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Chapter 1

Introduction

Most, if not all of our visual communication is based on images, whether “true”
images of objects, or visual codes for conveying information, like alphanumeric sym-
bols and graphics. Just like printed text can be of high or low quality, as measured
by its legibility, the quality of printed natural images may also vary. However, how
to measure this is far from simple. It is an issue addressed in many studies on
image quality, e.g. [Webster et al., 1993, Davies and Rose, 1993, Marmolin, 1986,
Engeldrum, 1999b, Daly, 1993b, Lubin, 1995, Barten, 1999, Farrell, 1999]
[Ahumada, 1993, Kayargadde, 1995, Janssen and Blommaert, 2000a]. This study
is another attempt. Studies on image quality are important because much indus-
trial effort is dedicated to producing and reproducing images. This is particularly
true for the design of electronic imaging and printing systems. If, for example, we
change the inks in a printer, the printed image will change. Some changes will im-
prove the image, some will degrade it. The question is, how can this be quantified?

One way to do so is by asking people to subjectively evaluate image quality. It has
been shown that humans tend to respond more or less in the same way when using
this technique [Roufs, 1989]. However, it is very time-consuming to do this kind
of tests for every factor that may affect the imaging process. It would be really
helpful if the quality could be assessed on the basis of a mathematical model. Such
a model, using only a restricted set of quantifiable image properties, should predict
the subjective quality response (rating) of the human observer. Unfortunately, but
not unexpectedly, such a model does not exist as yet. In this thesis we attempt to
obtain such a model for a small subset of all images, namely natural images that
are produced by an ink jet color printer.

In the next section we first introduce the concept of image quality. Next, we focus
on the main goal of this research. We end this chapter with an outline of this thesis.

11



12 Introduction

1.1 Definitions and goals

As a starting point for defining image quality, we regard images as projections of
the outside world [van der Schaaf, 1998]. Images can be treated as carriers of visual
information [Janssen and Blommaert, 1997]. We mainly look at natural images, of
which we manipulate various parameters that may be expected to affect image
quality.

For our purposes, we used digitally recorded images. So, continuous scenes are
sampled at discrete points (pixel positions), after which one or more values are
stored. If the image is grey-valued, only one value per pixel is stored, whereas for a
color image three or more values are stored for one pixel. Sometimes spectral color
images are recorded, where a spectrum is stored for each pixel position.

Quality can be defined as the extent to which certain properties of the picture
live up to someone’s criteria. This definition has two important words: extent and
criteria. If someone does not have very strict criteria, it is easier to produce “high
quality” pictures.

If we combine both definitions, we may define image quality as: “the extent to
which the image corresponds to the internal expectation of the human observing
the image”. Note that in this definition the human observer is still present, and not
necessarily as passive observer, but also as goal oriented operator. The expectation
depends upon the task for which the image is used.

If we have to see certain details in the image for a given task, the quality will have
to meet other criteria than when we just want it for decorating a room. The first
kind of image quality is called task-oriented image quality and the second kind is
called perceptual image quality [Roufs, 1992, Kayargadde, 1995].

Roufs [Roufs, 1989] uses the term perceptual image quality instead of subjective
image quality, and does so for two reasons. First, the term subjective would imply
that quality differs widely across subjects. However, subjects are able to make
consistent judgement of the quality of an image, and these judgements do not differ
very much over subjects. Second, subjective image quality would also imply that
the aesthetic features of images are important, which is not the case when we look at
different versions of the same original image [Roufs, 1992, Kayargadde, 1995]. So,
perceptual image quality is related to what we observe, not influenced by personally
or culturally determined aesthetic values.

The quality of a reproduced image can be studied with respect to the original image.
The “distance” (difference) between the reproduced image and the original can be
measured. The image quality is redefined as image fidelity, or, in the case of image
compression, as image degradation.



1.1 Definitions and goals 13

Image quality can also be studied without such a direct comparison. People are
able to tell how good an image is, without seeing the original image, or the original
scene the image is a reproduction of. We probably have some idea of how an image
should look in our memory. So, to a certain extent, an image quality measure should
also be able to work in an absolute sense, that is, without reference to a standard.
Although, strictly speaking, the internal reference makes this “relatively” absolute.

It is a reasonable conclusion that the quality of the image has something to do with
the naturalness of the image. If people in the image have purple faces, this probably
will not be considered to be a good image. On the other hand, the image which is
the most faithful reproduction (has the same color values) may not necessarily be
perceived as the most natural image [Janssen and Blommaert, 2000a].

There is also a difference between image quality and visual comfort. Sagawa
[Sagawa, 1999] reported experiments in which subjects scaled the subjective im-
pression of comfort caused by visual stimuli, instead of the image quality. He
used images in which the vividness of the colors (saturation) was changed. He
found that images with lower saturation were more comfortable. However, others
[Fedorovskaya et al., 1997, de Ridder et al., 1995] found that images with a slightly
higher saturation are preferred. Sagawa concluded that observers use other criteria
when scaling comfort than when scaling quality, because the functional aspect of
the color usage is different.

Another problem is the importance of the image content as a determinant of the
quality of the image. For example, we tend to judge an image of ourselves more
critically than the images of unknown people. In this study, we are not interested
in aesthetic aspects, like the contents and layout of the scene.

But even within an image some parts of the image are more important than others
when it comes to judging image quality. If the background of an image is not in
focus, this may not be a problem, but if the eyes of a person are a bit fuzzy, this
may reduce image quality. How to deal with this variable is far from easy, since it
may well be subject to individual differences.

Setting aside these “details”, we define the major goal of this thesis as

finding an objective measure for the quality of a printed image that corresponds to
perceptual image quality.

In addition to this major goal, a number of, closely related, secondary goals can be
defined. Some of these secondary goals and corresponding research questions are:

Improving insight in the complex subject of perceptual quality When es-
timating the quality, does a subject evaluate the image as a whole or only
sub-parts of the image? How do current ideas about the relation between
naturalness and quality hold up for various sets of printed images?
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Determining the relation between perceptual attributes and image quality
How does the quality depend on certain perceptual attributes of the image,
such as sharpness and color distribution.

Developing methods for color image processing How can we optimize tools
used for grey-value images, when these are applied to color images?

1.2 Outline

The outline of this thesis is as follows. In chapter 2, 3 and 4 we present the
theoretical background and experimental approach for this study. In chapter 2 we
present a short overview of how color can be quantified and what color variables
are used. In chapter 3 we will discuss some of the current image quality models.
In chapter 4 we will present the methods and materials used in our experiments.
The topics discussed in that chapter include: how to characterize and calibrate a
printer, what images can be used for this kind of experiments, and how to design
experiments in which the measuring instrument is the human observer.

In chapters 5-8 we discuss the experimental part of this thesis. We have performed
four groups of experiments with different parameters. In chapter 5 we report new
measures for sharpening and smoothing. In chapter 6 we report a new measure for
describing the sharpness of an image. In chapter 7 we report experiments on the
effect of changing the luminance distribution of the image by a gamma manipula-
tion. In chapter 8 we present results of experiments in which both the chroma was
scaled and the luminance distribution was varied by a gamma manipulation.

In chapter 9 a generic method is described to use grey value image processing
algorithms for color image processing. The grey value algorithm is applied to the
lightness component of the color image is such a way that the colors of the image
can still be rendered. This has been further explored for the case of a gamma
manipulation as well as a sharpness manipulation. In chapter 10, an outline for
a quality measure is suggested. This quality measure is useful to select the best
image of a series of images that only differ due to a manipulation that affects the
lightness value in the image. In the last chapter we look back at the results and
discuss what we did and did not achieve.



Chapter 2

Preliminaries

2.1 Color basics

We have chosen to look at the quality of color (chromatic) images, although the
difference with black-and-white (achromatic, grey-value) images is actually just a
matter of dimensions. In terms of computer graphics, color is defined by three
numbers (e.g. R, G, B), whereas a grey-value image requires manipulation of just
one number (n = R = G = B). In this section we discuss some of the basics of
color imaging and color measuring, that are relevant for this thesis, starting with
the stimulus-response (input-output) aspect.

2.1.1 Introduction

The question “what is color” is a difficult question to answer. However, for the
present purpose we can treat it as a psycho-physical phenomenon, in which a phy-
sical attribute of light correlates with a particular psychological response. The
essential physical attribute is the spectral power distribution (SPD) of the light
entering the eye, although spatio-temporal variables may also affect the color re-
sponses.

The SPD of a color depends on

• the SPD of the light source

• the spectral properties of some material that modify the SPD of the light
source by selective absorption, reflection and/or transmission.

Color is much too often only identified by its physical characteristics, but that is
only the stimulus, input to the color response, i.e. the color experience.

We can make a distinction between the color of a light, such as a green traffic light,

15



16 Preliminaries

and a property of a surface, like the green of grass. That we perceive this difference
is far from obvious, when considering that color always enters the eye as colored
light [Walraven, 1992]. These two modes of color perception are most commonly
called aperture and object color [Katz, 1911].

The psychological or visual response is determined by many factors, including the
spatial and temporal distribution of the image projected on the retina. However,
for the simple case of an isolated patch of light seen in isolation, we only have to
consider the light absorption in the photo receptors of the eye and the consecutive
transformation in a color response. How the color response is derived from the
signals from the photo receptors is typically not a subject treated in studies of
image quality, because the impossibility to measure all the steps in the visual chain
from retina to visual cortex.

We can quantify colors in several ways, either physically, in terms of the SPD, or
in so-called colorimetric units, which take into account the spectral (broad-band)
filtering properties of the (standardized) human eye. But how are these colorimetric
units related to the physical values that we measure?

We shall address the physics of the colors in section 2.1.2. In section 2.1.3 color
according to the eye is discussed. In addition to the quantitative specification
of color, one also has to consider the perceptual aspects. By that we mean the
qualifications that we use to classify colors. Colors not only differ in the hue (like
red or green), but also in luminance (bright or dim) and saturation (vivid or pale).
There are also various other qualifications, which will be discussed in section 2.1.4.

2.1.2 Colorimetrics

Visible light consists of electromagnetic waves with wavelengths between about 380-
780 nm. The distribution of the energy over the wavelengths, or spectral power
distribution (SPD), is also called the spectrum of the light in question. Depending
on how the light is produced, one can distinguish between emission, reflectance and
absorption (or transmission) spectra. Different light sources emit different light
spectra. In figure 2.1 three emission spectra of standard light sources are shown:
the standard lamp light, and two different types of (simulated) daylight: D65 (blue
sky) and D50 (clouded sky).

Light sources do not always emit a smooth spectrum. This is illustrated in fig-
ure 2.2, which shows the emission spectra of the RGB phosphors of an IIYAMA
color monitor, with color temperature D65 1. Since 1969, CRT monitors have usu-

1Color temperature is the temperature of a Plankian radiator whose radiation has the same chromaticity
as that of a given color stimulus. Light sources are described by their color temperature. D65 is a daylight
simulator with a color temperature of 6500 K.
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Figure 2.1: The emission spectra of three standard light sources: A (tungsten lamp light),
and two daylight simulators: D65 (blue sky) and D50 (clouded sky).
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Figure 2.2: The emission spectrum of a color monitor.

ally the following phosphor set [Hunt, 1987]:
Red europium yttrium vanadate x = 0.675 y = 0.325
Green zinc cadmium sulphide x = 0.285 y = 0.595
Blue zinc sulphide x = 0.154 y = 0.068

It is of interest to note that the three peaked RGB spectra shown in figure 2.2 are
capable of generating light mixtures that produce colors that are indistinguishable
from the colors associated with the continuous spectra shown in figure 2.1. This
shows that the visual system does not derive a color signature on the basis of
a thorough spectral analysis. That is where the properties of the eye enter the
picture.
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Figure 2.3: The color matching functions of the CIE 1931 standard observer.

2.1.3 Trivariance; color according to the eye

The visual system is equipped with 4 types of photo receptors, one for night (sco-
topic) vision, the rods (so called because of their cylindrical shape), and three
different cone types (so called because of their tapered shape) for daylight (pho-
topic) vision. The cones provide the sensors for color vision (at night we are color
blind).

The three classes of cones absorb light over different, but largely overlapping, spec-
tral ranges. These spectral ranges correspond roughly with the blue, green and red
parts of the spectrum. The cones are referred to as short-wave (S), middle-wave
(M) and long-wave (L) cones. In older literature one can also find the nomenclature
blue, green and red cones.

It is possible to use entirely different spectra to produce colors that are indistin-
guishable for the eye. These so-called metameric colors appear if the absorptions in
the three cone pigments are matched. If one looks at a natural scene on a television,
all colors are metamers of the real colors of that scene.

To analyze color stimuli one is not obliged to use the LMS cone spectral sensitivities.
As long as any three functions are linear combinations of the three “physiological
filters” of the eye, they can be used to derive a three-dimensional metric that
predicts the outcome of color mixtures. Such a metric is all that is needed for
trichromatic color reproduction.

One of the standardized sets of three color filters is the CIE 1931 color-specification
system [Wyszecki and Stiles, 1982]. One can use this system, for example, to ex-
plain how to produce a certain color on a television set.

In the XYZ color space, the responses (in terms of light absorption) of the filter are
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given by

X =

∫
R(λ)x̄(λ)dλ

Y =

∫
R(λ)ȳ(λ)dλ

Z =

∫
R(λ)z̄(λ)dλ

(2.1)

in which x̄(λ), ȳ(λ) and z̄(λ) are the three filters, the so-called color matching
functions. R(λ) is the SPD, depending both on the light source l(λ) and properties
of the object r(λ), such as reflection or transmission properties

R(λ) = l(λ)r(λ). (2.2)

X, Y and Z are also called the tristimulus values of the color stimulus.

We often look at the relative contributions of X, Y and Z, because these values
supply the information of the chromatic aspect of color (chromaticity). These
relative values are defined as

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z

. (2.3)

Because x + y + z = 1, it is sufficient to use only two of the three values. It is the
convention to use x and y. The domain of x and y is limited, due to the fact that the
range of differential cone responses is restricted, because of the considerable overlap
of the cone spectral sensitivity functions. The use of equation 2.3 means that the
information on the absolute intensity is lost. To restore this information, one can
for instance use the luminance Y . x, y and Y provide the same information as X ,
Y and Z, and can also be used as a color space (see also figure 2.5 on page 24).

The boundary of the x, y space, or chromaticity diagram, is formed by the curve
passing through x, y values of the spectral colors (“spectral locus”) and the straight
line (“purple line”) connecting the spectral extremes (380 and 770 nm). This is
visualized in figure 2.4. The location of some of the spectral colors is also given.
All chromaticities within this boundary can only be made by mixing at least two
different wavelengths, located at opposite sides of the chromaticity in question. All
sources of colors can be used to mix colors, e.g. C1 and C2 in figure 2.4 can be
used to produce all colors that lie on the line connecting them, including the white
point. The chromaticity points of the RGB phosphors of a typical monitor (see
figure 2.2) are also given. All colors within the triangle that connect these points



20 Preliminaries

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

The CIE 1931 chromaticity diagram

450

480

490

500

510

520 530
540

550

560

570

580

590
600

620
770

λ

C1

C2

B

G

R

Figure 2.4: The CIE 1931 x, y chromaticity diagram. The colors that can be generated
on a color CRT are bounded by the chromaticities of their phosphors (R, G, B). The circle
denotes the D65 white point, C1 and C2 are two arbitrary colors that can be used to generate
this white.

can be displayed on the monitor, all the points that are outside the triangle cannot.
This difference leads to the definition of gamut, which is given as all colors that
can be reproduced by a certain device. In this case the gamut is the area inside
the triangle. More about gamuts and what to do with colors that are outside the
gamut is given in chapter 4.

2.1.4 Perceptual color attributes

Although we experience color as one single attribute, it is possible to identify differ-
ent basic properties or dimensions. This is a great help in bringing some order in the
total scope of color sensations. Color can be ordered along three dimensions. The
dimensions that are used depend upon how we perceive the color. If we perceive
the color as the property of a light, for instance the red light from a traffic light, it
is called an aperture or a self-luminous color. If we perceive the color as a property
of a surface, such as a red apple, it is called an object color [Walraven, 1992].

For aperture colors, the dimensions are hue, brightness and saturation. The for-
mal definitions (CIE 1987), with some minor extensions or clarifications (between
parentheses [Walraven, 1992]) are

Hue attribute of a visual sensation according to which an area appears to be similar
to one of the perceived colors red, yellow, green or blue (i.e. primary hues),
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or to a combination of the two (i.e. intermediate hues).

Brightness attribute of a visual sensation according to which an area appears to
emit more or less light (either by itself or from incident light).

Saturation attribute of a visual sensation according to which the perceived color
of an area appears to be more or less chromatic, judged in proportion to
its brightness (the saturation being low at relatively low and high brightness
levels).

A few elementary, so-called primary hue elements can be defined. These are the
sensations we call blue, yellow, green and red. Each hue can then be described
as a mixture of two of these primary hues, such as yellow-red (orange) or blue-red
(purple). Not all combinations of the four primary hues make sense, though. One
cannot perceive a yellowish blue or a reddish green. This observation led to the so-
called opponent-color theory, first formulated by Hering [Hering, 1878] and further
developed and quantified by Hurvich and Jameson [Hurvich and Jameson, 1955].
The opponency can be described as a red-green and a blue-yellow channel. These
are the chromatic channels. There is also an achromatic channel.

The saturation of a color indicates the amount of balance between the chromatic
channel activity versus the achromatic channel activity.

We only deal will with object colors unless stated otherwise. For object colors, we
can use the same definitions for hue and saturation. The brightness depends both
on the incident light and the surface reflectance. The latter property is captured
in the term lightness. For a given illumination, a white object will always reflect
more light than a colored object, simply because it reflects at all wavelengths. Due
to this fact, we may use a white object as a reference for all other lightnesses in the
scene. We use the old CIE (1970) definition for lightness:

Lightness attribute of visual sensation according to which a body seems to reflect
(diffusely) or transmit a greater or smaller fraction of the incident light.

In the more recent CIE 1987 publication lightness is defined as relative brightness,
although there are good reasons to assign brightness and lightness to the two dif-
ferent domains of light and matter, respectively [Gilchrist et al., 1983]
[Walraven et al., 1990].

The attribute lightness requires, next to the response to the incident light, the
response to reference white. As long as the ratio between these two values is con-
stant, the lightness that is observed will be more or less constant, irrespective of the
overall light level [Jacobsen and Gilchrist, 1988]. This is called lightness constancy
[Walraven et al., 1990].

The difference between lightness and brightness is necessary to understand why we
see a difference between a white paper in a shadow (i.e. high lightness) and a black
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paper in the sun (low lightness), even if the amount of light that the papers reflect
is exactly the same.

2.1.5 Perceptual color spaces

There is a need for finding a relation between a color stimulus space (for instance
XYZ) and a perceived color space. Unfortunately, such a space is not (yet) known.
The next best thing is a color space in which small distances correlate to small
perceptual differences. The CIE has recommended two color spaces for this purpose,
that is, CIELUV and CIELAB [Hunt, 1977, Robertson, 1977]. These systems are
intended for surface colors. CIELUV is mostly used for television and display
systems, whereas CIELAB is the most used color space in the printing environment.

In the CIELAB color space five perceptual quantities are defined: the lightness L∗,
the green-redness a∗, the yellow-blueness b∗, the chroma C∗ (chromatic activity)
and the hue h∗. These variables are defined as:

L∗ = 116f

(
Y

Y0

)
− 16 (2.4)

a∗ = 500

[
f

(
X

X0

)
− f

(
Y

Y0

)]
(2.5)

b∗ = 200

[
f

(
Y

Y0

)
− f

(
Z

Z0

)]
(2.6)

C∗ =

√
a∗2 + b∗2 (2.7)

h∗ = tan−1(b∗/a∗) (2.8)

in which f(x) is defined as

f(x) =

{
x1/3 if x > 0.008856

7.78x + 16
116 otherwise

(2.9)

X0, Y0 and Z0 are the tristimulus values of reference white.

CIELAB is based on typical office lighting conditions, i.e. a middle-gray back-
ground and average surround lighting [Berns, 1992]. If the surround luminance is
very different, the tone reproduction changes. This is the reason that we can see
much more contrast in transparency images than in printed images, because trans-
parencies are watched in a dim environment, whereas printed images are looked at
under normal lighting conditions. Hunt [Hunt, 1991] has shown that modifying
the exponent of CIELAB can compensate for this surround effect. He suggested
an exponent of 1/3.75 for a dim surround and an exponent of 1/4.5 for a dark
surround.
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CIELAB is far from perfect, therefore a number of other color spaces were defined:
CIECAM97s [Luo and Hunt, 1998], CMC [Luo, 1998]. We use CIELAB because
this is still commonly used in the printing world.

2.1.6 Device color spaces

We are not only looking at the world surrounding us, but are also reproducing it.
To do this we record it (for instance with a camera) and display it (on a monitor, a
printer, a TV set,...). Different devices can use different color spaces [Kang, 1997].
Each device typically has three or four primaries, colors used for generating its color
space. Scanners and monitors have RGB primaries, the primaries of printers are
the inks CMY or CMYK (see below). The goal is normally to display an image
with the same colors as in the original scene. To do this, one should know the
relation between the color space of the recorder and color space of the displaying
device. One way of achieving this is to make a conversion of all devices to one
standard perceptual color space (XYZ or CIELAB). To convert to another color
space is then no more than converting to and from the standard color space. This
idea is formalized by the ICC [ICC, 1998].

Most devices have RGB primaries, that is they use RGB values to display or record
the colors. A normal assumption is that the RGB primaries are a linear combination
of the XYZ values. The standard conversion for RGB to XYZ is given by

 X
Y
Z


 = A


 R

G
B


 , (2.10)

in which A is a 3 x 3 matrix, for instance [Wyszecki and Stiles, 1982]

A =


 0.490 0.310 0.200

0.177 0.812 0.011
0.000 0.010 0.990


 (2.11)

Some nonlinearities in this relation can be modeled by an exponent relating lin-
ear RGB values to the monitor RGB values. This exponent is called gamma. If
a monitor is used for exact color reproduction, the models given above are not
accurate enough. To obtain a more accurate color reproduction, the monitor can
be calibrated, for instance using the method described by Lucassen and Walraven
[Lucassen and Walraven, 1990].

A printer has other primaries, that is the amount of the different inks that are used
to print a color. The printing colors that are mostly used are Cyan, Magenta and
Yellow, CMY. Black is normally added as ink to avoid printing too much ink and
to enlarge the gamut (range of the printer). The letter denoting black is K (the last
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letter of black) because B is already used for blue. The standard conversion from
RGB to CMY is given by [Stone et al., 1988]

C = (255 − R)/255

M = (255 − G)/255

Y = (255 − B)/255

(2.12)

The conversion from CMY to CMYK can be done in two ways

K = min(C, M, Y )

C ′ = C − K

M ′ = M − K

Y ′ = Y − K

(2.13)

or [Bourgin, 1998]

K = min(C, M, Y )

C ′ = (C − K)/(1 − K)

M ′ = (M − K)/(1 − K)

Y ′ = (Y − K)/(1 − K)

(2.14)

These conversions are based on the assumption of a linear relation between RGB
and CMY. Because the printing process is normally non-linear, this assumption
often does not hold. Therefore, the characterization and calibration of a printer is
fairly complicated. Relations between color spaces are given in figure 2.5.

More details concerning characterization and calibration are given in chapter 4.



Chapter 3

Studies on image quality

In this chapter we present a review of research that has been done in the field
of image quality. We start with a general classification of image quality models,
followed by a discussion on models from the literature. However, since there are
so many models, we shall not try to be exhaustive. Moreover, many image quality
models are just simplified versions of other models [Ahumada, 1993].

3.1 Classification of image quality models

It is possible to classify image quality models in different ways. A first distinction
can be made between modeling image quality and imaging device quality. This is
the difference between searching for the best image on one device and searching
for the best device on which an image can be displayed. In other words, which
version of the image is best or which device should we use to display the image?
Here we are concerned with image quality, i.e. we only use the device as a tool for
generating the images.

A second distinction can be made with regard to whether the quality of an image
is related to a reference or an ideal model, or that the quality is modeled directly,
independent of the reference. The first approach is called impairment approach
[Engeldrum, 1999b], or fidelity approach [Daly, 1993b]; the second is called quality
approach [Engeldrum, 1999b]. Impairment models determine a difference between
an image and a reference image. This is mainly used in compression, where a
difference is always a degradation of the original image. Quality models are more
complex. Humans recognize objects in images, even if they have never seen the real
scene. But this memory reference is quite elusive. The problem is to determine
what the properties are that make a good image.

A third division is based on how much knowledge (vision models, task models) is
used in creating the models. Lubin [Lubin, 1993] defines four different classes:

25
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Model-free data collection This type of modeling is mainly used for evaluating
different display systems. An image is displayed on different display systems,
and subjects are used to evaluate the quality of the image on each system. For
model-free data collection, no special knowledge, such as a vision model, is
used. The disadvantages are that it is time-consuming and costly to do these
experiments, as they always involve many subjects. The display systems or at
least prototypes or models of these have to be available. Another disadvantage
is that the number of display parameters has to be small.

Task modeling If the task can be decomposed into simple component tasks, one
can also measure the performance of subjects on these smaller tasks. A re-
lation between the performances on the smaller tasks and the physical pa-
rameters that are varied can be established. The task can be decomposed
into simple component tasks, by using knowledge of the typical artifacts that
are present in the image database used or that can occur with the use of the
displaying systems. The task decomposition can also be done by multidimen-
sional scaling.

Performance modeling Performance modeling is fitting the output of the visual
system to the parameters that are varied at the input. The entire visual
system is regarded as a black box. The advantage of this modeling is that once
a good performance model is available, subject experiments can be avoided.
An example of a performance model is Barten’s SQRI measure [Barten, 1999].

Mechanistic modeling A mechanistic vision model is based on knowledge of
physiological mechanisms. The functional response of the visual pathway
is modeled. In the current models the output of the filters are tuned to dif-
ferent frequencies, spatial positions and orientations. The results of these
filters are passed through a sigmoid function and then summed to one single
scalar value. An example of mechanistic modeling is Daly’s visible differences
predictor [Daly, 1993b].

Performance modeling and mechanistic modeling require a vision model. This
model can be based upon one channel (single channel metrics), or on several differ-
ent channels of the image (multiple channel metrics) [Farrell, 1999].

Engeldrum has described the process of modeling image quality [Engeldrum, 1995,
Engeldrum, 1999a, Engeldrum, 1999b]. He identifies four different types of vari-
ables. These variables are related through three different types of models. All
variables and models together are called the Image Quality Circle, which is shown
in figure 3.1.

The first type of variable is the technological variable, which is manipulated in the
experiment. For instance, one can choose the type of paper an image is printed on.
The second type of variable is the physical image parameter. This type can be mea-
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sured by physical instruments, for example, a scanner or a spectroradiometer. The
third type of variable is called a perceptual attribute, such as brightness or darkness.
The perceptual attributes are related to the image quality. (Engeldrum calls per-
ceptual attributes customer perceptions). Although one usually only wants to know
the relation between technological variables and image quality, all other parameters
have to be estimated as well. The way to do so is to determine the relations be-
tween the different parameters, which is far from easy. This may explain why there
are so may studies devoted to the topic of image quality. Still, a measure showing
a high correlation with subjective scores is not yet available [van Dijk, 1997]. In
recent work, both success and failure have been reported on mathematically pre-
dicting image quality from measured image features [Johnson and Fairchild, 2000,
Engeldrum, 1995, Engeldrum, 1999b, Farrell, 1999, Ford, 1999]. One might con-
clude that as long as there is no simple way of describing an image, the mathemat-
ical prediction of its quality will always remain a problem.

3.2 Impairment models for black-and-white images

3.2.1 Root mean square error and its improvements

The easiest way of describing the difference between two images is the Root Mean
Square Error (RMSE):

RMSE =
1

n

√√√√ n∑
i=1

(xi − yi)2 (3.1)

where xi and yi represent the grey level of pixel i in the original and the reproduced
image, respectively. It is assumed that there is some correlation between the grey
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value of the pixels and the lightness and luminance of the pixels. A more general
version of the RMSE can be found using the Minkowski metric instead of the
Euclidean

E =
1

n

(
n∑

i=1
|xi − yi|p

)1/p

(3.2)

The RMSE or its generalized version does not often correspond with the perceived
difference between the images (e.g. [Marmolin, 1986, Daly, 1993b]). Marmolin
[Marmolin, 1986] derived other error measures by weighting the error in accordance
with several assumed properties of the visual system. The general equation he used
was

E =
1

n

(
n∑

i=1
|Di|p

)1/p

(3.3)

where Di is a function of the original and reproduced pixel values. The Di’s that
Marmolin tested were functions of one or more of the following variables: the mean
value in a neighborhood around the pixel, the standard deviation in a neighborhood
around the pixel and the gradient of the pixel. Marmolin found that the weighted
measures corresponded better to the perceived similarity than the RMSE. However,
none of these measures worked for all four images that were tested.

3.2.2 Impairment based on human vision models

The most complicated impairment models are based on models of the human visual
system. We will describe two such models here: the visible difference predictor from
Daly [Daly, 1993b] and Lubin’s Sarnoff model [Lubin, 1995].

The Visible Differences Predictor

Daly [Daly, 1993b] made a model called the visible differences predictor (VDP).
This model describes the difference between an original and a degraded image.
The VDP uses a digital image processing approach. This approach can deal with
nonlinearities in the system (in contrast with, for instance, the modulation transfer
function (MTF)).

The input to the system is the original and the degraded image, provided in such
a way that every pixel value in the gray-valued image represents the physical lumi-
nance value of the display device.

The output of the VDP is an image in which the value at each pixel represents the
probability of detecting the differences between the input image and the reference
image as a function of their location in the images.
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Figure 3.2: The normalized response function as used by Daly [Daly, 1993b] in the VDP.

The main part of the VDP algorithm consists of a model of the human visual
system. All steps of the model have to be done for both the reference image and
the degraded image, except for the probability, where the results for both images
are combined into one image.

The model has three stages

Amplitude nonlinearity Daly models the visual sensitivity and perception of
lightness with a simplified model. This model is shift-invariant, invertible,
and implemented as simple point nonlinearities. The normalized response
R/Rmax is determined as

R(i, j)

Rmax
=

L(i, j)

L(i, j) + [c1L(i, j)]b
(3.4)

where i, j are pixel positions in x and y direction, L(i, j) is the luminance and
c1 and b are constants (0.63 and 12.6). This response is shown in figure 3.2.

Contrast sensitivity function In the second stage, the variations in contrast
sensitivity are modeled for different spatial frequencies (the CSF). The CSF
varies due to the optics of the eye, the sampling aperture of the cone photo
receptor, and both passive and active neural connections. The sensitivity S is
modeled as a function of the radial spatial frequency ρ (c/deg), the orientation
θ (deg), the light adaptation level l (cd/m2), the image size i2 (visual degrees),
the viewing distance d (m) and the eccentricity (the angle of deviation from
the direct line of sight) e (deg). The Daly relation, based on experimental
data, is given by:

S(ρ, θ, l, i2, d, e) = P min

[
S1

(
ρ

ra, re, rθ
, l, i2

)
, S1(ρ, l, i2)

]
(3.5)
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where P is the absolute peak sensitivity of the CSF. The changes in resolution
due to the accommodation level, the eccentricity and the orientation are given
by ra, re and rθ, respectively:

ra = 0.856d0.14

re =
1

1 + 0.24e

rθ =
1 − 0.78

2
cos(4θ) +

1 + 0.78

2

(3.6)

The effects of the image size and the light adaptation level are modeled in the
following equations

S1(ρ, l, i2) = ((3.23(ρ2i2)−0.3)5 + 1)−1/5Al0.9ρe−Bl0.9ρ
√

1 + 0.06eBl0.9ρ

Al = 0.801

(
1 + 0.7

l

)−0.2

Bl = 0.3

(
1 + 100

l

)0.15

(3.7)

Instead of a single viewing distance the CSF of the largest viewing distance
and the closest viewing distance are determined and the envelope of these two
CSF’s is used in the evaluation. This assumes that the observer looks at all
distances, so it is a conservative measure.

Detection mechanisms The final step in the human visual model is the modeling
of detection mechanisms. Daly started this model by defining a set of filters for
which the spatial and the orientational selectivity are modeled independently.
Of each of these filtered the contrast CGk,l

in band k, l is given by

CGk,l
=

Bk,l(i, j)

B̄K
. (3.8)

with Bk,l(i, j) the value of the filtered image at point i, j, and BK is the mean
of the image with the smallest low-pass filter.

Masking is the effect that signals are harder to discriminate in the presence
of other signals. For instance, a distortion is easier seen against a uniform
background then against a texture.

The masking function used in the VDP is

T k,l
e [x, y] = (1 + (k1(k2 ∗ mk,l

n [x, y])s)b)1/b (3.9)

where Te is called the threshold elevation image. s, and b are constants, s
varies between 0.7 and 1.0 and b, k1 and k2 are set at 4, 0.0153 and 392.4980.
mn[x, y] is the normalized mask contrast on pixel location [x, y] in filter band
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k, l. Because we are only interested in masking in both the reference image
and the distorted image, the mutual masking is defined as

T k,l
em[x, y] = min[T k,l

e1 [x, y], T k,l
e2 [x, y]] (3.10)

where Te1 is the masking in the reference image and Te2 is the masking in the
distorted image. The contrast function is transformed to a probability that a
signal will be detected using the psychometric function P (c)

P (c) = 1 − e(−c/α)β (3.11)

where c is the contrast. The constants α and β describe the threshold of the
contrast, and the slope, respectively.

The probability Pn[x, y] of detection in band k, l as a function of location is
given as

Pn[x, y] = 1 − exp(−(∆Ck,l[x, y]/(Tem[x, y]/CSF ))β) (3.12)

where the contrast ∆Ck,l is given by

∆Ck,l[x, y] = C1k,l[x, y] − C2k,l[x, y] =
B1k,l[x, y]

B̄K
− B2k,l[x, y]

B̄K
(3.13)

where B1k,l[x, y] is the results of the filtering in band k, l for the reference
image and B2k,l[x, y] for the distorted image. B̄K is the mean of the base-
band. The psychometric function is determined for each band in the filter
set. Probability summation is used to find the total probability of detection

Pt(i, j) = 1 −
∏
k,l

[1 − Pk,l(i, j)]. (3.14)

This quality measure has been tested on different data sets, and it has been shown
that it produces a reasonable fit to all sets. One disadvantage however, is that
the peak sensitivity of the CSF, P , has to be set for every dataset [Daly, 1993a,
Lubin, 1995].

The Sarnoff visual discrimination model

Lubin [Lubin, 1995] also describes a visual discrimination model (VDM), called the
Sarnoff model (after the laboratory). As the Daly Visual Differences Predictor, it
generates a Just Noticeable Differences (JND) map output for two input images,
normally an original image and a reference image. Contrary to Daly, Lubin gives two
measures out of this map that could be used: the mean JND, used for ratings, and
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the maximum JND, used for thresholding differences. One JND unit in the output
image corresponds to a 75% probability that the observer will see the difference.

Next to the two input images, the Sarnoff model needs additional parameters. For
our application these are:

• The physical distance between sample points on the input image

• The distance of the (modeled) observer from the image plane

The input images are convolved with an approximation of the point spread function
(PSF) of the eye (from Westheimer [Westheimer, 1986])

Q(ρ) = 0.952e−2.59|ρ|1.36
+ 0.048e−2.43|ρ|1.74

(3.15)

where ρ is the distance in minutes of arc from a point of light, and Q(ρ) is the
intensity of light at a distance ρ, relative to the maximum.

In the next step sampling by the retinal cone mosaic is simulated by convolution
with a Gaussian, followed by point sampling to obtain an image on a grid. Martens
and Meesters [Martens and Meesters, 1998] used a σ of 0.35 and a sampling distance
of 1 or 2 arcmin.

I(x, y) = Point sampling(Gauss(Iin ∗ Q(ρ), σ)) (3.16)

The image is decomposed into contrast images at different scales (a contrast pyra-
mid) using a technique that is similar to that of Peli [Peli, 1990]

ck(x, y) =
I(x, y) ∗ (G(x, y, σk) − G(x, y, σk+1)

I(x, y) ∗ G(x, y, σk+2)
(3.17)

where ck(x, y) is the contrast at scale level k on point (x, y), and (G(x, y, σ) is the
Gaussian convolution kernel. σk is {32, 16, 8, 4, 2, 1, 0.5} cycles per degree.

