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ABSTRACT: For several years TNO has done research on the use of component based HLA federates. An individual
simulator, participating in an HLA federation, can itself be composed of various components interacting through the
same HLA interface as the overall federation. Simulator components communicate via a middleware layer called the
Run-time Communication Infrastructure (RCI). The RCI is based on the HLA Run-Time Interface (RTI), but allows the
use of other standards as well. Currently, HLA developers that are interested in real-time performance disregard most
of the RTI functionality with respect to time management in an attempt to minimize the overhead of the RTI. The limited
performance of the RTIs holds back potential HLA developers from building HLA compliant federates and it certainly
raises doubts over the feasibility of HLA federations with real-time requirements, including component based federates.
In the recent past, TNO has performed tests regarding performance of component based architectures that use the RCI
in combination with the DMSO RTI. These results indicated the areas on which further research should focus, that is
real-time HLA simulations and high-performance RTIs. In addition to the time management services of the RTI, the RCI
middleware has been extended with a time triggered scheduling mechanism based on a globally synchronized wallclock
time. This easy to use real-time scheduler can be of great support in the development of man-in-the-loop simulators.
TNO has also developed a high performance RTI, which can easily use different communication media due to its
layered design. The RCI middleware, RTI, and network has to provide a guaranteed ‘Quality of Service’ (QoS) to meet
the real-time requirements of HLA federations. Therefore, TNO is in the process of extending the RCI with QoS
policies. This paper discusses the results of our research into real-time scheduling and presents test results on a real-
time Linux variant called RedHawk that prove the feasibility of a real-time simulator built as a Component Based
Federate.

1.   Introduction

System cost is more and more defined by software
development cost and less by hardware cost.
Consequently, stronger reuse of existing (software)
components is an important possibility to reduce
development cost. Typically, reuse of components is
easier when granularity of the parts is smaller. However,
lower granularity also increases problems with respect to
designing and implementing the correct (real-time)
scheduling and communication between the different
elements that make up the complete system. This paper
discusses the problems and possible solutions for
developing and implementing distributed systems based
on cooperating components.

1.1   Objective

The TNO Physics and Electronics Laboratory (TNO-
FEL) intends to use HLA in the area of 'real-time'
federations and Component Based federates. Firstly, we
want to prove that the HLA standard itself is a not the
reason of the sometimes mediocre real-time performance
of HLA federates. Since the RTI is not in the 'public
domain', an in-house implementation had to be
developed. This 'high-performance' RTI should meet the
following requirements:

1. Comply with RTI 1.3 Interface Specification [1].
2. Feature a layered design, that allows easy exchange

of data transport media.
3. Provide support for Real-Time functionality

(deterministic behaviour).
4. Provide high performance in terms of bandwidth

and latency.



The first prototype of our high-performance RTI was
based on a local Shared Memory data transportation
mechanism. Subsequently a real-time Distributed
Memory RTI was implemented and tested. This network
version of our RTI is based on Ethernet and runs under
IRIX, Linux, SUN, and Windows. In this paper, we
focus on a real-time version of Linux called iHawk that
runs on low cost platforms. The results are compared to
IRIX.

Using our RTI and middleware it will be shown that
HLA compliant federates can be built to meet certain
real-time constraints, such as an application to
application latency of less than 1 milliseconds. We even
want to go a step further and want to prove that it is
possible to build a real-time simulator out of components
that communicate through HLA as long as the
middleware and its supporting RTI and communication
network provide a guaranteed 'Quality of Service'
(QOS).

1.2   Organization

The remainder of the paper is organized as follows.
Section 2 discusses the Component Based Architecture
and HLA middleware layer.  Sections 3 and 4 discuss the
real-time scheduling requirements and concepts used by
this architecture. In section 5 our high performance RTI
is described. Section 6 describes the communication
media used by our RTI and section 7 describes the real-
time Linux OS. In sections 8 and 9 several benchmark
tests are described and the results are presented. Finally,
section 10 contains our conclusions.

