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ABSTRACT
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This can be done using a real-time muttispectral 3CCD car¡treta, which records a scene with tluee detectors, each accuratcly
set to a wavelength by selected opticat filt€rs. This leads to the subject of this papen how ûo rlect tåree optim¡t bards ¡p'
hpcrspectrat data to perform a ccrtain task The choice of thesc bands inch¡der lwo aspects, the center wavetengtb, and thc
spectral width. A band-selection and band-broadening proccdure has been developed, based on søtistical pattcrn-dopition
techniques.

We will demonsEate orn proposed band selection algoritln, and present its classification results compared to red-grcer,
blue and red-green-near-infrared data for a miliury vehicle in a natur¿l backgrormd a¡d fo¡ surface laid landmines in
vegetation.
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1. INTRODUCTION
To gst the concept of band selection from h¡pempectral data for a multispecüal camera in order to increase the detection
performance, we studied two tasks:
l. The detection of a milita¡-y vehicle in a natr¡ral surqrndi¡g
2. The detection of surface laid landnines in vegetation
Fo¡ the¡9 tasks h¡penpectrat data is recorded and band-selection is perfomred. On the full scene images for the tbrce
selecæd bands, automatic classification is performed.

[te þand-selection is performed for our 3CCD camera [2]- A camera with a beam splitter and tbree Charge Coupled Devicc
(CCD) arrays' each operating like a normal gray-value camera, but sensible to light from a predefined=w"""tägth b-d,
uing optical cut-off filters. For this camer¿ three bands are selected for each tasl the perfórmance of the classification
{Sorithn is compared to the performancc of the same algorithm on normal Red, Green, "ø ntu" (RGB) data and on data
fron our DuncanTech Red, Green, and Nea¡ InfraRed (RGNIR) camera as we got it from the factory
In section two the used sensor systems s'ill be described. Then a description of the daø
band selection algorithm is described in section four. In section five the classification
section six the results of band selection and
classification are given. Finally conclusions a¡e
d¡awn in sectron s€ven. l4t Un$súür !¡rrt¿#

ngure l Basic operation of an Imspector hyperspechal imager.
Couræsy Specim.

is given in section th¡ee and the

atgorithms are dqscribed and itr

2. SENSOR SYSTEII{S
To record hypcrspectral data we have an
Im.spector system [4], which is a combination of
a grating and prisms. It efficiently produces a
spectrum of an enti¡e line and projects this on a
CCD camera, see figurc l. The system is
attached to a Sagebnrsh pan-titt nni¡, so a
hyperspectal image cube can be build by
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Figure 2 Basic operation of thc DuncanTech 3CCD
camera. Courtesy DuncanTech.

scânni¡g in the direction perpendicular to the spatial plane of
¡þs Im.Sfr€ctor.

ïhe Im.spector (t¡'pc V9) creates a spectrum from 430 to 900
nm with a spectral resolution of 6 nm_ This covers the euti¡e
visual- and nea¡-infrared range, especially suitable for use in
areas containing vegetation. The speclnrm is projected on a
BPïr34 k nch black-a¡d-white CCD camera, and the outpur
signal is digitizd using an eight-bit frame-grabbcr

The spectral ¿¡1 h¡s been calibrated using three small-band
optical fiIters distributed over the wavelength-range.

The hperspectral image cubes have S76xl,Ix%) points, with 576
the nr¡mbc¡ of spatial points in one scanJine, lV the number of
recorded scan positions, and 90 the number of spectral bads.

The second system is a DuncanÏech 3CCD CIR camera [2].

INFRARED

This camera contains a beam-spliuer consisting of prisms with
an optical coating. The input bean is split ino three parts with wavelengtås 50G580 nm (green), 62ù7æ r- (rr¿), -¿740-900 nm (near infrared). For each of these bands, a s€?rirate CCD element records the signal at 7i frames of ljgZxtO¿O
pixels per second \ilith 8 o-r l0 bits per pixel digitat ouçut For each of the beans, an optical trim-fiher can be used to
accurately select a subband, see figrrre 2.

