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ABSTRACT

Object recognition and localization are important to automatically interpret video and allow better querying
on its content. We propose a method for object localization that learns incrementally and addresses four key
aspects. Firstly, we show that for certain applications, recognition is feasible with only a few training samples.
Secondly, we show that novel objects can be added incrementally without retraining existing objects, which is
important for fast interaction. Thirdly, we show that an unbalanced number of positive training samples leads
to biased classifier scores that can be corrected by modifying weights. Fourthly, we show that the detector
performance can deteriorate due to hard-negative mining for similar or closely related classes (e.g., for Barbie
and dress, because the doll is wearing a dress). This can be solved by our hierarchical classification. We introduce
a new dataset, which we call TOSO, and use it to demonstrate the effectiveness of the proposed method for the
localization and recognition of multiple objects in images.
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1. INTRODUCTION

The number of networked sensors – e.g., CCTV and smartphones – is growing exponentially and the amount
of image data increases daily (e.g., YouTube, surveillance applications). Concept detection and localization
is important to understand the content of video and allow flexible querying in a large number of cameras,1,2

especially in the security and defence domain. Concepts may include objects, actions, scenes and events and in
this work we will mainly focus on objects. Typically, the object detectors that perform well on public benchmarks
are trained on large collections (e.g., ImageNet3 or fine-grained datasets4) or annotated subsets (e.g., the Pascal
Visual Object Challenge (VOC) challenge5 and the ImageNet Large-Scale Recognition Challenge (ILSVRC)6).
The deep convolutional neural network (CNN) has been demonstrated to be an effective approach of which
several implementations have been proposed, such as Decaf/Caffe,6–8 Overfeat9 and R-CNN.10

The following problems, which are relevant for incremental concept learning and localization, have not yet
been addressed. While CNNs have proven to be highly effective in challenges that contain huge training col-
lections, it is not yet clear how they perform on practical applications with only a few training samples.11

Furthermore, new classes may (initially) consist of a low number of positive examples, resulting in an unbal-
anced number of samples in each class. Finally, the user may start adding new classes that are very similar or
closely related to existing classes. For example, in the case when ‘Barbie’ and ‘dress’ are two concepts and the
Barbie is wearing a dress (similar for ‘navy ship’ and ‘sea’).

Our novel contribution is that we propose a concept-detection method with incremental learning that ad-
dresses these problems. Firstly, we show that for a focused application in a single domain, it is possible to
reduce the number of training samples to a low number and that the performance benefits from a training set
that is as specific as possible for the purpose. Secondly, we show that the addition of novel concepts is often
possible without retraining existing concepts, which is important to minimize computational cost and to allow
fast interaction. Thirdly, we show that an unbalanced number of positive training samples leads to biases in
classifier scores that can be corrected by giving higher weight to the classes that occur less frequent. Fourthly,
we show that deterioration of the detector performance due to hard-negative mining for similar or closely related
classes can be solved by a hierarchical classification approach.
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The outline of the paper is as follows. The method is presented in Section 2, experimental setup and results
in Section 3 and 4, and conclusions in Section 5.

2. METHOD

The framework that we propose can improve recognition pipelines that consist of feature computation, smart
negative selection, and classification with support vector machines (SVMs), as is commonly used for recognition
of concepts, such as objects10 and actions.12 For this paper, we selected the pipeline of R-CNN,10 which has been
demonstrated to be effective for object recognition and localization in several benchmark datasets.10 The system
takes an input image, extracts bottom-up candidate regions, computes features for each region using a large
CNN and then classifies each region using class-specific linear SVMs.13 We used the CNN model that generates
4096 first-stage features for each region7 and – in some experiments – we used the pre-trained SVM models that
generate 200 second-stage concept scores10 as if they were first-stage features. The first-stage features need to
be computed only once for each image, independent of the number of concepts, allowing scalability to a large
number of concepts. The second-stage linear SVMs can be used for training new concepts on-the-fly. Non-
maximum suppression is used to select the dominant concepts, and hard-negative mining10 is used to boost the
performance of the classifier. Our concept-detection method with incremental learning was recently integrated in
an interactive demonstrator14 that can translate natural language queries to structured queries,15 find concepts
in images, and rerank results for effective retrieval of images.16

The novel proposed concept-detection method allows incremental learning with a low and varying number of
training examples. The system is able to retrain only one class without affecting the detectors of other classes,
to make a random selection of other classes that are used to mine the negatives, and to make a random selection
of images in each class. The SVM class weights (w in liblinear13 or pos loss weight in R-CNN) are modified to
give higher weight to small classes by setting w = max(2, 100/P) for positives and w = 1 for negatives, where
P is the number of positive training images. Commonly, hard-negative mining performs better than random
negative mining. However, for similar and closely related concepts, selection of hard negatives may lead to
inferior quality. This mining should eliminate irrelevant negatives and focus on the most interesting negatives.
However, for related concepts (such as ‘navy ship’ and ‘sea’), it may be impossible to separate positives from
negatives. In these cases, the mining of hard negatives becomes the mining of ‘impossible negatives’, which
deteriorates the performance of the classifier. Highly similar concepts (those classes that retrieve a large portion
of negatives from each other) are first merged in a super class. The super-classifier retrieves negatives outside
the concerned super class. Then, sub-classifiers draw negatives from the other sub-classes within the same super
class. The super-classifier detects and the sub-classifiers separates subgroups by assigning it to the most likely
sub-class.

