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Abstract 

The increasing size and operational complexity of Dynamic Positioning (DP) platforms and the 
continuous increase in number of DP incidents has driven the need to further improve the safety and 
reliability of DP operations. A large portion of so-called ‘operator error’ is explained by increasing 
automation of operator tasks, pushing bridge teams into a more and more passive supervisory role, a role 
for which humans are not very well suited. For instance, a supervisory role may undermine the team’s 
ability to develop and maintain sufficient situation awareness during DP operations. The ambition of The 
Netherlands Organisation of Applied Scientific Research, or TNO in short, is to develop, together with 
the industry, a transparent (human-in-the-loop) adaptive automation platform, or adaptive automation, 
that substantially improves safety for maneuvering and control tasks. Ideally, this automation is based on 
a computational model that is able to assess the current and predicted state of the system, environment, 
and operator. For instance, when a drop in operator attention is detected, the computational model could 
decide to involve the bridge team to a greater extent in the DP process, reducing the chance for operator 
error and enabling a swifter response in the event of a fault initiation. Moreover, with adaptive 
automation, there may be less need for continuous human supervision of DP systems, leaving room for 
ship designers to reduce ship manning requirements. This paper describes the requirements of the 
computational model, how it could be made adaptive, and how measuring and modeling system, 
environment and operator state drives the actions of the adaptive automation platform. 

Introduction 

The manning of a ship is a major driver of total ownership cost. The U.S. Government Accounting Office 
(GAO) states that “the cost of the ship’s crew is the largest expense incurred over the ship’s lifetime” 
(GAO. p. 54, 2003). There are a number of options available to ship designers to reduce ship manning 
requirements. These options include automation of human operator functions (Scofield, & Brown, 2007). 
Manning reduction is not the only driver for automation of human operator functions aboard of ships. 
Automation is often applied in order to increase cost-effectiveness, as well as quality, reliability and 
safety of ship operations.  

The automation of operator tasks, however, may also have unwanted and unforeseen detrimental 
consequences for the reliability and safety of ship operations. Several major incidents in the past years 
have been attributed to conditions that stem from automation. For instance, automation may undermine 
the team’s ability to develop and maintain sufficient situation awareness (SA) during operations 
(Øvergård, Sorensen, Nazir, & Martinsen, 2014). This continuing automation of operator functions 
increases the risk that incident numbers might increase over the coming years. Indeed, a series of incident 
report publications of the International Marine Contractors Association (IMCA) shows a steady increase 
in the number of DP operator related incidents (see, for example, IMCA, 2009).  

Our ambition is to develop smarter automation, by shifting tasks between humans and machines 
dynamically, depending on environmental factors, operator state, and system performance. The goal of 
this automation should be to help bridge teams in their work, instead of pushing them out of the loop. We 
envisage a transparent (human-in-the-loop) adaptive computational system that substantially improves the 
safety and reliability of DP operations. This system is based not only on system and environmental state 
models, but also on an operator state model to assess current and predicted levels of operator state, for 
instance regarding the operator’s level of SA. A second ambition is that knowledge development and 
breakthroughs go hand in hand with applicability. To ensure this, and to ensure the emergence of research 
ecosystems, i.e. collaboration between business, universities and research institutes, the knowledge 
development and innovation takes place in so-called use cases, i.e. specific operational domains for 
application.  
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Dynamic positioning 

Dynamic Positioning is a computer-controlled system to automatically keep a floating vessel at a specific 
position or to follow a pre-defined path (tracking) by using its own propellers and thrusters. Applications 
include shuttle tanker operations, deep water drilling (drilling rigs), diving and ROV support operations, 
dredging and rock dumping, pipe laying and pipe trenching operations, cable lay and repair operations, 
but also military operations (e.g., mine countermeasures) (see also Fossen, 1994). The number of vessels 
with DP systems has increased in recent years. This is due mainly to increased oil and gas exploration at 
sea, as well as offshore operations, such as drilling, diving support, and anchor handling. DP systems 
have been increasingly applied to shuttle tankers during offloading operations with FPSO (Floating 
Production Storage and Offloading). FPSO installations are oil tankers that mine and store crude oil. The 
oil is regularly loaded into a shuttle tanker for transport. FPSOs can be brought quickly to new operations, 
so it is very useful for small oilfields and to operate the first wells before a final platform is ready. Critical 
is the positioning at a well and a shuttle tanker. Figure 1 depicts an FPSO installation.  
 

