwd gedacht worden uit drie modules:

1. Het lexicon. Het lexicon bestaat uit een lijst van alle woorden die de
spraakherkenner kan herkennen (orthografische representatie), samen met een
beschrijving van de klanken waaruit de standaarduitspraak van het woord is
opgebouwd (fonetische representatie).

2. De foonmodellen. Dit zijn statistische modellen waarin de akoestische
eigenschappen van de klanken (foneri) van de taal zijn vastgelegd.

3. Het taalmodel. Het taalmodel bevat statistische informatie over de taal, zoals de
frequentie van voorkomen van woorden en sequenties van woorden.

Tijdens training worden de parameters van de foonmodellen geschat aan de hand van
een grote hoeveelheid spraak met bijbehorende automatisch gegenereerde fonetische
transcripties. De parameters van het taalmodel worden geschat op basis van een grote
hoeveelheid tekst (orthografische transcripties). Tijdens herkenning wordt voor een
groot aantal mogelijke sequenties van woorden (hypotheses) de waarschijnlijkheden
bepaald. Hiertoe zijn twee scores bepalend:
1. De akoestische score; deze wordt geschat met behulp van de foonmodellen en geeft

aan hoe waarschijnlijk het is dat het geobserveerde akoestische signaal is
gegenereerd door het statistische model van ieder afzonderlijk foon, en

2. De taalmodel score; deze wordt geschat met behulp van het taalmodel en geeft de a
priori waarschijnlijkheid voor iedere hypothese aan.

De hypothese met de hoogste totale waarschijnlijkheid is de sequentie van woorden
die uiteindelijk wordt herkend.

De spraakherkenner die in dit onderzoek gebruikt is vormt een onderdeel van
het gesproken dialoogsysteem OVIS (Openbaar Vervoer Informatie Systeem). Door
met OVIS te bellen kan telefonisch informatie worden verkregen over binnenlandse
treinreizen. Voor het trainen van de foonmodellen en het taalmodel en voor het
uitvoeren van de herkenexperimenten is spraakmateriaal nodig. Het spraakmateriaal
dat we hebben gebruikt in het in dit proefschrift beschreven onderzoek bestaat uit
opnames van telefoongesprekken met OVIS.

Uitspraakvariatie
In onze referentieherkenner is slechts één uitspraak per woord aanwezig. Een
uitspraak die afwijkt van de uitspraak in het lexicon kan op twee verschillende
manieren herkenfouten veroorzaken. Ten eerste kan de afwijking in de uitspraak zo
groot zijn dat er een ander woord in het lexicon is dat meer op het uitgesproken woord
lijkt en dus ten onrechte wordt herkend. Ten tweede zorgt de afwijkende uitspraak er
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tijdens training voor dat verkeerde stukken akoestisch signaal worden toegewezen aan
een foonmodel, waardoor dit foonmodel wordt vervuild. Het gebruik van deze
vervuilde foonmodellen tijdens herkenning kan vervolgens weer leiden tot
herkenfouten.

Methodes voor het modelleren van uitspraakvariatie ter verbetering van ASH
kunnen op verschillende manieren ingedeeld worden. Voor het onderzoek beschreven
in dit proefschrift is het belangrijk om een onderscheid te maken tussen
kennisgebaseerde en datagestuurde methoden. Bij een kennisgebaseerde methode
wordt de informatie over uitspraakvariatie uit de literatuur gehaald, terwijl bij een
datagestuurde methode deze informatie uit (een grote hoeveelheid) spraakdata wordt
afgeleid.