Four different orientations θ are used: 0◦, 45◦, 90◦ and 135◦. In each orientation
the second derivative of a Gaussian o and its Hilbert transform h are quadrated
and added

ek,θ(x, y) =
(
ok,θ

)2
+
(
hk,θ(x, y)

)2
. (3.18)

The energy measure ek,θ is normalized by

êk,θ(x, y) =
ek,θ(x, y)

(Mt(vk, Lk(x, y)))2
(3.19)

where vk is the peak frequency for the pyramid level k, and L is the local luminance
value. Mt has to be adjusted using for example the Contrast Sensitivity function
of Barten [Barten, 1999].
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To reproduce the shape of Nachmias’ contrast discrimination function
[Nachmias and Sansbury, 1974], the energy at each level is put through a sigmoid
function

T (êk,θ(x, y) =
2
(
êk,θ(x, y)

)n/2

(
êk,θ(x, y)

)(n−w)/2
+ 1

(3.20)

n is a value around 2; w is a value smaller than 1.

The results are convolved with a disc-shaped kernel of diameter five to account for
the effect that the optimal visual sensitivity is not the same for the filter result
(about 1 cycle per patch) as for the human visual system (5 cycles per patch).

The distance measure is determined as follows:

D(x, y) =

{
m∑

i=1
[Pi,1(x, y) − Pi,2(x, y)]Q

}1/Q

(3.21)

where m is all pyramid levels and all orientations, and Pi,1 the result of the ad-
justment at the right orientation and pyramid level for the first image. Q is set at
2.4.

If the model is adjusted correctly, a value of one will correspond to one JND.

Meesters and Martens have tested a slightly modified Sarnoff model for a certain
setup [Martens and Meesters, 1998]. They do not find that this model performs
better than simple root mean square error based measures (see subsection 3.2.1).

3.3 Impairment models for colored images

When looking at color images, another dimension is added to the quality models.
For color images it is interesting to measure the perceptual difference of the colors.
The most obvious measure is to take the difference in a color space that is per-
ceptually uniform, i.e. in which distances are correlated to visual differences. This
indicates the need for a perceptually uniform color space.

3.3.1 CIELAB color difference

One of the most frequently used color spaces to measure such differences is the
CIELAB color space. The CIELAB color difference is defined as the Euclidean
distance in CIELAB space, or , in formula [Hunt, 1977, Robertson, 1977]

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (3.22)
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This would give an idea of the perceptual mismatch if distances in CIELAB corre-
spond to perceptual differences. However, this is only approximately true. In 1994
the CIE proposed a new formula [CIE, 1995]:

∆E∗
CH =

√
(
∆L∗
kLSL

)2 + (
∆C∗
kCSC

)2 + (
∆h∗

kHSH
)2 (3.23)

The difference between ∆E∗
ab and ∆E∗

CH is that for the latter the different color
attributes (L∗, C∗, H∗) are weighted differently (which is depicted in SL, SC and
SH). The second difference is that specific experimental conditions, such as the
amount of surrounding light, are taken into account into the values of kL, kC and
kH . This means that the weighting of the perceptual attributes is different for a
setup in which there is much light than for a setup with less light.

In 1997 the CIE presented an interim color appearance model: CIECAM97s. This
model should be adequate for most practical applications which require better esti-
mation of color appearance than CIELAB. In CIECAM97s, mathematical scales
are defined that correlate with various perceptual appearance attributes. The
Cartesian color space, constructed with the dimensions J (lightness), a (C cos(h))
and b (C sin(h)) can be used as a uniform color space. The standard CIELAB
∆E is used to measure colors that have no spatial variation. Zhang and Wandell
[Zhang and Wandell, 1996, Zhang et al., 1997]
[Zhang and Wandell, 1998] made an extension to this measure, named SCIELAB
(spatial CIELAB). Before the ∆E calculation, suitable layers of the color image are
filtered by an addition of Gaussian low pass filters. This makes it more suitable for
measuring differences between colored textures. However, they mainly used it to
measure differences between uniform colors and halftone patches, for which appli-
cation it is obvious that some spatial integration of the halftone points should be
applied.

3.4 Image quality models

3.4.1 Square root integral

Barten [Barten, 1999] has described an image quality model based on the square-
root integral (SQRI). The rationale of this measure is that image quality is related
to discriminability, and that the number of discriminable levels increases approx-
imately linearly with the square root of the modulation of the spatial frequency
components [Barten, 1999, Granger and Cupery, 1972].

The SQRI is given by

J =
1

ln 2

∫ umax

0

√
M(u)

Mt(u)

du

u
, (3.24)
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where u is the angular spatial frequency at the eye of the observer, umax is the
maximum angular spatial frequency to be displayed. M(u) is the MTF of the
display and Mt(u) is the modulation threshold function of the eye. J is the display
quality in units of JND’s. Mt(u) is approximated by

1/Mt(u) = a(u)ue−bu[1 + cebu]1/2 (3.25)

with

a(u) =
540(1 + 0.7/l)−0.2

1 + 12
w(1+u/3)2

b = 0.3(1 + 100/L)0.15

c = 0.06,

(3.26)

where u is again the spatial frequency in cycles/degree, w is the angular display size
in degrees, calculated from the square root of the picture area, and L is the effective
display luminance in candelas per square meter. For several parameters, such as
resolution, picture size and viewing distance, Barten showed a good relation between
the calculated SQRI values and measured perceptual image quality [Barten, 1989].
He therefore concluded that the SQRI is a good measure for perceived image quality.
However, the model is limited to achromatic images.

The SQRI model is spatially one-dimensional. Barten [Barten, 1999] made a two
dimensional extension, which is equivalent to averaging the SQRI over different
orientations. In practice, he used four orientations: 0◦, 90◦, 45◦ and 135◦.

3.4.2 Image quality by modeling perceptual attributes

A number of researchers determined image quality by modeling one or more under-
lying perceptual attributes. Most perceptual attributes are predominantly affected
by only one parameter, which simplifies the estimation of the relations between the
parameters and the image quality [Kayargadde, 1995].

Engeldrum [Engeldrum, 1995] used a nonlinear function to model image quality

ImageQuality = a0 + (a1attp1 + a1attp2 + ... + anattpn)1/p (3.27)

where ak and p are constants and atti is a perceptual attribute. Both the at-
tribute values and the image quality values were obtained using absolute scaling
experiments. The attributes he investigated were sharpness, color accuracy, color
uniformity, colorfulness and local impairments. He found that in this setting some
tested attributes were not significant. However, some of these attributes may be
significant if the range of the attributes would be larger, which would enlarge the
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differences between the different images. Engeldrum did not attempt to predict the
perceptual attributes.

Kayargadde [Kayargadde, 1995] tried to model perceptual attributes. He did so for
two different attributes: blur (unsharpness) and noisiness (e.g. speckle).

For the blur estimation algorithm Kayargadde assumes that there exists at least
some location in the original scene where the luminance distribution corresponds
to an ideal step edge. An image is a result of imaging the scene, a process that
inherently contains blurring. He models the blurring as a Gaussian blurring, which,
in turn, is modeled by the σ of the Gauss.

The blur estimation algorithm consists of two steps. First, the regions of locally
one-dimensional (1D) edges in the image are detected by determining the local
maxima in the gradient magnitude. Two dimensional structures are removed by
excluding points with a high two dimensional energy. Second, the edge parameters
are determined at those locations by fitting a Gaussian shaped edge. The variables
that are fitted are the amplitude, sigma, offset, displacement and angle of the edge.
Both edge detection and estimation are carried out using polynomial transforms.

Kayargadde defined an objective measure for blur

Sb = 1 − 1

[1 + (σbi/σb0)2]1/4 (3.28)

in which σbi is the average spread of the image blurring kernel and σb0 is the intrinsic
blur in the early visual pathway. This measure correlates well with the perceived
unsharpness in images. Kayargadde used a σb0 of 0.65 arc min. Barten also used a
Gaussian function to describe the MTF of the eye, with

σb0 =
√

σ2
0 + (Cabd)2 (3.29)

where σ0 a constant (0.5 arc min), Cab a constant (0.08 arc min/mm) and d the
pupil size in mm.

In the same way as for the objective measure for perceived blur, an objective mea-
sure for perceived noise is determined. The main assumption here is that there are
a sufficiently large number of locations in the scene, where the luminance distri-
bution is locally zero-dimensional, i.e. homogeneous areas. The uniform locations
are found by selecting points with a small gradient energy. The probability density
function (PDF) of this gradient energy is used to obtain a good value for what is
small. The standard deviation of the noise is obtained by fitting a model to the
PDF. For images with no locations in which the luminance distribution is locally
zero-dimensional, such as an image of sand, this measure will overestimate the
amount of blur in the image.
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Kayargadde defined an objective measure for perceived noise with the same math-
ematical formula that he used for perceived blur

Sn = 1 − 1

[1 + (σni/σn0)2]1/4 (3.30)

in which σni is the standard deviation of the noise in the image and σn0 is equivalent
of this for the noise in the early visual pathway. The value of σn0 is determined
by fitting results of subject experiments to the algorithm. Kayargadde found that
this measure is a good correlate of the noisiness of images. He tested two different
types of noise: white noise and pink noise with a low correlation length.

Kayargadde determined the relation between perceptual space spanned by the per-
ceptual unsharpness and noisiness and objective space spanned by the objective
measures Sn and Sb. He found that the unsharpness and the noisiness are not
totally independent. He showed that a combination of the unsharpness and the
noisiness provides a good measure for the perceived image quality. It is obvious
however, that images with smooth gradients in combination with speckled texture,
like a clutch of speckled eggs, pose a problem for this kind of modeling, because the
basic assumption that there is a sufficient number of locations in the scene, where
the luminance distribution is locally zero-dimensional, is not satisfied.

3.4.3 Image quality as a function of naturalness and usefulness

Janssen and Blommaert[Janssen and Blommaert, 1997] regard an image as the in-
put for the visuo-cognitive system (eyes and brain). They treat this system as an
information-processing system, which implies that the best image is the image that
can be best interpreted and recognized. Janssen and Blommaert
[Janssen and Blommaert, 2000b] define two different variables for interpretability
and recognizability: “Usefulness” as the precision of the internal representation of
the image and “Naturalness” as the degree of correspondence of the image with
stored knowledge concerning what the image is supposed to represent. For eval-
uating the image quality both variables have to be evaluated at the same time
[Janssen and Blommaert, 2000b]. The problem of determining image quality is di-
vided over three tasks: determining the usefulness, determining the naturalness,
and determining the relation between these two variables.

Usefulness Janssen and Blommaert assume that visual metrics can vary in time.
For instance, in the night we perceive other luminance contrasts than during
the day. The scales of the visual metrics are optimized (adapted) in such a
way that the ability to discriminate between items in the outside world is
maximized. The two restrictions to the scale are that a) the upper and lower
bounds are fixed, and that b) the accuracy is limited (there are always errors
due to noise).
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Figure 3.3: An example of topological errors. In the first row some errorless attribute
strengths are assumed. In the second row noise is added. It can be seen (as indicated by
the errors) that the first two attributes are inversed, giving a topological error. In row 3
the scale function s(x) = 5

√
x is applied. It can be seen that with the same noise, the

topological error does not occur anymore. Note that the maximum and the minimum of
the attribute strengths are the same.

Usefulness is defined as the extent to which different attributes can be distin-
guished: which is called discriminability. In their work, Janssen and Blom-
maert only investigated different color attributes. Discriminability is narrowly
related to the total number of topological errors made in the mapping of at-
tribute strength onto the values of the used visual metric scale. That is,
errors that occur when the ordering of a set of items by their values on this
scale differs from the ordering of this same set by their (errorless) attribute
strength. An example of topological errors is given in figure 3.3.

For each pixel value the attribute strength x (for example luminance) is mea-
sured. The momentary1 distribution of x, µ(x) is defined by

∫
x µ(x)dx = 1.

The visual metric is represented by scale s. It is assumed that this scale
is monotonic, because otherwise many topological errors will occur. η(s) is
defined as the momentary distribution of the scale function s for a give dis-
tribution µ(x) of the attribute strengths and a given scale function s(x). The
relation between η(s) and µ(x) is given by

η(s) = µ(x)

(
ds(x)

dx

)−1
(3.31)

Janssen and Blommaert show that the probability of a topological error as
function of the scale value s, perr, can be given by

perr(s) =
1

2
− 1

2
erf

(
d

2σ

)
=

1

2
− 1

2
erf

(
1

2Nη(s)σ(s)

)
(3.32)

where d is the ideal noiseless scale value difference between any pair of two
values and σ is the noise level.

1The scale varies in time due to changes in lighting.
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The overall probability of a topological error Perr is found by integration of
perr over the entire scale

Perr =

∫
S

perrη(s)ds =

∫
x
perrµ(x)dx (3.33)

The discriminability D is proposed as

D = 1 − 2n
n∏

i=1
Perr,i (3.34)

where n is the number of dimensions in which the items can differ and Perr,i

is the topological error in this dimension. We should define the number of
“items” in the image. Janssen and Blommaert made the choice to set this
value to 100. The values of σ and S also have to be chosen. When ratios of D
are used to compare different (versions of) images, Janssen and Blommaert
found that the choice for N , S, and σ is quite robust to changes in d/σ.

Naturalness The naturalness Janssen and Blommaert proposed is a matching
of several object colors to memory standards of these object colors. They
identified three objects with clear memory standards (memory colors): these
are skin, grass and sky. This indicates that with this method the naturalness
of an image, which does not obtain any of these objects, cannot be determined.
This is the case for some of the images we used in our tests. In theory
all objects in the image should be matched to their memory counterparts.
However, because most color changes are global, matching only these three
colors (if they are present) will normally be enough [Yendrikhovskij, 1998].
The degree of matching m(.) is given by a normalized correlation measure:

m(η2
0(s), η

2
p(s)) =

∫
η0(s)ηp(s)ds√∫

η2
0(s)ds

∫
η2
p(s)ds

(3.35)

where η0 is the observed scale value distribution and ηp the memory standard
distribution.

When there are three color dimensions, e.g. L∗, a∗, b∗ these are combined as

m = mL∗ma∗mb∗ (3.36)

Relation between naturalness and usefulness Janssen and Blommaert pro-
posed a relation between the image quality IQ, usefulness measured in D
and naturalness measured in m as the weighted sum of D and m. So

IQ = λ ∗ D + (1 − λ) ∗ m (3.37)

where λ is a variable between 0 and 1 indicating how the usefulness and the
naturalness are related.
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Using these formulas, Janssen and Blommaert also defined optimal settings for the
discriminability D and identifiability m, given the input image.

3.5 Image quality measures

In this chapter we gave a review of image quality measures. From this review, it can
be seen that it is not easy to develop a good image quality measure. Most quality
measures are only tested by the people that propose them. In the next chapters we
will do some experiments on image quality and try to develop out own measures.
We developed an impairment measure for relative sharpening (chapter 5) of black-
and-white images. We also developed an image quality measure for the sharpness
of black-and-white images (chapter 6). This measure is similar to the measure that
Kayargadde proposed. Finally, we did experiments in which we changed the lu-
minance and the chroma of color images. We tried to model the results of these
experiments using the approach proposed by Janssen and Blommaert. These ex-
periments are described in chapters 7 and 8. In chapter 10 we propose a quality
measure that can be used to select the best image of a series of images that only
differ due to a manipulation that affects the lightness value in the image.



Chapter 4

Methods and Materials

In this chapter we describe the methods and materials used for the experiments.
Two major topics are discussed here:

• How can we make and reproduce the stimuli (sections 4.1, 4.2 and 4.3)

• How can we perform reproducible experiments with human subjects (sec-
tion 4.4)

We start with the theoretical and practical applications of using a printing process
in experiments. The printer or press used in the experiments is called a device.
This topic can be refined using three questions: how can we characterize devices,
how can we calibrate these devices, and what can we do with colors that cannot
be displayed on the device that we want to use (gamut mapping)? We use the
following definitions [Morovic, 1998]:

Characterization: the measurements and analysis to experimentally establish the
relationship between the device-dependent color space and a device-independent
color space (printer model).

Calibration: the adjustment of a device or process so that it generates repeatable
data.

Gamut: the set of colors that can be produced using a device.

Gamut mapping: the handling of colors that cannot be displayed using the de-
vice.

Gamut boundary: the set of colors that are on the border between the in-gamut
colors and the out-of-gamut colors.

One major problem while looking at color images is that these images are usually
viewed in different circumstances, for instance with different illuminations or with
different levels of adaptation of the human eye. Therefore, it is hard to establish

41
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the same appearance of an image [Yendrikhovskij et al., 1999]. As a consequence,
Hunt [Hunt, 1987] has distinguished several kinds of color reproduction:

Spectral: the spectral reflectance curves of the original and reproduced colors are
identical.

Exact: the original and reproduction colors have the same CIE chromaticities,
relative luminances and absolute luminances.

Colorimetric: the original and reproduction colors have the same CIE chromatic-
ities and relative luminances.

Corresponding: the reproduction in which the chromaticities and relative lumi-
nances of the colors are such that, when seen in the picture-viewing conditions,
they have the same appearance as the colors in the original would have if they
had been illuminated to produce the same average absolute luminance level
as that of the reproduction.

Equivalent: the chromaticities, relative luminances, and absolute luminances of
the colors in the reproduction are such that, when seen in the picture-viewing
conditions, they have the same appearance as the colors in the original scene.
The illumination color, luminance level and ambient contrast may be different
in the reproduction picture viewing conditions.

Preferred: the reproduction in which the colors depart from equality of appear-
ance to those in the original, either absolutely or relative to white, to give a
more pleasing result to the viewer.

Most calibration techniques are based on equivalent color reproduction.

4.1 Characterization

The goal of the characterization of a printing process is to find the relationship
between the values sent to the printer (CMYprinter or CMYKprinter values) and
the tristimulus values XYZ of the printed colors. For printers there is no simple
relationship between the tristimulus values of single colors and the tristimulus values
when these colors are printed over each other [Morovic, 1998]. The colors are also
dependent on the reflections of the light on the surface and in the ink, and of
scattering. These properties depend on the paper that is used.

One other problem when experimentally establishing a printer model is a lack of
control over printer hardware [Wyble and Berns, 2000]. Further, with most modern
printers internal control algorithms such as gray component replacement and dot
gain correction cannot be bypassed [Wyble and Berns, 2000]. The printer can be
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seen as a black box, where steering ink fractions are the input and a printed image
the output.

We describe two different methods of characterization. The first method, searching
for an analytic solution, tries to model the printing process by an analytic descrip-
tion. The resulting model has to be calibrated with a few measurements, usually
of full ink coverage.

In the second method it is assumed that the printing process is locally linear, or
at least dependent on neighboring measurements. The tristimulus values of points
can be determined by only using calibration values that are in the neighborhood.
We describe two methods of interpolation, linear interpolation and natural neigh-
borhood interpolation.

4.1.1 Analytic solutions

Neugebauer was the first to consider halftone reproduction as an additive process
[Xia et al., 1999]. His model is based upon the assumption that the color of a
unit area is determined by the addition of the tristimulus values of the different
combinations of colorants present in the area [Neugebauer, 1937, Morovic, 1998,
Kang, 1997]. The main assumption is that the placement of the inks is uncorrelated,
so that the fraction of the area that is printed by a certain combination of inks is
given by the multiplication of the possibilities that the single inks occur on a certain
position. For instance, if the dot percentage of the colors are given by c, m and y,
the fraction of the area which is printed with cyan and yellow ink is cy(1 − m). c
is the possibility that cyan is printed on a certain position, 1−m is the possibility
that magenta is not printed on this position. The fractions of all eight possible
combinations of inks are given by the Neugebauer equations:

f1 = (1 − c)(1 − m)(1 − y)

f2 = c(1 − m)(1 − y)

f3 = m(1 − c)(1 − y)

f4 = y(1 − c)(1 − m)

f5 = my(1 − c)

f6 = cy(1 − m)

f7 = cm(1 − y)

f8 = cmy

(4.1)

where c, m and y are the percentage dot areas of the three colorants, f1 is the
fraction of the area that remains white, and f8 is the fraction of the area that is hit
by all three inks. The generalization to a four color system like CMYK is obvious.
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The tristimulus values of the dot areas can be obtained by measuring the colorant
combination it represents:

X =
8∑

i=1
fi Xi

Y =
8∑

i=1
fi Yi

Z =
8∑

i=1
fi Zi

(4.2)

where Xi, Yi and Zi are the tristimulus values of combination i.

The Neugebauer equations can be used to determine the XYZ values when CMY(K)
patches are given. We are also interested in the CMY(K) values for certain XYZ
values. Unfortunately, the Neugebauer equations cannot be inverted analytically,
but numerical solutions have been reported [Kang, 1997].

A refinement is to replace all values by spectral values [Viggiano, 1990]
[Balasubramanian, 1995]. Instead of the tristimulus values, the spectra of the com-
binations of colors are added according to their weight

r(λ) =
8∑

i=1
fi ri(λ) (4.3)

where ri(λ) is the reflectance spectrum of the overlay i of inks and r(λ) is the result-
ing reflectance spectrum of the printed patch. Using the color matching functions
(equation 2.1) we can determine the tristimulus values of this spectrum. If we
assume that the transmissions of the inks are multiplicative (Tg = TcTy), these tris-
timulus values are the same as in equation 4.2. However, it can still be an advantage
to work with the spectra, for instance when one changes the viewing illuminant.

4.1.2 Analytic model using spectra

1D model: transmission

To convert from CMYK to XYZ we used our own analytical model. This is based on
the fact that the reflection of inks can be modeled by multiplying their absorption
curves. Ink printed on paper can be seen as three layers of absorption layers (inks)
on top of a reflector (paper), as visualized in figure 4.1. The inks are characterized
by their transmission spectra TC , TM , TY and TK . The paper is characterized by
its reflection spectra Rpaper. This model holds if the transmission process (ink) is
spatially separated from the reflection process (paper). If this is not the case, the
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Figure 4.1: Ink printed on paper can be seen as three absorption layers and one reflector.
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Figure 4.2: The reflectance spectrum for different amounts of black ink. The ink percent-
ages are given in the legend. Note that the reflectance spectra change in a non-linear way.
This is the effect of dot gain (see text for explanation).

Kubelka-Munk theory [Kubelka, 1948, Judd and Wyszecki, 1975, Allen, 1980] can
be used to model the printing process. The assumption is that within a specific
color, that is cyan, magenta, yellow or black, all of the dots are of the same thickness.
Color differences are made by increasing or decreasing the size of the printed dots.

Edge effects: dot gain

The reflection spectrum is not only defined by the transmission of the solid inks.
The edges of the dots also play a role. To explain this effect one should consider
that the relation between the reflectance and the amount of ink is not linear (see
figure 4.2 for black ink). This phenomena is called dot gain. Dot gain is caused
by reflectances at the border of a dot, where light can be reflected through the ink
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R
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Figure 4.3: A visualization of the effect of dot gain. Some light is reflected by the paper
without passing any ink (Rpaper), some light is reflected by the paper and passes the ink
twice (Rink). Some ink passes the ink, but is reflected by the paper outside the area where
the ink is printed (Rdotgain). This causes dot gain.
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Figure 4.4: The dot gain for the black ink of the ISO printer. The data can be found in
[ANSI, 1995]

after the reflection on the plain paper (see figure 4.3). In addition, dots often can
be larger than specified. If we know the dot gain of a printer, we can determine the
reflectance spectrum RX of any fraction of ink X using the reflectance of a solid
ink Rink and the reflectance of the paper Rpaper:

RX = (1 − dotgain corrected(X))Rpaper + dotgain corrected(X)Rink (4.4)

The dot gain for the black ink for the ISO data is given in figure 4.4. Two points
are of particular interest in this graph. The point (0, 0), indicating that if no ink is
wanted no ink is printed (zero means zero) and (1, 1), indicating that one cannot
print more than 100% ink. For the points in between the transmission is smaller
than would be expected, which explains the name dot gain. In the model we assume
that the dot gain for one ink is independent of the other inks. This would not work
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if many edges of the dots of one ink are printed on top of the edges of dots of
another ink. For an ink jet printer this hardly occurs because the dots are placed
at random. In offset printing systems this effect is also negligible because the dots
are printed on a fixed grid that is rotated for each ink. Note that we only correct
for the dotgain of pure inks, and not for overprinted colors.

Since we are interested in combining inks, we need to combine the reflectances of the
cyan, magenta, yellow and black inks. The reflectance spectrum of a combination
of inks is given by the multiplication of the reflectance spectrum of the paper and
the squared transmission spectra of the inks:

RC = T 2
CRpaper

RM = T 2
MRpaper

RCM = T 2
CT 2

MRpaper

=
RC

Rpaper

RM

Rpaper
Rpaper

= RCRM/Rpaper

RCMY K = T 2
CT 2

MT 2
Y T 2

KRpaper

= RCRMRY RK/R3
paper

(4.5)

An example of this is shown in figure 4.5. The reflectance spectra can be used to
determine the tristimulus values of the colors using formula 2.1. To evaluate this
method, we determined for all colors in the ISO set the XYZ values and determined
the perceptual error ∆ELab. A unit in this error space (∆ELab = 1) corresponds
roughly with a JND (just noticeable difference). The errors are given in figure 4.6.
It shows that the errors are visible, but small in the higher L∗ regions. The method
does not seem to work in the lower L∗ region, probably due to the fact that we
measure inks that are printed as one layer, whereas for small L∗ most colors are
made by multi-layered inks.

4.1.3 Interpolation

Full characterization

The assumption underlying full characterization is that by producing a set of repre-
sentative colors of the gamut, one can estimate how the colors in the neighborhood
of a point in color space are reproduced. This set of reference points is a sparse
sampling of the gamut. By assuming that the reproduction function is locally lin-
ear, the color of an arbitrary point can be determined by weighting the tristimulus
values of the closest reference points [Morovic, 1998]. If the lightness L is signif-
icantly nonlinear with respect to the colorant, it can be useful to determine this
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(a) 20 % Cyan spectrum

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

T
M2

 R
pa

pe
r

(b) 20 % Magenta spectrum
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(c) 70 % Yellow spectrum
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(d) 20 % Black spectrum
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(e) Paper spectrum
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Figure 4.5: The steps in combining inks to produce a reflectance spectrum of combined
inks. The reflectance spectra of the four single inks in the desired percentages are given
in a-d. In e the reflectance spectrum of paper white is given, and in f the computed
combined spectrum, along with the measured spectrum is given. The data can be found in
[ANSI, 1995]
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Figure 4.6: The perceptual errors when using the spectrum approximation for specifying
the colors. A unit in this error space corresponds roughly with a JND (just noticeable
difference).

nonlinear function first and vary the colorant in steps of equal lightness. Interpo-
lation between the color spaces CMY and XYZ or CIELAB can be done both in
the forward (CMY to XYZ) and in the inverse (XYZ to CMY) direction. However,
for CMYK the forward interpolation can be done, but the reverse interpolation is
ambiguous because the CMYK color space is four dimensional and the XYZ color
space is three dimensional. One way to solve this problem is to interpolate between
the CMY and XYZ color space, and to use a black printer algorithm to convert
between CMY and CMYK. Black printer algorithms are discussed in section 4.1.4.

Linear interpolation

Linear interpolation starts from some regular structure, in most cases a cubic lattice
of lattice points (in other words a stack of cubes) in color space. The color values
of a new point are the weighted mean of the color values of the points on the cube
that encloses the point. An example in two dimensions is given in figure 4.7.
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Figure 4.7: An example of trilinear interpolation in two dimensions. From the full C, M
scale the block that includes point P is selected. The corner points of this block are the
reference points. The tristimulus values of P are determined using the relative distances to
the reference points dC and dM , and by the tristimulus values of the reference points.

The trilinear interpolation is done with the following formula

NP = (1 − dC)(1 − dM)(1 − dY )N1 + dC(1 − dM)(1 − dY )N2 +

(1 − dC)dM(1 − dY )N3 + dCdM(1 − dY )N4 +

(1 − dC)(1 − dM)dY N5 + dC(1 − dM)dY N6 +

(1 − dC)dMdY N7 + dCdMdY N8 (4.6)

with N ∈ X, Y, Z and dC , dM , and dY are the relative CMY distances from the
origin of the selected cube of reference points [Morovic, 1998]. Here one may replace
XYZ also by L∗a∗b∗ or L∗u∗v∗. Note that the Neugebauer equations are the same
as this one, but for only one cube, spanned by the full inks.

Above a certain value of n (the number of steps along each axis) the accuracy of
the method will not improve significantly anymore. Morovic [Morovic, 1998] states
that for certain ink jet printers, this number is 9. Full characterization gives the
best characterization in most cases. The drawback is that the method needs a large
number of measurements ( > 93). This makes the method very time consuming1,
especially when the color reproduction system has a large drift in time. Another
drawback is that a similar conversion from XYZ to CMY cannot be done successfully
because the points are not on a regular grid in XYZ. A solution to this problem is

1This method is time consuming because for each measurement a color patch has to be printed. All
colors have to be measured by a spectroradiometer or spectrophotometer, before the interpolation matrix
can be estimated.



4.1 Characterization 51

to determine the XYZ of a certain CMY, and adjust this CMY so that the XYZ
converges to the XYZ that is needed (backwards estimation).

Instead of a regular block, other interpolation methods can be used such as trian-
gulation or PRISM interpolation [Kang, 1997].

Natural neighborhood interpolation

In natural neighborhood interpolation [Sibson, 1981] the value of a point is deter-
mined by the values of neighboring points. The difference with full characterization
is that the reference points do not have to be on a regular grid.

We describe this interpolation for the transformation from CMY to XYZ, but it
can also be used in the reverse direction.

The CMY color space is divided into small volumes in which all points in the volume
are closest to one of the reference points (see figure 4.8). This technique is Voronoi
Tessellation [Okabe et al., 1992].

The point P that has to be interpolated has coordinates (CP , MP , YP ). When P is
introduced, a new tessellation with the reference points and point P is made (cf.
figure 4.8). This tessellation differs only locally from the original tessellation. Some
volumes are divided into two. The natural neighbors of point P are the reference
points whose volumes are divided in two.

The natural neighborhood weight λi of reference point i is defined as the size of the
volume, which belongs to i in the tessellation without P , and belongs to P if P is
added. Theoretically, λi = 0 for points that are not natural neighbors of the point.
The weight is normalized by the size of the area or volume belonging to the extra
point. This gives that

∑
i λi = 1.

The interpolated value at of X, Y, and Z for point P can be determined with

X(P ) =
∑

i

λiX(i)

Y (P ) =
∑

i

λiY (i)

Z(P ) =
∑

i

λiZ(i)

(4.7)

where (X(i), Y (i), Z(i)) are the tristimulus values of the reference point i. So the
interpolated value only depends on the values of the natural neighbors.

An example in 2D is given in figure 4.8. In figure 4.8(a) the reference points are
seen, together with the Voronoi tessellation that divides this space into areas that
are closest to one point. In figure 4.8(b) the point that we want to interpolate, point
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Figure 4.8: An example of the natural neighborhood interpolation in 2D. In (a) the
Voronoi tessellation of the reference points is seen. In (b) point P that has to be interpolated
is added, it can be seen that the tessellation changes locally. In (c) the natural neighbors
of P are given the numbers 1-6. The natural neighborhood weight λi of reference point 1
is filled.

P is added. The Voronoi tessellation that now includes this point is only locally
different from the tessellation in 4.8(a). In figure 4.8(c) the natural neighbors of
point P are numbered 1-6. The natural neighborhood weight λ1 of reference point
1 is filled. The λi’s of 1, 3 and 5 are large, those of the other three points are small.

4.1.4 Black printer algorithm

Most printers have a fourth ink (black), in addition to cyan, magenta and yellow.
The purpose of using the additional ink for images is twofold. On the one hand,
the total amount of ink used for printing can be reduced for many colors, on the
other hand the contrast is increased by increasing the absorption in the dark areas
[Stone et al., 1988]. Text is usually printed in black.

Usually, different amounts of colored inks are used to produce a gray. The process
of determining the mix of cyan, magenta and yellow to produce a gray is called gray
balancing [Stone et al., 1988]. For most tristimulus values several CMYK combina-
tions are possible. Normally one determines the CMYK values in two steps. First
the relationship between XYZ and CMY is determined. Next, some amount of
colored inks is replaced by a certain amount of black.

Because of the high non-linearity of printers, it is usually hard to predict how
much black ink is needed to match the absorption of the removed colored ink
[Stone et al., 1988]. The following equations are proposed by Bourgin [Bourgin, 1998]
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without explanation (see also chapter 2):

C3 = min(1, C4 ∗ (1 − K) + K)

M3 = min(1, M4 ∗ (1 − K) + K)

Y3 = min(1, Y4 ∗ (1 − K) + K)

(4.8)

We use the following notation: C3, M3 and Y3 are ink fractions that are printed
without black (K), and C4, M4 and Y4 are ink fractions that are printed with black.
Because it is clear that black is only printed in the four ink scenario, we use K,
where we could have used K4.

The inverse relationships are:

K = min(C3, M3, Y3)

C4 = (C3 − K)/(1 − K)

M4 = (M3 − K)/(1 − K)

Y4 = (Y3 − K)/(1 − K)

(4.9)

We found that these relationships do not work for the ISO data set (an offset
printer), and since we could not find other black printer algorithms, we decided to
use a procedure based on the analytic spectral model.

Since we want to use the additive properties of the XYZ color space, we would want
the hue to remain constant for a plane in the XYZ space. This does not hold for
the hue angle h∗

ab, but it does so for h∗
uv. Proof for this is given in appendix A.

The basic idea behind the new interpolation is that a point in XYZ color space can
be transformed into CMYK values using black and only two other inks. Depending
on the color of the points these two inks can be cyan and magenta, cyan and yellow
or magenta and yellow. An example of the gamut of the EPSON stylus 1520 printer
is given in figure 4.9. If we look closely at the gamut boundary, we observe that
the upper part of the boundary is made up of three areas, which represent the
combination of two inks in different amounts. To print the color on this boundary,
the combination of CMYK is uniquely defined by the two inks and white. If we
move into the gamut towards black, we can make these colors by adding a certain
amount of black. This idea can be modeled with the analytic model using spectra
(section 4.1.2), if the spectrum of black can be considered as being constant. Note
that the spectrum of the ISO data set, which is given in figure 4.5 (d), is indeed
almost constant.

So, if we have a point P inside the XYZ gamut we can find the CMYK values
if we know a) which boundary point Q to use and b) how much black should be
added. The most simple way to find a boundary point is to take the intersection
of the boundary and the line through P and the XYZ of black. However, because
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Figure 4.9: The gamut boundary of the EPSON printer.

the gamut is not black convex2, one can end up outside the gamut. Therefore, we
stretch the gamut in such a way, that it reduces to straight planes and becomes
black convex.

In the stretched gamut we draw a line through P and black (K), and determine
the intersection Q between this line and the gamut boundary. This is the situation
depicted in figure 4.10.

Next we have to determine how much black should be added. The boundary con-
ditions are no added black at the gamut boundary Q, and 100% at the XYZ black
point. The straightforward solution is to make the amount of added black propor-
tional, i.e.

K ≈ T 2
K =

b

a + b
(4.10)

where a is the distance KP and b is the distance PQ. As described in section 4.1.2
the spectral model must be refined by the dot gain correction. In our procedure we
correct for this dot gain.

To evaluate this method, we used the data from the ISO report [ANSI, 1995],
which includes a table with reference CMYK and corresponding XYZ values. If our
interpolation method is correct, we should be able to convert the XYZ values to
CMYK values that would return the original XYZ when printed. It is complicated
to compare the CMYK values directly, because different CMYK values can give the
same XYZ. Because of this, we first convert these values back to XYZ using the
spectral method described in section 4.1.2. The results are shown in figure 4.11.
It can be seen that the errors for the black printer algorithm are larger than if we
use the original CMYK, as is to be expected. It can also be seen that the errors
are visible, a certain amount are much larger than 1, but they are few and not very
high. This implies that this method can be used, but produces some errors.

2We need a weak form of convex behavior. The normal definition is that if A, B ∈ gamut, then the line
AB ∈ gamut. The definition we need is that if A is in the gamut and K is the black of the gamut, then
the line AK ∈ gamut. We call this form of convex behavior black convex.
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Figure 4.10: Illustration of the black-printer algorithm. P is the point to be interpolated.
The triangular shape is the bisection of the gamut with the constant hue plane, which
has the same hue value as the hue of point P. K is the point with minimal luminance or
lightness, the black point. Q is the intersection of the line through P and K and the gamut
boundary.

4.1.5 Characterization in practice

The images that we used are standard ISO images (ISO 12640:1997) that are used
for evaluating the quality of printing. The images are specified in CMYK format.
To indicate the original set of images that is connected to these values we use the
notation CMYKISO. An ANSI report [ANSI, 1995] relates CMYK printing values
to actually measured color values. The printer used in that proofing is an offset
printer, and therefore, not relevant for our inkjet printer.

