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ABSTRACT  

In the security domain, cameras are important to assess critical situations. Apart from fixed surveillance cameras we 

observe an increasing number of sensors on mobile platforms, such as drones, vehicles and persons. Mobile cameras 

allow rapid and local deployment, enabling many novel applications and effects, such as the reduction of violence 

between police and citizens. However, the increased use of bodycams also creates potential challenges. For example: 

how can end-users extract information from the abundance of video, how can the information be presented, and how can 

an officer retrieve information efficiently? Nevertheless, such video gives the opportunity to stimulate the professionals’ 

memory, and support complete and accurate reporting. In this paper, we show how video content analysis (VCA) can 

address these challenges and seize these opportunities. To this end, we focus on methods for creating a complete 

summary of the video, which allows quick retrieval of relevant fragments. The content analysis for summarization 

consists of several components, such as stabilization, scene selection, motion estimation, localization, pedestrian tracking 

and action recognition in the video from a bodycam. The different components and visual representations of summaries 

are presented for retrospective investigation. 

Keywords: Surveillance, CCTV, security, bodycam, video content analysis (VCA), action recognition. 

1. INTRODUCTION 

The security professional is increasingly supported by technology. The camera has become an important instrument to 

help assess the situation, either live or retrospectively. Besides fixed surveillance cameras we see an increasing number 

of sensors on mobile platforms, such as UAVs (drones), vehicles and the security professional himself. This fits in the 

more generic development of wearable technology – such as mobile phones and smart glasses. Also in the defense 

sector, mobile technology is increasingly being used to support the deployed soldier. Wearable cameras allow for rapid  

local deployment, enabling many novel applications and effects, only now being discovered. For example, recent studies 

showed that the use of body-worn cameras (bodycams) by the police leads to a reduction of violence and complaints by 

civilians [3]. Defense forces in counter-insurgency scenarios may discover similar effects when using bodycams while 

interacting with the local population. 

The increased use of bodycams creates several challenges and opportunities. The growing amount of video footage is 

challenging in terms of practical usefulness and searchability. How can we extract relevant information from such video, 

how can the information be presented, and how can an officer retrieve information efficiently? Nevertheless, such video 

gives the opportunity to stimulate the professionals memory and support complete and accurate reporting.  

In this paper, we explore the opportunities for the application of bodycams and challenges that may be associated with 

the video footage it produces. We focus on how video content analysis (VCA) can address these challenges so that 

opportunities may be seized, including the creation of video summaries that allows quick retrieval of relevant fragments. 

This also implies developing VCA components, such as stabilization, scene selection, motion estimation, localization, 

pedestrian tracking and action recognition in bodycam videos. Different components and visual representations of 

summaries are presented for retrospective investigation. Our main contribution is that it gives an overview of state-of-

the-art VCA capabilities related to the use cases for body-worn cameras. Several VCA capabilities had to be modified to 

allow usage on these moving cameras. Examples of those novel modifications are the selection of sharp frames for 

stabilization, periodic analysis for gait recognition, and the cueing virtual pan-tilt-zoom (PTZ) for action recognition. 
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The outline of the paper is as follows. The background is described in Section 2, which elaborates about the potential 

benefits of bodycams and the relevance of VCA for bodycams in security applications. The VCA capabilities are shown 

in Section 3. Section 4 describes the visual representation summary. Finally, the conclusions are presented in Section 5. 

2. BACKGROUND 

The public discussion about the use of bodycams has mainly focused on civil rights
2
 and the reduction of violence 

between police forces and citizens. Unnecessary or excessive use of violence between civilians and police remains a 

source of concern. The use of bodycams can reduce the use of force by the police against civilians and the number of 

complaints about police misconduct [3]. Such results lead to high expectations of the bodycam elsewhere [19]. But 

realization and proof of any (positive) effects also requires implementing proper working procedures, ICT support and 

administration of incidents [19]. 

Other use cases are more in line with the main purpose of police itself: maintaining law and order. It appears that citizens 

are more accepting the outcome of an interaction with the police if they know that there is video of the incident. This has 

been shown for regular surveillance cameras (CCTV) [49], but is likely also the case for footage from bodycams. So, if 

the use of bodycams increases the chance that there is an adequate quality of video footage available of an incident, then 

this increases acceptance of outcomes, and may reduce the costs of subsequent legal procedures.  

