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1. ABSTRACT
The problem of estimating ai¡craft pose information from mono-ocular image data is considered using a Fourier descriptor
based algorithm. The dependence of pose estimation accuracy on image resolution and aspect aagle is investigated through
simulations using sets of synthetic aircraft images. Further evaluation shows that good pose estimation accuracy can be
obtained in real world image sequences.
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2, INTRODUCTION
In order to use air defence artillery effectively against incoming aircraft, it is necessary to make accurate predictions of
ai¡craft trajectories. Traditionally, systems capable of pointing and facking use only position measurements based on radar
data to update trajectory estimates. The performance of these systems becomes poor when confronted with fast
manoeuvring targets. It is known from literaturet'2 that fusion of targ et- position data gathered by radar and, target pose
estimates extracted from camera images results in improved tracking and prediction performance. The fusion process is
shown in Figure 1.
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Figure 1. Pose estimation as a part of an enhanced target tracking system.

In this paper we discuss the design, implementation, and testing of an algorithm capable of extracting aircraft pose
information from camera images. Fi¡st, a short int¡oduction to pose estimation techniques is given. Next, the details of the
implemented pose estimation algorithm are explained. Finally, the results from simulations and real-world experiments are
discussed.

Most methods of image based aircraft pose estimation a¡e based on a two step approach. In the first step of this approach,
global rotation, translation, and scale inva¡iant image features are used to compute the aircraft rotation about two axes that
are perpendicular to the optical axis ofthe camera. In the second step, global t¡anslation and scale invariant image features
are used to compute the aircraft rotation about the optical axis of the camera. This two step strategy is the basis of our pose
estimation algorithm.

Moments and Fourier descriptors are the feature types that are predominantly used in aircraft pose estimation. An evaluation
of a moment based pose estimation technique indicates that a large fraction of the pose estimation errors can be attributed to
poor performance in discriminating between mirrored object shapes3. Fourier descriptors are expected to overcome these
problems. In this paper we focus_ on an analysis of the Fourier Descriptor (FRD) based pose estimation method that was
introduced by Wallace and Wintz).
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Fourier descriptors are feature vectors that can be used to characterize the contour of an object. A Fourier descriptor consists

of the normalizedFowier transform of the object contour pixel coordinates. The normalization procedure is chosen such

that the FRD remains invariant under image scaling, translation and rotation. In addition, the normalization procedure is

necessary to make the FRD independent of the pixel sequence starting point on the object contour.

3. THE FRD BASED POSE ESTIMATION ALGORITHM
The structure of the implemented pose estimation algorithm is visualized in figure 2. The processing steps that take place in
the conversion from input image to pose estimate are described below.

I Object extraction
The grayscale image from a camera is converted to a binary image by means of thresholding. It is assumed that the

aircraft silhouette contains sufficient information for object pose estimation. In addition we assume that only one target
is visible in the image and that sufficient contrast between target and background is available to allow for simple and

robust image segmentation.
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Figure 2. Data flow in the pose estimation algorithm
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Contour extraction
A chain of contour points is extracted from the object. The number of boundary points is converted to a default value by
means of linear interpolation.

Compute Fourier descriptor
The x- and y-coordinates of the object contour are combined into a complex number sequence. A FFT is applied to the
sequence to obtain a set of Fourier coefficients. The Fourier coefficients are normalized to obtain an FRD that is

independent of the contour starting point. In the same normalization procedure, the object contour is rotated to a default

orientation. The FRD normalization rotation angle is denoted Q¡n.

FRD conditioning
The FRD descriptor can be thought of as a feature vector. Often, the performance of pattern recognition techniques can

be improved by conditioning the feature vectors. Before conditioning can be applied, the complex valued elements in a

FRD vector of size N are transformed into a new feature vector of length 2N. The first N coefficients in the ne'w vector
are equal to the real part of the original vector and the coefficients N+l through 2N are equal to the imaginary part of the
original vector. Conditioning may include applying offset and scaling to each vector element to obtain vector element
distributions with mean value equal to zero, and variance equal to one. In addition, the use of a Karhunen-Loeve
transform can sometimes improve pattern recognition performance. Conditioning and Kl-transform are optional steps in
the algorithm.