In the experiments we want to change variables in a perceptual color space, so
we will have to convert the colors of these images to XYZ, in order to be able to
transform to CIELAB or CIELUV.

The ideal procedure to convert the images from CMYKISO to XYZ is to use the
Analytic Model using Spectra 4.1.2. However, we developed this model after we had
already performed the experiments. So, we actually used a sub-optimal procedure
to convert the images from CMYKISO to XYZ. On the other hand, the experimental
pictures do not show any trace of irregularities or unnatural colors.

As discussed before, we used a black printer algorithm (equation 4.8) to transform
the CMYKISO pixel values to CMYISO based. Then we converted the pixels to
XYZ with interpolation techniques. The ANSI report (1995) includes a table with
reference CMYKISO and corresponding XYZ values. The main problem with this
table is that the tabulated reference data in CMYISO based are not on a regular
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Figure 4.11: The results for the black printer algorithm are given. How the two different
errors are determined is given in (a). For each XYZ color in the ISO set the CMYK
values are determined using the algorithm. With these CMYK values the XYZ values
are determined using the analytic solution using spectra. To see what the effect of the
conversion from CMYK to XYZ is, the errors made with this analytic solution using spectra,
using the original CMYK values, are also determined. In (b) the results are shown. It can
be seen that the errors that are made using the black printer algorithm are somewhat larger,
but comparable to the errors that are made using the given CMYK.

grid, so we used natural neighborhood interpolation (based on Voronoi). However,
because this interpolation is very slow3, we used two successive steps to convert

3This is partly due to the fact that we used a compiled program that is obtained from Dave Watson
http://members.iinet.net.au/ watson/software.html
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Figure 4.12: The relation between the interpolation and the reference sets. As regular
grid a cubic lattice is used.

the pixels to XYZ. Figure 4.12 shows a schema of the procedure. The first step
was converting uniform grids in CMYISO based to XYZ using the slow non-linear
interpolation method. The second step was converting the pixels in the image
using the faster linear interpolation based on the regular CMYISO based grid and its
calculated XYZ values. Note that these images in XYZ are used as unambiguous
defined test images. These images are derived, however, from the original ISO test
images.

The reference white in the images is now the paper white of the ISO data
(XISO based, YISO based, ZISO based). In our experiments we use an EPSON Stylus
color 1520, and plain EPSON photo quality paper with its own (paper) white
(XEPSON , YEPSON , ZEPSON ). We converted the white point of the image using
[Hardeberg et al., 1999]

Xout = Xin ∗ XEPSON/XISO based

Yout = Yin ∗ YEPSON/YISO based

Zout = Zin ∗ ZEPSON/ZISO based

(4.11)

in which (Xin, Yin, Zin) and (Xout, Yout, Zout) are the tristimulus values of the
point before and after the transformation, respectively.

Intuitively this formula can be understood if one realizes that, unlike in the XYZ
space, CIELAB “automatically” corrects for changes in the color of the “white”
paper. So, any change due to changes in the color of white are not apparent as such.
More precisely, to convert to CIELAB all colors are divided by the tristimulus values
of paper white. So in order to convert from one white to the other, the tristimulus
values have to be divided by the tristimulus values of the old paper white and
multiplied by the tristimulus values of the new paper white. This formula fits in
the spectral model if r(λ) ≡ REPSON (λ)/RISO(λ) changes slowly with λ, then
REPSON (λ)x̄(λ) ∼ RISO(λ)x̄(λ).

Just before printing the images were converted from XYZEPSON to CMYEPSON .
This conversion was done in the same way as the conversion from CMYANSI to
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Figure 4.13: An overview of all the conversions steps used in the experiments.

XYZ. That is, a regular grid was constructed in XYZ and these colors were trans-
formed to CMYEPSON . To transform the image points we used these values and
linear interpolation. We obtained a table with reference points using the techniques
explained in section 4.2. All the conversion steps are given in figure 4.13. Note that
the result can be seen as an empirically determined driver algorithm.

4.2 Calibration

For the interpolation from XYZ to the CMYEPSON of the printer a reference table
has to be used. To obtain these values, we measured the XYZ values of 1650 known
CMYEPSON colors, printed on the paper used in the experiment. The colors were
measured using a spectroradiometer in a 0◦/45◦ geometry [Sangwine and Horne, 1998].
This means that the light falls perpendicular on the paper, and the angle between
the incident light and the spectroradiometer is 45◦, see figure 4.14. The relation be-
tween image width B, viewing angle α and viewing distance d, shown in figure 4.15,
is given by

α = 2arctan(B/2, d) (4.12)

The relation between the image width and pixel width b is given by

B = Npixelsb (4.13)
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Figure 4.15: The relation between image width B, viewing angle α and viewing distance
d.

where Npixels is the number of pixels.

The chromaticity values of the inks are given in figure 4.16. The values are inter-
polated using the natural neighborhood interpolation.
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Figure 4.16: The location of the inks of the EPSON stylus 1520 printer in the xy diagram.
100% coverage of the ink is denoted by a larger symbol. For smaller amounts of ink, the
location in the xy diagram is closer to the white point, this is the chromaticity of the paper
used.
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Figure 4.17: The results of the leave-one-out error procedure for one calibration set.

We measured the effect of the calibration by a leave-one-out method. Each point
in the reference set is interpolated using all the other points of the reference set.
The difference between the measured values and the computed (interpolated) values
turns out to be 0.89 ± 1.48 ∆EL∗a∗b∗. The ∆EL∗a∗b∗ values for each color patch are
given in figure 4.17. A ∆EL∗a∗b∗ of approximately 1 can just be seen by the human
eye. It is clear that the calibration used here is quite adequate.

In figure 4.18 perceptual differences for different times and for different measurement
setups are given. Figure 4.18(a) shows the perceptual error between measurements
that were done with the same setup but with the reference data printed on differ-
ent days. The setup used here was a spectrophotometer. The error is 2.1 ± 1.9
∆EL∗a∗b∗. In figure 4.18(b) the measured printed patches were the same, but the
measurement setup was in one case a spectrophotometer and in one case a spectro-
radiometer as described above. The error is 3.5 ± 3.4 ∆EL∗a∗b∗. As expected, the
errors are somewhat larger than in 4.18(a), but still small enough.

The black printer algorithm (equation 4.8) was evaluated for the ISO data and
the EPSON data using the following procedure. We selected colors with the
same CMYEPSON/ISO and different CMYKEPSON/ISO values, and determined the
∆EL∗a∗b∗ value of these colors. The results are given in figure 4.19, which shows
that this conversion does not work well for the ISO data set, the mean ∆EL∗a∗b∗
being too high (8.53). For the EPSON data set, however, the mean ∆EL∗a∗b∗ is only
1.75, so this conversion can be used for this printer. In this respect one should also
realize, that there is no reason to expect that slight differences between the original
and the reproduced ISO images would have an impact on the experimental results.
Such a difference in the EPSON “original” would be present in all its derived test
images, and it is unlikely, therefore, that this would effect the rank ordering of these
images.
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Figure 4.18: These graphs show the perceptual difference of measured calibration values
for different circumstances. In (a) the measurement patches are printed on different days
(half a year apart). The measurements are done with a spectrophotometer. It can be seen
that the ∆EL∗a∗b∗ differences are small, typically < 4. In (b) the measurement patches that
are measured are the same, but one set is measured with a spectrophotometer and one set
is measured with a spectroradiometer. It can be seen that the differences are somewhat
larger than in (a), but still small (mostly < 6).
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Figure 4.19: Comparison of the errors for points with the same CMY, but different CMYK
values, using either the ISO data (a) or the EPSON data (b). Note the difference in scale.

4.3 Gamut mapping

The group of all colors that can be reproduced by any device can be seen as a solid
in a color space [Morovic, 1998]. This solid is called the gamut of the device. For
a printer, e.g., the gamut consists of all colors that can be printed. People often
encounter the problem of different gamuts. An image that looks nice on a monitor,
can be very poor when printed. This can be due to the fact that the gamut of the
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printer is very different, and mostly smaller, than the gamut of the monitor. Not
all monitor colors can be reproduced. The problem of gamut mapping is how to
handle images in which some colors cannot be reproduced by the output device.

Gamuts of different devices are not equal in size and shape. The gamut of additive
systems in CIEXYZ (or any other linear tristimulus space) is a convex polyhe-
dron. Since most subtractive and hybrid systems are nonlinear, their gamuts have
irregular shape [Sharma and Trussell, 1997].

The difference in the shape of the gamut is very large when comparing a normal
CRT monitor and a hardcopy printer [Katoh et al., 1999]. In this case, problematic
colors are saturated green and blue and light colors, because the monitors gamut
is wider in these regions. The result of this is that not all colors that are produced
with one device (e.g. a CCD camera) can be reproduced with another device (e.g. a
printer). The goal of gamut mapping is to transform the colors in images in such a
way, that the images can be optimally reproduced considering that it is not possible
to always reproduce exactly on the output device.

The main goal is focused on the overall appearance of a given image rather than
the exact appearance of the each colors.

The International Color Consortium (ICC) developed profiles to convert images
from device color spaces to a standard perceptual color space and vice versa
[ICC, 1998] (see also section 2.1.6). In these profiles four rendering intents for
gamut mapping are defined: perceptual, saturation, colorimetric and absolute. The
perceptual intent is used for reproducing pictorial or photographic images, and pre-
serves the appearance of the image. The saturation intent is mainly used for images
containing objects such as charts (business graphics). It preserves the vividness of
the colors. With the colorimetric and absolute intent the relationships between
the in-gamut colors are preserved. The difference between the two is that in the
colorimetric intent the white point of the gamut is converted to that of the output
device, whereas for the absolute intent nothing is changed. The absolute intent is
best used for spot colors and when one is simulating one device on another. The
colorimetric intent is appropriate for images which are in the output gamut after
white point correction.

Since we are interested in the overall appearance of the input image, gamut mapping
has to be applied to perceptual attributes such as hue or chroma. Usually perceptual
uniform color spaces are used such as CIELAB and CIELUV [Katoh et al., 1999].
The second reason to use these color spaces is that colorimetric distances should be
related to perceptual differences [Morovic, 1998].

One can try to map the total gamut of the input device onto the gamut of the
output device (image independent mapping). However, usually better results are
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obtained when mapping only the gamut of the image4, because the latter will often
better fit into the gamut of the output device and thus requires less distortion
[Morovic, 1998]. The most obvious example for this statement is that if an image
has only colors that are in the gamut of the output device, no gamut mapping
should be done, whatever the input gamut may have been.

Morovic [Morovic, 1998] gives the following gamut mapping principles:

1. Make changes to as few colors as possible and make changes as small as
possible.

2. Use a perceptually uniform environment.

3. Maintain perceived hue, rather than the hue as defined in CIELAB or CIELUV
(see chapter 2).

4. Allow for different compression in different parts of the color space.

5. Maintain as much chroma as possible without sacrificing a significant amount
of detail. Morovic states: “Psychophysical experiments suggest the signifi-
cance of chroma in gamut mapping. This has often been ignored in papers on
gamut mapping which consider lightness to be the most important attribute.
However the best results will be achieved when a compromise between light-
ness and chroma is found. To do this, the simultaneous gamut mapping
algorithms seem the most suitable.”

Most gamut mapping methods are based on moving a point along a line in color
space. There are two features to be considered, the mapping method and the
mapping direction.

Mapping method: There are three common mapping methods [Katoh et al., 1999]:

• clipping

• linear compression

• soft clipping (non-linear clipping)

The choice of the mapping method depends upon the amount of out-of-gamut
colors. If this amount is small, the preferred method is clipping, whereas if
this amount is large, the preferred method is compression. A soft clipping
method has the advantage of reproducing most of the common gamut colors
accurately, while reducing the loss of detail that is due to clipping. These
functions are illustrated in figure 4.20.

Mapping direction: The second feature of gamut mapping is the mapping di-
rection, that is, the direction along which the colors are mapped in the used

4The gamut of the image is defined as the (limited) set of colors that occur in the image
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color space. Note that some mappings have to be performed in a specified se-
quence to obtain an image that is inside the gamut. Some often-used mapping
directions for gamut compression are

Hue compression: Hue is the perceptual attribute that we can distinguish
with the best precision. This is the reason that most authors propose to
maintain the hue. A problem is that the hue as defined in the CIELAB
and CIELUV space is still an imperfect representation of the perceived
hue (see the definitions in chapter 2).

Lightness compression: The first attribute that is usually scaled is the
lightness. This compression is used to map the maximum and minimum
lightness of the gamuts onto each other. According to most authors the
lightness should be linearly compressed; an even better way is to use a
soft clipping function [Morovic, 1998]. An example of this compression
is given in figure 4.21(a).

Chroma compression: Chroma compression is a simple linear compression
in planes of constant hue and along lines of constant lightness, option-
ally with a soft clipping algorithm. A chroma compression is normally
performed after a lightness compression. The compression can be done
along each line independently (figure 4.21(b)), or for the whole image
uniformly (figure 4.21(c)).

Simultaneous lightness and chroma compression: It is more successful
to compress the lightness and the chroma simultaneously. These algo-
rithms are more likely to preserve more of the colorfulness of the image
[Morovic, 1998]. The most prominent of these is to compress the chroma
and lightness towards the point where lightness is 50 and chroma is 0. As
with the chroma compression the rate of compression can be determined
along each line or uniform for the whole image. These two compressions
are given in figure 4.21(d) and (e). With this compression, it may still
be convenient to use a lightness compression to obtain gamuts with an
equal minimum and maximum lightness, before the simultaneous light-
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ness and chroma compression. If the simultaneous lightness and chroma
compression is used directly, the loss of chroma may be very high.

The perceptual effects of these (technical) operations were studied by Katoh
[Katoh et al., 1999]. He found that lightness compression reduces the contrast
of the image, whereas chroma compression reduces the vividness of the image.

Instead of compression for all points one can also clip the points that are
outside the gamut back onto the gamut boundary. The main disadvantage is
that different colors close to the gamut boundary are clipped onto the same
color. The advantage is that the colors of most points do not change. As said
before, this advantage is usually smaller than the disadvantage.

Common used clipping directions are shown in figure 4.22 [Morovic, 1998]:

• orthogonal clipping; clipping along the line normal to the gamut bound-
ary.

• chord clipping; clipping along a line towards a point on the L axis (for
instance the point on the luminance axis with the same lightness as the
cusp point5).

4.3.1 Gamut mapping in practice

The gamut of the EPSON printer is given in figure 4.23. It can be seen that the
gamut is more regular for the lighter colors than for the darker colors. This effect
is partly due to measurement noise. The gamut of the ISO data set is given in
figure 4.24. As will be discussed below, the visualization of this gamut is more
difficult than the visualization of the EPSON gamut. This difficulty explains also
why the gamut is visualized with less points.

To perform the gamut mapping we need three things: a mapping method, a map-
ping direction, and a representation of the gamut boundary. As long as we refrain
from mapping the hue, this representation can be given in a 2D plane of constant
hue.

Finding the gamut boundary through Delaunay tetrahedration

Determining the boundary of a gamut can be done in various ways. We investigated
two different methods.

5The cusp point is defined as the point with the maximal chroma for a certain hue.
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with lightness compression is used as input gamut for the other gamut compression strate-
gies. The triangular shape of the gamut is schematic.
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Figure 4.22: Two different kinds of gamut clipping

Method 1

To determine which points in the measured color space are on the gamut border,
we first did a Delaunay tetrahedration of the reference points located near or on
the gamut border. Because the measured color space is always 3 dimensional, this
results in a number of tetrahedrons. If the gamut would be completely convex, the
outer triangles of some tetrahedrons would be a good approximation of the gamut
border. However, the gamut of a printer is normally (partially) concave.

Since we do not know a priori which or how many points are located on the boundary
of the gamut, we made a Delaunay tetrahedration of all the reference points, and
determined the intersection of all the faces of the tetrahedrons (triangles) with a
constant hue plane. Sides of the triangles that have large sides were discarded,
because this could be a concave part, where large sides connect the wrong points.
This introduces a magic number, the threshold length. The result of this can be
seen in figure 4.25 (a).

In this intersection, it is plainly seen that the number of points is much too large.
Therefore, we select the outer line pieces by starting at the top or the bottom and
selecting the line piece that is connected to the point and has the outer slope. The
set of these line pieces is the intersection of the gamut at the constant hue plane.
This set is given in figure 4.25 (b).

Method 2

Another way of determining the correct triangles is to use the known relations in
the input color space6. This second method is also used by Hardeberg

6For this method it is assumed that the boundary in the input color space is transformed into the
boundary in the output color space. More formally, the subset of boundary points of the gamut in the
input color space are mapped onto a subset of the gamut in the output color space, and this subset is again
the boundary.
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Figure 4.23: The gamut of the EPSON printer plotted in the CIELAB space for 6 different
viewing points, corresponding to the 6 different faces of a cube. These images are made
using the relations in the CMYEPSON space. The solid lines indicate that two of the three
inks are 0 or 100%.
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Figure 4.24: The gamut of the ISO data plotted in the CIELAB space for 6 different
viewing points, corresponding to the 6 different faces of a cube. These images are made
using the relations in the CIELABISO space (method 1). The circles indicate that C, M,
and Y are either 0 or 100%. For all these points K is 0.
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Figure 4.25: The boundary of the gamut in a constant hue plane, using the first method.
This implies first determining in the 2D constant hue plane before selecting the correct
gamut boundary.

[Hardeberg and Schmitt, 1998]. If this color space is three dimensional, such as
CMY or RGB, we can use the known ordering in the input color space. The
boundary is divided into six 2-dimensional subspaces, in which one of the primaries
is maximal or minimal. We can determine the Delaunay triangulation in these 2D
subspaces, and then transform the triangles to the 3D measured color space. The
results of this Delaunay triangulation is that we obtain the calibration points that
are on the boundary of the gamut and the relations between these points.

To find the gamut boundary, we intersect all gamut triangles with the constant hue
plane. The set of found line pieces is again the gamut boundary. This is visualized
in figure 4.26.

If we use chord clipping (see figure 4.22 (b)) the mapping direction is known. To
find the new position of point A, we have to find the intersection between the line
in the gamut direction through point A and the line pieces. Note that there should
be only one intersection. This is visualized in figure 4.27 (a). If we use orthogonal
clipping (see figure 4.22 (a)), the mapping direction depends on the gamut bound-
ary. We now determine the smallest distance to all line pieces. The point with
the smallest distance is the new position B of point A. This means that for some
points the mapping direction is not normal to the line piece. This mapping is given
in figure 4.27 (b). This method is also used by Morovic [Morovic and Luo, 2000],
who named the method “the flexible sequential line gamut boundary”.
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Figure 4.26: The boundary of the gamut in a constant hue plane using the second method.
This implies determining the boundary triangles that intersect the constant hue plane in
3D. The gamut boundary is the intersection of the triangles and the constant hue plane.
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Figure 4.27: The line piece method for the two different kinds of gamut clipping. Note
that for A1, the mapping is orthogonal with respect to the line piece, which is not the case
for A2.

4.3.2 Testing the boundary found: leave-one-out method

In this section we measure how well the method described works. We used two
data sets to determine the fit. The first data set is the standard ANSI CGATS TR
001-1995 [ANSI, 1995] set used for the calibration of offset printers. We measured
the second data set ourselves on a EPSON 1520 ink jet printer, using EPSON photo
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Figure 4.28: Perceptual errors (determined with a leave-one-out method) for the gamut
of the EPSON printer using method 2. Note that the error in the lightness direction is
independent of the error in the chroma direction.

quality paper. The input CMYKEPSON values were the same as given for the ISO
set.

For the EPSON data we saw in section 4.2 that we can convert the data from
CMYKEPSON to CMYEPSON using equation 4.8. This means that we can use
both method 1 and method 2. All data were plotted in CIELAB space.

We determined the error in the found boundary using a “leave-one-out” method,
starting from the boundary points extracted from the data set. For each of these
boundary points, the error is determined in the following way. First a new data
set is selected consisting of all points except the boundary point under investiga-
tion. This data set is used to construct a new boundary point. The error is the
difference between the original boundary point and the closest point in the con-
structed boundary. The calculation of the perceptual error, ∆Ea∗b∗, simplifies to√

(∆L∗)2 + (∆C∗)2, because the hue is constant.

The perceptual error of the EPSON data set, using method 2, is plotted in fig-
ure 4.28. It can be seen that the error is typically below the visual threshold,
indicating that this is a good way of determining the gamut.

Method 1 needs a magic number, that is the largest connecting line that is con-
sidered being a part of the gamut. This variable prevents very large line pieces on
concave parts of the gamut. Instead of taking a fixed number, we made this number
dependent on the lightness value of the two points. The maximum value of the line
piece that is accepted, Mmaxval is rel maxval ∗ (L1 + L2). The influence of this
magic number can be seen in figure 4.29. It can be seen that this method works for
the given relative maximum sizes, except for rel maxval = 0.1, where too many
line pieces are rejected (figure 4.29 d).
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Figure 4.29: The gamut boundary for the EPSON data set using different values for the
relative maximum size (rel maxval) of the connecting line piece using method 1. Bound-
aries could always be completed, except for rel maxval = 0.1. The hue of the intersection
is 0.
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Figure 4.30: Perceptual errors (determined with a leave-one-out method) for the gamut
of the EPSON printer using method 1. Note the dependence of the error in the lightness
direction on the error in the chroma direction.

The perceptual error of the EPSON set, using the Delaunay tetrahedration in the
measured color space, is plotted in figure 4.30. It can be seen that the errors are
much larger than when we used the Delaunay triangulation in the input color space
(see figure 4.28). The conclusion is that this method should not be used if we have
information on the input color space. However, if this information is not available,
and if the gamut boundary does not have to be determined very precisely, we may
use this method.

For the ISO set we cannot determine the perceptual error, because it is not known
which points are exactly on the gamut boundary. However, as is shown in figure 4.31
that the method using the Delaunay tetrahedration in the measured color space still
gives reasonable gamut boundaries. However, it can be seen that the maximum size
for which a good gamut is found is much larger than with the EPSON data set.

4.4 Methodology

After these sections on stimuli production we will focus in the rest of this chapter
on performing and evaluating experiments with subjects. In the commonly used
scaling methods it is assumed that the underlying variable is unidimensional. It
is obvious, however, that for a variable such as image quality, this is not the case.
Still, as Sjöberg [Sjöberg, 1987] has stated, if the differences between the stimuli
are large enough, people can usually make consistent unidimensional ratings, even
if the variables appear to be extremely complex. This consistency is obtained in the
sense of rank ordering, but it may not be so easy to find more advanced quantitative
properties. If the stimuli differ only marginally, classical scaling methods such as
Thurnstone’s law of comparative judgement are the most appropriate, whereas for
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Figure 4.31: The gamut boundary for the ISO data set using different values for the rel-
ative maximum size (rel maxval) of the connecting line piece using method 1. Boundaries
could always be completed, except for rel maxval = 0.3. The hue of the intersection is 0.
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larger differences, absolute scaling is a better measurement method.

In this section we describe the methods we used for analyzing the results of subject
experiments.

4.4.1 Rank ordering

With the rank ordering method the subjects are given a range of stimuli (in our
case prints) which should be ordered according to a certain attribute (perceptual
quality). The correlation between the subjective ordering and some measure of the
variable in question can be calculated with the Spearman rank-order correlation
coefficient rs [Siegel and Castellan, 1988]. With this value, the null hypothesis H0,
i.e. the subjective ordering is not associated with the investigated measure (i.e.
the subjective ordering and the measure under investigation are independent) can
be tested against the hypothesis H1, i.e. there is an association. The Spearman
rank-order coefficient is defined as

rs = 1 − 6
∑N

i=1 di
2

N3 − N
(4.14)

in which N is the number of prints in the range and di is the difference in rank for
the computational measure and the subjective ordering for each image in the range.
If this coefficient is above a certain critical value (see table 4.1), the null hypothesis
can be rejected. In our experiments, we use this also to see if subjects can see
differences between the images. If this difference cannot be found, the results of
the experiments cannot be used.

Table 4.1: The critical values for the Spearman rank-order correlation coefficient. These
values hold for a two-tailed hypothesis with α = 0.05, or a one-tailed hypothesis with α =
0.1

N 5 6 7 8 9 10 12 14 16
critical value 1.000 0.886 0.786 0.738 0.700 0.648 0.587 0.538 0.503

4.4.2 Friedman two-way analysis of variance by ranks and Kendall

Coefficient of Concordance

The Friedman two-way analysis of variance by ranks [Siegel and Castellan, 1988,
StatSoft, 2000] is used to test the null hypothesis that the k samples, that are
ranked, have been drawn from the same population. In our experiments, all N
subjects scale the same k stimuli. The null hypothesis is that the distribution of the
ranks over the stimuli is a matter of chance, that is, the means of the distributions
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of the stimuli are the same. If the null hypothesis is true, the expected value of
the sum of the ranks over the stimuli Rj would be N(k + 1)/2. The Friedman test
determines whether the found sum Rj is significantly different from the expected
value. The statistic used is

Fr =


 12

Nk(k + 1)

k∑
j=1

R2
j


− 3N(k + 1) (4.15)

The probabilities of several values of Fr are tabulated for different numbers of
subjects and stimuli. If k or N is large, it can be shown that Fr is distributed
approximately as χ2 with k − 1 degrees of freedom.

If the obtained value of Fr is significant, we may reject the null hypothesis, that is
we know that at least one of the stimuli is drawn from a population with a different
mean. However, we do not know how much, and which stimuli are different. To
test if stimulus u is different from stimulus v the following equation can be used

|Ru − Rv| ≥ zα/k(k−1)

√
Nk(k + 1)

6
(4.16)

where zα/k(k−1) is the abscissa value from the unit normal distribution above which
lies α/k(k − 1) percent of the distribution, or in formula,

α/k(k − 1) =
1

2
+

√
π

2
erf(zα/k(k−1)). (4.17)

Whereas the Friedman two-way analysis of variance by ranks is used to test the cor-
relations between the stimuli, the Kendall Coefficient of Concordance W can used to
test the correlations between the subjects [Siegel and Castellan, 1988, StatSoft, 2000].
W expresses the degree of agreement among the subjects and is defined as

W =

∑k
i=1(R̄i − R̄)2

k(k2 − 1)/12
(4.18)

with R̄i the average of the ranks assigned to the ith stimulus, and R̄ the average
of the ranks assigned across all stimuli. The denominator is the maximum possible
sum of the squared deviations. The numerator would have this value if the subjects
had complete agreement, in which case the average rankings would be 1, 2, ... k.

Instead of using Kendalls Coefficient of Concordance, one can also use a Spearman
Rank Order Correlation between every two subjects. The number of rank-order

correlations that has to be determined is

(
k
2

)
, which makes the procedure a bit
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tedious for a large number of subjects. The relation between the average rank-order
coefficient ave(rs) and the Coefficient of Concordance (W ) is

ave(rs) =
kW − 1

k − 1
(4.19)

For small sample sizes the significance of W is determined and tabulated. For large
sample sizes, it is found that the quantity

X2 = N(k − 1)W (4.20)

is approximately distributed as chi square with k − 1 degrees of freedom.

4.4.3 Analysis of Variance (ANOVA)

An Analysis of Variance (ANOVA) [StatSoft, 2000, Winer, 1970, Lane, 2003] is one
of the methods that can be used to test if the differences that are found between
different stimuli are statistically significant. The main assumption is that the prob-
ability function of each stimulus is normal. The null hypothesis is that the means
of these distributions do not differ. The reason to use an ANOVA instead of other
tests, for instance a t-test for independent samples, is that if we have more inde-
pendent variables, we can test the significance of these variables with ANOVA and
with less observations than if we would have performed several t-tests. The second
advantage is that we can determine the significance of the interaction between vari-
ables. So, ANOVA is more powerful and gives more results. We shall give a short
description of the ANOVA method.

We start with explaining the simple case of one variable. The following entities
are determined: Xij the response of subject i to stimulus j. Xij can be summed

over the stimuli: Pi =
∑k

j=1 Xij and over the subjects Tj =
∑n

i=1 Xij. The sum

over all observations
∑n

i=1
∑k

j=1 Xij is called G. For the sums the average is also
determined: P̄i = Pi/k, T̄j = Tj/n and Ḡ = G/(nk).

The method is based on the idea that the variance in the entire experiment can
be split into smaller parts. For instance, part of the variance is due to differences
between subjects, part of the variance comes from differences between stimuli, and
so on.

The total variance in the experiment is given by the sum of squares

SStotal =
n∑

i=1

k∑
j=1

(Xij − Ḡ)2 (4.21)

This variable has kn − 1 degrees of freedom, because there are n subjects and k
stimuli, and only one linear relationship is assumed.
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The variance in the experiment that is due to differences between the means of the
subjects is given by

SSbetween subjects = k
n∑

i=1
(P̄i − Ḡ)2 (4.22)

with n − 1 degrees of freedom. Note that if we use ranked data, this value will
always be zero7.

The variance within subject i is given by

SSwithin subject i =
k∑

j=1
(Xij − P̄i)

2 (4.23)

This source of variance has k − 1 degrees of freedom. If this is pooled over all
subjects, the total variance within the subjects is found as

SSw.subjects =
n∑

i=1

k∑
j=1

(Xij − P̄i)
2 (4.24)

with n(k − 1) degrees of freedom.

It can be shown that SSw.subjects and SSbetweensubjects are statistically independent
and that

SStotal = SSw.subjects + SSbetweensubjects (4.25)

The variance within the subjects depends partly on differences in the stimuli and
partly on uncontrolled or residual sources of variance. These variances are defined
as

SSstimuli = n
k∑

j=1
(T̄j − Ḡ)2 (4.26)

with k − 1 degrees of freedom, and

SSres =
n∑

i=1

k∑
j=1

[
(Xij − Ḡ) − (Pi − Ḡ) − (Tj − Ḡ)

]2
(4.27)

with (k − 1)(n − 1) degrees of freedom. The relation between these variances is

SSw.subjects = SSstimuli + SSres (4.28)

where SSstimuli and SSres are statistically independent.

A variance can also be given as a Mean Square. This is

MS =
variance

degrees of freedom
=

SS

df
(4.29)

7Because all subjects give ranks from 1 to k, Pi is (1 + k)/2 for all subjects.
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The F ratio

F =
MSstimuli

MSres
(4.30)

can be used to test the null hypothesis, that is there is no effect for the different
stimuli8. This variable has a sampling distribution which is approximated by an
F distribution, which has k − 1 degrees of freedom for the numerator and kn − k
degrees of freedom for the denominator. If there is no difference between the stimuli,
F is close to 1. The larger F is, the more probable the effect is. F can be compared
to tabulated values of F to obtain the probability that the means are different.

If the data is ranked data, instead of the F ratio the χ2
ranked statistic is usually

used:

χ2
ranked =

SSstimuli

(SSstimuli + SSres)/n(k − 1)
=

n(k − 1)SSstimuli

SSw.subjects
(4.31)

When no ties are permitted

SSw.subjects =
nk(k2 − 1)

12
(4.32)

with this the χ2 statistic becomes

χ2
ranked =

12

nk(k + 1)

∑
T 2

j − 3n(k + 1) (4.33)

which is the same as the Friedman Rank order coefficient.

So far we have studied one variable problems, given in the references [Winer, 1970,
StatSoft, 2000, Lane, 2003]. In experiments in which there are two or more indepen-
dent variables, we would want to know if the effects of the variables are statistically
significant, and also if there is an interaction between the different variables. Here
we derive the relationship for two variables with their interaction. For more vari-
ables the principle is the same.

The following entities are used Xij1j2 is the response of subject i to the stimulus
with independent variables j1 and j2. The number of subjects is n, the number of
different values of variable 1 is k1, the number of different values of variable 2 is k2.
Xij1j2 can be summed over the subjects: Yj1j2 =

∑n
i=1 Xij1j2. If we also sum over

the variable k2, the only remaining variance is due to differences in variable 1, and
vice versa: Tj1 =

∑k2
j2=1 Yj1j2 and Tj2 =

∑k1
j1=1 Yj1j2. The sum over all variables

except the subjects is given as Pi =
∑k1

j1=1
∑k2

j2=1 Xij1j2. The sum over one variable

and the subjects is given as Qij1 =
∑k2

j2=1 Xj1j2 and Qij2 =
∑k1

j1=1 Xj1j2. The

total sum of the responses is given as G =
∑n

i=1
∑k2

j2=1
∑k1

j1=1 Xij1j2 The average of

these sums are Ȳj1j2 = Yj1j2/n, T̄j1 = Tj1/(nk2), T̄j2 = Tj2/(nk1), P̄i = Pi/(k1k2),
Q̄j1 = Qj1/k2, Q̄j2 = Qj2/k1 and Ḡ = G/(nk1k2).

8Note the similarity with the Signal to Noise Ratio.
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The total variance in the experiment is given by

SStotal =
n∑

i=1

k2∑
j2=1

k1∑
j1=1

(Xij1j2 − Ḡ)2 (4.34)

This equation reduces to 4.21 if k2 = 1. SStotal has nk1k2 − 1 degrees of freedom.

The variance due to differences between subjects is

SSbetween subjects = k1k2

n∑
i=1

(P̄i − Ḡ)2 (4.35)

with n degrees of freedom.

The variance due to the first variable is given by

SSvariable 1 = nk2

k1∑
j1=1

(T̄j1 − Ḡ)2 (4.36)

with k1 − 1 degrees of freedom. This equation reduces to 4.26 if k2 = 1. In the
same way the variance of the second variable is given by

SSvariable 2 = nk1

k2∑
j2=1

(T̄j2 − Ḡ)2 (4.37)

with k2 − 1 degrees of freedom.

In our case, we have ranked data. The data is ranked with one variable, the image,
constant. Assuming that the image is variable 2, SSvariable 2 is zero.

The new term is the variance due to the interaction of the two variables.

SSinteraction = n
k1∑

j1=1

k2∑
j2=1

(Ȳj1j2−Ḡ)2−nk1

k1∑
j1=1

(T̄j1−Ḡ)2−nk2

k2∑
j2=1

(T̄j2−Ḡ)2 (4.38)

(k1 − 1)(k2 − 1) degrees of freedom. Note that SSinteraction is zero if k1 or k2 is 1.
The total variance is given by

SStotal = SStotal variable 1 + SSinteraction + SSres (4.39)

The residual sum of squares can be determined using

SStotal variable 1 =
n∑

i=1

k1∑
j1=1

(Q̄j1 − Ḡ)2

SSres,variable 1 = SStotal variable 1 − SSvariable 1

SSres,interaction = SStotal − SSvariable 1 − SSres,variable 1 − SSinteraction

(4.40)
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Again the Mean Squares can be determined by dividing the variances by the proper
residual variance

MSvariable 1 =
MSvariable 1

k1 − 1

MSres,variable 1 =
SSres,variable 1

(n − 1)(k1 − 1)

MSinteraction =
SSinteraction

(k1 − 1)(k2 − 1)

MSres,interaction =
SSres,interaction

(n − 1)(k1 − 1)(k2 − 1)

(4.41)

Because we test for two effects (the main effect of variable 1 and a two-way interac-
tion), we obtain two F ratio’s. Note that the main effect of variable 2 is not tested
because our test setup does not allow this.

Fvariable 1 =
MSvariable 1

MSres,variable 1

Finteraction =
MSinteraction

MSres,interaction

(4.42)

The generalization to three or more variables is obvious. For three variables, for
instance equation 4.39 is

SStotal = SStotal variable 1+SSinteraction 1,2+SSinteraction 1,3+SSinteraction 1,2,3+SSres

(4.43)

To test if different stimuli are significantly different several different tests an be used,
from which the most common test the Newman-Keuls test is. The Newman-Keuls
test uses the variable qr, which is defined as

qr =
Ti − Tj

nMSerror
(4.44)

r is the number of steps which the stimuli i and j are apart on an ordered scale. qr

is significant if it is larger than q1−α(r, f), with f the degrees of freedom of MSerror.
q1−α(r, f) is the (1 − α) point on the q distribution. To avoid inconsistencies, the
order of testing the different pairs of stimuli is always the same. In this procedure
the significance of all tests is equal to α. But if we consider the collection of tests
as a single test, the significance level is considerably lower than α. The Duncan
test is identical to the Newman-Keuls test, but the critical values are corrected by
protection levels to obtain a significance of α for the entire test.
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4.4.4 Bisection

The bisection method is used to obtain information about the stimulus-response
function of the stimuli. The subject is presented a number of stimuli and has to
decide which print is in the center of a range of prints, for a certain criterion. For
instance, if the prints differ in grey value, the subject has to select the print with
the grey value that is exactly in the middle of the maximum and minimum grey
value. In this way one point of the response function can be found. By varying the
range, an estimate of the total response function is obtained. To test if the found
bisection points are different from the physical center of the range, we traditionally
used the student-t statistic.
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Chapter 5

Relative Sharpness and Smoothness

5.1 Introduction

Natural images contain lines, edges and line and edge-free areas. In between, of
course, are “textures”. Some of these lines and edges are sharp, and some of the
areas are smooth. Due to several causes, such as blurring and noise, lines and edges
can be blurred, and smoothed areas can become less smooth. In image processing
there are two types of operations to restore this, i.e. sharpening and smoothing.
Adaptive operations can perform both. An example of an adaptive operation is
anisotropic diffusion [Perona et al., 1994].