The third system is a normal RGB color cÍ¡mera with 768x576 pixels and analog pAL outpuL

The data from the TmSpector system can be used to simulaæ cameras with various specúat responses, ¡el s¡ample an RGB
selection is done, the 3CCD camera can be adapted to the
only the trim-filters need to be replaced, or in addition the

gs.

3. DATA DESCRIPITON
The data r¡sed for this article was recorded from the TNO-FEL laboratory in The ILgo", The Netherlands, at the end of
octob€r / beginning of November 2000 with a partly clouded sþ. Below, a shot aes?riitio" of the two datrsets will b€
grven.

3.1. 'eTnrcliltd¡taset
The scene cons The truck was sr¡r¡ounded by different kinds of grass. See figure4 for recorded the tnrck. Because of changing light-conditions during the l0
minutes it look can be seen in the two Insp;õr images.

ts turn fixed to a pladorm on which the DuncanTech 3CCD
nenas were aligned and had a field of view of about 6x4.g
:egion of the entirc imzge could be used, the camera \Ar¿ts Dot
¡can-line vertical, so it had to be moved in the horizontal
rof

tne rmSpector scan-line is 0.1
the hyperspec¡¿l im¡ge cutæ.
and digitizing of the siual fro
_automatically. All cameras produced 8 bit ouþut images that were
ræorded by a PC with a frame grabber. In this way a

lyperspectal image cube and two ç6ls¡ imeges could be re"oi¿e¿
ouectly after each ofher, wirh a minimum oi.".o" va¡iation. All
uìages were warped to the rmspector image.

By han¿ four classes were defined (see figure 3):
' Black camouflage paint (205 pixels train, 63 pixels æst)
' Green camouflage patrß(Z4ípixels trair¡ 100 pixels æst)

Hgure 3 Train- and tqst-sets for the '"IruclC'-data.
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fÏgure 4 Foru images of the'Tnrck"-dataset, a) RGB image madc by a mrmal color camera, b) part of the RGNIR
image made by the DuncanTech 3CCD camera (the camera was slightty out of focus), c) and d) show two tlpical
ImSpecûor images for different bands.

¡ Green grass (231 pixels train,220 pixels tesg
¡ Yellow g¡ass (697 pixels Eain, 340 pixels test)
For each of these classes a recrînge of pixels was defined for training data, and orrc rectangle of pixels for testing data. ftc
classification results in t¡ble I are only for these (small) test-areas.

32. rMinest d¡taset
ïhe sc¿ne consists o¡ 6¡¡s-rike objects taid in a regular pattcrn of 5r5 mines with a spacing of 45 cm on a field of grass. Alt
objects were different in model, shape, and color.

llg lmSpoctor was attached to a movable plaÉorm (see [5] ) at
a height of 1.9 metcrs above the grass. The elevation of the
rm.specûor was 25 degrees and the field of view of the
ftorizontal) scan-line 22 degræs. So the scan-line was at a
distance of 4 meters in front of the platform and had a width of
1.7 meærs. The pladorm was moved in ste,ps of one cm, and at
every scanJine, 5 seconds of video was recorded. Ttris video
was then digitized using a frame-grabber, and averagd to
producc one noise-reduced image per position. A totat of 215
positions have been recorded. Sec figure 6 for some of the
images. With the DuncanTech 3CCD camera, an image has
been recorded from the same ciamera location, but because it had
a much wider field of view, only a part of the image was.used.
From a different camera location, an image was taken with a
digital color camera. J[s Im.spectü data was recorded between
12:00 and l3:ü), and the RGB and RGNIR data between 14:00
and 14:30. Alll imâges were warped ¡s ths ImSpecûor imege.

.,f:
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I'lgurc 5 Train- and test-sets for the'Mines"data.
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By hand tb¡ee classcs werc defined (see figure 5):
o Mine I (370 pixels tr¿in, 286 pixels tesÐ
r Mine 2 (57O pixels Eain,2E6 pixcls æst)
r Background (4557 pixels train, y/65 pixels test)
For each of tbcse classes a rcctangle of pixels was deûncd for naining data, an¿ one rectangle of pixels for testing data
(there was only one test-arca for both nines classcs). Thc classification results in table I are only ior these trrullj tot-
afEas.