2.   Component Based Architecture and
HLA Middleware

Decomposing a simulator into a well-defined set of
interacting components increases the potential for reuse
and offers a natural work breakdown structure during
federate development. Components are considered the
basic building blocks of our simulators and can
potentially be used in more than one type of simulator.
Examples of (flight) simulator components are: a
component that handles the Human-Machine-Interface
(HMI), a flight dynamics component, a component that
visualises the Out-The-Window virtual environment, or a
motion platform component. Consequently, a simulator
can be thought of as a set of interacting components. The
total functionality of the simulator may be expressed as
the ‘sum’ of the functionality of its constituting
components.

The use of simulator components was formalised by
TNO-FEL in the Component Architecture developed
within the SIMULTAAN project [2]. A Federation is
similar to an HLA Federation in every way. A Federate,
however, now consists of a set of Components that may
be distributed over several networked computer systems
(See Figure 1). In fact, a Federate is regarded as a
federation of Components. Similar to HLA, a
Component is described by an HLA Object Model
Template (HLA-OMT). This way, we capture and
document all relevant interface agreements between
Simulator Components within a component based
federate in a similar way as the interface agreements
between federates.

Support
tools

DIS / HLA-RTI / ...

Runtime Communication Infrastructure (RCI)

Federate Federate

DIS / HLA-RTI /
RCI

ComponentComponent Federate
Manager

Figure 1 Component Architecture (schematic):
each set of Components is managed by a
Federate Manager, forming a Federate within
the Federation. The RCI is TNO-FEL’s
middleware layer for interoperability.

All Components interact with the simulation
environment through a standard interface provided by
the Run-time Communication Infrastructure (RCI)
Middleware Layer. The RCI provides the component
developer with the necessary functionality to incorporate
the Component into a Federate. In fact, the RCI interface
abstracts from the federate and component level, so there
is no limit on the number of decomposition levels.

The Federate Manager Component (FMC) is a special
element of the Component Based Architecture whose
role is to represent the set of Components to the overall
federation as if it were a single federate, whose internal
component structure is of no interest to the other
federates. The FMC forwards all relevant data from the
Components to other federates and vice versa. The FMC
is able to do SOM to FOM mappings and performs
coordinated state transitions, e.g. initialise, start
simulation, and stop simulation. A code generator is



available to build an FMC which depends on the SOM,
the FOM, and the State Transition Diagram.

The RCI has a protocol-independent interface to the
simulated environment. It shields the federate developer
from many technical details concerning the underlying
communication standard and protocols, so one can focus
on the actual simulation model rather than the lower
level data exchange issues. Also it facilitates software
porting of components to other communication
standards, because the component uses the same API for
different communication standards.

The RCI consists of two separate software layers, one is
called the Environment, that reflects the current state of
the Federate, and the other is called the Communication
Server, that translates the events to a specific
interoperability standard, e.g. DIS or HLA. (see Figure
2).

Application
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RCI

user-defined
simulation
model

a Component
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network
HLADIS

Figure 2 RCI Middleware structure

3.   Real-time Scheduling

The real-time performance of the currently available RTI
implementations (e.g. DMSO's RTI-NG) is not very
impressive [5,8,9]. Especially when federates are hosted
on different computers, the Application-to-Application
latencies are often too large. Part of that latency is due to
the network, but a significant part is suspected to be due
to the RTI. Currently, HLA developers that are interested
in real-time performance disregard most of the RTI
functionality with respect to time-management in an
attempt to minimize the overhead of the RTI. These
doubts about the performance of the RTI holds back
potential HLA developers from building HLA compliant
federates and certainly raises doubts over the feasibility
of HLA federations with real-time requirements,
including simulators built as Component Based

Federates as discussed in Section 3. TNO and its partners
in the SIMULTAAN project performed earlier
evaluations and tests regarding performance of the RCI
in combination with the DMSO RTI with regard to
component based architectures [7]. These results
indicated the areas on which further research should
focus. The remaining chapters of this paper discuss the
results of that research.

3.1   What does Real-time Scheduling mean?

The objective of scheduling is to develop an adequate
order of execution of tasks that is feasible. The schedule
should meet the timing and resource requirements of the
system.

Real-time means the ability to meet a deadline (e.g.
response time to an external event). For a real-time
system the response time to an event is just as important
as the logical correctness of that response Real-time
systems are generally split into two types depending on
how serious their deadlines are and the consequences of
missing one. These are :

• Soft real-time systems.
• Hard-real-time systems.