Nearest neighbour search
The conditioned FRD is compared to a reference database, using the Euclidean distance metric. The results from this

search procedure are the best matching FRD in the database, the corresponding database ai¡craft orientation, denoted

[s¿, Ê¿, 1¿], and the FRD normalization rotation angle Q¿.

Initial aircraft pose estimate
The initial aircraft pose estimate, in which ambiguity problems are ignored, is denoted ta, Þ, yl. This initial pose

estimate is equal to [dd, Êd, T¿ - Q¿ + Q:J.

7. Generate alternative pose estimates
From the basic pose estimate tcx, 0, yl, a number of alternative pose hypotheses are derived to account for the ambiguity
that is induced by the object symmetry and the mapping from 3D object to 2D image. The causes of pose ambiguity and

the related pose equivalence relations are summarized in table 1. The aircraft pose hypotheses that are generated in
processing step 7 are listed in table2.

Table 1. Causes of object pose ambiguity

Eouivalence relation Cause

[s,Ê,y] e[-s,-p,y-1 80"] Rotation symmetry (180o) relative to aircraft main
body axis

[a,0,y] e [180'-cx,-0,y] Mirror symmetry relative to the plane through
main bodv axis and tail wins

Table 2. Four ai¡craft pose hypotheses, based on the initial pose estimate tcr, Ê, yl
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8. Select pose estimate
The four pose hypotheses that were generated in step 7 are compared to the previous pose estimate, using a quaternion
based pose similarity measure. The best matching hypothesis is considered to be the current pose estimate.

4. SIMT]LATIONS
In this section we present the results from simulations that were carried out to study the relationship between pose

estimation accuracy and parameter settings in the FRD based pose estimation algorithm. In addition a comparison is made

between FRD based and moment based pose estimation. Finally, the use of the FRD based pose estimation algorithm in
target recogaition applications is studied.

1, Data sets
Each pose estimation experiment relies on two different data sets: the feature vector reference set is used to fill the
algorithm database, while the test set contains the images to which the pose estimation algorithm is applied. Both the feature
vector reference set and the test set are derived from a source set of synthetic images that show an aircraft from various

aspect angles. The sowce set covers azimuth angles in the range from 0o through 360' and elevation angles in the range

from -90" through 90'. In both dimensions samples are taken at 5o intervals, resulting in a total number of 36x12 images.

The resolution of the images in the source set is 100x100 pixels. The relation between aspect angle and aircraft image is
illustrated in figure 3. The roll angle of the aircraft is zero in the reference feature vector set. In most experiments the test set

images are rotated 80o counter clockwise relative to the reference set images. In those experiments where test images with
different roll angles are used, this is explicitly stated. To obtain fair test conditions, a leave-one-out method is used that

ensures that test and reference set do not have any element in common.
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Figure 3.Gray scale images of fighter aircraft for various values of azimuth and elevation

2. Object pose dissimilarity
The relation between two object poses can be uniquely described by a single rotation about a suitable chosen rotation axis.

The rotation axis is chosen such that the rotation angle o, is minimized. We define the dissimilarity of two object poses P

and P' to be equal to the rotation angle o. This concept is illustrated in figure 4

Figure 4. Pose similarity based on an single rotation angle.
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3. Resolution dependent pose estimation accuracy

The average pose estimation effor that occurred in the FRD based algorithm was evaluated through simulation at six

different input image resolutions. In addition a comparison was made to pose estimation resuhs obtained by using a moment
based estimation method3'4. It should be noted that all pose estimation accuracy measurements are based on the previously

defined quaternion based pose difference measure. The outcomes of the simulations indicate that the pose estimation effor

in the ouþut from the FRD based algorithm is approximately 5o smaller than the pose estimation effor in the ouþut of the

moment based algorithm. The pose estimation effors of both algorithms are nearly independent of the image resolution for
input images in the range between 357o and I00%ò of fhe original image resolution.