 
Figure 1. FPSO installation 

Safety and reliability of DP operations 

The increasing size and operational complexity of DP platforms has fueled the need to further improve 
the safety and reliability of DP operations. Incidents may lead to considerable costs and must be 
prevented at all time (Payne, 2001). These costs include, but are not limited to, (1) injuries and fatalities, 
(2) severe equipment damage or destruction, (3) major pollution, and (4) rig downtime with significant 
loss of revenue and contractual problems. Moreover, IMCA (2009) reports a continued increase in the 
number of incident reports. As shown in figure 2, incident analyses point out operator error as the root 
cause of DP incidents again and again (IMCA M 181; IMCA M 198; Oltedal, 2012). The operator is not 
only a trigger by itself without a fault or failure occurring first, technical failures often need the operator 
to fail in some way for the fault to reach a position loss (IMCA M 181 p.10; see also Figure 2). Hence, 
operator error is part of each incident category by default. 

Analyses of operator error shows that DP operators are often not able to react fast enough after 
the initiation of a drive-off incident (Tjallema, Van der Nat, Grimmelius, & Stapersma, 2007). Indeed, 
Oltedal (2012) found that a major cause of ship–platform collisions in the North Sea is the human 
deficiency to detect or interpret a technical state or error in time. The relatively slow reaction time of the 
operator indicates that either the fault detection is slow or the operator needs too much time to recognize 
the failure and to decide what action to take. For example, in 2007, a major loss of position occurred 
during a drilling operation when a DP operator’s arm accidentally contacted the surge button on the DP 
console so that it was deselected (IMCA, 2009). The DP operator was operating other equipment adjacent 
to the DP console and incorrectly identified these activities as the main cause of the offset. At the time it 
was finally discovered that the drifting of the vessel was due to the deselection of the surge button, the 
offset was already 135 meters. Although no people were injured and no structural damage was caused in 
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this incident, this example shows nicely how easily a position loss could occur, and how important it is to 
swiftly and correctly diagnose the fault.  
 

 
Figure 2. Major Loss of Position (LOP1) Incidents (taken from: IMCA M-181, 2006). Below the 
categories are listed the percentages of occurrence. Hence, 0.228 stands for 22.8%.   
 

Causes of operator error 

Several causes of operator error are identified in the literature (IMCA, 2006; Bray, 2008; Costa & 
Machado, 2006). Examples include, but are not limited to:  
• (poor) Ergonomic design of the DP station;  
• (poor) Employment conditions (e.g., low morale);  
• (poor) Working conditions (e.g., noise, [low] workload, or distraction);  
• Physical state of operator (e.g., fatigue, vigilance, attention);  
• Data overload (largely irrelevant information);  
• (insufficient) Operator training and competence;  
• (inadequate) Short-term handover arrangement between DPO and Master;  
• (irresponsible) Behaviour patterns (i.e. violating rules and procedures);  
• (inadequate) Procedures, manuals and documentation;  
• Misplaced trust in system (Class III invincibility error leading to complacency).  

 
Many researchers and practitioners alike agree that a large portion of operator error may be or might have 
been reduced or eliminated by paying more attention to underlying human factors issues, such as 
procedures, working and employment conditions, system and interface design, ergonomic design of the 
DP station, training, and handover arrangement between DPO and Master (IMC, 2006; see also Olson, 
2001; Costa & Machado, 2006; Bray, 2008; Sandhåland, Oltedal, Hystad, & Eid, 2015). There are several 
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improvements that make for good quick wins for increased safety and reliability of operations. For 
example, Sandhåland et al. (2015) identified several practices regarding planning, communication, and 
management of interrupting elements, that would immediate and significantly decrease the chance for 
operator error. Olson (2001) identified training of operators in how to deal with human factors issues 
through simulator training as the way forward. A more difficult problem to tackle, besides the identified 
human factors issues, stems from the ongoing automation of operator tasks due to the ongoing 
development of DP technology, pushing the operator into a more and more passive supervisory role, or 
even a backup role, a role for which humans are not very well suited, as we will discuss in the next 
section. 

The problem with automation 

As was described, DP systems are basically automation, taking over tasks previously performed by 
people, with the intention of increasing safety, accuracy, and reliability (see also Parasuraman, Mouloua, 
& Molloy, 1996; Sheridan, 1992; Wickens, 1998). When automation is introduced into a system, or when 
there is an increase in the autonomy of automated systems, developers often assume that adding 
automation is a simple substitution of machine activity for human activity (Woods & Sarter, 2000). 
Empirical data on the relationship of people and technology suggest that this is not the case and that 
traditional automation has several negative performance and safety consequences associated with it 
stemming from the human out-of-the-loop (OOL) performance problem (Endsley & Kiris, 1995; Kaber & 
Endsley, 2004). 

