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Abstract—Resonant behavior in a finite array that appears
as (modulated) impedance or current-amplitude oscillations may
limit its bandwidth substantially. Therefore, simulations should
predict such behavior. Recently, a new approach has been
developed, called the eigencurrent approach, which can predict
resonant behavior in finite arrays. Analysis of line arrays of
H-plane oriented microstrip rings by the eigencurrent approach
reveals that resonant behavior is caused by excitation of one of the
eigencurrents. The characteristic impedance of this eigencurrent
becomes small in comparison to the characteristic impedances of
the other eigencurrents that can exist on the array geometry.

I. INTRODUCTION

The design and development of antenna arrays is complex
and costly. To reduce design costs and design risks, and
to improve the performance of the arrays, simulations are
used. At present, brute-force numerical approaches applied
to a large array are still far too computationally expensive.
Therefore, an array is often considered as an infinite periodic
structure, where symmetry is used to restrict the analysis
to a single antenna element of the array. This approach,
however, cannot completely describe the characteristic elec-
tromagnetic behavior of antenna arrays. In particular, it cannot
describe resonant behavior that limits their bandwidth severely.
Such behavior appears as (modulated) impedance or current-
amplitude oscillations as described in [4], [5], and [6]. These
oscillations or variations may decrease the performance of
arrays considerably. To explain this, we mention that in various
types of arrays, certain groups of elements are matched with
the same impedance to the feeding network. An example is
a rectangular array, which is excited per row of elements.
In that case, the rows constitute the different groups. If the
elements of a row are matched with the same impedance
to the feeding network, while large variations in element
impedances occur, the result is huge differences in energy
reflection into the feeding network. This energy is partly lost in
the network. Moreover, via the network, reflected energy of an
element is partly transferred to other elements, which in turn
radiate or reflect this energy. Consequently, the total radiated
power decreases and the far field is distorted. Therefore, it is
important to predict resonant behavior accurately. In [2], we
proposed an approach that describes the characteristic behavior

of finite arrays accurately and leads to rapidly executable
simulations. The approach, which we called the eigencurrent
approach, can predict the mentioned resonant behavior.
In this paper, we first introduce briefly the main ideas of the

eigencurrent approach. For a detailed account, we refer to [2].
Next, we demonstrate resonant behavior in planar uniform line
arrays of H-plane oriented microstrip rings and we analyze this
behavior by the eigencurrent approach. In particular, we show
that resonant behavior is caused by the excitation of specific
eigencurrents or eigenfunctions of the array. In a forthcoming
paper [3], we go into detail with respect to the (physical)
explanation of resonant behavior in finite arrays. We test our
findings for line arrays of rings and line arrays of strips,
both in free space and in a half space, where we compare
with results in the literature. Finally, we show that resonant
behavior persists when the geometry of a uniform array is
slightly perturbed, as is the case in practice.

II. THE EIGENCURRENT APPROACH

In the eigencurrent approach, the behavior of a finite array
is described by its eigenvibrations or eigencurrents. These
eigencurrents are the eigenfunctions of the impedance operator
that relates the currents on the elements to their excitation
fields, which are induced by a plane wave or local sources, for
example. From a physical point of view, the eigencurrents are
standing waves of the array. The corresponding eigenvalues
represent the characteristic impedances of the eigencurrents.
The larger the characteristic impedance of an eigencurrent,
the less this eigencurrent contributes to the current on the
elements for a given excitation field. The concept of eigen-
current appears extremely suitable for the design of arrays,
because the design characteristics and the excitation of specific
eigencurrents are one-to-one related. The spectral analysis
of the impedance operator in [2] reveal that eigencurrents
and corresponding eigenvalues are one-to-one related to sum
patterns, to difference patterns, to grating lobes, to modulated
impedance oscillations, to impedance variations attributed to
surface waves, and to many other properties of the array.
Starting point of the approach is the determination of the

spectrum of a single element. Eigenvalues and eigencurrents



are computed from a ‘normalized’ moment matrix related to
chosen expansion functions for the current on the element.
If the eigencurrents of the element are known, this first step
is unnecessary. An example of such an element is the ring,
as considered in the next section, of which the eigencurrents
are 1, cos nϕ, sinnϕ (n = 1, 2, . . .), where ϕ is the angle
that describes the circumference of the ring. Subsequently,
an inner product is determined for which the single-element
eigencurrents are orthonormal. The corresponding moment
matrix in terms of these eigencurrents is a diagonal matrix
with respect to the new inner product. In the second step,
a reduced moment matrix for the array is computed with
respect to the composition of the new element inner products,
with as expansion functions the eigencurrents per element.
Only a limited number of single-element eigencurrents that
contribute to mutual coupling in the array are taken into
account, see [2] for details. The results of the second step are
the array eigencurrents, described as concatenations of linear
combinations of coupling single-element eigencurrents. The
array eigencurrents are divided into groups, where each group
corresponds to one dominant single-element eigencurrent. This
eigencurrent describes the dominant behavior of the array
eigencurrents in a group. The eigenvalues in a group evolve
from the eigenvalue of the corresponding dominant single-
element eigencurrent.
By the eigencurrent approach, the current J on the elements

of a finite array is found as

J =
N∑

n=1

Q∑

q=1

1
νnq

〈unq,E
ex〉 unq . (1)