Although these are good reasons for implementing bodycams on a large scale, there are also challenges associated with 

bodycams. Specifically, they produce large amounts of data that need to be processed, stored and viewed by end-users. 

As more data is collected, more advanced and user-friendly ways to retrieve desired episodes become needed.  

One way to do this is to present information to end users to aid stimulation of their memory. Not all events are 

remembered well by the human memory, but specifically those that seem relevant at the time. In contrast, the bodycam 

can capture data without loss of information. Recorded footage can therefore support the human memory, even beyond 

what was directly visible in the footage. Testimonies of all witnesses – including police officers – may be improved by 

reviewing the (bodycam) video footage. However, the amount of recorded data can be large and finding relevant events 

to stimulate or support memory can be time consuming, which forms an opportunity for the application of VCA. 

2.1 Stimulating the memory 

Episodic memories are memories of autobiographic events (who, what, where and when knowledge). The quality of the 

recall of this memory can be improved if one is presented with cues about the people involved in an event, the content of 

the event, the location and the time of the event etc. It was found that reviewing self-recorded images (similar to 

bodycam footage; reflecting episodic memory) gave rise to higher recall in both types of memories than well-known 

control images (reflecting only semantic memory). Good memorable cues are recognizable, distinctive (unusual or 

prototypical) and personally significant [30]. 

There are several ways to present information to a user in a graphical user interface (e.g., [11][18][25]). Presented cues 

should be closely related to key elements of memory triggers: who (e.g., number of people in the scene based on face 

detection), what (bright/dark, special/routine, semantic concepts), where (location, near / far), when (day/night, time of 

day, calendar selection, but also before / after). Four important types of cues can be expressed: visual cues (especially 

photos of locations, persons, actions and objects [30]), location (global positioning system: GPS), temporal (date and 

time) and social cues (people involved). These cues can be presented in different panes, e.g., showing video frames, a 

map with tracks and a timeline with event information.  

Graphical presentation of visual cues (Snaps), location cues (Tracks) and the combination (SnapTracks) have been 

compared on its effect on memorizing events [26]. Tracks appeared to stimulate the inference instead of actual 

remembering and Snaps led to more recall of details than SnapTracks. The higher recall may result from the design of 

the Snaps interface, which shows multiple images without user intervention. This contrasts with SnapTracks – where 

users are first presented with the map visualization, which they then use to navigate to the images – making access to 

images less direct. However, the participants preferred the combined version, so that they could rapidly navigate through 

a large amount of data and then zoom in on details of interest. 
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The combination of photos with textual annotations was also studied [25]. The study showed that people accessed the 

annotations more than photos. People felt the textual annotations provided more fine-grained indices when scanning for 

relevant information. For the photos it seemed more difficult to find an appropriate visual index. 

Several studies showed that social cues are very important for recall [30], but the cues have not been tested in these 

studies since the good methods to represent social cues were not available [18]. Furthermore, vision-based shot detection 

performed poorly in moving body-worn cameras [11]. These studies emphasize the human perception aspect of the 

human-machine interface and the human recall of episodic memory, while more recent developments in video content 

analysis (VCA) were not taken into account.  

2.2 Other use cases of bodycams 

Bodycams may also help in the preparation before a police deployment. For example, consider the scheduled visit of an 

important person (VIP) to a new, not yet secured location. Scouting the location before the visit with the use of a 

bodycam can help the police – and the VIP – to create a mental map of the environment, and to assess the behavior there. 

It may be desirable to reconstruct the scene and assess human behavior. Furthermore, it may be useful to analyze the path 

of the user of a bodycam and link the data to regular fixed CCTV footage of cameras with known locations to obtain 

good localization and further situation awareness. 

A further use case could be the live detection of aggression, either applied by the wearer of the bodycam, or directed 

towards him. Currently available bodycams are already equipped with manual start, stop and alarm buttons (operated by 

the carrier or remotely). But this kind of functionality can also be automatically initiated by live processing of the video 

or other nearby signals. This may be an opportunity for tools that can live detect aggression in audio and video footage, 

such as people – including the wearer – swearing, shouting, running, fighting, falling and lying down. A first step may be 

the development of a tool that automatically generates summaries of riots where many officers used bodycams. 

