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Abbreviations

CG Conjugate Gradient

EFIE Electric Field Integral Equation

GA Genetic Algorithm

GTD Geometric Theory of Diffraction

MFIE Magnetic Field Integral Equation

MoM Method of Moments

GEKMoM Galerkin Exact Kernel Method of Moments

GEKMoM+ Galerkin Exact Kernel Method of Moments Plus

GMoMOS Galerkin Method of Moments Open Surface

PEC Perfectly Electrically Conducting

PSO Particle Swarm Optimization

RMS Root Mean Square

RWG Rao Wilton Glisson

SEM Singularity Expansion Method

SVD Singular Value Decomposition

UHF Ultra High Frequencies

VHF Very High Frequencies

VSWR Voltage Standing Wave Ratio
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Chapter 1

Introduction

1.1 Background

In 2002 and 2003 TNO carried out a study for the Royal Netherlands Navy concerning

the HF antenna suite on board of ships [1]. Three antenna systems were planned to cover

the entire HF band: low-, mid- and high-band range. The objective was to determine

whether or not it would be possible to leave out the mid-band system and to extend the

ranges for low-band and high-band so that they would overlap. To answer this question

typically two paths could be followed. One is to build a scale model of the ship and its

relevant antennas and to carry out measurements. The other one is to build a computer

model and to calculate the electromagnetic field distribution. The latter was chosen since

TNO had the availability of the Numerical Electromagnetics Code (NEC), developed by

Lawrence Livermore National Laboratory in Livermore, California [2, 3]. This code is in-

ternationally known and used by many research groups for similar calculations. During the

project it became clear that among the smart ideas behind the NEC code there were also

quite some drawbacks. These resulted in problematic and unreliable calculations of the

electric current distribution and electromagnetic field around the ship. In 2004 and 2005

TNO investigated the possibilities to build its own code from scratch for this purpose. The

idea was to combine the good parts of NEC with state of the art scientific knowledge of

scattering problems available at TNO and at the Electromagnetic Section of the Faculty

of Electrical Engineering of the Eindhoven University of Technology (TU/e).

From the above, it is recognized that there is a strong need for efficient, accurate and

reliable EM design tools. This work describes the mathematical formulation and the nu-

merical implementation of some key elements (i.e., loaded wires, open surfaces, wire-surface

connections) to be integrated in an appropriate design tool.



2 Introduction

1.2 The goal of the research project

The key objective of this research work is to study the development of an electromag-

netic design tool with focus to obtain an integrated approach for the development of wire

antennas. As suggested by the title of this thesis: “Efficient computation techniques

for Galerkin MoM antenna design”, the key words in bold correspond to fundamental

topics of the research described.

As a first motivation of this work we have considered a design problem where the engineer

has to dimension antenna parameters to cope with given technical performance specifica-

tions. Figure 1.1 shows a typical design scheme.

Figure 1.1: Typical design scheme.

Generally, an accurate EM modeling tool is used to analyze the problem and to assess

antenna performance, which are then compared with requirements. Usually, some antenna

parameters need to be changed and optimized to fully satisfy the design specifications.

This tedious process can be performed manually or preferably automatically by optimiza-

tion algorithms with properly defined “objective” functions. The choice of the so called

“objective” or “fitness” function requires a major effort from the designer. In this per-

spective, it is of paramount importance for an EM modeling tool to be efficient in terms

of CPU time to allow the design loop to end within a reasonable amount of time. In

this thesis, the main effort is devoted to the formulation and numerical implementation

of an accurate and efficient EM modeling tool able to analyze unloaded and loaded wire
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antennas installed on open Perfectly Electrically Conducting (PEC) surfaces. In many

cases, due to the large number of optimization parameters and problem unknowns, a full

optimization loop may become very time consuming. Therefore, in the first iterations of

the optimization, we can consider to reduce accuracy of the EM modeling tool in favor of

computation time reduction. During the fine tuning of the design, the accuracy then has

to be increased to arrive at correct predictions. As an alternative, CPU time reduction

can also be achieved by applying analytical models to describe parameters’ changes (in the

antenna configuration) in closed form.

As addressed above, to perform EM calculations of wire antennas, a suitable and accurate

EM modeling tool is required. A wire antenna structure is modeled by means of basic key

elements, for instance: unloaded and loaded wires, open surfaces and connections between

a wire and a surface. Basically, we consider an external source present in the environ-

ment which induces a current distribution along the antenna (i.e., wires, open surfaces,

etc.). In turn this current radiates a scattered field. For each of the basic elements this

scattering problem is formulated in terms of a relevant Electric Field Integral Equation

(EFIE). The scattered field is subsequently calculated as a function of the computed cur-

rent distribution. The choice of using the EFIE is supported by the fact that this integral

equation remains valid also when open surfaces are analyzed while the Magnetic Field

Integral Equation (MFIE) breaks down [4]. Subsequently, this EFIE is discretized by ap-

plying the Galerkin Method of Moments (MoM) [5], [6, pp. 206–259]. Thus, first,

the unknown current distribution is approximated by means of “basis” functions (defined

on “source” elements). Second, a set of linearly independent “testing” functions (defined

on “observation” elements) is used to approximate the electric field quantities and a suit-

able inner product is applied on both sides of the integral equation. The MoM procedure

leads to a system of linear equations (i.e., a matrix equation) which has to be solved nu-

merically. Generally speaking, MoM matrix elements express the interaction of a current

along a “source” element with an “observation” element. In particular, the matrix ele-

ments that describe the interaction between source and observation points on the same

geometrical support are referred to as self terms and are found on the diagonal of the

system matrix. When the testing and basis functions are chosen to be equal, the method is

referred to as the Galerkin Method of Moments. In this case the numerical solution found

can converge to the physical solution when the source/observation element dimensions re-

duce [7], [8, pp. 212]. Moreover, the symmetry property is preserved in the system matrix.

Typically, when the Galerkin MoM is applied, the evaluation of matrix elements requires

four-dimensional integrations since surface current distributions are considered. The com-
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putation time is consequently negatively affected. Nevertheless, in this work we will show

possible techniques to efficiently deal with the above mentioned computational burden

without loss of accuracy. Besides, for coincident source and observation points or source

points approaching the observation points, the integrand exhibits a singular or a nearly

singular behavior. In this case, special care has to be taken to accurately compute the

integrals.

As the method stands now, it appears evident that calculating the matrix elements is one

of the most time consuming tasks of the numerical method proposed. Our aim is to in-

crease the efficiency of our EM modeling tool by reducing the computation time without

downgrading the accuracy of the calculated results. To this end, throughout this thesis

several techniques are described:

• By exploiting the symmetry property of the MoM matrix, we can restrict the compu-

tation to half of its elements. In particular, for a single straight wire the linear system

associated to the MoM procedure is characterized by a Toeplitz symmetric matrix.

Thanks to this property a reduction of a factor N in the CPU time is achieved (where

N is the dimension of the matrix).

• In general, the evaluation of off-diagonal matrix elements involves integrals that

are never singular and are numerically calculated by a quadrature rule. When the

distance between the observation and the source patch becomes large (with respect

to the wavelength), a quadrature rule can be reduced to a midpoint integration

rule which guarantees the desired accuracy in favor of a CPU time reduction. The

evaluation of diagonal matrix elements requires special attention due to the presence

of a singularity in the integrand function. Thus, a different approach is pursued. A

singular term is extracted that can be integrated analytically, while the remaining

regular function is integrated numerically. This technique is applied in the analysis

of a single wire and of an open surface.

• If we consider the interaction between two wires, matrix elements representing their

coupling need to be calculated. In this case, we will show that the most efficient

evaluation is obtained by computing the field radiated by a current on the axis of

a “source” wire in a point on the surface of an “observation” wire. This leads to a

one-dimensional integral for the transmitting wire, and a two-dimensional integral for

the receiving wire. To estimate the error due to considering the current on the axis

of the source wire instead of on its mantle, an error analysis is performed. The same
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approximation (current on source-wire axis) is used when studying the interaction

between a wire and a surface.

• For the case of a current flowing along the mantle of a source wire, computation

time reduction can be achieved thanks to an interpolation algorithm. In fact, since

the field radiated by a wire segment is rotationally symmetric, it can be completely

determined by the field values in a half plane. In this plane, a grid of points is defined

where the field is evaluated. Subsequently, the electric field in intermediate points

can be approximated by means of interpolation. Following this procedure we obtain

a CPU time reduction of a factor 6 in the calculation of coupling matrices requiring

the calculation of the radiated field only in a limited number of points (i.e., grid).

Returning to the original aim of the antenna design, in this thesis, a practical design

problem will be studied. In particular, the previously described numerical code is included

in a stochastic optimization algorithm, to design a broadband loaded monopole of fixed

length for naval application. Design goals are maximizing the antenna gain and minimizing

the VSWR, while positions and values (R,L,C) of loadings are the optimization parameters

considered. Since the antenna size is fixed and only loading parameters are changing in the

optimization, additional efficiency of the EM modeling tool can be gained by solving the

problem of the unloaded wire only during the first iteration of the optimizer. The effect

of the loadings is separately calculated along the optimization procedure at each iteration.

This tailored scheme allows us to reduce the CPU time for a single iteration up to a factor

of twenty.

After investigating candidate optimization algorithms, we have selected a Particle Swarm

Optimization (PSO) scheme. Thanks to an improved procedure for the velocity update

of the swarm’s particles in the PSO algorithm we achieved a convergence improvement

combined without stagnation in local minima.

1.3 Historical context

This section provides a historical overview of main research developments of scattering by

wire antenna structures yielding an insight of the state of the art in this topical research.

Thin-wire modeling has been studied for quite a long time. About a century ago Pockling-

ton [9] first and then Hallén [10] presented their well-known integral equations. Since then,

the formulation and the solution of the wire equation have been a subject of continuous

investigations by many scientists. Most authors use one of the two possible formulations
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of Pocklington’s equation, namely the so-called exact kernel or the reduced kernel. The

simplicity and accuracy of these thin-wire integral equations are never surpassed by other

approaches as, for instance, finite-difference and finite-element techniques [11, 12].

Typically, from the two-dimensional electric field integral equation written in terms of sur-

face current distribution, a simpler one-dimensional form is derived by assuming that the

wire radius is small compared to the length of the wire and the wavelength [13,14]. In this

case the fundamental unknown of the problem turns out to be the total current flowing

along the wire. The main objective of our wire formulation is to show that the electromag-

netic behavior of the wire (e.g., input impedance, radiated field) is governed by the total

current. To this end, we use the well-posed thin-wire equation with exact kernel [7], imple-

menting one of the most efficient techniques to numerically calculate the integration [15].

Despite the extra computational effort required by the exact kernel, numerical stability in

the calculated current is shown in contrast with more conventional implementations of the

reduced kernel which exhibits an oscillatory behavior in the delta-gap region and near the

wire end faces [14].

Electromagnetic scattering by surfaces of arbitrary shape is extensively discussed by Rao,

Wilton and Glisson in [16, 17]. The state of art in surface modeling is the starting point

of our analysis of open surfaces. Following the formulation in [17] an electric field integral

equation is discretized applying the Galerkin MoM by means of well-known Rao-Wilton-

Glisson (RWG) functions defined on triangular domains. Then, in the calculation of matrix

elements we pursue different approaches depending on the relative position between source

triangle and observation triangle. Besides, we use modern techniques known from the lit-

erature [18, 19] to analytically calculate the extracted singular term.

Several authors have studied the modeling of a wire connection onto a surface. Among the

various approaches the frequently used strategies are a full Method of Moments (MoM)

analysis of the problem [20–22] and a hybrid MoM/GTD (Geometrical Theory of Diffrac-

tion) [23]. In particular, the latter requires the definition of a Green’s function pertaining

to the particular problem under consideration, while the first approach uses the free-space

Green’s function and requires only the definition of a proper basis function. Following

the full-MoM scheme we introduce an attached-mode basis function derived from the one

presented in [24] .

Nowadays it is more and more common to use methods of synthesis and optimization tech-

niques to support electromagnetics and antenna design. Generally speaking, optimizers can
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be subdivided into two big classes: deterministic (e.g., gradient optimization, least squares,

etc.) [25, pp. 117–139] and evolutionary (or stochastic) algorithms (e.g., genetic algorithm,

simulated annealing, etc.) [26]. The main drawback of the first class is that they may get

caught in local minima, while stochastic techniques have a better chance to converge to a

global minimum. On the other hand, stochastic techniques require many more field com-

putations for candidate configurations. A tutorial on stochastic optimization techniques in

electromagnetics is given by Rahmat-Samii in [26,27] where Genetic Algorithms (GA) and

Particle Swarm Optimization (PSO) algorithms are presented. Because of the simplicity

and robustness of PSO, along with a reduced tendency to converge to local minima, we

implement a modified technique to increase efficiency in optimization convergence [28].

1.4 Outline of the thesis and notation conventions

The presentation of this thesis is organized as follows.

In Chapter 2, the problem of electromagnetic scattering by a perfectly electrically con-

ducting (PEC) thin wire is analyzed. The Pocklington integro-differential equation in the

frequency domain is introduced and both the reduced kernel and exact kernel formulations

are derived and discussed.

Chapter 3 presents the solution of Pocklington’s integral equation with exact kernel by

applying the Galerkin Method of Moments. An efficient technique for the evaluation of

matrix elements is described following the procedure proposed by Davies et al. [15].

In Chapter 4, the study is extended to wire antennas with distributed as well as concen-

trated RLC loadings.

In Chapter 5, an accurate numerical method to compute the natural frequencies of loaded

thin wires is developed. Natural frequencies are calculated by applying the Singular Value

Decomposition (SVD) to the system matrix together with a suitable search algorithm. By

gradually increasing the impedance value, a marching-on-in-loading approach is used to

increase efficiency. The numerical technique is described and validated by comparing our

results with results from the literature.

In Chapter 6, the electromagnetic coupling between arbitrary oriented wires is analyzed.

For the evaluation of coupling matrix elements, two approaches are described and com-

pared in terms of accuracy and CPU time, namely: the thin-wire axis approximation where

the current flows along the wire axis of the source wire, and the thin-wire mantle approx-

imation which leaves the current flowing along the mantle of the source wire. For the

case of the mantle approximation, a numerically efficient interpolation algorithm for the
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evaluation of coupling terms is investigated and proposed.

In Chapter 7, the problem of electromagnetic scattering by a perfectly electrically con-

ducting (PEC) surface with vanishing thickness is studied by means of the Galerkin MoM

where RWG functions are introduced. Efficient evaluation of system matrix elements is

pursued.

Chapter 8 analyzes the case of a PEC wire attached to a PEC surface. A special basis func-

tion (attachment mode) is developed to model the current distribution in the neighborhood

of the junction. It is also described how the matrix elements related to the attachment can

be computed numerically.

In Chapter 9, a practical design problem is studied. The developed MoM numerical code

has been embedded in a stochastic optimization algorithm (Particle Swarm Optimization)

to design and optimize loaded wire antennas. To enhance the computational efficiency,

a tailored scheme is introduced for the computation of matrix elements together with a

modified PSO algorithm.

In Chapter 10, a summary of the main results obtained during this research is given. Some

general conclusions are drawn together with recommendations for future developments.

Throughout this dissertation, the following conventions are used. Bold capitals denote vec-

tor fields. Partial derivatives are written as subscripts, for example the partial derivative

of f(t) with respect to time t is written as ∂tf(t). Fourier transforms are written in capital

Latin letters, i.e., the Fourier transform of F(t) is F (ω). Cartesian unit vectors are written

as ix, iy, iz. Unit vectors of circularly-cylindrical coordinate system are written as ir(φ),

iφ(φ) and iz, with the dependence on φ-coordinate indicated explicitly.



Chapter 2

Thin-wire equations

Modeling the electromagnetic behavior of a single thin wire (probably the simplest antenna

structure) has a long history and remains an important problem. Since Pocklington [9] and

Hallén [10] first formulated their integral equations, many scientists have been discussing

the various ways to analytically and/or numerically calculate the current induced along a

thin wire by an incident field and/or by a delta-gap excitation [13,29]. The mathematical

formulation of this canonical problem leads to a one-dimensional integro-differential equa-

tion in which the induced current and the scattered field are interrelated by a so called

“kernel”. Choosing the observation point on the central axis of the wire results in the

“reduced kernel” formulation, while choosing the observation point on the mantle surface

results in the “exact kernel” formulation (see e.g., [13,30]). Most authors use one of these

two formulations (i.e., exact or reduced/approximated kernel) derived through the appli-

cation of the electric field integral equation and by the assumption that the current flows

along the wire surface. The full merit of the “reduced form” was not realized until it was

shown in [13] that for a straight thin wire with circular cross section the wire equation

with reduced kernel is exact, except for wire end effects.

In this chapter, the thin-wire integro-differential equation is formulated both with reduced

and exact kernel for the total current along the wire.

2.1 Maxwell’s equations

The behavior of the electromagnetic field in the presence of objects is governed by Maxwell’s

equations. When magnetic current sources are not present, the time-domain Maxwell
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equations are given by

∇× E + ∂tB = 0, (2.1)

∇× H − ∂tD = J . (2.2)

Equation (2.1) is referred to as the Faraday-Henry law and expresses the relation between

the electric-field intensity E and the magnetic-flux density B. Equation (2.2) is referred to

as the Ampère-Maxwell law and expresses the relation between the magnetic-field intensity

H and the density of the electric flux D on one hand and the electric current density J on

the other hand. The equations (2.1) and (2.2) are called in short Maxwell’s equations and

are accompanied by the equation of continuity of electric current and charge (also referred

to as conservation of charge)

∇ · J + ∂tρ = 0, (2.3)

where ρ is the electric charge density. When we take the divergence of (2.1) and (2.2) and

combine equations (2.2) and (2.3) we find that

∂t (∇ · B) = 0, ∂t (∇ · D − ρ) = 0. (2.4)

With the additional assumption that the fields ∇ ·B and ∇ ·D − ρ vanish at some initial

instant t = t0, it follows that these quantities must vanish for all instants, which yields the

auxiliary equations

∇ · D = ρ, (2.5)

∇ · B = 0. (2.6)

In addition, constitutive relations are needed to describe the influence of the medium on the

electromagnetic field and vice versa. Even though these relations may be more complicated,

in this thesis we consider a homogeneous, time-invariant, isotropic media with permittivity

ε and permeability µ. In this case, the electric-field intensity E and the electric-flux density

D, as well as the magnetic-field intensity H and the magnetic-flux density B are related

as

D = ε0

t∫

0−

[δ(τ) + κe(τ)] E(t− τ)dτ, B = µ0

t∫

0−

[δ(τ) + κm(τ)] H(t− τ)dτ, (2.7)

where ε0 = 8.854 × 10−12 F/m and µ0 = 4π×10−7 H/m are the free-space permittivity and

permeability, and κe and κm are the dielectric and magnetic relaxation scalar functions,
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respectively. The lower integration limit in (2.7) can be chosen 0−, i.e., δ in the limit for

δ ↑ 0 according to the principle of causality, for which a reaction to a source cannot take

place prior the instant of action. This lower limit is chosen with care, since we need to

account for the case of an instantaneous reaction. Furthermore, we assume that no sources

act before the instant t = 0. Then, the upper integration limit in (2.7) can be chosen

equal to t. With the aid of a Fourier transformation, the electromagnetic quantities can be

transformed from the space-time domain to the space-frequency domain. Let us introduce

the Fourier transformation and its inverse as

F (ω) =

∞∫

−∞

F (t) exp (−jωt) dt, F (t) =
1

2π

∞∫

−∞

F (ω) exp (jωt) dω, (2.8)

where ω is the angular frequency and j is the imaginary unit (i.e., j2 = −1). It is noted that

the frequency-domain quantities are complex-valued. For a real-valued, causal function,

i.e., a function F (t) that is identical to zero for negative time values, the temporal Fourier

transformation and its inverse can be written as

F (ω) =

∞∫

0

F (t) exp (−jωt) dt, F (t) =
1

π
Re





∞∫

0

F (ω) exp (jωt) dω



 . (2.9)

Hence, after applying the temporal Fourier transformation, Maxwell’s equations (2.1), (2.2)

become

∇× E + jωµH = 0, (2.10)

∇× H − jωεE = J, (2.11)

where we have used the Fourier transforms of the electric-flux and magnetic-flux density

relations in (2.7)

D(ω) = ε(ω)E(ω), with ε(ω) = ε0εr(ω),

B(ω) = µ(ω)H(ω), with µ(ω) = µ0µr(ω). (2.12)

The functions εr(ω) = 1 + χe(ω) and µr(ω) = 1 + χm(ω) are the relative permittivity

and the relative permeability of the medium, respectively. Moreover, χe(ω) and χm(ω)

are defined as the Fourier transforms of the relaxation functions κe(t) and κm(t) and are

denoted as the electric and magnetic susceptibility, respectively.

Applying the temporal Fourier transformation to the auxiliary equations (2.5) and (2.6)

for the flux densities leads to

∇ · B = 0, (2.13)

∇ · D = ρ. (2.14)
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We supplement these relations with the law of current continuity (2.3) in the frequency

domain

∇ · J + jωρ = 0. (2.15)

2.2 Formulation of the problem

We model a straight thin wire of length h with a circular cross section of radius a as a

perfectly electrically conducting cylinder embedded in a homogeneous, isotropic, dielectric

with permittivity ε and permeability µ. Throughout this dissertation, we will consider the

ω dependence of ε and µ as implicit. As shown in Fig. 2.1 the volume inside the wire is

represented by D, the surface of the wire by ∂D, and the volume outside the wire by D.

PSfrag replacements

in

V (ω)

Ei(r, ω)

D
∂D

D

zg + ∆

zg − ∆

2a z = h

x

y

z

Figure 2.1: Wire geometry.

Next we introduce a cylindrical coordinate system (r, φ, z) such that the axis of the wire

corresponds with r = 0 and 0 < z < h and we define a normal vector in(r) pointing into

the region D. We introduce vector r = rir(φ) + ziz and vector r′ = r′ir(φ
′) + z′iz as shown

in Fig. 2.2. The unit vector ir(φ
′) can also be regarded as the normal on the surface of the

wire, with the exception of the end faces.

The wire antenna can act as a transmitter or as a receiver, depending on the type of the

external source present. The wire behaves as a receiver when an incident electromagnetic

field

{
Ei(r, ω),Hi(r, ω)

}
, which satisfies Maxwell’s equations in absence of the wire, in-

duces a current along the wire. The wire acts as a transmitter when the current along the
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wire is driven by an impressed voltage V (ω) across a small gap zg−∆ < z < zg +∆. More-

over, the dimension of the wire satisfies the condition ∆ � a � h. The entire derivation

is carried out in the frequency domain.

P
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r′

R

r
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ρ
′

iz

ir(φ)

iφ(φ)
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x

y

z

θ

r

φ

Figure 2.2: Unit vectors ir(φ), iφ(φ) and iz.

The most suitable starting point is the integral relation for the electric field

−∇Φ + k2A(r, ω) = jωε
[
SD(r)E(r, ω)− Ei(r, ω)

]
, (2.16)

where k = ω
√
εµ and SD is the shape function [13, 31]

SD (r) =





0, r ∈ D,

1/2, r ∈ ∂D,

1, r ∈ D.

(2.17)

Since r′ runs over ∂D, the current flows along the surface of the wire and the vector

potential A and the scalar potential Φ are defined as

A(r, ω) =
{

∂D

G(R, ω) JS(r′, ω)dS ′, (2.18)

Φ(r, ω) = −
{

∂D

G(R, ω) ∇S′ · JS(r′, ω)dS ′, (2.19)

where ∇S′ indicates differentiation with respect to r′ taking into account only components

that lie on the surface ∂D. The distance R is R = |r − r′|, the source point r′ ∈ ∂D and



14 Thin-wire equations

the observation point r ∈ D, see Fig. 2.2. The surface current density JS(r′, ω) is expressed

in A/m and

G(R, ω) =
exp(−jkR)

4πR
, or G(r− r′, ω) =

exp (−jk|r − r′|)
4π|r− r′| , (2.20)

is the Green’s function of the Helmholtz operator, chosen in accordance with the definition

(2.9) of the temporal Fourier transform and the radiation condition. For details of deriving

the integral relation (2.16), we refer to [31]. Substituting the expressions (2.18) and (2.19)

in (2.16) yields

∇
{

∂D

G(R, ω) ∇S′ · JS(r′, ω)dS ′ + k2
{

∂D

G(R, ω) JS(r′, ω)dS ′

= jωε
[
SD(r)E(r, ω)− Ei(r, ω)

]
,

(2.21)

where the right-hand side represents the scattered electric field.

2.2.1 Motivation for considering only the total current

In principle, the integro-differential equation (2.21) completes the formulation of the prob-

lem. However, the information that the radius a is small compared with the length of the

wire can be used to arrive at a simpler formulation for the total current

I(z′, ω) =

2π∫

φ=0

JS(r′, ω) · izadφ, (2.22)

that flows along the wire. The motivation for considering only the total current is based

on two observations. First the total current at the location of the voltage source is needed

to determine the impedance of a wire antenna. Second, on the fact that the field radiated

by the current induced on the wire can be determined up to O(a2), where a is the small

radius of the wire.

