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Executive summary 

Several approaches for (multiple) imputation of multivariate data have been proposed recently. 
Schafer (1997) presents a methodology to describe the data by an encompassing multivariate 
model, derives theoretically sound posterior distributions under this model, and draws imputa-
tions from these by Gibbs sampling and other methods. The transcan function (Alzola & 
Harrell, 1999) imputes each incomplete variable by cubic spline regression given all other vari-
ables.  

Multivariate Imputation by Chained Equations (MICE) is an attempt to combine the most attrac-
tive aspects of both approaches. The MICE user specifies a conditional distribution for the miss-
ing data in each incomplete variable, for example in the form of a linear or (polytomous) logistic 
regression of the incomplete column given a set of predictors. Predictors themselves can be 
incomplete. It is assumed that a multivariate distribution exists from which these conditional 
distributions can be derived, and that iterative Gibbs sampling from the conditionals can generate 
draws from it.  

The algorithm is implemented as an S-PLUS function. For each incomplete variable the user can 
choose a set of predictors that will be used for imputation. This is useful for imputing large data 
sets containing hundreds of variables. Passive imputation is a built-in feature that takes care that 
transformed data are always in sync with their original values. This can be used, for example, to 
impute categorical variables along with their dummies (needed for imputing other variables). In 
addition, the user can alter the visiting scheme of the Gibbs sampler, or plug-in his or her own 
imputation method. Features like these make it easy to include complex imputation constraints in 
a practical but principled way. 

Key words:  
item nonresponse, Gibbs sampler, large data sets, multiple imputation, imputation strategy 
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1 Introduction 

Nonresponse in surveys can cause substantial loss of information in analysis of multivariate data. 
For example, suppose that one wishes to fit a regression model on survey data with 10 explana-
tory variables, and that each of these has randomly 10% of missing entries. Then, on the average 
65 percent of the units will have at least one missing value. Besides potential problems regarding 
selective nonresponse, it will be clear that simply deleting incomplete records amounts to sub-
stantial losses of costly collected data. 

Multiple imputation (Rubin 1987, 1996) is one of the best, currently available and general tech-
niques to deal with nonresponse. Rubin’s book, however, does not contain methods for imputing 
multivariate data, as is typical in surveys. Specific practical problems in multivariate data impu-
tation are: 

• For large sets of data, it is necessary to select a sensible set of potential predictor variables 
used for imputation; 

• Predictors themselves may be incomplete, leading to a cascade of imputation problems; 

• Circularities may occur, where Y1 is imputed given Y2, and Y2 given Y1; 

• The order in which data are imputed can be meaningful, e.g. in experiments with repeated 
measurements; 

• Transformed versions of imputed data might be needed, e.g. Y1 and log(Y1), or continuous 
and discretized versions of the same data; 

• Variables can have different measurement levels: nominal, ordinal or interval; 

• The optimal imputation model may be nonlinear, and could contain interaction terms; 

• The units could be weighted to account for the sampling design; 

• The complete data models applied to the imputed multivariate data could be quite different. 

Several approaches to imputing multivariate data have been developed over the last decade. Li 
(1988) and Rubin and Schafer (1990) presented techniques for generating multivariate multiple 
imputations. Both are Bayesian simulation algorithms that draw imputations from the posterior 
predictive distribution of the missing data given the observed data. The Rubin-Schafer method 
assumes that the data have a multivariate normal distribution and are missing at random. Schafer 
(1997) applied the underlying principle to other multivariate distributions, and derived imputation 
algorithms for multivariate numerical, categorical and mixed data. Though theoretically sound, 
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these methods rest on distributional assumptions that may sometimes be unrealistic in practice 
(e.g. assuming normality of a binary variable). 

The S-PLUS transcan function (Alzola & Harrell 1999) represents a somewhat different 
approach to multivariate imputation. The function imputes each incomplete variable by cubic 
spline regression given all other variables, thus without assuming that the data can be modeled by 
a multivariate probability distribution. Though conceptually easy and flexible, the transcan algo-
rithm lacks a sound theoretical rationale, so it is unknown whether the generated imputations are 
proper in the sense of Rubin (1987). 

This paper describes a method that combines the most attractive aspects of both approaches. The 
method is called Multivariate Imputation by Chained Equations (MICE). It assumes that, for 
each incomplete variable, the user specifies a conditional distribution for the missing data given 
the other data. For example, logistic regression could be used for incomplete binary variables, 
polytomous regression for categorical data, and linear regression for numerical data. Under the 
assumption that a multivariate distribution exists from which these conditional distributions can 
be derived, MICE constructs a Gibbs sampler from the specified conditionals. This sampler is 
used to generate multiple imputations. A number of papers document the method (Van Buuren et 
al. 1999; Brand 1999). 