Doel en onderzoeksmethodologie
Het doel van het modelleren van uitspraakvariatie is om de herkenprestaties van
spraakherkenners te verbeteren. Voordat het mogelijk is om uitspraakvariatie adequaat
te modelleren, is het nodig om te weten welke uitspraakvarianten voorkomen in de
spraak die de herkenner moet kunnen verwerken en wat de frequenties van voorkomen
van de uitspraakvarianten is. Deze informatie kan verkregen worden door fonetische
transcripties te maken van zeer grote hoeveelheden spraakmateriaal. In dit onderzoek
is ervoor gekozen om de transcripties automatisch te genereren. Dit houdt in dat de
spraakherkenner zelf op basis van het akoestisch signaal beslist welke van een aantal
mogelijk uitspraakvarianten het meest waarschijnlijk is uitgesproken. Aangezien
automatische transcriptie een essentieel onderdeel vormt van onze
onderzoeksmethodologie is eerst een uitgebreide studie verricht waarin de gebruikte
automatische transcriptiemethode nader is onderzocht. Deze studie is beschreven in de
eerste twee artikelen van het proefschrift. Het doel van dit deel van het onderzoek is
om erachter te komen wat de kwaliteit van automatisch gegenereerde transcripties is
en hoe de best mogelijke automatische transcripties verkregen kunnen worden. In de
laatste twee artikelen worden twee studies beschreven waarin uitspraakvariatie wordt
gemodelleerd. Het doel van deze studies is om te achterhalen of het mogelijk is de
herkenprestaties van spraakherkenners te verbeteren door het modelleren van
uitspraakvariatie. Bovendien hopen we ook meer inzicht te krijgen in hoe
uitspraakvariatie het best gemodelleerd kan worden.

Onze onderzoeksmethodologie komt erop neer dat uitspraakvariatie wordt
gemodelleerd in alle drie de modules van de spraakherkenner. Ten eerste worden er
uitspraakvarianten toegevoegd aan het referentielexicon (dat één fonetische
transcriptie voor ieder woord bevat), zodat er voor sommige woorden verschillende
uitspraken mogelijk zijn. Op deze manier is er een betere overeenstemming tussen de
gerealiseerde uitspraak van woorden en de fonetische transcriptie ervan in het lexicon.
Ten tweede wordt een automatische fonetische transcriptie van het trainingsmateriaal
gemaakt. Tijdens automatische transcriptie gebruikt de spraakherkenner een lexicon
waaraan uitspraakvarianten zijn toegevoegd en beslist de herkenner zelf welke van de
varianten het best past bij het akoestische signaal. Het is de verwachting dat deze
automatisch verkregen fonetische transcripties de spraak beter beschrijven dan de
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fonetische transcripties die verkregen zijn uit het referentielexicon. Op basis van deze
nauwkeurigere transcripties van het trainingsmateriaal worden nieuwe foonmodellen
getraind. Ten derde wordt uitspraakvariatie gemodelleerd in het taalmodel. Dit houdt
in dat iedere uitspraakvariant een eigen a priori waarschijnlijkheid krijgt. Deze
waarschijnlijkheden worden geschat op basis van de nieuwe automatisch verkregen
transcripties van het trainingsmateriaal. Om te voorkomen dat uitspraakvarianten van
onwaarschijnlijke woorden ten onrechte worden verward met andere woorden in het
lexicon, wordt gebruik gemaakt van variantspecifieke waarschijnlijkheden.

Artikel l
In artikel l is de kwaliteit van de automatische fonetische transcripties onderzocht
door de automatische transcripties te vergelijken met transcripties gemaakt door
ervaren transcribenten. Dit zijn mensen die ervaring hebben in het maken van
fonetische transcripties van spraak. De transcriptietaak van de spraakherkenner
bestond uit een gedwongen keuze uit een beperkt aantal mogelijke uitspraakvarianten
voor een beperkt aantal woorden. De varianten werden automatisch gegenereerd door
vijf optionele fonologische regels toe te passen op de woorden in het lexicon. Deze
regels zijn gebaseerd op de volgende vijf frequent voorkomende fonologische
processen: /n/-, /r/-, /t/-, /©/-deletie en /©/-insertie. Aangezien transcribenten ook
fouten maken, is het niet mogelijk om een referentietranscriptie te verkrijgen waarvan
aangenomen kan worden dat deze volledig correct is. Om deze reden hebben we twee
verschillende strategieën gebruikt om menselijke referentietranscripties te verkrijgen
in de twee experimenten die zijn uitgevoerd. In het eerste experiment gebruikten we
een referentietranscriptie gebaseerd op het meerderheidsoordeel van negen ervaren
transcribenten die onafhankelijk van elkaar werkten, terwijl in het tweede experiment
twee (of drie) transcribenten consensus moesten bereiken over de
referentietranscriptie. Als kwaliteitsmaat voor de automatische transcripties gebruikten
we de mate van overeenstemming tussen de automatische transcripties en de
referentietranscripties. Hoe groter de mate van overeenstemming tussen de
automatische transcripties en de referentietranscripties, hoe hoger de
transcriptiekwaliteit.