Yet another use case, one that typically triggers privacy concerns just on its own, is the use of bodycams to recognize or 

even identify people or vehicles that are registered as missing, wanted or that have a restraining order. On the one hand, 

this requires very high quality data in terms of resolution and contrast, which may be a complication. On the other hand, 

the sideways viewpoint from a bodycam is optimal for the capture of such data. This may be an opportunity for 

automated tools that capture and process number plates and (soft) biometrics, including face, voice, gait and clothing. A 

first step may be the development of an automated tool that scans historical bodycam footage for number plates of stolen 

vehicles or faces of missing persons. However, more public records could become a large burden on the capacity of a 

police force when citizens exercise a right to view data that is recorded of them, especially when the privacy of other 

people in the scene must be respected. This creates a demand for tools that implement privacy enhancing technologies, 

such as the automatic blurring of faces. 

Other, perhaps more farfetched use cases include the automatic interpretation and translation of speech, the detection of 

lies and a social interaction support module, a system that assists the user during a social interaction, similar to what is 

currently in use at call centers. 

2.3 Relevance of VCA for bodycams in security applications 

VCA solutions are used to reduce the huge amount of data that CCTV cameras produce so that the operator can focus on 

the most relevant parts. For example, sterile-zone monitoring alerts operators for activities in industrial zones that should 

be abandoned at night. More advanced analysis is emerging to find suspects [7] and to detect suspicious behavior [9]. 

Besides fixed CCTV cameras we see an increasing number of sensors on mobile ‘platforms’, such as UAVs, vehicles, 

police officers and civilians. We expect that the rapid growing market of smart phones, smart glasses and bodycams will 

lead to an increasing need for VCA on mobile footage. However, the existing VCA technologies developed for CCTV 

cameras are not directly applicable to bodycams, because they often assume that the camera is (almost) static. The VCA 

techniques for bodycams should be able to cope with a moving camera viewpoint and a dynamic scene. 

The VCA processing can be done online (i.e. ‘live’ or ‘real-time’; when the police officer is in action) or offline (i.e. 

‘delayed’ or ‘retrospective’; at the end of the day or even later when there is a specific question from an investigation). 

There are two reasons why we believe that offline processing will be used before online processing. The first reason is 

that computation, communication and energy resources are scarce. Retrospective resources are less scarce than those 

needed for real-time processing. The second reasons is that, although live usage could benefit from an early warning 

system, the number of false alarms must be extremely low, while retrospective use could also benefit from a more 
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efficient interactive search or summary application. These applications can speed up the search time, even when they are 

not perfect. Therefore, we focus on VCA capabilities for retrospective summarization of videos.  

Table 1 shows a list of use cases related to VCA in bodycams. For each of these use cases, we show for which security 

functions they are useful. In this table we see that three of the security functions potentially benefit the most from the 

application of VCA to bodycam footage: collect proof, improve testimony and efficient reporting. For these security 

functions many different use cases for the use of VCA can be defined. These three functions represent three different 

strategic drivers for innovation in security: obtaining results, reducing errors and reducing costs. 

Table 1: Use case (and related VCA capability) versus security functions. 

Relevant use case or example  
(related VCA capability between brackets) 
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Live VCA useful × ×      × × × 

Delayed VCA useful ×  × × × × × × × × 

Allow fast forward playback for more efficient viewing of a 

long video (stabilization) 
×  × × × × ×  × × 

Summarized long video by presenting thumbnails for each 

different environment/scene (scene detection) 
  × × × × ×  ×  

Obtain position information for indoor situations where GPS 

fails (ego-motion estimation and localization) 
 × × × × × × ×   

Allow alignment with GPS information, allow ego-action 

recognition (estimate orientation change) 
× × × × × × × ×   

Allow detection of changes in the environment, e.g., left 

luggage (spatial synchronization) 
 × × × ×  ×    

Actions of agent may indicate whether he needs assistance, 

e.g., the agent is running or falling (ego-action recognition) 
×   × ×   × ×  

Recognize suspects or missing persons or objects (face 

recognition, object recognition) 
 × × × × × ×   × 

Recognize the officer that is wearing the camera (gait recogn.) ×     ×     

Finding suspects, victims or witnesses (re-identification) × × ×    ×  × × 

Find stolen objects or owner of left luggage (object detection)  × × × ×  ×    

Find a running suspect (action recognition) × × × × ×    ×  

3. VCA CAPABILITIES 

3.1 Framework overview 

Just like in other application scenarios, VCA capabilities can be used together, which requires an encompassing 

framework. The framework for the analysis of video from a bodycam consists of the following VCA capabilities: 

stabilization, scene selection, motion estimation, localization, pedestrian tracking and action recognition (see Figure 1). 