There are several approaches that perform hierarchical clustering and extraction of a taxonomy.3,17–20 For the
merging of related concepts, we have chosen an image-based approach, without the use of WordNet relations19

or other external trees.20 The hierarchical decision tree can avoid exhaustive testing of all C classifiers but
reduce this to log2(C) decisions, which enables scaling-up to many categories.17 For the hierarchical merging of
related concepts, a matrix is constructed with for each class the percentage of hard negatives from other classes.
Hard-negative mining may deteriorate the detector quality, resulting in unexpected confusions. Therefore, we do
not use a confusion matrix17 or average SVM scores,19 but a matrix with for each concept the number of hard
negatives from another concept as a measure of relatedness of concepts. This matrix was made symmetric by
averaging with its transpose and each row is divided by its maximum value for normalization and the diagonal
was set to one. High values in the matrix give an indication of strong relations. A spectral clustering method21

was applied to this matrix to create groups and a tree was created by recursive splitting in two groups until all
concepts become leafs. The average Euclidean distance between the clusters in the spectral projection is the
distance measure.

3. EXPERIMENTAL SETUP

The recognition of concepts is relevant for many domains, including the domain of defence and security. However,
recordings of military material, such as details of ships and mines is often classified. Therefore, in our experiments,
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we focussed on unclassified material of toys and office supplies, without loss of generality of the method. For the
experiments, three different training sets were used. We selected 36 class labels (see Table 1). The first training
set was downloaded from ImageNet (WordNet IDs are shown in same table). This dataset contains approximately
100 images per object. The second training set was retrieved with the Microsoft Bing search engine in November
2014 for the set of queries listed in Table 1. Note that for several objects, we performed multiple queries (e.g.,
for the ‘car’ we queried ‘toy grey car lamborghini’, ‘toy red car range rover’, etc.), which resulted in a dataset
with domain knowledge. The search engine dataset – called ‘Bing scrape’ – contains approximately 20 images
per query. The third set – called ‘Toy and Office-Supply Objects’ (TOSO) dataset∗ – was obtained by moving
a video camera around office supplies and toy objects that match the class labels in Table 1. A selection of 100
frames is grabbed from these videos with uniform spacing to create the training set (Fig. 1, left). Similar to the
queries, some objects contain multiple instances (e.g., different types of cars). The TOSO test set was created
with a photo camera of the same objects, consisting of 145 images that include orientation, scale and light-source
variation and a various number of objects per image (Fig. 1, right).

Table 1. Class labels, WordNet IDs and queries used for the Bing scrape.

Class (Wordnet id) Search engine query Class (Wordnet id) Search engine query

1. airplane (n02691156) toy fighter airplane

2. barbie (n03219135) barbie doll with {black, red, blue,
white} dress

3. bolt (n03701191) black bolt screw

4. bumpinroad sign (n/a) speed (bump OR hump) sign red
-yellow

5. bus (n02924116) toy red bus

6. bus stop (n08517676) n/a

7. camper (n02946348) VW red white camper van

8. car (n02958343) toy{grey car lamborghini, red car range
rover, red sports car benz, yellow porsche}

9. computer mouse (n03793489) gray wireless computer
mouse

10. cow (n01887787) plastic toy cow black white

11. dinosaur (n01703569) plastic toy dark brown dinosaur

12. donkey (n02389559) plastic toy brown donkey -horse

13. donotenter sign (n/a) do not enter sign

14. dress (n03236735) dress {blue, green, white}
15. hamburger (n07697100) hamburger toy

16. helmet (n03513137) helmet toy red

17. horse (n02374451) horse toy plastic

18. keys (n03613294) keys {[], rsa token, car}
19. motorcycle (n03790512) motorcycle toy black

20. noisething (n/a) n/a

21. pig (n02395406) pig toy plastic

22. plant (n11669921) plant artificial flower in pot

23. rollerskate (n04102618) pink roller skates blades sports
barbie

24. screwdriver (n04154565) red screwdriver

25. sheep (n02411705) plastic toy sheep

26. ship (n04194289) toy rescue harbour boat

27. skateboard (n04225987) plastic finger skateboard

28. soccer ball (n04254680) orange soccer ball

29. stapler (n04303497) {black, gray} stapler

30. stop sign (n/a) stop sign

31. tool (n04451818) {tool flat file, plastic tool set benchvice
pliers, combination wrench, red toy pipe wrench}