Soft real-time means missing an occasional deadline is
acceptable. For example, a telephone switch might be
permitted to lose or misroute one call in 100K calls
under overload conditions and still be within
specification. In contrast, even a single missed deadline
in a hard real-time system is unacceptable, as this might
lead to loss of life or an environmental catastrophe.

Specifying that a system is 'real-time' says nothing about
processor performance, network bandwidth or system
cost. A $1 microprocessor running at 4MHz may provide
RT capabilities for a washing machine controller, while a
$30K workstation running at 2.4 GHz could fail the RT
demands of a traffic control system.

3.2   Real-time Requirements for a Component Based
Simulator

A simulation must anticipate for a man-in-the-loop. This
feedback loop constrains the time-period of the sum of
the tasks required for each loop. The worst-case
performance of the sum of the tasks must lie below the
human interaction response.

Jitter is a term for timing deviation of cyclic events. It
defines the difference between the maximum and the
minimum timing of an action. Jitter is a measure for the
quality of the timing. The human perception of a visual
moving image requires an update of about 25-30Hz.



Various visual-views show the same simulations at the
“same” time. For example a plan-view, a radar-display
and a 3d-view. Our eye perceives the various streams as
synchronous in time if a requirement of 30 Hz is met.
The human eye is rather sensitive for jitter in this frame
update rate.

The TNO Fighter Federate (TFF) developed by TNO-
FEL and demonstrated at ITEC 2000 shows the
Component approach for a generic fighter simulator [3].
The TFF consists of a number of Components using the
RCI as interoperability layer. Some Components are
based on Commercial Off-The-Shelf (COTS) software
linked to the RCI (e.g. FLSIM), while others are in-
house TNO developments (e.g. Visual). Typical
communication requirements in this case are:

Cycle Times:
Control input: 100 Hz
Dynamic model: 100 Hz
Visual: 30 Hz update rate, 60 Hz refresh rate

Jitter:
1 ms scheduling accuracy

Latency (worst-case):
End-to-End Latency between components: 30 ms
End-to-End Latency between federates: 100 ms

Bandwidth: 
3 Mbit/sec for a component based simulator with 2
cockpit stations, including displays, controls and visual
and about 150 Computer Generated Forces.

We propose that two conditions must be met when (hard)
real-time performance and deadlines are to be achieved
in a distributed environment:
• The interoperability layer (middleware, RTI and

network) must provide a defined QOS, which
includes a bounded latency.
Obviously, the OS and hardware platforms must
also support these RT performance requirements.

• The federation must provide a system wide
synchronized clock which can be observed with a
known maximum error by any federate. The
synchronized clock is the means by which the
schedules of the different federates are kept aligned.

4.   RCI Time Management Schemes

Time Management (TM) is concerned with the
mechanisms for controlling the advancement of each
joined federate along the federation time axis. In general,
time advances shall be coordinated with Object
Management (OM) services so that information is

delivered to joined federates in a causally correct and
ordered fashion.

All time references in the TM and OM RTI service calls
(type RTI::FedTime) are pure logical times and have no
relation to any kind of wallclock time. The simulation
time and timestamps in the RCI are also logical times,
but the RCI provides also the concept of wallclock time.
Note that in this context the term real-time is often used
instead of wallclock time, but we relate real-time only to
the capability of meeting deadlines. The RCI provides a
service to set on and off pacing the simulation time to the
wallclock time. When pacing is off, the simulation is
executed as fast as possible; when pacing is on the
simulation runs n times real-time, where n is the
provided timescale, which defaults to 1. The RCI will
derive the 'wallclock' time from the local system-time,
which may in turn be synchronized to a globally
synchronized time.

The RCI supports different kinds of time management
schemes. Each scheme is represented by an RCI
scheduler, which a federate developer can easily select
for his application. The RCI Time Management schemes
are classified as follows:

1. No Time Synchronisation, in which each federate
advances time at its own pace i.e. the simulation
time is not synchronized among the federates.
Updates shall be sent without a timestamp. The
scheduler that supports this scheme is called Default
Scheduler.

2. Conservative synchronisation, in which federates
send time stamped events (never less than current
time + lookahead) and advance time only when it
can be guaranteed they will receive no past events.
The simulation time shall be synchronized among
all federates. Two types of schedulers support this
scheme:

• HLA Time Management (HLA-TM) Scheduler.
Conservative scheduling is guaranteed by the
RTI.