De belangrijkste conclusies van het eerste experiment is dat de mate van
overeenstemming met de referentietrancripties significant lager is voor de
spraakherkenner dan voor de transcribenten. Het is echter ook gebleken dat de
verschillen niet voor alle vijf de regels significant zijn en dat voor één van de
transcribenten de mate van overeenstemming ook significant lager was dan voor de
overige transcribenten. De verschillen tussen automatisch en handmatig verkregen
transcripties zijn echter niet groot; ze kunnen heel goed acceptabel zijn, afhankelijk
van het doel waarvoor de transcripties gebruikt worden.

In het tweede experiment is specifiek gekeken naar de transcriptie van het foon
l@l in de context van de /©/-deletie en /©/-insertie regels. Hieruit blijkt dat de
spraakherkenner en de transcribenten een andere drempel voor de duur van de /©/
gebruiken op grond waarvan besloten wordt of de /©/ uitgesproken is of niet.
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Artikel 2
In artikel 2 hebben we nader onderzocht wat de relatie is tussen een aantal
eigenschappen van de spraakherkenner en transcriptiekwaliteit. De uitspraakvarianten
werden weer automatisch gegenereerd door dezelfde vijf optionele fonologische regels
toe te passen op de woorden in het lexicon als in artikel 1. Als kwaliteitsmaat voor de
automatische transcripties gebruikten we weer de mate van overeenstemming tussen
de automatische transcripties en de referentietranscripties. Zowel
referentietranscripties gebaseerd op het meerderheidsoordeel van de transcribenten als
consensus transcripties werden gebruikt.

Ten eerste nebben we gekeken naar de invloed van verschillende eigenschappen
van de foonmodellen op de transcriptiekwaliteit. Hiertoe hebben we vier experimenten
uitgevoerd. Het eerste experiment toont aan dat de impliciete minimale duur van een
foonmodel die gerelateerd is aan de topologie van de foonmodellen invloed heeft op
de transcriptiekwaliteit. De minimale duur opgelegd door de topologie van de
foonmodellen die wij gebruiken tijdens een normale herkentaak blijkt te lang te zijn
voor automatische transcriptie waardoor het moeilijker is om zeer korte fonen te
detecteren. Het tweede experiment laat zien dat voor automatische transcripties het
best foonmodellen gebruikt kunnen worden die getraind zijn op spraakmateriaal
waarvoor de transcriptie zeer nauwkeurig aansluit bij hetgeen gezegd is. Uit het derde
experiment blijkt dat het gebruik van context-afhankelijke t.o.v. context-
onafhankelijke foonmodellen niet altijd leidt tot een betere transcriptiekwaliteit. Het
vierde experiment laat zien dat het gelijktijdig optimaliseren van bovengenoemde
eigenschappen van de foonmodellen tot een nog hogere transcriptiekwaliteit leidt.