Here, {νnq}Q
q=1 and {unq}Q

q=1 (n = 1, . . . , N ) are the groups
of eigenvalues and corresponding groups of eigencurrents, Eex

is the tangential excitation field on the elements of the array,
and Q is the number of elements. Moreover, N is the number
of single-element eigencurrents, which depends on the number
of expansion functions used to construct the moment matrix
at the start of the approach. From the expression (1), it is
clear that a group of eigenvalues {νnq}Q

q=1 corresponding to
a larger single-element eigenvalue in general contributes less
to the current than a group of eigenvalues corresponding to
a smaller single-element eigenvalue. The ring elements we
consider in this paper are typically designed to excite a single
eigencurrent. Consequently, the current on the rings of an array
is predominantly described by the first group of eigenvalues
(n = 1), where we index the groups according to increasing
single-element eigenvalues.

III. RESONANT BEHAVIOR IN ARRAYS

As an illustration, we consider a uniform line array of 40
microstrip rings in free space with a spacing equal to three
times the ring radius, see Figure 1. The rings are excited by
voltage gaps of 1V positioned on the array, by which the rings
are H-plane oriented. All rings are equally phased. The width
b of the rings is much smaller than the wavelength, while
the spacing d and the radius a are of the same order as the
wavelength. The surfaces of the rings are modeled as perfectly
conducting and infinitely thin. Moreover, the currents on the
rings are averaged with respect to their widths, see [1] or [2,
Ch. 2]. Consequently, these currents are described by integro-
differential equations with logarithmically singular kernels.

� �

� �

� �

�

�

�

Fig. 1. A line array of rings excited by voltage gaps indicated by black bars.
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Fig. 2. Normalized absolute ring impedances for a line array of 40 (H-plane
oriented) rings in free space excited by voltage gaps of 1V for a scan at
0◦. Upper figure: frequency with ka = 1.047. Middle figure: ka = 0.943.
Lower figure: ka = 0.971. Impedances computed by the moment method (∗)
and by the eigencurrent approach (◦). Normalization: for each frequency, the
corresponding absolute impedance of a single ring. Parameter values: d/a = 3
(d = λ/2 at ka = 1.047), b/a = 3/100.

In Figure 2, we depict the normalized absolute impedances
of the rings for the frequencies with ka = 1.047, ka = 0.943,
and ka = 0.971, both computed by the moment method
and by the eigencurrent approach. For ka = 1.047, the
impedance pattern is almost uniform, while for the other two
frequencies, the impedance pattern exhibits relatively large
modulated oscillations. Moreover, for ka = 0.971, the period
of the modulations is shorter than for ka = 0.943. Notice that



the results obtained by the eigencurrent approach and by the
moment method match very well.
The same kind of modulated oscillations are discussed in [4]

for arrays of collinear, or E-plane oriented, wires with spacing
λ/2 in a half space with h = λ/4, where h is the height above
the ground plate. The dipole length is chosen such that the
elements exhibit a ‘resonant broadside embedded impedance’,
i.e., the reactance of the elements equals on average zero. The
modulated oscillations are not observed for arrays of parallel,
or H-plane oriented, wires, neither for arrays in free space. In
contrast, the rings in Figure 2 are positioned in free space and
are H-plane oriented, since the voltage gaps are all positioned
on the array axis. Moreover, the spacing is not equal to λ/2;
for ka = 0.971 and ka = 0.943, the spacing is 0.464λ and
0.450λ, respectively. Since the ring array is positioned in free
space, the modulated oscillations cannot be explained by a
traveling wave between the array and a conducting ground
plane, as suggested in [4] and [5].
The large modulated oscillations are explained by the eigen-

current approach. Figure 3 shows the normalized absolute
expansion coefficients in the finite expansion (1) of the current
for the above mentioned three values of ka. Only the coeffi-
cients of the eigencurrents of the first group are shown, i.e.,
{〈u1q,E

ex〉/ν1q}40
q=1 . We note that these eigencurrents are
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Fig. 3. Normalized absolute coefficients in the finite expansion (1) of the
current on the line array of 40 rings in Figure 2 for the frequencies with
ka = 0.943 (�), ka = 0.971 (◦), and ka = 1.047 (∗). Only the coefficients
of the eigencurrents of the first group are shown. Normalization: maximum
absolute coefficient.