Two perceptual attributes that determine image quality are the sharpness of the
lines and edges in an image and the smoothness of the areas. These perceptual
attributes will depend upon the results of the image processing operations. In this
chapter we will discuss measures for sharpening and smoothing. Such measures
typically are relative measures. In the next chapter, however, we will propose a
measure for absolute sharpness, independent of a reference image.

5.2 Sharpening and smoothing

In image enhancement two operators are commonly used: sharpening of the struc-
tures (lines and edges) and smoothing of the (almost uniform) areas. Most of the
pixels in an average printer image “belong” to an area, and only a small number to
lines and edges [Nishikawa et al., 1965]. This indicates that a filter, which performs
both sharpening and smoothing, cannot be evaluated well by a measure that treats
every pixel the same.

This observation has led us to formulate of two new objective measures for estimat-
ing the smoothing and sharpening effect of a filter. Since these measures, devel-
oped by Dick the Ridder, have worked satisfactorily in a neural network approach

85
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[de Ridder et al., 1998, de Ridder, 2001] (i.e. they seemed to do so according to
subjective appreciation), the question arose as to what extent these really conform
to human judgement. To answer this question, we asked subjects to indicate rela-
tive smoothing and/or sharpening on a number of filtered images. The filter used
was an edge-preserving smoothing filter, an anisotropic diffusion filter.

5.3 Sharpening and smoothing measures

In order to devise an informative performance measure for both sharpening and/or
smoothing induced by a filter, the two effects have to be separated. Thereto, a
scattergram is plotted of the pixels of the gradient magnitude of the original image
I versus those of the gradient magnitude of the filtered version f(I). The gradient
magnitude measures the maximum deviation in a local environment around the
pixel, or the absolute slope [van Vliet, 1993]. The gradient magnitude is defined as
[Young et al., 1998]

|∇I| =

√
(
dI

dx
)2 + (

dI

dy
)2 (5.1)

where dI
dx and dI

dy are the derivative in the x and y direction, respectively. We used
Gaussian derivative filters.

Figure 5.1 (a) show four examples. The filters used are described in section 5.4.
Horn and Bachman [Horn and Bachman, 1978] have used a scattergram approach
to determine the similarity of two images, in their case a real and a synthetic image.
In contradiction to our approach, they constructed a scattergram of the pixels of
the two images. However, it is hard to relate the cloud of points that are found
to image similarity (see also [Katsulai and Arimizu, 1981]). By taking the gradient
magnitude of the pixels instead of the grey value, we can relate pixel positions in
the scattergram to the effect of the filter used.

Pixels are classified as either being sharpened or smoothed. In the first case, the
gradient will be steeper: i.e. the pixel is plotted above the line y = x in the
scattergram. Pixels which are smoothed will end up below this line. The main
assumption is that pixels on lines and edges are sharpened, and that the other
pixels are smoothed. However, this assumption is not used to group the pixels. All
sharpened and smoothed pixels are grouped into sets A and B, where A are the
pixels for which the filtered gradient is smaller than the original gradient (below
the line y = x), and B are the pixels for which the filtered gradient is larger than
the original gradient (above the line y = x). Note that in general |B| << |A|,
since fewer pixels lie on edges than in smooth regions. Because the points in A are
more cluttered (near the origin) than the points in B, |B| appears larger. Lines y =
ax+b can be fitted through both sets using a robust estimation technique (medfit),
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(a) Unsharp masking
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(b) Gaussian smoothing
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(c) Anisotropic diffusion
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Figure 5.1: Scattergrams of gradient magnitude of an original image (x-axis) versus the
gradient magnitude of the filtered version (y-axis). The filters are discussed in section 5.4.
Only the pixel values of 3000 random points are plotted. See text for explanation.

which minimizes the absolute deviation [Press et al., 1988], to get an estimate for
smoothing and sharpening, respectively, that is:

(aA, bA) = arg min
(a,b)

∑
(x,y)∈A

|y − (ax + b)| (5.2)

(aB, bB) = arg min
(a,b)

∑
(x,y)∈B

|y − (ax + b)| (5.3)
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The estimation procedure is not the normal least square error method, but a method
which is less sensitive to outliers. The slope of the lower line found, aA, will give an
indication of the smoothing induced by the filter f . Likewise, aB gives an indication
of the sharpening effect of the filter. The offsets bA and bB are discarded, although
it is necessary to estimate them to avoid biasing the estimate of aA and aB. If these
values would not be estimated, then we would see a sharpening and smoothing for
all images1. Note that a demand is that aA ≤ 1 and aB ≥ 1, so the values are
clipped at 1 if necessary2.

To account for the number of pixels actually used to estimate these values, the
slopes found are weighted with the relative number of points used for the estimate.
Therefore, the numbers

Smoothing(f, I) = (a′A − 1)
|A|

|A| + |B| (5.4)

Sharpening(f, I) = (aB − 1)
|B|

|A| + |B| (5.5)

are used, where a′A = 1
aA

was substituted to obtain numbers in the same range

[0,∞〉. These two values can be considered to be an amplification factor of edges
and an attenuation factor of flat regions, respectively. Note that these measures
depend on:

• image content;

• the filter used;

• any intermediate or post processing such as scaling or contrast stretching.

Given a certain image and using no further processing, these numbers can therefore
be used to compare filter operation. Note that the procedure fails in the presence
of excessive noise 3.

5.4 Edge-preserving smoothing

To judge the correspondence between the measures proposed in section 5.3 and
human judgement, one could do experiments with, in principle, any kind of edge-

1In the model we use the gradient after filtering g2 is linearly related to the gradient before filtering g1,
so g2 = cg1. This implied that all estimated lines should have no offset. However, this model is not exactly
true.

2aA can be larger than one if there is no smoothing and if a small offset bA is estimated.
3For example, if we add Gaussian noise with standard deviation 10 to trui, the sharpening found is

-0.01 and the found smoothing is 0.01. The signal-to-noise ratio is 13.9, using SNR = 20 log10
sa

sn
dB with

sa the standard deviation of the signal and sn the standard deviation of the noise [Young et al., 1998]. For
a Gaussian noise with standard deviation 20, the sharpening found is -0.04 and the found smoothing is
0.02. The SNR is 7.87.
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preserving smoothing filter. However, one obvious demand is that the algorithm
used has parameters which allow small differences in sharpening and smoothing
to be created. This is necessary to be able to create a large number of images
which span the sharpening-smoothing space. For instance, the Kuwahara filter
[Kuwahara et al., 1976, Young et al., 1998] is not applicable, since the only param-
eter used is the window width (5, 9, 13, ...) resulting in too coarse a spacing.

The filters used in the experiment are:

Gaussian (unconditional smoothing): a purely smoothing Gaussian

fG(I, σ) = Gσ ∗ I (5.6)

with

Gσ ≡ 1√
2πσ

e
−(x2+y2)

2σ2 (5.7)

and σ = 0.0, 0.1, ..., 2.0.

Gaussian unsharp masking (unconditional sharpening): An edge enhance-
ment technique that is also used in photography is unsharp masking [Yule, 1944,
Young et al., 1998]. Edge enhancement can be separated in three steps: first
the edges in the image are isolated, then these edges are amplified, and the
last step is adding the amplified edges back into the image. The Laplace of
Gaussian can be used for isolating the edges, giving

fU(I, k) = I − kGσ ∗ ∇ · ∇I (5.8)

where the amplifying term k is larger than zero. In the experiments k was
varied in the range 0.0, 0.1, ..., 2.0. The parameter σ was fixed at 1.0.

Anisotropic diffusion with unsharp masking (conditional smoothing): The
diffusion equation proposed by Perona and Malik [Perona et al., 1994], which
models intensity as pressure, is given by

It+1 = It +
1

2
∇ · (Ct(x, y)∇I)∆t (5.9)

where ∇I is an intensity gradient, Ct is a conduction function, C∇I is an
intensity current and ∆C∇I is accumulated intensity. For anisotropic diffu-
sion, Perona and Malik take for Ct a function indicating the absence of an
edge. The image is smoothed in places where no edges are present (Ct = 1)
but not changed near the edges. Since the location of the edges is not exactly
known, some monotonously decreasing function of the gradient magnitude is
used, usually

Ct(x, y) = T (|∇I|, τ)

T (m, τ) = exp

(
−m2

τ

)
(5.10)
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Figure 5.2: The two images (a,b) and parts thereof (c,d) used in the experiments. In (c)
the parts are called (1) bike (the part with only the bicycle), (2) clock, (3) test pattern,
(4) plant, (5) fruit and (6) lobster. In (d) the parts are called (1) right hand, (2) face,
(3) hair, (4) left hand and (5) sweater.
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which falls to zero for large values of the gradient. The parameter σ1 deter-
mines how large a gradient has to be in order to be considered an edge.

In practice, the flux (i.e. current through a certain area) between two pixels
a and b is approximated by

1

2
∆tCt(x, y)∇I ≡ φt(p, n) = 1

2∆t 1
2(Ct(xp, yp) + Ct(xn, yn)) ·
(It(xp, yp) − It(xn, yn)) (5.11)

so that the update rule (one iteration) for one pixel p becomes

It+1(xp, yp) = It(xp, yp) +
∑
n∈n4

φt(p, n) (5.12)

where n4 denotes the 4-connected neighborhood of pixel p. The time step
∆t in equation 5.11 is fixed to 0.25, giving updates as large as possible but
keeping the scheme numerically stable [Niessen et al., 1994]. The number of
iterations is a parameter, N .

In the experiments described below, a modification proposed by Catté
[Catté et al., 1992] was used. That is, the gradient magnitude in equation 5.10
is calculated with a Gaussian derivative:

Jt = Gσ2 ∗ It (5.13)

Ct(x, y) = T (|∇J |, σ1) (5.14)

This introduces a second parameter σ2, which can be used to suppress noise.

The diffusion operation described here has a purely smoothing effect4. To
make the filter both sharpening and smoothing, images were pre-filtered with
the unsharp masking filter fU(I, k) described above. This introduces another
parameter, k. The total filter therefore is fA(fU(I, k), σ1, σ2, N). In the
experiments, the parameters were varied as follows: k = 0.0, 1.0, ..., 5.0; σ1 =
1.0, 2.0, ..., 5.0; σ2 = 0.0, 0.25, ..., 2.0 and N = 5, 7, 10, 14, 20, 28, 40, 56, 80.

We can use the diffusion equation 5.9 to relate the three filters to each other. If
C(x, y) is 1 for all x, y, the result of equation 5.9 reduces to a Gaussian with a σ
of

√
t, or in formula

I(t) = G(σ =
√

t) ∗ I(0) (5.15)

The actual smoothing is done by adding a Laplacian. This suppresses edge infor-
mation. If we use one step backwards diffusion (that is, t < 0), we obtain

I(∆t) = I(0) +
1

2
∇2I∆t

∆t=−2k
= I(0) − k∇2I (5.16)

4It can sharpen edges due to the smoothing of the regions that meet at an edge, but does so without
overshoot. Incidentally, this is what the Kuwahara filter does. Unfortunately, the Kuwahara effect is so
“heavy-handed” that it is not possible to find subtle distinctions over images over an allowed range of
window sizes (5, 9, 13, ...)
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Figure 5.3: Sharpening/smoothing values for a number of different filters on the portrait
image. Definitions of the Gaussian filter fG, the unsharp masking filter fU and the
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for N is 5. Note that for the anisotropic diffusion filter only a small subset of the filters is
given, because σ1 and σ2 are constant. The points with the same k setting are connected
by a line.

which is the same as equation 5.8 without Gσ. To be able to compare the different
filters, we should use stepsizes in which σ2/2 ∼ −k.

Figure 5.3 shows an example of how various filtered versions of an image end up in
the sharpening-smoothing space. In appendix B transfer functions of most of these
filters are given.
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5.5 Experiments

5.5.1 Experimental Setup

The experimental images were made from the two images shown in figure 5.2. They
are ISO standard images taken from the CD-ROM 12640:1997 and are originally
300 dpi, in CMYK format. The images were first converted to RGB, using Adobe
PhotoShop. Next, the images were converted to 32-bit grey scale floating point
images. Following ITU [Bourgin, 1998], the luminance Y was defined as: Y =
0.222R+0.707G+0.071B. To reduce the amount of computation time needed, the
images were reduced to 3

8 of their original size in both the x and y direction, by
pre-smoothing with a Gaussian (σ = 2.4) and linearly interpolating.

For both images, the sharpened and/or smoothed versions (fG, fU and fA) were
calculated with the parameter settings described in section 5.4, resulting in a large
number of image points in sharpening-smoothing space. Finally, the images were
printed on a 600 dpi HP LaserJet 4000N. Print size was 12.8 × 16 cm; dithering
was done by the printer.

A room was used containing a special, somewhat tilted table on which the sub-
ject could sort the prints. The light source was a studio lamp, which provided
homogeneous, indirect lightning of the prints. The luminance on the table was
approximately 600 lux. The prints were put in plastic covers to prevent them from
becoming dirty. A window was cut in the center to see the image on the print
directly and not through plastic. Four subjects participated in the experiments, all
having some experience in the field of image analysis.

In the instruction to the subjects, sharpening was explained as the sharpening of
edges and smoothing as the smoothing of regions. Although this might introduce a
bias in the outcome of the experiments, it was deemed necessary since some of the
subjects had no clear concept of sharpening or smoothing.

5.5.2 Experiment A: stimulus response

The goal of this experiment was to see whether subjects could discriminate levels
of sharpening and smoothing as defined in the previous sections. The subjects were
given a range of prints and asked to rank order them by perceived sharpening or
smoothing.

From the two-dimensional feature space, one-dimensional ranges were drawn con-
taining images with constant smoothing or sharpening. Four different sharpenings
and smoothings were used: 0.0, 0.1, 0.3 and 0.5. These values were used for con-
structing series Smx (Shy), consisting of – at most – 8 images with fixed smoothing
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x (sharpening y). Sharpening (smoothing) was varied in steps of 0.1. The ranges
used are shown in figure 5.4.

Since the various grades in smoothing and sharpening had to be selected from a
limited sample (see figure 5.3) the specified values of 0.0 to 0.7 in general could only
be approximated. This was done by selecting the nearest value to the desired value.
As can be seen in table 5.1, however, the differences were always less than 0.05.
Some ranges consisted of less than 8 images, so for some desired grid locations no
nearby images could be found. Figure 5.4 shows an example of the resulting tiling.

5.5.3 Experiment B: preference

In the second experiment, subjective preference for a particular sharpening or
smoothing value was tested. The subject was given a range of prints, asked to
select three prints that she/he considered best and to order these three by quality.
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Table 5.1: The grid location and actual sharpening (Sh) and smoothing (Sm) values of
the image ranges used in experiment A. In the cases for which no image could be found
near the grid location, this is indicated by “-”. Ranges are indicated by what is constant
(Sh/Sm) and at what value.

Range(s) Grid portrait bicycle

Sh Sm Sh Sm Sh Sm
Sh0.0, Sm0.0 0.00 0.00 0.00 0.00 0.00 0.00
Sh0.0, Sm0.1 0.00 0.10 0.00 0.10 0.00 0.10
Sh0.0, 0.00 0.20 0.00 0.21 0.01 0.21
Sh0.0, Sm0.3 0.00 0.30 0.01 0.30 0.01 0.31
Sh0.0, 0.00 0.40 0.01 0.39 0.01 0.38
Sh0.0, Sm0.5 0.00 0.50 0.01 0.52 0.02 0.51
Sh0.0, 0.00 0.60 0.02 0.60 0.01 0.62
Sh0.0, 0.00 0.70 0.02 0.70 0.04 0.69
Sh0.1, Sm0.0 0.10 0.00 0.09 0.04 0.08 0.04
Sh0.1, Sm0.1 0.10 0.10 0.12 0.10 0.10 0.09
Sh0.1, 0.10 0.20 0.10 0.20 0.10 0.20
Sh0.1, Sm0.3 0.10 0.30 0.11 0.29 0.10 0.30
Sh0.1, 0.10 0.40 0.09 0.41 0.10 0.39
Sh0.1, Sm0.5 0.10 0.50 0.09 0.49 0.09 0.50
Sh0.1, 0.10 0.60 0.10 0.60 0.09 0.61
Sh0.1, 0.10 0.70 0.10 0.69 0.10 0.69

Sm0.0 0.20 0.00 0.21 0.05 0.23 0.04
Sm0.1 0.20 0.10 0.21 0.11 0.20 0.10
Sm0.3 0.20 0.30 0.20 0.31 0.20 0.30
Sm0.5 0.20 0.50 0.21 0.50 0.19 0.50

Sh0.3, Sm0.0 0.30 0.00 0.27 0.02 0.30 0.04
Sh0.3, Sm0.1 0.30 0.10 0.31 0.12 0.30 0.10
Sh0.3, 0.30 0.20 0.30 0.19 0.30 0.18
Sh0.3, Sm0.1 0.30 0.30 0.29 0.30 0.29 0.30
Sh0.3, 0.30 0.40 0.31 0.40 0.28 0.41
Sh0.3, Sm0.1 0.30 0.50 0.30 0.49 0.28 0.51
Sh0.3, 0.30 0.60 0.31 0.60 0.34 0.59
Sh0.3, 0.30 0.70 0.25 0.69 0.33 0.73

Sm0.0 0.40 0.00 - - 0.39 0.05
Sm0.1 0.40 0.10 0.40 0.10 0.40 0.09
Sm0.3 0.40 0.30 0.42 0.29 0.41 0.31
Sm0.5 0.40 0.50 0.41 0.49 0.40 0.50

Sh0.5, Sm0.0 0.50 0.00 0.52 0.04 0.5 0.04
Sh0.5, Sm0.1 0.50 0.10 0.49 0.11 0.50 0.10
Sh0.5, 0.50 0.20 0.49 0.19 0.49 0.19
Sh0.5, Sm0.3 0.50 0.30 0.48 0.33 0.50 0.29
Sh0.5, 0.50 0.40 0.49 0.40 0.50 0.41
Sh0.5, Sm0.5 0.50 0.50 0.49 0.40 0.48 0.48
Sh0.5, 0.50 0.70 - - 0.50 0.68

Sm0.0 0.60 0.00 0.56 0.03 0.59 0.03
Sm0.1 0.60 0.10 0.61 0.10 0.60 0.09
Sm0.3 0.60 0.30 0.58 0.31 0.61 0.30
Sm0.5 0.60 0.50 0.52 0.50 - -
Sm0.0 0.70 0.00 - - 0.71 0.03
Sm0.1 0.70 0.10 0.70 0.11 0.71 0.10
Sm0.3 0.70 0.30 0.70 0.29 0.69 0.27
Sm0.0 0.80 0.00 0.81 0.04 - -
Sm0.0 0.90 0.00 0.86 0.03 - -

All ranges used in experiment A were also used in this experiment. In addition,
an extra range was used in which both sharpening and smoothing were varied be-
tween 0.0 and 0.2, in steps of 0.1. Except for this last two-dimensional range,
the prints were already ordered by either sharpening or smoothing in order to not
unnecessarily complicate the preference experiment for the subjects.



96 Relative Sharpness and Smoothness

5.6 Results of sharpening and smoothing experiments

5.6.1 Experiment A: stimulus response

The results for the 16 ranges used in experiment A are given in figure 5.5 and 5.6.
For some ranges it can be seen that subjects are quite capable of ordering the prints,
for instance in the portrait, Sm0.5 range only 3 wrong orderings (orderings that
are not consistent with the smoothing parameter) are made. For other ranges the
subjects are much less capable of ordering the prints; for instance in the bicycle,
Sm0.5 range (too) many wrong orderings are made.

The correlation between the defined sharpening and smoothing measures on the one
hand and the perceived sharpening and smoothing on the other, is measured with
the Spearman rank-order correlation coefficient rs [Siegel and Castellan, 1988]. The
H0 hypothesis tested is that there is no association between the perceived sharp-
ening/smoothing and the sharpening/smoothing measure (see section 4.4 for more
details). If H0 can be rejected, we find the proposed measures to be perceptually
relevant for sharpening and smoothing.

For Nstimuli = 8, with an error of 5%, the critical value above which the two-tailed
H0 hypothesis can be rejected is 0.736 (for N = 7stimuli this value is 0.786; for
Nstimuli = 6, 0.886).

The rank-order coefficients for each subject are given in table 5.2.

It can be seen that for most subjects and ranges the null hypothesis can be rejected.
So, the correlation reflects a “true” relationship between perceived and physical
rank order.

The ranges for which the null hypothesis cannot be rejected are:

• Subject 3 and 4, portrait, Sm0.1: we suspect that this is simply due to
chance.

• Subject 1, bicycle, Sh0.5: since bicycle is an artificial mix of many different
images, with different scales of detail, we suspected subjects to base their
judgements on different parts of the image.

To verify this, sharpening and smoothing values of parts of the two images
(shown in figure 5.2 (c) and (d)) were calculated. The parts were selected
manually, in such a way that all parts of the images subjects claimed to have
looked at were represented. When correlating the sharpening and smoothing
values of the parts with the results for subject 1, it is clear that for the parts
fruit and lobster H0 can be rejected. After the experiments, the subject
stated that he had looked mostly at the (fruit), lobster and clock image
parts. The conclusion is that the large variations in the sharpening and
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Figure 5.5: The results of the ordering for different smoothing levels (constant smoothing,
varying sharpening). It can be seen that, for the Sm0.5 range, ordering the images in the
same order as given by the sharpening measure is less demanding for the portrait (left)
than for the bicycle (right) image.
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Figure 5.6: The results of the ordering for different sharpening levels (constant sharpening,
varying smoothing).

smoothing values of these parts of the images are the reason for the results of
subject 1 in this range.
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Table 5.2: The Spearman rank-order coefficients for the ranges used in experiment A,
per subject. For the values printed in italic, the null hypothesis cannot be rejected; that
is, in these cases perceived sharpening and smoothing are uncorrelated with the physical
measures. CV stands for critical value. Note that subject 4 did not participate in the
bicycle experiment.

Subject
Range 1 2 3 4 Avg. Nstimuli CV
Sh0.0 0.98 1.00 0.95 0.81 0.98 8 0.74
Sh0.1 0.96 1.00 0.91 0.98 1.00 8 0.74
Sh0.3 0.88 0.91 1.00 0.91 1.00 8 0.74
Sh0.5 0.89 0.94 0.94 0.94 0.93 6 0.89
Sm0.0 0.98 0.98 0.88 0.91 0.95 8 0.74
Sm0.1 1.00 0.98 0.69 0.17 0.90 8 0.74
Sm0.3 1.00 0.98 0.76 0.98 0.96 8 0.74
Sm0.5 1.00 0.97 0.92 1.00 0.99 7 0.79

(a) portrait

Subject
Range 1 2 3 Avg. Nstimuli CV
Sh0.0 0.98 0.83 0.93 0.97 8 0.74
Sh0.1 0.98 0.95 0.98 0.98 8 0.74
Sh0.3 0.93 1.00 0.95 0.99 8 0.74
Sh0.5 0.69 0.88 0.91 0.93 8 0.74
Sm0.0 0.95 0.88 0.83 0.96 8 0.74
Sm0.1 0.98 0.93 0.91 0.98 8 0.74
Sm0.3 0.43 0.98 0.79 0.78 8 0.74
Sm0.5 0.61 0.93 0.25 0.98 7 0.79

(b) bicycle

• Subjects 1 and 3, bicycle, Sm0.3 and Sm0.5: in highly smoothed images,
the effect of the sharpening operation is only preserved for large-scale, high
edges. Small details and less prominent edges are smoothed away. While
subjects tend to place emphasis on this loss of detail, the proposed sharpening
measure is not heavily influenced by it. This would also explain why the
portrait ranges do not show these deviations: there is far less detail present
in this image, all important edges present are on more or less the same scale.

As shown in figure 5.5, subjects had much more difficulty in ordering the bicycle

image than in performing the same task on the portrait image for some ranges. As
was discussed above, this is likely due to the diverse content of the former image. A
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second general conclusion is that different levels of smoothing seem to be more easily
discriminated than levels of sharpening, because less ordering errors are made.

5.6.2 Experiment B: preference

In this second experiment, subjects were asked to give a first, second and third
preference per range. These preferences were averaged with a certain weight: the
first preference had a weight of 4, the second of 2 and the third of 1. The results
are shown in figure 5.7.

The two left images (figures 5.7 (a) and (c)) show that, for smoothed images,
subjects tend to prefer high sharpening to compensate for the smoothing away
of the edges. The effect of smoothing away of the smaller edges can be seen in
figure 5.8 and figure 5.9. In these figures the effect of different sharpening and
smoothing values on small parts of the bicycle image is shown. The original subpart
is shown in the bottom left of the figure. Both subparts contain lines and edges of
different sizes. It can be seen that for high smoothing, the texture of the pineapple
is smoothed. The dark dots and the contour of the pineapple are still sharp for a
high sharpening. The same effect can be seen in the plant subpart. The leaves are
sharp for all sharpening and smoothing values, but the texture on the leaves is not
visible anymore for higher smoothing values. Clearly, edges play an important
role in subject appreciation of an image. For portrait, however, the leftmost value,
indicating a preference for high sharpening at low smoothing, is hard to explain.

The ranges in which subjects were asked for smoothing preference, figures 5.7 (b)
and (d), show that subjects prefer sharpening rather than smoothing. For highly
sharpened images, some smoothing is preferred to reduce the artifacts introduced
by the sharpening operation.

These conclusions are corroborated by the results for the two-dimensional range,
given in table 5.3.

Subjects seem to prefer a little bit of smoothing and quite a bit of sharpening.
Apparently, the original is not the best image.

5.7 Conclusions

The two new measures for the amount of sharpening and smoothing introduced
here, seem to correlate reasonably well with human perception.

Problems arise for images in which parts of the image require different sharpening
and/or smoothing values, as is the case for the complex bicycle image. Subjects
tend to look at different parts and combine their judgement into an overall decision.
One possible future approach is to find these different image parts (possibly by using
the measures themselves) and treat them separately.
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(a) portrait sharpening preference
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(b) portrait smoothing preference
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(c) bicycle sharpening preference
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(d) bicycle smoothing preference

Figure 5.7: Results of the preference experiment B. For this set of images it appears that
subjects prefer quite a bit of sharpening.

Our experiments have also showed that subjects tend to have much less problems
in discerning various levels of smoothing than they have with levels of sharpening.
This indicates that the two measures proposed are not equivalently spaced: the
just noticeable difference of the smoothing measure is smaller than that of the
sharpening measure.

The results of the preference experiment look promising. One can say that subjects
prefer images in which the smoothing is low and the sharpening is high. However,
this may not be the case for noisy images, in which a certain amount of smoothing
will likely be appreciated.
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Figure 5.8: The effect of different sharpening and smoothing values for pineapple. This
image is a part of the bicycle image.
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Figure 5.9: The effect of different sharpening and smoothing values for plant. This image
is a part of the bicycle image.
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Table 5.3: Results of sharpening (Sh) and smoothing (Sm) of the preference experiment
B for the two- dimensional range. Note that subject 4 did not participate in the bicycle

experiment.

Subject
Pref. 1 2 3 4 Avg.

Sh Sm Sh Sm Sh Sm Sh Sm Sh Sm
1st 0.2 0.1 0.2 0.0 0.2 0.0 0.2 0.2 0.20 0.08

2nd 0.2 0.0 0.2 0.1 0.2 0.1 0.2 0.0 0.20 0.05

3rd 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.10 0.13

(a) portrait

Subject
Pref. 1 2 3 Avg.

Sh Sm Sh Sm Sh Sm Sh Sm
1st 0.1 0.0 0.2 0.0 0.2 0.0 0.17 0.00

2nd 0.2 0.0 0.1 0.0 0.1 0.0 0.13 0.00

3rd 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00

(b) bicycle



Chapter 6

An objective measure for absolute
sharpness

In the previous chapter we have discussed the effect of sharpening of an image. This
measure is relative to the original image. But humans can tell whether one single
image is sharp or not, indicating that sharpness is a property of one single image.

In this chapter, we will propose and discuss a new measure for the sharpness of
natural (complex) images.

In the sharpening experiment it was already shown that images can be seen as a
collection of areas that are more or less uniform, separated by lines and edges. We
assume that perceptual sharpness is correlated to the sharpness of (some of) these
lines and edges. In between these are textures.

To determine the sharpness we need to determine the location and orientation of the
lines and edges (together called transients) so that we can perform measurements
on their profile. To describe the sharpness of a profile we need a model. We use
a Gaussian profile for the line and an integrated Gaussian (error function) for the
edge, which can be characterized by its width (σ).

We computed Gaussian derivatives at several scales to obtain a response function
or signature. At a transient, the response function can be predicted given the width
and the amplitude of the line or edge. Conversely, we can estimate the width and
amplitude of the line or edge from the measured response function.

The measured widths of all points have to be combined to provide one or more
measures of sharpness. An obvious measure is the median width in the image.
Because some estimated widths can be very large, we do not use the mean width.
Another measure that can be used is the fraction of pixels for which the width is
smaller than a certain value. This gives some insight into the number of sharp lines
and edges in the image.

105
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φφ
φ φ

Figure 6.1: The definition of orientation φ for an edge (left) and a line (right)

Kayargadde [Kayargadde, 1995] proposed a similar measure for the perceptual sharp-
ness of images. He used a polynomial transform (Hermite transform), to detect and
estimate edge parameters, such as position, orientation, amplitude, mean value and
width. Our methods is different from his on three points. The first is that we
detect lines and edges and determine the width of both of them. The second dif-
ference is that we perform a numerical estimation of the amplitude and width,
whereas Kayargadde derived an analytical relationship. And the last difference is
that we estimate the orientation of the structures in the localization phase, where
Kayargadde determines the orientation in the estimation phase.

6.1 Line and edge detection

Before we can determine the sharpness of individual transients, we must extract
them from the image. For each transient we must also establish whether it is a line
or an edge, and its orientation φ, as defined in figure 6.1. Since we must deal with
both lines and edges, it is logical to use a filter bank based on quadrature filters
(e.g. [Knutsson and Granlund, 1983]). A quadrature filter is a linear, complex-
valued filter. The real and imaginary part act as line and edge filters, respectively.
The magnitude of the response is phase-invariant, i.e. insensitive to whether the
transient is a line or an edge. This is important when we discuss the suppression
of spurious responses below.

The quadrature filter is sensitive to edges and lines under a limited range of orienta-
tions. To obtain the response under an arbitrary angle we use a steerable quadrature
filter [Freeman and Adelson, 1991]: the response can be computed from the filter
response under a finite set of angles. The details of the quadrature filter we use
can be found in [van Ginkel, 2002]. The filter’s characteristic frequency (fc), the
range of frequencies it is sensitive to (bf ), and the orientation selectivity (sa) can be
independently tuned. Our supposition is that perceptual sharpness relates to the
sharpest line or edge in the image. This supposition only holds for natural images.
We have tuned the filter in such a way that it will detect small-scale lines and edges
(fc, bf ) = (0.16, 0.16). The orientation selectivity sa = 0.185 [van Ginkel, 2002]
was chosen as a trade-off between orientation selectivity, signal-to-noise ratio and
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Figure 6.2: The total quadrature filter response q, the quadrature filter response for the
line component ql and the quadrature filter response for the edge component qe. The input
is a line (left) and an edge (right).

localization of the filter response. To properly span the entire range of orientations,
given this selectivity, 17 filters are required. Angular differences, with respect to a
FWHM criterion, up to 3.33sa can be distinguished, which in this case corresponds
to about 35o.

The last step is to determine whether a detected transient is an edge or a line, and
to suppress spurious responses. To see why these occur, imagine a line. The line
detector responds as it should, but the edge detector will also respond. It responds
to the flanks of the line, although less strongly than the line detector. This is
illustrated in figure 6.2. We resolve this problem by suppressing (inhibiting) the
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secondary responses. The final line response lline is given by

lline(x, y) =

{
0 if ql(x, y) < maxN(x,y) qe(x, y)

ql(x, y) elsewhere
, (6.1)

where ql and qe are the quadrature filter result for the line and edge component,

respectively. The total quadrature filter result, q is given by q =
√

q2
l + q2

e . N(x, y)

is a neighbourhood around (x, y). The size of the neighbourhood must be roughly
equal to the width of the response lobes. By swapping the roles of ql and qe the
same technique can be used to obtain the final edge response. Points for which
the quadrature filter is larger in a different orientation are discarded. The result
of the different line and edge detection steps for the input image trui are given in
figure 6.3.

6.2 Line and edge characterization

In this section we explain how we can determine the amplitude and width of Gaus-
sian lines in images. We assume that the noise level is low: there is no point in
measuring a subtle feature like sharpness if the image is heavily distorted by noise.
The method we use is a variant of Mallat’s approach [Mallat and Hwang, 1992],
using Gaussian derivatives rather than wavelets [van Asselt, 1997]. The idea is to
compute the response of the Gaussian derivative operator, applied across the tran-
sient, while varying the scale of the Gaussian. The response depends on both the
scale of the Gaussian and that of the transient. Since we know the former, we may
estimate the latter.

It is convenient to adapt a local coordinate system (v, w) at each point (x0, y0) that
is aligned with the orientation φ at that point:(

v
w

)
=

(
cosφ sin φ

− sinφ cos φ

)(
x − x0
y − y0

)
. (6.2)

The singularity functions of an infinitely long line and edge are given by

hline = A δ(v) = A δ
(
(x − x0) cos(φ) + (y − y0) sin(φ)

)
hedge = A u(v) = A u

(
(x − x0) cos(φ) + (y − y0) sin(φ)

) (6.3)

where A is the amplitude of the transient, φ the angle of the transient with respect
to the x-axis, δ(x) the Dirac delta function and u(x) the Heaviside step function.
Real transients have a finite width. We model this by convolving these functions
with a Gaussian with σl/e. The width σ1/e reflects the sharpness of the transient.

To find an estimate for the width σl/e and amplitude A of the lines and edges,
we construct a response function in the following way: we convolve the input
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(a) the input image

(b) quadrature (c) uncorrected line
response

(d) uncorrected edge
response

(e) lines and edges (f) found lines (g) found edges

Figure 6.3: The line and edge detection steps. In (a) the original image is given, in (b)
the response of the quadrature filter, in (c) and (d) the responses of the line and edge
component filters, respectively. In (e) the final line and edge responses are given. Line
responses are visualized in grey, edge responses in black. In (f) and (g) the final line and
edge responses are given in separate images.

image with directional Gaussian derivatives along φ, sampling the scale axis ex-
ponentially: σ = bi (b > 1) with integer i. The Gaussian regularization has, in
general, the effect that the response decreases as a function of scale, as noted by
Lindeberg [Lindeberg, 1993]. We follow [Lindeberg, 1993] in using normalized, or
scale-independent, Gaussian derivatives. This results in more pronounced response
curves. The normalization consists of multiplying the response with σ.
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The response curve at (x0, y0) is described by

r(σ) = σ
∂gσ(v, w)

∂v
∗ (h(v, w) ∗ gσl/e

(v, w)
)
. (6.4)

Using the commutativity of the convolution operator we obtain

r(σ) = σ
∂

∂v

(
h(v, w) ∗ gs(v, w)

)
(6.5)

with s =
√

σ2
l/e + σ2. In what follows we consider the modulus of the response

M(σ) = |r(σ)|. The expression for M for a line and edge respectively is given by
the following two equations:

Mline(σ) = |Aσ
∂

∂v
gs(v)| =

|A|σ√
2πs3

|v| exp(− v2

2s2 )

Medge(σ) =
|A|σ√
2πs

exp(− v2

2s2 )

. (6.6)

The modulus maxima per scale are given by

max Mline(σ) =
|A|σ√
2πes2

at v = s

max Medge(σ) =
|A|σ√
2πs

at v = 0.

(6.7)

The modulus maxima for lines and edges with different widths are given in fig-
ure 6.4. These responses are the theoretical responses of lines and edges. We find
the widths of the lines and edges in the image by fitting the measured responses to
the theoretical responses.