• Universal Time Coordinated Time Management
(UTC-TM) Scheduler. Conservative scheduling
is guaranteed by pacing the simulation time to a
globally synchronized time.

HLA-TM Scheduler
This scheduler uses the HLA-TM services of the RTI,
like “Enable Time Regulation”, “Enable Time
Constrained”, “Time Advance request”, and “Next Event
Request”. The time advancements of all federates are
coordinated by the RTI and they have no relation to any
kind of wallclock time. A time advancing federate has to
wait until the RTI delivers a “Time Advance Grant”.



Therefore, the federate developer has no guarantee the
simulation time will be updated before a certain deadline

An ideal place to do the time coordination is the central
Fedex process, which is started up by the RTIexec
process for each created federation. Regardless of how
HLA-TM is implemented, it is obvious that an HLA-TM
enabled simulation will have more RTI overhead than
one without using HLA-TM. Besides this overhead, a
more fundamental disadvantage of using HLA-TM in
real-time simulations is identified: meeting a time
advancement deadline for a specific federate is not
independent from other federates. If, for any reason, a
federate is not able to request a time advancement in
time, then it can slow down the whole federation.

UTC-TM Scheduler
When using this scheduler the wallclock equals the UTC
time, which is the same for all federates in the
federation. Since our RTI implementation has to comply
with the RTI 1.3 Interface Specification, it was chosen to
implement this concept in the RCI middleware layer and
leave the RTI API as is. The RCI puts a timestamp in the
tag field of the RTI services “Update Attribute Values”
and “Send Interaction” in order to deliver all messages in
time stamp order as the HLA TM scheduler does.

The main difference between both conservative
schedulers is that the UTC-TM Scheduler does not wait
on the “Time Advance Grant” of the RTI, but it uses a
time triggered scheduling mechanism. This way, all
deadlines can be met. Of course, the other side of the
coin is that the UTC-TM Scheduler in itself cannot
guarantee that all time stamped messages have been
received before the simulation time will be updated.  A
federation wide schedule that meets all timing and
resource requirements of the system has to be defined
also.

The way the RCI deals with the concept of scheduling of
actions is not scheduler specific, but it matches best with
the qualities of the UTC-TM Scheduler. Since it is very
easy to switch between schedulers, nothing stands in the
way to examine the feasibility of a schedule using the
HLA-TM Scheduler.

The RCI divides the time axis in equally sized simulation
frames. Within a simulation frame, the application can
schedule multiple Update, Output and Sync Actions.
These actions shall be repeated each frame at the
specified scheduled times. Only the Update Action has
effect on the simulation time. Figure 3 shows the
relationship between the scheduled time and the
simulation time in one frame. The frame frequency can
be set independently from the scheduled times.

Simulation Time

Process
Update action
scheduled
at T3

Process
Sync action
scheduled
at T1

Process
Output action
scheduled
at T2

Scheduled Time

T0 T3

T0 T1 T2 T3

Process
Update action
scheduled
at T0

Figure 3 Action processing within one frame

Update Action
An Update Action reads remote data from the federation
the federate is subscribed to, updates remote objects,
processes application subscribed callbacks and advances
to the requested simulation time, which is equal to the
scheduled time (T0).

Output Action
An Output Action sends attribute changes of local
objects into the federation at the scheduled time (T1).

Sync Action
A Sync Action triggers a special user defined callback.
Using this mechanism the application gets processing
time at the scheduled time (T2).

The scheduling of actions can be specified:
1. in the schedule sheet (ASCII file containing all

parameters) or
2. as an argument to the Control service of the RCI. In

this case the RCI shall spread the actions evenly
across the frame.

5.   High Performance RTI

The RTI architecture developed by TNO consists of
three major elements :

• a (static or dynamic) RTI library, which has to be
linked together with the application source code,

• the Fedex, which is a separate process that keeps
track of federation-wide administration,

• the RTIexec, which launches a Fedex process for
each created federation.

The TNO RTI has exactly the same API as the DMSO
RTI NG, since the same C++ header files and library
names are used. It has to be stressed that the current
prototype of the RTI is only a partial RTI
implementation, since less common RTI services like
Ownership Management and Data Distribution
Management are not implemented yet.