The derivation of the latter result proceeds as follows. We write the longitudinal and the

transverse components of the current density as

Jz(r
′, ω) = Ĵz(z

′, ω) +
(
Jz(r

′, ω) − Ĵz(z
′, ω)

)
= Ĵz(z

′, ω) + ∆Jz(r
′, ω), (2.23)

Jφ(r
′, ω) = Ĵφ(z

′, ω) +
(
Jφ(r

′, ω) − Ĵφ(z
′, ω)

)
= Ĵφ(z

′, ω) + ∆Jφ(r
′, ω), (2.24)

where r′ is a point on the surface of the wire r′ ∈ ∂D, see Fig. 2.2. Moreover, Ĵz(z
′, ω) and

Ĵφ(z
′, ω) denote the values averaged over φ′ ∈ [0, 2π). For Ĵz(z

′, ω), we have

Ĵz(z
′, ω) =

I(z′, ω)

2πa
. (2.25)
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Further, with the aid of (2.23) and (2.24) we can write the surface current JS as

JS(r′, ω) = Jz(r
′, ω)iz + Jφ(r

′, ω)iφ(φ
′) (2.26)

=
[
Ĵz(z

′, ω) + ∆Jz(r
′, ω)

]
iz +

[
Ĵφ(z

′, ω) + ∆Jφ(r
′, ω)

]
iφ(φ

′). (2.27)

From the closed-form separation-of-variables expression for the current density induced by

an incident plane wave [32], [33, pp.481–483], [34], the following estimates are copied

Ĵz(z
′, ω) = O

(
1

a ln a

)
, ∆Jz(r

′, ω) = O(1), (2.28)

Ĵφ(z
′, ω) = O(1), ∆Jφ(r

′, ω) = O(a), (2.29)

as a ↓ 0. At this point, we recall that the vector potential A (2.18) assumes the form

A(r, ω) =

h∫

z′=0

2π∫

φ′=0

exp(−jk|r − r′|)
4π|r − r′| JS(r′, ω)adφ′dz′, (2.30)

with the observation point r ∈ D, see Fig. 2.2. Moreover, the vector potential (2.30) can

be written as the sum of the longitudinal and transverse components

A(r, ω) = Az(r, ω)iz + AT (r, ω). (2.31)

In a similar fashion as in (2.23) and (2.24) we can write the Green’s function in (2.30) as

G(r − r′, ω) = Ĝ(z − z′, ω) +
(
G(r − r′, ω) − Ĝ(z − z′, ω)

)

= Ĝ(z − z′, ω) + ∆G(r − r′, ω), (2.32)

where Ĝ(z − z′, ω) is the φ′-averaged Green’s function

Ĝ(z − z′, ω) =
1

2π

2π∫

φ′=0

G(r− r′, ω)dφ′. (2.33)

We proceed now in the derivation of the vector potential (2.30), (2.31). First, we focus on

the component Az which, with the aid of (2.23) and (2.32) can be written as

Az(r, ω) =

h∫

z′=0

2π∫

φ′=0

Jz(r
′, ω)G(r− r′, ω)adφ′dz′

=

h∫

z′=0

2π∫

φ′=0

[
Ĵz(z

′, ω) + ∆Jz(r
′, ω)

] [
Ĝ(z − z′, ω) + ∆G(r − r′, ω)

]
adφ′dz′. (2.34)
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Now, substituting the explicit expression Ĵz (2.25) in (2.34) yields

Az(r, ω) =

h∫

z′=0

2π∫

φ′=0

[
I(z′, ω)

2πa
+ ∆Jz(r

′, ω)

] [
Ĝ(z − z′, ω) + ∆G(r − r′, ω)

]
adφ′dz′

=

h∫

z′=0

2π∫

φ′=0

{
I(z′, ω)

2πa
Ĝ(z − z′, ω) + ∆Jz(r

′, ω)Ĝ(z − z′, ω)

+
I(z′, ω)

2πa
∆G(r − r′, ω) + ∆Jz(r

′, ω)∆G(r− r′, ω)

}
adφ′dz′, (2.35)

where the first term represents the leading contribution. Since I(z ′, ω) and Ĝ(z − z′, ω) do

not depend on φ′ and the term ∆G(r − r′, ω) is of order O(a), expression (2.35) becomes

Az(r, ω) =

h∫

z′=0

dz′a



 Ĝ(z − z′, ω)

I(z′, ω)

a

+ Ĝ(z − z′, ω)

2π∫

φ′=0

∆Jz(r
′, ω)dφ′ +

I(z′, ω)

2πa

2π∫

φ′=0

∆G(r − r′, ω)dφ′ +O(a)



 . (2.36)

Moreover the terms a∆Jz(r
′, ω) and ∆G(r − r′, ω) are of order O(a). However, in both

cases they have been organized such that the integral over φ′ reduces them to zero. Thus,

(2.36) can be simplified as

Az(r, ω) =

h∫

z′=0

Ĝ(z − z′, ω)I(z′, ω)dz′ +O(a2). (2.37)

Second, the transverse component of the vector potential (2.31) is considered

AT (r, ω) =

h∫

z′=0

2π∫

φ′=0

Jφ(r
′, ω)G(r− r′, ω)iφ(φ

′)adφ′dz′, (2.38)

and a similar derivation is performed. In this case, the assumptions Ĵφ = O(1) and

∆Jφ = O(a) in (2.29) together with ∆G(r − r′, ω) = O(a) lead to the conclusion that

AT = O(a2). (2.39)

We give the detailed derivation of this result in the Appendix A. Finally, substituting

(2.39) and (2.37) in (2.31) leads to

A(r, ω) = Az(r, ω)iz + AT (r, ω) = iz

h∫

z′=0

Ĝ(z − z′, ω)I(z′, ω)dz′ +O(a2), (2.40)
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which is the mathematical formulation of the conclusion that the vector potential and con-

sequently the radiated field are determined up to O(a2) by replacing the current density

JS(r′) with the total current Iz(z
′, ω)iz. This important observation represents the motiva-

tion for deriving in the upcoming sections the thin-wire equation only for the total current

I(z′, ω).

We derive now an expression for the vector potential (2.40) when the total current I(z′, ω)

is on the central axis showing that it is second-order accurate. To this end we proceed in

two steps. First, we write (2.40) as

A(r, ω) = iz

h∫

z′=0

I(z′, ω)

2π

2π∫

φ′=0

exp(−jk|r − r′|)
4π|r − r′| dφ′dz′ +O(a2). (2.41)

Second, the distance R = |r− r′| is written as

R = |r − r′| = |r − ra − ρ′| =
√

(r − ra − ρ′) · (r − ra − ρ′), (2.42)

where ra = z′iz is a point along the wire axis, ρ′ = air(φ
′) and r′ = ra + ρ′, see Fig. 2.3.
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Figure 2.3: Vectors ra = z′iz and ρ′ = air(φ
′).

Next, from (2.42) it follows

R =
√
|r − ra|2 − 2 (r − ra) · ρ′ + |ρ′|2 =

√
|r − ra|2 − 2 (r − ra) · ρ′ + a2

= |r− ra|
√

1 − 2 (r − ra) · ρ′

|r − ra|2
+

a2

|r− ra|2
, (2.43)
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and, expanding the latter in Taylor’s series yields

R = |r − ra|
(

1 − (r − ra) · ρ′

|r − ra|2
)

+O(a2) = |r − z′iz|
(

1 − a
r · ir(φ′)

|r − z′iz|2
)

+O(a2). (2.44)

Subsequently, we substitute this result in (2.41). Carrying out a Taylor expansion for the

exponential term, considering |r − r′| � a and ka � 1, we then obtain a one-dimensional

expression of the vector potential

A(r, ω) = iz

h∫

z′=0

exp(−jk|r − z′iz|)
4π|r− z′iz|

I(z′, ω)dz′ +O(a2). (2.45)

From (2.45), as described in Appendix B, we derive the following one-dimensional expres-

sion of the electric field

E(r) =
1

jωε

1

4π

h∫

z′=0

exp(−jk|r − z′iz|)
|r − z′iz|3

{
−
[
(jk|r − z′iz|)2 + jk|r − z′iz| + 1

]
iz

+
[
3 + 3jk|r − z′iz| + (jk|r − z′iz|)2

] z − z′

|r − z′iz|2
(r − z′iz)

}
I(z′)dz′, (2.46)

neglecting a second-order error (i.e., O(a2)). We refer to (2.46) as the radiated field thin-

wire axis approximation. In words, (2.45) and (2.46) states that the vector potential and

the radiated field are determined up to O(a2) by replacing the current density JS(r′, ω)

with the total current I(z′, ω) on the wire axis.

2.2.2 Thin-wire equations

We proceed now with the derivation of thin-wire equations. From the integral relation

(2.21), we derive the integro-differential equation for a perfectly electrically conducting

(PEC) thin wire as in [14]. Since r′ runs over ∂D, the current flows along the surface

of the wire, which, apart from end faces, means that

JS(r′, ω) = JS(r′=a, φ′, z′, ω). (2.47)

Let us consider now the surface current density at the end faces. For a thin wire, the surface

of the end faces 2πa2 is small compared to the surface of the rest of the wire 2πah and

a � λ with λ = 2π/(ω
√
εµ). Therefore we assume that the current at the end faces

can be neglected. In general (for thicker wires) this approximation may not be correct,

but, in the case that a contribution from the end faces will be taken into account, extra
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terms have to be considered in the formulation. An argument in favor of this approximation

also consistent with the other approximation made in deriving the scattered field can be

found in [13]. In fact, analysis of the radial current done in [13] shows that the error made

is negligible for sufficiently thin wires with respect to the wavelength.

From the integro-differential equation (2.21), we can write the z-component of the scattered

field, due to the current density on the mantle, as

∂z

h∫

z′=0

2π∫

φ′=0

G(R, ω)∇S′ · JS(a, φ′, z′, ω)adφ′dz′

+k2

h∫

z′=0

2π∫

φ′=0

G(R, ω)iz · JS(a, φ′, z′, ω)adφ′dz′ = jωε
[
SDEz(r, ω)− Ei

z(r, ω)
]
, (2.48)

where

G(R, ω) =
exp(−jk

√
r2 + a2 − 2ra cos(φ− φ′) + (z − z′)2)

4π
√
r2 + a2 − 2ra cos(φ− φ′) + (z − z′)2

, (2.49)

is the Green’s function expressed in cylindrical coordinates. The surface divergence ∇S′ ·JS

with respect to the primed coordinates can be explicitly written as

∇S′ · JS(φ′, z′, ω) =
1

a
∂φ′Jφ(φ

′, z′, ω) + ∂z′Jz(φ
′, z′, ω), (2.50)

where Jφ and Jz are the φ- and z-components of the surface current density JS. Since the

surface current density is always located at r′ = a, from now on we will write JS(φ′, z′, ω)

instead of JS(a, φ′, z′, ω). Further, we recall that the integral of the z-component of

JS gives rise to the total current in the z-direction, i.e., the definition (2.22). As

suggested in [14], a very elegant way to get rid of the Jφ component, is to average both

sides of the integral equation (2.48) with respect to φ. The right-hand side is then written

as

jωε
1

2π

2π∫

φ=0

[
SDEz(r, ω) − Ei

z(r, ω)
]
dφ. (2.51)
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The left-hand side is the sum of three contributions that will be considered separately

1

2π
∂z

2π∫

φ=0

h∫

z′=0

2π∫

φ′=0

G(R, ω) (∂φ′Jφ(φ
′, z′, ω)) dφ′dz′dφ

+
1

2π
∂z

2π∫

φ=0

h∫

z′=0

2π∫

φ′=0

G(R, ω) (∂z′Jz(φ
′, z′, ω)) adφ′dz′dφ

+
k2

2π

2π∫

φ=0

h∫

z′=0

2π∫

φ′=0

G(R, ω)Jz(a, φ
′, z′, ω)adφ′dz′dφ. (2.52)

Observing that the Green’s function (2.49) depends on φ − φ′, we introduce the φ′ inde-

pendent function

g(r, z − z′, ω) =
1

2π

2π∫

φ=0

G(R, ω)dφ, R =
√
r2 + a2 − 2ra cosφ+ (z − z′)2. (2.53)

Therefore, the first term in (2.52) is evaluated as follows

1

2π
∂z

2π∫

φ=0

h∫

z′=0

2π∫

φ′=0

G(R, ω) (∂φ′Jφ(φ
′, z′, ω)) dφ′dz′dφ

= ∂z

h∫

z′=0

2π∫

φ′=0

g(r, z − z′, ω) (∂φ′Jφ(φ
′, z′, ω)) dφ′dz′

= ∂z

h∫

z′=0

g(r, z − z′, ω)

2π∫

φ′=0

∂φ′Jφ(φ
′, z′, ω)dφ′dz′ = 0. (2.54)
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The second term can be written as

1

2π
∂z

2π∫

φ=0

h∫

z′=0

2π∫

φ′=0

G(R, ω) (∂z′Jz(φ
′, z′, ω)) adφ′dz′dφ

= ∂z

h∫

z′=0

2π∫

φ′=0

g(r, z − z′, ω) (∂z′Jz(φ
′, z′, ω)) adφ′dz′

= ∂z

h∫

z′=0

g(r, z − z′, ω) (∂z′I(z
′, ω))dz′ = −∂z

h∫

z′=0

(∂z′g(r, z − z′, ω)) I(z′, ω)dz′

= ∂2
z

h∫

z′=0

I(z′, ω)g(r, z − z′, ω)dz′. (2.55)

For the third contribution we have

k2

2π

2π∫

φ=0

h∫

z′=0

2π∫

φ′=0

G(R, ω)Jz(a, φ
′, z′, ω)adφ′dz′dφ

= k2

h∫

z′=0

2π∫

φ′=0

g(r, z − z′, ω)Jz(a, φ
′, z′, ω)adφ′dz′

= k2

h∫

z′=0

g(r, z − z′, ω)

2π∫

φ′=0

Jz(a, φ
′, z′, ω)adφ′dz′ = k2

h∫

z′=0

g(r, z − z′, ω)I(z′, ω)dz′. (2.56)

In conclusion, combining the results, we have obtained the following integro-differential

equation for the total current flowing along the wire

(
∂2

z + k2
)

h∫

z′=0

g(r, z − z′, ω)I(z′, ω)dz′ =
1

2π

2π∫

φ=0

jωε
[
SDEz(r, ω) − Ei

z(r, ω)
]
dφ. (2.57)

At this point, the two formulations of the thin-wire equation depart. By choosing the

position of the observation point r on the central axis of the wire, we obtain a so-called

“reduced kernel” formulation, while choosing the observation point on the mantle results

in the “exact kernel” formulation. Both formulations are exact.

2.2.3 Reduced kernel formulation

First we consider the case of the observation point on the central axis of the wire, i.e.,

r = ziz with 0 < z < h. For this choice, the distance between the source point and the
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observation point is given by

R = |(ziz) − (z′iz + air)| =
√

(z − z′)2 + a2 . (2.58)

As a consequence the Green’s function G no longer depends on φ − φ′, and from the

integro-differential equation (2.57), it follows that

(
∂2

z + k2
)

h∫

z′=0

KR(z − z′, ω)I(z′, ω)dz′ = jωε
[
SDEz(ziz, ω) − Ei

z(ziz, ω)
]
, (2.59)

where the “reduced kernel” is defined as

KR(z − z′, ω) =
exp(−jk

√
(z − z′)2 + a2)

4π
√

(z − z′)2 + a2
. (2.60)

Equation (2.59) is referred to as the “reduced form” of Pocklington’s equation. Note that,

apart from neglecting end effects, no approximations have been made to arrive at (2.59).

Hence, this integro-differential equation is exact, see also [13].

2.2.4 Exact kernel formulation

As a second choice we consider the observation point on the surface of the wire. In this

case the distance R is

R = |(ziz + air(φ)) − (z′iz + air(φ
′))| =

√
2a2(1 − cos(φ− φ′)) + (z − z′)2

=

√
(z − z′)2 + 4a2 sin2

(
φ− φ′

2

)
=
√

(z − z′)2 + 4a2 sin2(ϕ), (2.61)

and the Green’s function

G(R, ω) =
exp(−jk

√
(z − z′)2 + 4a2 sin2(ϕ))

4π
√

(z − z′)2 + 4a2 sin2(ϕ)
, (2.62)

is periodic in ϕ =
φ− φ′

2
. The integro-differential equation (2.57) then can be written as

(
∂2

z + k2
)

h∫

z′=0

KE(z − z′, ω)I(z′, ω)dz′ =
1

2π

2π∫

φ=0

jωε
[
SDEz(r, ω) − Ei

z(r, ω)
]
dφ, (2.63)

where the “exact kernel” is defined as

KE(z − z′, ω) = g(a, z − z′, ω) =
1

2π2

π/2∫

ϕ=0

exp(−jk
√

(z − z′)2 + 4a2 sin2 ϕ)√
(z − z′)2 + 4a2 sin2 ϕ

dϕ. (2.64)
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Equation (2.63) is known as “Pocklington’s equation with exact kernel”. In this case the

integral in (2.64) contains a singularity when z approaches z′ and extra numerical effort

is required to evaluate the unknown current in (2.63) due to the presence of this singular

behavior [15]. Moreover, the integro-differential equation (2.63) is well-posed [35–37] and

its solution (i.e., the current distribution) is unique [38].

2.2.5 Delta-gap voltage excitation

In order to have a complete description, we may consider the current to be generated by

a delta-gap voltage excitation, see Fig. 2.1 and [13]. The electric field in the gap region

satisfies the relation

zg+∆∫

zg−∆

Ez(r, ω)dz = −V (ω) . (2.65)

Even though the electric field may not be infinite in a region of infinitesimal width (i.e.,

∆ ↓ 0), a mathematical delta-gap model has been used. For the exact kernel formulation,

the observation point r = ziz + air, with |z − zg| < ∆, is on the extension of the wire

surface, therefore from (2.65), taking the limit ∆ ↓ 0, yields

Ez(ziz + air, ω) = −V (ω)δ(z − zg). (2.66)

Inside the wire and outside the gap, the electric field vanishes. Consequently, we have

SDEz(ziz + airω) = −V (ω)δ(z − zg), (2.67)

and therefore Pocklington’s equation with exact kernel (2.63) becomes

(
∂2

z + k2
)

h∫

z′=0

KE(z − z′, ω)I(z′, ω)dz′ = −jωε
[
V (ω)δ(z − zg) + Êi

z(r, ω)
]
, (2.68)

where the averaged field Êi
z is defined as

Êi
z(r, ω) =

1

2π

2π∫

φ=0

Ei
z(r, ω)dφ. (2.69)

For the reduced kernel formulation, the delta-gap voltage excitation is

Ez(ziz, ω) = −V (ω)δ(z − zg), (2.70)
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where the observation point r = ziz is on the central axis of the wire. Therefore, equation

(2.59) becomes

(
∂2

z + k2
)

h∫

z′=0

KR(z − z′, ω)I(z′, ω)dz′ = −jωε
[
V (ω)δ(z − zg) + Ei

z(r, ω)
]
. (2.71)

2.2.6 Incident Field

Let us consider Pocklington’s equation with exact kernel (2.68). Even if the exact kernel

formulation is adopted, we note that, in the literature, most authors evaluate the incident

electric field on the axis of the wire rather than on the mantle. To illustrate the difference

between these two choices of excitation functions, let us consider a plane wave incident on

the wire from a direction defined by the unit vector ik as in Fig. 2.4.

P
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θi

φi

x

y

z
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Figure 2.4: Definition of the unit incident vector ik.

The origin of the coordinate system is considered to be the phase reference point. Even

though in the following other types of incident field are considered, we assume now that a

plane wave is incident on the wire. The expression is then given by

Ei(r) = E0 exp(−jki · r), (2.72)

where E0 is the amplitude vector, ki = kiik is the incident wave vector, ki = |ki| = ω
√
εµ is

the phase coefficient and r = xix +yiy +ziz is the observation point expressed in Cartesian
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coordinates. According to Fig. 2.4, the incident wave unit vector ik can be decomposed

into Cartesian unit vectors as follows

ik = − sin θi cos φiix − sin θi sinφiiy − cos θiiz. (2.73)

In general the wave is elliptically polarized. We confine ourselves to a linearly polarized

wave Ei and since E0 · ki = 0 we can write E0 in Cartesian coordinates as

E0 = (E0θ cos θi cosφi − E0φ sin φi)ix +

(E0θ cos θi sin φi + E0φ cosφi)iy + (−E0θ sin θi)iz, (2.74)

where E0θ and E0φ are the θ and φ components of the field, respectively. In particular the

z-component of the incident plane wave (2.72) is E0z = −E0θ sin θi and the scalar product

ki · r is

ki · r = (−ki sin θi cosφiix − ki sin θi sin φiiy − ki cos θiiz) · (xix + yiy + ziz). (2.75)

As a first choice, placing the observation point r = ziz on the central axis of the

wire, yields

ki · r = −kiz cos θi. (2.76)

In this case, with the aid of (2.74), the averaging over φ has no effect and we write

Êi
z(ziz, ω) = Ei

z(ziz, ω) = −E0θ sin θi exp(jzki cos θi), (2.77)

which does not depend on φ.

As a second choice, placing the observation point on the wire surface leads to

r = a cosφix + a sinφiy + ziz, (2.78)

and, consequently, the scalar product ki·r and the z-component of the incident field become

ki · r = −kia sin θi cos(φi − φ) − kiz cos θi and

Ei
z(r, ω) = −E0θ sin θi exp(jzki cos θi) exp(jaki sin θi cos(φi − φ)), (2.79)

respectively. Thus in the exact kernel equation (2.63) and (2.68), the averaged field can

be written as

Êi
z(r, ω) =

1

2π

2π∫

φ=0

Ei
z(r, ω)dφ

= − 1

2π
E0θ sin θi exp(jzki cos θi)

2π∫

φ=0

exp(jaki sin θi cos(φi − φ))dφ. (2.80)



26 Thin-wire equations

Let us focus on the azimuthal, φ-dependent factor in the previous expression. Ac-

cording to [39, eq. (9.1.21)],

2π∫

φ=0

exp(jaki sin θi cos(φi − φ))dφ = 2πJ0(ak
i sin θi), (2.81)

where J0 is the Bessel function of the first kind and order zero. Substituting this result

in (2.80) leads to

Êi
z(r, ω) =

1

2π

2π∫

φ=0

Ei
z(r, ω)dφ = −E0θ sin θi exp(jzki cos θi)J0(ak

i sin θi)

= Êi
z(ziz, ω)J0(ak

i sin θi), (2.82)

where Êi
z(ziz, ω) is the averaged field in (2.77) when the observation point is placed on

the wire axis. We observe that the correction factor J0(ak
i sin θi) in the above equation

depends on the angle of incidence θi and on the product aki.

2.2.7 Hallén’s Equation

For the sake of completeness we write here Hallén’s integral equation [10]. Irrespective of

the choices of the observation point, Pocklington’s integro-differential equation (2.57)

(
∂2

z + k2
)

h∫

z′=0

g(r, z − z′, ω)I(z′, ω)dz′ =
1

2π

2π∫

φ=0

jωε
[
SDEz(r, ω) − Ei

z(r, ω)
]
dφ, (2.83)

can be written in short as

(
∂2

z + k2
)
Υ(z) = Φ(z), (2.84)

where Υ(z) and Φ(z) are the unknown term and the source term, respectively. The general

solution of this equation is given by

Υ(z) = A exp(−jkz) +B exp(−jk(h− z)) +
1

2jk

z∫

z′=0

Φ(z′) exp(−jk|z − z′|)dz′, (2.85)
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where A and B are arbitrary constants. This inversion of the one-dimensional wave equa-

tion may be used to transform Pocklington’s equation. The result is
h∫

z′=0

g(z − z′, ω)I(z′, ω)dz′ = A exp(−jkz) +B exp(−jk(h− z))

+
Y

2


V (ω) exp (−jk|z − zg|) +

h∫

z′=0

Êi
z(r, ω) exp(−jk|z − z′|)dz′


 , (2.86)

for 0 ≤ z ≤ h and where Y =
√
ε/µ = ωε/k is the wave admittance. The latter equation

is known as Hallén’s integral equation. The coefficients A and B must be determined such

that the current vanishes at the end points of the wire.

2.3 Conclusions

In this chapter two thin-wire integral equations for the total current that flows along the

wire have been introduced: “Pocklington’s equation with reduced kernel” and “Pockling-

ton’s equation with exact kernel”. We have described that the motivation for considering

only the total wire current is that this quantity governs the behavior of the scattered field.

Moreover, a one-dimensional integral representation of this field is derived: the radiated

field is determined up to O(a2) by replacing the actual current density on the mantle with

the total current on the wire axis.

The logical following step is the development of an accurate and efficient numerical method

to solve them, calculating the unknown current distribution. As will be described in Chap-

ter 3, the wire is subdivided into segments and the current is approximated by means of

a linear combination of expansion functions defined on these subdomains. The question

now is which Pocklington’s equation is preferred between the one with exact and the one

with reduced kernel. In the literature it is observed that, the integral equation with the

reduced kernel is ill-posed (i.e., the linear operator has an unbounded inverse) because the

solution I does not depend continuously on the source terms (the known right-hand side

term) [35–37]. As a consequence, by refining the discretization it is not possible to improve

the accuracy of the current approximation [14]. A good alternative is the integral equation

with exact kernel which is well-posed [7].

In conclusion, despite the extra numerical effort in evaluating the current due to the singu-

larity of the Green’s function in the exact kernel formulation (2.64), we choose Pockling-

ton’s equation with exact kernel (2.63) as the starting point of our subsequent numerical

analysis.
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Chapter 3

The solution of the thin-wire

equation

In this chapter Pocklington’s equation with exact kernel is solved numerically by the

Method of Moments (MoM) [5]. First, the unknown current distribution is expanded

in a sequence of basis functions. Second, a set of linearly independent “weighting/testing”

functions is defined and a suitable inner product is applied on both sides of the integral

equation. This leads to a system of linear equations which has to be solved numerically.

Even though direct methods (e.g., LU decomposition) are the most obvious way for solving

the discretized equation for a single wire, we use an iterative technique as the Conjugate

Gradient (CG) method [25, 40, 41]. Indeed, especially for large problems (e.g., structures

comprising coupled wires, surfaces and wire-to-surface junctions) non-iterative methods

require considerable computational time and storage capacity. In this case, iterative meth-

ods present an alternative [42]. An iterative method offers the possibility to terminate the

procedure once the solution is approximated within a fixed tolerance. In practice, this can

lead to a considerable reduction in computation time.

In Section 3.1 we introduce the Galerkin Method of Moments with our choice of expan-

sion and testing functions. Then in Sections 3.2 and 3.3 we discuss how elements of the

system matrix can be computed accurately and efficiently. Finally some results are shown

in Sec. 3.4.
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3.1 Numerical Formulation

Starting from Pocklington’s equation with exact kernel (2.68)

(
∂2

z + k2
)

h∫

z′=0

KE(z − z′, ω)I(z′, ω)dz′ = −jωε
(
V (ω)δ(z − zg) + Êi

z(r, ω)
)
, (3.1)

we implement an accurate numerical scheme able to find the solution (i.e., the unknown

current) of this integro-differential problem. The previous form may be symbolically writ-

ten as

L{I(z)} = f(z), (3.2)

where L represents a linear operator acting on the current I(z) and where f(z) is the known

excitation. Henceforth, the dependence on the frequency ω will no longer be indicated

explicitly.