Ten tweede hebben we onderzocht of er een relatie bestaat tussen het
percentage herkenfouten dat een spraakherkenner maakt tijdens een normale
herkentaak en de kwaliteit van de automatische transcripties die met dezelfde
spraakherkenner worden gegenereerd. Uit deze vergelijking blijkt dat er geen duidelijk
verband is tussen het percentage herkenfouten en de transcriptiekwaliteit behaald met
dezelfde spraakherkenner. Deze bevinding bevestigt het intuïtieve idee dat fonetisch
transcriberen en spraakverstaan (net als voor mensen) twee verschillende processen
zijn. Voor automatische fonetische transcriptie is het daarom noodzakelijk om
spraakherkenners te ontwikkelen die geoptimaliseerd zijn voor deze taak.

Artikels
Artikel 3 beschrijft een studie waarin een kennisgebaseerde methode voor het
modelleren van binnen- en tussenwoorduitspraakvaiiatie is onderzocht. De
binnenwoorduitspraakvarianten werden automatisch gegeneerd door de vijf
fonologische regels die gebruikt zijn in de eerste twee artikelen toe te passen op de
woorden in het lexicon. Verder zijn ook tussenwoorduitspraakvarianten (t.g.v.
reductie, contractie en cliticizatie) gegenereerd voor een aantal zeer frequent
voorkomende woordsequenties. Vervolgens hebben we zowel de binnen- als de
tussenwoorduitspraakvariatie in alle drie de modules van de spraakherkenner
gemodelleerd en hebben we gemeten wat de invloed is op de herkenprestaties. Uit
deze experimenten blijkt dat toevoegen van uitspraakvarianten aan het lexicon tot een
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kleine verbetering in herkenprestaties leidt. Het hertrainen van de foonmodellen leidt
ook tot een geringe verbetering. Als tenslotte a priori waarschijnlijkheden worden
gebruikt voor de uitspraakvarianten wordt de grootste verbetering gevonden. Uit een
vergelijking van twee methodes om tussenwoorduitspraakvariatie te modelleren blijkt
dat tussenwoordvariatie het beste gemodelleerd kan worden door een aantal zeer
frequente woordsequenties als aparte woorden op te nemen in het lexicon -
zogenaamde multiwoorden - en vervolgens uitspraakvarianten te genereren voor deze
multiwoorden. Uit de herkenexperimenten blijkt verder dat er interactie plaatsvindt
tussen uitspraakvarianten: De verbetering in het percentage herkenfouten die je zou
verwachten op basis van experimenten waarin de binnenwoord- en
tussenwoordvarianten in isolatie worden getest is niet gelijk aan de verbetering die
gevonden wordt als de varianten in combinatie worden getest. Tenslotte blijkt dat de
grootste verbetering wordt gevonden als binnen- en tussenwoorduitspraakvariatie
gelijktijdig worden gemodelleerd: T.o.v. onze referentieherkenner vinden we een
significante verbetering in het percentage fout herkende woorden van 1.1% absoluut of
8.8% relatief.

Artikel 4
Artikel 4 beschrijft een studie waarin een datagestuurde methode voor het modelleren
van een uitspraakvariatie is onderzocht. In continue spraak komt het vaak voor dat niet
alle fonen waar een woord uit bestaat worden uitgesproken. In dit onderzoek
concentreren we ons op deze zogenaamde deleties van fonen. Dit onderzoek bestaat uit
drie deelstudies. De methode om de informatie over de deletieprocessen uit de data af
te leiden is in deze drie deelstudies gelijk en werkt als volgt. Allereerst wordt een
automatische transcriptie gemaakt van een grote hoeveelheid spraakmateriaal. Hiertoe
worden een zeer groot aantal mogelijke uitspraakvarianten automatisch gegenereerd
door ieder foon in de fonetische transcriptie optioneel te maken. De automatisch
verkregen fonetische transcripties van het spraakmateriaal worden vervolgens
opgelijnd met de transcripties die worden opgezocht in het lexicon van onze
referentieherkenner. Uit de opgelijnde transcripties worden vervolgens deletieregels
afgeleid. Een deletieregel beschrijft in welke context (linker- en rechterbuurfoon) een
foon gedeleerd wordt. Tenslotte wordt op een aantal verschillende manieren regels
geselecteerd.