The RTI is designed in a layered way, such that the
lower layers can easily be replaced when another



communication medium is chosen. Currently, two kinds
of communication media are supported:

• Shared Memory using Message Queues (RTI-SM).
• Distributed Memory using UDP/IP Ethernet Sockets

(RTI-DM).

RTIambassador class
+ auxiliary classes

Transporter class

RTI-SM: Queue class
RTI-DM: Socket class

Bus class

Federate

RTI-API

Communication medium
independent layers

Communication medium
dependent layers

RTI
library

Figure 4 Layered TNO RTI design

Our layered RTI design and Component Based
Architecture makes it easy to port a simulator to another
system configuration. The RTI runs on several Operating
systems, like IRIX, SUN, Linux, and Windows. In this
paper, we want to focus on PC-like platforms and
general purpose networks to prove the concept of a HLA
Component Based Simulator. A real-time Linux variant
called RedHawk Linux seems to meet all our real-time
constraints as we will see later on in this paper. Ethernet
is a natural candidate for our RTI-DM, because it has
been accepted as proven technology. Due to the layered
design of our RTI it is rather easy to use other industrial
networks like CAN bus or Profibus if a general purpose
network is not feasible.

6.   RTI communication media

6.1   Ethernet

Ethernet was originally developed in the 1970s and the
standard is now known as IEEE 802.3. Ethernet,
especially the 100 Mbps twisted pair version  is very
popular and low-cost due to its widespread use in office
and research environments. Ethernet uses Carrier Sense,
Multiple Access, Collision Detect (CSMA/CD), which
means that transmitting stations broadcast all messages.
The receiving station responds to the message when it
detects its own address as destination. . Stations may
start transmission when the network is idle. Transmitting
stations listen to their own messages and collisions are
detected by comparing the transmitted data with the data
‘on the wire’. Collisions will cause the transmitting
stations to wait for a randomly determined delay time
before trying again. Thus normal Ethernet solves the
collision problems probabilistically and can not
guarantee timely access.

Ethernet defines only the (OSI) ‘physical layer’ and
‘data link layer’ and not the protocols above these layers.
Internet Protocol (IP) defines the ‘Network layer’ and
runs on top of the datalink and physical layer.
Transmission Control Protocol (TCP) and Universal
Datagram Protocol (UDP) are in turn layers on top of IP
(Transport and Application layers). The average PC will
typically show delays in the order of 200 us introduced
by processing the payload data according to the Ethernet
protocol stack. The transmission time over the wire for a
message of 1500 bytes is around 120 us (at 100 Mbit/s).

Note that modern Ethernet is often based on ‘switches’
that provide smart switching of IP-packets based on
addresses and thus avoids collisions and allows all nodes
to run at maximum bandwidth instead of sharing this
bandwidth with all other nodes. However, in order to
prevent collisions, a switch will use internal buffering
and introduce additional and unpredictable latencies
(~10 us). Switches may also introduce a change in the
delivery order of messages.

6.2   Shared Memory

RTI-SM communication is based on message queues.
The fedex and each federate have their own message
queue for incoming messages. A sender is able to
enqueue a message on the queues of all interested
receivers. Messages are removed from each queue as
soon as they are read.

For safe data transfer the receiver and each sender needs
exclusive access to a shared memory location. This lock
mechnism is implemented by a semaphore for each
queue.

Using our message, queue approach data is duplicated
for each receiver. However, in case of a memory block
shared by all readers, extra overhead is needed to
determine when all interested readers have read the
message before dequeuing it. In [10] a hybrid approach
is presented where the data is stored at one common
place and where each reader has still its own queue in
which references are stored to the real data. Actually, the
best approach depends on the message sizes and the data
flow of the federation. For the moment, there is no need
to optimize our approach.  

7.   Real-time Linux

Several real-time Linux variants are on the market
nowadays. RTLinux is well known and provides a
seperate real-time kernel that controls real-time
processes. Linux runs as a task under the real-time
kernel. Disadvantages are the strict distinction between
real-time and non real-time processes and a separate, non



standard Linux API for the real-time processes. This API
is rather limited and introduces portability problems.