The present paper describes the major functions in the S-PLUS library MDM, which stands for 
Missing Data Machine. The library is available on-line at our website http://www.multiple-
imputation.com. We note that, for those that use SAS, a program called IVEWARE (Raghuna-
than et al. 1999) implements an approach that is related to ours. IVEWARE is geared toward 
imputing data with mixed measurement levels. Like our method, the IVEWARE algorithm 
iterates over the variables and requires only a specification of each conditional distribution of 
missing data. Many details in the implementation differ however. 
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2 Method 

2.1 Multiple imputation 

Multiple imputation is a statistical technique for analyzing incomplete data sets. The main idea is 
that each missing value is replaced by several (m) values, thus producing m imputed data sets. 
The differences between these data sets reflect the uncertainty of the missing values. Each im-
puted data set is analyzed by standard complete-data procedures, which ignore the distinction 
between real and imputed values. The m resulting analyses are then combined into one final 
analysis. Figure 1 illustrates the flow of operations in multiple imputation. 

 

 

 

 

 

 

 

Figure : Schematic representation of the steps in multiple imputation. The process starts with an incom-
plete data set (on the left side), which is imputed m times (m=3 here) thus creating m  completed 
data sets. Each complete data set is analyzed by using standard complete-data software, thus re-
sulting in m analysis results. Finally, these m results are pooled into one final result that ade-
quately reflects the amount of uncertainty in the estimates. 

The primary advantage of multiple imputation is that it leads to valid statistical inferences in the 
presence of nonresponse. A second advantage is that only familiar complete-data software is 
needed to analyze the data.  

Despite these virtues, the application of multiple imputation is not without problems. Though 
simple and sound procedures exist for pooling the m analyses, generating proper multiple imputa-
tions is not a trivial task. In practical applications, a major difficulty is the derivation of an ap-
propriate predictive distribution from which imputations are to be drawn. Closed form analytic 
solutions are often unavailable, and some form of iterative algorithm is needed. The algorithm 

incomplete 
data 

mutiply 
imputed data 

analysis 
results 

final results 

IMPUTATION ANALYSIS POOLING



TNO report  

PG/VGZ/99.054  9 

 

given in the next section requires only the specification of conditional distribution for the missing 
data in each incomplete variable.  

2.2 MICE imputation algorithm 

Let X = (X1, X2,…, Xk) be a set of k random variables, where each variable Xj = (Xj
obs, Xj

mis) may 
be partially observed, with j = 1,…,k. The imputation problem is to draw from P(X), the uncondi-
tional multivariate distribution of X. Let t denote an iteration counter. Assuming that data are 
missing at random (MAR), one may repeat the following sequence of Gibbs sampler iterations: 

 For X1: draw imputations X1
t+1 from P(X1 | X2

t, X3
t,…, Xk

t) 

 For X2: draw imputations X2
t+1 from P(X2 | X1

t+1, X3
t,…, Xk

t) 

 : 

 For Xk: draw imputations Xk
t+1 from P(Xk | X1

t+1, X2
t+1,…, Xk-1

t), 

i.e., condition each time on the most recently drawn values of all other variables. Properties of 
this general iteration scheme have been described by Gelfand and Smith (1990). Rubin and 
Schafer (1990) show that if P(X) is multivariate normal, then iterating linear regression models 
like X1 = X2

tβ12 + X3
tβ13 + … + Xk

tβ1k + ε1 with ε1 ~ N(0, σ1
2) will produce a random draw from 

the desired distribution. Schafer (1997) generalizes this result to other multivariate distributions.  

The implemented algorithm differs slightly from Schafer's approach in that the conditional mod-
els can be specified directly, thus without the need to choose an encompassing multivariate 
model for the entire data set. It is assumed that a multivariate distribution exists, and that draws 
from it can be generated by iteratively sampling from the conditional distributions. In this way, 
the multivariate problem is split into a series of univariate problems. Similar ideas have been 
applied by Kennickell (1991), Brand (1999) and Van Buuren et al (1993, 1999). The approach is 
also known as regression switching or variable-by-variable imputation. 