3.1.1 Method of Moments

Aiming at the evaluation of the current I(z), we apply the Method of Moments (MoM) to

find an approximate solution of the continuous integral equation. Let I(z) be expanded as

a series of linearly independent functions ψ1(z), ψ2(z), ψ3(z), . . . which satisfy the problem’s

boundary conditions and are defined in the domain of the operator L, as

I(z) =
∞∑

n=1

Inψn(z). (3.3)

In are complex unknown coefficients and ψn(z) are referred to as “expansion” or “basis”

functions. For exact solutions, (3.3) is an infinite summation, while for approximate so-

lution the current I(z) is expanded by means of a finite number N of basis functions as

I(z) ≈
N∑

n=1

Inψn(z). (3.4)

In the literature, two classes of basis functions are described, namely “global” (i.e., defined

over the entire wire domain (0, h)) and “local” (i.e., defined over a sub-domain of the total

domain of interest) basis functions [5]. When local basis functions are used, each In of the

expansion (3.4) affects the approximation of I(z) only over a subsection of the region of in-

terest. For ease of implementation, we have decided to use local basis functions. Our choice
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is to define N triangular (also referred to as rooftop) basis functions ψn(z)=ψ(z − n∆z)

on a uniform mesh with mesh size ∆z

ψ(z) =

{
1 −

∣∣∣ z
∆z

∣∣∣ , if |z| ≤ ∆z,

0, otherwise.
(3.5)

The linear combination (3.4) will then be a piecewise linear function with the observation

that functions (3.5) do not properly represent the known square-root behavior of the current

at the ends of the wire (i.e., O(
√
z(h− z)) for z ≈ 0, h). Nevertheless, increasing the

number of functions ψn used, improves the approximation (3.4) on the local sub-domains

and, for N → ∞, the local approximation converges to the exact solution [7]. As shown

in Fig. 3.1, the wire is segmented in N + 1 intervals, each of length ∆z = h/(N + 1) and

each basis function ψn is defined over two adjoining segments.

The second step is to use the linearity of the operator L. Thus, we can interchange the

order of the summation and the operator L on the left-hand side of equation (3.2)

L
{

N∑

n=1

Inψn(z)

}
=

N∑

n=1

InL{ψn(z)} . (3.6)
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Figure 3.1: Basis, testing functions and total current approximation.

Next, we define a suitable inner product

< f(z), g(z) >=

h∫

z=0

f ∗(z)g(z)dz, (3.7)

where f and g are two general complex functions defined in 0 ≤ z ≤ h and where the

superscript ∗ indicates the complex conjugate. Now, we define a set of N linearly indepen-

dent “weighting” or “testing” functions {χm}N
m=1 for the operator L. Finally, taking the
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inner product of equation (3.2) with a testing function χm and applying the property of

linearity (3.6) in the left-hand side, yields a system of N equations in N unknowns which

can be written in matrix form as

Z I = F. (3.8)

The N×N matrix

Z =




〈χ1,L{ψ1}〉 〈χ1,L{ψ2}〉 . . . 〈χ1,L{ψN}〉
〈χ2,L{ψ1}〉 〈χ2,L{ψ2}〉 . . . 〈χ2,L{ψN}〉

...
...

...
...

〈χN ,L{ψ1}〉 〈χN ,L{ψ2}〉 . . . 〈χN ,L{ψN}〉



, (3.9)

is referred to as the “system matrix” and the N -dimensional vectors

F = −jωε




〈
χ1, V (ω)δ(z − zg) + Êi

z(r, ω)
〉

〈
χ2, V (ω)δ(z − zg) + Êi

z(r, ω)
〉

...〈
χN , V (ω)δ(z − zg) + Êi

z(r, ω)
〉



, I =




I1

I2
...

IN



, (3.10)

represent the excitation (known vector) and the unknown current, respectively. We choose

to have real-valued weighting functions identical to the basis functions, i.e., χm(z) = ψm(z),

for m = 1, . . . , N . In this particular case the Method of Moments (MoM) is referred

to as the Galerkin Method of Moments [5], (see Fig. 3.1) and, for a straight wire, this

discretization process gives rise to a Toeplitz symmetric system matrix Z. Moreover, the

latter formulation (3.8) converges to the correct solution for ∆z→ 0 as shown in [7], [8,

pp. 212]. It is worth noticing that the storage required for the system matrix Z is reduced

from O(N2) to O(N), since Z is a symmetric Toeplitz matrix. Thanks to this property we

achieve a reduction of CPU time of a factor N in the computation of the matrix and the

solution only requires O(N 2) flops instead of O(N 3) [43, Sec. 4.7]. From the exact kernel

equation (3.1), applying the Galerkin MoM, we have

N∑

n=1

In

h∫

z=0

ψm(z)




h∫

z′=0

(
∂2

z + k2
)
KE(z−z′)ψn(z′)dz′


dz

= −jωε
h∫

z=0

ψm(z)
(
V (ω)δ(z − zg) + Êi

z(r, ω)
)
dz, (3.11)
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for m = 1, . . . , N . Hence, the (m,n)-th element of the system matrix Z in (3.8) is

Zm,n =

h∫

z=0

ψm(z)




h∫

z′=0

(
∂2

z + k2
)
KE(z−z′)ψn(z′)dz′


dz, (3.12)

with ψm, ψn being the m−th testing and the n−th basis function, respectively. The obvious

next step is to solve the linear system (3.8) of N equations in N unknowns. For a single

wire the solution can be computed efficiently by using a CG-FFT scheme [25, Sec. 4.3] [41]

where for a Toeplitz matrix the solution complexity goes from O(N 2) flops for the entire

computation to O(N lnN) per iteration step. Since we aim at the analysis of structures

more complex than a single wire, we will employ the CG method only.

3.2 Evaluation of the known excitation

In this section we describe how to evaluate the genericm-th element of the known excitation

vector F in (3.10)

Fm = −jωε
(m+1)∆z∫

z=(m−1)∆z

ψm(z)
(
V (ω)δ(z − zg) + Êi

z(r, ω)
)
dz, (3.13)

for the two types of excitation considered: the delta-gap voltage excitation and the incident

plane wave.

3.2.1 Delta-gap voltage excitation

Focusing on the delta gap, we have

Fm = −jωε
(m+1)∆z∫

z=(m−1)∆z

ψm(z)V (ω)δ(z − zg)dz = −jωεV (ω)ψm(zg), (3.14)

or more explicitly,

Fm =





−jωεV (ω)

(
1 − |zg −m∆z|

∆z

)
, |zg −m∆z| ≤ ∆z,

0, otherwise.
(3.15)

With respect to discretization it is worth noticing that, if the delta gap is placed on a lattice

point (i.e., zg = m∆z), only a single testing function ψm contributes to the computation of
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Fm. Thus, the previous expression is identically equal to the delta-gap voltage value V (ω)

apart from a constant −jωε:

Fm =

{
−jωεV (ω), zg = m∆z,

0, otherwise.
(3.16)

For positions zg 6= m∆z in between the lattice points, on the other hand, two testing

functions are involved in the computation of Fm.

3.2.2 Incident field

From (3.10), for an incident field Ei(r, ω) we obtain

Fm = −jωε < ψm, Ê
i
z(r, ω) >= −jωε < ψm,

1

2π

2π∫

φ=0

Ei
z(r, ω)dφ >, (3.17)

where Ei
z(r, ω) is the z-component of Ei.

In particular, for an incident plane wave Ei = E0 exp (−jki · r), recalling the expres-

sion (2.82) in Sec. 2.2.6, we can write

1

2π

2π∫

φ=0

Ei
z(r, ω)dφ = −E0θ sin θi exp(jzki cos θi)J0(ak

i sin θi). (3.18)

Substituting this result in (3.17) yields

Fm = jωεE0θ sin θiJ0(ak
i sin θi)

(m+1)∆z∫

z=(m−1)∆z

ψm(z) exp
(
jzki cos θi

)
dz. (3.19)

The integral over z depends only on the exponent and on ψm(z), and can be determined

in a closed form (see Appendix C.1). Moreover, the first-kind Bessel function J0 in (3.19)

can be written by means of series expansion [39, eq. 9.1.10] and, for wires with aki � 1,

we can approximate J0 by

J0(ak
i sin θi) = 1 +O

(
(aki)2

)
. (3.20)

3.3 Efficient evaluation of the system matrix elements

At this stage, our aim is to efficiently evaluate the expression (3.12) for eachm, n = 1, . . . , N

to fill the system matrix Z. First, we write (3.12) as the sum of two constituting elements
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Zm,n = ZE
m,n + ZM

m,n

ZE
m,n =

h∫

z=0

ψm(z)


∂2

z

h∫

z′=0

KE (z − z′)ψn(z′)dz′


 dz, (3.21)

ZM
m,n = k2

h∫

z=0

h∫

z′=0

KE(z − z′)ψm(z)ψn(z′)dz′dz. (3.22)

The integrals given above cannot be determined analytically and they have to be approx-

imated efficiently. Their evaluation involves a 3D integration: one in dz and one in dz ′ as

can be observed in (3.21), (3.22), and a third integration in ϕ present in the exact kernel

KE (2.64). Special attention is needed when the argument of KE approaches 0.

First, we focus on the element ZE
m,n. Following the scheme proposed by Butler and

Wilton [44] we re-write ZE
m,n in (3.21) as

ZE
m,n =

h∫

z=0

ψm(z)∂2
zu(z)dz, (3.23)

where

u(z) =

L∫

z′=0

KE (z − z′)ψn(z′)dz′. (3.24)

Integrating (3.23) by parts twice yields

ZE
m,n =

h∫

z=0

(
∂2

zψm(z)
)
u(z)dz

=
1

∆z

h∫

z=0

[δ(z − (m− 1)∆z) − 2δ(z −m∆z) + δ(z − (m + 1)∆z)] u(z)dz. (3.25)

The right-hand side of (3.25) can be written as a difference rule:

ZE
m,n = um−1,n − 2um,n + um+1,n, (3.26)

with

um,n =
1

∆z

(n+1)∆z∫

z′=(n−1)∆z

ψn(z′)KE(m∆z − z′)dz′, m, n = 1, . . . , N, (3.27)
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since the basis function ψn(z′) is identical to zero outside the interval |z′/∆z − n| < 1.

Writing the explicit expression of ψn and applying the change of variable s = −z′/∆z + n

yields

um,n = um−n =

1∫

s=0

(1 − s)KE((s+m− n)∆z)ds +

0∫

s=−1

(1 + s)KE((s+m− n)∆z)ds

=

1∫

s=0

(1 − s) [KE((s+m− n)∆z) +KE((m− n− s)∆z)] ds. (3.28)

The same result is obtained following the scheme proposed by Davies et al. [15]. We

proceed from (3.28) defining ` = m− n, and therefore we write

um−n = u` =

1∫

s=0

(1 − s) [KE((`+ s)∆z) +KE((`− s)∆z)] ds, (3.29)

where we have restricted the index ` to ` = 0, 1, ..., N − 1 since u` = u−`. In conclusion,

the constituting element in (3.26) becomes

ZE
m,n = ZE

m−n = ZE
` = (u`−1 − 2u` + u`+1) . (3.30)

Second, we consider the element ZM
m,n in (3.22). Following the procedure described in [15],

we have verified that by changing the variables z and z ′ as follows





x =
z

∆z
−m,

x′ =
z′

∆z
− n,

and





s = x− x′,

s′ = x+ x′,
(3.31)

leads to

ZM
` = k2(∆z)2

2∫

s=0

γ(s) [KE((`+ s)∆z) +KE((`− s)∆z)] ds, (3.32)

where γ(s) is a twice continuously differentiable function [15], (see Fig. 3.2):

γ(s) =





(
s3

2
− s2 +

2

3

)
, 0 ≤ s ≤ 1,

(2 − s)3

6
, 1 < s ≤ 2.

(3.33)
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Figure 3.2: Behavior of the function γ(s), expression (3.33).

In conclusion, the coefficients u`, u`−1, u`+1 in (3.29), (3.30) and the constituting element

ZM
` in (3.32) require the evaluation of integrals of the form

Ig(θ) =

s2∫

s=s1

P (s)KE((s+ θ)∆z)ds, (3.34)

with P (s) a polynomial and θ = ±`. It is noted that the 3D integrals in (3.21) and (3.22)

have been simplified to 2D integrals of the given form (3.34) by a change of variables.

When (s+ θ)∆z vanishes, the integrand in (3.34) exhibits a logarithmic singularity as we

will show in Secs. 3.3.1 and 3.3.2. In this case, special care has to be taken in computing

the integral. We proceed as follows

Ig(θ) =

s2∫

s=s1

P (s)
[
KE((s+ θ)∆z) −Ksing((s+ θ)∆z)

]
ds

︸ ︷︷ ︸
=I1

+

s2∫

s=s1

P (s)Ksing((s+ θ)∆z)ds

︸ ︷︷ ︸
=I2

,

(3.35)

where Ksing is a properly chosen function that follows the asymptotic behavior of KE when

its argument approaches 0 and it is chosen such that the evaluation of I2 can be carried

out analytically. We give the detailed expression of function Ksing in Sec. 3.3.2. In this

way the integrand of the first term I1 is non-singular, continuously differentiable and its

integral is finite. The function Ksing has a singular behavior, but its integral I2 is known

analytically.
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3.3.1 Efficient evaluation of the exact kernel

We focus now on the evaluation of KE(z− z′) as defined in (2.64). Basically we follow the

elegant and reliable algorithm proposed by Davies et al. [15], implementing the algorithm

into a numerical code in double precision. The introduction of ρ = z − z ′ leads to

KE(ρ) =
1

4π2a

π/2∫

ϕ=0

exp

(
−j2ak

√( ρ
2a

)2

+ sin2 ϕ

)

√( ρ
2a

)2

+ sin2 ϕ

dϕ. (3.36)

Introducing the two “scaled” variables

λ̃ =
|ρ|
2a
, ν̃ = 2ka, (3.37)

we can write a “scaled” form of the exact kernel

KE(λ̃) =
1

4π2a

π/2∫

ϕ=0

exp

(
−jν̃

√
λ̃2 + sin2 ϕ

)

√
λ̃2 + sin2 ϕ

dϕ =
F (λ̃, ν̃)

4π2a
, (3.38)

with

F (λ̃, ν̃) =

π/2∫

ϕ=0

exp
(
−jν̃R̃

)

R̃
dϕ, and R̃ =

√
λ̃2 + sin2 ϕ. (3.39)

To show some properties of this scaled form F we decompose it into two parts

F (λ̃, ν̃) =

π/2∫

ϕ=0

dϕ

R̃
+

π/2∫

ϕ=0

exp
(
−jν̃R̃

)
− 1

R̃
dϕ. (3.40)

We note that the second integrand is bounded (in fact we extract the singularity at R̃ = 0)

while the first integral can be written as

π/2∫

ϕ=0

dϕ

R̃
=

π/2∫

ϕ=0

dϕ√
λ̃2 + sin2 ϕ

=

π/2∫

ϕ=0

dϕ√
λ̃2 + cos2 ϕ

=
1√
λ̃2 + 1

Kell

(
1√
λ̃2 + 1

)
, (3.41)

where

Kell (q) =

π/2∫

ϕ=0

dϕ√
1 − q2 sin2 ϕ

, with 0 ≤ q < 1, (3.42)
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is the complete elliptic integral of the first kind [39, eq. 17.3.1]. Since Kell has a logarithmic

singularity as its argument approaches 1 [39], this means also that KE in (3.38) has the

property

KE(λ̃) = O(ln |λ̃|), as λ̃→ 0. (3.43)

To overcome the difficulties in evaluating F (λ̃, ν̃) and consequently KE(λ̃) due to the

presence of a singularity, we follow the procedure suggested in [15]. We distinguish between

the cases where λ̃ is large and λ̃ is small. As a “rule of thumb” this transition is made at

a switching value

λ̃switch =
10

10 + |ν̃| . (3.44)

In the case of large λ̃, (i.e., λ̃ ≥ λ̃switch), the integral (3.39) is computed by applying a

composite trapezoidal rule. For small λ̃ (i.e., λ̃ < λ̃switch) we treat the real and imaginary

parts of (3.39) separately, thus

F (λ̃, ν̃) = F1(λ̃) − jF2(λ̃, ν̃), (3.45)

with

F1(λ̃) =

π/2∫

ϕ=0

cos(ν̃R̃)

R̃
dϕ, F2(λ̃, ν̃) =

π/2∫

ϕ=0

sin(ν̃R̃)

R̃
dϕ. (3.46)

The integrand of the imaginary part F2 is a smooth function and does not show a singular

behavior. Hence, the evaluation of F2 can be carried out numerically with a composite

trapezoidal rule. It is worth noticing that when performing integration by use of a trape-

zoidal rule, a better approximation of the integral can be obtained with the Romberg

rule [45] which is an extrapolated version of the trapezoidal rule estimating the error term

without requiring any further function evaluations. Focusing on the real part F1, we note

that the integral is similar to the complete elliptic integral in (3.41) and (3.42)

F1(λ̃, ν̃ = 0) =

π/2∫

ϕ=0

dϕ

R̃
=

π/2∫

ϕ=0

dϕ√
λ̃2 + sin2 ϕ

=
1√
λ̃2 + 1

Kell

(
1√
λ̃2 + 1

)
. (3.47)

This similarity gave rise to the idea to apply a well-known method for the computation of

elliptic integrals to evaluate F1 (3.46). This method uses a Landen transform [15] and it

is discussed in Appendix C.2.
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3.3.2 Definition of function Ksing

Aiming at the evaluation of integrals I1 and I2 in (3.35), once the exact kernel KE is

computed, we still have to determine the singular function Ksing. We choose Ksing such

that it follows the asymptotic behavior of KE for small values of its argument. Starting

from the expression (3.41) we know that the following asymptotic behavior of the complete

elliptic integral of the first kind is valid

Kell

(
1√
λ̃2 + 1

)
≈ a0 +

1

2
ln

(
1 + λ̃2

λ̃2

)
≈ − ln λ̃, for λ̃→ 0, (3.48)

with a0 ≈ 1.38629 [39, eq. 17.3.33]. Consequently from (3.40) and (3.41) we obtain

F (λ̃, ν̃) ≈ − ln λ̃, λ̃→ 0, (3.49)

and

KE(λ̃) ≈ −1

4π2a
ln |λ̃|, λ̃→ 0. (3.50)

In order to arrive at a continuously differentiable function Ksing, we finally write

Ksing(λ̃) =





1

4π2a

[
− ln |λ̃| + |λ̃| − 1

]
, |λ̃| < 1,

0, otherwise.
(3.51)

The behavior of the function Ksing is illustrated in Fig. 3.3.
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Figure 3.3: Behavior of the absolute value of the exact kernel KE (3.38) and of the singular

function Ksing (3.51) normalized to
1

4π2a
for ν̃ = 1.

Once the singular function Ksing is defined, we can determine the integral I2 in (3.35)

analytically. The explicit closed form of this integral is given in Appendix C.3.
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3.4 Numerical results

Following the numerical method presented so far, we have implemented a FORTRAN

program referred to as Galerkin Method of Moments with Exact Kernel (GEKMoM) to

calculate the current distribution.

3.4.1 Total current of a thin wire

Representative results are shown for a perfectly electrically conducting (PEC) straight

thin wire in free space. First, we compute the current distribution of a thin wire placed

along the positive z-axis illuminated by a normally incident plane wave |Ei| = 1 V/m,

polarized in the z-direction. The wire has length h = λ/2 and radius a = λ/200 and its

current is expanded by means of N = 31 basis functions (i.e., 32 segments). Figure 3.4-(a)

shows good agreement between the current computed by using the described numerical

scheme (namely “GEKMoM”), the commercial software NEC 4.1 [2] and results in the

literature [25, Fig. 4.2] using a numerical implementation of the integral equation with

reduced kernel. Further, the discretization is refined and 155 basis functions (i.e., 156

segments) are used to approximate the wire current. Results are shown in Fig. 3.4-(b).

Second, a different excitation function is considered. The wire is fed by a delta-gap voltage

V (ω) = V0 = 1 V placed in its center. The physical dimensions of the wire are the same

of the previous example. Results are given in Fig. 3.5-(a) for N = 31 and in Fig. 3.5-(b)

for N = 155. The magnitudes of the current I computed by GEKMoM and NEC 4.1 are

shown. In both examples (i.e., a plane wave and a delta-gap voltage) it is observed that,

by refining the discretization, the solution to the equation with reduced kernel and the

one computed by NEC 4.1 produce unstable and oscillatory results, which can easily be

rejected from physical considerations. Nevertheless, it is known that in NEC 4.1 this kind

of oscillatory behavior may occur for ∆z/a less than about 0.5, where ∆z is the segment

length [2]. We observe that for a delta-gap voltage source these oscillations occur in the

center of the wire, while for a smooth incident field they start slightly near the end faces.

The cause of these oscillations lies in the ill-posed nature of the integral equation with

reduced kernel [14], [25, Secs. 3.3.3 and 4.4.1]. It is our conclusion that the erroneous

behavior of results calculated by NEC 4.1 is most probably caused by the reduced kernel

used in NEC 4.1 [3]. An effective regularization procedure to avoid these instabilities is

proposed in [25, Sec. 3.3.4].
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Figure 3.4: Magnitude of the current distribution versus the position along a thin wire,

h = λ/2 and h/a = 100, illuminated by a normally incident z-polarized plane wave. (a)-

Using N = 31 basis functions; (b)- using N = 155 basis functions.
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Figure 3.5: Magnitude of the current distribution versus the position along a thin wire,

h = λ/2 and h/a = 100, fed by a delta-gap voltage V0 = 1 V in its center. (a)- Using

N = 31 basis functions; (b)- using N = 155 basis functions.
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3.4.2 Total current of a thick wire

As further test, we consider the same h = λ/2 straight wire studied in the previous section

with a different radius of a = λ/60. For this straight thick wire fed by a delta-gap source in

its center, we have calculated the modulus of the current using 31 and 51 basis functions.

In Fig. 3.6 the results are compared with those computed by NEC 4.1 [2]. The main

discrepancies between the two models are observed near the delta-gap where an oscillatory

behavior for the current calculated by NEC 4.1 is present. The exact kernel formulation

gives stable results whereas approximations used in NEC 4.1 [3] do not.
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Figure 3.6: Magnitude of the current distribution versus the position along a thick wire,

h = λ/2 and h/a = 30, fed by a delta-gap voltage V0 = 1 V in its center. (a)- Using

N = 31 basis functions; (b)- using N = 51 basis functions.

3.4.3 Convergence study

For a λ/2 thin wire of radius a = λ/200 illuminated by a normally incident z-polarized

plane wave |Ei| = 1 V/m, we have computed the current along the wire by varying the

number N of basis functions used. Figures 3.7 and 3.8 show a converging behavior of the

numerical method implemented, both for the real and the imaginary parts of the current

distribution. The same analysis has been performed for a thick wire with h = λ/2 and

radius a = λ/40. Also in this case, a good convergence is achieved, see Figs. 3.9 and 3.10.
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Figure 3.7: Real part of the total current versus the normalized position z/λ for a λ/2

wire, with h/a = 100, illuminated by a normally incident z-polarized plane wave, varying

the number N of basis functions used: (a)- current along the entire wire; (b)- current in

the central region of the wire (zoom).
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Figure 3.8: Imaginary part of the total current versus the normalized position z/λ for a λ/2

wire, with h/a = 100, illuminated by a normally incident z-polarized plane wave, varying

the number N of basis functions used: (a)- current along the entire wire; (b)- current in

the central region of the wire (zoom).
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Figure 3.9: Real part of the total current versus the normalized position z/λ for a λ/2

wire, with h/a = 20, illuminated by a normally incident z-polarized plane wave, varying

the number N of basis functions used: (a)- current along the entire wire; (b)- current in

the central region of the wire (zoom).
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Figure 3.10: Imaginary part of the total current versus the normalized position z/λ for

a λ/2 wire, with h/a = 20, illuminated by a normally incident z-polarized plane wave,

varying the number N of basis functions used: (a)- current along the entire wire; (b)-

current in the central region of the wire (zoom).
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To study the accuracy of the evaluated current distribution more thoroughly, we have

calculated the root-mean-square (RMS) error ζcur along the wire as

ζcur =

√√√√√√√√

h∫
z=0

∣∣∣I(z) − Ĩ(z)
∣∣∣
2

dz

h∫
z=0

|I(z)|2 dz
. (3.52)

As a reference I(z), we have considered the value of the current when a high number of

basis functions (e.g., N = 575) are used and the method is assumed to have converged.

The approximated value Ĩ(z) represents the current along the wire when it is expanded

by a number N ≤ 575 of basis functions. Figures 3.11, 3.12 and 3.13 show the error ζcur

associated with different numbers N of basis functions for a λ/2 wire with h/a = 100,

h/a = 30 and h/a = 20, respectively. We have observed that in all these cases the root-

mean-square (RMS) error is order 1/N as found in numerical results by Davies et al. [15]

and predicted in [7, 36]. The deviation observed for increasing discretization number N

comes from the residual error at N = 575.
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Figure 3.11: RMS error ζcur as defined in (3.52) versus the number N of basis functions

used. λ/2 wire with h/a = 100 illuminated by a normally incident z-polarized plane wave.
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Figure 3.12: RMS error ζcur as defined in (3.52) versus the number N of basis functions

used. λ/2 wire with h/a = 30 illuminated by a normally incident z-polarized plane wave.
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Figure 3.13: RMS error ζcur as defined in (3.52) versus the number N of basis functions

used. λ/2 wire with h/a = 20 illuminated by a normally incident z-polarized plane wave.
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3.4.4 Calculation of a realistic dipole input impedance

As additional validation, we are interested here in the value of input impedance Zin and

admittance Yin of a dipole of radius a = 0.7 cm, length h = 56 cm in a frequency range

f ∈ [50, 700] MHz. The dipole consists of perfectly electrically conducting (PEC) material,

fed by a voltage gap V (ω) = V0 = 1 V in its center (z = zg = h/2). We compute Zin and

Yin at Nf = 120 frequency steps.

From the numerical formulation developed so far, we define the antenna impedance and

admittance as

Zin = V0/I(zg = h/2), Yin = I(zg = h/2)/V0, (3.53)

where V0 and I(zg = h/2) are the voltage and the current in the gap. The complex

impedance and complex admittance are written in real and imaginary parts as

Zin = R + jX, Yin = G+ jB, (3.54)

where R is the resistance, X the reactance, G the conductance and B the susceptance.