Finally, the information of the different VCA components is summarized in a visual representation. The components and 

representation are described in the following subsections.  
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Figure 1: Overview of the framework. 

3.2 Stabilization and frame selection 

For body-worn cameras, stabilization and frame selection are important during live view or retrospective playback. The 

bodycams shake and move due to the gait of the police officer wearing it. Stabilization is required, especially for an 

efficient fast-forward playback. Stabilization is commonly used to compensate for small shaking movements of the 

camera such as those due to movement caused by wind or by vibrations from an engine. Recently, innovative 

visualizations were proposed to allow for extremely fast forward, such as the BriefCam video synopsis [40] (which is 

especially suitable for deserted static cameras) and hyper-lapse [27] (which is suitable for bodycams). Hyper-lapse was 

proposed as a way to compensate for large movements [27]. This approach is similar to the ‘simultaneous localization 

and mapping’ (SLAM) and three-dimensional (3D) reconstruction-based methods [53] and it constructs a smooth virtual 

camera path through the environment. Recently, a more efficient implementation was proposed for fast-forward playback 

[38]. Instead of uniform frame sampling (as a common baseline), they use a frame selection based on forward looking 

frames. However, a side effect of camera movement is the introduction of motion blur in the recorded images, especially 

in forward looking frames. Therefore, in this paper, we propose a novel frame-selection method, which we will call 

‘LuckyLapse’, similar to lucky imaging [13][15]. The proposed method does not select the central forward looking 

frames – since the walking pattern causes much motion blur when the camera is in the center – but it selects the extrema 

points left and right, which contain hardly motion blur. Therefore, these points are used to obtain a sharper image. These 

images are valuable for the retrospective reporting and content analysis. Furthermore, it may be useful to create a virtual 

stereo camera and perform depth analysis. The relation between horizontal motion (measured with optic flow) and the 

image sharpness (measured with a local blur estimator [8]) are shown in Figure 2. 

3.3 Scene selection and summarization  

Scene selection is important to reduce the complete video to only the unique environments, which simplifies retrieval 

and may stimulate the memory of the professional. Selecting distinct scenes in a single continuous video (e.g., life-

loggings) has some similarities to selecting different shots in a video composed of many fragments (e.g., movies, 

broadcast TV programs). In shot (or logical story unit (LSU) [47]) detection, the aim is to find transitions from one video 

fragment to the next. Various shot-detection methods have been proposed that search for a visual dissimilarity caused by 

the transition [46]. Yet, the difference for bodycams is that there are no discrete fragments. To solve this, an advanced 

method was presented to provide a video summary with only the most distinct scenes [54]. Sparse coding was used to 

select only the scenes that are hard to reconstruct given an online learned dictionary. The true novelty is that scenes are 

selected online, i.e., while the video is being generated. Another difference for bodycams is that a large portion of visual 

dissimilarities is caused by camera ego-motion. Recently, a new method coined SenseCam [11] was proposed to select 

the dissimilarities that relate to a change of scenes and to ignore other dissimilarities. Visual dissimilarity was expressed 

in terms of semantic characteristics.  
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Figure 2: Horizontal optic flow (top) and the average local blur estimate (bottom) during forward motion (walk or run). The sharpest 

images (low blur, red circles) can be selected when the horizontal motion is minimal. 

The advantage is that these suffer less from motion artefacts and that a user can relate to the data more easily. The 

semantic characteristics relate to the who, what and where of the visual content. Computer vision enables the search by 

determining – for instance – the  number of people in the scene (who), whether the scene is bright or dark, or contains 

specific semantic concepts (what), and characteristics about the location such as buildings (where). An advanced fusion 

algorithm combines these characteristics into the scene selection. 