It is not always certain whether the multivariate distribution actually exists. It is possible that the 
specification of two conditional distributions P(X1|X2) and P(X2|X1) are incompatible, so that no 
joint distribution P(X1, X2) exists. Since there is no distribution to converge to, the algorithm will 
then alternate between isolated conditional distributions. In the linear case, this is probably more 
an exception than a rule. The subject of incompatible conditionals is, however, still an open 
research problem. Brand (1999) studied the performance of a variety of regression switching 
algorithms based on possibly incompatible conditionals, with quite encouraging results. 
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2.3 Specification of the imputation model 

The most complex step in multiple imputation is the specification of the imputation model. As a 
general rule, using every available bit of available information yields multiple imputations that 
have minimal bias and maximal certainty. It is desirable that the algorithm produces imputations 
that preserve the structure in the data, as well as the uncertainty about this structure. Ideally, the 
complete-data model plays no role in imputation: a data set is multiply imputed only once, and 
will subsequently be used for any purpose. Such imputations are called mindless and a method 
that produces them is called a mindless method (Van Buuren et al 1993, 1994). In practice, 
achieving global mindless imputations (i.e. imputation suited for any purpose) is problematic 
since the imputation model may have excluded the relationship of interest. Following this line of 
reasoning, the number of predictors used for imputation should be chosen as large as possible. In 
addition, a large set of predictors tends to make the MAR assumption more plausible, thus reduc-
ing the need to make special adjustments for mechanisms that are not MAR. 

In its extreme form, every variable will imputed from all other variables in the data using the 
most general model. In practice however, data sets often contain several hundreds of variables, 
all of which are potential predictors. It is not feasible (because of multicollinearity, computational 
and empty cell problems) to include all these variables. It is also not necessary. The increase in 
explained variance in linear regression is typically negligible after the best, say, 15 variables have 
been included. For imputation purposes, it is expedient to select a suitable subset of data that 
contains no more than 15 to 25 variables. Van Buuren et al (1999) provide the following strategy 
for selecting predictor variables from a large data base: 

1. Include all variables that appear in the complete-data model. Failure to do so may bias the 
complete-data analysis, especially if the complete-data model contains strong predictive rela-
tions.  

2. In addition, include the variables that appear in the response model. Factors that are known to 
have influenced the occurrence of missing data (stratification, reasons for nonresponse) are to 
be included on substantive grounds. Others variables of interest are those for which the dis-
tributions differ between the response and nonresponse groups.  

3. In addition, include variables that explain a considerable amount of variance of the target 
variable. Such predictors help to reduce the uncertainty of the imputations. 

4. Remove from the variables selected in steps 2 and 3 those variables that have too many 
missing values within the subgroup of incomplete cases.  

Note that predictors may be incomplete themselves. In principle, one could apply the above 
modeling steps for each incomplete predictor in turn, but this may lead to a cascade of auxiliary 
imputation problems. In doing so, one runs the risk that every variable needs to be included after 
all. In practice, there is often a small set of key variables for which imputations are needed, which 
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suggests that steps 1 through 4 are to be performed for key variables only. This was the approach 
taken in Van Buuren et al (1999), but it may miss important second level predictors in the data. A 
safer and more efficient, though more laborious, strategy is to perform the modelling steps for all 
incomplete level-1 predictors. This is done in Oudshoorn et al. (1999). We expect that it is rarely 
necessary to go beyond this level. 

The mice() function of the MDM library features predictor selection. For each incomplete 
variable, the user can specify which predictors are used to generate the imputations. In addition, 
the statistical imputation model can be specified for each predictor.  

2.4 Monitoring convergence 

The Gibbs sampler is not a conventional algorithm in the sense that a particular criterion value is 
optimised. The Gibbs sampler aims for convergence in distribution, which is more difficult to 
assess than convergence in value. According to Gelman and Rubin (1992), the best method is to 
examine parallel sequences of the Gibbs sampler for a set of model parameters. At convergence, 
the sequences should overlap and be free of trend. Convergence is diagnosed when the variance 
between different sequences is no larger than the variance with each individual sequence. 

The MICE algorithm creates m multiply imputed matrices in parallel, so it is possible to monitor 
the development of m separate strains of a given set of parameters. For example, one could 
monitor, for each incomplete variable, the mean and variance of the imputations. The choice of 
which parameters to monitor often depends on the scientific problem. See Gelman (1996) and 
Raftery and Lewis (1996) for discussions of this topic. 

In our experience, MICE needs less iteration than is common in modern Markov Chain method-
ology, that often require thousands of iterations. For a given variable, the method creates statisti-
cally independent imputations. No iterations need to be wasted for achieving independence 
between successive draws, as is typical for Markov Chain methods. Brand's simulation study was 
done with just 5 iterations, with satisfactory performance (Brand 1999). For large amounts of 
missing data, more iterations will often be needed. 