The results calculated with the Galerkin MoM with Exact Kernel (GEKMoM) are given

in Figs. 3.14 and 3.15 for an even number of segments, and in Figs. 3.16 and 3.17 for

an odd number of segments. The black boxes indicate measured values extracted from

[46, Figs. 4.3 and 4.4]. From the measured values of R and X in [46] we calculate the

conductance G and the susceptance B as

G =
R

R2 +X2
, B =

−X
R2 +X2

. (3.55)

The way in which the delta-gap voltage source is modeled (see Sec. 3.2.1) implies that

the source configuration changes as the number of segments changes. From the computed

results we observe that the antenna impedance converges with an increasing number of

segments. Moreover, by comparing results in Figs. 3.14 and 3.15 with those in Figs. 3.16

and 3.17, we conclude that the method has a better convergence if an even number of

segments (i.e., an odd number N of expansion functions) is used, that means placing the

delta-gap voltage exactly at lattice points. As already pointed out in Sec. 3.2.1, an even

segmentation number corresponds to only one testing function φm (instead of two) being

involved in the computation of the excitation term Fm in (3.15) and, consequently, also in

the evaluation of current I(h/2) in the gap and of input impedance Zin. In this way the

value Fm computed is identically equal to the delta-gap voltage V (ω) = V0.
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Figure 3.14: Impedance for a dipole of radius a = 7 mm and length h = 56 cm as a function

of frequency. Even number of segments.
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function of frequency. Even number of segments.
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Figure 3.16: Impedance for a dipole of radius a = 7 mm and length h = 56 cm as a function

of frequency. Odd number of segments.
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function of frequency. Odd number of segments.
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3.5 Conclusions and discussion

In this chapter, we have described a numerical technique for solving Pocklington’s equation

with exact kernel. By means of the Galerkin Method of Moments the thin-wire integro-

differential equation has been discretized and subsequently solved numerically. Special

attention has been devoted to show how system matrix elements can be accurately cal-

culated performing a singularity extraction and a Landen transform. The model of the

delta-gap voltage source implemented so far implies that the source configuration changes

as the number of segments changes.

Moreover, some of the results presented may be significant in the further development of

this thesis and are here summarized:

• The exact kernel implementation does show a stable solution while the reduced kernel

exhibits an oscillatory behavior in the delta-gap region and near the wire end faces.

The numerical effort in handling the Green’s function singularity present in the exact

kernel formulation is therefore well rewarded. The improved stability may then allow

to use the exact kernel formulation in the treatment of coupled wires.

• The current computed by the method developed shows a converging behavior when

an incident plane wave is considered.

• The accuracy of the evaluated current distribution has been analyzed by a conver-

gence study of the numerical method implemented. We can conclude that expanding

the wire current with N basis functions leads to a root-mean-square error of order

1/N in the evaluation of the current.

• In the calculation of the wire impedance, the method shows a better convergence

when an even number of segments is used.

Finally, in the further development of this thesis, the Galerkin Method of Moments pro-

posed will be generalized to more complicate structures, such as loaded wires, coupled

wires, a wire coupled with a surface and a wire connected to a surface.
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Chapter 4

Loaded thin wires

In this chapter, the numerical method presented in Section 3.1 is extended to analyze wire

antennas with distributed as well as concentrated (lumped) loadings. From a practical

point of view, by introducing appropriate loadings along the wire, it is possible to obtain

significant variations in the electrical properties of wire antennas (e. g., input impedance,

radiation pattern, reflection coefficient, bandwidth).

In practical realizations, a resistive distributed loading is usually made by a resistive layer

(spraying resistive paint) on a dielectric cylindrical rod [47]. Wire antennas with continuous

capacitive loading are made in the form of a dielectric rod onto which very thin brass rings

are arranged in a row [48]. Moreover, it is possible to realize inductive distributed loading

by making the antenna in the form of a wire spiral with variable, slowly varying pitch.

For what concerns the practical realization of concentrated loadings, as the frequency

increases, a progressively increasing capacitive effect is present at the two faces of the wire

where the loading is connected. Thus it is difficult to accurately realize desired loadings

since this “parasitic” effect is not easily predictable. For a wire antenna loaded with a

lumped element, this undesired impedance should be measured in the operating range of

frequencies and taken into account as an additional impedance.

4.1 Formulation of the integral equation

The presence of a passive, distributed or lumped loading Z load causes a field drop E load

E load(z, ω) = −Z load(z, ω)I(z, ω), (4.1)
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that reduces the exciting field. If the wire is loaded by an impedance profile Z load(z, ω)

expressed in Ohm per meter (Ω/m) the integro-differential equation (3.1) is modified as

(
∂2

z + k2
)

h∫

z′=0

KE(z − z′, ω)I(z′, ω)dz′ − jωεZ load(z, ω)I(z, ω) =

−jωε
(
V (ω)δ(z − zg) + Êi

z(ziz, ω)
)
. (4.2)

Subsequently, considering the ω dependence implicitly, having expanded the current I(z)

in terms of basis functions, we modify expression (3.6) as

Nz∑

n=1

In
[
L{ψn(z)} − jωεZ load(z)ψn(z)

]
. (4.3)

Applying the Galerkin MoM then leads to the generalized system

(
Z + Zload

)
I = F, ⇒ A I = F, (4.4)

where A is referred to as the “generalized system matrix”, and is the sum of the “un-

loaded” system matrix Z and the “loading” (or “load”) matrix Zload. In particular, the

(m,n)-th element of the impedance matrix Zload is

Z load
m,n = −jωε

h∫

z=0

Z load(z)ψm(z)ψn(z)dz, (4.5)

with ψm(z) and ψn(z) the m-th and n-th testing and basis function (3.5), respectively.

Apart from particular impedance profiles Z load(z) (e.g., lumped loads, uniformly dis-

tributed loads) for which the value of Z load
m,n in (4.5) can be determined analytically, we

numerically compute Z load
m,n by a trapezoidal rule, which is consistent with the piecewise-

linear expansion functions. The matrix Z corresponds to the unloaded antenna configu-

ration, while the matrix Zload includes the effects of both general impedance distributions

along the wire and lumped elements placed at a particular position. In the case of a general

impedance distribution along the wire, the matrix Zload has only a tri-diagonal form (i.e.,

the storage required for the Zload elements is 3N − 2 instead of N 2). For lumped elements,

the number of non-zero matrix elements is even smaller.

4.2 Lumped or localized loadings

Suppose that the wire has been cut at the position z = zL and that an impedance has been

placed between z = zL + ∆ and z = zL − ∆ (i.e., between the two faces of the wire). By
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taking the limit for ∆ ↓ 0, the field drop due to the presence of the impedance becomes

−Z load(z)I(z) = −Z loadδ(z − zL)I(z) = −Z loadδ(z − zL)I(zL). (4.6)

Since Z load is a lumped loading, it is expressed in Ohm (Ω). Substituting the impedance

Z load(z) = Z loadδ(z − zL) in (4.5) yields

Z load
m,n = −jωε

h∫

z=0

Z loadδ(z − zL)ψm(z)ψn(z)dz = −jωεZ loadψm(zL)ψn(zL), (4.7)

for m,n = 1, . . . , N, with

ψm(zL) =





1 +
zL

∆z
−m, (m− 1)∆z ≤ zL ≤ m∆z,

1 − zL

∆z
+m, m∆z ≤ zL ≤ (m+ 1)∆z,

0, otherwise.

(4.8)

We observe that, for lumped loadings placed at lattice points, the value Z load
m,n is identical to

Z load only if m = n. Otherwise the element Z load
m,n is approximated by means of a product

of two piecewise-linear functions.

4.3 Dipole antenna with a lumped loading

The developed FORTRAN program GEKMoM has been extended to calculate the current

distribution of loaded straight wires.

As an example, we compute the current distribution of a λ/2 dipole antenna loaded with a

lumped element placed at zL = 10/156λ. The lumped loading is a series group comprising

of a capacitor C = 12 pF and an inductor L = 40 nH, which means that

Z load =

(
jωL+

1

jωC

)
= j31.106 Ω. (4.9)

The dipole has length h = 0.5 m, a length-radius ratio of h/a = 100 and it is fed by a

delta-gap voltage V (ω) = V0 = 1 V placed in its center, see Fig. 4.1. The calculation

is performed by using N basis functions (i.e., N + 1 segments) to expand the current

distribution. The magnitudes of the currents I computed by GEKMoM and NEC 4.1 are

shown and compared in Fig. 4.2.
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Figure 4.1: Dipole antenna with a series loading.
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Figure 4.2: Magnitude of the current distribution versus the position along a loaded λ/2

dipole, h/a = 100, fed by a delta-gap voltage V0 = 1 V in its center. Lumped series

element: L = 40 nH, C = 12 pF. (a)- Using N = 31 basis functions; (b)- using N = 155

basis functions.

A good agreement between the two curves is observed in Fig. 4.2-(a) when N = 31 basis

functions are used. By refining the discretization, using N = 155 basis functions the solu-

tion computed by NEC 4.1 produces oscillatory results, see Fig. 4.2-(b). The oscillations

occur at the position of the lumped loading and at the location of the delta-gap voltage

in the center of the wire. As explained in Secs. 3.4.1 and 3.4.2, the erroneous oscillatory

behavior of results calculated by NEC 4.1 (dashed line) is probably caused by the ill-posed

nature of the reduced kernel formulation used [3].



4.4. Dipole antenna loaded with a resistive profile 59

4.4 Dipole antenna loaded with a resistive profile

In this section, a λ/2 dipole antenna with h = 0.5 m, h/a = 100 and a constant resistive

loading Z load(z) = 1000 Ω/m for 0 ≤ z ≤ h, fed in its center by a delta-gap voltage

V (ω) = V0 = 1 V has been analyzed. We compute the current distribution along the

dipole by using N basis functions. The calculated results are compared with those obtained

by NEC 4.1. Figure 4.3 shows a good agreement in the current computed with the two

methods for N = 31 (Fig. 4.3-(a)), while for N = 155, the undesired oscillation appears

only at the position of the delta gap (Fig. 4.3-(b)) and not along the distributed loading.

We can therefore conclude that the oscillatory behavior at the locations of concentrated

loadings of results calculated by NEC 4.1 (see Sec. 4.3) is not present when the wire is

loaded with a distributed (continuous) impedance profile.
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Figure 4.3: Magnitude of the current distribution versus the position along a loaded λ/2

dipole, h/a = 100, fed by a delta-gap voltage V0 = 1 V in its center. Resistive distributed

loading: Z load(z) = 1000 Ω/m, for 0 ≤ z ≤ h. (a)- Using N = 31 basis functions; (b)-

using N = 155 basis functions.

4.5 Monopole antenna with a lumped loading

We consider here a PEC monopole antenna of length h = 15 cm and radius a = 0.3

cm on an infinite PEC ground plane, see Fig. 4.4. The antenna is loaded with a single

lumped capacitor C = 0.80789 pF placed at a distance zL = 6 cm from the ground plane.

This means that Z load = −j197 Ω at 1 GHz. The monopole is fed by a delta-gap voltage

V (ω) = V0 = 1 V at its base. Calculation by GEKMoM of the input admittance Yin is
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performed in a frequency range f ∈ [1.1, 2.7] GHz and compared in Fig. 4.5 with theoretical

and experimental results from [49, Fig. 5.8].
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Figure 4.4: Monopole antenna with capacitive loading over an infinite ground plane.

Values of G computed by GEKMoM are in good accordance with the theoretical and

experimental values published in [49]. Experimental results of the susceptance B are

better predicted by the theoretical model proposed by Popović et al. [49]. This is most

probably due to the approximation of the excitation region used (i.e., belt generator),

which accurately models the coaxial line used in the experiment [49].

In Fig. 4.6 the conductance G and the susceptance B of the capacitively loaded monopole

versus the frequency are compared with those of the unloaded antenna. To gain some

insight into the influence of the lumped capacitor on the antenna properties, we calculate

the Voltage Standing Wave Ratio (VSWR) from the computed input admittance Yin as

VSWR =
1 + |Γ|
1 − |Γ| , (4.10)

where Γ is the reflection coefficient

Γ =
1 − Z0Yin

1 + Z0Yin

, (4.11)

and Z0 = 50 Ω is the characteristic impedance of the transmission line. Figure 4.7 shows the

VSWR of the loaded (continuous line) and unloaded (dotted line) monopole as a function

of the frequency. Note that the presence of the loading reduces the VSWR in the frequency

range from 1.1 to 1.4 GHz, thus improving the antenna impedance matching. In this way

the VSWR is less than 3 over the entire band of interest.
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Figure 4.5: Conductance G and susceptance B of a monopole loaded with a capacitive

loading. GEKMoM: continuous line, [49] theory: dotted line, [49] experiment: black boxes.

Capacitance C = 0.80789 pF at a distance zL = 6 cm from the ground plane. Length

h = 15 cm, radius a = 0.3 cm.
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Monopole loaded with a capacitive loading C = 0.80789 pF at a distance zL = 6 cm from

the ground plane. Length h = 15 cm, radius a = 0.3 cm.
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Chapter 5

Natural Frequencies

In this chapter, the numerical method for the analysis of loaded wire antennas has been

extended to find the location of the natural frequencies in the complex plane of Laplace’s

variable s. As extensively described by Baum in the Singularity Expansion Method

(SEM) [50–52], natural frequencies constitute a complete description of the electromag-

netic behavior of the object. Natural frequencies are obtained as zeros of the determinant

of the system matrix and are widely used in the definition of the generated current of the

wire by means of the Singularity Expansion Method (SEM) [50–54]. Instead of looking

for zeros of the system matrix determinant [54], we use a different search procedure which

performs the Singular Value Decomposition (SVD) of the system matrix as described in

Section 5.1.1. We study the case of a perfectly conducting wire as well as a wire antenna

loaded with different resistive profiles [54] and with a lumped element. As the value of the

loading increases, we can generate successive initial estimates of the natural frequencies

and obtain a marching-on-in-loading approach.

5.1 Natural Frequencies

For the following derivation it is convenient to introduce the Laplace transform. The

one-sided Laplace transform of an arbitrary function f(t) is defined as

F (s) =

∞∫

t=t0

f(t) exp(−st)dt , (5.1)

where s = β + jω is a complex variable and where ω ≥ 0 is the angular frequency. f(t)

is a causal function (i.e., f(t) = 0 for −∞ < t < t0) of the real variable t. The function

f(t) is assumed to have a behavior such that F (s) exists and is analytic in the right half
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(0 ≤ Re{s} <∞) of the complex s plane. The subset of values of s for which the Laplace

transform exists is called the region of convergence or the domain of convergence. The

corresponding inverse Laplace transformation is given by the Bromwich inversion integral,

f(t) =
1

2πj

β0+j∞∫

s=β0−j∞

F (s) exp(st)ds , (5.2)

where β0 is a real number so that the contour path of integration is in the region of

convergence of F (s). For a causal function, β0 must be chosen such that β0 ≥ Re{sα} for

every singularity sα of F (s). If we select β0 = 0, and define the frequency f as f = ω/2π,

the above inverse integral formula becomes identical to the inverse Fourier transformation.

The Laplace transform of the thin-wire integro-differential equation (3.1) becomes

(
∂2

z − s2

c2

) h∫

z′=0

KE(z − z′, s)I(z′, s)dz′ = −sε
(
V (s)δ(z − zg) + Êi

z(r, s)
)
, (5.3)

where r = ziz + air(φ) is a point on the wire mantle and where the exact kernel KE is

KE(z − z′, s) =
1

2π2

π/2∫

ϕ=0

exp

(
−s
c

√
(z − z′)2 + 4a2 sin2 ϕ

)

√
(z − z′)2 + 4a2 sin2 ϕ

dϕ. (5.4)

From a mathematical point of view, natural frequencies of a wire are the complex values

s = β + jω for which the homogenous version of equation (5.3)

(
∂2

z − s2

c2

) h∫

z′=0

KE(z − z′, s)I(z′, s)dz′ = 0, (5.5)

allows nontrivial solution. For these values sα = βα + jωα, a current distribution along the

wire may be present even if no excitation is present. Furthermore, since sα is a natural

frequency, we observe that

• because we assume that the medium reacts passively and causally, the real part of a

natural frequency should be non-positive, that is βα ≤ 0;

• singular values sα occur in conjugate pairs (i.e., sα = βα + jωα and s∗α = βα − jωα)

or are on the real s-axis.

• singular values sα occur in so-called layers ` and are ordered within a layer where m

is the order within the layer [53].
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To solve the homogenous equation (5.5), we apply the Galerkin Method of Moments (see

Sec. 3.1.1). Thus, from (5.5), we write the system matrix equation

Z(s)I(s) = 0, (5.6)

where the dependence on the complex variable s is explicit. As described in Sec. 4.1, when

the effect of distributed or lumped loadings is taken into account, the system matrix Z(s)

is generalized to A(s) = Z(s) + Zload(s). Therefore, it follows that natural frequencies of

loaded wires are the complex values s for which the homogenous linear system

A(s) I(s) = 0, (5.7)

has nontrivial solution.

5.1.1 Numerical Determination

At this stage, we want to find the values of s such that the matrix A is singular. The

strategy implemented performs, as a first step, the Singular Value Decomposition (SVD)

of A

A(s) = U(s)Σ(s)V(s)T , (5.8)

where the superscript T indicates the transpose operator. The matrices U and V are both

orthogonal (in the sense that their columns are orthonormal) and Σ=diag(σ1, σ2, ..., σN)

is a diagonal matrix with positive or zero elements σ1≥σ2≥ ...≥σN ≥0 called singular

values. Next, we search for those values s= sα for which σN =0. In a numerical iterative

scheme that means finding sα such that σN vanishes. An IMSL routine performs the SVD

and natural frequencies are found by means of an implemented minimization algorithm

based on Powell’s modified method [55]. Since natural frequencies occur in conjugate pairs

or are on the real axis, as searching region we define Re{s} ≤ 0, Im{s} ≥ 0 in the complex

s plane. This means that, once M natural frequencies {sα, α = 1, . . . ,M} are determined

also their complex conjugate values are known. Moreover, Powell’s method requires an

initial estimate (i.e., at the iteration step i = 1) of natural frequencies. For this initial

step, the estimate of the natural frequency sα corresponds to the first resonant frequency

that occurs for an unloaded wire, i.e., f = c/(2h), where h is the length of the wire.

The same searching scheme is applied to find the location of natural frequencies for wires

loaded with impedance distribution Z load(z), see Sec. 4.1. As the value of the loading

profile Z load(z) increases, we search for natural frequency trajectories in the complex s-

plane. In this case we have implemented an elegant iterative algorithm. A good estimate
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of the i-th iteration Z load(z) + i∆Z load(z) can be obtained by using the natural frequency

which corresponds to Z load(z)+(i− 1)∆Z load(z). This scheme concept can be regarded

as “marching-on-in-loading” [56, 57]. The same procedure is applied to find other natural

frequencies {sα, α = 2, . . .M}. To this end, as first initial estimates for Powell’s method,

we chose for subsequent approximated resonant frequencies of the unloaded wire (i.e.,

f =
c

2h
,
3c

2h
, . . . ).

5.1.2 Residual Matrix evaluation

In this section we derive an expression for the current along the wire in the time domain.

To this end, once the wire natural frequencies sα have been determined, we compute the

residue matrix at each of these values. The solution of matrix equation A(s) I(s) = F(s)

can be written as

I(s) = A(s)−1F(s), (5.9)

where F(s) is the known excitation vector in the domain of the complex frequency s. Then,

applying the residue theorem [58, Chp. 7], we represent the matrix A−1 as a sum over all

natural frequencies in the complex s plane

A(s)−1 = R
0
(s) +

∞∑

α=−∞

R
α

s− sα
, (5.10)

where R
0

is an entire function of s and R
α

is the residue matrix of the system at the

natural frequency sα. This residue matrix can be represented as the scalar product of two

independent vectors: the natural mode vector (eigenvector or natural current) να and the

transpose coupling vector µT
α

[51]. That is

R
α

= να µ
T

α
, (5.11)

where να and µ
α

are the nontrivial solutions of the homogeneous equations

A(sα) να = 0,
(
A∗
)T

(sα) µ
α

= 0, (5.12)

where ∗ indicates the complex conjugate. The subscript α refers to a particular singular

value sα. Then, for a symmetric system matrix as obtained by applying the Galerkin

Method of Moments to the thin-wire equation, where the property να = µ
α

is valid, the

residue matrix (5.11) can be written as

R
α

= να ν
T
α = µ

α
µT

α
. (5.13)
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At this stage it is worth noticing that the entire function R
0
(s) in (5.10) represents sin-

gularities which may occur in the complex s-plane at infinity. For the present study we

ignore this contribution and we consider only the singularities in the finite complex plane

since singularities at infinity affect only the early-time current and are not important in the

time domain solution at later instants [53,54]. Thus, substituting the form (5.13) in (5.10)

yields

A(s)−1 =

∞∑

α=−∞

να ν
T
α

s− sα
=

∞∑

α=−∞

µ
α
µT

α

s− sα
. (5.14)

Therefore from (5.9), the representation of the wire current in the complex frequency

domain is

I(s) =

∞∑

α=−∞

να ν
T
α

s− sα
F(sα) =

∞∑

α=−∞

µ
α
µT

α

s− sα
F(sα), (5.15)

where the excitation vector F is included in the pole residues [52]. Starting from (5.10), we

now calculate the residue at the k-th pole. The inverted system matrix A(s)−1 becomes

undefined as s approaches a particular sα (because the denominator is approaching 0).

Multiplying both sides of (5.10) by (s− sk) and taking the limit s→ sk gives

lim
s→sk

(s− sk)A(s)−1 = lim
s→sk

(s− sk)
∑

α

R
α

s− sα

= R
k
. (5.16)

Defining a small difference δ such that (s− sk) = δ, from (5.16) we obtained

R
k

= lim
δ→0

δ A(sk + δ)−1. (5.17)

From the SVD it follows immediately that the system matrix inverse is

A−1(s) = V(s)Σ−1(s)UT (s). (5.18)

Suppose now that

A(sk + δ) ≈ U(sk)diag(σ1, σ2, ..., σN−1, δ)V
T (sk), (5.19)

A−1(sk + δ) ≈ V(sk)diag(1/σ1, 1/σ2, ..., 1/σN−1, 1/δ)U
T (sk). (5.20)

Taking the limit for δ → 0 then leads to

lim
δ→0

δA−1(sk + δ) ≈ V(sk)diag(δ/σ1, δ/σ2, ..., δ/σN−1, 1)UT (sk)

≈ V(sk)diag(0, 0, ..., 0, 1)UT (sk)

= R
k
. (5.21)
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In conclusion, for each singular value sα we can evaluate R
α

by determining the SVD of

the system matrix A(s), which means

R
α

= vαu
T
α , (5.22)

where vα and uα are the N -th columns of the matrices V and U, respectively. Comparing

the expression (5.22) with (5.11), we can conclude that the natural current mode and the

coupling vector are represented by

να = vα, µT

α
= uT

α , (5.23)

and therefore from (5.13) it follows that

R
α

= vαv
T
α = uαu

T
α . (5.24)

Further, substituting this result in (5.15) leads to

I(s) =
∞∑

α=−∞

uα uT
α

s− sα

F(sα), (5.25)

and thus, applying the inverse Laplace transformation (5.2), the time-domain current ex-

pression becomes

i(t) =
1

2πj

β0+j∞∫

s=β0−j∞

∞∑

α=−∞

uαu
T
α

s− sα
F(sα) exp(st)ds. (5.26)

Finally, by closing the integral at infinity and applying Cauchy’s theorem leads to the

real-valued time current

i(t) = u0u
T
0 F(β0) exp(β0t) +

(
−1∑

α=−∞

+

∞∑

α=1

)
uαu

T
αF(sα) exp(sαt)

= u0u
T
0 F(β0) exp(β0t) + 2

∞∑

α=1

uαu
T
αF(sα) cos(ωαt) exp(βαt), (5.27)

valid for t ≥ 0, where u0 is the vector (5.23) related to a pole s0 = β0 on the real axis in

the complex s-plane. If only M conjugate pairs of natural frequencies are considered, the

time-domain current (5.27) is approximated as

i(t) ≈ u0u
T
0 F(β0) exp(β0t) + 2

M∑

α=1

uαu
T
αF(sα) cos(ωαt) exp(βαt), t ≥ 0. (5.28)
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5.2 Numerical results

In this section, representative results are shown for an unloaded straight thin wire as

well as for thin wires loaded with different impedance profiles. It is worth mentioning

that natural frequencies sα occur in layers ` and are ordered within a layer where m

represents the order [53]. We have restricted our analysis to the first layer, since it is

much closer to the imaginary axis jω than other layers. Moreover from the time-domain

current expression (5.27) it follows that the effects of natural frequencies with a real part

βα negative and large in magnitude, as for high-layer frequencies, are rapidly damped.

5.2.1 Natural frequencies of a straight thin wire

Following the scheme proposed in Sec. 5.1.1, we compute the natural frequencies of a

straight thin wire with h/a = 200. Figure 5.1 shows the converging behavior of the natural

frequencies in the complex s-plane by increasing the number N of basis functions used for

the current expansion.
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Figure 5.1: First 10 natural frequencies for an unloaded straight thin wire with h/a = 200

when N basis functions are used in the current expansion.

In Table 5.1 the first ten pole values are given as calculated by our numerical method for

two different discretization number N = 103 and N = 207, and as obtained by Tesche [54]
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and Pearson [59]. Moreover, for these ten values we have evaluated the relative error

ζ = max

{ |sα − s̃α|
|sα|

}10

m=1

, (5.29)

where sα is the reference value and s̃α is the value as calculated by our numerical scheme.

We have computed this error in four different cases:

• reference value sα given by Tesche [54] and value s̃α calculated when N = 103 basis

functions are used in the MoM scheme;

• reference value sα given by Tesche [54] and value s̃α calculated when N = 207 basis

functions are used in the MoM scheme;

• reference value sα given by Pearson [59] and value s̃α calculated when N = 103 basis

functions are used in the MoM scheme;

• reference value sα given by Pearson [59] and value s̃α calculated when N = 207 basis

functions are used in the MoM scheme;

For all cases we have found that the error in (5.29) is about 0.01 which means that the

first ten natural frequencies as computed by our method agree to about one percent with

those in the literature [54, 59].