3.4 Ego-motion estimation and localization 

Localization of police officers may be valuable to assess the situation and to guide personnel in the field. GPS 

information provides absolute location information in outdoor settings without any drift, but the GPS signal reception is 

hampered by buildings and indoor situations. With 3D reconstruction techniques it is possible to compute simultaneously 

the ego-motion of the camera and the location of points on the observed surface in 3D space [53]. The video-based ego-

motion estimation provides location in outdoor and indoor settings, but it is hampered by drift. This can result in a 

location estimate that is complementary to GPS information. GPS and ego-motion estimation can therefore best be 

combined, to compensate for the weakness of the other. 

An alternative localization approach is the recognition of specific scene elements. In particular, the images in the 

bodycam can be matched to images in the environment, e.g. CCTV footage of fixed cameras. This matching can be 

performed with ‘scale invariant feature transform’ (SIFT) descriptors [32] (See Figure 3). The CCTV camera for which a 

close match is obtained reveals location of the bodycam. This localization approach requires the presence of unique and 

recognizable scene elements, and produces a smaller set of location estimates when compared to ego-motion estimation. 

However, it is less computationally demanding and does not suffer from drift. 

 

Figure 3: Matching images from a bodycam (left) to images of a CCTV camera (right). This allows localization of the bodycam. 
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3.5 Estimation of orientation change 

Estimates of the change in orientation are useful to analyze the activities of the police officer and to synchronize video 

data with GPS data. In this section we describe how to estimate the changes of the orientation of the user wearing the 

bodycams. To estimate the motion of a camera, SIFT keypoints are computed in the camera images. For pairs of 

consecutive frames the keypoints are matched [32] and further refined by calculating the fundamental matrix using a 

‘random sample consensus’ (RANSAC) [14] approach. Under the assumption that the movement of the user is small 

between two frames, we can extract the rotation between the camera orientations between consecutive frames from the 

fundamental matrix [20]. Even though the motion estimation between two frames is ambiguous (we cannot determine the 

scale of the movement), the rotation is well defined. Since the bodycam is worn in upright position, we can extract the 

rotation of the user from the rotation of the camera. Although for each pair of frames the rotation is only a rough and 

noisy estimate, the integrated values over a sequence of frames are rather robust. In particular the roll and yaw 

components of the rotation show good correlations with activity of the wearer. The extracted changes in orientation can 

be used to derive information about the recording, e.g., whether the person moved, was walking or turning. In Figure 4, 

the roll between frames (with an interval of 0.2 seconds apart) is shown, and a clear difference is visible between the 

periodic movement while walking and the absence of movement when standing still. In Figure 5, the sideways turn 

(yaw), integrated over 5 seconds, is shown. The larger peaks correspond for example to a 180 degree clockwise turn (on 

the left, see also Figure 6) and an approximately 360 degree anti-clockwise turn (on the right).  

 

Figure 4: Roll changes in degrees, between images 0.2 seconds apart, during 2.3 minutes. The middle part is while standing still, the 

rest while walking. 

 

Figure 5: Sideways turn (yaw) in degrees, integrated over 5 second intervals, during a 2.5 minute period. 

 

Figure 6: View during the 200-degree positive peak on the left in Figure 5. The thick red bars indicate horizontal and vertical 

orientation change rate, with the then (almost vertical) green line indicates roll. 

3.6 Spatial synchronization 

When analyzing a certain event using recorded video it can occur that the same location has been recorded multiple 

times. This can occur in recordings from different bodycams or in recordings from the same bodycam over time. In order 

to compare these recordings, it is useful to place them in the same frame of reference (e.g. spatial and temporal). In this 

section we describe how to synchronize two videos such that playing them simultaneously allows an operator to spot 
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differences easily. Suppose an officer wishes to focus on all video material at a certain location. It is easy to select all 

(segments of) videos that are relevant to this location, by using the GPS data associated with the cameras. If multiple 

videos are relevant, the streams can be synchronized in order to structure the playback of these videos.  

The starting point of our method is a pair of videos (possibly from different times) that are recorded at the same location. 

