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To invert for parameters of the seabed and the water column, global optimisation methods
are used. These methods search for the best parameter combination, so as to make the
difference between modelled and measured pressure fields as small as possible. Simulated
annealing and genetic algorithms (GA) are commonly used as global optimisation algorithms
for this inversion. Their efficiency depends on the tuning of the algorithm. For a bottom
model with in the order of ten geo-acoustic parameters, a relatively new global optimisation
method - Differential Evolution (DE) - is applied. We claim a ten times higher efficiency of
DE, as it finds the optimal parameter combination with only one tenth of the number of model
evaluations needed by GA. Apart from the tuning of the algorithms, the performance of DE in
comparison with GA is investigated in terms of efficiency and robustness.

1. INTRODUCTION

In the last two decades global optimisation methods, such as simulated annealing (SA) and
genetic algorithms (GA), have been applied to solve inversion problems in underwater
acoustics. In this inversion a pressure field calculated by a model is compared with a
measured pressure field, using a cost or energy function. The search is for that parameter
combination that maximises similarity between modelled and measured field, i.e., giving the
lowest energy value. In general, a fairly large amount of parameters are sought, typically 5 to
20. This is called ‘matched field inversion’.

A purely random search would require too many forward model calculations. Search
methods strongly reduce this number of function evaluations, but have the risk to fail by
being trapped in a local minimum of the energy function. To overcome this problem, global
optimisation methods, such as simulated annealing and genetic algorithms, have been
designed.



Performance criteria for optimisation methods are efficiency, robustness and accurateness.
Since the forward model calculations take most of the computation time during optimisation,
efficiency is measured by the required amount of these calculations, typically a few tens of
thousands. The stochastic nature of these methods causes that even a global search run can
get stuck in a local minimum. Robustness is defined as the probability of an optimisation run
to end in the global minimum, i.e., the probability of success of the optimisation method.
Accurateness has to do with the distance between the outcome of a successful optimisation
run and the precise location of the global minimum. In this article the attention is focused on
robustness and efficiency.

Optimisation methods have a few setting parameters (e.g. crossover probability and
mutation rate in GA), that have to be optimised themselves. It will be shown that these
settings strongly influence the performance of the method. Although the optimal setting can
be problem specific, we hope to find optimum settings that only need minor adjustments for
other problems.

It is already well established that in matched field inversion GA outperforms SA.
However, there is a need for methods even better than GA. A relatively new global search
method, differential evolution (DE), is introduced. Its performance, in terms of efficiency and
robustness, is shown to be better than that of genetic algorithms.

2. BASIC PRINCIPLES OF GENETIC ALGORITHMS AND DIFFERENTIAL
EVOLUTION

In underwater acoustics the GA has been introduced by Gerstoft [1]. Its principle of
operation is summarised as follows. To optimise an energy function E, GA improves
populations of q parameter combinations during successive generations. A GA optimisation
run starts by creating at random an initial population of q members. Each member represents
a certain parameter value combination m and its energy E is calculated. A population
member with a lower E (a higher fitness) has a higher probability to be selected in one (or
more) of the pairs of parents to be formed. This results in q/2 pairs of parents with a larger
proportion of fit members. From each pair of parents two children are created by a random
exchange of parental values (steered by the crossover probability pc), followed by random
changes of individual parameter values (with mutation probability pm). A set of q children
vectors results. The next generation is established by taking at random qf r  members of these
children and selecting the qf r )1( −  most fit members of the current population. This process
is repeated over several hundreds of generations.

GA’s have the following setting parameters: population size q, crossover probability pc,
mutation probability pm, reproduction size fr and the number of generations NG.

Differential evolution, just like GA, starts with an initial population of q randomly chosen
parameter value combinations m. These m’s are improved during successive generations of
constant size q, in the sense that a descendant replaces an m, becoming its successor, if it has
a lower energy. The distinctive feature of DE is the way in which these descendants are
created. In [2] various ways to generate new m’s are described. Here only the following
procedure is considered. At the start of generation k the parameter vectors qkk ,1, ,, mm K  are
given and for each of them a descendant is created, being a potential successor. To create this
descendant ik ,d  of ik ,m  first a partner ik ,p  is constructed according to
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a scalar multiplication factor between 0 and 1. The descendant ik ,d  of ik ,m  results from
applying crossover to ik ,m  and ik ,p  with crossover probability pc. A higher value of pc leads
(on the average) to more dimensions of ik ,p  to be copied into ik ,d , while the values for the
remaining dimensions are taken from ik ,m . ik ,d  only replaces ik ,m , becoming its successor,
if its energy is lower.

The setting parameters of DE are population size q, multiplication factor F, crossover
probability pc and the number of generations NG.

Comparing GA and DE, both show improvement of a fixed sized population of parameter
combinations. However, in each generation of GA a fixed fraction of the population is
replaced by children, whether they are better or not. In DE each member of the population
will be replaced by its descendant only if this descendant has lower energy. On the other
hand, the fitness of a member increases the probability of that member to play a role in the
creation of children in GA, where in DE this fitness does not influence the probability of a
member to be selected. Another difference is the way a partner ik ,p  is found for ik ,m . While
in GA the partner is an element of the given generation, in DE it is constructed from the
population and thus not an element of this generation. The partner creation process in DE is
steered by the multiplication factor F and replaces the mutation mechanism of GA.