The operator has no direct need to constantly know what the status of all parts of the DP system 
is, because the DP system is controlling all components itself. Only after a failure arises the operator 
needs to take over this task and take appropriate action(s) to prevent the failure from harming the 
operation, or abort the operation in time to prevent accidents. Consequently, the low SA due to a high 
level of automation makes that the operator cannot intervene quickly and effectively if the automation 
fails. This is known as the OOL-performance problem, as the operator is not an active part of the process, 
(Parasuraman, Molloy & Singh, 1993; Tjallema et al., 2007). This is especially problematic in DP 
operations where the available time-window for reacting on a drive-off incident is in general very short, 
and the chances of preventing an accident decrease rapidly after the fault-initiation (Chen & Moan, 2003; 
Sandhåland et al. , 2015). 

Our ambition is to develop, together with the industry, a transparent (human-in-the-loop) adaptive 
automation platform that substantially improves safety for manoeuvring and control tasks capable of 
assessing the operator’s need for support, based on the system, environment, and the current and predicted 
operator’s functional state, that is, the variable capacity of the operator for effective task performance in 
response to task and environmental demands. As mentioned, an important operator variable for safe and 
reliable DP operations is situation awareness, or SA in short. It is important that the operator’s level of 
SA is maintained at high levels.  

The ambition we have set for the computational model behind the adaptive automation is that it 
needs to be able to assess the current and predicted levels of operator SA. When the detected or predicted 
levels of SA are low, the support system needs to intervene, for instance through involving the operator to 
a greater extent in the process, reducing the chance for operator error and enabling a swifter operator 
response in the event of a fault initiation. The purpose of this paper is to describe the requirements of this 
computational model, and how measuring and modelling operator SA drives the content, functionality 
and modality of the adaptive automation platform. 

The OOL-performance problem prevents human operators of automated systems from taking 
over operations, for example in the event of automation failure (Endsley & Kiris, 1995), and has been 
attributed to a number of underlying factors, including human vigilance decrements (Billings, 1991), 
complacency (Parasuraman, Molly & Singh, 1993), skill degradation (Parasuraman, Sheridan & Wickens, 
2000) and loss of operator SA (Endsley, 1995a; Endsley & Kiris, 1995; Nazir, Colombo & Manca, 2012). 
When a human operator is out of the loop, instances will occur, when s/he cannot maintain control over 
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the system (Norman, 1990). A supervisory role requires a different set of cognitive skills than the role of 
control and intervention (Bainbridge, 1983). System design must take into consideration the elements that 
determine the quality of task performance (Woods & Roth, 1988). This requires an approach to the design 
of the automation that enables operators to better manage DP systems.  

Human-automation collaboration 

The way that the operator and the automation collaborate is of vital importance to the performance of the 
overall system. Human-automation collaboration can have many different forms. Between manual control 
and full automation, different levels of automaton can be distinguished. Well known classifications are 
made by Sheridan and Verplank (1978) and by Endsley and Kaber (1999), with different variations, but 
others exist. Adaptive systems are systems in which the locus of control varies over time. This can imply 
a mode change for the whole system, but also that the responsibility for a specific subtask moves from the 
automation to the operator or vice versa. 

Operator, system, and environment models 

For adaptive automation to be effective, it needs to be able to monitor operator-system-environment state. 
This enables the automation to intervene in case needed. For this purpose, the automation needs a 
computational model, which should be valid, as the automation might otherwise intervene at 
inappropriate moments and even worsen performance. Hence, a conceptual framework is required with 
operator-system-environment state as a basis, with a large focus on integrating system, environment and 
operator state monitoring. 

Relevant operator states must be determined and added to the framework and broken down in 
several subtypes, such as fatigue, stress, distraction, workload, arousal, and vigilance. The state of the 
environment could also be described in several subtypes, indicating weather conditions, sea state, current, 
ship state, etc. Also the model needs to incorporate the interdependencies of these factors. However, since 
we also want to make a link with the DP system (since various levels of automation or operator support 
may be needed), a system state estimator is also required. In the next section we focus in more detail on 
the operator model.  

Operator state & characteristics 

There are many variables that influence the ability of the DP operator to maintain position or to control 
position loss in case of a fault (e.g., black out or drive off), human error or environmental force. These 
variables together represent the dynamic state in which the operator is situated. User variables are an 
important class of variables, since the operator is the subject of applications. In the remainder of the paper 
we use the term ‘controllability’ for this operator ability.  