Since the videos are recorded at the same location, it is likely that the individual frames in the videos have a large 

overlap and can be matched to each other. We do this by sampling the video streams at a low framerate (1-2 Hz) and 

calculating SIFT keypoints [32] for all sampled frames. For each pair of frames from video 1 and video 2 the keypoints 

are matched using the corresponding SIFT descriptors. The matching is then refined by estimation of the fundamental 

matrix [20]. The number of matches between the sampled frames is shown as a matrix in Figure 7. It is clear that there is 

a section in the middle of the videos with a good overlap (the number of matches is over 300). After calculation of the 

number of matches, the best order is determined for simultaneous playback of the two videos. We do this by creating a 

graph from the pairs of frames and determine a path with minimal costs. Each pair of frames corresponds to a node of the 

graph and nodes corresponding to pairs of frames that are close are connected with an edge. With each node a weight is 

associated that depends on the number of matches (more matches results in a lower weight or cost). We then search for 

the cheapest path in the graph that connects the first pair of frames to the last pair of frames. The path found by our 

method is shown in Figure 8 with a green line. Using the constructed path we can create a simultaneous playback of the 

videos. Each point of the path corresponds to a pair of frames that is used for playback. In order to playback the videos at 

normal speed (recall that we sampled frames for analysis at a low framerate) we smooth the path and use linear 

interpolation between the nodes of the path. A further improvement in the simultaneous playback would be to, not only 

align the frames, but also to align the pixels in the individual frames using the keypoints matches. Initial experiments 

indicate that this has to be done at a higher framerate in order to arrive at a good registration. Also parallax effects are 

strong, so it could be that alignment of all pixels using a simple homography (projective transformation) would not 

improve the experience of the operator. This is something to investigate in further research.  

 

Figure 7: Number of matches between sequences (range 0 to 750 matches). 

3.7 Ego-action recognition 

There are two types of actions: the actions of pedestrians that are visible in the video and the actions of the person that is 

wearing the bodycam [5][37][39], which we will call ‘ego-actions’. Ego-action recognition is useful to analyze the 

actions of a police officer or another person wearing the bodycam. For example, when a police officer is running or 

falling, it may be relevant to send an alert to colleagues. From the orientation angles as signal in time, as described in 

Sec. 3.5, actions of the person wearing the camera can be recognized. As a simple example, from the roll and the yaw of 

the image, it was derived when the person was walking or not and when a turn was made. For walking, the amplitude of 

the roll signal (measured as the root-mean-square over a few seconds) is a good indication, but it would result in many 

false alarms. Determining whether the signal is periodic, turned out to be a robust indicator. The periodicity was checked 

by taking the autocorrelation of a 3 second interval, which should be periodic as well, showing clear peaks at constant 

intervals. An example is shown in Figure 9, which shows the autocorrelation of a 6 second interval of the signal in 

Figure 4. Figure 10 shows the resulting action recognition. Walking is defined as a periodic signal combined with high 

enough root-mean-square of roll. Turning indicates turns of over 45 degrees. The first two turns correspond to the 180 

degree and 360 turns in Figure 5.  
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Figure 8: Three examples of synchronous playback of matching frames. This can help to find changes in the scene, such as the bicycle 

and the car. 

 
Figure 9: Autocorrelation of the roll angle in a 6 second interval during walking. 

 
Figure 10: Ego-action recognition, showing intervals of walking and occasions of larger turns. 
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3.8 Gait recognition 

Soft biometrics such as gait recognition, could be used to recognize the officer based on other bodycam footage which 

can be traced back to him. This could be useful if the information is lost that describes which bodycam was used by 

which officer. People have a periodic pattern in their walking pattern in the order of a second, but there are variations 

between persons. This periodicity is visible in the estimated orientation changes. As a simple test, 12 recordings of six 

persons with four cameras were used. Recordings were cut in parts of about 5 minutes, for which the orientation changes 

were estimated. The period of the signals while walking (as determined by the Ego-action recognition of Sec. 3.7), and 

the root-mean-square of the signals themselves were determined over a single interval as training. Of all other intervals, 

these values were compared to the training values, using the standard deviation as a weight, and choosing the closest 

match to label the recording. This results in the confusion matrix in Table 2. The average correct recognition is 70%. 

Table 2: Confusion matrix for gait recognition.  

True labels (P1 – P6) Class label estimates (P1 – P6) 

 P1 P2 P3 P4 P5 P6 

Person P1 64% 0 27% 9% 0 0 

Person P2 0 93% 7% 0 0 0 

Person P3 16% 21% 47% 16 0 0 

Person P4 0 0 0 100% 0 0 

Person P5 0 0 13% 7% 40% 40% 

Person P6 0 0 16% 0 11% 74% 

 

3.9 Face recognition 

The recognition of faces is useful to detect missing people, people with restraining orders or wanted criminals. A similar 

usefulness holds for number-plate recognition. Initial experiments with face recognition on bodycam footage have been 

performed with a commercial off-the-shelf face-recognition application and a low quality observation chain [35]. 