Table 5.1: Natural frequencies (sh)/(πc) for an unloaded straight thin wire with h/a = 200

as calculated by our numerical scheme and as computed by Tesche [54] and Pearson [59].

m N = 103 N = 207 [54] [59]

1 −0.082 + j0.913 −0.082 + j0.912 −0.082 + j0.926 −0.082 + j0.924

2 −0.121 + j1.886 −0.121 + j1.884 −0.120 + j1.897 −0.120 + j1.908

3 −0.149 + j2.866 −0.148 + j2.863 −0.147 + j2.874 −0.146 + j2.900

4 −0.171 + j3.850 −0.171 + j3.846 −0.169 + j3.854 −0.169 + j3.882

5 −0.191 + j4.836 −0.191 + j4.831 −0.188 + j4.835 −0.187 + j4.878

6 −0.208 + j5.824 −0.208 + j5.818 −0.205 + j5.817 −0.204 + j5.864

7 −0.224 + j6.813 −0.224 + j6.806 −0.220 + j6.800 −0.219 + j6.863

8 −0.239 + j7.803 −0.239 + j7.795 −0.234 + j7.783 −0.234 + j7.854

9 −0.253 + j8.794 −0.253 + j8.785 −0.247 + j8.767 −0.247 + j8.847

10 −0.266 + j9.786 −0.266 + j9.775 −0.260 + j9.752 −0.259 + j9.850

In Fig. 5.2, natural frequencies of a straight thin wire are plotted for several wire length-

radius ratios h/a. From Fig. 5.2 we observe that, as long as the ratio h/a is increased,
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natural frequencies sα move towards the imaginary axis but their imaginary parts ωα are

almost invariant. Indeed the resonant frequencies of a wire are almost independent of the

ratio h/a.
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Figure 5.2: Locations of the first 8 natural frequencies of an unloaded thin wire with different

length-radius ratios h/a. Number of basis functions used: N = 51.

5.2.2 Natural frequencies of loaded thin wires

As a second example, we have computed the natural frequencies of a wire with h/a = 200,

loaded with a uniform resistive distribution Z load(z) = R1. Figure 5.3 shows the trajectories

followed by the natural frequencies compared with results from the literature [54]. As

the value of R1 increases, the locations of these frequencies in the complex s-plane move

towards the real axis. This means that the contribution of these frequencies to the time-

domain current (5.27) attenuates more rapidly since the value βα is negative and has

a large magnitude. The physical explanation of this phenomenon is that the increased

resistive loading profile R1 causes an increased attenuation for the waves traveling along

the wire [60]. Focusing on the first natural frequency with m = 1, we observe that, as

the value of the loading increases, this pole moves towards the real axis to a value whose

imaginary part is equal to 0. In this point a double pole (natural frequency) occurs, since

natural frequencies occur in conjugate pairs. This means that the natural frequency and

its complex conjugate coincide. As the value of the loading is further increased this pair
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of natural frequencies splits up again and remains on the negative real s-axis, one natural

frequency moving to −∞ and the other to 0. This behavior can be clearly observed in

Fig. 5.4, where the first order natural frequencies (i.e., m = 1) of a wire with h/a = 200

loaded with a linear resistive distribution Z load(z) = R2|z − h/2|/h are shown as a function

of the constant R2. In the double pole, as well as for all poles on the real s-axis (occurring

for larger values of the load), the corresponding temporal contribution in (5.27) does not

exhibit an oscillatory behavior since the imaginary part equals zero.

We have also studied how natural frequencies change for an increasing value of a lumped

load with Z load(z) = Z loadδ(z − zL). In Figs. 5.5 and 5.6, we show the first six natural

frequencies of a wire with h/a = 200 loaded with the lumped resistance Z load = R0 placed

at zL = 0.3 m. The trajectories of the first natural frequency m = 1 are shown in Fig. 5.5

for different discretization numbers N . Figure 5.6 shows the trajectories of higher-order

natural frequencies sα. In particular, we observe, as expected, that for higher-order sα a

finer discretization is needed to predict the value with sufficient accuracy. Indeed, higher-

order poles (i.e., m ≥ 1) correspond to higher frequencies (i.e. ωα), hence, a higher

discretization number N is required to converge.
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Figure 5.3: Trajectories of the natural frequencies of a wire with h/a = 200, loaded with a

uniform resistive distribution Z load(z) = R1 as a function of R1 in kΩ/m. Discretization

number N = 103.
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200 and with a lumped loading placed at zL = 0.3 m as a function of R0 for different wire

segmentation numbers N .
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Figure 5.6: Trajectories of the first 6 natural frequencies of a wire with h/a = 200 and with

a lumped loading placed at zL = 0.3 m as a function of R0 for different wire segmentation

numbers N .

5.3 Conclusions and discussion

In this chapter we have discussed a method to calculate the natural frequencies of unloaded

and loaded wire antennas. Natural frequencies of a wire antenna loaded with different

impedance profiles as well as lumped elements are computed applying the Singular Value

Decomposition to the generalized MoM matrix together with a suitable search algorithm.

The results show how the locations of the poles change in the complex s-plane when some

characteristic parameters (e.g., ratio h/a of the wire, discretization number N , etc.) are

varied. Since natural frequencies occur in conjugate pairs or are located on the real axis,

we have confined the search algorithm to the region Re{s} ≤ 0, Im{s} ≥ 0. From this

study some interesting observations on the time-domain current can also be made.

By increasing the thickness of an unloaded wire antenna, we have observed that natural

frequencies move further away from the jω axis. This means that their effect on the time

domain current is rapidly damped since their real part increases.

The validation done for an unloaded wire by comparing our results with those found in the

literature [54,59] (agreement of about one percent) is a further confirmation of the validity
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and robustness of the numerical method implemented.

In particular, we have studied how locations of natural frequencies of a loaded wire vary

in the complex s-plane when a resistive impedance Z load(z) is gradually increased by a

step ∆Z load. As the value of the impedance gradually increases, the developed algorithm

generates successive initial estimates yielding a marching-on-in-loading approach. From a

physical point of view, the increased resistive loading profile causes an increased attenua-

tion for the waves traveling along the wire. This is reflected in a movement of the natural

frequencies towards the real axis. Indeed the contribution of these frequencies to the time-

domain current attenuates more rapidly since the value βα is negative and has a larger

magnitude.

For higher resistive impedance, the conjugate pairs of natural frequencies move to the real

axis and collapse to a value where a double pole occurs yielding the absence of oscillatory

behavior of the time domain current expression. As the loading is further increased natural

frequencies split, laying on the real axis. In conclusion, since these poles have imaginary

part equal to zero, the oscillations in the time-domain current will not be present.
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Chapter 6

EM coupling between arbitrarily

oriented wires

In previous chapters we have discussed how the current along an unloaded and loaded

wire can be evaluated by applying the Galerkin MoM to Pocklington’s equation with

exact kernel. This was a first step towards the study of the electromagnetic coupling

between arbitrary oriented wires. In this case the current along a “source” wire radiates a

field which illuminates all the other wires (referred to as “observation” wires). This field

induces currents along “observation” wires’ surfaces. Efficient and accurate field evaluation

is therefore essential to solve electromagnetic coupling between wires especially, when wires

are close to each other.

6.1 Introduction

In Sec. 2.2.1, we observed that the field radiated by the total current I(z ′) induced on the

wire can be determined up to O(a2), where a is the small radius of the wire. The derivation

of this result proceeded in two steps. First, for a point r′ on the surface of the wire, the

longitudinal and transverse components of the current density were written as

Jz(r
′) = Ĵz(z

′) +
(
Jz(r

′) − Ĵz(z
′)
)

= Ĵz(z
′) + ∆Jz(r

′), (6.1)

Jφ(r
′) = Ĵφ(z

′) +
(
Jφ(r

′) − Ĵφ(z
′)
)

= Ĵφ(z
′) + ∆Jφ(r

′), (6.2)

where Ĵz(z
′) and Ĵφ(z

′) denote the values averaged over φ′ ∈ [0, 2π). For Ĵz(z
′), we have

Ĵz(z
′) =

I(z′)

2πa
, (6.3)



78 EM coupling between arbitrarily oriented wires

where I(z′) is the desired total current along the wire. From the closed-form separation-

of-variables expression for the current density induced by an incident plane wave [32], [33,

pp.481–483], [34], we have

∆Jz(r
′) = O(1), Ĵφ(r

′) = O(1), ∆Jφ(r′) = O(a), (6.4)

as a ↓ 0. The second step was to consider an approximation of the distance |r − r′| as in

(2.44) and carrying out a Taylor expansion (see Sec. 2.2.1). This led to a one-dimensional

integral expression of the field radiated by the current I(z ′) on the wire axis

E(r) =
1

jωε

1

4π

h∫

z′=0

I(z′)
exp(−jk|r − z′iz|)

|r − z′iz|3
{
−
[
(jk|r− z′iz|)2 + jk|r − z′iz| + 1

]
iz

+
[
3 + 3jk|r − z′iz| + (jk|r − z′iz|)2

] z − z′

|r − z′iz|2
(r − z′iz)

}
dz′ +O(a2), (6.5)

valid when h � a, |r − r′| � a and ka � 1, and referred to as the radiated field thin-

wire axis approximation. If we now consider the interaction between two wires, the most

efficient evaluation is obtained by using (6.5), and the integral equation with exact kernel

for determining the current on the observation wire. This leads to a one-dimensional

integral for the transmitting wire, and a two-dimensional integral for receiving wire. The

radiated field (6.5) breaks down where the distance between the wires is of O(a) or smaller.

In this case, we locally have to use the full two-dimensional integral equation, writing for

example the longitudinal component of the surface current as an angular Fourier series

Jz(r
′) =

∞∑

m=−∞

Jz,m(z′) exp(jmφ), (6.6)

where Jz,0(z
′) = Ĵz(z

′) as defined in (6.3). The resulting analysis would be outside the

scope of this thesis. Nevertheless, it is useful to obtain an estimate of the error caused by

introducing the computationally efficient form (6.5), and to compare it to the error that is

introduced by the space discretization required by the Method of Moments. To this end,

we consider the approximations in (6.1), (6.2) and (6.4) as a crude version of the general

procedure prescribed by (6.6). This means that we also consider the case with the total

current homogeneously distributed along the mantle of the transmitting wire, and compare

it with the case where that current is concentrated on the central axis. This should at least

give us an indication of the error due to (6.5).
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6.2 Electric field radiated by a straight wire

In this section, we consider the total current homogeneously distributed along the mantle of

the transmitting wire and we derive a two-dimensional integral expression of the radiated

electric field. In this case, as described in Sec. 2.2.1 equation (2.41), the vector potential

A(r) is determined up to O(a2) by

A(r) = iz

h∫

z′=0

I(z′)

2π

2π∫

φ′=0

exp(−jk|r − r′|)
4π|r − r′| dφ′dz′, (6.7)

where h is the length of the wire antenna, r ∈ D (i.e., the region outside the wire),

r = rir(φ) + ziz represents the observation point and r′ = air(φ
′) + z′iz represents the

source point along the mantle of the wire, Fig. 6.1.
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Figure 6.1: Geometry of the wire.

The radiated electric field is then evaluated as

E(r) =
1

jωε

[
k2A(r) + ∇ (∇ · A(r))

]
. (6.8)
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By a straightforward evaluation of the divergence of the vector potential A, it follows that

∇ · A(r) =

h∫

z′=0

I(z′)

2π

2π∫

φ′=0

iz · ∇
(

exp (−jkR)

4πR

)
dφ′dz′

=

h∫

z′=0

I(z′)

2π

2π∫

φ′=0

(−1 − jkR)
exp (−jkR)

4πR3
(z − z′)dφ′dz′, (6.9)

where r−r′ = (r cos φ− a cosφ′) ix+(r sinφ− a sinφ′) iy+(z − z′) iz, resulting in a distance

R = |r − r′| =

√
(z − z′)2 + (r − a)2 + 4ra sin2

(
φ− φ′

2

)
. (6.10)

Next, we determine the gradient

∇
{

(−1 − jkR)
exp (−jkR)

4πR3
(z − z′)

}
=

(∇R)

[
∂R

(
(−1 − jkR)

exp(−jkR)

R3

)]
(z − z′) − (1 + jkR)

exp (−jkR)

R3
iz =

[
3 + 3jkR + (jkR)2] exp (−jkR)

R3

(r − r′)

R2
(z − z′) − (1 + jkR)

exp (−jkR)

R3
iz. (6.11)

The electric field now follows from (6.8) as a function of the total current I(z′)

E(r) =
1

jωε

1

8π2

h∫

z′=0

I(z′)

2π∫

φ′=0

exp(−jkR)

R3

{
−
[
(jkR)2 + jkR + 1

]
iz

+
[
3 + 3jkR + (jkR)2

] z − z′

R

r − r′

R

}
dφ′dz′, (6.12)

where the points r and r′ are on the observation and source wire mantles, respectively.

Expression (6.12) is referred to as radiated field thin-wire mantle approximation. In this

case, besides the integration in z′ (present also in (6.5)), an integration in φ′ has to be

carried out in the evaluation of the field (6.12). The numerical implication in terms of

CPU time and accuracy of the two approximations (6.5), (6.12) will be further discussed

in Sec. 6.3.1. The formulation that follows is applicable in both cases.

The next step in the evaluation of the radiated field for the thin-wire axis and mantle

approximations (6.5) and (6.12) is the expansion of the current by means of N rooftop

basis functions ψn(z′)

I(z′) =
N∑

n=1

Inψn(z′), ψn(z′) =





1 −
∣∣∣ z

′

∆z
− n
∣∣∣, |z′ − n∆z| ≤ ∆z,

0, otherwise,
(6.13)
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with ∆z = h/(N+1). Consequently, the field can be seen as a sum of N elementary electric

fields radiated by a current along the n-th source (transmitting) wire element (composed

of two adjacent segments) and weighted by coefficient terms In, hence

E(r) =

N∑

n=1

InEn(r). (6.14)

For the thin-wire axis approximation the expressions of the elementary fields En follow

from (6.5)

En(r) =
1

jωε

1

4π

(n+1)∆z∫

z′=(n−1)∆z

ψn(z′)
exp(−jk|r − z′iz|)

|r− z′iz|3
{
−
[
(jk|r − z′iz|)2 + jk|r− z′iz|

+ 1] iz +
[
3 + 3jk|r − z′iz| + (jk|r − z′iz|)2

] (z − z′)

|r − z′iz|2
(r − r′)

}
dz′, (6.15)

and, for the thin-wire mantle approximation from (6.12)

En(r) =
1

jωε

1

8π2

(n+1)∆z∫

z′=(n−1)∆z

ψn(z′)

2π∫

φ′=0

exp(−jkR)

R3

{
−
[
(jkR)2 + jkR + 1

]
iz

+
[
3 + 3jkR + (jkR)2

] (z − z′)

R

(r − r′)

R

}
dφ′dz′, (6.16)

where the distance R is given by (6.10).

6.3 Mutually coupled wires

As already explained, the computation of electromagnetic coupling between arbitrarily

oriented wires is based on the evaluation of the electric field radiated by the current flow

of a single wire element (i.e. two adjacent segments). This field induces a current on all

other wires, hence the mutual interaction. As a simplification, we consider the coupling

between two wires in the configuration depicted in Fig. 6.2. The total field incident on

wire 1 can be written as the sum of two parts

E1
t (r) = Ee(r) + E1,2(r), (6.17)

where Ee(r) is the field due to external sources and E1,2(r) is the induced field on wire 1

due to the current flowing along wire 2. A similar expression can be derived for wire 2

E2
t (r) = Ee(r) + E2,1(r). (6.18)
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Figure 6.2: The two wires geometry.

As can be seen in Fig. 6.2, wire 1 has end points r1 and r2 while wire 2 has end points r3 and

r4. The wires have radius a1 and a2, respectively. In particular, following the Method of

Moments procedure, the current is expanded by means of N and M rooftop basis functions

defined on N+1 and M+1 segments, respectively. By recalling the elementary field (6.14),

we can write the electric field radiated by currents flowing along wire 1 (or wire 2) and

incident on wire 2 (or wire 1) as

E2,1(r) =
N∑

n=1

InE
2,1
n (r), (6.19)

E1,2(r) =

M∑

m=1

ImE1,2
m (r). (6.20)

Combining these results with (6.17) and (6.18), and applying the testing procedure in the

Method of Moments, the matrix equation Z I = F in (3.8) now may be generalized as

[
Z1 −C1,2

−C2,1 Z2

][
I1

I2

]
=

[
F1

e

F2
e

]
, (6.21)

where each known vector on the right-hand side represents the weighted field of external

origin. The diagonal blocks Z1 and Z2 are referred to as “self matrices” and represent the

interaction between segments of the same wire, while the “coupling matrices” C1,2 and

C2,1 describe the interaction between segments of different wires.

As an example, we consider the (m,n)-th element of matrix C2,1. A current distribution

along two adjacent segments, defined here as the n-th source element of wire 1, radiates

an elementary electric field E1
n as in (6.15) or (6.16). These elementary fields are known

for a reference system where the axis of wire 1 runs along the interval 0<z<h, where

h = |r2 − r1| is the length of wire 1. This field impinges on wire 2 and induces a current

along each of its segments. In this case, we are interested in the induced current flowing
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along the m-th element (composed by two adjacent segments) of wire 2, referred to as the

observation element. Assuming that the point r′ on the mantle of wire 1 is known in a

reference system local to this wire,

r′ = a1 cosφ′ix′ + a1 sin φ′iy′ + z′iz′, (6.22)

as well as the observation point r on the mantle of wire 2 is known in a reference system

local to wire 2,

r = a2 cosφix + a2 sin φiy + ziz, (6.23)

the following steps are performed to compute the coupling element C2,1
m,n.

• With the aid of the translation and rotations formulas in Appendix D.1, the angles

θ1, φ1, χ1, θ2, φ2, χ2 are evaluated by using expressions (D.6), (D.7), (D.12) and

(D.13). Then the two transformation matrices T
1
, T

2
(related to wire 1 and wire 2,

respectively) are computed as in (D.14).

• Next, consider the observation point r expressed in Cartesian coordinates with respect

to a system local to wire 2

r = x2ix + y2iy + z2iz. (6.24)

Its coordinates (x2, y2, z2) are “transformed” to coordinates (x1, y1, z1) with respect

to a system local to wire 1

r = x1ix′ + y1iy′ + z1iz′. (6.25)

The transformation which relates these two systems of coordinates can be found in

Appendix D.1.

• Then the electric field E1
n(r) is computed and expressed in Cartesian coordinates

(E1
x, E

1
y , E

1
z ) with respect to a system local to wire 1

r = E1
xix′ + E1

y iy′ + E1
z iz′. (6.26)

The next step is to transform these coordinates into Cartesian coordinates with

respect to a system local to wire 2, see Appendix D.1.

• Finally the integral

(m+1)∆z2∫

z=(m−1)∆z2

(
1 −

∣∣∣ z

∆z2
−m

∣∣∣
) 2π∫

φ=0

E1
n(r) · izdφdz, (6.27)
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can be evaluated, where E1
n is expressed in coordinates with respect to system

2, where the m-th testing function along wire 2 is explicitly defined, and where

∆z2 = |r4 − r3|/(M + 1).

Once the elements of matrix C2,1 have been evaluated, we can fill matrix C1,2 without any

further calculation since by reciprocity the property

C1,2 = C2,1T
, (6.28)

is satisfied, where T indicates the transpose operator.

Generalizing the problem to the case of P arbitrarily oriented wires, from matrix equa-

tion (6.21), we write




Z1 −C1,2 . . . −C1,P

−C2,1 Z2 . . . −C2,P

...
...

...
...

−CP,1 −CP,2 . . . ZP







I1

I2

...

IP




=




F1
e

F2
e
...

FP
e



. (6.29)

Matrices Cq,p, (p, q = 1, . . . , P ) describe the electromagnetic coupling between segments

belonging to different wires, while self matrices Zp, (p = 1, . . . , P ) take into account the

electromagnetic interaction between segments of the same wire. Each known vector Fp
e on

the right-hand side represents the external weighted excitation on the p-th wire.

6.3.1 Efficient evaluation of coupling elements

For the case of a single wire, it has already been explained in Sec. 3.2 and in Sec. 3.3, how

the elements of the known vector F and of the self matrix Z are computed efficiently. Our

attention is now therefore focused on the computation of the coupling-matrix elements.

Consider the (m,n)-th element of matrix C2,1. In accordance with the thin-wire axis

approximation (6.5), only one integral has to be carried out to calculate the elementary

field E1
n since the current is on axis (of the the n-th radiating element of wire 1), see (6.15).

For the mantle approximation a double integration (6.16) is required since the current

flows along the mantle of the radiating element. In both cases, an additional double

integral (6.27) has to be computed to determine the mutual interaction between this field

and the induced current distribution along the m-th observation element of wire 2. Thus,

we summarize the two approaches as:

• 1D+2D integration (i.e., radiating current along wire axis and 2D integral for the

“observation” wire);
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• 2 × 2D integration (i.e., radiating current along the wire surface and 2D integral for

the “observation” wire).

A simple test was performed to compare the two approaches in terms of accuracy and

CPU time. We consider two parallel wires of length h = λ/2 placed at a distance d and

illuminated by an incident plane wave |Ei| = 1 V/m as shown in Fig. 6.3. Both wires are

subdivided in N + 1 segments which means that N rooftop basis functions are defined.

Moreover, for both wires, we calculate the root-mean-square (RMS) error

ζcur =

√√√√√√√√

h∫
z=0

∣∣∣I(z) − Ĩ(z)
∣∣∣
2

dz

h∫
z=0

|I(z)|2 dz
, (6.30)

where the reference value I(z) is computed by following the second approach (i.e., 2 × 2D

integration). The value Ĩ(z) is calculated by following the first approach (i.e., 1D+2D

integration). It is worth noticing that the error (6.30) is made in combination with the

discretization error introduced by the GEKMoM method already calculated in Sec. 3.4.3.
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Figure 6.3: Two parallel wires placed at a distance d illuminated by an incident plane wave.

The errors ζ1
cur and ζ2

cur calculated for the current along wire 1 and along wire 2, respectively,

are given in Tables 6.1, 6.2 and 6.3 for two wires with length h = λ/2 and length-radius

ratio h/a = 100, h/a = 30 and h/a = 20, respectively. In all these cases N = 23 basis
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functions are used. For this discretization number, as depicted in Sec. 3.4.3, we have found

that for a single wire the numerical method GEKMoM introduces a discretization error of

about 1/N for all the length-radius ratios h/a here considered. In particular, in Table 6.4,

we report the discretization error for the single wire for the three different ratios h/a.

Table 6.1: RMS errors ζ1
cur, ζ

2
cur and computational cost analysis of two parallel thin wires

h/a = 100 by varying the distance d.

d [λ] ζ1
cur ζ2

cur CPU Time ratio

(2 × 2D):(1D+2D)

1 4.7 × 10−5 4.7 × 10−5 14.07 : 1

0.5 6.5 × 10−5 6.5 × 10−5 14.03 : 1

0.3 2.3 × 10−4 2.6 × 10−5 13.92 : 1

Table 6.2: RMS errors ζ1
cur, ζ

2
cur and computational cost analysis of two parallel thin wires

h/a = 30 by varying the distance d.

d [λ] ζ1
cur ζ2

cur CPU Time ratio

(2 × 2D):(1D+2D)

1 4.8 × 10−4 4.8 × 10−4 13.95 : 1

0.5 6.5 × 10−4 6.5 × 10−4 13.93 : 1

0.3 2.3 × 10−3 3.0 × 10−4 13.84 : 1

Table 6.3: RMS errors ζ1
cur, ζ

2
cur and computational cost analysis of two parallel thin wires

h/a = 20 by varying the distance d.

d [λ] ζ1
cur ζ2

cur CPU Time ratio

(2 × 2D):(1D+2D)

1 1.1 × 10−3 1.1 × 10−3 13.88 : 1

0.5 1.5 × 10−3 1.5 × 10−3 13.92 : 1

0.3 5.4 × 10−3 7.6 × 10−4 13.96 : 1
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Table 6.4: Discretization error for a single λ/2 wire for three different length-radius ratios

h/a as calculated in Sec. 3.4.3.

N h/a = 100 h/a = 30 h/a = 20

23 3.97 × 10−2 2.92 × 10−2 2.47 × 10−2

Comparing values in Table 6.4 with those in Tables 6.1, 6.2 and 6.3, we observe that the

errors ζ1
cur and ζ2

cur introduced by placing the radiating current on the wire axis are always

smaller than the discretization error introduced by our numerical method. Moreover, as

expected, the thin-wire axis approximation is computationally less expensive than the 2D

integration. For the cases studied, a reduction of a factor about 14 in terms of CPU time

is obtained.

As a conclusion, the deviation introduced by going from a 2× 2D integration to a 1D+2D

integration is negligible compared with the discretization error introduced by applying the

Method of Moments.

6.3.2 Interpolation technique

In this section we describe a methodology to reduce the computation time required by

the straightforward 2 × 2D approach. To this end, an interpolation technique has been

successfully applied to compute the coupling-matrix elements [61,62]. This technique might

become useful in all cases where the thin-wire axis approximation breaks down and the

full two-dimensional procedure is needed (see Sec. 6.1).

Consider the (m,n)-th element of matrix C2,1. To simplify the notation, we will place the

radiating n-th element composed by two adjacent segments in the center of a cylindrical

coordinate system (ρ′, φ′, z′) as shown in Fig. 6.4. Observing that the electric field E1
n

radiated by a current flow along element n of wire 1 is rotationally symmetric, some

considerations have been made. First of all, the observation region of the n-th radiating

element can be defined in a plane (ρ′, z′) with ρ′ > 0 by points ρmin, ρmax, zmin, zmax, as

depicted in Fig. 6.4. This region contains the projection of the mantle of element m of wire

2 in terms of the coordinates related to wire 1. In order to compute the integral in (6.27),

the field E1
n is evaluated as in (6.16) on a discrete grid of points within the observation

region and then interpolated. For this purpose, we have therefore investigated tabulation

and interpolation techniques for the evaluation of the radiated electric field in order to

accelerate the computation of coupling matrix elements [63,64]. Even though uniform and
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Figure 6.4: Interpolation area defined to evaluate the electromagnetic interaction between

two wire elements.

random sampling algorithms have been explored, the most efficient technique in choosing

points is the one which samples the radiated electric field in a way that follows the behavior

of the field. The proposed algorithm is developed based on the following three ideas:

• An interpolation technique is applied to reduce the number of points where the

radiated electric field is computed.