RedHawk Linux of Concurrent Computer Corporation is
based on the popular RedHat Linux distribution. It
provides determinism for the entire application
environment, including file I/O, network, and graphics.
RedHawk has a single, fully pre-emptible, kernel and
provides a single API which is fully compatible with
RedHat. It provides load-balancing and CPU shielding to
maximize determinism and real-time performance [4].
The RedHawk Operating System runs on iHawk high-
performance computers, each having one or more Intel
Pentium Xeon processors.

RedHawk Linux supports a dedicated Real-time Clock &
Interrupt Module (RCIM). This hardware module
includes a high resolution synchronized clock and
interrupts. RCIMs can be connected by a cable such that
a reliable common time base is achieved. Such a system
wide clock is one of the conditions for real-time
scheduling. The RCI UTC-TM Scheduler could be based
on this RCIM clock.

7.1   Clock Synchronization

Apart from using a separate clock synchronization cable
(e.g. the RCIM approach), a more general solution to
implement a distributed clock is the Network Time
Protocol (NTP). In this case, time messages are used to
synchronize the local clocks, which are sent on the same
network used for other communication. Note that
systems like FlexRay and some of the Time Triggered
Protocols use the actual data messages themselves to re-
synchronize the local clocks. For wide-area networks a
synchronization mechanism based on GPS receivers is
also a possibility. The GPS devices transmit a highly
accurate UTC timestamp and also provide several sync
signals (e.g. PPS - Pulse Per Second).

8.   System Limits Measurements using RTIs
on SGI/IRIX and iHawk/Redhawk Linux

The purpose of this benchmark test is to determine the
maximum throughput on a specific system configuration
for a pipeline of three HLA federates. This configuration
is chosen because it corresponds to the critical part of a
(flight) simulator.
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Figure 5 Pipeline of three Federates

The RCI of a sending federate puts the local system time
in the special RTI tag field every time an object update is
sent to the RTI. The tag is a string which is not
interpreted by the RTI and may be used to communicate
federation specified information about the update. This
way, the FOM need not to be extended for latency
logging purposes. The RCI of the receiving federate
stores the timestamp retrieved from the tag and also its
current local time in memory each time an object update
is received. Special RCI service calls are used to set on
and off this logging functionality and to write all
measured end-to-end latencies to file after the test has
been completed.

Several RTIs on several operating systems have been
tested. Besides the DMSO RTI, the TNO RTI is tested
using different communication media. The RCI/RTI
Benchmark test configuration using shared memory and
the one using a network look very similar:

ReceiverSender
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Figure 6 RTI-SM using Shared Memory Queues
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Figure 7 RTI-DM usingUDP/IP Ethernet



The Sender federate sends data with a fixed frequency to
the ReceiverSender Federate, which sends the data as
fast as possible to the Receiver federate. Both the
ReceiverSender and the Receiver federate measure the
latency of each received message, and thus also the mean
and maximum latencies. They also measure the mean
read frequency.

Several runs are needed to determine the system limits.
The send frequency will be incremented after each run as
long as the mean read frequency of the Receiver federate
is at least the send frequency of the Sender federate and
as long as at most 0.1% of the data is lost.

The data size of the message at application level is 512
bytes. This is without any RCI/RTI overhead like the tag
string and the object and attribute handles. For the shared
memory RTI the total packet size is 586 bytes; for the
distributed RTI the total network packet size is 622
bytes, which includes the UDP/IP header of 28 bytes.

For the distributed tests, it is best to let the Sender and
Receiver federate run on the same system, because then
we know for sure that the end to end latency is measured
accurately with the same system clock.

8.1   Test configuration 1a (DMSO RTI; IRIX).

System configuration: DMSO RTI 1.3 NG3.2 on two
SGI IRIX 6.5 ONYX systems. Sender and Receiver
federate run on the same system each at a shielded 250
Mhz CPU. The ReceiverSender federate runs on another
system at a shielded 195 Mhz CPU. A general purpose
network  (EBF-LAN) is used, in which all machines are
connected by a 100 Mbps Switch.

DMSO RTI ; IRIX
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Figure 8 DMSO RTI on IRIX

Fsender < 300 Hz : average latency increases slightly from
2900 to 3080 µsec.
300 < Fsender < 375 Hz : average latency increases
gradually to 14600 µsec.

Fsender > 375 Hz : unacceptable packet loss

8.2   Test configuration 1b (RTI-DM; IRIX).

System configuration: same as test 1a, but now the
DMSO RTI is replaced by the RTI-DM version.