3. PERFORMANCE OF GENETIC ALGORITHMS AND DIFFERENTIAL
EVOLUTION

A test function given in [3] is known to have characteristics that correspond to those of the
geo-acoustic inversion problem. Its features are: number of parameters Np = 6, various local
minima, parameter coupling and a varying sensitivity to the parameters mi. The global
minimum is at the origin mi = 0. The research on the performance of GA and DE presented
here, is restricted to minimisation of this energy function called E1.

To determine the probability of success multiple optimisation runs are needed, each run
starting with a different randomly chosen population of q m’s. The number of independent
runs per setting is denoted Nr. Nc is the amount of these runs that have converged to the
global minimum. The fraction of converged runs serves as an estimate for the probability of
success ps according to
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When comparing the performance of different settings of the optimisation algorithms, also
the statistical uncertainty on ps, being 

spσ , should be taken into account (where Nc has a
binomial distribution). The efficiency is measured by the number of function evaluations or
forward model calculations N, given by N = fr q NG for GA and N = qNG  for DE.



3.1. Settings for the Genetic Algorithm

GA is applied to E1 with the following settings: (q = 64, fr = 0.8) and (q = 128, fr = 0.4),
both with NG = 500 (therefore both with N = 25600). pc was varied in between 0.1 and 0.9 in
steps of 0.2, whereas  pm was varied in between 0.025 and 0.25 in steps of 0.025. The number
of independent runs Nr equals 50 for each combination of settings. The estimates of the
success probabilities for the considered settings are presented in the figures 1 and 2.

Figure 1: GA with q = 64, fr = 0.8; statistical error on ps is about 0.06

Figure 2: GA with q = 128, fr = 0.4; statistical error on ps is about 0.06

It is observed that the attainable level of ps hardly depends on pc, while the choice of pm is
of major importance. There is a rapid fall off of ps versus pm for pm > 0.15. The optimum
setting of pm is slightly larger than 0.1. The setting q = 128 and fr = 0.4 (also with N=25600)



leads to higher levels of ps, with the possibility of nearly 100 % success. Notice the need of
taking the (statistical) error on ps into account! Finally, Gerstoft’s default setting [1] (q = 64,
NG = 500, fr = 0.5, pc = 0.8, pm = 0.05) is not robust, leading to ps = 0.69 (with N only 16000).

3.2. Settings for Differential Evolution

Applying DE to E1, two combinations of q and NG are considered: (q = 16, NG = 150) and
(q = 32, NG = 75), both with N = 2400 (instead of the 25600 for GA). To provide more
accurate estimates for ps, the number of independent runs per setting is taken Nr = 500. ps for
different combinations of F and pc is given in figures 3 and 4.

It is seen that the smaller number of generations NG = 75 requires a lower setting of the
contraction factor F. DE seems to be more sensitive to the choice of F than to that of the
crossover probability pc.

     Figure 3: DE with q = 16, NG = 150
                   90 %  ps contour

      Figure 4:  DE with q = 32, NG = 75
                       97 % ps  contour

3.3. Comparing the performance of GA and DE

Table 1 gives the Gerstoft GA setting [1] and the optimum settings found for GA and DE.

q NG pc pm fr F N ps

GA Gerstoft 64 500 0.8 0.05 0.5 16000 0.69 ± 0.05
GA best 128 500 0.9 0.1 0.4 25600 0.98 ± 0.02
DE 16 150 0.85 0.8 2400 0.91 ± 0.013
DE 32 75 0.75 0.5 2400 0.98 ± 0.007
DE 32 150 0.8 0.6 4800 0.99 ± 0.005

Table1: GA and DE best settings and corresponding performances.

With comparable robustness (ps = 0.98) DE requires only 2400 function evaluations
instead of the 25600 of GA, an order of magnitude improved efficiency.

How to explain this better performance? We suspect that the partner creation process of
DE is a better way to escape from a local minimum. Therefore, the contraction factor F is an
important setting parameter of DE. At the same time this partner creation process offers the



possibility to better explore the parameter search space, provided the mutual distances of the
population members are sufficiently large.

4. SUMMARY AND CONCLUSIONS

In this paper a relatively new global optimisation method called differential evolution
(DE) has been tested. This method can be applied for solving inversion problems in
underwater acoustics. Its performance in terms of efficiency and robustness was compared
with that of a genetic algorithm (GA). Efficiency is measured by the number of function
evaluations. Robustness is defined as the probability of success. The fraction of runs that
converge to the global minimum, out of a number of independent repetitions of the algorithm
for a given setting (typically 50), estimates this probability.

The optimisation problem comprises the minimisation of an energy function depending on
6 parameters, featuring various local minima, parameter coupling and varying sensitivity to
the parameters. Minimising this function with GA requires several tens of thousands of
function evaluations. The performance of GA hardly depends on crossover probability,
whereas it depends critically on mutation probability. Using 25600 function evaluations
almost 100 % success probability was realised, provided a mutation probability of 10 % is
taken. With DE the same success rate is obtained with 10 times less function evaluations. The
performance of DE depends mainly on the multiplication factor and less on crossover
probability.

The following question remains. Do the best settings found for the optimisation algorithms
depend on the optimisation problem at hand? To this end we introduce another optimisation
problem, i.e., geo-acoustic parameter estimation using matched field inversion [Snellen,
2004].
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