• By making use of standard routines a set of points on a non-uniform grid is generated

and an interpolation function is then defined. A numerical adaptive multidimensional

integration routine [65] has been modified in order to generate a set of points used

in a subsequent interpolation step where a piecewise polynomial surface is defined as

interpolant function following the method proposed by Renka and Cline [66] (routines

E01SAF, E01SBF). In this way, the integration routine will choose the distribution

of points according to the behavior of the field E1
n which is to be interpolated.

• By subtracting the analytically known point-dipole field from the elementary electric

field E1
n and by applying the interpolation technique to this difference, the efficiency

of the method is improved for a fixed accuracy.

Considering the third point of the list, in order to accelerate the generation of coupling

matrices and to control accuracy, further efficiency is gained by observing that the function



6.3. Mutually coupled wires 89

to be interpolated is relatively smooth. This term should be quick to evaluate and resemble

the (far) field of the n-th radiating element. A function difference D1
n is defined as the

difference of the field E1
n and the electric field Ep radiated by a point dipole placed in the

origin of the coordinate system. Function Ep behaves asymptotically (i.e., for R → ∞) as

E1
n and is singular when the distance R vanishes

Ep(r) =
1

jωε

∆z1
4π

exp(−jkR)

R3

{
−
[
(jkR)2 + jkR + 1

]
iz

+
[
(jkR)2 + 3jkR + 3

] rz

R2

}
, R =

√
ρ2 + z2. (6.31)

Thanks to these properties, the resulting function D1
n = E1

n − Ep has a behavior consider-

ably smoother than E1
n (and also decreases faster as R → ∞) and is therefore interpolated

in a numerically easier way with a higher accuracy. The flow chart in Fig. 6.5 shows the

fundamental steps of the proposed algorithm. Our numerical scheme begins by setting

a desired accuracy ε with which the elementary radiated electric field (6.16) has to be

evaluated. While the adaptive routine [65] numerically integrates the function difference

D1
n, choosing points (ρ′i, z

′
i) in the observation region [ρmin, ρmax]× [zmin, zmax] following the

behavior of this function, the implemented scheme gathers the first Na points {(ρ′i, z′i)}Na

i=1.

Next, on this non-uniform set of Na points an interpolated function D̃1
n is defined by us-

ing a NAG routine [66]. To examine the obtained accuracy of D̃1
n compared to D1

n and

normalized to the incident field E1
n, a relative error ε̃ has been defined as

ε̃ =
|D1

n − D̃1
n|

|E1
n|

. (6.32)

The proposed algorithm calculates the error ε̃ in Ne points and terminates if ε̃ ≤ ε in

all points Ne. If the error condition is not met, Na additional points are added via the

integration routine to the previously defined set. An interpolant function is determined on

this new grid of Na +Na points and the error ε̃ is subsequently calculated. Until the error

condition is met, the algorithm keeps adding Na points. Finally, the approximated value

of the radiated field is computed as follows

Ẽ1
n = D̃1

n + Ep. (6.33)

It is worth mentioning that the computational efficiency of the proposed algorithm is

strictly related to the number Na and to the termination condition (i.e., the choice of the

Ne points). Based on our numerical experience, we suggest Na to be in the order of ten

and 1 ≤ Ne ≤ 4. The Ne points are chosen in anticipation of the subsequent Na points by

the implemented algorithm.
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Figure 6.5: Flow chart of the proposed numerical interpolation algorithm.

6.3.3 Validation of the interpolation method

To validate the method described in Sec. 6.3.2, first we analyze the configuration of the

two parallel wires studied in Sec. 6.3.1. In this case the root-mean-square (RMS) error ζcur

is calculated as

ζcur =

√√√√√√√√

h∫
z=0

∣∣∣I(z) − Ĩ(z)
∣∣∣
2

dz

h∫
z=0

|I(z)|2 dz
, (6.34)
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where the reference value I(z) is computed by following the second approach (i.e., 2 × 2D

integration) while the value Ĩ(z) is calculated by following the interpolation method. Re-

sults for a thin wire with length-radius ratio h/a = 100 and for thick wires with ratio

h/a = 30 and h/a = 20 are given in Tables 6.5, 6.6 and 6.7, respectively.

Table 6.5: RMS errors ζ
1

cur, ζ
2

cur and computational cost analysis of two parallel thin wires

h/a = 100 by varying the distance d.

d [λ] ζ
1

cur ζ
2

cur CPU Time ratio

(2 × 2D):(Interpol.)

1 2.4 × 10−7 2.4 × 10−7 8.34 : 1

0.5 2.0 × 10−7 2.0 × 10−7 6.32 : 1

0.3 1.7 × 10−5 1.9 × 10−6 5.55 : 1

Table 6.6: RMS errors ζ
1

cur, ζ
2

cur and computational cost analysis of two parallel thin wires

h/a = 30 by varying the distance d.

d [λ] ζ
1

cur ζ
2

cur CPU Time ratio

(2 × 2D):(Interpol.)

1 1.1 × 10−6 1.1 × 10−6 5.99 : 1

0.5 2.3 × 10−6 2.3 × 10−6 5.66 : 1

0.3 1.5 × 10−5 2.0 × 10−6 5.07 : 1

Table 6.7: RMS errors ζ
1

cur, ζ
2

cur and computational cost analysis of two parallel thin wires

h/a = 20 by varying the distance d.

d [λ] ζ
1

cur ζ
2

cur CPU Time ratio

(2 × 2D):(Interpol.)

1 2.7 × 10−6 2.7 × 10−6 5.84 : 1

0.5 7.1 × 10−6 7.1 × 10−6 4.99 : 1

0.3 7.1 × 10−5 1.0 × 10−5 4.57 : 1
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We observe that errors ζ
1

cur and ζ
2

cur are at least two orders of magnitude smaller than the

ones computed when the 1D+2D integration approach is considered (see Tables 6.1, 6.2

and 6.3). Moreover, thanks to the interpolation technique, we achieve a reduction of a

factor 6 with respect to the straightforward 2 × 2D integration. This reduction is about

half the one achieved with the 1D+2D integration which places the radiating current on

the wire axis.

Second, the case of two parallel thin wires of length h = λ/2 and radius a = λ/1000, placed

at a distance d, is considered. Both wires are subdivided in N +1 segments and N rooftop

functions are defined. For all the remaining test cases a delta-gap voltage source of 1 V

placed in the middle of wire 1 is present. With a desired accuracy ε = 10−3, the computa-

tion times required for evaluating the system matrix Z by the straightforward double 2D

integration and by the interpolation method are compared by varying the distance d and

the number of expansion functions N . As can be observed in Table 6.8, the interpolation

method greatly reduces the CPU time needed to calculate the impedance matrix even in

case of a coarse discretization (e.g., N = 10). When the two wires are close to each other

(e.g., d ≤ 0.1λ) the computation time reduction can be appreciated only by refining the

segmentation. As a matter of fact at small distances the function difference Dn may not

be as smooth as when the distances are larger since the source field En differs from the

point-dipole field Ep.

Table 6.8: Computational cost analysis of two parallel thin wires h/a = 500 by varying the

distance d and the number of expansion functions N . Desired accuracy ε = 10−3.

d [λ] CPU Time ratio

(2 × 2D Int) : (Interp)

N = 68 N = 34 N = 10

1 10.12 : 1 10.09 : 1 7.00 : 1

0.5 10.14 : 1 9.34 : 1 5.00 : 1

0.3 8.72 : 1 7.45 : 1 3.28 : 1

0.1 5.31 : 1 1.32 : 1 0.046 : 1

The number of field evaluations using the straightforward 2D integration and using the

interpolation method is also analyzed. Figure 6.6 shows how the number of evaluations

Np required for the computation of coupling matrix C1,2 varies as a function of the desired



6.3. Mutually coupled wires 93

accuracy ε for the configuration depicted above of two parallel thin wires at a distance

d/λ = 0.5 and discretized with 35 segments. Figure 6.6 shows that the total number of

evaluations for the interpolation method is usually far less than for the integration, which

results in a considerable reduction of computation time. Figure 6.6 also shows that increas-

ing the accuracy in computing the electric field corresponds to an increase in the number

of field evaluations Np.
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Figure 6.6: Number of evaluations Np required for the coupling matrix C1,2 versus the

desired accuracy ε for two parallel thin wires of length h = λ/2 and radius a = λ/1000

placed at a distance d/λ = 0.5 and discretized with 35 segments.

Third, we compare the computation time for the case of two parallel mutually coupled thick

wires. In this case h = λ/2, the radius a = λ/60, and the wires are equally discretized

with N + 1 segments. A desired accuracy of ε = 10−3 is defined. Table 6.9 again shows

how the proposed method enhances the efficiency of computing coupling matrix elements

even for thick wires.
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Table 6.9: Computational cost analysis of two parallel thick wires h/a = 30 by varying the

distance d and the number of expansion functions N . Desired accuracy ε = 10−3.

d [λ] CPU Time ratio

(2 × 2D Int) : (Interp)

N = 50 N = 20

1 10.13 : 1 9.29 : 1

0.5 10.11 : 1 8.49 : 1

0.3 8.37 : 1 8.04 : 1

0.1 0.12 : 1 0.18 : 1

Finally, two arbitrary oriented thin wires with h1 = λ/2, h2 = 0.2236λ and radius

a1 = a2 = λ/1000 are analyzed. The first and the second wires have end points

r1 = (0.3, 0.3, 0.5)λ, r2 = (0.3, 0.3, 1.0)λ, (wire 1),

r3 = (0.3, 0.7, 0.5)λ, r4 = (0.3, 0.8, 0.7)λ, (wire 2),

respectively. Again the CPU time comparison is carried out for different segmentations

with a desired relative error ε = 10−3. Note that the minimum and maximum distances

between the two wires are dmin = 0.4λ, dmax = 0.64λ, respectively. Results for this case

are shown in Table 6.10.

Table 6.10: Computational cost analysis of two arbitrarily oriented thin wires h/a = 500,

by varying the number of expansion functions N . Desired accuracy ε = 10−3.

N CPU Time ratio

(2 × 2D Int) : (Interp)

68 10.83 : 1

34 10.83 : 1

10 7.07 : 1
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6.4 Conclusions and discussion

In this chapter the electromagnetic coupling between arbitrary oriented wires has been

analyzed. Coupling matrix elements are computed by following two different approaches:

• 1D+2D integration (i.e., radiating current along wire axis and 2D integral for the

“observation” wire);

• 2 × 2D integration (i.e., radiating current along the wire surface and 2D integral for

the “observation” wire),

which are compared in terms of computation time and accuracy.

Results confirm that the thin-wire axis approximation (i.e., 1D+2D integration) is com-

putationally less expensive than the straightforward 2 × 2D integration. For the cases

studied, a reduction of a factor about 14 in terms of CPU time is obtained. Moreover, we

have observed that the RMS errors introduced by placing the radiating current on the wire

axis are much smaller than the discretization error introduced by the GEKMoM numerical

method (see Sec. 6.3.1 and Sec. 3.4.3).

For the approach which leaves the current along the mantle of the wire (i.e., 2 × 2D inte-

gration) a numerically efficient interpolation algorithm has successfully been developed to

reduce the CPU time required by the computation of the coupling-matrix elements. This

algorithm might be useful in all cases where the thin-wire axis approximation breaks down

and the full two-dimensional procedure is needed (see Sec. 6.1). Within a prescribed accu-

racy, coupling matrix elements can be computed more efficiently than by straightforward

double integrations. This method is developed based on three main ideas elucidated in

Sec. 6.3.2.

Numerical examples show that the proposed algorithm results in a reduction of the CPU

time of a factor of 6 with respect to the straightforward 2 × 2D integration. This reduc-

tion is comparable with the one achieved with the 1D+2D integration which places the

radiating current on the wire axis. When the distance between the source and the obser-

vation element is small compared to the wavelength (e.g. d ≤ 0.1λ) the smoothness of the

function difference deteriorates and the advantages of the interpolation algorithm are lost.

This is mainly due to the different behavior of the point-dipole field and the field radiated

by a source element in the near-field region.

We can conclude that the deviation introduced by going from a 2 × 2D integration to

a 1D+2D integration is negligible compared with the discretization error introduced by

applying the Method of Moments.
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Chapter 7

Scattering from PEC objects

Until now, we have studied only the interaction between thin wires. As a next step, we

want to bring surfaces into our model. To this end, in this chapter, we first consider the

scattering of a single surface as such. In Chapter 8, we then arrive at the aim of the

thesis, studying the electromagnetic behavior of structures consisting of wires, surfaces

and wire-surface junctions. The effort in facing the problem of the scattering of a single

surface has been limited to the implementation of existing formulations present in the lit-

erature [16, 17]. In this chapter, the problem of the electromagnetic scattering from an

open surface is addressed. An Electric Field Integral Equation (EFIE) is introduced where

the scattered field is written as a function of the unknown current distribution flowing on

the surface. A numerical scheme similar to the one used for the wire-current computation,

is followed here to solve the relevant EFIE.

Firstly, the surface of the object is discretized. A possible solution is the one proposed

by [2, 67, 68] where a wire grid is used to model surfaces in terms of connected thin wires.

Unfortunately, a surface can be modeled accurately only if many wires per wavelength

are used (typically 20 wires per wavelength). The latter restricts the application of the

wire-grid model. Another possibility is to employ a surface-patch (e.g., square, rectangle,

triangle) modeling, which requires less unknowns per square wave length of area. In the

modeling of arbitrarily shaped surfaces, planar triangular patches are particularly appro-

priate. They conform to many geometrical surfaces or boundaries and suitable expansion

basis functions can be defined on them [16,17]. It is noted that the resulting triangles are

preferably as uniform in size and shape as possible, since this property may improve the

capacity of solving the relevant integral equation [69]. In this thesis we mainly focus on the

discretization of the pertinent EFIE, where an in-house developed simple mesh generator

is used.
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Secondly, the Galerkin Method of Moments (MOM) together with a Conjugate Gradient

scheme is applied to solve the Electric Field Integral Equation. Taking advantage of the

existing literature [16–19], we have implemented an efficient numerical method by using

well-known RWG basis functions defined on triangular patches. Finally an expression for

the electric field radiated by a current distribution flowing on the surface of the object is

derived and some examples are shown.

7.1 Electric Field Integral Equation (EFIE)

In this section we derive an integral equation for the surface current induced on a perfectly

electrically conducting scatterer by an incident electric field. Next, applying the Method of

Moments (MoM) to the integral equation found, we derive an expression for each element

of the MoM matrix using a particular set of basis and testing functions. This is performed

in a similar fashion as described in [16, 70, 71].

We model an arbitrarily shaped open surface S (scatterer) as a perfectly electrically con-

ducting (PEC) object. The unit vector normal to the interface S is represented by in.

The external medium has permittivity ε and permeability µ. We assume that an electric

field Ei, due to an impressed source, is present (in absence of the scatterer). This field is

incident on the open surface S and induces surface currents Js which radiate a field Es

expressed by

Es(r) = −jωµA(r) +
∇ (∇ ·A(r))

jωε
. (7.1)

The vector potential is defined as

A(r) =

∫

S

G(r − r′)JS(r′)dS(r′), (7.2)

and the Green’s function of the Helmholtz operator in free space is

G(r − r′) =
exp (−jk|r − r′|)

4π
∣∣r − r′

∣∣ , (7.3)

where k = ω
√
εµ. The source point r′ and the observation point r are both on the surface

S. For the sake of simplicity, from now on, we refer to dS(r′) as dS ′ and to dS(r) as dS.

Substituting expression (7.2) in (7.1), we obtain

Es(r) = −jωµ
∫

S′

G(r − r′)JS(r′)dS ′ +
1

jωε
∇


∇ ·

∫

S′

G(r − r′)JS(r′)dS ′


 . (7.4)
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Next, by enforcing the boundary condition

in ×
(
Es(r) + Ei(r)

)
= 0, r ∈ S, (7.5)

we derive the following integro-differential equation for JS(r)

in ×


jωµ

∫

S′

G(r − r′)JS(r′)dS ′ − 1

jωε
∇


∇ ·

∫

S′

G(r − r′)JS(r′)dS ′




 = in × Ei(r),

(7.6)

valid for r ∈ S. Equation (7.6) is referred to as the Electric Field Integral Equation

(EFIE). For open surfaces (e.g., planar surfaces) this equation is sufficient to determine

the unknown surface current JS(r). The divergence in the second term on the left-hand

side of equation (7.6) is applied along the surface, and represents a differentiation with

respect to r. It can be written as

∇ ·



∫

S′

G(r− r′)JS(r′)dS ′


 =

∫

S′

(∇G(r − r′)) · JS(r′)dS ′

= −
∫

S′

(∇′G(r − r′)) · JS(r′)dS ′ = −
∫

S′

(∇S′G(r − r′)) · JS(r′)dS ′, (7.7)

where ∇′ expresses differentiation with respect to r′ and ∇S′ indicates that the gradient

operator is applied along the surface S ′. Before proceeding, we focus on the following

integral
∫

S′

∇S′ · (G(r− r′)JS(r′)) dS ′ =

∫

S′

(∇S′G(r − r′)) · JS(r′)dS ′

+

∫

S′

G(r − r′) (∇S′ · JS(r′)) dS ′. (7.8)

Since the normal component of JS is zero at the surface’s boundaries, applying Gauss’s

theorem to the latter leads to
∫

S′

∇S′ · (G(r − r′)JS(r′)) dS ′ =

∮

C′

ib · (G(r − r′)JS(r′)) d` = 0, (7.9)

where C ′ is the contour around the surface S ′ and ib is the unit vector normal to the contour

and pointing outward of the contour C ′. Therefore, substituting this result in (7.8) yields
∫

S′

(∇S′G(r − r′)) · JS(r′)dS ′ = −
∫

S′

G(r − r′) (∇S′ · JS(r′)) dS ′. (7.10)
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With the aid of the latter, we can simplify expression (7.7) as

∇ ·



∫

S′

G(r− r′)JS(r′)dS ′


 =

∫

S′

G(r − r′) (∇S′ · JS(r′)) dS ′. (7.11)

Finally, thanks to the previous expression we write equation (7.6) as

jωµ

∫

S′

G(r− r′)JS(r′)dS ′ − 1

jωε
∇S

∫

S′

G(r− r′) (∇S′ · JS(r′)) dS ′ = Ei
S(r), r ∈ S,

(7.12)

where Ei
S = Ei − (in · Ei)in. In (7.12) we have restricted the equation to the surface

components of the field Ei. The gradient ∇ of the second integral on the left-hand side

of (7.6) is reduced to a surface gradient ∇S. The Green’s function in (7.3) has a singular

behavior when r approaches r′. Thus, the integrands on the left-hand side of (7.12) are

singular when the distance r − r′ approaches zero. Because of the presence of derivatives

appearing in conjunction with a singularity, special care has to be taken in solving this

equation and therefore in selecting the expansion functions and the testing procedure in

the Method of Moments.

7.1.1 The Rao-Wilton-Glisson (RWG) function

The required set of basis functions should be chosen such that their linear combination can

approximate the surface current with an acceptable accuracy. Since surface triangulation is

used in discretizing the object under study, local basis functions having triangular patches

as support are then chosen.

The well-known Rao-Wilton-Glisson (RWG) functions [16, 17] have these characteristics

and are adopted as expansion functions in the Method of Moments. Each basis function

ψB
n is defined on two adjoining triangles T+

n and T−
n connected through the n-common

edge of length `n as shown in Fig. 7.1. The plus or minus designation of the triangles

is determined by choosing the positive surface current direction (associated with the n-

common edge) to be from T+
n to T−

n . All points on the RWG function can be designated

either by the vector r±n with respect to the global coordinate system, or by the vector ρ±
n

in T±
n with respect to a coordinate system local to the triangle with origin in vertex O±

n .
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The n-th RWG function is defined by

ψB
n (r) =





`n
2A+

n

ρ+
n , r ∈ T+

n ,

`n
2A−

n

ρ−
n , r ∈ T−

n ,

0, otherwise,

(7.13)

where A±
n is the area of triangle T±

n .
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Figure 7.1: Geometry of the nth RWG basis function.

The current distribution has a component normal to the common edge `n, as shown in

Fig. 7.2, and no line charges are present along this edge. Moreover, the current has no

component normal to the boundary of the surface formed by the triangle pairs T +
n and T−

n

and no line charges are present along this boundary.
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Figure 7.2: Current flow over the nth RWG basis function from T+
n to T−

n .
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A detailed description of the RWG function together with its properties can be found

in [17], which is also summarized in Appendix E.

7.2 Matrix Equation

From the Electric Field Integral Equation (7.12), following a similar numerical scheme

as we used for thin wires (see Sec. 3.1.1), we apply the Galerkin Method of Moments

expanding the surface current density JS(r′) in terms of RWG basis functions as

JS(r′) =

N∑

n=1

Jnψ
B
n (r′), (7.14)

where N is the number of edges not on the surface boundaries (i.e., non-boundary edges).

Let us consider the n-th basis function ψB
n associated with the n-th non-boundary edge.

We recall that the current distribution on this triangular domain has a component normal

to the non-boundary edge and flows parallel to the other two edges. Substituting (7.14) in

equation (7.12) leads to the approximate equation

jωµ
N∑

n=1

Jn

∫

T+
n ∪T−

n

G(r − r′)ψB
n (r′)dS ′

− 1

jωε

N∑

n=1

Jn∇S

∫

T+
n ∪T−

n

G(r− r′)
(
∇S′ ·ψB

n (r′)
)
dS ′ = Ei

S(r). (7.15)

At this stage, r can be any point on the surface S. Indeed the previous equation in N

unknowns is infinitely overdetermined. To find a solution of (7.15), following the Method

of Moments procedure we define the inner product

< f(r), g(r) >=

∫

S

f∗(r) · g(r)dS, (7.16)

where f(r) and g(r) are two general complex vector functions with r ∈ S. The superscript

∗ indicates the complex conjugate. Now, we choose a finite set of RWG testing functions{
ψB

m

}N

m=1
with support T+

m ∪ T−
m and we take the inner product (7.16) of equation (7.15)
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with each ψB
m. Since RWG functions are real-valued (i.e.,

(
ψB

m

)∗
= ψB

m), it yields

jωµ

N∑

n=1

Jn

∫

T+
m∪T−

m

ψB
m(r) ·




∫

T+
n ∪T−

n

G(r − r′)ψB
n (r′)dS ′


 dS+

− 1

jωε

N∑

n=1

Jn

∫

T+
m∪T−

m

ψB
m(r) ·


∇S

∫

T+
n ∪T−

n

G(r− r′)
(
∇S′ ·ψB

n (r′)
)
dS ′


 dS

=

∫

T+
m∪T−

m

ψB
m(r) · Ei

S(r)dS, with m = 1, ..., N,

(7.17)

where ψB
n and ψB

m represent the n-th basis and m-th testing RWG function, respectively.

A graphical representation of RWG functions is shown in Fig. 7.3.
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Figure 7.3: Graphical representation of RWG functions used as basis and testing functions.

The second integral on the left-hand side with respect to the primed coordinate is a scalar

quantity depending solely on r. Thus, applying the property

∫

T+
m∪T−

m

ψm(r) ·


∇S

∫

T+
n ∪T−

n

G(r − r′) (∇S′ ·ψn(r′)) dS ′


 dS =

−
∫

T+
m∪T−

m

(∇S ·ψm(r))

∫

T+
n ∪T−

n

G(r − r′) (∇S′ ·ψn(r′)) dS ′dS,

(7.18)
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verified in Appendix E.2 for RWG functions, reduces the previous equation (7.17) to

jωµ
N∑

n=1

Jn

∫

T+
m∪T−

m

ψB
m(r) ·




∫

T+
n ∪T−

n

G(r − r′)ψB
n (r′)dS ′


 dS +

+
1

jωε

N∑

n=1

Jn

∫

T+
m∪T−

m

(
∇S ·ψB

m(r)
) ∫

T+
n ∪T−

n

G(r − r′)
(
∇S′ ·ψB

n (r′)
)
dS ′dS

=

∫

T+
m∪T−

m

ψB
m(r) · Ei

S(r)dS, with m = 1, ..., N.

(7.19)

Equation (7.19) can be expressed as a system matrix equation

Z I = F, (7.20)

where Z = [Zm,n] is the N × N system matrix, I = [Jn] is the unknown vector of current

coefficients and F = [Fn] is the known excitation vector. Substituting in equation (7.19) the

explicit expression of RWG functions (7.13) and RWG functions’ property (see Appendix E)

∇S ·ψn(r) =





`n
A+

n

, r ∈ T+
n ,

− `n
A−

n

, r ∈ T−
n ,

0, otherwise,

(7.21)

we can write each matrix element Zm,n as

Zm,n = jωµ
`m`n

4




1

A+
mA

+
n

∫

T+
m

∫

T+
n

ρ+
m · ρ+

nG(r − r′)dS ′dS

+
1

A+
mA

−
n

∫

T+
m

∫

T−

n

ρ+
m · ρ−

nG(r − r′)dS ′dS +
1

A−
mA

+
n

∫

T−

m

∫

T+
n

ρ−
m · ρ+

nG(r − r′)dS ′dS

+
1

A−
mA

−
n

∫

T−

m

∫

T−

n

ρ−
m · ρ−

nG(r − r′)dS ′dS


+

+
1

jωε
`m`n




1

A+
mA

+
n

∫

T+
m

∫

T+
n

G(r − r′)dS ′dS − 1

A+
mA

−
n

∫

T+
m

∫

T−

n

G(r − r′)dS ′dS

− 1

A−
mA

+
n

∫

T−

m

∫

T+
n

G(r − r′)dS ′dS +
1

A−
mA

−
n

∫

T−

m

∫

T−

n

G(r − r′)dS ′dS


 .

(7.22)
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The vectors ρ±
m =ρ±

m(r) and ρ±
n =ρ±

n (r′) are defined on T±
m and T±

n and denote the position

of the observation and the source points with respect to the vertices O±
m and O±

n opposite

to the m-th and n-th non-boundary edge (see Fig. 7.3). Even though the expression (7.22)

may seem complicated, since eight integrals are present, we observe that these integrations

can be carried out systematically. Indeed the integrals in (7.22) have two different forms,

scalar and vectorial respectively:

Inta =

∫

T

∫

T ′

G(r − r′)dS ′dS, (7.23)

Intb =

∫

T

∫

T ′

ρα · ρβG(r − r′)dS ′dS =

∫

T

ρα ·
∫

T ′

ρβG(r − r′)dS ′dS, (7.24)

where T = T±
m , T ′ = T±

n are the m-th “observation” (test) triangle and the n-th “source”

(basis) triangle, respectively. The position vectors ρα = ρα(r), ρβ = ρβ(r′) denote the

“observation” and “source” points with respect to vertices α and β, see Fig. 7.4.
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Figure 7.4: Observation patch T ′ with associated edges 1, 2, 3 and source patch T with

edges 4, 5, 6.