3.10 Pedestrian tracking and re-identification 

Pedestrian tracking and re-identification (i.e. ‘forensic search’ or ‘people recognition’) is relevant to retrieve suspects or 

witnesses quickly (Figure 11). A system for person re-identification typically consists of pedestrian detection [12], 

tracking [21] and matching [1][4][7][33][34][48][51][55]. In order to handle the severe motion of the bodycam, we used 

a tracking algorithm that uses appearance (template matching) and motion estimates (of camera and pedestrian). Re-

identification is important as social cue to stimulate memory, but also to answer the typical surveillance questions, such 

as: “Where did a suspect go to?” or “Where did he come from?”. The graphical user-interface with a time axis, a camera 

axis and many thumbnails of tracks [7] can be helpful to present the social cue and find similar people (or faces) 

efficiently. 

3.11 Object detection 

Object recognition and localization is important to understand the content of video and allow flexible querying in a large 

number of cameras. Typically, the object detectors that perform well on public benchmarks are trained on large 

collections. The deep convolutional neural network (CNN) has been demonstrated to be an effective approach of which 

several implementations have been proposed, such as Caffe [23], Overfeat [45] and R-CNN [17]. Recently, a real-time 

general-purpose search engine was developed that allows users to pose natural language queries to retrieve 

corresponding images [43]. Top-down, this demonstrator interprets queries, which are presented as an intuitive graph to 

collect user feedback. Bottom-up, the system automatically recognizes and localizes concepts in images and it can 

incrementally learn novel concepts. A smart ranking combines both and allows effective retrieval of relevant images. 

Alternative methods can also be used to find specific items, e.g., based on change detection (difference with 

background), instance search with SIFT descriptors, or with color information. For example, the blue bag below can be 

retrieved efficiently without learning a convolutional neural network (Figure 12).  
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Figure 11: The user can select a query image of a person in one camera (‘target’) and find similar people in other cameras (candidate 

number 1 to 5). Faces have been anonymized manually for this publication. 

 

Figure 12: The retrieval of a blue bag in 30 minutes of video can be assisted by presenting objects with a similar color of blue to the 

user. Faces and number plates have been anonymized manually for this publication. 

3.12 Action recognition 

The purpose of action recognition is to describe what people – who are visible in the video – are doing. One of the 

existing pipelines consists of the computation of spatio-temporal interest points (STIP), k-means clustering and bag-of-

words (BoW), and an support vector machine (SVM) classifier [Burghouts, AVSS]. Recently, we observe improved 

actions recognition with improved dense trajectories (IDTs), Fisher Vectors (FV) [50], interactions [42] and 

convolutional neural networks [22][24][44]. The IDTs contain the following features: histograms of oriented gradients 

(HOG), histograms of oriented flow (HOF), and motion boundary histograms (MBH). For each of these three features, 
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we compute principal components (PCA), cluster centers (k-means), Gaussian mixture models (GMM) and FV [6]. The 

resulting three vectors are concatenated and normalized, and subsequently classification is performed with a linear SVM. 

For moving cameras, the IDTs have shown to give better performance than STIP features [50]. However, the IDT has 

two disadvantages. First, it provides only a limited description of the motion in a camera. E.g., forward motion of a 

bodycam results in a left-ward motion on the left-side of the image and a right-ward motion on the right side, which 

cannot be modelled very well. Second, the basic implementation, as commonly used, only provides a classification per 

frame, which is not suitable when multiple persons are present in the scene. To improve the performance of action 

recognition, we cued a ‘virtual PTZ’ based on the track of the person. The cueing resulted in footage that was stabilized 

for the motion of the camera and focuses on one person, which improves the action recognition. 

The cued footage must be well tracked and stabilized. Motion is caused by three factors: motion of the camera, motion of 

the person and noise in the localization of the detector. Connecting detections of a pedestrian detector (e.g., [12]) has a 

low systematic motion error over a long time, but it introduces too much jitter. Template matching with a fast update 

which is based on the detection in the previous frame has a low stochastic error, but it will result in a drift over a long 

time. Therefore, our solution contains the following steps: tracking through pedestrian detections for low systematic 

error (but which suffers from jitter), frame-to-frame template matching for a low stochastic error which can compensate 

for rapid motions (but which suffers from drift), and a combination function that lets the systematic error slowly decay. 