In de eerste deelstudie worden de regels geselecteerd met de hoogste relatieve
frequentie van toepassen. Vervolgens worden met deze regels uitspraakvarianten
gegeneerd, die in alle drie de modules van de spraakherkenner worden gebruikt. Uit
herkenexperimenten blijkt dat als uitspraakvarianten alleen toegevoegd worden aan het
lexicon niet altijd een verbetering in herkenfouten wordt gevonden. Als het aantal
toegevoegde varianten erg groot is wordt zelfs een verslechtering gevonden. Verder
blijkt wederom dat het hertrainen van de foonmodellen de herkenprestaties slechts
minimaal verbetert. Tenslotte laten onze experimenten zien dat het gebruik van a priori
waarschijnlijkheden voor uitspraakvarianten van cruciaal belang is. Als de
datagestuurde varianten worden gebruikt in alle modules van de spraakherkenner,
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vinden we t.o.v. de referentieherkenner een significante verbetering in het percentage
fout herkende woorden van 1.2% absoluut of 7.3% relatief.

In de tweede deelstudie hebben we geprobeerd te achterhalen hoe de
veranderingen in het herkenresultaat precies tot stand zijn gekomen door een
uitgebreide foutenanalyse uit te voeren. Deze foutenanalyse laat zien dat er naast
verbeteringen ook verslechteringen optreden als gevolg van het modelleren van
uitspraakvariatie. Door de introductie van deze verslechteringen wordt slechts een
kleine netto verbetering in herkenresultaat gevonden. Verder blijkt er een sterke
correlatie te bestaan tussen het aantal verbeteringen en verslechteringen op
regelniveau. Dit betekent dat het niet mogelijk is de herkenprestaties te verbeteren
door regels uit te sluiten die veel fouten introduceren, omdat deze regels ook fouten
oplossen.

In de derde deelstudie hebben we drie maten onderzocht die gebruikt zouden
kunnen worden om regels te selecteren. Twee van deze maten zijn gebaseerd op de
toepassingsfrequentie van een regel: Fabs en Frei, respectievelijk de absolute en
relatieve frequentie waarmee een regel is toegepast. De derde maat ('netto resultaat')
komt voort uit de eerder uitgevoerde foutenanalyse en geeft aan hoeveel woorden netto
beter herkend worden ten opzichte van de referentieherkenner. Het blijkt dat F^ en
het 'netto resultaat' het percentage fout herkende woorden het best voorspellen. Van
deze twee maten verdient F^s de voorkeur, omdat F^ praktisch gezien het makkelijkst
te berekenen is. Als Fabs gebruikt wordt om de regels te selecteren vinden we ten
opzichte de referentieherkenner een significante verbetering in het percentage fout
herkende woorden van 1.4% absoluut of 8.2% relatief.