To determine the integrals (7.23) and (7.24), they are transformed from the global Cartesian

coordinate system to a local normalized coordinate system with the coordinate transfor-

mation defined in Appendix F.1 [72].



106 Scattering from PEC objects

7.3 Efficient evaluation of system matrix elements

Since many triangles are needed when arbitrarily shaped scatterers are analyzed, the re-

sulting number N2 of matrix entries increases and the filling of the matrix Z will dominate

the computation time. To minimize the computation time and have a fast algorithm, it is

therefore important to efficiently evaluate each matrix element Zm,n.

Let us consider pairs of triangular patches rather than pairs of edges. In Fig. 7.4 it is

shown that each triangle is formed by three edges which means that three different RWG

functions are involved. When a uniform triangular mesh can be applied, it is obvious that

some integrals, computed for a certain matrix element and related to a certain triangular

patch, can be reused in the determination of other matrix elements. In particular when we

deal with open surfaces, all the integrals related to non-boundary patches can be reused,

which allows a reduction in CPU time. Moreover, the use of the Galerkin Method of Mo-

ments leads to a symmetric system matrix Z, which results in a CPU time reduction of

almost fifty percent, since only the upper triangle matrix elements need to be computed.

7.3.1 Efficient evaluation of integrals

It is well-known that the Green’s function G(r − r′) in (7.3) present in the integral forms

(7.23) and (7.24) contains an integrable singularity when the distance R = |r− r′| between

the source and the observation point vanishes. For this reason, different approaches should

be followed depending on the relative position between source triangle T and observation

triangle T ′. Referring to the integrals (7.23) and (7.24) we distinguish three situations.

• If T and T ′ coincide, this means that the integration is performed over the self patch

and the distance R may become zero. Then, the integrands exhibit a singularity and

are unbounded. An analytical integration is mandatory.

• If T and T ′ share an edge or vertex, the integrands are also unbounded. Therefore,

if high accuracy is required, analytical integration of the singular terms is recom-

mended.

• If T and T ′ are disjoint triangles, then the distance R is never zero and the inte-

grands are bounded. Thus, the integrals Inta (7.23) and Intb (7.24) converge and are

carried out numerically by a Gaussian quadrature rule over the triangular surface,

see Appendix F.2.
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To deal with the first two cases, we extract the singularity from the Green’s function as

follows

G(r − r′) = [G(r − r′) −Gsing(r − r′)] +Gsing(r − r′). (7.25)

The first term on the right-hand side is regular and is computed numerically, while the

remaining singular integral is evaluated analytically. We employ the small-argument ex-

pansion of exp(−jkR) to obtain

Gsing(r − r′) =
1

4πR
− k2R

8π
, with R = |r− r′|. (7.26)

The constant value −jk/(4π) is not included since it does not depend on R and its contri-

bution to the integration is constant. As suggested in [18], the expansion (7.26) contains

two terms. In this way the regular term between brackets of (7.25) has two continuous

derivatives at R = 0 and can be evaluated accurately with a Gaussian quadrature rule

over the triangular surface also for integrals that involve a spatial derivative operating on

the Green’s function. Substituting the extracted singular term Gsing (7.26) into expres-

sions (7.23) and (7.24) leads to the following integral forms

Inta =
1

4π

∫

T

∫

T ′

1

R
dS ′dS

︸ ︷︷ ︸
=I1

− k2

8π

∫

T

∫

T ′

RdS ′dS

︸ ︷︷ ︸
=I3

, (7.27)

Intb =
1

4π

∫

T

ρα ·
∫

T ′

ρβ

1

R
dS ′dS

︸ ︷︷ ︸
=I2

− k2

8π

∫

T

ρα ·
∫

T ′

ρβRdS
′dS

︸ ︷︷ ︸
=I4

. (7.28)

In case of coincident domains of integrations (i.e., source triangle T is identical to observa-

tion triangle T ′), the integrals I1 and I2 are carried out analytically following the scheme

proposed by Arcioni et. al. [19]. The surface integrals over T and T ′ are rewritten into

contour integrals over the triangle boundaries C and C ′ by means of Stokes’ theorem.

Analytical expressions for these integrals are calculated in [19] and reported in Appendix

F.3 for the sake of completeness. The evaluation of I3 (7.27) and I4 (7.28) is performed

in two steps: the integral over the source triangle T ′ is expressed in a closed form via

compact formulas as described in [18] and as reported in Appendix F.4. Subsequently, the

integration over the observation triangle T is computed via the Gaussian quadrature rule

for triangles, see Appendix F.2.

When the triangular patches are joined by an edge or a vertex, the integrand functions

in (7.23) and (7.24) are nearly singular. In these cases, for all integrals in (7.27) and (7.28),
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we calculate the integrals over the source triangle T ′ in closed form [18]. The subsequent

integral over the observation triangle T is computed with the aid of a Gaussian quadrature

rule.

In all other cases, that is when the observation patch T and the source patch T ′ are disjoint,

the integration is carried out numerically employing a Gaussian quadrature rule specific

for a triangular domain, see Appendix F.2.

7.4 Electric field radiated by a surface current distri-

bution flowing on a PEC object

In this section we determine the electric field radiated by a surface current distribution JS

flowing along the surface of a perfectly electrically conducting object.

The electric field for a general volumetric current distribution J(r) is given by the expression

E(r) =
1

jωε

(
k2A + ∇ (∇ · A)

)
, (7.29)

where the magnetic vector potential is given by

A(r) =

∫

V∞

G(r − r′)J(r′)dV (r′) =

∫

V∞

exp(−jkR)

4πR
J(r′)dV (r′), R = |r− r′| , (7.30)

where J(r′) is the volume current density. In particular, for a current flowing along a

surface of an object, the integral in (7.30) becomes a surface integral

A(r) =

∫

S′

G(r − r′)JS(r′)dS(r′) =

∫

S′

exp(−jkR)

4πR
JS(r′)dS(r′), (7.31)

where JS(r′) is a surface current density. In order to evaluate (7.29), we first have to

explicitly determine ∇ · A(r) and in particular the following differential operator applied

to the Green’s function

∇G(r − r′) = ∇
(

exp(−jkR)

4πR

)
=

[
∂R

(
exp(−jkR)

4πR

)]
(∇R)

= −(jkR + 1)
exp(−jkR)

4πR2

r − r′

R
. (7.32)

Substituting expression (7.31) in (7.29) yields

E(r) =
1

jωε


k2

∫

S′

G(r − r′)JS(r′)dS ′ + ∇


∇ ·

∫

S′

G(r − r′)JS(r′)dS ′




 , (7.33)
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where dS ′ = dS(r′). Following the same steps (7.7)-(7.11) we can simplify (7.33) to an

expression more suitable for numerical evaluation

E(r) =
1

jωε


k2

∫

S

G(r − r′)JS(r′)dS ′ + ∇
∫

S

G(r − r′) (∇S′ · JS(r′)) dS ′


 . (7.34)

The current is now expanded in terms of N RWG basis functions ψB
n (r) (see Sec. 7.2) as

JS(r′) =
N∑

n=1

Jnψ
B
n (r′). (7.35)

This leads to the following expressions for the magnetic vector potential

A(r) =

N∑

n=1

Jn

∫

T+
n ∪T−

n

ψB
n (r′)G(r− r′)dS ′ =

N∑

n=1

Jn

∫

T+
n ∪T−

n

ψB
n (r′)

exp(−jkR)

4πR
dS ′, (7.36)

and for the radiated electric field

E(r) =
1

jωε

N∑

n=1

Jn


k2

∫

T+
n ∪T−

n

ψB
n (r′)G(r − r′)dS ′ + ∇

∫

T+
n ∪T−

n

G(r − r′)
(
∇S′ ·ψB

n (r′)
)
dS ′


 .

(7.37)

Writing the explicit RWG function expression (7.13) and its divergence as in (7.21), we

write the latter as

E(r) =
1

jωε

N∑

n=1

Jn`n


k2

∫

T+
n

1

2A+
n

ρ+
n (r′)G(r − r′)dS ′ + k2

∫

T−

n

1

2A−
n

ρ−
n (r′)G(r− r′)dS ′

+ ∇




1

A+
n

∫

T+
n

G(r− r′)dS ′ − 1

A−
n

∫

T−

n

G(r − r′)dS ′





 . (7.38)

Then, with the aid of the differential operator in (7.32), we write the final expression of

the radiated electric field as follows

E(r) =
N∑

n=1

Jn
`n

4πjωε



k2

2A+
n

∫

T+
n

ρ+
n (r′)

exp(−jkR)

R
dS ′ +

k2

2A−
n

∫

T−

n

ρ−
n (r′)

exp(−jkR)

R
dS ′

− 1

A+
n

∫

T+
n

(1 + jkR)(r − r′)
exp(−jkR)

R3
dS ′ +

1

A−
n

∫

T−

n

(1 + jkR)(r − r′)
exp(−jkR)

R3
dS ′


 .

(7.39)
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The previous expression can be written in terms of the elementary electric field En(r) that

is the radiated field by the surface current of the n-th RWG function

E(r) =

N∑

n=1

JnEn(r), (7.40)

with

En(r) =
`n

4πjωε



k2

2A+
n

∫

T+
n

ρ+
n (r′)

exp(−jkR)

R
dS ′ +

k2

2A−
n

∫

T−

n

ρ−
n (r′)

exp(−jkR)

R
dS ′

− 1

A+
n

∫

T+
n

(1 + jkR)(r − r′)
exp(−jkR)

R3
dS ′

+
1

A−
n

∫

T−

n

(1 + jkR)(r − r′)
exp(−jkR)

R3
dS ′


 . (7.41)

This integral has been evaluated numerically by a seven-point Gaussian quadrature rule

for triangles, Appendix F.2.

7.5 Numerical implementation

The numerical method presented has been implemented in a FORTRAN code referred to

as Galerkin Method of Moments for Open Surface (GMoMOS) and used for the evaluation

of the surface current distribution of open surfaces. As already pointed out, the first step

in the discretization process is the generation of the triangular mesh in which Np planar

triangular surfaces, Nv vertices (or nodes) andNe edges are defined. To this end a simple in-

house developed mesh generator is used which is able to generate simple types of triangular

meshes as in Fig. 7.5. Focusing on a planar rectangular surface of dimensions Lx ×Ly, Nx

andNy rectangular patches are defined along the x and y directions, respectively. Therefore

Np = 2NxNy triangles and Nv = (Nx + 1)(Ny + 1) vertices are also given, see Fig. 7.5. To

analyze the scattering from open surfaces, the developed computer code needs, as input,

information related to the geometrical representation of the surface. In particular the code

requires two sets of input data. The first is an indexed list referred to as vertex matrix

of position vectors in Cartesian coordinates vi = xiix + yiiy + ziiz, i = 1, 2, ..., Nv of the

i-th vertex with respect to the global coordinate system, where Nv is the total number of

vertices. The second set of data is a patch matrix

P = [pi,j], i = 1, 2, ..., Np, j = 1, 2, 3, (7.42)
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which gives for each i-th triangle the indices of the three delimiting vertices. The direction

of the vector normal to the triangular patch is assigned by the writing order of these

indices. We choose this direction such that the normal of all triangles points into the same

direction.
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Figure 7.5: Examples of triangular mesh of a planar surface: (a)- random; (b)- translational

diagonal; (c)- rhombic.

It is important to note that each element Zm,n of the system matrix Z in equation (7.20)

represents the electromagnetic interaction between the RWG testing function defined for

the m-th edge and the RWG basis function defined for the n-th edge. This means that the

system matrix Z in (7.20) refers to edges, and the integrals involved in expression (7.22)

are evaluated over the surface triangular patches. We therefore found it convenient to

introduce a patch-to-edge matrix

F = [Fi,j], i = 1, 2, ..., Np, j = 1, 2, 3, (7.43)

in which the i-th row corresponds to the i-th triangle and the j-th column indicates the

index of its j-th edge together with a ± sign for the associated current direction. In this

way, the system matrix Z can be filled by calculation of the three integrals associated with

each triangle pair (i.e., each RWG function).

Special care has been taken in the implementation of the method to improve the efficiency

of the FORTRAN code, as already mentioned. Focusing on the system matrix Z in (7.20)

we observe that off-diagonal elements represent the electromagnetic interaction between

non-adjacent triangular patches, while elements belonging to a diagonal “band” describe

the mutual interaction between self triangular patches or patches which share an edge or a

vertex, see Fig. 7.6. In particular, only off-diagonal elements in the upper-triangular part

of the matrix are evaluated. Thanks to the symmetry of the matrix Z, the off-diagonal
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elements in the lower part then follow without further calculation. The evaluation of off-

diagonal elements involves integrals that are never singular and are numerically calculated

by a seven-point Gaussian rule, as described in Sec. 7.3. When the distance between

the observation and the source patch becomes large (with respect to the wavelength), a

midpoint integration rule could be preferred to the Gaussian rule. In these cases, thanks to

a smooth behavior of the integrands within the triangular domains, the use of a midpoint

rule could reduce the numerical complexity. However, this procedure is not implemented

in our code. The evaluation of diagonal elements requires special attention due to the

presence of a singularity, and a different approach is pursued (see Sec. 7.3).
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Figure 7.6: Symmetric matrix Z.

Moreover, the evaluation of the matrix Z in (7.20) involves mainly two types of errors:

• errors due to the numerical calculation of the integrals (i.e., due to the numerical

routine implemented);

• errors due to the geometry discretization (i.e., due to the type of triangular mesh,

shape and size of triangles used).

To reduce the errors introduced by the geometrical discretization, triangles should be as

uniform as possible in shape and in size, as suggested in [69]. Further, once the current

coefficients Jn are evaluated, the FORTRAN code is capable of calculating the electric field

radiated in a point r in the surrounding space.

7.6 Numerical results

In this section, the implemented code GMoMOS has been validated by means of some test

cases.
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7.6.1 Scattering by a PEC square plate

We consider here a square plate Lx = Ly in free space, illuminated by a normally incident

plane wave polarized along x, |Ei| = Ex = 1 V/m, see Fig. 7.7.
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Figure 7.7: Triangular mesh of a rectangular Lx × Ly plate.

We compute the dominant component of the current distribution along the two principal

cuts (i.e., cut along AA′ and BB′, see Fig. 7.7) for a 0.15λ×0.15λ and a λ×λ square plate,

respectively. The evaluated current values are shown in Figs. 7.8 and 7.9 compared with

those reported in [16] where both triangular and rectangular patches are used.
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Figure 7.8: Distribution of the dominant component of current on a 0.15λ×0.15λ square flat

plate. Incident Plane wave: |Ei| = Ex = 1 V/m, H i = |Hi| = |Ei|/ζ0 where ζ0 = 120π Ω

is the free-space impedance. Discretization: Nx = 6, Ny = 5.
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Figure 7.9: Distribution of the dominant component of current on λ× λ square flat plate.

Incident Plane wave: |Ei| = Ex = 1 V/m, H i = |Hi| = |Ei|/ζ0 where ζ0 = 120π Ω is the

free-space impedance. Discretization: Nx = 6, Ny = 7.

These comparisons show a good agreement both for a 0.15λ×0.15λ Fig. 7.8 and a λ×λ
square plate Fig. 7.9.

7.6.2 Induced electric current of a straight thin wire antenna

We consider here the simplest practical antenna, that is a straight thin wire. This antenna

is modeled in two different ways: as a thin strip of infinitesimal thickness (Fig. 7.10-(a))

and as a cylindrical straight wire (Fig. 7.10-(b)). For both cases we evaluate the total cur-

rent flowing along the straight wire antenna and we compare the results. A thin long strip

of half a wavelength (λ/2) and 0.05 m width is analyzed. A normally incident plane wave

Ei, of amplitude |Ei| = 1 V/m and frequency f = 75 MHz, polarized along the direction of

the antenna axis, impinges on the antenna. The cylindrical thin wire has the same length

of λ/2 and a diameter d such that the lateral surface of the wire is equal to the strip surface

(i.e., d = w/π, w being the strip width). We use 35 segments to discretize this cylindrical

antenna and two different meshes (segmentations) for the strip model: Nx = 35, Ny = 1

and Nx = 35, Ny = 5, where Nx and Ny are the number of subintervals for the x- and

y-coordinates.

The code used for the cylindrical thin wire model gives, as output, the total current dis-

tribution in Ampère (A, see Chapter 3), while the code used for the strip model gives

the surface current density expressed in A/m. Therefore, in order to compare the results

obtained with the two models, a numerical integration along the strip width is carried out
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Figure 7.10: Two different models of a thin-wire antenna: (a)- surface thin-strip model

with RWG functions; (b)- cylindrical straight thin wire.

to estimate its total surface current. Figure 7.11 shows a good agreement in the amplitude

and in the phase of the resulting total current flowing along the antenna for the two differ-

ent models and the different meshes. We can observe that increasing the number of RWG

functions used (i.e., from Ny = 1 to Ny = 5) in the strip model leads to a better agreement

in the phase of the current.
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Figure 7.11: Total current along the strip and along the wire: (a)- magnitude; (b)- phase.

The strip wire model has also been validated by comparing the surface current density

results with those described in the literature [73, pag. 25-28], and reported in Fig. 7.12,

while Fig. 7.13 shows results by GMoMOS. For both these qualitative pictures, a lighter

color corresponds to a higher current magnitude. To have a more quantitative result, we
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have calculated the maximum value in the middle of the strip Jx MAX = 0.2851 A/m and

compared this value with the one reported in [73], Jx MAX = 0.2855 A/m.

Figure 7.12: Magnitude of the surface current density along the half-wavelength strip, as

in [73]. The x- and y-axes are in meter.

Figure 7.13: Magnitude of the surface current density along the half-wavelength strip as

evaluated by GMoMOS. The dipole strip is modeled using a discretization of Nx = 35 and

Ny = 1. The x- and y-axes are in meter.

7.6.3 Considerations on RWG functions

At this point, some useful considerations on the way of plotting surface currents seem

in order. The surface current density is defined everywhere on the surface and can be

evaluated from the current coefficients Jn. In particular, we evaluate the surface current

in two different sets of points as shown in Fig. 7.14.
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Figure 7.14: Different sets of points: (a)- points on the diagonal edges (i.e., symbol (x)):

points for the evaluation of both Jx and Jy components; (b)- points on the horizontal and

vertical edges: points for the evaluation of Jx (i.e., symbol (o)); points for the evaluation

of Jy (i.e., symbol (x)).
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The grid points in Fig. 7.14-(a) are located on diagonal edges of the patches. Whereas in

Fig. 7.14-(b) the points lie on the horizontal and vertical edges. We study the case of a λ×λ
square plate excited by a normally incident plane wave, x-polarized (|Ei| = Ex = 1 V/m),

discretized with 1058 triangular patches (i.e., Nx = Ny = 23), and we plot the x- and

y-components of the surface current for the two different grids of points. Figure 7.15 shows

the amplitudes of the dominant Jx and non-dominant Jy current components in the sample

points on the diagonal edges (Fig. 7.14-(a)). While, in Fig. 7.16, the amplitudes of Jx and

Jy are evaluated in the sample points on the horizontal and vertical edges as in Fig. 7.14-(b).

In particular, at first glance, Fig. 7.15 shows an incorrect physical behavior near the edge

y = ±0.5 for the non-dominant component Jy (i.e., it seems that this current flows off the

surface). However this behavior is not noticeable in the x-component (Fig. 7.15) since this

component is one order of magnitude larger than Jy. The explanation for the behavior of

Jy in Fig. 7.15 is related to the type of basis functions used (i.e., RWG functions) and to

the grid of points chosen to represent the current. Indeed, the grid of points used does not

include points on the boundary edges y = ±0.5 where the current goes to zero. Moreover

the root-like behavior of the current along this edge cannot be reproduced by a piecewise-

linear approximation given by RWG functions. The computed values are in agreement

with the results presented in [70] and in [74] where the Locally Corrected Nyström method

has been used as alternative to the Method of Moments. Moreover, we notice that when

a different grid of points is used to represent the current, like the one in Fig 7.14-(b), the

incorrect behavior in Jy is not present (see Fig. 7.16) because the RWG functions have no

component parallel to the edges y = ±0.5. In the following, more investigations have been

done by refining the discretization. In particular, we evaluate the amplitude of the non-

dominant current component Jy along the cut x = 0.28λ for two different discretizations:

Nx = Ny = 23 and Nx = Ny = 41. The current Jy is calculated for the two different grids of

points in Fig. 7.14-(a) and Fig. 7.14-(b) symbol (x). As we can observe in Fig. 7.17, refining

the mesh reduces the amplitude of Jy near the edges y = ±0.5 (e.g., from 0.338 mA/m to

0.252 mA/m) for values of the current in the points of Fig. 7.14-(a). Figure 7.18 shows

the amplitude of Jy in the points of Fig. 7.14-(b) when the discretization is refined from

Nx = Ny = 23 to Nx = Ny = 41. In this case the current goes smoothly to zero. Indeed, in

the grid points of Fig. 7.14-(a), where the values of the current Jy are calculated, the RWG

functions have a component in the y-direction, while in the grid points of Fig. 7.14-(b) no

component in the y-direction is present, see Fig. 7.19.



118 Scattering from PEC objects

−0.5

0

0.5

−0.5

0

0.5
0

0.005

0.01

0.015

0.02

0.025

x [wavelength]y [wavelength]

|J
x| [

A
/m

]

P
S
frag

rep
lacem

en
ts

J
x

−0.5

0

0.5

−0.5

0

0.5
0

0.5

1

1.5

2
x 10

−3

x [wavelength]y [wavelength]

|J
y|  

[A
/m

]

P
S
frag

rep
lacem

en
ts

J
x

Figure 7.15: x-component and y-component of surface current distribution in the set of

points in Fig. 7.14-(a).
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Figure 7.19: Behavior of RWG edge functions at a boundary edge.

When an arbitrary polarized incident field is considered, the two components Jx and Jy are

of the same order of magnitude and the “non-physical” behavior along the opposite edge

(i.e., y and x respectively) is no longer visible. Figures 7.20 and 7.21 show the amplitudes of

the two current components Jx and Jy, respectively, when a λ×λ square plate illuminated

by a plane wave polarized at 45◦, Ex = Ey =
√

2/2 V/m is analyzed. A discretization of

Nx = Ny = 23 (i.e., 1028 triangular patches) is used and the grid of points in Fig. 7.14-(a)

are used to plot the current.
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Figure 7.20: x-component of the surface current distribution in the grid of points of

Fig. 7.14-(a).
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Figure 7.21: y-component of the surface current distribution in the grid of points of

Fig. 7.14-(a).

We conclude that not only the way electric current distributions are calculated is important,

also the way these results are presented requires a careful interpretation.

7.6.4 Field radiated by a current on a PEC rectangular plate

As previously mentioned, the numerical FORTRAN code implemented is capable of com-

puting the electric field radiated by a given surface current JS in an arbitrary point r in the

surrounding space. To validate the code, we have evaluated the electric field radiated by a

λ× λ square PEC planar surface (with λ = 1 m), discretized using a triangular mesh with

a rhombic symmetry, see Fig. 7.22. The number of triangles is equal in both directions

Nx = Ny = 16 and a normally incident plane wave of amplitude |Ei| = 1 V/m polarized

in the x-direction illuminates the plate, Fig. 7.22. The configuration is symmetric in both

directions. The expected current distribution, however is symmetric in the x-direction and

antisymmetric in the y-direction. From the evaluated current coefficients, we calculate the

radiated electric field on an observation plane at a distance of 10 cm (i.e., λ/10) from the

square plate (see Sec .7.4). Our results are compared with the ones obtained by running

NEC 4.1. It is worth mentioning that NEC models the radiating surface as a wire grid [2]

(in this case we use 21 wires parallel to the x-direction and 21 wires parallel to the y-

direction spaced with dw = λ/20 and with radius a = dw/2π), while GMoMOS uses a

triangular patch discretization. Figure 7.22 shows the geometry of the problem.
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Figure 7.22: Different discretization: (a)- with triangular patches as in GMoMOS; (b)-

with a wire grid as in NEC 4.1.

Figures 7.23 and 7.24 show results by our numerical method and by NEC 4.1, both for

the amplitude and the phase of the dominant component of the radiated field Ex. As can

be seen in Figs. 7.25, 7.26 and 7.27, 7.28, a good agreement is also present for the two

non-dominant components Ey and Ez of the radiated field. The amplitude of the three

components of the field calculated with the two models (GMoMOS and NEC 4.1) are com-

pared and the contour plots of their differences are shown in Figs. 7.29, 7.30 and 7.31.

Moreover, we note that for a generic observation point r in the space outside the surface

domain, the electric field, radiated by the current flowing on the surface, should satisfy the

property

∇ · E(r) = 0, (7.44)

which can also be written as

∂xEx(r) + ∂yEy(r) + ∂zEz(r) = 0. (7.45)

Choosing an “infinitesimal interval” ∆, a generic observation point r ≡ (x0, y0, z0), and

approximating the derivative in (7.45) as

∂xEx =
Ex(x0 + ∆, y0, z0) − Ex(x0 − ∆, y0, z0)

2∆
, (7.46)

∂yEy =
Ey(x0, y0 + ∆, z0) − Ey(x0, y0 − ∆, z0)

2∆
, (7.47)

∂zEz =
Ez(x0, y0, z0 + ∆) − Ez(x0, y0, z0 − ∆)

2∆
, (7.48)
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we have verified that the property (7.44) is satisfied for our results up to the 3-rd decimal

and for NEC results up to the 1-st decimal.
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Figure 7.23: Amplitude of x-component of the radiated electric field as evaluated: (a)- with

GMoMOS; (b)- with NEC 4.1.
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Figure 7.24: Phase of x-component of the radiated electric field as evaluated: (a)- with

GMoMOS; (b)- with NEC 4.1.
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Figure 7.25: Amplitude of y-component of the radiated electric field as evaluated: (a)- with

GMoMOS; (b)- with NEC 4.1.
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Figure 7.26: Phase of y-component of the radiated electric field as evaluated: (a)- with

GMoMOS; (b)- with NEC 4.1.
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Figure 7.27: Amplitude of z-component of the radiated electric field as evaluated: (a)- with

GMoMOS; (b)- with NEC 4.1.
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Figure 7.28: Phase of z-component of the radiated electric field as evaluated: (a)- with

GMoMOS; (b)- with NEC 4.1.
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Figure 7.29: Difference in amplitude of Ex between result by GMoMOS and by NEC 4.1.
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Figure 7.30: Difference in amplitude of Ey between result by GMoMOS and by NEC 4.1.