The selection of the modulus maximum for an edge is straightforward: the position
of the maximum is the same as the position of the point itself. For the lines this
is different, the maxima are shifted over s. To find these maxima we search for a
maximum in an appropriately sized neighbourhood.

The minimalization can be done by some numerical minimization method; the
Levenberg-Marquardt method. We start with the maximum for σ = b0 and use 8
scales. b is chosen 21/3, i.e. three samples per octave.

6.3 Sharpness and sampling matters

Natural images as used in the experiment are recorded by an optical system. The
best optical system is a diffraction-limited optical system. In such a system the
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Figure 6.4: The modulus maxima of the response for a line (a) and an edge (b) for different
scales i and different values of the width of the transient σl/e. The amplitude of the input
transient is 1. The width of the Gaussian derivative is 2i/3 (b = 21/3).

amplitudes are low-pass filtered in the Fourier domain (pill box). Because intensities
are measured instead of amplitudes, the optical transfer function (OTF) is a pill
box convolved with a pill box, or, in formula

G(f) = u(f2
c − f2) ∗ u(f2

c − f2) (6.8)

where fc is the cut-off frequency. This formula can be rewritten as

G(f) =
2

π


arccos

(
f

fc

)
− f

fc

√
1 −

(
f

fc

)2

 (6.9)

An image is properly sampled if the Nyquist criterion is met, that is the sample
frequency is twice the smallest frequency found in the image. A good approximation
for the OTF, if the image is sampled according to the Nyquist criterion, is the
Fourier transform of a Gaussian with width 0.9 [van Vliet, 1993]. In our sharpness
estimation, ideal lines and edges recorded with such a system should have a width
of 0.9. If the lines are blurred, the widths found should be even larger. However,
in all tested original (not filtered) images we found widths smaller than 0.9. These
smaller widths are found for real lines and edges, as shown in figure 6.5.

We tested two different hypotheses for these smaller widths:

• The smaller widths are found because approximation of the Gaussian for the
OTF is not correct, especially for high frequencies.

• The smaller widths are found because the images are not properly sampled.

The first possible explanation is tested by making OTF-limited lines and edges,
instead of Gaussian lines and edges. The width and amplitude of these OTF-
limited lines and edges are estimated with the Gaussian derivative method also
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Figure 6.5: Example of an edge with width smaller than 0.9. The original edge is taken
from trui. The width of the fitted edge is 0.63. It can be seen that this edge is a better fit
to the original edge than the edge with width 0.9.
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Figure 6.6: the fitted results for a line (left) and an edge (right) for OTF limited lines
and edges. The input line and edge are a delta and step function that are convolved with
the PSF of an optical system. The fitted lines are Gaussian fits, for the line the amplitude
and width are 0.91 and 0.95, respectively, for the edge the amplitude and width are 0.97,
1.01, respectively.

used before. The results are given in figure 6.6. The found width for the line and
edge are 1.11 and 0.95, respectively. From this simulation we can conclude that the
fact that the Gaussian is not the exact OTF is not the reason that these smaller
widths are measured.

The second possible explanation is that the image is not properly sampled according
to Nyquist. This is tested by estimating the amplitude and width of undersampled
lines and edges. These lines and edges are constructed by resampling a correctly
sampled line or edge with width and amplitude 1. The undersampling is done
with bilinear interpolation. The results are shown in figure 6.7. It can be seen
that widths smaller than 0.9 are possible with undersampling. Note the different
behaviour of the amplitude for the line and the edge. From these images we can
conclude that the smaller widths can occur due to undersampling.
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Figure 6.7: Estimation of the widths (left) and amplitudes (right) of undersampled lines
and edges. The input line and edge have an amplitude and width of 1. It can be seen that
for undersampled images, the estimated widths can be smaller than 0.9.
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Figure 6.8: The results for estimating the widths of asymmetric lines. The left part of
the line is a normal line width a fixed width. This width is 0.5 for the left image and 1.0
for the right image. The right part of the line is a normal line with an increasing width.

6.4 Tests on asymmetric lines

We tested how the sharpness measures react on asymmetric lines, that are lines
which have a certain width on one side and another width on the other. The test
images are constructed from two normal lines. The estimated widths are shown in
figure 6.8. It is shown that the estimated width increases, as could be expected,
and then suddenly falls back to about 0.5. This behaviour can be explained by
examining the results somewhat closer. For lines which have a small width on one
side and a large width on the other, the transient that is found in the localization
procedure is not a line but an edge. In figure 6.9 some examples are shown for
fitted lines and edges. It can be seen that the fit is rather good for lines that are
quite different from the model used. Transient type switches from a line to an edge
if the line response is smaller than the edge response. However, this evaluation is
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Figure 6.9: Examples of fitted asymmetric lines.

done at the pixel position with the largest total response. For the small line, the
total response is largest for the transient position. This is shown in figure 6.10 (b).
For widths larger than approximately three, the edge response at the transient
position is larger than the line response, so the transient type becomes an edge.
The response found is shown in figure 6.10 (a).

For the large line, the position of the largest response shifts from the gradient
position to its neighbor, shown in figure 6.10 (d). At this neighboring position, the
edge response is larger than the line response (shown in 6.10 (c)), which causes that
the transient type to be interpreted is an edge.

6.5 Sharpness measures

The final step in defining a sharpness criterion is to obtain one or a few sharpness
measures using the widths. We define and evaluate two sharpness measures. The
first measure we looked into is the fraction of transient points with a width smaller
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Figure 6.10: The quantities from which the transient type is determined. The line is
localized at gradient position t. In (a) and (c) the arctan of the edge response and the
line response is shown. If this value is larger than π/4, the transient type is an line. If
it is smaller, the transient type is an edge. In (b) and (d) the total responses for the line
position t and the neighboring position t− 1 are shown. For the small line (b) the response
for the line position is always larger. For the large line (d) the response for t is smaller than
the response for t − 1 for large widths.

than 2. This is a very intuitive measure, just the number of points with a small
width. We call this measure A. The second measure is the median of the widths.
Ideally, we would want to use the smallest width, or a small percentile. However, due
to sharpening this value is often close to zero, so that there cannot be any difference
between sharpened images. Therefore, we use median (the 50th percentile) of the
width as an estimate for the average width. We call this measure B. The mean is
not used because this measure is sensitive to highly overestimated widths.
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(a) trui (b) erika (c) cameron (d) lenna

Figure 6.11: The test images.
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Figure 6.12: Computed sharpness measures, respectively based on measure A: the fraction
of transient points with a width smaller than 2 (a) and measure B: the median of the width
(b). In (a) the values are positively correlated with the sharpness of the image, in (b) the
values are negatively correlated with the sharpness of the image.

6.6 Tests of the sharpness measures

We tested the two proposed sharpness measures for four different test images. These
images are given in figure 6.11. The images were manipulated in two ways. The first
manipulation is a Gaussian blurring with σ2/2 = {0.5, 1.0, 1.5...3.0}. The second
is unsharp masking with σ = 1.0 and k is {0.5, 1.0, 1.5...3.0}. These filters are
discussed in section 5.4 on page 89. In the results we plot these two manipulations
in one plot by putting the original in the middle (denoted by the dotted line), with
the blurring to the left and the sharpening to the right. The spacing to the left is
−σ2/2, the spacing to the right is k.

The results for the two sharpness measures are given in figure 6.12. We expect
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the result of measure A (the fraction of pixels with a width smaller than two) to
decrease for a larger blurring, and the result of measure B (the median) to increase
for a larger blurring. It can be seen that this is indeed the case. This means that
both measures can be used as a measure for the difference in sharpness between
images. However, the question is whether this also applies to the perceived sharpness
of the images. We investigated this by performing a small pairwise-comparison
experiment, comparing the sharpness of the original images with respect to each
other. The images were printed on plain paper. The size of the images was 6 cm
by 6 cm. Six subjects compared all pairs, six subjects only the pairs without lenna.
It was found that cameron is rated as the sharpest image, closely followed by lenna.
The least sharp image is trui. Note that this result may depend on the size of the
image.

If the measures are absolute sharpness measures, this order should also be found
for the computed sharpness measures. According to both measures, trui is indeed
the most unsharp image. The ordering of the other three images is not the same
as that found for the pairwise comparison experiment, but these values are not
significantly different in the first place. We conclude that both measures may
possibly be used for both relative and absolute measures of sharpness, that is, with
and without some reference image.

6.7 Results of perceptual experiments

In the sharpening experiments, discussed in chapter 5, we asked subjects to order
a range of images that were sharpened with unsharp masking, and subsequently
smoothed with anisotropic diffusion [Perona et al., 1994, Catté et al., 1992].

Two standard ISO images (CD-ROM 12640:1997) were used in the experiment,
bicycle and portrait (figure 6.13).

The correlation between the perceived sharpness on the one hand and the com-
puted sharpness measures on the other, is measured with the Spearman rank-order
correlation coefficient rs [Siegel and Castellan, 1988]. The null hypothesis is that
there is no relation between the two rankings. The rank-order coefficients for the
different subjects and ranges are given in table 6.1.

Table 6.1 shows that the null hypothesis can be rejected for many ranges (see bold
numbers). The null hypothesis can be rejected for all ranges with no smoothing.
So, there is a correlation between computed and perceptual sharpening. It can
also be seen that the two different computational measures do not perform equally
well: measure B results in more cases where the correlation does hold. The ranges
for which the sharpening measure in the previous chapter is not significant are also
not significant for the new sharpness measure. We argued that one range was not
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(a) portrait (b) bicycle

Figure 6.13: The test images for the perceptual experiments..

significant due to coincidence, the other two would not be significant due to the
effect of the large smoothing. If this is the case, the supposition that perceptual
sharpness depends on the sharpest line or edge in the image is not true for images
that are filtered with an anisotropic diffusion filter. Maybe the sharpness of the
visual system does not depend on the sharpest line or edge in the image, but on
the sharpness of certain structures from which we know that they are sharp, such
as eye lashes and hair. As eye lashes have a different orientation at a smaller scale
than the main orientation of the eye, they may be smoothed by the anisotropic
diffusion filter, introducing an unsharpness. This can also be the explanation for
the other not-significant ranges. Another explanation is that the assumption for
Gaussian lines and edges cannot be used for images filtered with anisotropic filters.
By applying a small Gaussian smoothing the profile of the lines and edges will
become more Gaussian.

For measure A (fraction of points) also many ranges are significant, indicating this
measure may be used as an estimate for sharpening. However, compared to measure
B, more ranges are not significant.

The conclusion is that both objective measures are in agreement with perceptual
relative sharpness for images that are not heavily smoothed, but measure B performs
slightly better than measure A.
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Table 6.1: The Spearman rank-order coefficients per subject. For the values printed in
italic, the null hypothesis cannot be rejected; that is, in these cases the perceived sharpness
is independent of the measures. CV stands for critical value. N is the number of images in
the range. Note that subject 4 did not participate in the bicycle experiment.

Subject
Range 1 2 3 4 N CV

Sm0.0 0.88 0.88 0.79 0.81 8 0.74
Sm0.1 0.83 0.79 0.48 0.12 8 0.74
Sm0.3 0.74 0.76 0.64 0.76 8 0.74
Sm0.5 0.88 0.84 0.80 0.88 7 0.79

(a) portrait measure A (fraction of transient points)

Subject
Range 1 2 3 N CV

Sm0.0 0.79 0.79 0.79 8 0.74
Sm0.1 0.69 0.86 0.64 8 0.74
Sm0.3 0.09 0.76 0.35 8 0.74
Sm0.5 0.45 0.73 0.02 7 0.79

(b) bicycle measure A (fraction of transient
points)

Subject
Range 1 2 3 4 N CV
Sm0.0 0.95 0.95 0.86 0.88 8 0.74
Sm0.1 0.95 0.90 0.71 -0.14 8 0.74
Sm0.3 0.83 0.81 0.40 0.81 8 0.74
Sm0.5 1.00 0.96 0.93 1.00 7 0.79

(c) portrait measure B (median)

Subject
Range 1 2 3 N CV
Sm0.0 0.98 0.81 0.86 8 0.74
Sm0.1 0.81 0.69 0.86 8 0.74
Sm0.3 0.36 0.78 0.62 8 0.74
Sm0.5 0.54 0.86 0.14 7 0.79

(d) bicycle measure B (median)

6.8 Conclusions and discussion

We have found that we can measure the sharpness of simple line and edge images.
We first locate these lines and edges in the image. Then we determine the sharpness
of these lines and edges by fitting a Gaussian line or edge profile to the Gaussian
derivative signature.

We have defined two measures: measure A is the fraction of transient points with
a width smaller than 2. This is a very intuitive measure, just the number of points
with a small width. Measure B is the median of the widths of the transient points.
We found that both measures correlate to perceptual sharpness.

The two measures were tested in perceptual experiments. It was found that mea-
sure B yields results that correspond slightly better to perceptual sharpening than
measure A. But both measures can be used as a measure for sharpening for images
that are not heavily smoothed. Given the fact that the ranges with high smoothing
do not correspond very well to the measure, we will have to reconsider the supposi-
tion that an image is as sharp as the sharpest line or edge. In the previous chapter
we suggested that the problem of these ranges could be that the smaller edges are
removed from the image due to the anisotropic diffusion, and this indicates that
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more lines and edges than only the sharpest are important for the evaluation of an
image.

A topic for further research is to study the distribution of the widths and amplitudes
to see if other measures that correlate to the sharpness of images can be defined.
Another topic is the relation between the estimated width and lines and edges that
are not Gaussian lines and edges.



Chapter 7

Luminance gamma manipulation

7.1 Introduction

An important variable of natural images is contrast. For printed images, the max-
imum contrast range is determined by the white of the paper used and the darkest
color that can be printed. Not only the absolute range of contrast is important,
but also the number and discriminability of contrast steps within the range. These
variables can be altered by gamma manipulation, as is used in television and pho-
tography1. This manipulation is given by

Yout = k1Y
γ
in − k2, (7.1)

where Yin and Yout are the original and reproduced luminances, respectively. The
constants k1 and k2 are used for keeping the output range constant. If the minimum
luminance is zero and the maximum luminance is one, k1 is 1 and k2 = 0. The
exponent γ, gamma, which determines the compression or expansion of luminance
steps, is the parameter addressed in this chapter. This equation can be rewritten
as

Yout = min(Yin) + (max(Yin) − min(Yin))

(
Yin − min(Yin)

max(Yin) − min(Yin)

)γ

(7.2)

The relation between the input and output luminance is given in figure 7.1. In 7.1 a,
the simple case when the minimum luminance is zero and the maximum luminance
is one (no constants k1 and k2) is given. In 7.1 b the minimum and maximum
luminances are free.

Roufs [Roufs, 1989, Roufs et al., 1994, Roufs, 1992] investigated the effect of gamma
on perceptual image quality. The displaying devices were monitors [Roufs, 1989]

1In photography the gamma of the image can be changed by using different paper. “Hard” paper has a
high gamma and “soft” paper has a low gamma.
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Figure 7.1: Two versions of equation 7.2. In a) the maximum luminance is 1 and the
minimum luminance is 0. In b) the maximum luminance is 0.9 and the minimum luminance
is 0.2.

or slide projections[Roufs et al., 1994, Roufs, 1992]. Important conclusions from
these experiments were that differences between individual subjects are of minor
importance, but differences between test scenes may have a major influence on the
perceived image quality[Roufs, 1992]. This dependency on image content can also
be observed in the results of a study on the effect of surround (dark or light) on
perceived lightness contrast [Daniels et al., 1997].

In the experiments described in this chapter we investigated how gamma affects
the perception of color images. Thereto we varied the gamma of the luminance
distribution in the image, while keeping the color coordinates x and y of each point
constant. We also looked at differences between printed color images and black-
and-white images. These experiments are extensions of trial experiments exploring
black-and-white images [Dijk et al., 1999], and two color images [Dijk et al., 2000].

7.2 Method

7.2.1 Test material

The stimulus set consisted of five different images (figure 7.2). These images are
ISO standard images (from the cdrom ISO 12640:1997), portrait, cafe, basket,
bicycle and musicians. The 300 dpi versions of these images were used. Since we
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(a) portrait (b) cafe (c) bicycle

(d) basket (e) musicians

Figure 7.2: The five stimuli.

were interested in the role played by the image content, we chose test images that
were quite different in this respect.

These images are given in CMYK format. Although this is a device dependent
color space, we chose to use these images because they are used as standards in the
field of printing.

The images were converted from CMYK to XYZ using the methods described in
subsection 4.1.5. The white point of the resulting images was the white of the paper
used (EPSON photo quality ink jet paper).

Next we performed a chroma mapping (see section 4.3) over the whole image to
prevent too many colors from being out-of-gamut after the γ transformation. This
step has the effect of slightly desaturating the colors; that is, the chroma C∗ (in
CIELAB) of each point was replaced by 0.85 ∗ C. The effects of this saturation
with respect to the quality will be discussed in chapter 8.
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The luminance values corresponding with the various gamma values were calcu-
lated with equation 7.1. The maximum luminance was the luminance of the paper
(approximately 80% of the light was reflected) and the minimum luminance was
the luminance of the darkest black that could be printed (approximately 6-7% of
the light was reflected). This range control was achieved by using suitable values
of k1 and k2 in equation 7.1.

Just before the transformation from XYZ to CMY, an orthogonal gamut clipping
(see section 4.3) was done in which the few remaining colors that were out-of-gamut
(despite the earlier applied gamut mapping) were mapped onto the gamut. Note
that with this gamut mapping the hue of the point remains the same.

The images were converted from XYZ to CMY, again using the methods described
in subsection 4.1.5. The color images were sent to the printer (an EPSON Stylus
color 1520) as a postscript file with CMY values.

In addition to the color images we also made black-and-white images by trans-
forming Yout directly to K. The effect of the gamma manipulation is illustrated
in figure D.1. The input image is a part of the bicycle image. The images were
printed on EPSON photoquality paper. The size of the paper is A4 and the size of
the images 12.8 x 16 cm.

7.2.2 Experimental setup

Three experiments were performed, respectively on the stimulus response relation,
perceptual quality and perceptual naturalness:

Experiment A: Stimulus response relation The goal of the first experiment
was to determine the relation between the gamma of the stimulus and the
perceptual response of the subject. This was done with two different tasks:
rank ordering and bisection.

The subject first had to rank order images according to gamma, which, for
this type of stimuli, inherently implies ordering according to average lightness
(or luminance). Words to this effect were also used in the subject instruction.
The rank ordering provided information as to how well subjects are able to
discriminate between prints with different gamma settings.

For the bisection task the subject had to decide which print was reproduced
with a gamma exactly in between the ”lightest” print and the ”darkest” print.
Only one print could be chosen.

Five different ranges were used, see figure 7.3. Three ranges were presented,
in which gamma respectively varied from 0.6 to 1.7 (full range), 0.6 to 1.3 (low
range), 1.0 to 1.7 (high range) with equal steps of 0.1. We also presented two
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0.6 0.8 1.0 1.2 1.4 1.6 1.7γ

Full range

Low range
High range

Reference range 1

Reference range 2

Figure 7.3: The different ranges used in the experiment. Reference range 1 was used for
the portrait, cafe and bicycle image, reference range 2 was used for the basket and
musicians image.

reference ranges using unequal steps in gamma, to bias the average gamma
towards low values (reference range 1) or high values (reference range 2).
Reference range 1 was used for portrait, cafe and bicycle. This range has
small steps in the low gamma values (γ ∈ {0.6, 0.65, 0.7, 0.75, 0.8, 1.1, 1.4,
1.7}). Reference range 2 was used for basket and musicians. This range has
small steps in the high gamma values (γ ∈ {0.6, 0.9, 1.2, 1.5, 1.55, 1.6, 1.65,
1.7}). These reference ranges were used to test if people select the perceptual
or numerical center of the range. The ranges are visualized in figure 7.3.

Experiment B: Quality In this experiment, using the same ranges, the percep-
tual quality for a particular gamma was tested. The pictures were arranged
according to the subject’s own rank ordering in the stimulus response exper-
iment. The subjects had to order the prints according to quality. They were
instructed to select the print they would use to decorate the wall of their
living room, and then the second best, and so on.

Experiment C: Naturalness In the third experiment the subjective naturalness
of a print for a particular gamma was tested. The setup of the experiment
was the same as for the quality experiment, but now the subject was asked
to order the prints according to naturalness. They were instructed to select
the print they thought looked the most like the original scene. Note that the
subjects could not know how the original scene would actually look.

7.2.3 Viewing conditions

In the experiments the prints were viewed under homogeneous lighting in a Macbeth
SpectraLight II light booth. The luminance reflected from the print was maximally
450 cd/m2 (white paper). The color temperature of the illuminant was approx-
imately 6430 K. The prints were put into transparent plastic covers to prevent
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smudges. A window was cut in the center of these covers, to see the image on the
print directly and not through the plastic cover.

7.2.4 Subjects

Eight subjects took part in the experiments, all completely naive with respect
to image analysis. The subjects were undergraduate students, paid to do these
experiments. Three of the subjects were male and five female. They were 17 to 23
years old. The subjects had normal color vision and normal or corrected-to-normal
visual acuity.

7.3 Results

7.3.1 Experiment A: stimulus response relation

Rank ordering

In experiment A the rank ordering of the prints by the subjects was compared to
the ordering in physical gamma. The (average) ordering as function of the gamma
of the image is shown in figure 7.4 (for black-and-white pictures) and 7.5 (for color
pictures).

The results indicate that the subjects are quite capable of ranking the images
according to the physical γ values. In the full, low and high ranges some errors
(order reversals) were made (figure 7.5 a, b, and c and figure 7.4 a, b, and c). Some
of these errors reflect the limitations of the discriminability of the gamma steps.
We believe, however, that some of the errors are simply due to loss of attention
by the subjects, a problem also encountered in previous studies [Dijk et al., 1999,
Dijk et al., 2000], and a general problem in this type of experiment.

In the reference ranges (figure 7.5 d and e and figure 7.4 d and e), more errors
were made in the images in the part of the range where the step sizes were smaller,
probably because the differences between two consecutive images were smaller there
as well. Note that there is no indication that the biasing of the gamma range towards
low or high has not affected the rank ordering.

Bisection

The bisection results, averaged over subjects, are plotted for the black-and-white
images in figure 7.6, and for the color images in figure 7.7.
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Figure 7.4: The results of the mean rank ordering for the black-and-white stimuli. The
ordering averaged over the subjects is given as function of the ordering of gamma (from low
to high) of the image. Note that for the portrait, cafe, and bicycle image the reference
range (given in figure d) is a different selection of γ values steps than for the basket and
musicians image (figure e).

The reference range (either 1 or 2, depending on the image) was used to see if
subjects showed a consistent response for the perceptual center of the range, that
is, if the image that was in the center of the range depended only on the “lightest”
print and the darkest print, and not on the steps in gamma in the presented range
of images. One subject did not show this behaviour, for eight of the ten reference
ranges he chose the numerical center. Because this indicates that he was not able
to understand this experiment well, he was excluded from the results.

Figure 7.7 and 7.6 show that the results of most ranges are shifted towards the left
of the range. This would indicate that the stimulus response function is steeper on
the left side than on the right side of the range.

We tested this by looking at the bias, i.e. the deviation from the numerical center of
the range, and the error in this bias. The significance was tested with the Student’s
T test. The values are given in table 7.1. For some values, this shift is indeed
significant. Starting with the full range, the shift is significant for the color images
but not for the black-and-white images. The shift in the low range is not significant



128 Luminance gamma manipulation

0 2 4 6 8 10 12
0

2

4

6

8

10

12

γ ordering

m
ea

n 
su

bj
ec

t o
rd

er
in

g
portrait
cafe
basket
bicycle
musicians

(a) full range

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

γ ordering

m
ea

n 
su

bj
ec

t o
rd

er
in

g

portrait
cafe
basket
bicycle
musicians

(b) low range

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

γ ordering

m
ea

n 
su

bj
ec

t o
rd

er
in

g

portrait
cafe
basket
bicycle
musicians

(c) high range

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
portrait
cafe
bicycle

(d) reference range 1

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

γ ordering

m
ea

n 
su

bj
ec

t o
rd

er
in

g
basket
musicians

(e) reference range 2

Figure 7.5: The same experimental results as shown in figure 7.4, but now for the color
stimuli.
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Figure 7.6: The results of the bisection experiment (A), averaged over subjects for the
black-and-white images. The horizontal arrows delineate the range of γ that is presented.
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Figure 7.7: The results of the bisection experiment (A), averaged over subjects for the
color images. The horizontal arrows delineate the range of γ that is presented.

for both the black-and-white and the color images, the shift in the high range is
significant for both types of images.

The shifts in the reference range are not significant, except for the ranges for which
the full range is also shifted. This means that the irregularity of the ranges has no
significant effect on the results.

In conclusion, this result is consistent with a stimulus-response function that is
more or less linear at the lower gamma range, and has a decreasing slope towards
the higher gamma values. Significant shifts tend to occur for ranges including
the high range. This is consistent with the non-linearity of the response function
(compression at high levels). Most range effects can be shown for the bicycle image
individually. Because this is not the case for the other images, one might suspect
that the range effects are only due to bicycle. However, if the overall range effects
are determined without bicycle, the results are not different except for the reference
range, indicated that the range effects do not mainly depend on this image.

In an earlier experiment [Dijk et al., 2000], we found that the stimulus response
function was a stimulus-response function, consistent with a slightly steeper slope at
the low gamma values than at the high gamma values. This result was based on only
two images and four subjects. Clearly, the non-linearity of the stimulus response
function can only be measured with more data than in the earlier experiment. Still,
the trend of the data is nevertheless the same as in the present experiment.
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Table 7.1: The bias, i.e. the deviation from the numerical center of the range, for the
ranges in the bisection experiment. Zero means that the bisection point is exactly in the
center of the gamma range, a value larger than zero means that the bisection point is shifted
towards the higher gamma values and a value smaller than zero means that the bisection
point is shifted towards the lower gamma values. The bold numbers are significant.

bias
all images all images except bicycle

range bw color bw color
full -0.04 ± 0.04 -0.06 ± 0.04 -0.02 ± 0.04 -0.05 ± 0.04
low 0.00 ± 0.03 -0.02 ± 0.04 -0.01 ± 0.03 -0.01 ± 0.04
high -0.06 ± 0.03 -0.09 ± 0.04 -0.06 ± 0.03 -0.09 ± 0.04
reference 0.05 ± 0.07 -0.07 ± 0.06 -0.06 ± 0.07 -0.04 ± 0.04

bias
range image bw color

full portrait -0.01 ± 0.11 -0.02 ± 0.07
cafe -0.06 ± 0.08 -0.05 ± 0.12
basket 0.01 ± 0.16 -0.05 ± 0.13
bicycle -0.11 ± 0.11 -0.12 ± 0.07
musicians -0.01 ± 0.05 -0.06 ± 0.08

low portrait -0.02 ± 0.07 -0.01 ± 0.15
cafe -0.06 ± 0.08 -0.02 ± 0.07
basket 0.02 ± 0.10 -0.04 ± 0.04
bicycle 0.04 ± 0.06 -0.08 ± 0.07
musicians 0.01 ± 0.05 0.02 ± 0.14

high portrait -0.04 ± 0.06 -0.04 ± 0.11
cafe -0.08 ± 0.05 -0.06 ± 0.06
basket -0.04 ± 0.10 -0.11 ± 0.12
bicycle -0.05 ± 0.08 -0.09 ± 0.09
musicians -0.10 ± 0.08 -0.14 ± 0.10

reference portrait -0.20 ± 0.17 -0.10 ± 0.12
cafe 0.05 ± 0.16 -0.10 ± 0.12
basket -0.14 ± 0.14 0.05 ± 0.16
bicycle -0.23 ± 0.16 -0.19 ± 0.17
musicians 0.05 ± 0.00 0.01 ± 0.11

7.3.2 Experiment B and C: quality and naturalness

The two smaller ranges (low and high) were used to test for the presence of any range
effects, that is, a tendency for preferring the middle of a range. The results indicate,
that the seven subjects preferred the same or nearly same image, irrespective of
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the stimulus range in which it was presented. This was also found in a previous
experiment [Dijk et al., 2000]. As expected, the quality and naturalness selection
of the eighth subject, excluded already in experiment A, did shift with the range.

After each experiment the subjects were asked what criteria they had used. One of
the subjects gave unusual criteria for the quality and naturalness experiments, that
is, she preferred the images in the order from the darkest to the lightest. Because we
wanted to have a homogeneous group of subjects, we chose to exclude this subject.
We tested the homogeneity of the remaining group of subjects using the Friedman
two-way analysis of variance and Kendall Coefficient of Concordance. The results
of these tests, given in appendix F, show that for most experiments the ranks are
not random, and thus that the subjects can be seen as one group. For some images
this was not the case. This does not mean that the (average) responses cannot be
used for a quality measure, but for certain subjects the deviation from the mean
quality was quite high.

The quality and naturalness rank orderings (averaged over subjects) are given in
figure 7.8.

We can see here that there are differences between the color and black-and-white
responses, and between naturalness and quality responses. The image with the
highest quality is for most images close to the original image (γ is 1). However, for
the bicycle image the image with the highest quality is the image with gamma is
1.3 (color) and 1.2-1.3 (black-and-white).

The shift in preference can be explained by looking at the images and the remarks
that the subjects made. It seems that variations in γ affect the balance between
chromatic and achromatic aspects of the image, in the sense that at higher γ the
blacks and whites become more enhanced, causing the colors to lose some of their
colorfulness (cf. [Hunt, 1991]). Decreasing the γ has the opposite effect, so reduc-
ing the γ, and hence, luminance contrast, makes the colors stand out, even to an
extent that it is no longer natural. Evans ([Evans, 1974]) already made related
observations and reported how the color of a stimulus centered in an achromatic
surround becomes more colorful with decreasing luminance contrast. The bicycle

image contains many achromatic colors. It could benefit therefore from more lu-
minance contrast, and that is what the subjects indicate by using γ’s greater than
1. Indeed they do the same in the black-and-white version. The cafe image needs
much color, as it is an outdoor image of a sunny day. As we reduced the chroma
of the image, this image should benefit from more colorfulness, as is the case for
a γ slightly lower than 1. The musicians image is a balanced image in color and
luminance. Most subjects indicate that they look mostly at the face of the blond
and the dark women. If γ > 1, the contrast in the dark face becomes lower, whereas
for γ < 1, the face of the blond woman loses contrast. The portrait image is bal-
anced in color and luminance contrast, and cannot gain from a gamma increase or
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(b) black-and-white naturalness

0.5 1 1.5 2 2.5
0

2

4

6

8

10

γ

im
ag

e 
qu

al
ity

portrait
cafe
basket
bicycle
musicians

(c) color quality

0.5 1 1.5 2 2.5
0

2

4

6

8

10

γ

im
ag

e 
na

tu
ra

ln
es

s
portrait
cafe
basket
bicycle
musicians

(d) color naturalness

Figure 7.8: The subject responses for the quality and naturalness experiments. There is
a statistically significant interaction between gamma and chroma for all groups.

decrease. The basket image is a colorful image, that can only slightly be improved
by a γ > 1.

In an earlier experiment [Dijk et al., 2000] we investigated the quality of the musicians
and bicycle image. For the musicians image we found in the earlier experiment
that the preferred gamma was 1.0, both for the color and the black-and-white ver-
sions. This is the same as we found in the experiments that are presented here. For
the bicycle image, we found in the earlier experiment that the preferred gamma for
the color image was 1.2, and for the black-and-white image 1.4. In the experiments
presented here we found that the preferred gamma for the color image is 1.3 and
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for the black-and-white image 1.2-1.3. This is slightly different than found before,
but this is probably due to differences between the subjects. The trend that the
preferred gamma for the bicycle image is higher than 1 is found again. However,
in the experiments presented here, we did not find that the preferred gamma for
the black-and-white image is higher than for the color image.

In the following part of this chapter we will first investigate which settings of the
experiment had a statistically significant effect on the responses of the subjects.
After that, we will show how the usefulness-naturalness model
[Janssen and Blommaert, 2000b] may be used to fit the quality responses.

Statistical Analysis

To investigate if the different settings had a significant effect on the responses of the
subjects, the Analysis of Variance (ANOVA) [StatSoft, 2000, Winer, 1970] method
was used. This method is described in subsection 4.4.3.

We tested the responses of the subjects for the following variables:

Image: the input image the subject ranked

Gamma: the gamma of the manipulated image

Q/N: whether quality (Q) or naturalness (N) was the attribute the subject ranked

Color/BW: whether the manipulated image was given in color or in black-and-
white.

The subjects ranked images that only differed in gamma, therefore we could not test
the main effects for the image, for quality/naturalness and for color/bw (see also
page 82). However, we can find interactions between these variables and gamma.

To obtain more insight, we grouped the responses into different groups in which
one or more variables were constant. All results are given in table 7.2.

The four main groups of interest are color quality, black-and-white quality, color
naturalness and black-and-white naturalness. The subject responses for these four
groups are shown in figure 7.8. For all these groups we found that there is a
main effect for gamma. That is, the quality/naturalness results depend on the
gamma setting, regardless of the image. There is also a two-way interaction between
image and gamma, which indicates that the way the results depend on the gamma
setting, is influenced by the image. These effects can be seen in all groups that
were evaluated.

Next, we evaluated the results grouped into color images and black-and-white im-
ages. For both groups, no interaction between quality/naturalness and gamma was
found, which indicates that there is no reason to assume that the way the results
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Figure 7.9: The quality and naturalness responses for the bicycle (a) and musicians

(b) color images. For the musicians image the curves are almost the same, whereas for
the bicycle image the curves are shifted with respect to each other. This effect visualizes
the three-way interaction between gamma, image and quality/naturalness.

depend on the gamma setting, is influenced by whether the subject scaled quality or
naturalness. However, for the color stimuli, there is a three-way interaction between
quality/naturalness, the image and the gamma. This indicates that the influence of
the image on the gamma dependence is different, depending on whether quality or
naturalness is scaled. This is not the case for the black-and-white stimuli. The idea
of the three-way interaction can be observed in figure 7.9. For the musicians image
the naturalness and quality scaling is almost the same, whereas for the bicycle

image the peak for the quality response is at a higher gamma value (1.3) than the
peak for the naturalness response (1.2).

Summarizing, when comparing the quality and naturalness results, we conclude
that for both groups there is no interaction between color/black-and-white and
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Table 7.2: The results of ANOVA for different groups of responses. F is the F-ratio, p the
probability. Effects that are not significant are given in italics.

effect F p

Color quality
Gamma 7.98 0.000
Image * Gamma 2.47 0.000

BW quality
Gamma 19.25 0.000
Image * Gamma 1.65 0.011

Color naturalness

Gamma 11.47 0.000
Image * Gamma 3.03 0.000

BW naturalness
Gamma 9.67 0.000
Image * Gamma 1.44 0.046

Color

Gamma 11.33 0.000
Q/N * Gamma 0.53 0.873
Image * Gamma 3.01 0.000
Q/N * Image * Gamma 1.73 0.006

BW
Gamma 16.64 0.000
Q/N * Gamma 1.04 0.424
Image * Gamma 1.86 0.002
Q/N * Image * Gamma 0.60 0.978

Quality
Gamma 19.65 0.000
Col/bw * Gamma 0.57 0.844
Image * Gamma 2.99 0.000
Col/bw * Image * Gamma 0.82 0.778

Naturalness

Gamma 14.52 0.000
Col/bw * Gamma 1.24 0.285
Image * Gamma 2.67 0.000
Col/bw * Image * Gamma 1.81 0.003

gamma. However, for the naturalness results, there is a three-way interaction be-
tween color/black-and-white, the image and gamma. This indicates that influence
of the image on the gamma dependence, is different for color or black-and-white
images. This is not found for the quality results.
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Table 7.3: The results of linear regression for the color images and the black-and-white
images.
image variables explained

variance
naturalness
coeffi-
cient

D∗
L

coefficient

color images naturalness & D∗
L 0.85 0.85 0.22

naturalness 0.80 0.90
D∗

L 0.15 0.40
black-and-white images naturalness & D∗

L 0.90 1.04 -0.19
naturalness 0.87 0.94
D∗

L 0.15 0.41

Searching for a relation between quality, naturalness and physical mea-
sures

In the rest of this chapter we try to fit a quality model to the results we found using
linear regression. This should answer the important question whether there is a re-
lation between quality, naturalness and physical measures in the image. The quality
model we use is the usefulness-naturalness model [Janssen and Blommaert, 2000b]
(see subsection 3.4.3 on page 37), in which two objective measures, discriminabil-
ity and naturalness, are presented. Since we cannot use the naturalness measure
Janssen and Blommaert developed (this is based on grass, skin and sky, which are
not present in some of our images), we use the subjective measured naturalness.
The discriminability measure is defined in equation 3.34. This measure can be
calculated for different color spaces, as indicated by the subscripts.