RTI-DM ; IRIX
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Figure 9 RTI-DM on IRIX

Fsender < 925 Hz : constant average latency of 780 µsec.
Fsender > 925 Hz : unacceptable packet loss

We see that on exactly the same system configuration
our own RTI performs much better than the DMSO RTI.
The average latency is lower and the maximum
frequency is higher.

8.3   Test configuration 2 (RTI-SM; IRIX).

System configuration: RTI-SM on an SGI IRIX 6.5
ONYX system. Each federate runs at a shielded 250 Mhz
CPU.

RTI-SM ; IRIX
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Figure 10 RTI-SM on IRIX

Fsender < 2500 Hz : constant average latency of 450 usec.
2500 < Fsender < 3900 Hz : average latency increases
gradually to 1200 usec.



Fsender > 3900 Hz : Freceiversender < Fsender

We see that when the communication medium of our
RTI changes from Ethernet to Shared Memory the
average latency is again lower, while the maximum
frequency is higher.

Further analysis of the log files shows that the
ReceiverSender federate reads and sends messages in
bursts of up to 7 packets when the frequency becomes
higher than 2.5 kHz. The minimum latency is then still
acceptable, but the high average latency is determined by
the high latencies caused by the oldest packets in the
bursts. The ReceiverSender federate is obviously the
bottleneck, because it has to read and send packets, while
the other two federates only have to do one job.

The SGI IRIX computers used in the previous test
configurations are rather old, especially when their CPU
rate is compared to current CPU rates at the PC market.
The following tests are performed on  more state of the
art RT Linux PC systems.

8.4   Test configuration 3a (RTI-DM; iHawk; hub).

System configuration: RTI-DM on two RedHat 8.0
RedHawk Linux iHawk systems. Sender and Receiver
federate run on the same system each at a shielded 700
Mhz CPU. The ReceiverSender federate runs on another
system at a shielded 2400 Mhz CPU. The two machines
are connected by a 100 Mbps Hub.

RTI-DM ; iHawk ; hub

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Hz

µsec

Figure 11 RTI-DM on iHawk using a hub

Fsender < 8500 Hz : more or less constant latency of 270
usec.
8500 < Fsender < 9000 Hz : average latency increases
gradually to 5400 usec.
Fsender > 9000 Hz : unacceptable packet loss.

The maximum frequency of 9 kHz corresponds with the
maximum bandwidt of 100 Mbit/s. The one way datarate
is 9000 · 622 · 8 = 45 Mbit/s. For both ways this is 90
Mbit/s, which means that the ethernet fills up and
packets get lost by too many collisions.

8.5   Test configuration 3b (RTI-DM; iHawk; switch).

System configuration: same as test 3a, but now the two
machines are connected by a 100 Mbps Switch.

RTI-DM ; iHawk ; switch
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Figure 12 RTI-DM on iHawk using a switch

Fsender < 5000 Hz : constant average latency of 360 usec.
5000 < Fsender < 17600 Hz : average latency increases
slightly to 380 usec.
17600 Hz is the maximum frequency of the Sender
federate.

Since the CPU of the ReceiverSender federate runs on is
much faster than the CPU the Sender federate runs on,
the bottleneck of the pipeline is not the ReceiverSender
federate. The maximum send is limited by the 100 Mbps
network.

We see that that the latency, in case of the switch, is
higher than with the hub in test 3a. This makes sense,
because a hub is a simple repeater of data while a switch
stores and forward the data. However, the maximum
frequency is twice as high for the switch. The switch can
isolate both data flows and improve the performance.
Each link has in fact a bandwidth of 100 Mbit/s, which
explains the maximum frequency of about 18 kHz.

8.6   Test configuration 4 (RTI-SM; iHawk).

System configuration: RTI-SM on a RedHat 8.0
RedHawk Linux iHawk system. Each federate runs at a
shielded 700 Mhz CPU.



RTI-SM ; iHawk
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Figure 13 RTI-SM on iHawk

Fsender < 8500 Hz : constant average latency of 110 usec.
8500 < Fsender < 9600 Hz : average latency increases
gradually to 26000 usec.
Fsender > 9600 Hz : Freceiversender < Fsender

Compared to the distributed tests on iHawk (tests 3a and
3b), we see a lower latency when the send frequency is
below 8.5 kHz. When the frequency is higher, the
average latency becomes very high. The log files show
that the buffer between the Sender and ReceiverSender
federate fills up. The ReceiverSender federate cannot
handle the incoming packets in time, because it runs on a
much slower CPU than in tests 3a and 3b.