indexed along the curve that their corresponding eigenvalues
describe in the complex plane. This is illustrated further on
in Figure 5. For ka = 1.047, the coefficients of eigencurrents
with even indices are zero, while the coefficients of odd eigen-
currents form a monotonically decreasing sequence. The co-
efficients of eigencurrents with even indices are zero, because
these eigencurrents exhibit an odd phase distribution along the
array. More precisely, the coefficients of their dominant single-
ring eigencurrent exhibit an odd phase distribution along the
array. For ka = 0.971 and ka = 0.943, the coefficients show
the same behavior as the coefficients for ka = 1.047, but the
39th and 37th (array) eigencurrents, respectively, have a higher
coefficient. Figure 4 shows the absolute values and the phases
of the coefficients of the dominant single-ring eigencurrent
in the 39th array eigencurrent. We note that the dominant
single-ring eigencurrent is in this case cos ϕ, since the ring
circumference is about one wavelength. The absolute values
show an absolute sine-like pattern, while the phase distribution
shows that each ring has opposite phase with respect to its
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Fig. 4. Normalized absolute values (upper figure) and phases (lower figure)
of the coefficients of the dominant single-ring eigencurrents in the 39th
eigencurrent of the first group for the array in Figure 2. Normalization:
maximum absolute coefficient.

neighbors, except for the 20th and 21st ring. Consequently,
the coefficients exhibit an alternating pattern modulated by a
sine of one period. This pattern can be observed clearly in
the impedance pattern of Figure 2 (lower figure). Similarly,
the coefficients of the dominant single-ring eigencurrents 37th
array eigencurrent show an alternating pattern modulated by
a sine of two periods, which can be observed clearly in the
impedance pattern of Figure 2 (middle figure).
One might think that the excitation of the 37th and 39th

eigencurrent is due to differences between the eigencurrents
at ka = 0.943, ka = 0.971, and ka = 1.047. However, in [2],
we showed that the coefficients of the dominant single-element
eigencurrent in the array eigencurrents depend negligibly on
the element shape and the frequency. Moreover, the single-
element eigencurrents of a ring do not depend on the ring
geometry and the frequency. Hence, the excitation of the
37th and the 39th eigencurrent is not due to changes of the
eigencurrents. Moreover, when the inner products 〈u1q,E

ex〉
are plotted, the little peaks in Figure 3 disappear. Hence, these
peaks are caused by a change of the eigenvalues.
Figure 5 shows the behavior of the eigenvalues in the

complex plane and the corresponding behavior of their ab-
solute values for varying frequency. The minimum absolute
eigenvalues for ka = 0.943 and ka = 0.971 are the 37th and
39th eigenvalue, which correspond to the curves in Figure
3 with the small peaks at the 37th and 39th eigencurrents,
respectively. In comparison to the other eigenvalues, these
eigenvalues are close to zero. In other words, the 37th and
39th eigencurrent exhibit a small characteristic impedance
in comparison to the characteristic impedances of the other
eigencurrents. Therefore, they are excited despite the fact that
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Fig. 5. Normalized eigenvalues of the first group (upper figure) and their
absolute values (lower figure) for the line array of 40 rings in Figure 2 for the
frequencies with ka = 0.943 (�), ka = 0.971 (◦), ka = 1 (∗), ka = 1.027
(�), and ka = π/3 (×). The eigenvalues describe curves in the complex
plane of which the 1st and the 40th eigenvalue are indicated. Normalization:
for each frequency, the corresponding absolute single-ring eigenvalue.

their highly alternating phase distribution along the array does
not ‘fit’ at all to the uniform phase distribution of the excitation
field Eex impressed by the voltage gaps with equal phase. We
emphasize that the behavior of the eigenvalues in the complex
plane can be used to predict resonant behavior. Since the
deformation of the eigenvalue curve in the complex plane is
gradual, only two or three simulations may indicate for which
frequency resonant behavior can be expected.
Figure 6 shows the normalized absolute ring impedances

for the same ring array as considered above, but positioned
in two different half spaces with h/a = 3/2 and h/a = 6/5.
The normalized impedances are shown for three subsequent
frequencies, where the frequency shift is 0.0025f0. At the
frequency f0, or, at ka = 0.991, the impedance patterns for
h/a = 6/5 and h/a = 3/2 resemble the impedance patterns
in Figure 2, middle and lower figure, respectively. Hence,
for h/a = 3/2, the 39th eigencurrent is excited, while for
h/a = 6/5, the 37th eigencurrent is excited. The impedance
patterns obtained for 0.9975f0 and 0.995f0 illustrate that the
pronounced resonant behavior at h/a = 3/2 fades out faster
than the less pronounced resonant behavior at h/a = 6/5.

IV. CONCLUSION

In this paper, we showed that resonant behavior in finite
arrays is caused by the excitation of specific eigencurrents.
The characteristic impedances, or eigenvalues, of these eigen-
currents become small in comparison to the characteristic
impedances of the other eigencurrents that can exist on the
array geometry. The behavior of the characteristic impedances
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Fig. 6. Normalized absolute ring impedances for a line array of 40 rings
in a half space with h/a = 3/2 (upper figure) and h/a = 6/5 (lower
figure) for the frequencies f0 (◦), 0.9975f0 (�), and 0.995f0 (×), where
f0 corresponds to ka = 0.991. Normalization: for each frequency, the
corresponding absolute impedance of a single ring. Parameter values: d/a = 3
(d = λ/2 at ka = 1.047), b/a = 3/100.

in the complex plane as a function of the frequency provides
an indication for which frequency resonant behavior can be
expected.
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