To test the relation between quality on one hand and naturalness and discrim-
inability on the other hand, we used linear regression. We found that, consistent
with the usefulness-naturalness model, that quality depends for a large part on the
naturalness of the image. The explained variance was 80% for the color experiment
and 87% for the black-and-white experiment.

The first discriminability measure we tested was DL∗, the discriminability in the
lightness dimension. The relation between gamma and DL∗, and results for the
linear regression are shown in figure 7.10. With only this measure only 15% of the
variance of both the color and black-and-white experiment was explained. However,
the discriminability had a significant effect on the image quality.

Combining the discriminability and the naturalness data, 85% of the variance in
the color experiment and 90% in the black-and-white experiment can be explained.
The predicted quality is plotted against the observed quality in figure 7.11.

Instead of using D∗
L, we could also use a discriminability measure that takes one

or two color dimensions into account. We evaluated the following discriminability
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Figure 7.10: The relation between gamma and DL∗ is given in (a). The results (scatter
plots) of the linear regression analysis, using only DL∗ is given in (b) for the black-and-white
images and in (c) for the color images.

measures: DL∗a∗b∗, DL∗u∗v∗, DL∗u′v′, DL∗S∗ and DL∗C∗. These discriminability
measures performed somewhat poorer than D∗

L. This might be expected, because
we only changed the achromatic attribute in the image, so another color axis would
only give more noise.

On the basis of these results, and the usefulness-naturalness model, we can rea-
sonably well predict the effect of gamma on the quality of an image, using only
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measures of naturalness and the discriminability of the image. However, we moved
the problem from measuring image quality to image naturalness. We would like to
use the objective measure Janssen and Blommaert developed for naturalness, but
this measure assumes that all images contain either skin, sky or grass, which is not
the case in two of our five images.

7.4 Conclusions and discussion

In this chapter we presented the results of experiments in which we manipulated
color images in the XYZ color space by applying a gamma transformation on the
luminance (Y), while keeping the chromaticity (x,y) constant. In order to evaluate
the influence of the chromatic components, we also printed the same images in
black-and-white.

The aim of the first experiment was to determine the stimulus-response relation
between the physical gamma (the stimulus) and perceptual response (“perceived
gamma”). It was shown that the subjects are quite capable of ranking the im-
ages according to the physical gamma values. These results are consistent with a
stimulus-response function which is more or less linear at the lower gamma range,
and has a decreasing slope towards the higher gamma values.

The gamma manipulation changes the mean luminance level and the local contrast
of the image. For a gamma smaller than one the mean luminance level is increased
and the contrast in darker parts of the image is increased at the cost of the contrast
in the lighter parts of the image. For a gamma larger than one these effects are
inversed. The relation between the mean luminance and perceived mean lightness is
(approximately) described by a third root power function (see equation 2.4). So, if
the subjects evaluate the mean luminance level of the image, the stimulus response
function should be increasing towards the higher gamma values. Assuming that the
increase in contrast in terms of luminance is equal to the decrease in contrast in
the lighter parts of the image, and vice versa, we would expect a stimulus response
function that is steeper at the lower gamma values than at the higher gamma
values. Because this is the case, we hypothesize that the subjects evaluate the local
contrast rather than the mean luminance level in the bisection task. We have not
tested this hypothesis. This is one of the questions that could be answered through
a continuation of this research.

The aim of the second and third experiment was to measure the subjective quality of
the images and the subjective naturalness of the images, respectively. We found that
for all images there was a maximum quality, and that decreasing the quality from
the preferred gamma has the same effect on the quality judgement as increasing the
gamma from the preferred gamma. The differences in quality estimations over the
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Figure 7.11: The result of the linear regression. In (a) and (b) the results are given as
a scatter plot, in (c) and (d) the same results are connected by lines. These lines indicate
the relation with gamma. The points with γ = 0.6 are plotted with double contours.



140 Luminance gamma manipulation

subjects was not negligible. For some images we did not find agreement between
the different subjects. This indicates that if one finds a quality measure for the
average subject, the individual subject responses can still show large differences.

The gamma manipulation affects both the contrast in the achromatic colors and the
colorfulness of the colored parts. These effects may explain the differences between
the quality responses for the different images. A suggestion for future work is to
manipulate the colors locally, so that the colored parts remain colored and the more
achromatic parts gain contrast. This is similar to contrast stretching, a technique
that is used in photography where the colors in the shade are manipulated differently
than the colors in full light.

Using the statistical analysis method ANOVA, we found that for all groups of
experiments there was a main effect for gamma and an interaction between the
image and gamma. The dependency on gamma is not the same for all images, but
is influenced by the image that is evaluated. Because of the image differences and
the effects that a gamma manipulation has on the image, this could also be expected.
Some images benefit from more luminance contrast (for instance images that do not
contain much color), other images may benefit from more colorfulness. For the color
stimuli a three-way interaction between gamma, image and quality/naturalness was
found. This was not the case for the black-and-white stimuli. So, the way the image
influences the subject’s response on colored images manipulated with a gamma
manipulation is different depending on whether the subject was expected to scale
quality or naturalness.

Using linear regression we found that we could predict the quality of the image
using the discriminability measure of the usefulness-naturalness model
[Janssen and Blommaert, 2000b] and the subjective naturalness. This is a confir-
mation of the usefulness-naturalness model, which predicts quality using the dis-
criminability and a more objective naturalness measure. The measure that was
developed by Janssen and Blommaert to estimate the naturalness of an image,
could not be used because we used images that do not contain skin, grass or sky.
So we shifted the problem of estimating the quality of an image to estimating the
naturalness of that image.



Chapter 8

Luminance gamma manipulation
combined with chroma scaling

8.1 Introduction

In the previous chapter, we studied the effect of changing the achromatic contrast
on the quality of images. The achromatic contrast was changed by means of a
gamma manipulation. In this chapter, we study the combined effect of changing
both the achromatic contrast and the chroma of the image.

Fedorovskaya et al. [Fedorovskaya et al., 1997] and de Ridder et al.
[de Ridder et al., 1995] did experiments in which the chroma was changed in the
CIELUV space. Fedorovskaya et al. tested two different ways of changing the
chroma: 1) through the addition or subtraction of the same amount of chroma to or
from the chroma value of each pixel; 2) through multiplication of the chroma value
of each pixel by a constant. They found that the so-called colorfulness [Hunt, 1977]
of an image is the main perceptual attribute underlying image quality and natural-
ness when chroma varies. Colorfulness could be modeled as a function of the average
chroma and the variability of chroma as derived from the color point distribution
in the CIELUV color space. Both Fedorovskaya and de Ridder found that the
highest quality image is not the most natural one. The subjects preferred more col-
orful images, although they realized that these images looked somewhat unnatural.
This was also found by Janssen and Blommaert [Janssen and Blommaert, 2000b],
who modeled quality as a function of naturalness and discriminability (see subsec-
tion 3.4.3). The discriminability increases for images with higher chroma.

In the experiments described in this chapter, we changed the images using two con-
secutive steps. First, the chroma was changed using a variable scaling factor. Then,
the luminance distribution in the image was changed using a gamma manipulation,

141
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while keeping the color coordinates x and y of each point constant1. In the previous
chapter, the chroma scaling factor was a constant (0.85). This scaling factor was
used to reduce the number of out-of-gamut colors. The gamma manipulation was
the same manipulation that was used in the previous chapter.

8.2 The relation between gamma and chroma

In the experiment we first scaled the chroma C∗ in the CIELAB space. In this
space we also have the variables a∗, b∗, L∗ and h∗. After this we applied a gamma
transformation (an exponent relating the input to the output) to the luminance
(Y ) in XYZ space, while keeping the chromaticity values (x, y) constant.

In this section, we consider the theoretical relation between γ and chroma. The
change in hue h∗ of the CIELAB space is also studied.

First, we study how the chroma changes from C∗
1 to C∗

2 due to a change in Y from
Y1 to Y2. The chromaticity (x, y, z) is kept constant, so

x1 = x2 and y1 = y2 and z1 = z2 (8.1)

where subscript 1 and 2 denote the values before and after the change, respectively.

Since x = X/(X + Y + Z), y = Y/(X + Y + Z) and z = Z/(X + Y + Z), we can
rewrite equation 8.1 as

X1

c1
=

X2

c2
Y1

c1
=

Y2

c2
Z1

c1
=

Z2

c2

(8.2)

with c1 = X1 + Y1 + Z1 and c2 = X2 + Y2 + Z2. Combining the equations in 8.2
gives

X2 = X1
Y2

Y1

Z2 = Z1
Y2

Y1
(8.3)

1note that this means that the hue is constant in the CIELUV space, but not in the CIELAB space
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The following relations are used:

Xrel = X1/X0

Yrel = Y1/Y0 (8.4)

Zrel = Z1/Z0

Yratio = Y2/Y1

with (X0, Y0, Z0) the tristimulus values of reference white. In approximation, a∗1
and a∗2 are given by

a∗1 = 500(X
1/3
rel − Y

1/3
rel )

a∗2 = 500(X
1/3
rel Y

1/3
ratio − Y

1/3
rel Y

1/3
ratio) (8.5)

a∗2 = Y
1/3
ratioa

∗
1

and b∗1 and b∗2 by

b∗1 = 200(Y
1/3
rel − Z

1/3
rel )

b∗2 = 200(Y
1/3
rel Y

1/3
ratio − Z

1/3
rel Y

1/3
ratio) (8.6)

b∗2 = Y
1/3
ratiob

∗
1

This approximation holds for tristimulus values that are sufficiently large relative
to reference white (which is true for almost all points).

With these equations chroma (C∗) is given by

C∗
1 =

√
a∗1

2 + b∗1
2

C∗
2 =

√
a∗2

2 + b∗2
2

C∗
2 =

√
Y

2/3
ratio(a

∗
1
2 + b∗1

2) (8.7)

C∗
2 = Y

1/3
ratioC

∗
1 ,

and hue (h∗) by

h∗
1 = arctan(b∗1/a∗1)

h∗
2 = arctan(b∗2/a∗2)

h∗
2 = arctan(Y

1/3
ratiob

∗
1/Y

1/3
ratioa

∗
1) (8.8)

h∗
2 = h∗

1

(8.9)

So, if Y2 > Y1, Yratio is larger than 1 and C∗
2 > C∗

1 .
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The hue h∗ of the point does not change for any change of Y .

Now we look at the effect a gamma transformation has when applied to the lumi-
nance Y . The transformation is given by

Y2 = k1Y
γ
1 − k2 (8.10)

in which k1 and k2 are constants which are used to keep the maximum and minimum
luminance of the image constant.

From this follows that

Yratio =
Y2

Y1
=

k1Y
γ
1 − k2

Y1
= k1Y

γ−1
1 − k2/Y1

C∗
2 = (k1Y

(γ−1)
1 − k2/Y1)

1/3C∗
1 (8.11)

We interpret the effect of the gamma transformation on the chroma as a new scaling

factor, (k1Y
(γ−1)
1 − k2/Y1). This scaling factor depends, besides on γ, also on the

luminance of the original point Y1. For gammas larger than 1, this scaling factor
is smaller than 1 for all luminance values (this can be seen by the fact that Y2 is
always smaller than Y1 for a gamma larger than 1). For gammas smaller than 1 this
scaling factor is larger than 1 for all luminance values. So, the larger the gamma,
the smaller the chroma of each point. Note that for γ = 1, k1 = 1 and k2 = 0, so
the scaling factor is 1.

8.3 Method

8.3.1 Test material

The stimulus set consisted of four different images (figure 7.2 a-d). These images are
ISO standard images (from the cdrom ISO 12640:1997), bicycle, basket, cafe and
portrait. Because of practical limits to the maximum length of the experiments,
we used four images instead of the five used in the previous chapter.

We started with the same conversions as in subsection 7.2.1, that is, the images were
converted from CMYK to XYZ using the methods described in subsection 4.1.5.
The white point of the resulting images was the white of the paper used.

Next, we changed the chroma C∗ (in CIELAB) of each point by

C∗
new = C∗

oldschroma, (8.12)

where schroma is the chroma scaling factor. In the previous chapter we used a
chroma scaling factor of 0.85 for all images.
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The second step, the gamma transformation, was applied by using equation 8.10.
Note that the final chroma value is

C∗
final = (k1Y

γ−1
in − k2Y

−1
in )schromaC

∗
old (8.13)

Just before the last step, the transformation from XYZ to CMY, an orthogonal
gamut clipping (see section 4.3) was done in which the out-of-gamut colors were
mapped onto the gamut. For a high chroma scaling factor more points need to be
clipped than for a low chroma scaling factor. Note that with this gamut mapping
the hue of the point remains the same.

After the conversion from XYZ to CMY using the methods described in subsec-
tion 4.1.5, The color images were sent to the printer as a postscript file with CMY
values. The dithering (dot percentages and placing of the dots), as well as the Grey
Component Replacement, was done by the printer.

In total 16 different output images were made from each input image, with γ varying
from 0.9 to 1.2, in steps of 0.1, and chroma varying from 0.7 to 1.15 in steps
of 0.15. We show the effect of the combined gamma manipulation and chroma
scaling in figure D.2 for a part of the bicycle image. This input image is taken
because it contains small structures and because it contains memory colors, that
is, colors that are recalled in association with familiar objects in long-term memory
[Bartleson, 1968]. All images were printed on an EPSON Stylus color 1520 printer.
The images were printed on plain paper (EPSON photo quality ink jet paper).

8.3.2 Experimental setup

The transformed images were used for two experiments, respectively dealing with
quality and naturalness

Experiment A: Quality In the first experiment the perceptual quality for a par-
ticular gamma was tested. The set of test images consisted of 16 images.
In this experiment two rank orderings of the images were determined in a
number of consecutive steps, see figure 8.1.

Experiment B: Naturalness In the second experiment the subjective natural-
ness for a particular gamma was tested. The setup of the experiment was the
same as the setup for the quality experiment.

8.3.3 Viewing Conditions

The experimental environment was the same as that used in the previous chapter.
The prints were presented in a Macbeth SpectraLight II light booth, with homo-
geneous lighting. The luminance reflected from the print was at most 450 cd/m2
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Figure 8.1: The consecutive steps to obtain two rank orderings. The different sets that
have to be ranked are formed with images from sets above.

(white paper). The color temperature of the illuminant was approximately 6430 K.
The prints were put into transparent plastic covers to prevent smudges. A window
was cut in the center to see the image and a white border on the print directly and
not through plastic. Because the covers were matte and absorbed some light, the
reference white was provided by the paper used.
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8.3.4 Subjects

Eight subjects, all completely naive with respect to image analysis, took part in
the experiments. The subjects were undergraduate students, paid to do these ex-
periments. Five of the subjects were male and three female. They were 17 to 23
years old. The subjects had normal color vision and normal or corrected-to-normal
visual acuity.

8.4 Results

We tested the homogeneity of the group of subjects using the Friedman two-way
analysis of variance and Kendall Coefficient of Concordance. The results of these
tests are given in appendix G. It was found that for all experiments the rank
ordering was not random, indicating that the subjects can be seen as one group.

The rank ordering of the quality and naturalness responses (averaged over subjects)
is given in figure 8.2.

In this figure we can see two striking features. The first is that the quality and
naturalness responses differ more for different gamma settings than for different
chroma scaling factors. This can best seen in the portrait results, which are almost
vertical. We can also see directly that the quality and naturalness responses vary
much between the different images. For the portrait image, the best image is
one with a high gamma, whereas for the basket image, the best image is found
for gamma equals 1. Comparing the responses for naturalness and quality, we see
that for the different images the quality response is different from the naturalness
response. If we ignore the chroma effect, the most natural image can be found for
gamma is 1.0 (cafe, basket and bicycle) or 1.1 (portrait). The most unnatural
image within the range is either the image with the least color (chroma = 0.7,
gamma = 1.2) or the image with the most color (chroma = 1.15, gamma = 0.7).

We can compare these results to the results from the previous chapter by comparing
the line for which the chroma scaling factor is 0.85 to the results found earlier. These
results are given in table 8.1. Most of these values are numerically different (up to
20% difference). Since the variance introduced by having different subject groups
in both experiments cannot be estimated, it is not possible to test the statistical
significance of these differences. Given the magnitude of the differences, it seems
likely that these are caused by normal differences between subject groups.
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Figure 8.2: Representation of the subject responses for the quality and naturalness ex-
periments. In these graphs the average quality or naturalness responses for 16 images are
given against the gamma and chroma scaling factor. The whiter the point, the higher the
preference is.
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Table 8.1: Results from the gamma experiment compared with the results from the gamma
chroma experiment. The values given are the images with highest quality or highest nat-
uralness. For the gamma and chroma experiment only the images with a chroma scaling
factor of 0.85 are included.

gamma experiment gamma-chroma experiment
quality naturalness quality naturalness

portrait 1.0 1.0 1.2 1.1
cafe 0.8-1.0 0.9-1.0 1.1 1.0
basket 1.1-1.2 1.2 1.0 1.0
bicycle 1.3 1.2 1.1 1.0

8.4.1 Statistical analysis

Using an Analysis of Variance (cf. section 4.4.3), we investigated whether the
different gamma and chroma settings had a significant effect on the responses of
the subjects. We tested the responses of the subjects for the following variables:

Image: the input image

Gamma: the gamma of the manipulated image

Chroma scaling: the chroma scaling factor of the manipulated image

Q/N: whether quality (Q) or naturalness (N) was the attribute the subject ranked

Note the differences between the variables. Image, Gamma and Chroma scaling are
physical variables of the stimuli. Q/N is a result of the interaction with the observer,
who is asked to produce results reflecting either the quality or the naturalness of the
image. The resulting ranking is a complex interaction between all these variables.

Since the subjects ranked images that only differed in gamma and/or chroma scal-
ing, we could not test the main effects for the image or quality/naturalness (see also
page 82). However, we can find interactions between these variables and gamma
and/or chroma scaling. Table 8.2 shows the results of the ANOVA.

There is a main effect for gamma and chroma scaling for both the quality and
naturalness responses. These main effects can also be seen in figure 8.3, which
shows more or less pronounced optima for the gamma and chroma settings.

The interaction between gamma and chroma scaling is also significant, meaning that
the way that different gamma settings influence the perceived quality or naturalness
depends on the chroma scaling setting and vice versa. Because there is a colorimetric
relation between gamma manipulation of Y and chroma scaling (see section 8.2)
this was expected. One can imagine that a gamma manipulation of Y on an image
with a low chroma scaling has a different effect on both quality and naturalness
than a gamma manipulation on an image with a high chroma scaling. This effect
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Table 8.2: The results of ANOVA for different groups of responses. F is the F-ratio, p
the probability. Effects that are not significant are given in italic. The interaction between
gamma and image is significant for both quality and naturalness, the interaction between
chroma scaling and image is not significant for either quality and naturalness.

effect F p

Quality
Gamma 16.28 0.00
Chroma scaling 4.19 0.01
Image * Gamma 7.88 0.00
Image * Chroma scaling 0.76 0.65
Gamma * Chroma scaling 2.16 0.03
Image * Gamma * Chroma scaling 1.38 0.10

Naturalness

Gamma 8.45 0.00
Chroma scaling 3.71 0.02
Image * Gamma 11.04 0.00
Image * Chroma scaling 1.55 0.14
Gamma * Chroma scaling 3.81 0.00
Image * Gamma * Chroma scaling 2.42 0.00

All
Gamma 9.70 0.00
Chroma scaling 4.49 0.01
Q/N * Gamma 21.90 0.00
Q/N * Chroma scaling 1.08 0.37
Image * Gamma 10.19 0.00
Image * Chroma scaling 1.18 0.31
Gamma * Chroma scaling 3.65 0.00
Q/N * Image * Gamma 3.86 0.00
Q/N * Image * Chroma scaling 1.25 0.27
Q/N * Gamma * Chroma scaling 1.75 0.08
Image * Gamma * Chroma scaling 1.39 0.09
Q/N * Image * Gamma * Chroma scaling 2.47 0.00

can be seen best for the responses for the naturalness responses for the cafe image
in figure 8.2d.

There is a significant interaction between image and gamma, but the interaction
between the image and chroma scaling is not significant. This is also reflected in
the results shown in figure 8.3. It can be seen that if only the gamma and the
image differ, there are four distinct curves, whereas if only the chroma scaling and
the image differ, the curves are almost flat and non-distinct. The fact that the
interaction between image and chroma scaling is not significant can be explained
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Figure 8.3: The subject responses for the quality and naturalness experiments, averaged
over chroma scaling (upper row) and gamma (lower row). Note that the optima for quality
and naturalness are more pronounced for gamma than for chroma.

by the fact that the responses for the different chroma scaling values are almost
constant.

The fact that the effect of chroma scaling on the quality responses is so small (but
significant!) can be explained in the following way. Differences between images with
different chroma scaling factors may be relatively small, so that small deviations
between image quality responses cannot be measured. However, the differences
between the images could be easily seen. Another explanation could be that the
stimulus transformation is inherently different for the gamma manipulation and the
chroma scaling. The gamma manipulation of Y is non-linear with fixed minimum
and maximum luminance. The chroma manipulation is linear, with only a fixed
minimum. Whether these differences really explain the results can only be tested
by experiments in which the chroma and luminance are treated the same. Still
another explanation could be that in natural environments humans are used to
evaluate images that differ (linearly?) in chroma, whereas the need for a global
gamma manipulation does not occur in natural images.

The three-way interaction between image, gamma and chroma scaling is significant
for the naturalness experiment, but not for the quality experiment. This interaction
implies that the way that the naturalness response is influenced by the gamma and
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the chroma scaling setting, is influenced by the image that is evaluated. This
interaction is probably due to the cafe responses (see figure 8.2 d), which is very
different from the other three curves. The other curves for quality and naturalness
depend mainly on gamma, and only for a small part on the chroma scaling.

Evaluating the combined results of both experiments, the following can be noted
with respect to the Q/N factor. As expected from the results for quality and
naturalness separately, the main effects for gamma and chroma scaling, as well
as the interactions between gamma and chroma scaling, and between gamma and
image are significant. The interaction between chroma scaling and image is not
significant, as was also the case when we looked at the separate results for quality
and naturalness.

There is a significant interaction between quality/naturalness and gamma, but not
between quality/naturalness and chroma scaling. This is again due to the small
differences in the subject responses for images that only differ in chroma scaling.
The three-way interaction between quality/naturalness, image and gamma is sig-
nificant, the three-way interaction between quality/naturalness, image and chroma
scaling is not significant.

The four-way interaction between gamma, chroma scaling, image and
quality/naturalness is also significant. This four way interaction means that the
way that the image influences the response of the subject on different stimuli, is
influenced by the fact whether they scale quality or naturalness. According to Lane
[Lane, 2003], four-way and higher interactions are “usually difficult to interpret and
rarely meaningful”.

Searching for a relation between quality, naturalness and physical mea-
sures

In the rest of this chapter we shall try, as we did in section 7.3.2, to fit a quality
model to the results we found, using linear regression. Again we are searching for
a relation between quality, naturalness and physical measures in the image.

The quality model we used is the usefulness-naturalness model (see subsection 3.4.3
on page 37). As in section 7.3.2 we used the subjectively measured naturalness and
the discriminability measure as defined in equation 3.34. The color space used in
the calculation of the discriminability is indicated by the subscript.

To test the relation between quality on the one hand and naturalness and dis-
criminability on the other, we used linear regression. We found, confirming the
usefulness-naturalness model, that the naturalness of the image affects its quality.
The explained variance is 35%.

The first discriminability measure we tested was DL∗, the discriminability in the
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Table 8.3: The results of linear regression for the images individually.
image variables explained

variance
naturalness
coeffi-
cient

D∗
L

coefficient

all naturalness & D∗
L 0.39 0.646 0.224

naturalness 0.36 0.603
D∗

L -0.01 0.103
portrait naturalness & D∗

L 0.94 0.649 0.444
naturalness 0.81 0.905
D∗

L 0.64 0.817
cafe naturalness & D∗

L 0.76 0.797 1.03
naturalness -0.01 0.230
D∗

L 0.30 0.592
basket naturalness & D∗

L 0.75 1.09 0.445
naturalness 0.63 0.812
D∗

L -0.01 -0.24
bicycle naturalness & D∗

L 0.63 0.268 -0.73
naturalness 0.10 0.402
D∗

L 0.58 -0.78

lightness dimension. With only this measure none of the variance of the experiment
was explained. We also evaluated the following discriminability measure: DL∗a∗b∗,
DL∗u∗v∗, DL∗u′v′, DL∗S∗ and DL∗C∗. None of these discriminability measures have
a significant effect on the perceived quality. However, when combining DL∗ and
naturalness, 44% of the variance is explained. Both DL∗ and the naturalness have
a significant effect on the perceived image quality. Combining naturalness and one
of the other discriminability measures does not improve the explained variance. In
figure 8.4, the quality, predicted on the basis of the naturalness and DL∗, is plotted
as function of the observed quality. The conclusion is that the observed quality
can be partly described by naturalness and lightness discriminability. However, a
large part of the variance is not explained. Surprisingly, DL∗ outperforms the other
discriminability measures, despite the lack of color information in this measure.
This is consistent with results reported earlier in this chapter, which show that the
influence of gamma on the results is larger than the influence of the chroma scaling
factor. This also explains why the explained variance in this experiment is less than
the explained variance in the gamma experiment (see chapter 7).

The results of linear regression for each image individually is given in table 8.3. For
each image the explained variance is higher than the explained variance over all
images. It can be seen that the coefficients for each image are different, explaining
that the variance over all images is smaller. It is strange that for the bicycle image
the coefficient for D∗

L is negative. We do not have an explanation for this as yet.
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Figure 8.4: The quality predicted in the basis of observed naturalness and DL∗ . Predicted
quality = 0.646 * observed naturalness + 0.224 * DL∗ . In a) no connection between points
is made, in b) points with the same chroma scaling factor are connected and in c) points
with the same gamma value are connected.

8.5 Conclusions and discussion

In these experiments we evaluated quality perception for images that were scaled
in chroma and transformed by a gamma transformation. The statistics of subject
responses indicate that the subjects can be seen as one group, similarly responsive
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to the experimental stimuli. We found that both gamma and chroma scaling have
an effect on the perceptual quality. However, the gamma setting has more influence
on the perceptual quality than the chroma scaling.

An explanation for this may be found in intrinsic differences in the stimulus produc-
tion. The gamma manipulation is non-linear with fixed minimum and maximum
luminance, whereas the chroma manipulation is achieved by a linear scaling factor,
in combination with a fixed minimum.

Another explanation may be found in the human visual system. Maybe in natu-
ral environments humans are used to evaluating images that differ (linearly?) in
chroma, whereas gamma manipulation does not occur naturally.

It would be interesting to test if the results would be different if the chroma scaling
and gamma were treated in the same way. This is achieved if the luminance and
chroma are scaled linearly. A problem with this is that to scale the luminance
linearly either the black point or the white point cannot remain the same. Both
the chroma and the luminance can also be changed using the gamma manipulation.
However, a gamma manipulation of chroma is not normally used in natural images.

A manipulation that does occur in natural images is local contrast stretching of the
luminance. In future work it would be interesting to evaluate the influence of local
contrast stretching on the quality of images.

With statistical analysis some significant interactions were found. These are an
interaction between gamma and chroma scaling, an interaction between gamma
and the image and an interaction between gamma and the attribute (quality or
naturalness) that the subjects scaled. Higher interactions are also found, but these
are hard to explain.

With the usefulness-naturalness model we can explain 44% of the variance in the
quality responses, using the naturalness that the subjects scaled and a discrim-
inability measure. In the previous chapter, we could explain 85% of the variance in
the quality responses, also using the naturalness and a discriminability measure.
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Chapter 9

Lightness filtering in color images
with respect to the gamut1

9.1 Introduction

For a long time, image processing research has concentrated on grey-value images,
but with the advance of digital color reproduction, image processing algorithms for
color images are being developed. One difference with grey-value images is that the
color of each pixel is defined by three values instead of one. Another difference is
that the range of colors, that can be visualized or rendered, is not a simple scale
between black and white, but a 3D body in color space, the gamut (see chapter 4).

When image processing operations are performed on color images, it is normal that
the production of out-of-gamut pixels is not prevented. Colors that were inside the
gamut of the displaying apparatus before the image processing may unwantedly
be converted to colors outside this gamut. So, in order to fully render the image,
some gamut mapping algorithm has to be used to bring out-of-gamut colors into the
gamut. Several standard gamut mapping algorithms are discussed in section 4.3.
In these algorithms neither the color before processing, nor the kind of processing
are taken into account, and thus may reduce the effect of the image processing
operation. In this chapter we propose a generic method that allows grey image
processing without affecting color rendering, that is, without exceeding the limits
of the gamut of the apparatus in question.

1This research is described in: P.W. Verbeek and J. Dijk, Nederlands octrooiaanvrage 1022258, Werk-
wijze voor het bewerken van een kleurenbeeld, ten name van Technische Universiteit Delft te Delft.
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9.2 The generic method

Image processing of color images typically focuses on hue, chroma or saturation,
and lightness. Apart from a global change of hue and chroma, known as white
correction, most processing algorithms only deal with the achromatic variables (the
grey image). We propose a generic method for converting grey image processing
into lightness or luminance processing for color images. This method assumes that
the colors of the original image are located within the gamut of the rendering device.
The colors are defined here as points in the CIELAB color space. We stretch the
gamut in such a way that it reduces to straight lines.

For a given color point an algorithm for grey-value image processing defines an
“ideal” lightness correction. At the same time, however, the gamut defines, for
the given hue, a limited “acceptability” area of lightness and chroma. The ideal
correction may cause the point to exceed that area. The method proposed here
provides a number of “recipes” to perform the lightness correction in such a way
that 1) the colors stay inside the gamut (or “acceptability area”) and 2) different
colors before processing remain different after processing. In this way, the result of
the image processing is kept automatically and inconspicuously within the gamut.
The hue of the point is always kept constant, because this is the attribute that
we can distinguish with the highest precision (the same reason why hue is kept
constant in the gamut mapping procedures, see section 4.3, page 64). For some
recipes the chroma is also kept constant; for others it is not.

The desired lightness correction causes the original color point to travel along a fixed
path. The path is defined by the original point, the gamut boundary and the chosen
recipe. Along the path the lightness changes monotonically with position. The
intersections of the path with the upper and lower boundary of the gamut define the
range between the maximum and minimum lightness correction. This is illustrated
in figure 9.1, which shows how a point within a given plane of constant hue (note
that the hue should be constant) can be moved within that plane, depending on
the path.

Some grey value manipulations, such as sharpening, affect the high frequencies of
the grey values but leave the low frequency information constant. For some lightness
manipulations, we want to keep this feature. When using sharpening, for instance,
we may assume that color changes can only be seen in the low frequencies. The
goal of the manipulation is to sharpen the image while trying to keep the color
information of the low frequencies the same. To achieve this with the proposed
method for the lightness, we must add the constraint that not only the shift for a
desired lightness correction will stay in the gamut, but also the shift for the same
lightness correction in the opposite direction. For the total image this will lead to
equal size lightness corrections in the positive and negative direction. If the overall
color should remain the same, a similar constraint for the chroma is needed. Note
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L*

*max(L )

*min(L )

C*

x
maximum lightness correction

minimum lightness correction

path

Figure 9.1: Illustration of a path for a given point x and a given recipe (chroma = constant)
The maximum and minimum lightness correction are determined by the intersections with
the gamut boundary.

that the hue of a point always remains the same, as dictated by the model.

Summarizing, we propose a generic method, that can be used to apply grey value
algorithms on color images without violating the limits set by the color gamut.
Different implementations of the method are given as different recipes.

9.3 Application fields

We identify the following application fields:

Digital photography Digital photography is becoming more and more standard,
for both professional and amateur photographers. One of the advantages of
digital photography is that the user is able to change the image before the
photo is reproduced. This is done with an image processing program, such as
PhotoShop or Paintshop Pro. The proposed method can be used to optimize
the image quality of the photos. The quality of the result can be determined
by the user or by an image quality measure (which is the main theme of
this thesis). The method can only be used if the gamut is known (either
analytically or numerically). Fortunately, this is often the case because the
gamut information is also used for the printer’s gamut mapping.

Inkjet or laser printer/copier Most copiers and some printers have an option
to lighten or darken the outcome, usually by means of a gamma manipulation.
The proposed method can automatically and inconspicuously adapt chroma
to this - already standard - darker/lighter choice. The proposed method also
introduces new options that allows sharpness and contrast to be used as new
parameters, in addition to the darker/lighter option1. These variables may
improve the performance of the printer/scanner. Because of the increased

1Note that these parameters were also used in earlier chapters of this thesis



160 Lightness filtering in color images with respect to the gamut

complexity, however, it may be difficult to find the optimal solution. The
optimum can be found by visual evaluation or by an image quality measure.

Offset print For the offset printer the proposed method can also automatically
and inconspicuously adapt chroma to the - already standard - darker/lighter
choice. The method also introduces sharpness and contrast as new parame-
ters. By using these parameters, part of the traditional craftsmanship can be
automated, although the optimization of the parameters may be hard.

Color monitor including TV In the field of digital television the method may
also be used to optimize images using the parameters darker/lighter, sharpness
and contrast. Digital television is a highly advanced and specialized market.
Adapting to the gamut of the monitor, however, is relatively simple.

9.4 Application example 1: gamma manipulation

The proposed method can be used to apply a variety of grey value algorithms on
color images. In this section we show the results for contrast improvement using
gamma manipulation.

9.4.1 Gamma manipulation

The effect of a gamma manipulation is that the lightness values are distributed
nonlinearly over the range that is used. This may increase the contrast in one or
more regions of the lightness range, at the cost of decreasing the contrast in other
regions. In figure 9.2 two different forms of gamma manipulations are shown, one
operating in the same way over the whole lightness range, and one in which the
operation is applied separately to the low and the high lightnesses of the image.

What is shown in figure 9.2 is mathematically detailed in the following. The gamma
operation shown in figure 9.2 (a) is described by:

L∗
out = min(L∗) + (max(L∗) − min(L∗)) ∗

(
L∗ − min(L∗)

max(L∗) − min(L∗)

)γ

. (9.1)

This is the same gamma manipulation as used in the gamma experiment (chapter 7,
equation 7.2), but now applied to lightness instead of luminance. When this manip-
ulation is used for γ > 1, the higher (lighter) lightness range gains more contrast,
at the expense of the contrast of the darker colors. At the same time the mean
lightness is decreased (all new colors are darker than the original colors). When
γ < 1, the opposite occurs (more contrast in the darker colors, less contrast in the
lighter colors, and mean lightness increases).
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Figure 9.2: Two different forms of gamma manipulation. In a) the result of equation 9.1
is given for three different gamma values. It can be seen that for γ < 1 the lightness of
the image (L∗

out) is always higher than for the original image (L∗
in), and that darker colors

have more contrast. For γ > 1 the opposite holds true. In b) the result of equation 9.2 is
shown for three different gamma values. If L∗

point = L∗
average, the average lightness remains

approximately the same. However, the contrast of the colors does change. For γ > 1 the
mid tones gain more contrast and the high and low colors lose contrast. For γ < 1 the
opposite occurs.

The gamma operation shown in figure 9.2 (b) is not applied to the whole lightness
range, but to two different parts: the high lightness values and the low lightness
values. The gamma manipulation is then defined as:

L∗
out = min(L∗) + (L∗

point − min(L∗)) ∗
(

L∗ − min(L∗)
L∗

point − min(L∗)

)γ

for L∗ ≤ L∗
point

L∗
out = max(L∗) + (L∗

point − max(L∗)) ∗
(

L∗ − max(L∗)
L∗

point − max(L∗)

)γ

for L∗ > L∗
point

. (9.2)

Note that for γ < 1 the high and the low lightness values gain more contrast at
the cost of the contrast of the center lightness values (the high lightness values of
the low range and the low lightness values of the high range). The mean lightness
remains approximately the same, if the original mean lightness is chosen as L∗

point.
Another interesting choice for L∗

point is the lightness of the cusp point for the hue in
question (L∗

cusp). This is the point in the constant hue plane at which the chroma
of the hue is at its maximum (see also figure 9.3 (d)).
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Figure 9.3: Different forms of gamma manipulation, while keeping chroma constant. The
original color point is indicated by x. Note that axes in the graphs in the right part of
the figure are unusual; the graphs are tilted versions of figure 9.2. In (a) the normal, not
gamut-limited, gamma manipulation is shown. It can be seen that one of the resulting
points is indeed out-of-gamut. In (b) the gamma manipulation as defined in 9.1 is shown.
The intersections with the gamut for constant chroma are the maximum and minimum
used in the gamma manipulation. In (c) and (d) the gamma manipulation as defined in 9.2
is shown. The intersections with the gamut for constant chroma are the maximum and
minimum. In (c) L∗

point is the mean lightness, in (d) L∗
point = L∗

cusp

.