Figot¡ 6_Four images of the 'Mines"dataset, a) cam€ra (this imege was takenrrom a differ€nt ca¡nera location, b) RGNIR iil amera, c) and d) show twotypical ImSpecûor images for different bands. All images were warped to the Imspector iñãge.

L
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Xïgure 7 An image of tbe moving platform with a
caæra mounted on it fsr the collection of the AVfines"-
datasct

fr¡ll scene for:

¡ Tbree optimal bands in the 43G900 nm range
o Simulated RGB camera
o Simulated søndard configuration of the 3CCD camera
. RealRGB camera
¡ RealRcNlRcamera
for both the tn¡ck and the mines data sets.

' 
t..t

4. BAND SELECTÏON
In order to nâke a real-time multispcctral inagrng ry$cu .

optimal for the selected applications, we need to know hov
to choose tbreo optinal wavelength bands fûr úc
multispectral camera

The problem at hand is not only ûo sclect the specüat
wavelength at which the differ€rice between the object q
the background is optimal. Also the optimal width of üc
band has o be deteimined. This nakes it a ¡on-stadod
feanne selection problem.

Frst we will describe the band selection algorithm wc used
to find the optimal ce,nter wavelength and bandwidth of all
three bands, and after that the distance nteasu¡e wc r¡scd for
the band selection.

To be able to comparc the classification ¡esults of the thnc
optimal bands to søndard cameras, results ç'ill bc given m

(so with standard tim filtcrs, RGNIR)

4.1. Band selection
In order to obtain an optimal solution, we should make a feaU¡re-set containing all bands, with all bandwidths. 'When we
limit the width of the selected bands to eleven times the spectal resolution, this would for our dataset containing 90 brnds
mean llxgGllx(ll-l/2 = 935 bands. To select the optimal combination of bands, 935x934x933t6 = L.4108 evaft¡atiom
would be necessary.

To avoid this huge amount of computatio¡rs, \re developed an algorithm that combines forwa¡d feanne selection tll and

band broadening. This algorithm looks like:

l. Calculaæ how each of the na¡row bands performs in combination with the already selected bands (none in the fint
iteration) using a performance criterion. Select the bescpcrforming band on the train regions.

2. Calculate the criterion value for the already selecæd bands and broader versions of the band selecæd in the previots
step. Select the best band-\+,idth.

3. If the desired number of bands is not obtained, go to sûep l, otherrpise band selection is ready.

To obtain broader bands in step 2 all combinations of neighboring bands that contain the band selected in step 1 rc
possible. For conputational re¿sons only bands within a constant width of the selected wavelengtl band a¡e considercd- A
broad band is constructed by simply adding ttre inænsity-values from a range of bands for e¿ch pixel, and dividing this by

the number of bands added to each other.

For the same maximal bandwidth, this algorithm requires ((ll-Ðn)2 evalu¿tions per added band (we limit the search a¡ca

to a region with the width of the maximal bandwidth, centered a¡ound the narrow band). This gives a total of 253 = 15'625

evaluations.

The proposed forward featr¡re selection procedure requires only a small number of computations in relation to other featuc
selection algorithms like backrrard and branch-and-bound feature selection. The d¡awback of this procedrne is that it ma}
produce a sub-optimal solution.



42. Dlstanca masurg
The r¡sc of the featr¡re selcction algorittm ¡educes the number of computations considerably, but there a¡e still tos meny

evaluations to train and evah¡ate a classifier for each evah¡ation. To reduce the amount of computations even fi¡rther,

instead of training and evaluating a classifier, the Mahalanobis distance is used to evaluate the combinations of bands. This

is a measr¡re fq the distancc in feature-spaceb€tween a pixel and the center of all classes. The distance is then corrected for
the æan a¡rd covariance of the data" so

Do@,A) = (#¡ - x)' G-r Qrt - x)

Where ^A is a class, ¡ is the pixel we want to calculatc the disance for, lt* is the mean of class,4, and G is the covariance
matrix of all data see also t6l. Feature selection is performed on a training-set, which is manually selected from the image.