32. traffic light (n06874185) traffic light

33. train (n04468005) tram yellow roof toy

34. turd (n/a) plastic turd

35. water bottle (n04557648) spa water bottle reine -yourself

36. zebra sign (n/a) pedestrian crossing zebra sign

Figure 1. Left: Example images from the TOSO training set. Right: Example images from the TOSO test set (48 of the
145). The test images include various objects, various number of objects per image, and orientation, scale and light-source
variation.

As a performance measure, we use the mean average precision (MAP), which is the mean of the average

∗https://www.researchgate.net/publication/275347805_TOSO-dataset
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precision (AP) scores for each query (Eq. 1):

AP =

∑n
k=1 P (k) ∗ rel(k)

numberOfRelevantDocuments
(1)

where k is the rank in the sorted results, n is the number of retrieved items, P (k) is the precision at k and rel(k)
is 1 if the item at k is correct and 0 otherwise. Missing WordNet IDs or queries are ignored in the computation
of the MAP.

4. EXPERIMENTS AND RESULTS

In the Introduction (Sec. 1), we mentioned four key aspects of concept detection with incremental learning and
few training examples and similar concepts. Each of these aspects is analyzed and the results are presented
in the same order. We analyzed in-domain classification with few training samples (Sec. 4.1), the incremental
learning of novel objects (Sec. 4.2), unbalanced data sets (Sec. 4.3), and finally, the hierarchical classification of
similar objects (Sec. 4.4).

4.1 In-domain classification with few training examples

In this first experiment, the quality of the three different training sets is analyzed. The 4096 CNN features7 were
computed and linear SVMs were trained on the three training sets and applied to the test data. The results
in Table 2 show that the performance of generic out-domain ImageNet is worst, the Bing scrape is better and
the in-domain TOSO training set performs best. The Bing scrape performs better than ImageNet, because we
included ‘in-domain’ knowledge in the query to describe the specific objects. For example, we included the word
‘toy’ or color information (e.g., ‘red bus’). This result shows that the performance benefits from a training set
that is as specific as possible for the purpose.

Table 2. MAP values on TOSO testset for the three trainsets using 4096 CNN features.

Number of train images ImageNet Bing scrape TOSO trainset
8 15% 46% 86%
16 15% 52% 88%

Being able to use a small number of training images per class is extremely important for incremental learning,
where novel objects are introduced that may initially have a only few examples. Therefore, the size of the training
set is analyzed and we also analyzed the size of the feature descriptor. The CNN creates 4096 first-stage features
and R-CNN creates 200 object probabilities.10 Results are shown in Fig. 2 (Left) for different amount of training
images per object. The approach based on 4096 features requires only 4 images per class to obtain a MAP
≥ 80%. The results also show that training a second-stage SVM on 4096 features performs better than on 200
features, especially for small number of training images. This may be related to the abstraction level of the
features22 and to the number of values in the feature vector.

4.2 Incremental concept learning

For online incremental learning, it is important to be able to add one class without retraining all the others
to minimize the computational cost and allow fast interaction. Therefore, we performed an experiment and
randomly varied the number of ‘other’ classes, i.e. classes that are used to select negatives. For this experiment,
we used 64 training images from TOSO per class. The results are shown in Figure 2 (Right). Of course, it is
beneficial to include as many negative classes as possible. However, if the number of other classes is already high
(e.g. 32), and one class is incrementally added, it is not necessary to retrain all other concept detectors, since
the performance hardly increases from 32 to 35. This allows rapid addition of novel concepts in an interactive
system and retraining is only needed if many new concepts are added (or if concepts are closely related; see
Sec. 4.4 for this special case).
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Figure 2. Left: MAP values on the TOSO dataset for different number of training images per class (nrTrainImPerClass)
for the cases with 4096 CNN or 200 R-CNN features. Right: MAP with 64 number of training images per class for
different number of other classes (nrOtherClasses) for the cases with 4096 CNN or 200 R-CNN features.

4.3 Modified weights for unbalanced classes

Incrementally added novel classes may (initially) consist of a low number of positive examples, resulting in an
unbalanced number of samples in each class. A low number of training examples in a class may lead to lower SVM
scores and hence biased results when used together with larger classes. To analyze the effect, we trained a linear
SVM once on all (approximately 100 per class) images and once on only 8 training images. The SVM-scores of
the higher-scoring class are shown in Figure 3. The left figure clearly shows a bias effect with lower scores for the
SVM with less training images. The bias can be compensated by modifying SVM class weights (see Sec. 2 for
details). Figure 3 (Right) was created with modified weights and it shows that the bias was reduced. Figure 3
also shows correctness of classifications. The SVM that was trained on many images hardly makes mistakes for
an SVM-score ≥ −0.2. The main causes of misclassification are related to traffic signs (they are very small in
the test images) and the screwdriver. Manual inspection of the data showed that the incorrect sample in the
figure with extremely low SVM score (below -0.6) appeared to be a screwdriver. This will be further analyzed
in the next subsection.