The most notably user variables are the user state and the user characteristics (see, for example, 
Feld & Müller, 2011). User characteristics are typical and more static user variables, such as 
demographics (i.e., age), physical properties (e.g. weight), abilities (i.e., eye sight) and personality traits 
(e.g., extraversion). For example, when an operator has a hearing problem, this may seriously hamper the 
controllability, for the operator may not hear all alarm signals. User states are more fluid, and are 
typically broken down in cognitive state (e.g., stress), emotional state (e.g., anxiety), and physiological 
state (e.g., fatigue). The user or operator state is a combination of factors that summarize the state of a 
human operator when performing a task (Bosse, Both, Hoogendoorn, Jaffry, Van Lambalgen, Oorburg, 
Sharpanskykh, Treur, & De Vos, 2011). A selection of the variables contained by operator state is 
depicted in figure 3.  
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Figure 3. Selection of the operator model: user state.  

Adaptive automation computation model 

In the previous chapter we have described specific variables that could drive the method of invocation of 
the adaptive automation. This section describes the working of the computational model and, more 
specifically, how the assessment of relevant variables from the system, the environment and the user 
could trigger the invocation of the automation. Figure 4 depicts the model as a classical feedback control 
loop. Feedback loops find their origins in control theory, that deals with the behaviour of dynamic 
systems with inputs, and how their behaviour is modified by feedback. The idea is that the automation 
takes supervisory control actions, through assessment of relevant current or predicted system, 
environment, or operator state variables (see also Sheridan, 2011).  

An important aspect of the computational model is the control law. Our plan is to make the 
control law for the initiation of actions, as well as the assessment of user state, dependent on operator 
characteristics, as can be seen in in figure 4. Hence, we are striving for personalized automation. For 
example, less experienced operators may be equally effective in solving problems than expert operators, 
but require more SA. At the same time, the deterioration of SA over time probably goes slower for more 
experienced operators as compared to novices. Control actions are initiated when the measured or 
estimated user state is below a dynamic threshold, that is dependent on estimates of environment and task 
variables. For example, when the task becomes more complex or the environment gets more complicated 
due to extreme weather conditions, then the threshold will be raised to a new higher level. Hence, the 
control law is adaptable or changeable. The adaptation refers to the mapping of goal state and measured 
state into control actions (see also, Äström & Wittenmark, 1989). The system actions are applied as 
feedback to the input of the system, the user state, to bring the actual output closer to the reference, and 
eventually, improve the ability of the DP operator to maintain position or to control position loss in case 
of a fault, human error or environmental force. Hence, the control loop is closed.  
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Figure 4. The computational model of the personalized (adaptive) automation platform. 
 

As was mentioned, ongoing automation of DP tasks may seriously undermine the DP operator’s 
ability to develop and maintain sufficient SA during operations. The ability to assess SA might therefore 
be especially critical for successful adaptive automation (see also, Kaber & Endsley, 2004). Fault 
analyses show that low levels of SA pose a threat to DP operations, for they may lead directly to operator 
error, or prevent the timely control of other faults. Hence, we agree with Pfaff, Klein, Drury, Pil Moon, 
Liu, and Entezari (2013), that in the given domain, besides SA, the perception and comprehension of the 
relative desirability of available options, as well the underlying factors and trade-offs that explain that 
desirability, is of equal importance. Pfaff and colleagues have defined this state as option awareness 
(OA). Although there is no reporting at this time of insufficient OA being the cause of DP incidents, the 
importance of selecting and implementing a course of action after the initiation of a fault, justifies, at least 
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in our opinion, research into the role of OA in DP. We have therefore chosen to focus the supervisory 
control actions of our computational model, and our ongoing research efforts, on the assessment of the 
operator’s level of awareness of the situation and relevant options to control the situation.  

 

Discussion & way ahead 

In order to develop a transparent (human-in-the-loop) adaptive automation platform, or adaptive 
automation, that supports DP operators in demanding circumstances, reducing the chance for operator 
error, a computational model is required. This model describes the interplay between an individual 
operator’s cognitive state, system performance and the environment. This paper presented such a model. 
This model will serve as guidance for our ongoing work together with industry.  

The computational model takes user state as input and determines how user characteristics, task 
demand and situational aspects initiate the need for control actions. The ability of the model to allow for 
changes to the control law makes it adaptive in nature. The rationale for adaptive control is to cope with 
the fact that many of the parameters to maintain position or to control position loss in case of a fault, 
human error or environmental force, are slowly time-varying or uncertain in nature (cf. Sheridan, 2011, p. 
665). For example, during DP operations, currents or weather conditions may change, imposing the need 
for more operator attention. Task complexity may also increase, for instance when shuttle tanker loading 
operations must be coordinated, again creating a more stringent need on operator resources through the 
control law.  