The training material was obtained from HMDB [28], where we used clean examples of the classes walk, run, and bike. 

The tracking and cueing was also performed on the training data, which is independent from our bodycam data. Results 

on the bodycam data are shown in Figure 13. 

    

    

    

Figure 13: Example results of the actions classifiers on bodycam data. Based on the tracking and cueing results, actions such as walk, 

run, and bike can be recognized in short cued movie clips. 
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4. VISUAL REPRESENTATION DEMONSTRATOR 

We implemented a graphical user interface (GUI) for the interaction with the VCA capabilities (see the demonstrator 

mockup in Figure 14). This GUI contains several panes. One of them is used to present spatial (GPS) information on a 

map, which is suitable to answer ‘where’ questions or to inspect footage at a certain location (e.g., the location of an 

incident). Another pane is used to show time segments, for the ‘when’ questions (e.g., when is the police officer walking) 

or to inspect events at a certain moment (e.g. the time of the incident). Another pane is used to present social information 

– such as snippets of persons – which is suitable to answer ‘who’ questions (e.g., to find a suspect).  

In some cases, the interpretation of long videos can be enhanced by the efficient presentation of image information. In 

addition to the methods for faster playback (Sec. 3.2), a montage of thumbnails can help to represent the video without 

automatic content analysis. An example is shown in Figure 15. The left part of the figure shows an overview of 30 

minutes of video. Within a glance, a user can see that the wearer of the bodycam was biking, visiting the Dutch house of 

parliament (Binnenhof), biking again, walking in a shopping area, waiting at the ‘Xenos’-shop, biking again, visiting the 

Binnenhof again, and finally biking. With a few clicks, the user can ‘zoom in’ on the time interval that represents the 

moment after leaving the Xenos shop. A view on the scene can help to find relevant moments and stimulate the memory. 

Table 3 shows a list of visual representations. For each of these representation, we show in which security related cases 

they are useful, and how they help to stimulate the memory and support an efficient search strategy. 

 

Figure 14: Graphical user interface with a map to present GPS position information (‘where’), time segments to present temporal 

information (‘when’) of orientation and objects and person snippets to present social information (‘who’). 
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Figure 15: A montage of thumbnails of video with a small horizontal time-bar at the bottom. The red box at the time bar indicates the 

time interval that was selected. (Left) The thumbnails show an overview of 30 minutes of video. (Right) The thumbnails are retrieved 

at the small time interval of only a few minutes after leaving the yellow ‘Xenos’-shop. 

 

Table 3: Visual representation and the relation with relevant use-cases and cues that support the professional. 

VCA capability / 
Visual representation 

Relevant use case / example 

Visual representation with 

textual summary 

A textual summary can easily and flexibly be searched for elements that are of 

interest. 

Visual representation with time 

segments 

Finding moments where a police officer is running. ‘When’-cue can stimulate the 

memory. 

Visual representation with 

snippets 

Finding suspects, victims or witnesses. The ‘who’-cue can stimulate the memory. 

Visual representation with GPS 

and map 

To focus on video material that was recorded at the location of an incident. 

Location (‘where’) cues are important to select a region of interest. 

Visual representation with 

montage of thumbnails 

To present different scenes in the video efficiently. A view on the scene is a cue 

that can stimulate the memory. 

5. CONCLUSIONS 

The main contribution of this paper is that it gives an overview of state-of-the-art VCA capabilities related to the use 

cases for body-worn cameras in the security domain. VCA capabilities on bodycam footage can help to realize and 

improve security functions. For some of these functions VCA can improve in a relatively small number of ways (e.g. 

Amber Alert), for others there are many improvements possible (e.g. collect proof, improve testimony and efficient 

reporting). A complete summary of the video can be made automatically. A visual representation allows quick retrieval 

of relevant fragments. The content analysis for summarization consists of several components, such as stabilization, 

scene selection, motion estimation, localization, pedestrian tracking and action recognition in the video from a bodycam. 

Several VCA capabilities had to be modified to allow usage on these moving cameras. Examples of those novel 

modifications are the selection of high-quality frames for stabilization, gait recognition by periodic analysis, and the 

cueing virtual PTZ for action recognition.  
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