Figure 5, Pose estimation errors of FRD and moment based pose estimation algorithms at six different

input image resolutions. Pose estimation effors are measured conform definition IL

5. TEST FLIGHT RESULTS
In November 1997 a measurement campaign was carried out in which several aircraft flights were recorded by cameras and

inertial orientation sensors. From these experiments an image sequence, that shows several interesting manoeuvres, was

selected for further analysis. The trajectory that was flown by the aircraft is visualised in f,rgure 6 though a ribbon structure

in which twists represent aircraft roll manoeuvres.

Figure 6. Visualisation of fighter aircraft test flight that was used for measuring pose

estimation performance. The bending ribbon indicates aircraft manoeuvres
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4. Results
In this paragraph an assessment of pose estimation accùracy, based on comparison of estimated and measured aircraft pose

angles, is presented. Aircraft pose angles are expressed relative to a local earth tangent coordinate system. The pose

estimation accuracy measurements are based on a quaterrrion metric. Figure 7 shows a comparison of raw aircraft angle

measurements and estimated arcraft angles.
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Figure 7. Comparison of raw measured aircraft pose

angles and estimated ahcraft pose angles.

From the previous graphs it is clear that some artefacts are present in the inertial instrument based aircraft pose data. The
step of approximately 7o in the pitch angle that occurs at f=l2s is considered to be such an artefact. Visualisation of the

adjusted ai¡craft angle measurements in synthetic images clearly shows a better agreement when compared to the original
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camera video sequence. The original pitch angle measurements and the adjusted pitch angle measurements are compared to

the estimated pitch angles in figure 8.
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Figure 8. Comparison ofraw measured aircraft pitch angles, adjusted measured aircraft
pitch angles, and estimated aircraft pitch angles.

A comparison of pose estimation errors, based on adjusted insffument data and raw instrument data is shown in figure 9.
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Figure 9. Pose estimation eror based on comparison between estimated
aircraft pose and raw measurements of aircraft pose (grey), and
comparison between estimated aircraft pose and adjusted
measurements of aircraft pose (black).

A quantitative comparison of pose estimation errors, based on adjusted instrument data and raw instrument data is shown in
table 3.
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Table 3. Pose estimation error based on ra\il pose measurements and
adiusted oose meâsurement

Mean pose
(all samples)

estlmatlon error
(last 500 samples)

Raw angle measurements 16.1821 14.5210

Adiusted an gle measurements 13.3264 10.3078

It should be noted that the pose estimation algorithm output is based on trustworthy estimates. This means that pose estimate

changes in successive estimates that exceed a certain threshold are disregarded and replaced by the most recent trustworthy

estimate. A comparison of pose estimation errors based on trustworthy estimates and pose estimation errors based on all
algorithm internal estimates is shown in figure 10.
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Figure l0,Comparison of raw pose estimation error (black), and pose estimation

eror after outlier removal (grey).

The ratio between the total number of processed images and the number of images in which outliers had to be removed

amounts to 299 I 947 = I/3. A pose estimate is considered to be an outliner if it difference relative to the previous cofirect

estimate amount to more than 15o.

6. SUMMARY AND CONCLUSIONS
An algorithm was designed and implemented to study the performance that can be achieved in automatic image based

atrc.raft pose estimation. The results from simulations indicate that the FRD based pose estimation algorithm works fairly
well down to low resolution images of 35x35 pixels, resulting in a median pose estimation accuracy better than 15o.

The evaluation of the pose estimation algorithm with real-world flight data produced an average pose estimation error

of 13.3'. Based on these data, we come to the conclusion that the pose error estimates that were obtained from simulations
are in good agreement with the results from real-world experiments.
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