Tt¡e lvfahalanobis distaæes of all points in one class to the mcan of all other classes are calculate¿ The best combination of
bands gives a m¡ximum for the gummntis¡ of all these distanc¡s for all classes.

5. Cï,ASSACATION
Afrer band-selection, tb¡ee numbcrs will result for each pixel. Thasc numbers a¡e the anount of reflection in a particular
wavelength band. These tbrec numbers should be specific for the object we would like to detecl To test how specific these

numbers are for the detection task we ¡¡sed the -anually selected rectangular training- and tcst regions. All classifiers a¡e

rained on the training regions, and a¡e then r¡sed to classify the entire image. The classification eror was calculated for the
relatively smnll 6s1 ¡pgisns.

The pixels that have to be classified a¡e ùom an imãge, so points that a¡e close to each other are likely to have the same
class. This information can be taken into account using a 2-stage classification procêdure, This procedrne sta¡ts with normal
clæsification. Then all points with low classification accuacy are classified again, but now with an adjusted classifier. This
classifier is adjusted so the a priori probability for tbe class which is most frequent under the eight neighbors is hatf, while
the other classes all have equal probability, and logether have a probability of half. In orn case, those pixels that have a
clæsification accuìacy lower then the median of the classification accu¡acies of all pixels in ¡þs im¡ge are classified again in
the second stage.

The classification is done using a linea¡ discriminant fr¡nction based on normal distributions of the classes, see [1,6]. A
line¿¡ discriminant fr¡nction D is a function of the form D o = d *Í * + a AL_rx AL_r+...+a Aox¡¡ , in which .r¿¡ is feature
(or band) /c of class ^A and ø¿¡ is a parameter adjusted by raining (see t3l). This function is derived for each class. The object
will be assiped to the class for which the discriminant furrction is the largest. The calculation of all discriminant functions
for both classification stages is an offline procedure, and can be done at the same time as training the initial classifier. See
figue 9 for a comparison between l-stage and 2-stage classification rcsults.

6. REST]LTS
The results after featu¡e selection (to obta¡n the optimal tb¡ee bands and bandwidths), training the classifier, and
claqsification, are shorm in figures 8 and 10 for the 'Mines"-dataset and the '"Iruck'dataset respectively. The percenøges
of errors in the æst regions are given in table l. Only errors between mine versus background anã truck veßu¡i background
were taken into account, so for example a green-grass pixel classified as yellow-grass is not considered a wrong
classification.

The test-regions were chosen by hand, and consisted of all the pixels in I rectangle for each class. Because these recøngles
of the quality of the classifier.
GNIR" and threeoptimal-þ¿¡6"
est regions of the real RGB and

It may however be better to decide on the ability of the classifier to distinguish between different classes by judging from
the compleùe i-ages as presented in figures g and 10.

Proc. SPIE Vol. 4Í¡81
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Iægend.

Creen tn¡ck

Black truck

Green grass

Yellow grass

fEu¡e E Classification results for the Truck{ata. a) Shows the l-stage classification result on simulated RGB data, b)
on simulated RGNIR data, and c) on the three bands selected using band-selection, d) on real RGB data, and e) on real
RGNIR data- Ð Shows the 2-stage classification result on simulated RGB data, g) on simulated RGNIR data, and h)
on the three bands selected using band-selection, i) on reat RGB datq and j) on real RGNIR data-

Proc. SPIE Vol. ¿1381



ngt¡re 9 Diffcrences bcrween l-stage and 2-stagc classific¿tion for rcal-RGB "In¡ck'data- a) Shows the classification
ræult afrer onc classification stage, b) afrEr 2 classification stages, and in irñâge c) all white pixels cbanged class between
the fi¡st and second classification-stage.