For DP operations to be successful, in our opinion, the operator continuously needs to be aware of 
the unfolding situation and available control options. Our ambition for the following years is therefore to 
develop adaptive automation that is capable of assessing these elements of the operator state. Hence, the 
adaptive automation platform should be able to assess the operator’s level of (a) awareness of the 
situation and (b) relevant options to control the situation. This poses a real challenge for the phases yet to 
come. We will explain below why.  

First of all, we need an applicable definition of SA, for instance Endsley’s (1995a) three level 
model of SA. Endsley defines SA as “the perception of the elements in the environment within a volume 
of time and space, the comprehension of their meaning and the projection of their status in the near 
future”. However, several researchers have argued that the Endsley (1995a) model is not applicable to 
socio-technical systems (Hollnagel, 2001; Salmon, Stanton, Walker, & Green, 2006). Socio-technical 
systems can be described as systems where humans and machines interact or collaborate and together 
form the system as a whole. DP operations are basically a socio-technical system, since operator and 
system more or less collaborate to keep the vessel at its position or remain at track. To solve this problem, 
a new paradigm has emerged in the study of SA: distributed situation awareness (Stanton et al., 2006). 
Distributed situation awareness theory states that not only the human operator, but all agents in the system 
contain a certain amount of SA that together adds up to the total available SA.  

The biggest challenge, however, resides in measuring SA of the operator. There are many 
techniques developed in the last decades. Some of these techniques are obtrusive, for example SAGAT 
(Endsley, 1988), meaning that operators are required to answer questions during periodic, randomly timed 
breaks. During these breaks operators are not able to perform their work. Other techniques are non-
obtrusive, using eye tracking or physiological techniques. These techniques seem at first glance promising 
techniques for acquiring the required input for our adaptive automation, because these techniques do not 
disturb or hinder operators during their work. However, as was voiced by Endsley (1995b), 
“Physiological techniques, though providing useful data for other purposes (‘determining whether 
information is registered correctly’), are not very promising  for the measurement of SA as a state of 
knowledge.” These measures are limited, according to Salmon, Stanton, Walker, Jenkins, Ladva, Rafferty 
and Young (2009), because they cannot determine how much information remains in memory, whether 
information is registered correctly, or what comprehension the subject has of those elements. 
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For the computational model to work correctly, the situation state, including task demands, need 
to be assessed as well. The user state is only meaningful to the model when it knows what demands there 
are from the task environment. When the demands are high, for instance due to high task complexity 
during offloading operation, the requirements for user resources increase. Meaning that the operator 
should be aware of the elements in the environment, have comprehension of their meaning and is able to 
project their status in the near future.  

The next question to address is how to assess OA. OA is a relatively new and immature research 
topic. Hence, little is known about the workings of option awareness and the mechanism to which 
operators acquire awareness of this sort. More importantly, all experimentation to date determining the 
success of OA support, has used implicit measures of assessing the degree to which participants have 
attained OA, such as decision correctness, speed, confidence, and interface use (Pfaff et al., 2013). 
Perhaps, we should therefore lower our ambitions and focus on user state concepts that are sufficiently 
mature to be applied to the current use case. To put it simply: we should focus on one hurdle at a time. If 
we have cleared this first hurdle; then we must consider whether or not to include the other relevant 
variables in the computational model. 

Then there is the issue of what the control law actions might look like. The idea is that the 
automation takes supervisory control actions, through assessment of relevant current or predicted system, 
environment, or operator state variables. The system actions are applied as feedback to the input of the 
system, the user state, to bring the actual output closer to the reference, and eventually, improve the 
ability of the DP operator to maintain position or to control position loss in case of a fault, human error or 
environmental force. As yet, it needs to be determined what these actions look like. When the system has 
determined that the requirements for operator SA are below the goal that was set, what actions should the 
platform initiate? How to provide the operator with sufficient situation awareness in a timely manner? 
Moreover, this brings us to the discussion of the functionality of the automation platform. Is its function 
to merely monitor the ability of the operator to control the DP system, and to take actions when this 
ability is below a dynamic threshold? Or is the automation merely another part of the DP system, making 
the operator even more redundant? Clearly, these questions need to be addressed as well when 
considering the potential success of the adaptive automation. 
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