In figure 9.3 is shown how the original color point, x, can travel over the path
indicated by the dotted line in the constant hue plane. This path has the property
that chroma (C∗) is constant. Other paths are also possible, as will be discussed
in the next section. In figure 9.3 (a) the normal, not gamut-limited, gamma ma-
nipulation is shown. It can be seen that points can indeed be out-of-gamut. In
figure 9.3 (b) the gamma manipulation defined by equation 9.1 is used. In the right
hand part of this figure the limits, max(L∗) and min(L∗) of the lightness range are
shown. These are dictated by the available gamut, so whatever the value of L∗

in,
it will always be such that the lightness of point x will stay within the available
gamut. In figure 9.3 (c) and (d), the same principle is shown, but now for a gamma
manipulation according to equation 9.2.
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9.4.2 Recipes for gamut-limited gamma manipulation

The gamut-limited manipulation in figure 9.3 applies to the rather simple case of
constant chroma. We also discuss other possibilities, all together resulting in

(a) C∗ = constant The lightness is manipulated while keeping the chroma C∗
constant. The maximum and minimum value are the maximum and minimum
lightness L∗ for this particular C∗ value. The effect of this recipe for the two
different forms of gamma manipulation has already been shown in figure 9.3.

(b) C∗/L∗ = constant 2 The lightness is manipulated while keeping the ratio
C∗/L∗ constant. The minimum value is per definition 0, the maximum value
is the lightness value for which the line C∗/L∗ intersects the gamut boundary.

(c) Mapping towards black and white The lightness is manipulated in such a
way that the point in the chroma/lightness space moves towards black for a
lightness decrease and towards white for a lightness increase.

(d) Mapping away from black and white The lightness is manipulated in such
a way that the point in the chroma/lightness space moves away from black
for a lightness increase and away from white for a lightness decrease. The
maximum and minimum lightness are given by the intersections of both lines
with the gamut boundary. This recipe is the opposite of the previous recipe.

(e) Mapping over lines from black over the cusp point to white This recipe
is a combination of the two previous recipes. For lightness values below the
cusp point, the point in the chroma/lightness space moves to black (for a
lightness decrease) and away from black (for a lightness increase). For light-
ness values larger than the cusp point, the point moves away from white for
a lightness decrease and to white for a lightness increase.

The different paths in the constant hue plane that result when applying the above
recipes are illustrated in figure 9.4.

On these paths the two positions of the color point are indicated that result for
γ = 2 and γ = 0.5. We would not expect the recipes (d) and (e) to give nice
results. Mapping away from black and white (d) adds chroma to almost all points,
which may introduce colors that are too colorful for the luminance, as if they are self
luminant. Mapping over lines from black over the cusp point to white (e) introduces
a discontinuity at the cusp point. However, it can be instructive to see the results
of such manipulations.

2Note that in the CIELUV space, the attribute saturation is defined as C∗/L∗. In CIELAB, however,
this attribute is not defined.
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(b) C∗/L∗ = constant
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(c) Mapping towards black and white
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(d) Mapping away from black and white
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Figure 9.4: Paths along which a color point may move within the constant hue plane,
when applying different recipes for gamma manipulations. For each recipe for an original
point, x, the range for lightness changes is given, along with the result for γ = 2 and
γ = 0.5. More details about the paths are given in the text.
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9.4.3 Results for gamut-limited gamma manipulation

First gamma manipulation (equation 9.1)

The visual results for the different recipes using the first gamma manipulation are
given in figure E.1 - E.6. In each image five different gamma settings are given. The
image for which γ = 1 is for all recipes the same as the original image. The results
are shown for a part of the musicians image, the blond girl. The input image was
subsampled with a factor two because otherwise the results were too large to print
on the EPSON stylus 1520 used.

In figure E.1 the results for the normal gamma manipulation are shown, where
out-of-gamut pixels are not prevented. Out-of-gamut pixels are mapped onto the
gamut with orthogonal clipping. This results, for low gamma values, in a skin color
that is too yellow.

In figure E.2 the results for the C∗ = constant recipe are shown. It can be seen that
the effect of the gamma manipulation is smaller, because the mean lightness change
is smaller. The results are better in that here the skin tones are more natural than
the results with the normal, not gamut-limited, gamma manipulation (shown in
figure E.1).

In figure E.3 C∗/L∗ is kept constant, instead of C∗. The effect is that images with
γ < 1 gain chroma, whereas images with γ > 1 loose chroma. Therefore, the quality
of these images is somewhat less than the images in figure E.2.

As could be expected, the results with the mapping towards black and white recipe,
shown in figure E.4, cause a loss of chroma. All colors are mixed with either black
(for γ > 1) or white (for γ < 1). The resulting images are less vivid, and therefore
the quality is less than that of other recipes. The results for the mapping away
from black and white recipe (shown in figure E.5), do not differ very much from
each other. This is due to the fact that the size of the path in this recipe is much
smaller than the paths in other recipes.

The results for the mapping over the cusp point are shown in figure E.6. The
expected color problems indeed occur, some colors are too colorful. This effect can
be best seen in the lips and the background for γ = 0.6, and for the skin tones for
γ = 1.4.

Second gamma manipulation (equation 9.2)

The results for the different recipes using the second gamma manipulation are given
in figure E.7 - E.10. In each image five different gamma settings are given. The
image for which γ = 1 is for all recipes the same as the original image. In these
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figures images in the top row are made with L∗
point = L∗

average, whereas the images
in the bottom row are made with L∗

point = L∗
cusp. Because the mapping towards

black and mapping away from black recipe did not give nice results for the first
gamma manipulation, they are not shown for the second gamma manipulation.

The results with normal gamma manipulation are shown in figure E.7. As the cusp
point is a feature of the gamut, which is normally not used, the results are only
shown for L∗

point = L∗
average. It can be seen that the image gains contrast for γ > 1

and looses contrast for γ < 1.

The results with the C∗ = constant recipe are shown in figure E.8, and the results
with the C∗/L∗ = constant recipe are shown in figure E.9. It can be seen that
there are only small differences between these images. The skin tones of the C∗
= constant recipe seem to be somewhat more natural than the skin tones of the
normal gamma manipulation, but this is only a small effect. The images in the top
row and the bottom row are almost the same, indicating that the choice of L∗

point
is not critical.

The results with the mapping over the cusp point recipe are shown in figure E.10.
In the images in the top row, for which L∗

point = L∗
average, one can see that some

colors are unnatural because they are too colorful. This effect can be seen best in
the lips of the woman and the background of the top left image. In the images
in the second row, however, these unnatural colors do not occur. This is due to
the fact that in the bottom row, L∗

point is the lightness of the cusp point, so colors
that had a lightness lower than the cusp point still have a lightness that is lower
than the cusp point, and vice versa. However, the resulting images have lost some
colorfulness compared to the normal gamma manipulation and the C∗ = constant
recipe.

In conclusion, gamma manipulation with C∗ = constant yields the best results. In
this case the image does not loose much color, as can be the case with the other
recipes (especially mapping towards black and white). Keeping C∗/L∗ constant also
works rather nicely. The differences with gamma manipulation without taking the
gamut into account are larger for the first gamma manipulation than for the second
gamma manipulation. For the second gamma manipulation, the two choices of
L∗

point give more or less the same results, except for the mapping over the cusp
point recipe.

9.5 Application example 2: sharpening

9.5.1 Sharpening

In image processing the use of sharpening can change the lightness of a point rather
drastically. If sharpening is applied to the lightness of color images, some of the
resulting colors may be out-of-gamut, because the lightness exceeds the (vertical)
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limits set by the lightness (and chroma) of the constant hue plane. To avoid this,
the lightness correction should depend on the available “gamut space”, just as in
the case of gamma manipulation. Sharpening is usually achieved by adding a high
frequency filtered version of the image to the original image. In these experiments
we use real unsharp masking, where the high frequency filtered version is found by
subtracting a Gaussian-smoothed image:

Ĩhigh = (1 − G̃(I, σ))Ĩ = F̃highĨ (9.3)

where˜denotes the Fourier transform. The real unsharp masking sharpening filter
is defined as

F̃R(α)Ĩ = Ĩ + α · Ĩhigh (9.4)

Another example of a sharpening filter is Gaussian unsharp masking, which is
discussed in section 5.4. We also used inverse unsharp masking to blur the input
image. This filter is defined as

F̃b(αinverse)Ĩ =
Ĩ

Ĩ + αinverse · Ĩhigh

=
1

F̃R(αinverse)
Ĩ (9.5)

The width of the edges that are amplified by real unsharp masking is determined
by σ, and the amount of sharpening, that is, the size of the lightness change, is
controlled by the parameter α. In some recipes α can be changed by the user,
but in other recipes the amount of sharpening is determined by the maximum and
minimum lightness difference and the distance of the point to the gamut. To avoid
that the results are largely influenced by outliers, Ihigh is clipped between the 5th

and 95th percentile. An undesired effect of unsharp masking is that not only the
edges are enhanced, but that also the (high frequency) noise is amplified.

Since the sharpening should only work on high frequency parts of the image, we
use the property of images [Nishikawa et al., 1965] that the pixels that make up
lines and edges are outnumbered by the pixels in homogeneous areas. Further, we
assume that the chroma changes are only seen in the low frequencies, so that we
can change the chroma of the line and edge pixels without changing much of the
color impression.

9.5.2 Recipes for gamut-limited sharpening

When using gamut-limited sharpening, there are a number of approaches to be
considered. We tested the following recipes:

(a) Sharpening within the gamut For each point the maximum and minimum
sharpening should be within the gamut. If this is not the case, the chroma
C∗ is reduced to obtain a larger lightness range3.

3Note that this does not entirely comply to the described method. There is no fixed path for each point,
but the path is moved along the x-axis until the lightness range between the maximum and minimum
sharpening fits into the gamut.
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(b) Gamut limited sharpening For each point the desired lightness difference
is adjusted so that the maximum lightness difference (either up or down) just
fits within the gamut, without changing the chroma. This is achieved by
adjusting the value of α so that the maximum lightness change fits exactly in
the gamut.

(c) Mapping towards black and white The lightness is manipulated in such a
way that the point in the chroma/lightness space moves towards black for a
lightness decrease and towards white for a lightness increase. In other words,
the new point lies on the line through the original point and white (∆L∗ > 0)
or black (∆L∗ < 0). Note that this has the effect that the chroma of all points
is reduced.

(d) Mapping halfway towards black and white The points are again mapped
over lines toward black and white. For each point the lightness difference is
scaled in such a way that the maximum lightness difference is halfway to the
minimum distance to black or white. If, for instance, the original lightness
difference is 10, the distance from the original point to black and white is 40
and 60, respectively, and the maximum lightness difference is 30, then the
effective lightness difference is (0.5 * 40/30) * 10. The chroma is adjusted so
that the new point lies on the line through the original point and black or
white. The size of α is optimized by the recipe.

(e) Mapping away from black and white The new point is located on the line
through the original point and black (for ∆L∗ > 0) or white (∆L∗ < 0). The
maximum lightness difference is the distance to the upper and lower boundary,
respectively. All points gain chroma. This is the opposite from the mapping
towards black and white recipe.

The different paths in the constant hue plane that result when applying the above
recipes are illustrated in figure 9.5. On these paths, the original point and the
output point for a given lightness correction are indicated. For some recipes the
total output range can be defined, for some recipes only the (positive and negative)
lightness change for the given point is shown.

9.5.3 Results for gamut-limited sharpening

The results for the different recipes are shown in figure E.11 for the blond image.
The original image is blurred with inverse unsharp masking to obtain a test image
that can be improved. The two images on the top row are given for comparison.
These are the test image, and the image which is filtered using “normal” sharpening,
where the gamut is not taken into account. If the original image is located in the
gamut and if α is equal to αinverse, the latter equals the original. Pixels that are
out-of-gamut are clipped onto the gamut using orthogonal clipping.
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(c) mapping towards black and white
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Figure 9.5: Different paths for sharpening manipulations. The triangles are the intersec-
tion of the gamut with a constant hue plane. More details about the paths are given in the
text.
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The rest of figure E.11 shows the images, that are changed using the new method
for several recipes. For all recipes the values of σ and α are chosen 1.0 and 0.6,
respectively. It can be seen that the result for gamut limited sharpness (b) and
mapping halfway towards black and white (d) are the sharpest. This can for instance
be seen on the location of the eyes and the mouth. This effect is probably due to the
fact that for these two recipes α is optimized with respect to the gamut instead of set
by the user. The difference between the two results is that the image produced by
gamut limited sharpening (b) is more colorful than the image produced by mapping
halfway towards black and white (d). This suggests that the chroma change in the
low frequency for the mapping halfway towards black and white (d) recipe are quite
visible, despite the fact that the chroma change is not large for most points.

The mapping away from black and white (e) recipe adds chroma on places where
the lightness is changed. The colors in the resulting image will therefore be more
colorful than the colors in the original image. This can be best seen in figure E.11
in the colors of the mouth of the woman.

The sharpening within the gamut (a) and mapping towards black and white (c) recipe
are comparable to the normal sharpening procedure. Because for these recipes the
size of α is adjusted by the user, we need to compare the results for different α’s.
This is done in figure E.13 for sharpening within the gamut (a) and in figure E.14 for
mapping towards black and white (c). For both recipes the results tend to become
somewhat “greyish” for α > 0.6. For sharpening within the gamut (a) the chroma
reduction is due to the fact that the points are shifted towards the achromatic axis
until the sharpening fits within the gamut, and for larger α these shifts will be
larger. In the mapping towards black and white (c) recipe all points are shifted
towards black and white, also causing a chroma reduction. In the mapping away
from black and white (e) recipe (shown in figure E.15 the some areas in the resulting
image become to colorful, e.g. the hair becomes too yellow.

In figure E.13 the influence of sigma is shown. It is clear that a sigma of 0.5 is too
small for the blond image, the main result of the filter is that noise is amplified. For
a sigma of 4.0 the lines that are sharpened are too coarse, which can for instance
be seen at the upper lip of the woman. The sigma’s 1.0 and 2.0 give nice results.

We conclude that the results of the original (“normal”) sharpening method can be
improved upon by taking the gamut into account. Gamut limited sharpening (b) is
the best recipe for the blond image, because the chroma is not reduced and because
the value of α is optimized by the recipe. Other recipes, except may also give
somewhat better results than normal sharpening.



9.6. Conclusions and discussion 171

9.6 Conclusions and discussion

In this chapter we have proposed a generic method that allows grey image processing
for lightness processing on color images without affecting color rendering, that is,
staying within the gamut of the apparatus in question.

In the proposed method the lightness correction is a function of

• the particular lightness and chroma of the original point in question.

• the desired lightness change, as implemented by the grey value image pro-
cessing algorithm (like gamma manipulation or sharpening)

• the choice of recipe to perform the lightness change. For each point, a path
is determined, which is specified by the recipe. The lightness and chroma
changes depend on the maximum and minimum of this path.

The monotonic character of the lightness correction guarantees that the color rela-
tions within the image remain undisrupted. That is, all points that were different
before the lightness correction, remain different.

The results for two applications of the method were shown: 1) sharpening and 2)
contrast improvement using gamma manipulation.

For gamma manipulation, the lightness of all pixels changes. Therefore, mapping
towards black and white, where the chroma reduction is proportional to the light-
ness difference, results in greyish images, whereas mapping away from black and
white, where the chroma increase is proportional to the lightness difference, results
in images that are too colorful. The differences with gamma manipulation without
taking the gamut into account are larger for the first gamma manipulation (equa-
tion 9.1) than for the second gamma manipulation (equation 9.2). For the second
gamma manipulation, the two choices of L∗

point give more or less the same results,
except for the mapping over the cusp point recipe.

For the sharpening method, the lightness correction is small for most points, since
most pixels do not belong to lines or edges. Therefore, it is to be expected that
the chroma can be changed proportionally to the lightness. However, for all recipes
where the chroma is changed, this “small” correction is perceptually quite visible.
The gamut limited method, for which the chroma does not change, gives the best
results for the image used here.

In general, we conclude that for these two applications the gamut-limiting process
is only advisable when the limiting is applied to the lightness dimension, rather
than the chroma dimension.

Several application fields for this method can be identified, such as digital printers
and digital photography. A sharpening procedure that improves most images can
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be implemented easily. It might be hard, however, to find automatically the optimal
settings for each image.



Chapter 10

Searching for a quality measure for
images that are manipulated in the
achromatic domain

10.1 Exploring the constant hue plane

The primary goal of this study has been to find a quantitative measure for the
perceptual quality of color images. This turned out to be a too ambitious goal, but
we nevertheless have come to a point at which it is possible to start speculating
on which direction to go. The results of our experiments on gamut-limited gamma
manipulation and sharpness enhancement, indicate that it pays off to separately
look at the chromatic domain (hue, chroma) and the achromatic variables (lightness,
luminance). One conclusion that we reached on the basis of these experiments
is that improvements in image quality are best done in such away that hue and
chroma are not severely manipulated. Manipulations should be confined to the
achromatic domain. This leaves lightness and luminance as the best choice for
quality improvement.

In this chapter we propose a measure for the quality of images that are manipulated
in lightness or luminance. Such a measure might be used to explain the results that
are found in the gamma and gamma/chroma experiments.

The basic assumption is that an image has a higher quality if the colors are opti-
mally distributed over the available gamut space, so as to make all lightness nu-
ances visible. This is also implied in the discriminability measure of the usefulness-
naturalness model [Janssen and Blommaert, 2000b]. According to this model, qual-
ity also depends on the naturalness of the colors. Maybe the naturalness does not
change very much for images that are only manipulated in lightness or luminance,
because the hue is always kept constant. We test such a model for the three input
images shown in figure 10.1. These images are subparts of the musicians image.

173
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the achromatic domain

(a) blond (b) oriental (c) dark

Figure 10.1: The images used to test the model
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h center= 9π/5
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h center= 0

h center= π/5

h center= 2π/5

Figure 10.2: The division of the hue circle in ten sectors. For each sector hcenter is given.

In chapters 4 and 9 we determined the boundary of the gamut in a constant hue
plane. In this plane the gamut is a deformed triangle, which resembles a flag. In
the remainder of this text we will call this intersection a flag.

We hypothesize that an image has a higher quality if the colors are optimally
distributed in the flag (see later figure 10.3). But what is optimal? We proceed as
follows in determining the optimal lightness distribution. We determine the location
of the center of mass of the color points in the flag. In order to sample sufficient
hue points per hue plane, we increase its thickness. We divide the hue circle in ten
sectors, so each hue slice spans a hue angle of 2π

10 = π
5 rad. The central hue plane

of the slice we call hcenter. This is visualized in figure 10.2. Note that for the test
images, only the hue slices containing skin and background have a large number of
pixels (see also 10.3). The center of mass can be measured along the two axes of
the constant hue plane, lightness and chroma. However, we have already decided
that we will stick to the achromatic domain, so we only manipulate the position of
the center in the vertical direction within the gamut. This position can be defined
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as the ratio of the two distances that separate the center from the upper and lower
boundary of the gamut, respectively. If we call the smaller one of these distances
d1 and the other d2, we can define this ratio as

q = d1/d2 (10.1)

Note that for a point located in the (vertical) center of the gamut, d1 = d2. In that
case, q = 1, which we consider as optimal because the lightness nuances surrounding
that point can be stretched over equal ranges of lighter and darker tones. Note that
this is also the idea behind contrast stretching.

10.2 Implementation

Here we go into further detail about the implementation of the method.

• First, we determine the distribution of pixels within each of the ten hue slices.
Note that the hcenter’s are spaced apart according to nπ/5, with n an integer.

• The lightness/chroma values of the pixels that are located in a certain hue
slice can be projected on the plane of the center, and as such are plotted in
figure 10.3. We also plot the gamut intersection for hcenter. Note that most
pixels have a different hue, and that some of them may be located outside
the hcenter gamut. The latter pixels are the result of slight differences in the
gamuts of the hue planes adjacent to hcenter.

• The center of mass of the pixels in the chroma direction cmean is determined
for each group. Then the center of mass in the lightness direction, lmean, is
determined. To avoid that this value depends too much on achromatic colors,
only the pixels that are in the column {cmean − ∆c, cmean + ∆c} are used
to determine this value. The center of mass of the pixels thus selected is
determined. From this center the distances d1 and d2 are measured and used
for calculating the quality measure q. The gamut boundary used is the gamut
boundary for hcenter.

• The images that comprise the pixels that are located within each hue slice can
be visualized. An example is given in figure 10.4. With the settings used (10
slices, hcenter = nπ/5, the skin tones are mainly located in the second slice
(hcenter is 0.63). This holds for all three skin types (white, oriental, dark).

10.3 Preliminary results and evaluation

In a first evaluation of the results we address the values of q for the skin tones, which
are all located in the second slice (hcenter is 0.63, figure 10.4). The fractions q for this
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Figure 10.3: The pixels located in the slice with hcenter = 0.63 for gamma manipulated
images. The images are blond (left column), oriental (center column) and dark (right
column). The gamma of the images is 0.6 (top row), 1.0 (center row) and 1.4 (bottom row).

slice are shown in table 10.1 for three different sizes of the column encompressing
the cluster of color points within the flag of hcenter.

From remarks that subjects gave after the preference ordering experiment in both
the gamma and gamma/chroma experiment, we know that the blond and dark
woman are important subparts for judging the quality of the total image. The
blond woman is rather pale and can do with a little bit more contrast in the lighter
parts of the image, as is accomplished with γ > 1. It is of interest that our quality
measure q is consistent with that observation (see bold values of q in table 10.1).
The opposite holds true for the dark woman, the face gains more nuances for γ < 1.
Again, this is confirmed by the values of q in table 10.1. The contrast in the face
of the oriental woman seems to be just right, so that γ = 1 would be appropriate.
Here too, we found high values of q, when gamma is equal or close to one.

The data shown in table 10.1 are plotted in figure 10.5, which shows in more
detail that the three woman portraits reach maximal quality for slightly different
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Table 10.1: Values of q as a function of gamma for the three different skin tones located
in the hue slice with hcenter = 0.63. The data are taken from the gamma experiments
discussed in chapter 7. The maximum values are given in bold.

blond oriental dark

0.6 0.30 0.29 0.64
0.7 0.40 0.40 0.87
0.8 0.51 0.52 0.88
0.9 0.64 0.66 0.67
1.0 0.80 0.83 0.50
1.1 0.97 0.95 0.37 ∆c = 2
1.2 0.86 0.77 0.27
1.3 0.71 0.61 0.19
1.4 0.60 0.48 0.15
1.5 0.51 0.38 0.14
1.6 0.43 0.30 0.13
1.7 0.40 0.24 0.13

blond oriental dark

0.6 0.32 0.32 0.68
0.7 0.43 0.44 0.90
0.8 0.55 0.58 0.84
0.9 0.68 0.74 0.65
1.0 0.84 0.94 0.49
1.1 0.98 0.85 0.38 ∆c = 5
1.2 0.82 0.69 0.30
1.3 0.69 0.56 0.25
1.4 0.59 0.46 0.20
1.5 0.50 0.38 0.16
1.6 0.43 0.31 0.12
1.7 0.37 0.25 0.10

blond oriental dark
0.6 0.36 0.39 0.81
0.7 0.47 0.53 0.94
0.8 0.60 0.69 0.73
0.9 0.75 0.87 0.58
1.0 0.92 0.92 0.46
1.1 0.90 0.74 0.37 ∆c = 10
1.2 0.75 0.60 0.29
1.3 0.62 0.49 0.23
1.4 0.52 0.40 0.18
1.5 0.44 0.33 0.14
1.6 0.37 0.27 0.11
1.7 0.32 0.22 0.09
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Figure 10.4: The pixels with hues contained within the different hue slices.
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Figure 10.5: The quality measure q as a function of γ, for different sizes of the column
width (∆c). The data are from table 10.1

30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

L*

# 
pi

xe
ls

∆ c = 5γ = 0.6
γ = 1.0
γ = 1.4

(a) blond

30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

L*

# 
pi

xe
ls

∆ c = 5γ = 0.6
γ = 1.0
γ = 1.4

(b) oriental

30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

L*

# 
pi

xe
ls

∆ c = 5 γ = 0.6
γ = 1.0
γ = 1.4

(c) dark

Figure 10.6: The distribution of the lightness in the column around the center of mass in
the hcenter = 0.63 hue plane, for ∆c = 5.

values of gamma. These results, although not very extensive, do suggest that q
may indeed be used as a quality measure. q is a measure that reflects the degree
to which the lightness distribution of the color points within a given hue plane is
evenly distributed. We might also study the lightness histograms directly. These
histograms are shown in figure 10.6. A good histogram should be the “flattest”
histogram (note again the similarity with contrast stretching). Although neither of
the histograms is very flat, it is clear that for the blond and oriental woman, the
histograms for γ > 0.6 are relatively flat compared to that for γ = 0.6, whereas the
opposite holds true for the dark woman. So there is at least some indication that
q is indeed related to the flatness of the lightness histogram.

10.4 Discussion

In this chapter we proposed the idea that an image, in which the colors fill the
available gamut space relatively homogeneously, has a higher quality than image
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for which this is not the case. The basis for that idea is that a more homogeneous
distribution allows for more discriminable nuances.

In earlier chapters we encountered the problem that subjects based their quality
response on certain subparts in an image. For the proposed measure, not only these
subparts have to be identified, but also the corresponding colors. For instance,
the musicians image contains many background colors, but we assume that the
distribution of these colors do not influence the quality very much. Both the issue
of selecting the subparts in the image and identifying the important colors require
further study.

This quality measure (q) seems to apply well to gamma manipulation because, in
this manipulation, color distribution (and particularly luminance distributions) are
stretched and decompressed. The effects of other manipulations, such as chroma
change or hue change, have not been investigated yet.

An interesting aspect of q is that the quality of an image depends on the displaying
device. Suppose that the quality of an image is optimized for a certain displaying
device, then what happens if the image is displayed on another device, which can
display more lighter colors? Clearly this will affect the potential for manipulating
gamma, and hence, the quality of the image.



Chapter 11

General conclusions and discussion

This thesis discussed objective quality measures for printed images. More formally,
the major goal of this thesis can be defined as:

Finding an objective measure for the quality of a printed image that corresponds to
perceptual image quality.

In relation to this major goal a number of secondary goals were defined:

• Improving our insight in the complex subject of perceptual quality.

• Determining possible relationships between perceptual attributes and image
quality

• Developing methods for image enhancement in color images.

The research can be broadly divided into three parts. After discussing theoret-
ical and methodological issues, we first discussed subject experiments regarding
sharpening and sharpness. We proposed measures for perceptual sharpening and
smoothing, and also for perceptual sharpness. In the second part, subject experi-
ments regarding color changes in images are discussed. In these experiments, the
achromatic color distribution and the chroma of the images is changed. In the
last part, we propose a new, generic method, that allows grey image processing
without affecting color rendering, that is, without interfering with the gamut of the
apparatus in question.

We have also proposed an idea for a quality measure that depends on the gamut of
the apparatus. This quality measure should be applied to images which are changed
in the luminance or lightness distribution.

There is a difference between sharpness and gamma manipulation. For sharpening,
the perceptual attribute is quite well defined 1. We defined objective measures

1Although one can question how well sharpness is defined. Bech et.al. investigated the sub attributes
of perceptual sharpness [Bech et al., 1996]
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for sharpening, smoothing and sharpness. For gamma manipulation, on the other
hand, gamma is the objective parameter that is used to produce different stimuli.
The perceptual attribute that is changed is something like the amount of contrast,
together with the amount of light.

In the following sections, we will discuss the results of this study, following the
division into three different parts (described above).

11.1 Sharpening, smoothing and sharpness

The first perceptual attribute studied was sharpness. We started out by studying
the effect of sharpening and smoothing filters. These measures depend on the
relation between the gradient magnitude of the pixels in the original image and
the filtered image, respectively. The resulting sharpening and smoothing measure
correlated reasonably well with human perception. Because the subjects had less
trouble with different levels of smoothing than with different levels of sharpening,
the just noticeable difference of the smoothing measure must be smaller than that
of the sharpening measure.

In these experiments, problems arise for images in which parts of the image require
different sharpening and/or smoothing values, as is the case for the complex bicycle

image. This image may be somewhat too artificial and too complex for these
experiments. The image is a photograph of a still life, but this scene contains
several test charts, which gives the image an artificial look. Because some parts
of the image seem more important for the image quality than others, the subjects
based their overall decision on the evaluation of different parts of the image. This
problem may be solved by an approach in which the measure is based on the results
of subparts of the image. A complicating factor for this approach is that it is unclear
how to select the different subparts of the image.

The preference of the different images was also tested as a measure for quality.
For these images, subjects prefer images in which the smoothing is low and the
sharpening is high. However, this may not apply to noisy images, as smoothing
is often used (and appreciated) on such images to reduce the noise. We did not
perform experiments in which noise is added to the images, because heavy noise
does not occur often in printed images.

We also studied the sharpness of images, as a feature of the image itself, rather than
in relation to some original image. We proposed a sharpness measure, for which
lines and edges are modeled as Gaussian profiles with different widths. Lines and
edges in the image are located, and their sharpness is determined by fitting the
Gaussian line or edge profile to the Gaussian derivative signature. The sharpness
measures studied depended on the widths that were found. A topic for further
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research is to study the distribution of the widths and amplitudes to see if other
measures that correlate to the sharpness of images can be defined.

All experiments were based on three different filters: Gaussian smoothing filters,
unsharp masking filters and anisotropic diffusion filters. For both the sharpening
and smoothing and the sharpness measures, we would expect that the results would
also apply for certain other filters. However, these filters should alter the image in
such a way, that the result is more or less “natural” to an observer. We think that
for filters for which this is not the case, such as morphological filters, the proposed
sharpening and smoothing measure cannot be used.

The sharpness measures are based on Gaussian models of the lines and edges.
The Gaussian smoothing filters fully comply with this model, the Gaussian un-
sharp masking filters somewhat, and the anisotropic filters only partly. Because the
anisotropic filters only change parts in the image where there is not much structure,
this filter probably does not influence the sharpness measure. However, since we
used the anisotropic filter in combination with the Gaussian unsharp masking filter,
we could vary the sharpness of the images.

Concluding, the proposed measures for sharpening, smoothing and sharpness cor-
relate to perceptual sharpening, smoothing and sharpness. This means that these
measures can be used to obtain an objective prediction of the attribute in question.

11.2 Color changes: gamma manipulation of luminance

and chroma scaling

The second perceptual attribute we studied was color, in particular the effect of
two different color distribution manipulations of the image. The first manipulation
was a non-linear manipulation of the luminance values using a gamma transforma-
tion. The chromaticity of the colors was kept constant. The second manipulation
was a scaling of the chroma of the points, which influences the perception of the
colorfulness.

The relation between the physical gamma (the stimulus) and the perceptual re-
sponse (“perceived gamma”) was found to be consistent with a stimulus-response
function which is more or less linear at the lower gamma range, and has a decreas-
ing slope towards the higher gamma values. Using the well known relation between
luminance and lightness (which is for instance used to determine the lightness in
CIELAB and CIELUV), this indicates that the subjects evaluate the local contrast
rather than the mean luminance, when they are asked to determine which image
is perceptually halfway between the image with maximum and minimum gamma.
We have not tested this hypothesis.
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We also studied the perceptual quality and naturalness of these images. In contrast
to the literature [Roufs, 1989], we found for some images distinct differences between
the subjects responses. So, depending on the type of image, individual preferences
may differ, even when explicitly looking for a uniform perceptual quality.

For all images a gamma was found for which the image quality was highest and a
gamma for which the image naturalness was highest. The value of this optimum
gamma differed between the images. For all images either decreasing or increasing
gamma with respect to the optimum gamma had the same (negative) effect on
perceived quality.

We found that the quality and naturalness of all images depended on gamma. The
dependency on gamma is influenced by the image that is evaluated. This could
be due to the fact that the images are very different in lightness distribution. The
content was also very different, some images contained many so-called memory
colors 2 and some had only a few memory colors. The gamma manipulation of the
luminance also has an effect on the chroma, and therefore on the colorfulness of
the image. Some images, for instance images that do not contain many colors, may
benefit from more luminance contrast, but for other images the colorfulness may
be more important than the luminance contrast.

Using linear regression, we found that we could predict the quality of the images
using the discriminability measure of the usefulness-naturalness model
[Janssen and Blommaert, 2000b] and the measured perceptual naturalness. The
usefulness-naturalness model uses a different naturalness measure, based on the
colors of skin, grass or sky. We could not use that measure, because not all images
in our set contained these colors.

In the second experiment we evaluated quality perception for images that were
scaled in chroma and also transformed by a gamma transformation of the lumi-
nance. In this experiment, the subjects did behave as one group, yielding closely
corresponding responses to the experimental stimuli.

As expected, both the gamma and chroma scaling have an effect on the perceptual
quality. However, the gamma setting has a greater influence on the perceptual
quality than the chroma scaling. An explanation may be found in the fact that
in natural environments gamma manipulation does not occur naturally, whereas
chroma scaling may occur. Another possible explanation may be found in intrinsic
differences in the stimulus production. The gamma manipulation is non-linear
with fixed minimum and maximum luminance, whereas the chroma manipulation
is achieved by a linear scaling factor, in combination with a fixed minimum. An
interesting experiment would be to test stimuli where the chroma and luminance are
treated in the same way. These stimuli may be produced in two different ways. The

2Memory colors are colors that are recalled in association with familiar objects in long-term memory
[Bartleson, 1968], such as the green of grass or the yellow of a banana.
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first is that both the luminance and the chroma are scaled linearly. This happens
for instance in natural environments if the light changes from twilight to broad
daylight. However, to scale the luminance linearly either the black point or the
white point has to be changed. Especially for printed images this may degrade the
quality of the images. The second way is to use (non-linear) gamma manipulation
for both the luminance and chroma. However, if a gamma manipulation of the
luminance is not natural, then a gamma manipulation of the chroma will probably
also be unacceptable.

A manipulation that does occur in natural images is local contrast stretching of
the luminance. Where the gamma manipulation changes the colors globally, local
contrast stretching can be used to change the image locally. In this way the colored
parts of the image can remain colored and the more achromatic parts of the image
can gain contrast. An interesting question is whether local contrast stretching will
affect the naturalness of the image. The technique of contrast stretching is already
used in the field of photography, where the colors in the shade are manipulated
differently than the colors in full light.

Using the discriminability measure of the usefulness-naturalness model
[Janssen and Blommaert, 2000b] and the measured perceptual naturalness, we could
not convincingly predict the quality of the gamma and chroma manipulated images
(only 44% of the variance was explained).

Concluding, manipulation of the color distribution has a significant effect on per-
ceptual quality. At least in the case of gamma manipulations, subject responses
are predictable in the sense that their effect on perceived quality shows a clear
maximum; such predictability can be used for creating an overall objective quality
measure. On the other hand, matters are complicated by the occurrence of an effect
of individual preference.

11.3 Gamut limited image processing and quality

In the last part of this thesis we studied the relationship between the quality of an
image and the gamut of the displaying device. First, we proposed a way of using
grey value image processing for color images, while taking the gamut, that is, the
envelope of colors in color space that determine the limitations of the displaying
device, into account. We also discuss a quality measure to find the best image of a
series of images that only differ with respect to gamma or any other manipulation
that effects the lightness values within the image.

The result of an image processing step can be seen as a point for point correction
of the original image. We propose that the maximum and minimum lightness
correction should depend on the available gamut space in a chosen direction. The
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proposed lightness correction is a function of the original color point, the desired
lightness correction and the maximum and minimum lightness corrections.

Because of the monotonic character of the lightness correction, all points that are
different before the lightness correction remain different. However, in the case of
lightness compression, differences that are physically still present, may nevertheless
become invisible when they fall below the visual threshold.

The method was tested for two grey value image processing algorithms: sharpening
and contrast improvement using gamma manipulation. For both applications, the
recipes for which the chroma was kept constant gave the best results. We expected
this for the gamma manipulation, because the lightness corrections are large for all
points. Reducing the chroma of all points results in images that are too “greyish”,
whereas increasing the chroma may result in colors that have too much chroma with
respect to their lightness, causing them to appear fluorescent. That the chroma
reduction or increase was also visible for the sharpening experiment was surprising,
because here the lightness correction is small for most points, and the chroma was
varied proportionally to the lightness correction. However, this “small” chroma
correction is perceptually quite visible.

In general, we conclude that for these two applications the gamut-limiting process
is only advisable when the limiting is applied to the lightness dimension, rather
than the chroma dimension.