When comparing the results for real and simulated quiæ a large difference can be secn. This is probably caused by
Inperfect simulation of the cameras and the difrerence in spatial resolution

Judging from the simulated '"Inrck"data, 3 optimal bands is considerably betær then RGB and RGNIR The ,Mines"{ata
does not show thi^e as clear, probably because all mine-like objects were different in size, shape, material, and color, so
raining on only two mines is far too less.

Some errors can also be seen on locations where there are shades in the imâges. This is because the effect has not been taken
into account yet

Instead of inproving the results, the second stage of the 2-stage classification algorithm decreases the classification results
in some cases, for example for the real RGB .Mines"{ata.

Table 1 Classification errors for the test regions using three bands and 2-stagelinear classification.

'Minedtdstâset fTnrclf'dataset

Data 1-stage 2+tage l-stage 2-stage

SimulatedRGB

SimulatedRGNIR

3 Optinal bands

RealRGB

ReaIRGNIR
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3%

0Eo

6Eo
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o%

o%

o%

o%
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o%
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Figure 10 Classification results for the Minesdata a) Shows the l-stage classification result on simulated RGB data,
b) on simulated RGNIR datq and c) on the tbree bands selected using bana-setection, d) on real RGB data, and e) on
real RGNIR data. Ð Shows the 2-stage classification result on simulited RGB dar4 g) on simulated RG¡g¡i¡ dñl- úd
h) on the tbree bands selected using band-selection, i) on real RGB data and j) on tá RCUç. ¿at".
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7. CONCT,USIONS AND DISCT]SSION
of band-sclection for a real-time multispectral c¡mera would
kgound ad sr¡rface-laid landmines in vegetation. In o'rder to
or rcal and simulatcd RGB (Red, Cree,q and Blue), reat and
imel bands in the 430 ûo 90O nm wavelength range, chosen

We developed a band-selection algorithn capable of finding three good bands (both the center wavelength and the

ba¡dwidth) from a hypcrspectral datscub€. Using tbese tluec optimal bands, a twGstage classifier was taine4 and used æ

clæsify two datascs. The two'stagc classifier was desigd to incorporate spatial information in the classiñcation proccss.

For the 'Tn¡ck'datasct' the r¡se of 3optimal-þs¡ds gave quiæ an improvcment in detection results. The iryrovement \yas

smaller for thc 'Mines'data, probably due to the wide variety of objecs. The use of the 2-søge classification did not
always make an improvcmcnt to the results; sonetimes it made the classification results worse.

It hæ to be rcticed that autom¡tic classification is only onc of thc applications where tbc sclections of bands gives better
results. Anoth€r, eqully important application is detection and classificatiol by hum¡n operaûors. Ihe improvement of the
use of selected baftds is much ha¡der to m€asure for this application, so it has not bcen investigated in this ¡esea¡ch yel The
false+olor images the multispcctal camera creates might be difficult to interpret by humans, this requires taining for the
op€raûoñ¡ and fr¡rth€r sndy is necessary to select the optimal color+ombination in which the bands are displayed

Fu¡ther research is also necessary to evah¡ate the improvcment of the muttispecnat caûrera over RGB and RGNIR for other
(preferably larger) a¡d more diverse datåsets. For thc 'Mines"data for exampler a more rc,prescntative taining and
cvaluation data sct for both object and background classes necd to be recorded.

The occur¡encc of shadings inroduces crrors in the current classification. So some kind of normalization should be
inroduced- This normalization should not change thc colors of the pixels, only the inænsity, this should be inve*igated
ñ¡rther.'We used equat apriory prrobabilities for all classes in the first classification stage. This might not be the case in real
applications. This has ûo be investigated, together with the cost of false classification of objects and the cost of missing
objecc.

It seems that the use of a 2-søge classifier might not bc the bcst method to inhoduce spatial information in the classification
process. Othcr algorithms that a¡e capable of doing this should be investigaæ.

The abundant information in the hyperspecnal data cubes needs to bc studied in more detail to obtain oprimal band selection
procedures for both auùomatic classification and human interpreøtion.
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