Conclusies
Op grond van dit proefschrift kunnen een aantal conclusies getrokken over
automatische fonetische transcriptie van spraak. We hebben laten zien dat het mogelijk
is om met een spraakherkenner automatische fonetische transcripties van spraak te
maken. De kwaliteit van deze automatische transcripties is over het algemeen wel iets
lager dan de kwaliteit van transcripties die gemaakt zijn door ervaren transcribenten.
Of dit verschil in kwaliteit acceptabel is, hangt af van het doel waarvoor de
transcripties gebruikt worden. Verder blijkt de kwaliteit van automatische transcripties
niet direct gerelateerd te zijn aan de herkenprestaties van een spraakherkenner. Voor
het verkrijgen van optimale transcripties is het daarom het beste om bepaalde voor de
transcriptietaak specifieke eigenschappen van de spraakherkenner te optimaliseren. Zo
blijkt het gebruik van een foonmodeltopologie met een korte impüciete minimale duur
de transcriptiekwaliteit te verbeteren. Verder is het beter om foomnodellen te
gebruiken die getraind zijn op spraakmateriaal waarvan de transcripties nauwkeurig
aansluiten bij de uitspraak. Het gebruik van context-afhankelijke foonmodellen blijkt
alleen nuttig te zijn als deze foonmodellen getraind zijn op basis van een nauwkeurige
fonetische transcriptie. Tenslotte blijkt dat het combineren van bovengenoemde
optimale eigenschappen van de foonmodellen in een nog hogere transcriptiekwaliteit
resulteert.
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Ten aanzien van het modelleren van uitspraakvariatie in ASH kunnen ook een
aantal conclusies getrokken worden. Het blijkt mogelijk te zijn om de herkenprestaties
van een spraakherkenner te verbeteren door uitspraakvariatie expliciet te modelleren.
Voor zowel de kennisgebaseerde als de datagestuurde modelleermethodes werd een
vergelijkbare, significante verbetering in herkenprestaties gemeten. Het opnemen van
uitspraakvarianten in het lexicon zonder verdere aanpassingen aan de spraakherkenner
blijkt niet altijd nuttig te zijn, vooral als het aantal toegevoegde varianten groot is. Het
hertrainen van de foonmodellen op basis van een nauwkeurigere transcriptie van het
trainingsmateriaal is slechts van beperkt nut. Tenslotte is een belangrijke conclusie dat
als uitspraakvarianten toegevoegd worden aan het lexicon het van cruciaal belang is
om gebruik te maken van a priori waarschijnlijkheden van deze varianten.

Verder onderzoek
Het proefschrift eindigt met suggesties voor toekomstig onderzoek. Ten aanzien van
automatische fonetische transcriptie worden een aantal mogelijke richtingen
aangegeven. Het is wenselijk om meer onderzoek te doen waarin nagegaan wordt in
welke mate automatische gegenereerde transcripties verschillen van transcripties die
gemaakt zijn door mensen. Verder is het belangrijk om maten te ontwikkelen waarmee
de kwaliteit van automatische transcripties ingeschat kan worden zonder dat hiervoor
een vergelijking met handmatig gegenereerde transcripties nodig is. In automatische
spraakherkenning worden maten gebruikt waarmee kan worden geschat hoe zeker een
spraakherkenner is van de uitkomst van het herkenresultaat. Dergelijke maten kunnen
waarschijnlijk ook gebruikt worden om de kwaliteit van automatische transcripties te
meten.

Op het gebied van het modelleren van uitspraakvariatie worden ook een aantal
suggesties voor verder onderzoek gedaan. Het is bekend dat mensen veel meer (en
andere) informatiebronnen gebruiken om spraak te herkennen dan de huidige generatie
automatische spraakherkenners. Om deze reden is het wenselijk om meer onderzoek te
doen naar mogelijke alternatieve informatiebronnen. Op basis van deze extra
informatie (zoals spreeksnelheid, de voorspelbaarheid van een woord en de mate
waarin een woord geaccentueerd is) kan de waarschijnlijkheid van varianten beter
geschat worden. Eén van de redenen waarom de tot dusver gebruikte methoden voor
het modelleren van uitspraakvariatie maar een kleine verbetering van het percentage
fouten opleveren is dat de uitspraakvarianten die toegevoegd zijn aan het lexicon
verward worden met andere woorden in het lexicon. Een methode om de
verwarbaarheid van varianten te verkleinen is om uitspraakvariatie dynamisch te
modelleren, d.w.z. dat de varianten alleen gebruikt worden als ze zeer waarschijnlijk
zijn. Dynamisch modelleren van uitspraakvariatie wordt gezien als een veelbelovende
onderzoeksrichting in uitspraakvariatieonderzoek. Tenslotte wordt aangegeven dat het
voor het vergelijken van verschillende methodes om uitspraakvariatie te modelleren
niet voldoende is om alleen herkenpercentages te rapporteren. Een uitgebreide analyse
van de veranderingen in herkenresultaat geeft een beter beeld van het effect van het
modelleren van uitspraakvariatie en maakt het mogelijk om de verschillende methodes
beter met elkaar te vergelijken.
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