 



  TNO report 

12  PG/VGZ/99.054 

 

3 Implementation 

3.1 General structure 

The S-PLUS library MDM contains functions for imputing and analysing incomplete data by 
multiple imputation. The library defines three data classes, each of which corresponds to a par-
ticular step in Figure 1. Suppose that the incomplete data are in the form of a matrix or a data 
frame. Specific functions convert the input data into objects of the following three data classes: 

• mids: multiply imputed data set (the result of imputation) 

• mira: multiply imputed repeated analyses (the results of repeated complete data analyses) 

• mipo: multiple imputed pooled results (the result of pooling the repeated analyses) 

Table 1 contains a short description of the most important functions in the MDM library.  

Table1: S-PLUS functions in the MDM library for generating, storing and analyzing multiply imputed 
data. 

Function Input Output Description 
md.pattern incomplete data matrix summarizes the pattern of the missing data 
mice incomplete data mids creates a multiply imputed data set 
complete mids data.frame converts mids into various forms of completed data 
lm.mids mids mira applies the linear regression model to the imputed data 
glm.mids mids mira applies the generalized linear model to the imputed data 
gam.mids mids mira applies the generalized additive model to the imputed data 
nbrm.mids mids mira applies the negative binomial model to the imputed data 
analysis mira fit extracts the j’th (1..m) complete data analysis 
pool mira mipo pools the analysis results 

The analysis functions (lm.mids, glm.mids, gam.mids, nbrm.mids) are called as lm(), 
glm(), gam() and nbrm() through the standard S-PLUS dispatch mechanism. The other 
functions are called by the full name. The mice() function implements the algorithm of Section 
2.2.  

3.2 Elementary imputation methods 

For each incomplete variable, one can specify an elementary imputation method. This is the 
method that the Gibbs sampling algorithm uses for imputing the variable, for example linear or 
logistic regression. Several elementary imputation methods are available. For numeric data these 
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are: Bayesian linear regression imputation with normal errors, improper linear regression with 
normal errors, predictive mean matching, and unconditional mean imputation. Logistic regression 
imputation is used for binary data, and polytomous logistic regression for categorical data with 
more than two categories. Also, a simple random sample can be taken as imputations. This is 
useful if the data are supposed to be missing completely at random (MCAR). 

In addition, users can write their own customized elementary imputation algorithms, and call 
these from within the Gibss sampler. This allows for specialized imputation methods for specific 
variables, e.g. imputation under particular editing constraints. 

3.3 Passive imputation 

There is often a need for transformed versions of the (imputed) data. In the case of incomplete 
data, one could 1) impute the original, and transform the completed original afterwards, or 2) 
transform the incomplete original and impute the transformed version. If, however, both the 
original and the transformed versions are needed within the imputation algorithm, neither of these 
approaches work because one cannot be sure that the transformation is synchronized between the 
original and transformed versions. 

A special built-in elementary imputation method, called passive imputation, maintains the consis-
tency among different functions of the same imputed data. Passive imputation synchronizes the 
transform with the most recently imputed original. The user can specify the transformation func-
tion. For example, the formula "~log(income)" searches for a column called
"income", computes the logarithm of the values whenever income is imputed, and stores the 
result. This mechanism provides a convenient way to maintain synchronized dummy variables 
(e.g. specify "~color==”green”, "~color==”red”, and so on). In the
current implementation, passive imputation is linked to only one original. 
It is not yet possible to define a passive variable that depends on two or more columns, for exam-
ple, as the product of two variables.  

3.4 Visiting scheme 

The standard algorithm imputes each incomplete column in the data from left to right. It is known 
that the visiting scheme of the Gibbs sampler is essentially irrelevant to the results, but some 
schemes might be more efficient than others. It is possible to alter the default visiting scheme. If, 
for example, variables are ordered in time, it could be sensible to reflect the time order in the 
visiting sequence. The visiting scheme is also needed to keep passive variables synchronized with 
their imputed originals. In addition, some key variables could be visited (and imputed) more 
often than others. 
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4 Illustration 

Table 2 is a small example data set created by Schafer to mimick the response pattern in 
NHANES III.  

Table 2: Sample NHANES data with simulated patterns of missingness. Source: Schafer (1997, p. 237) 
 age bmi hyp chol 
1 1    
2 2 22.7 1 187 
3 1   1 187 
4 3    
5 1 20.4 1 113 
6 3   184 
7 1 22.5 1 118 
8 1 30.1 1 187 
9 2 22.0 1 238 
10 2    
11 1    
12 2    
13 3 21.7 1 206 
14 2 28.7 2 204 
15 1 29.6 1  
16 1    
17 3 27.2 2 284 
18 2 26.3 2 199 
19 1 35.3 1 218 
20 3 25.5 2  
21 1    
22 1 33.2 1 229 
23 1 27.5 1 131 
24 3 24.9 1  
25 2 27.4 1 186 