4.4 Hierarchical classification of similar concepts

The screwdriver that was mentioned in the previous subsection has an extremely low SVM output score. This
occurs because the screwdriver is very similar to one of the tools (‘file’), since both have a red grip and a gray
blade. If classes are similar or related, the mining of hard negatives can become the mining of ‘impossible
negatives’, which deteriorates the overall performance of the classifier.

We first inspect the distribution of negatives over the classes to see the effects of hard-negative mining. The
percentage of samples from the most dominant negative class, appears to be 22%(±9.0) on average over all 36
classes. Some examples with a high percentage of one dominant group are summarized. The screwdriver has
many negatives from the tool and vice versa (45% resp. 40%). Both objects are very similar. The dress has
many negatives from Barbie (i.e. fashion doll) and vice versa (30% resp. 17%). This can be understood, because
the Barbie is always wearing a dress. The bump-in-road sign has many negatives from the zebra sign (37%).
They are similar, because both are traffic signs. The camper and the bus have many negatives from the car (39%
resp. 35%). Apparently, the vehicles are similar. The horse has most of its negatives from the sheep and vice
versa (23% resp. 21%). Apparently, animals are similar.

The screwdriver appeared to have the lowest SVM score (below -0.6) and it appears to have the highest
number of negatives from one class (45%). Apparently, the screwdriver and tool are mining many hard (or
impossible) negatives from each other, which may deteriorate the performance of the detector.
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Figure 3. Highest SVM-scores for each image in the test data, where the concept detector is based on the maximal number
of training images per class (approximately 100) or 8 training images per class; for equal SVM class weights (left) and
increased weight for the 8-training images (right). Colors and marker type indicate when the highest scores correspond
to the ground truth.

To avoid deterioration of the detector for similar or related classes, it would be better use a two-step approach.
The first step detects the group of related concepts together. The second step separates the subclasses.

The related concepts can be automatically grouped with a spectral clustering of the selected negatives (see
Sec. 2 for more details) resulting in a hierarchical representation. Figure 4 shows a dendrogram to visualize
nodes, leafs and distances in polar coordinates. We do not only see the grouping of dominant relations in this
figure (e.g., horse+sheep, tool+screwdriver, car+camper, dress+Barbie), but we also see that high-level concepts
are grouped together (e.g., many vehicles are on the red branch and animals on the green).

For clarity, we now focus on the performance of ‘screwdriver+tool’ and ‘dress+Barbie’ . The first step detects
the group of related concepts (i.e. the super-class) together and the second step separates the sub-classes. For
‘dress’ we use only the merged detector because there are no Barbies without dress in the TOSO test set. The
preliminary results are shown in Table 3. The initial results indicate an improvement of the average precision
when the hierarchical approach is used. Further research is needed to confirm and generalize this approach.

Table 3. Average precision (AP) of the direct classification and the hierarchical detection and classification process.

Concept Direct classification Two step classification

Barbie (fashion doll) 95.7 91.9
Dress 83.5 96.3
Screwdriver 89.2 100.0
Tool 87.0 94.8
Mean AP over these four classes 88.8% 95.8% (+7.0%)

5. CONCLUSIONS

In this paper, we proposed a method for incremental object learning that can handle few training examples and
similar objects. Firstly, we showed that for a focused application in a single domain, it is possible to reduce
the number of training samples to a low number (e.g., 4 images per class to obtain a MAP larger than 80%)
and significant performance gains from a training set that is as specific as possible for the purpose. Secondly,
we showed that the incremental addition of novel objects is often possible without retraining existing object

Proc. SPIE, Vol. 9652, 96520E-6



Figure 4. Hierarchical merging of concepts

detectors, which is important to minimize computational cost and to allow fast interaction. Thirdly, we showed
that an unbalanced number of positive training samples – which will always occur in an online learning system
– leads to biases in classifier scores that can be corrected by giving higher weight to the classes that occur less
frequent. Fourthly, we showed that deterioration of the detector performance due to hard-negative mining for
similar or closely related classes can be solved by a hierarchical classification approach, where we first detect the
group of related concepts together and subsequently separate subclasses. We demonstrated the effectiveness and
efficiency of the proposed approach in experiments to locate and recognize multiple objects in the unclassified
TOSO dataset.
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