In the last chapter we speculate on a good approach for developing a quality mea-
sure. We concluded that improvements in image quality within the gamut are best
done in such a way that manipulations should mainly be confined to the achromatic
domain. This leaves lightness (or luminance), rather than hue and chroma as the
best choice for quality improvement.

We speculate that an image in which the colors fill the available gamut space rela-
tively homogeneously have a higher quality than an image for which this is not the
case. The basis for that idea is that a more homogeneous distribution allows for
more discriminable nuances.

The proposed quality measure calculates the ratio of smallest and largest distance
between the center of mass of the color points relative to the upper and lower
boundary of the gamut, respectively. This measure is one for a center of mass that is
located exactly between the upper gamut boundary and the lower gamut boundary.
We consider this position optimal because the lightness nuances surrounding that
point can be stretched over equal ranges of lighter and darker tones. For all other
center of masses, the measure is smaller than one.

We tested such a model for three subparts of the musicians image. These prelimi-
nary results are promising.
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A problem encountered in all experiments was that subjects based their quality
response on subparts in an image. For the proposed quality measure, we need
to identify these subparts, and also the colors of interest in these subparts. For
instance, an important subpart in the musicians image is the blond girl. The skin
tones in this subpart affect the quality, the background colors do not. Both the
issue of selecting the subparts in the image and identifying the important colors
require further study.

According to the proposed quality measure, the quality of an image depends on the
gamut of the displaying device. If an image, optimized for one device, is displayed
on another device with a different gamut, it does not have to be optimal. This
dependency on the gamut may be an interesting topic for a new study.

11.4 Overall conclusions

The major goal of this study was to find an objective measure for the quality of
a printed image that corresponds to perceptual image quality. On first sight, one
might assume that the result of such a measure is an analytical formula, where
measurements lead to a numerical quality estimation. However, this is not as
simple as it seems. In chapter 3 we discussed some analytical quality measures.
Most of these are fidelity measures, which determine the quality or degradation
with respect to an original image instead of the quality of an image itself. For
other quality measures the type of images on which the measure can be applied is
small. And, finally, some quality measures can be written as a formula, but then
the values of one or more variables have to be estimated using experiments.

We studied image quality of images reproduced by a printer. A major difference
between a printer and a monitor is the shape of the gamut. Nevertheless, standard
image enhancement techniques do not take the gamut into account. In the last
part of this thesis we evaluate how we can incorporate the gamut into achromatic
enhancement of color images and image quality. In this way, some of the differ-
ences between images displayed on a monitor and printed images can be taken into
account.
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Appendix A

Proof: constant h∗uv is a plane in XYZ
space

In this appendix we prove that a constant hue plane in CIELUV results in a plane
in XYZ. We start with giving the transformation equations from XYZ to CIELUV

u′ =
4X

X + 15Y + 3Z
=

4x

−2x + 12y + 3

v′ =
9Y

X + 15Y + 3Z
=

9y

−2x + 12y + 3

(A.1)

u∗ = 13L ∗ (u′ − u′
n)

v∗ = 13L ∗ (v′ − v′n)

h∗
uv = tan−1(v∗/u∗)

C∗
uv =

√
u∗2 + v∗2

(A.2)

in which u′
n and v′n are the u′ and v′ coordinates of a reference white.

In order for h∗
uv to be constant, v∗/u∗ should be constant. So,

(v′ − v′n)/(u′ − u′
n) = K1

v′ − K1u
′ = v′n − K1u

′
n

9y − 4Kx

−2x + 12y + 3
= K2

9y − 4K1x = −2K2x + 12K2y + 3K2

(9 − 12K2)y + (2K2 − 4K1)x − 3K2 = 0

(A.3)

which is of the form ax+bY = c. So, keeping h∗
uv constant, for any given luminance

value Y results in points lying on a line in the x, y plane. In the XYZ color space
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uv is a plane in XYZ space

these lines construct a plane. We can easily see that this plane goes through the
black-and-white axis, by inserting u′ = u′

n and v′ = v′n in the third equation. So
the plane that we select, that is the plane spanned by the searched point and the
line between black and white, indeed has the same hue for every point.



Appendix B

Transfer functions for sharpening and
smoothing operations

The transfer functions of the sharpening and smoothing operations used in chap-
ter 5, 6 and 9 are given in figure B.1. Note that no transfer function can be given
for the anisotropic diffusion filter, because this filter is not spatially invariant.
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Figure B.1: The transfer functions of the sharpening and smoothing operations used.
σ = 1, α = 0.3 and k is 1.
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Visualizations of the gamut
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Figure C.1: The gamut of the EPSON printer plotted in the CIELAB space for 6 different
viewing points, corresponding to the 6 different faces of a cube. These images are made
using the relations in the CMYEPSON space. The solid lines indicate that two of the three
inks are 0 or 100%.
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Figure C.2: The gamut of the ISO data plotted in the CIELAB space for 6 different
viewing points, corresponding to the 6 different faces of a cube. These images are made
using the relations in the CIELABISO space (method 1). The circles indicate that C, M,
and Y are either 0 or 100%. For all these points K is 0.



Appendix D

Color stimuli

(a) γ = 0.6 (b) γ = 1.0 (c) γ = 1.4

(d) γ = 0.6 (e) γ = 1.0 (f) γ = 1.4

Figure D.1: Examples of the gamma manipulation on both black-and-white images (top)
and color images (bottom). The original is the image for which γ is 1.0 (b and e). The
input image is the right lower corner of the bicycle image.

195



196 Color stimuli

1.00

Gamma

C
hr

om
a 

sc
al

in
g 

fa
ct

or

1.15

0.85

0.70

0.9 1.0 1.1 1.2

Figure D.2: Examples of the gamma manipulation and the chroma scaling. The original
is the image for which γ is 1.0 and schroma is 1.0. The input image is a part of the bicycle

image.



Appendix E

Results of gamut-limited
manipulations

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.1: The result for normal gamma manipulation, without taking the gamut into
account, using the first gamma manipulation.

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.2: The results for the C∗ = constant recipe, using the first gamma manipulation.

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.3: The results for the C∗/L∗ = constant recipe, using the first gamma manipu-
lation.
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198 Results of gamut-limited manipulations

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.4: The results for the mapping towards black recipe, using the first gamma
manipulation.

γ = 0.6 γ = 1.0 γ = 1.4 γ = 2.0

Figure E.5: The results for the away from black recipe, using the first gamma manipula-
tion.

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.6: The results for the mapping over the cusp point recipe, using the first gamma
manipulation.

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.7: The result for normal gamma manipulation, without taking the gamut into
account, using the second gamma manipulation. L∗

point = L∗
average.
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γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.8: The results for the C∗ = constant recipe, using the second gamma manipula-
tion. In the top row L∗

point = L∗
average, in the bottom row L∗

point = L∗
cusp.

γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.9: The results for the C∗/L∗ = constant recipe, using the second gamma ma-
nipulation. In the top row L∗

point = L∗
average, in the bottom row L∗

point = L∗
cusp.
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γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4

Figure E.10: The results for the mapping over the cusp point recipe, using the second
gamma manipulation. In the top row L∗

point = L∗
average, in the bottom row L∗

point = L∗
cusp.
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Figure E.11: The result for
the different recipes (a-f). The
original image is smoothed with
inverse unsharp masking with
αinverse = 0.6. The sharpening
algorithm is real unsharp mask-
ing with σ = 1 and α = 0.6.
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Test image α = 0.6

α = 0.9 α = 1.2

Figure E.12: The result for normal (not gamut-limited) sharpening for different values
of α, with σ = 1. The original image is smoothed with inverse unsharp masking with
αinverse = 0.6. The sharpening algorithm is real unsharp masking.
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Test image α = 0.6

α = 0.9 α = 1.2

Figure E.13: The result for sharpening within the gamut (a) for different values of α, with
σ = 1. The original image is smoothed with inverse unsharp masking with αinverse = 0.6.
The sharpening algorithm is real unsharp masking.
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Test image α = 0.6

α = 0.9 α = 1.2

Figure E.14: The result for mapping towards black and white (c) for different values
of α, with σ = 1. The original image is smoothed with inverse unsharp masking with
αinverse = 0.6. The sharpening algorithm is real unsharp masking.
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Test image α = 0.6

α = 0.9 α = 1.2

Figure E.15: The result for mapping away from black and white (e) for different values
of α, with σ = 1. The original image is smoothed with inverse unsharp masking with
αinverse = 0.6. The sharpening algorithm is real unsharp masking.



206 Results of gamut-limited manipulations

Test image

σ = 0.5 σ = 1.0

σ = 2.0 σ = 4.0

Figure E.16: The result for gamut limited sharpening (b) for different values of σ. Note
that the value of α is set by the algorithm. The original image is smoothed with inverse
unsharp masking with αinverse = 0.6. The sharpening algorithm is real unsharp masking.
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Gamma experiment: Friedman
two-way analysis of variance and
Kendall Coefficient of Concordance

Using the Friedman two-way analysis of variance by ranks and the Kendall Coeffi-
cient of Concordance two hypotheses are tested. These null hypotheses are that the
k samples have been drawn from the same population, and that there are no cor-
relations between the individuals [Siegel and Castellan, 1988, StatSoft, 2000]. The
methods are discussed in subsection 4.4.2.

Table F.1: The Friedman rank order coefficient and the Kendall Coefficient of Concordance
for the quality experiment. The values for which the null hypothesis cannot be rejected are
given in italic.

Friedman p < Kendall
portrait color 17.30 0.10 0.26
cafe color 47.59 0.00 0.72
basket color 30.21 0.00 0.50
bicycle color 16.51 0.12 0.25
musicians color 40.41 0.00 0.61
portrait bw 41.59 0.00 0.63
cafe bw 44.67 0.00 0.68
basket bw 14.97 0.18 0.22
bicycle bw 36.67 0.00 0.56
musicians bw 43.07 0.00 0.65

The results are shown in table F.1. It was found that for the basket, cafe and
musicians images both null hypotheses could be rejected for the color images, mean-
ing that the rank ordering by the subjects was not random and the responses by
the subjects were not independent. For the other two images, this was only found
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Gamma experiment: Friedman two-way analysis of variance and Kendall

Coefficient of Concordance

Table F.2: The Friedman rank order coefficient and the Kendall Coefficient of Concordance
for subsets of the subjects. For the ranges in this table the null hypothesis could not be
rejected for the total range. The values for which the null hypothesis cannot be rejected
are given in italic.

subjects Friedman p < Kendall
portrait color quality 1 2 3 20.33 0.04 0.62
portrait color quality 4 7 8 29.41 0.00 0.89
bicycle color quality 1 2 3 10.38 0.50 0.31
bicycle color quality 4 7 8 14.69 0.20 0.45
basket bw quality 1 2 3 9.77 0.55 0.30
basket bw quality 4 7 8 7.56 0.75 7.56
basket bw naturalness 1 2 3 23.72 0.01 0.72
basket bw naturalness 4 7 8 21.00 0.03 0.64
portrait color quality 1 4 7 14.08 0.23 0.43
portrait color quality 2 3 8 7.26 0.78 0.21
bicycle color quality 1 4 7 23.82 0.01 0.72
bicycle color quality 2 3 8 28.33 0.00 0.86
basket bw quality 1 4 7 13.21 0.28 0.40
basket bw quality 2 3 8 11.00 0.44 0.33
basket bw naturalness 1 4 7 21.00 0.03 0.63
basket bw naturalness 2 3 8 29.82 0.00 0.90
portrait color quality 1 3 7 20.44 0.04 0.62
portrait color quality 2 4 8 5.21 0.92 0.16
bicycle color quality 1 3 7 6.64 0.83 0.20
bicycle color quality 2 4 8 20.44 0.04 0.62
basket bw quality 1 3 7 23.41 0.02 0.71
basket bw quality 2 4 8 26.23 0.01 0.79
basket bw naturalness 1 3 7 15.26 0.17 0.46
basket bw naturalness 2 4 8 28.18 0.00 0.85

if the subjects were split in two groups. In table F.2, the Friedman rank order coef-
ficient and the Kendall Coefficient of Concordance are given for several subgroups
of subjects. It can be seen that for all ranges the set of subjects can be divided
into two subsets of images that are significant. However, these subsets differ for the
different ranges.

For the naturalness responses the results are shown in table F.3 For all images,
except the basket black-and-white image, both null hypotheses could be rejected.
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Table F.3: The Friedman rank order coefficient and the Kendall Coefficient of Concordance
for the naturalness experiment. The values for which the null hypothesis cannot be rejected
are given in italic.

Friedman p < Kendall
portrait color 21.49 0.03 0.33
cafe color 44.49 0.00 0.67
basket color 43.03 0.00 0.65
bicycle color 31.05 0.00 0.47
musicians color 31.64 0.00 0.47
portrait bw 40.59 0.00 0.62
cafe bw 43.41 0.00 0.66
basket bw 19.26 0.06 0.29
bicycle bw 21.44 0.03 0.32
musicians bw 39.03 0.00 0.59
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Appendix G

Gamma & chroma experiment:
Friedman two-way analysis of
variance and Kendall Coefficient of
Concordance

Using the Friedman two-way analysis of variance by ranks and the Kendall Co-
efficient of Concordance two hypotheses are tested. The first null hypothesis is
that the 16 images in this experiment have been drawn from the same population.
The second null hypothesis is that there are no correlations between the subjects
[Siegel and Castellan, 1988, StatSoft, 2000]. The methods are discussed in subsec-
tion 4.4.2.

The results are given in table G.1. It was found that for all experiments both
null hypothesis could be rejected for all subjects, meaning that the rank ordering
returned by the subjects was not random and that the responses by the subjects
were not random.
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Gamma & chroma experiment: Friedman two-way analysis of variance and

Kendall Coefficient of Concordance

Table G.1: The Friedman rank order coefficient and the Kendall Coefficient of Concor-
dance for the quality (upper part) and the naturalness (lower part) experiment. Note that
values for which the null hypothesis cannot be rejected are given in italic.

Quality
Friedman p < Kendall

portrait 124.29 0.00 0.24
cafe 86.69 0.00 0.52
basket 54.22 0.00 0.36
bicycle 70.95 0.00 0.30

Naturalness
Friedman p < Kendall

portrait 90.63 0.00 0.40
cafe 77.48 0.00 0.34
basket 62.92 0.00 0.28
bicycle 58.05 0.00 0.21
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Summary

This thesis is concerned with the topic of perceptual image quality. Our visual
communication is mainly based on images, either natural or synthetic. Humans are
able to judge whether an image is a good image. However, for many applications
it would be faster to estimate the quality of images using a computer. The major
goal of this thesis is to find an objective measure for the quality of a printed image
that corresponds to perceptual image quality.

In addition to this major goal some closely related, secondary goals are defined as

Improving insight in the complex topic of perceptual quality. When estimating
the quality, does a subject evaluate the image as a whole or only sub-parts of
the image? How do current ideas about the relation between naturalness and
quality hold up for various sets of printed images?

Determining the relation between perceptual attributes and image quality. How
does the quality depend on certain perceptual attributes of the image, such
as sharpness and color distribution?

Developing methods for color image processing. How can we optimize tools used
for grey-value images, when these are applied to color images?

In chapters 2, 3 and 4 the theoretical background and experimental approach for
this study are presented. In chapter 2 we give a short overview of how color can
be quantified and what color variables are used. Chapter 3 reviews some of the
current image quality models. A distinction is made between image fidelity models,
where the quality of an image is related to a reference or an ideal model, and image
quality models, where the quality is modeled directly, independent of any physical
reference. In chapter 4 the methods and materials used in our experiments are
presented. The topics discussed in that chapter include: how to characterize and
calibrate a printer, what images can be used for this kind of experiments, and how
to design experiments in which the measuring instrument is the human observer.

We have performed four groups of experiments, which are described in chapter 5, 6,
7 and 8. In chapter 5 we report new measures for sharpening and smoothing. These
measures depend on the relation between the gradient magnitude of the pixels in
the original image and the filtered image, respectively. The resulting sharpening
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and smoothing measure correlated reasonably well with human perception. This
means that these measures can be used to obtain an objective prediction of sharp-
ening and smoothing. Because the subjects had less trouble with different levels of
smoothing than with different levels of sharpening, the just noticeable difference of
the smoothing measure must be smaller than that of the sharpening measure. The
preference of the different images was also tested as a measure for quality. For these
images, subjects prefer images in which the smoothing is low and the sharpening is
high.

In these experiments, problems arise for images in which parts of the image require
different sharpening and/or smoothing values. Because some parts of an image
seemed more important for the image quality than others, the subjects based their
overall decision on the evaluation of different parts of the image. This problem may
be solved by an approach in which the measure is based on the results of subparts
of the image. A complicating factor for this approach is, that it is unclear how to
select the different subparts of the image.

In chapter 6 we report a new measure for describing the sharpness of an image,
that is, as a feature of the image itself, rather than in relation to some original
image. We proposed a sharpness measure for which lines and derivatives of edges
are modeled as Gaussian profiles with different width. Lines and edges in the image
are located, and their sharpness is determined by fitting the Gaussian line or edge
profile to the Gaussian derivative signature. The sharpness measures depend on
the width that is found. The resulting sharpness measures correlated reasonably
well with human perception, so these measures can be used to obtain an objective
prediction of the perceptual sharpness.

All sharpness and sharpening experiments were based on three different filters:
Gaussian smoothing filters, unsharp masking filters and anisotropic diffusion filters.
For all measures, we would expect that the results would also apply for certain other
filters. Of course, these filters should alter the image in such a way, that the result
is more or less “natural” to an observer.

The second perceptual attribute we studied was color, in particular the effect of
two different color distribution manipulations of the image. In chapter 7 we report
experiments on the effect of changing the luminance distribution of the image by
a gamma manipulation. The chromaticity of the colors was kept constant. We
studied the perceptual quality and naturalness of these images. In contrast to the
literature [Roufs, 1989], we found for some images distinct differences between the
subject responses. So, depending on the type of image, individual preferences may
differ, even when explicitly looking for a uniform perceptual quality.

We found, as expected, that the quality and naturalness of all images depended on
gamma. The dependency on gamma is influenced by the image that is evaluated.
This could be due to the fact that the images are very different in lightness distri-
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bution. The content was also very different, some images contained many so-called
memory colors 1 and some had only a few memory colors. The gamma manipulation
of the luminance also has an effect on the chroma, and therefore on the colorfulness
of the image. Some images, for instance images that do not contain many colors,
may benefit from more luminance contrast, but for other images the colorfulness
may be more important than the luminance contrast. Using linear regression, we
found that we could predict the quality of the images using the discriminability
measure of the usefulness-naturalness model [Janssen and Blommaert, 2000b] in
combination with the measured perceptual naturalness. The usefulness-naturalness
model uses a naturalness measure, based on the memory colors of skin, grass or sky.
We could not use that measure, because not all images in our set contained these
colors. In conclusion, manipulation of the color distribution has a significant effect
on perceptual quality. Subject responses are predictable in the sense that their
effect on perceived quality shows a clear maximum; such predictability can be used
for creating an overall objective quality measure. On the other hand, matters are
complicated, because of individual preference.

In chapter 8 we present results of experiments in which both the chroma was scaled
and the luminance distribution was varied by a gamma manipulation. In this
experiment, the subjects did behave as one group, yielding closely corresponding
responses to the experimental stimuli. As expected, both the gamma and chroma
scaling affected perceptual quality. The gamma setting has a greater influence on
the perceptual quality than the chroma scaling in this experiment. This can be
caused by perceptual more relevant differences in gamma setting than in chroma
scaling. Another explanation may be found in the fact that in natural environments
gamma manipulation does not occur naturally, whereas chroma scaling may occur.
Another possible explanation may be found in intrinsic differences in the stimulus
production. The gamma manipulation is non-linear with fixed minimum and max-
imum luminance, whereas the chroma manipulation is achieved by a linear scaling
factor, in combination with a fixed minimum. Using the discriminability measure
of the usefulness-naturalness model [Janssen and Blommaert, 2000b] and our mea-
sure of subjective naturalness, we could not convincingly predict the quality of the
gamma and chroma manipulated images (only 44% of the variance was explained).
So, although this manipulation of the color distribution also has a significant effect
on perceptual quality, the subject responses are not so predictable. On the other
hand, effects of individual preferences were not found.

We studied image quality of images reproduced by a printer. However, images may
seem very different when displayed on a monitor. One of the major differences
between a printer and a monitor is the gamut, that is, the envelope of colors in
color space that determine the limitations of the displaying device.2 Nevertheless,

1Memory colors are colors that are recalled in association with familiar objects in long-term memory
[Bartleson, 1968], such as the green of grass or the yellow of a banana.

2Another major difference is that a monitor generates its own colors, whereas the colors on a print are
made by reflecting the light. This difference is not taken into account.
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standard image enhancement techniques do not take the gamut into account. In
the last part of this thesis we evaluate how we can incorporate the gamut into
achromatic enhancement of color images (chapter 9) and how this affects image
quality (chapter 10). In this way, some of the differences between images displayed
on a monitor and printed images can be taken into account.

In chapter 9 a generic method is described to use grey value image processing al-
gorithms for color image processing. The grey value algorithm is applied to the
lightness component of the color image in such a way that the colors of the image
can still be rendered. The result of an image processing step can be seen as a point
for point correction of the original image. We propose that the maximum and min-
imum lightness correction should depend on the available gamut space in a chosen
direction. The proposed lightness correction is a function of the original color point,
the desired lightness correction and the maximum and minimum lightness correc-
tions. Because of the monotonic character of the lightness correction, all points that
are physically different before the lightness correction remain different. However, in
the case of lightness compression, differences that are physically still present, may
nevertheless become invisible when they fall below the visual threshold.

The method was tested for two grey value image processing algorithms: sharpening
and contrast improvement using gamma manipulation. For both applications, the
recipes for which the chroma was kept constant gave the best results.

In chapter 10 an outline for a quality measure is suggested. This quality measure is
useful to select the best image of a series of images that only differ in the distribution
of the lightness. We found in chapter 9, that improvements in image quality within
the gamut are best done in such a way that manipulations should mainly be confined
to the achromatic domain. This leaves lightness (or luminance), rather than hue
and chroma as the best choice for quality improvement.

We speculated that an image in which the colors fill the available gamut space
relatively homogeneously have a higher quality than an image for which this is not
the case. The basis for that idea is that a more homogeneous distribution allows
for more discriminable nuances. The homogeneity can be expressed in a number
varying between 0 and 1. The measure is one for a center of mass that is located
exactly between the upper gamut boundary and the lower gamut boundary. We
consider this position optimal because the lightness nuances surrounding that point
can be stretched over equal ranges of lighter and darker tones. For all other center
of masses, the measure is smaller than one. The results of preliminary tests with
such a model on three small images are promising.
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Het onderwerp van dit proefschrift is perceptieve beeldkwaliteit. Onze visuele com-
municatie is vooral gebaseerd op beelden, zowel op natuurlijke als op synthetische
beelden. Mensen zijn uitstekend in staat om te beoordelen of de kwaliteit van een
beeld ook echt goed is. Voor veel applicaties zou het echter sneller en goedkoper
zijn om de kwaliteit van een beeld met een computer te bepalen. Het hoofddoel van
dit proefschrift is om een objectieve maat voor de kwaliteit van een geprint beeld
te vinden, die goed correleert met perceptieve beeldkwaliteit.

Naast dit hoofddoel zijn een aantal gerelateerde doelstellingen bepaald:

Het verbeteren van het inzicht in het complexe onderwerp van perceptieve beeld-
kwaliteit. Is de kwaliteitsbepaling van personen gebaseerd op het gehele beeld
of op bepaalde gedeelten van het beeld? Hoe goed zijn bestaande ideeën over
the relatie tussen natuurlijkheid en kwaliteit toepasbaar voor verschillende
sets van geprinte beelden?

Het bepalen van de relatie tussen perceptieve attributen en beeldkwaliteit. Hoe
hangt de kwaliteit van perceptieve variabelen af, zoals van scherpte en kleur-
distributie?

Het ontwikkelen van methodes voor kleurenbeeldbewerking. Hoe kunnen we
bestaande beeldbewerkingmethoden voor grijswaardenbeelden zo goed mo-
gelijk toepassen op kleurenbeelden?

In de hoofdstukken 2, 3 en 4 worden de theoretische achtergronden en de experi-
mentele aanpak van deze studie besproken. In hoofdstuk 2 wordt een korte intro-
ductie gegeven over hoe kleur gekwantificeerd kan worden en worden de gebruikte
kleurenvariabelen gëıntroduceerd. In hoofdstuk 3 worden een aantal bestaande
beeldkwaliteitsmodellen besproken. Er wordt hier onderscheid gemaakt tussen be-
trouwbaarheidsmodellen, waar de kwaliteit van een beeld afhangt van een referentie-
beeld of een origineel beeld, en beeldkwaliteitsmodellen, waarmee de kwaliteit van
een beeld onafhankelijk van een fysieke referentie “gemeten” kan worden. In hoofd-
stuk 4 worden de methodes en materialen gepresenteerd die gebruikt zijn in de
experimenten, waarin de mens het meetinstrument is. In dit hoofdstuk wordt ook
besproken hoe een printer gekarakteriseerd en gekalibreerd kan worden en wat voor
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beelden gebruikt worden in de experimenten.

Er werden vier experimenten uitgevoerd, die worden besproken in de hoofstukken 5,
6, 7 en 8. In hoofdstuk 5 bespreken we nieuwe maten voor opscherping en effening.
Deze maten zijn afhankelijk van de relatie tussen de magnitude van de gradiënt van
de pixels in het originele beeld enerzijds en de magnitude van de gradiënt van de
pixels in het gefilterde beeld anderzijds. De gevonden opscherpings- en effenings-
maten bleken goed genoeg te correleren met de menselijke perceptie, om gebruikt
te kunnen worden als voorspellers van de subjectief waargenomen verschillen tussen
de testbeelden.

Omdat de proefpersonen minder moeite hadden met het onderscheiden van de
verschillende niveaus in effening dan in opscherping, concluderen we dat de scha-
ling van de twee maten niet perceptief gelijk is. Het nog juist-onderscheidbare-
verschil in de effening, uitgedrukt in de effeningsmaat, is kleiner dan het nog-juist-
onderscheidbare verschil in opscherping, uitgedrukt in de opscherpingsmaat. Ook
hebben we de proefpersonen gevraagd naar het beste plaatje uit een serie van ver-
schillende opscherping en effening. De proefpersonen prefereerden beelden waarin
de effening klein was en de opscherping groot.

Er ontstonden problemen voor beelden waarin delen van het beeld verschillende
opscherpings- of effeningswaarde hadden. De proefpersonen bepaalden hun oordeel
op sommige van deze delen. Helaas vonden de proefpersonen niet altijd dezelfde
delen van het beeld belangrijk. Door de maat te baseren op een beperkt aantal delen
van het beeld kan dit probleem enigszins opgelost worden. Een complicerende factor
is dat de belangrijke delen in het beeld dan wel geselecteerd moeten worden.

In hoofdstuk 6 wordt een nieuwe maat voor de scherpte van een beeld beschreven.
Met deze maat wordt de scherpte bepaald als kenmerk van het beeld zelf, in plaats
van in verhouding tot een origineel beeld. Lijnen en afgeleiden van randen wor-
den hier gemodelleerd als Gaussische profielen met verschillende breedte. Nadat de
lijnen en randen in het beeld gedetecteerd zijn, wordt de scherpte ervan bepaald
door de afgeleide van het profiel te “fitten” aan de afgeleiden van lijnen en ran-
den. De voorgestelde scherptemaat wordt bepaald door de gevonden breedte. De
resulterende scherptemaat correleerde redelijk goed met de menselijke perceptie, en
kan dus gebruikt worden om een objectieve voorspelling van perceptieve scherpte
te doen.

Alle scherpte- en opscherpingsexperimenten zijn gebaseerd op drie verschillende
filters: Gaussische effeningsfilters, “unsharp masking” filters en anisotrope diffusie
filters. We verwachten dat alle voorgestelde maten ook zouden moeten werken voor
andere filters, althans wanneer deze filters het beeld zo veranderen, dat mensen het
resultaat min of meer natuurlijk vinden.

In hoofdstuk 7 en 8 wordt een tweede perceptieve kenmerk bestudeerd, namelijk
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kleur, dat wil zeggen het effect van twee verschillende operaties die de kleurdis-
tributie van het beeld veranderen. In hoofdstuk 7 worden experimenten beschreven
waarin het effect van luminantieverandering door gamma-manipulatie centraal staat.
Hierbij bleef de chromaticiteit (x, y, “kleur”) constant. Met behulp van proefperso-
nen is de perceptieve kwaliteit van verschillende beelden bepaald. In tegenstelling
tot resultaten uit de literatuur [Roufs, 1989], hebben we voor een aantal beelden
duidelijke verschillen tussen de voorkeuren van proefpersonen gevonden. Individu-
ele voorkeuren van mensen kunnen dus verschillen, zelfs wanneer het experiment
erop is gericht een relatief eenvoudige variabele, gamma, te isoleren.

Zoals verwacht, bleek de kwaliteit en natuurlijkheid van een beeld af te hangen van
de gamma waarmee het beeld gemaakt is. Deze afhankelijkheid van gamma verschilt
per testbeeld. Dit kan verklaard worden door grote verschillen in de verdeling van
de lichtheid in de testbeelden. De inhoud was ook erg verschillend, sommige beelden
bevatten veel zogenoemde geheugenkleuren3, waar andere beelden er maar een paar
hadden.

De gamma-manipulatie bëınvloedt de chroma (C∗), en daardoor de kleurigheid van
het beeld. Sommige beelden, zoals beelden die weinig kleuren bevatten, kunnen iets
winnen met meer luminantiecontrast, maar voor andere beelden kan de kleurigheid
juist belangrijker zijn dan het luminantiecontrast.

Met lineaire regressie kon worden aangetoond dat de kwaliteit van de beelden
redelijk goed voorspeld kan worden met de onderscheidbaarheidsmaat van het
bruikbaarheid-natuurlijkheid-model [Janssen and Blommaert, 2000b], in combinatie
met de gemeten perceptieve natuurlijkheid. In het bruikbaarheid-natuurlijkheid-
model zit een natuurlijkheidsmaat, die gebaseerd is op de geheugenkleuren van huid,
gras en lucht. Omdat niet alle gebruikte beelden tenminste een van deze kleuren ge-
bruikten, konden wij deze maat niet gebruiken. Gebruik makend van de perceptief
gemeten natuurlijkheid bleek het effect van gamma op de waargenomen kwaliteit
een duidelijk maximum te vertonen, waardoor de oordelen van de proefpersonen
enigszins voorspelbaar worden. Deze voorspelbaarheid kan gebruikt worden voor
een algemene objectieve kwaliteitsmaat. Aan de andere kant wordt de zaak gecom-
pliceerd door individuele voorkeuren.

In hoofdstuk 8 worden experimenten beschreven waarin de luminantie distributie is
veranderd met een gamma-manipulatie en tegelijkertijd de chroma geschaald is. In
dit experiment gedroegen de proefpersonen zich wel als een homogene groep, dat
wil zeggen, er zijn geen significante verschillen tussen de proefpersonen gevonden.
De kwaliteit werd zowel door de gamma- als door de chroma-schaling bëınvloed.
De waarde van gamma had echter een veel grotere invloed op de kwaliteit dan
de waarde van chroma. Dit zou verklaard kunnen worden door het feit, dat in

3Geheugenkleuren zijn kleuren die geassocieerd worden met bekende objecten en opgeslagen in zijn het
lange-termijngeheugen [Bartleson, 1968], zoals het groen van gras of het geel van een banaan.
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natuurlijke omgevingen gamma-manipulatie niet optreedt en chroma-schaling wel.
Gamma manipulatie zal dus al snel als onnatuurlijk worden ervaren. Een andere
mogelijke verklaring zou gevonden kunnen worden in intrinsieke verschillen bij het
maken van de beelden. De gamma-manipulatie is niet lineair, terwijl de minimale
en maximale luminantie vast staan. De chroma-manipulatie is een lineaire schaling,
waarbij alleen het minimum vaststaat.

In tegenstelling tot de resultaten van het gamma-experiment, lieten de kwaliteits-
beoordelingen in het gamma- en chroma-experiment zich niet goed voorspellen
door de onderscheidbaarheidsmaat van het bruikbaarheid-natuurlijkheid-model en
de gemeten subjectieve natuurlijkheid; niet meer dan 44 % van de variantie kon ver-
klaard worden. Kennelijk heeft deze manipulatie van de kleurendistributie ook een
significant effect op de perceptieve kwaliteit. De voorkeuren van de proefpersonen
waren niet zo voorspelbaar, ondanks het uitblijven van individuele voorkeuren.

Dit onderzoek houdt zich bezig met de beeldkwaliteit van beelden die gerepro-
duceerd worden met een printer. Dezelfde beelden kunnen er echter op een beeld-
scherm heel anders uitzien, een probleem dat centraal staat bij het ontwikkelen van
color management systemen. Een van de belangrijkste oorzaken van het verschil
in monitor- en printer-beeld is het verschil in kleurenbereik, doorgaans aangeduid
als de gamut.4 De standaard beeldbewerkingtechnieken nemen (de beperkingen
van) deze gamut niet mee. In het laatste gedeelte van dit proefschrift hebben we
onderzocht hoe de gamut wel meegenomen kan worden in de achromatische verbe-
tering van kleurenbeelden (hoofdstuk 9) en hoe dat uitwerkt voor de beeldkwaliteit
(hoofdstuk 10). Hierbij gebruiken we lichtheid in plaats van luminantie, omdat
lichtheid eenvoudiger samen met kleurtint te gebruiken is.

In hoofdstuk 9 introduceren we een generieke methode waarmee beeldbewerkings-
algoritmes voor grijswaardenbeelden gebruikt kunnen worden voor kleurenbeeldbe-
werking. Het grijswaarden-algoritme wordt toegepast op de lichtheidcomponent in
het beeld op zo’n manier dat het beeld nog steeds met de juiste kleuren weergegeven
kan worden. Het resultaat van een beeldbewerkingstap kan gezien worden als een
puntsgewijze correctie van het originele beeld. In ons voorstel hangen de maxi-
male en minimale lichtheidcorrectie voor een pixel af van de beschikbare gamut in
een bepaalde richting. De voorgestelde lichtheidcorrectie wordt bepaald door het
originele punt, de gewenste lichtheidcorrectie en de maximale en minimale licht-
heidscorrecties. Omdat de lichtheidcorrectie monotoon is, zijn alle punten die voor
de beeldbewerkingsstap verschillend waren na deze stap nog steeds verschillend.
Verschillen die fysiek nog steeds aanwezig zijn, zouden echter toch niet zichtbaar
kunnen zijn als ze onder de visuele drempel vallen.

4Een ander groot verschil tussen een monitor en een printer is dat een monitor zijn eigen kleuren maakt,
terwijl de kleuren op een print ontstaan doordat het omgevingslicht dat op de print valt gereflecteerd wordt.
Dit verschil tussen monitors en printers wordt niet meegenomen.
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De voorgestelde methode is getest met twee (grijswaarden-)beeldbewerkingsalgorit-
mes: opgescherping en contrast-verbetering met behulp van een gamma-manipulatie.
Voor beide methodes werd het beste resultaat bereikt als de chroma constant
gehouden werd.

In hoofdstuk 10 wordt een aanzet gegeven voor het ontwikkelen van een kwaliteits-
maat. Deze kwaliteitsmaat kan gebruikt worden om uit een serie beelden die uit-
sluitend verschillen in lichtheidsdistributie, de beste te selecteren. In hoofdstuk 9
laten we zien dat men bij lichtheidsmanipulaties het beste de chroma constant
kan houden. Dit betekent dat lichtheid het beste onafhankelijk gemanipuleerd kan
worden van kleurtint of chroma.

Het idee achter de kwaliteitsmaat is dat een beeld, waarin de punten de beschikbare
gamut ruimte relatief homogeen vullen, een hogere kwaliteit heeft dan een beeld
waarvoor dit niet het geval is. Deze veronderstelling gaat ervan uit dat een homo-
genere distributie meer onderscheidbare nuances bevat. De mate van homogeniteit
kan worden uitgedrukt in een getal dat varieert tussen 0 en 1. De maat heeft de
waarde 1 voor een zwaartepunt dat precies tussen de twee randen van de gamut
ligt. We beschouwen deze positie als optimaal omdat de lichtheids nuances die om
dit punt liggen uitgestrekt kunnen worden over gelijke ranges van lichte en donkere
kleuren. Voor alle andere posities van het zwaartepunt is de voorgestelde maat
kleiner. De eerste resultaten van dit kwaliteitsmodel op drie kleine beelden zijn
veelbelovend.
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