The function md.pattern() summarizes the missing data pattern in these data (1=observed, 
0=missing). Rows and columns are sorted in according to the amount of missingness.  
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> md.pattern(nhanes)

age hyp bmi chl

13 1 1 1 1 0

1 1 1 0 1 1

3 1 1 1 0 1

1 1 0 0 1 2

7 1 0 0 0 3

0 8 9 10 27

The simplest way to create a multiply imputed data matrix is by calling the mice() function 
with its defaults set as 

> imp_mice(nhanes)

The function returns an object of class mids. Imputations are generated according to the default 
method, which is predictive mean matching for numerical data (bmi and chl) and logistic 
regression for binary data (hyp). Individual imputations are found by listing specific parts of the 
mids object.  

> imp$imputations$bmi

1 2 3 4 5

1 30.1 30.1 20.4 30.1 33.2

3 30.1 29.6 30.1 29.6 30.1

…

> imp$imputations$hyp:

1 2 3 4 5

1 1 1 1 1 1

4 2 2 1 2 2

… 

The list element pred.mat is a square matrix containing 0/1 data, specifying the set of predic-
tors to be used for each incomplete column. The predictor matrix can be found by the command 
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> imp$pred.mat

age bmi hyp chl
age 0 0 0 0
bmi 1 0 1 1
hyp 1 1 0 1
chl 1 1 1 0

Rows correspond to target variables, in the sequence as they appear in data. A value of '1' indi-
cates that the column variable is used as a predictor for the target (row) variable. Thus, in the 
above example, age, hyp and chl are predictors for imputing bmi. The diagonal of 
pred.mat is zero. In its default setting, every column predicts all other columns. In the above 
example, age is complete, so it has no predictors by default. 

The complete() function return various forms of completed data set. For example, the second 
imputed data set can be obtained as 

> complete(imp,2)

age bmi hyp chl
1 1 30.1 1 187
2 2 22.7 1 187
3 1 29.6 1 187

…

It is possible to fit linear regression on the imputed data as usual: 

> fit_lm(chl~bmi+hyp+age,data=imp)

> summary(fit)

est se t df Pr(>|t|) missing fmi

(Intercept) -58.809 52.69 -1.116 632.00 0.26 NA 0.082

bmi 7.273 1.73 4.204 464.80 0.00 9 0.097

hyp -16.843 26.45 -0.636 12.68 0.53 8 0.617

age 42.719 13.84 3.087 18.71 0.00 0 0.512
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The lm() function recognizes the multiply imputed data, repeats the linear analysis m times, and 
returns a fit object of class mira. The next statement pools the repeated analyses into an object 
of class mipo, and extracts the table of coefficients of the linear model. The column termed ‘fmi’ 
contains the fraction of missing information about the estimate (Rubin 1987, p. 77). Similar 
analyses are possible for glm() and gam() functions. 
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5 Conclusion 

The MICE algorithm is a conceptually simple, flexible and practical way to generate multivariate 
multiple imputations. For each incomplete variable the user can choose a set of predictors that 
will be used for imputation. This is useful for imputing large data sets. Passive imputation is a 
built-in feature that takes care that transformed data are always in sync with their original values. 
This can be used, for example, to impute categorical variables along with their dummies (needed 
for imputing other variables). In additional, the user can alter the visiting scheme of the Gibbs 
sampler, or plug-in customized imputation methods. Features like these make it easy to include 
complex imputation constraints in a practical but principled way. 

A weakness of the approach is that convergence of the Gibbs sampler is guaranteed only in a 
number of special cases, e.g. under the multivariate normal model. Simulation studies (Brand, 
1999) indicated that the method performs well in some other cases, but of course this is no guar-
antee that this will be true in general. In our experience, the method should be used carefully if 
the amount of missing information is large. More work is needed to develop reliable methods for 
checking convergence.  

Another practical problem is that the specification of imputation models from large data bases 
containing hundreds of variables may involve a lot of work. It is not uncommon that multicollin-
earity and other instability problems show up if too many predictors are thoughtlessly added to 
the imputation model. It would be certainly be useful and efficient if predictor selection could be 
automated, where stability issues are taken into account. It could also be worthwhile to investi-
gate more robust regression forms, like ridge regression (Schafer, 1997), or intermediate dimen-
sion reduction strategies (Belin, 1999).  

Other practical enhancements include the use of constrained imputations, the allowance for 
survey weights, the possibility to specify interaction terms, and the development of additional 
elementary imputation methods, e.g. for Poisson regression. We expect that most features can be 
built into the existing software without too much trouble.  
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