Compared to the the shared memory test on IRIX (test
2), we see a lower latency and a higher maximum
frequency. This can be explained by the difference in
CPU power. In both tests the ReceiverSender federate is
the bottleneck when the frequency becomes high. The
reading of packets in more or less regular bursts as we
saw on IRIX is not observed now. On iHawk the buffer
of the ReceiverSender federate fills up much more,
which explains much higher mean latencies when the
frequency is very high.
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9.   Jitter Measurements on SGI IRIX and
iHawk RT Linux

Two kinds of jitter have been measured, i.e. jitter in local
scheduling and jitter in network latency. For real-time
distributed scheduling both have to be as low as possible.
These tests have been performed under normal
conditions unlike the stress tests of Section 6.

9.1   Local scheduling Jitter

The scheduling of a task on an IRIX 6.5 ONYX system
at a shielded 250 Mhz CPU can be done accurate most of
the time, i.e. the jitter is smaller than 10 µsec. However,
although the process runs at a shielded CPU, the jitter
over a rather long period of 10000 measurements was 39
µsec due to some sporadic peaks.

The scheduling of a task on a RedHat 8.0 iHawk system
at a shielded 700 Mhz CPU after a sleep period followed
by a shorter busy wait loop can be done very accurate.
The jitter over a period of 10000 measurements was 3
µsec.

9.2   Network Latency Jitter

Network latency jitter has been measured by two simple
process that both can send and receive UDP/IP packets.
In fact only the lowest layer of the RTI-DM has been
used. The data size of the message at application level is
16 bytes. The total network packet size is 44 bytes.

The network latencies between two IRIX systems
connected by a 100 Mbps network is shown in Figure 15.
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The mean latency is 281 µsec. The minimum and
maximum latency measured are 259 and 475 µsec,
respectively. This means the jitter in the network latency
is 216 µsec.



The network latencies between two iHawk systems
connected by a 100 Mbps network is shown in Figure 16.
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Figure 16 Network Latencies on iHawk

The mean latency is 82 µsec. The minimum and
maximum latency measured are 72 and 107 µsec,
respectively. This means the jitter in the network latency
is 35 µsec.

10.   Conclusion and Future Work

This paper has focussed on real-time requirements of our
RCI middleware and on benchmark performances of
several platforms, including the network, the hardware
platform, the operating system, the drivers and the
RCI/RTI. Table 1 gives some typical latency indications
from application-to-application on distributed nodes. The
hardware can not be compared as such, because of
differences in clock-frequencies. However, given the
notion that the iHawk platform is about three times faster
than the SGI platform, this does not account for all the
latency improvement. The iHawk/RedHawk
performance indicators also definitely benefit from
implementation aspects that you might expect from a
real-time platform, like processor shielding, efficient
task scheduling and efficient kernel use. One of our
plans is to perform the same benchmark tests using the
the MÄK RTI [6] and compare the test results with the
results presented in this paper.

TNO-FEL will continue its research and development of
RT component based architectures and define interface
requirements for a supporting middleware. An important
issue is the guaranteed QoS to be provided by the

interoperability layer. HLA supports only a very small
set of QoS policies, like reliable vs. best effort
communication. We want to provide the federate
developer with QoS policies to guarantee cycle times,
latency, jitter and bandwidth. OMG Data-Distribution
Service (DDS) [11] is just like HLA a publish-subscribe
commmunication architecture, but targets more on real-
time systems and specifies QoS semantics lacking in
HLA. On the other hand, DDS has no simulation specific
services like (logical) time management and federation
synchronization, but the RCI middleware layer could
implement these on top of DDS.

Performance Indicators
Latency
(µs)

Local
Jitter (µs)

Network
Jitter (µs)

SGI/IRIX
250 MHz

39 216

DMSO RTI 3000
RTI-DM 780
RTI-SM 450
iHawk/RedHawk
700 MHz

3 35

RTI-DM 270-360
RTI-SM 110

Table 1 Typical Performance Indicators
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