128 Scattering from PEC objects

x  [m]

y 
 [m

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5

0.006
0.012

0.019

0.0250.031

0.019

0.06

0.012

0.019

Figure 7.31: Difference in amplitude of Ez between result by GMoMOS and by NEC 4.1.

7.7 Conclusions and discussion

In this chapter the problem of electromagnetic scattering by PEC open surfaces with van-

ishing thickness has been studied. We have discretized the pertinent Electric Field Integral

Equation by means of a Galerkin MoM obtaining a system matrix equation. RWG basis

functions over a triangular domain have been introduced to expand the unknown surface

current. In this case, the evaluation of matrix elements requires the calculation of two times

two-fold integrals (on triangular patches) where the integrand exhibits an integrable singu-

larity when the distance between the source and the observation point vanishes. Therefore,

in the developed method, we have used different approaches in agreement with the relative

position between source and observation triangles (see Sec. 7.3). All singularities are ex-

tracted and calculated in closed form and numerical integration is applied only for regular

functions.

Moreover, the implementation of the presented numerical method clearly showed that deal-

ing with RWG functions and triangular mesh is a delicate procedure. In fact, depending

on the mesh selection, errors are possibly introduced in the evaluation of matrix elements.
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Besides, also the way electric current distributions are presented requires a careful inter-

pretation.

The approach is applied to the scattering problems of a PEC square plate and a PEC thin

strip illuminated by a plane wave. Comparisons of a surface current density with results

in the literature using different computation methods (e.g., NEC) showed good correspon-

dence in both cases. By means of a numerical example (see Sec. 7.6.4), we have shown

that once the surface current distribution has been calculated, the implemented numerical

scheme is well capable of evaluating the field radiated by this current.
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Chapter 8

Modeling of mutual coupling

between surfaces and wires

The problem of calculating the current distribution along wire antennas in free space has

been solved by defining an Electric Field Integral Equation (EFIE) which makes use of the

free-space Green’s function and then by solving this equation applying a Galerkin Exact

Kernel Method of Moments (see Sec. 2.2.2 and Sec. 3.1). For wire antennas attached to

other scattering structures (e.g. planar surfaces), the previous theoretical approach has to

be modified. The free-space Green’s function can for example be replaced by the Green’s

function specific for the particular scattering structure which has to be known in an efficient

form. Another possible approach retains the free-space Green’s function, but expands the

currents on attached wires and on scattering structures in a suitable way. In general,

the surface patch Method of Moments [20–22] follows the second approach, while the

hybridizations between the Method of Moments and the Geometrical Theory of Diffraction

(MoM/GTD) are examples of the first approach (Geometrical Theory of Diffraction can be

viewed as a high-frequency approximation to the spatial Green’s function) [23]. Looking at

the present literature related to the full MoM approach, it can be seen that the interaction

between a scattering surface and the wire attached to that has been analyzed following

different methodologies. For example, in [21, 75, 76] the connection between the monopole

and the independently segmented ground plane has been modeled defining a particular

junction basis function. In [22], on the other hand, based on the so-called general localized

junction model, a specific segmentation technique of wires and plates has been proposed.

In this case a good versatility in positioning of the monopole is achieved by re-segmenting

the ground plane for each wire attachment position.

We will follow the full MoM methodology, retaining the free-space Green’s function we will
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model the attachment region by defining a new basis function. In this chapter, we analyze

the mutual coupling between arbitrary oriented open surfaces and wires including the case

of wires connected to surfaces.

8.1 Electromagnetic coupling between a PEC surface

and a PEC wire

In this section, we first recall the expressions of the electric field radiated by a current

flowing along a PEC wire and by a current flowing over a PEC open surface as already

defined in Sec. 6.2 and in Sec. 7.4. Second, the mutual interaction between these two

types of structures is derived: the electric field radiated by the current along a single wire

element (i.e., two adjacent segments) is evaluated over the surface of the RWG support (i.e.,

two triangular patches) and vice versa. Focusing on the wire, as motivated in Secs. 2.2.1

and 6.1, the radiating total current is considered flowing on the wire axis. Moreover, the

radiated field can be approximated as (see Sec. 6.2)

E(r) =
N∑

n=1

InEn(r), (8.1)

where the elementary electric field En(r) is

En(r) =
1

jωε

1

4π

(n+1)∆z∫

z′=(n−1)∆z

ψn(z′)
exp(−jk|r − z′iz|)

|r− z′iz|3
{
−
[
(jk|r − z′iz|)2 + jk|r− z′iz|

+ 1] iz +
[
3 + 3jk|r − z′iz| + (jk|r − z′iz|)2

] (z − z′)

|r − z′iz|2
(r − r′)

}
dz′, (8.2)

and In are the coefficients of the rooftop (triangular) basis functions ψW
n

ψW
n (z′) = ψW

n (z′)iz =





(
1 −

∣∣∣∣
z′

∆z
− n

∣∣∣∣
)

iz, |z′ − n∆z| ≤ ∆z,

0, otherwise.
(8.3)

Expression (8.2) refers to a coordinate system local to the wire, which has its origin at the

first wire end point and the z-axis oriented along the wire axis.

As already described in Sec. 7.4, we can express the field radiated by a current flowing on

the surface of an object in terms of elementary electric fields Em(r) radiated by the m-th

current distribution on the support of the m-th RWG function (i.e., T+
m ∪ T−

m). For the
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sake of clarity, we re-write here equations (7.40) and (7.41)

E(r) =
M∑

m=1

JmEm(r), (8.4)

Em(r) =
`m

4πjωε



k2

2A+
m

∫

T+
m

ρ+
m(r′)

e−jkR

R
dS ′ +

k2

2A−
m

∫

T−

m

ρ−
m(r′)

e−jkR

R
dS ′

− 1

A+
m

∫

T+
m

(1 + jkR)(r− r′)
e−jkR

R3
dS ′ +

1

A−
m

∫

T−

m

(1 + jkR)(r − r′)
e−jkR

R3
dS ′


 , (8.5)

where a source point r′ is designed by the vector ρ±
m in each triangle T±

m with respect to a

coordinate system local to the triangle T±
m (see Fig. 7.1).

In the evaluation of the electromagnetic interaction between wires and surfaces the two

expressions (8.2) and (8.5) together with (8.1) and (8.4) are fundamental. In fact this

mutual interaction can be described by evaluating the scattered field from a wire on a

surface and vice versa.

In the configuration studied, an arbitrary oriented PEC wire and a PEC open surface

(object, body) are fed by external sources (i.e., an incident plane wave and/or a delta-gap

voltage). In this case a current distribution will be induced on the wire mantle and on the

open surface. The total electric field which excites the wire can be written as the sum of

two parts:

EW
t (r) = Ee(r) + EW,B(r), (8.6)

where Ee(r) represents the field due to external sources, and EW,B(r) is the field radiated by

a current flowing on the open surface, incident on the wire. A similar expression describes

the total electric field incident on the object

EB
t (r) = Ee(r) + EB,W (r), (8.7)

where EB,W (r) is the field radiated by a current flowing on the wire, incident on the open

surface. Equations (8.6) and (8.7) describe our problem. These equations are solved by

applying the Galerkin Method of Moments.

First, we focus our attention on equation (8.6). After discretizing the wire in N + 1

segments, we apply the Galerkin Method of Moments defining a set of N rooftop “basis”
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and “testing” functions as in (8.3), each overlapping two segments. Hence, the system

matrix equation Z I = F in (3.8) is generalized as follows

ZW IW = FW
e + FW,B, (8.8)

where the matrix ZW is the same as Z and the vector FW
e represents the contribution due to

the external excitation on the wire as in expression (3.10). The vector FW,B represents how

the electric field radiated by a current on the open surface is electromagnetically coupled

with the wire

FW,B =




〈
ψW

1 , Ê
W,B
〉

〈
ψW

2 , Ê
W,B
〉

...〈
ψW

N , Ê
W,B
〉



. (8.9)

The inner product defined in (3.7) is used. Consistently with the formulation of the thin-

wire integral equation in Sec. 2.2.2, ÊW,B denotes values averaged over φ ∈ [0, 2π)

ÊW,B =
1

2π

2π∫

φ=0

EW,Bdφ, (8.10)

where EW,B is the field radiated by a current on an open surface and incident on the wire.

Second, the same steps will be followed in the evaluation of the contribution of the induced

electric field from the wire to the open surface. In this case, no field averaging is required.

In fact the total current is considered on the axis of the radiating wire as explained in

Secs. 6.1 and 6.3.1. Thus, from (8.7), discretizing the surface in triangular patches where

M RWG functions are defined, and applying the Galekin MoM, we find the following

system matrix equation Z I = F from (7.20)

ZB IB = FB
e + FB,W . (8.11)

The vector FB,W represents how the electric field radiated by the wire current is coupled

to the surface current of the object

FB,W =




〈
ψB

1 ,E
B,W
〉

〈
ψB

2 ,E
B,W
〉

...〈
ψB

M ,E
B,W
〉



. (8.12)
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The inner product defined in (7.16) is used. The functions
{
ψB

m

}M

m=1
are the RWG “testing”

functions defined in Sec. 7.1.1 and M is the number of non-boundary edges used in the

surface discretization. The other vector FB
e represents the contribution due to the external

excitation on the open surface (see Sec. 7.2). Vectors FW,B in (8.9) and FB,W in (8.12) can

also be written as functions of the unknown current vectors IB and IW

FW,B = CW,BIB, FB,W = CB,W IW . (8.13)

Finally, from (8.8) and (8.11), together with (8.13), a general system of equations may be

elegantly written as ZI = F or more explicitly as

[
ZB −CB,W

−CW,B ZW

][
IB

IW

]
=

[
FB

e

FW
e

]
. (8.14)

The matrices ZB and ZW are referred to as self matrices, while the off-diagonal matrices

CB,W and CW,B are referred to as coupling matrices and describe the interaction between a

wire and a surface and vice versa. In particular, in the evaluation of CB,W , we consider the

field radiated by the total current on the wire axis incident on the open surface. This leads

to a one-dimensional integral in transmission and a two-dimensional integral for reception.

For each element CB,W
m,n the field (8.2) radiated by the n-th source element (i.e., two adjacent

segments) is calculated on the m-th observation element of the conducting surface (i.e., two

adjacent triangular patches). For the calculation of CW,B , we consider the field radiated by

a surface current distribution incident on the wire mantle. This yields a two-dimensional

integral in transmission and a two-dimensional integral for reception. In this case, for each

element CW,B
n,m , the field (8.5) radiated by the m-th source element of the conducting surface

(i.e., two adjacent triangular patches) is calculated on the wire mantle of n-th observation

element (i.e., two adjacent segments). Thanks to the Galerkin MoM applied, the matrix

Z in (8.14) holds the symmetry property. Therefore, each element CB,W
m,n is equal to CW,B

n,m ,

(i.e., CW,B =
(
CB,W

)T
). Thus, aiming at an efficient computational method in terms of

CPU time, only the elements of CB,W are calculated since a 1D+2D integration is required

instead of a 2 × 2D integration needed for the computation of CW,B . Then, the matrix

CW,B is filled in, without any further calculation.

When more than one wire is present in the environment, we have to take into account the

electromagnetic interaction between each wire and the surface as well as the interaction

between the wires. Therefore, for the case of P arbitrary oriented wires, the system matrix

equation (8.14) may be generalized to
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


ZB −CB,W1 −CB,W2 . . . −CB,WP

−CW1,B ZW1 −CW1,W2 . . . −CW1,WP

−CW2,B −CW2,W1 ZW2 . . . −CW2,WP

...
...

...
...

...

−CWP ,B −CWP ,W1 −CWP ,W2 . . . ZWP







IB

IW1

IW2

...

IWP




=




FB
e

FW1

e

FW2

e
...

FWP
e



. (8.15)

In a similar fashion, multiple surfaces may be introduced.

8.1.1 Evaluation of the elements CB,W
m,n

Now we consider them,n-th element CB,W
m,n of the surface-wire matrix CB,W which expresses

the interaction from the n-th wire element current on the m-th triangular element. As

explained, the current flows along the wire axis. From equation (8.2), valid in a local “wire

coordinate system”, we know the elementary electric field radiated by a current along the

n-th wire element. First, we determine the image E
′′

n(r) of En(r) by applying the proper

transformation formulas from the wire coordinate system to the global coordinate system

as defined in Appendix D. Second, we evaluate the inner product

CB,W
m,n =

∫

T+
m∪T−

m

ψB
m(r) · E′′

n(r)dS, (8.16)

where r is restricted to the support of the RWG function ψB
m (i.e., r ∈ (T+

m ∪ T−
m)) defined

in (7.13) and reported here for the sake of clarity

ψB
n (r) =





`n
2A+

n

ρ+
n , r ∈ T+

n ,

`n
2A−

n

ρ−
n , r ∈ T−

n ,

0, otherwise,

(8.17)

Finally, substituting this expression in (8.16) leads to

CB,W
m,n =

`m
2A+

m

∫

T+
m

ρ+
m(r) · E′′

n(r)dS +
`m

2A−
m

∫

T−

m

ρ−
m(r) · E′′

n(r)dS. (8.18)

8.2 Attachment of wires to the surface

In the problem of computing the current distribution along wires and surfaces, including

the case where wires are connected to the surface, it is convenient to define a special basis
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function (attachment mode) which describes the current flow from the mantle of the wire

to the surface and vice versa. In this way an accurate evaluation of the electric current

distribution is ensured. The attachment mode is defined over a wire segment and a small

planar surface region around that segment. In [76,77], an attachment mode suited to RWG

surface basis functions is proposed. It consists of a wire segment and a set of triangular

patches sharing a common vertex (i.e., the connection point). Although this attachment

basis function satisfies the desirable properties of RWG functions being free of charge

accumulation, the surface current around a junction is not always uniformly distributed,

being strictly dependent on the shape of triangular patches involved in the attachment.

Here a different basis function for the attachment region is proposed. The configuration

studied consists of a perfectly electrically conducting wire perpendicularly attached to a

perfectly electrically conducting planar surface (object, body). An incident field is present

and/or a delta gap voltage source feeds the wire. This problem may be easily generalized

to the case of more than one wire or more surfaces.

8.2.1 Definition of the junction basis function

In this section we define the basis function associated with wires attached to a surface. For

ease of implementation, we assume that the wire is perpendicularly connected to the sur-

face, and that a wire-to-surface junction exists only at triangular patch vertices (which can

always be achieved by a proper triangulation). Moreover, a circular symmetry is assumed

at the attachment point, see Fig. 8.1. The surface is meshed with triangular patches and a

linear segmentation of the wire mantle is assumed. As already discussed in Sec. 3.1.1 and

Sec. 7.1.1, basis functions suitable for representing currents induced on wires and on the

surface of objects are rooftop and RWG functions, respectively.

For a general wire-to-surface junction on a structure as illustrated in Fig. 8.1, the attach-

ment mode is built up of two parts, namely a disk SaD on the surface and a segment SaW on

the wire. A local circularly cylindrical coordinate system (r, φ, z) with origin in the junc-

tion point is defined. In order to be suited for representing the current in the neighborhood

of a junction, an attachment basis function has to satisfy the following properties:

• it guarantees the proper 1/r behavior of the body surface current density in the

vicinity of the attachment point;

• it meets the Kirchhoff current continuity requirement: namely, the surface disk cur-

rent equals the wire current at the wire base (i.e., r = a, z = 0, with a the radius of

the wire);
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• it vanishes at a distance r = b from the attachment vertex;

• finally, it should be free of charge accumulation. This means that the integral of its

surface divergence (which is proportional to the surface charge density) vanishes.

PSfrag replacements
∆ziz

ir

SaW

SaD

junction

a

b
O

Figure 8.1: Geometrical parameters associated with the wire-to-surface junction.

Thus, the attachment mode ψ
a

is given by

ψ
a
(r) =





ψ
aW

(r), r ∈ SaW ,

ψ
aD

(r), r ∈ SaD,

0, otherwise,

(8.19)

with

ψ
aW

(r) =
1

2πa

(
1 − z

∆z

)
δ(r − a)iz, 0 ≤ z ≤ ∆z, (8.20)

and

ψ
aD

(r) =





0, 0 ≤ r < a,
1

2π(b− a)

(
r − b

r

)
δ(z)ir, a ≤ r ≤ b,

0, r ≥ b.

(8.21)

In this case ψ
a

express a volume density. The superscript a indicates the attachment basis

function. The vector iz is an outward-directed unit vector on the attachment segment, ∆z
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is the segment length, ir is a unit vector on the disk surface directed away from the wire,

r is the radial coordinate on the disk, b is the outer disk radius and a is the radius of the

wire. For the attachment mode ψ
a

(8.19) all the properties previously mentioned have

been verified. We can also express the attachment mode function as a surface density:

ψa(r) =





1

2πa

(
1 − z

∆z

)
iz, r = a, 0 ≤ z ≤ ∆z,

1

2π(b− a)

(
r − b

r

)
ir, a ≤ r ≤ b, z = 0,

0, otherwise.

(8.22)

Moreover, its surface divergence which is proportional to the surface charge density, is

∇S ·ψa(r) =





− 1

2πa∆z
, r = a, 0 ≤ z ≤ ∆z,

1

2π(b− a)r
, a ≤ r ≤ b, z = 0.

(8.23)

The function has been chosen such that no charge is accumulated in the attachment region

(the integral of its surface divergence on the wire-to-surface transition area vanishes).

A similar attachment mode is used in [24] to model the connection between a feeding probe

and a patch in microstrip antennas, and in [78] where the radiation from wires attached to

bodies of revolution is studied. Tests in the literature [20, 78] show that excellent results

can be obtained if b is chosen properly. Usually this means that the disk diameter must

be taken to be the width of a surface triangular patch edge.

In conclusion, the volume current density over the attachment region can be written as

Ja(r) = Iaψ
aW

(r) + Iaψ
aD

(r), (8.24)

or

Ja(r) =





Ia 1

2πa

(
1 − z

∆z

)
δ(r − a)iz, 0 ≤ z ≤ ∆z,

Ia 1

2π(b− a)

(
r − b

r

)
δ(z)ir, a ≤ r ≤ b,

(8.25)

where Ia is the unknown current coefficient for the attachment region. This means that

for each wire-to-surface junction, only one new unknown is introduced. Having applied the



140 Modeling of mutual coupling between surfaces and wires

Method of Moments to the attachment problem, we can write the volume current density

on the wire as

JW (r) ≈ 1

2πa

N∑

n=1

IW
n δ(r − a)ψW

n (r) + Iaψ
aW

(r), (8.26)

and the volume current density on the surface involved in the attachment as

JB(r) ≈
M∑

m=1

IB
mδ(z)ψ

B
m(r) + Iaψ

aD
(r), (8.27)

where N, M are the total number of wire current unknowns and surface current unknowns,

respectively. Moreover, coefficients IW
n and Ia have the dimension of a current (i.e., A)

while coefficients IB
m have the dimension of a surface current density (i.e., A/m).

8.2.2 Testing procedure

When a wire is attached to a surface, expressions (8.6) and (8.7) for the total electric field

exciting the wire and the body are extended as follows

EW
t (r) = Ee(r) + EW,B(r) + EW,a(r), (8.28)

EB
t (r) = Ee(r) + EB,W (r) + EB,a(r), (8.29)

where EW,a(r) is the field radiated by the junction current and incident on the wire and

EB,a(r) is the field radiated by the junction current and incident on the surface. Moreover,

considering the total electric field incident on the attachment region adds an extra equation

to the previous two

Ea
t (r) = Ee(r) + Ea,B(r) + Ea,W (r). (8.30)

Equations (8.28)-(8.30) give a complete description of the problem.

Following the Method of Moments, we apply the testing procedure using the Galerkin

formulation. This means that in the attachment region we use the same weighting func-

tion ψa(r) used as expansion basis function. Once the inner product is carried out for

equations (8.28)-(8.30), the system matrix equation (3.8) can be generalized to

Z I = F, ⇒





ZB IB = FB
e + FB,W + FB,a,

ZW IW = FW
e + FW,B + FW,a,

Za Ia = Fa
e + Fa,B + Fa,W .

(8.31)
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The vector FW,a represents the electric field radiated by the attachment current distribution

calculated on the mantle of the wire

FW,a =




〈
ψW

1 , Ê
W,a
〉

〈
ψW

2 , Ê
W,a
〉

...〈
ψW

N , Ê
W,a
〉



, (8.32)

where N is the number of wire unknowns and where ψW
n with n = 1, . . . , N are the

triangular (rooftop) functions defined in (8.3). Consistently with the thin-wire formulation

(see Sec. 2.2.2), we have defined the averaged electric field radiated by the current on the

attachment region and incident on the wire as

ÊW,a =
1

2π

2π∫

φ=0

EW,adφ. (8.33)

The vector FB,a represents the contribution on the surface due to the field radiated by the

“attachment” current

FB,a =




〈
ψB

1 ,E
B,a
〉

〈
ψB

2 ,E
B,a
〉

...〈
ψB

M ,E
B,a
〉



, (8.34)

where M is the number of non-boundary edges in the surface discretization and ψB
m with

m = 1, . . . ,M are the RWG “testing” functions as defined in Sec. 7.2. The other two vectors

Fa,W , Fa,B, in equation (8.31), take into account the contribution on the attachment region

due to the field radiated by the wire and the surface current, respectively

Fa,W =
[ 〈
ψa,Ea,W

〉 ]
, (8.35)

Fa,B =
[ 〈
ψa,Ea,B

〉 ]
, (8.36)

in which ψa is the attachment basis function as defined in (8.22). In conclusion, when only

one wire is attached to one surface, equation (8.31) is elegantly written as a system matrix

equation Z I = F



ZB −CB,W −CB,a

−CW,B ZW −CW,a

−Ca,B −Ca,W Za







IB

IW

Ia


 =




FB
e

FW
e

Fa
e


 . (8.37)
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In particular, the newly defined vector Fa
e and the matrix Za contains only one element

while matrices CB,a, CW,a, consist of a column of M and N elements, respectively. Recip-

rocally, matrices Ca,B , Ca,W consist of one row of M and N elements, respectively.

8.2.3 Expressions for the elements of matrix Z

Restricting ourselves to the case of only one wire attached to the surface, by looking

at system matrix equation (8.37), we observe that only 6 of 9 sub-matrices need to be

calculated because of the symmetry in Z, that means CW,B =
(
CB,W

)T
, Ca,B =

(
CB,a

)T

and Ca,W =
(
CW,a

)T
. For the evaluation of self matrices ZB and ZW we refer to Secs. 7.3

and 3.3, and for the evaluation of coupling matrices CB,W and CW,B we refer to Sec. 8.1.

We are therefore left with the computation of matrices CB,a, CW,a, and with Za and Fa
e ,

which consist of only one element. In the following we derive their explicit forms and we

outline how they can be evaluated.

Expression for the element Za

As previously mentioned, the matrix Za contains only one element that can be expressed

as

Za = jωµ

∫

SaW∪SaD

ψa(r) ·




∫

SaW∪SaD

G(r − r′)ψa(r′)dS ′


 dS

− 1

jωε

∫

SaW∪SaD

ψa(r) ·


∇S

∫

SaW∪SaD

G(r− r′) (∇S′ ·ψa(r′)) dS ′


 dS, (8.38)

where ψa is the attachment function in (8.22) and the gradient operator ∇S′ applies to the

primed coordinates. We verify that the following property

−
∫

SaW ∪SaD

ψa(r) ·


∇S

∫

SaW∪SaD

G(r − r′) (∇S′ ·ψa(r′)) dS ′


 dS =

∫

SaW∪SaD

(∇S ·ψa(r))

∫

SaW∪SaD

G(r − r′) (∇S′ ·ψa(r′)) dS ′dS, (8.39)

is valid since the wire-to-surface junction function ψa vanishes at the contour boundaries

of the attachment region SaW ∪ SaD. Therefore from (8.38), writing ψa explicitly as in

(8.22), together with the property (8.23) and using the fact that the wire is attached
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perpendicularly to the surface (i.e., ψaD ·ψaW = 0) yields

Za = jωµ
1

4π2




∆z∫

z=0

2π∫

φ=0

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)

(
1 − z′

∆z

)(
1 − z

∆z

)
dφ′dz′dφdz




{r=r′=a}

+jωµ
1

4π2(b− a)2




b∫

r=a

2π∫

φ=0

b∫

r′=a

2π∫

φ′=0

G(r − r′)(r′ − b)(r − b)ir′(φ
′) · ir(φ)dφ′dr′dφdr




{z=z′=0}

+
1

jωε

1

4π2∆z2




∆z∫

z=0

2π∫

φ=0

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)dφ′dz′dφdz




{r=r′=a}

− 1

jωε

1

4π2(b− a)∆z




∆z∫

z=0

2π∫

φ=0

b∫

r′=a

2π∫

φ′=0

G(r − r′)dφ′dr′dφdz




{r=a, z′=0}

+

+
1

jωε

1

4π2(b− a)2




b∫

r=a

2π∫

φ=0

b∫

r′=a

2π∫

φ′=0

G(r − r′)dφ′dr′dφdr




{z=z′=0}

− 1

jωε

1

4π2(b− a)∆z




b∫

r=a

2π∫

φ=0

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)dφ′dz′dφdr




{z=0, r′=a}

. (8.40)

We observe that these six four-fold integrals have a 2π-periodic integrand. All integrands

depend on ϕ = φ− φ′ and thus for a generic function f , the following is valid

2π∫

φ=0

2π∫

φ′=0

f(φ− φ′)dφdφ′ = 2π

2π∫

ϕ=0

f(ϕ)dϕ. (8.41)

Using this result in (8.40) reduces the four-fold integrals to three-fold integrals of five

different forms. The first two are

∆z∫

z=0

∆z∫

z′=0

2π∫

ϕ=0

G(r − r′)

(
1 − z′

∆z

)(
1 − z

∆z

)
dϕdz′dz, (8.42)

∆z∫

z=0

∆z∫

z′=0

2π∫

ϕ=0

G(r − r′)dϕdz′dz, (8.43)
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where R = |r− r′| =
√

(z − z′)2 + 4a2 sin2(ϕ/2), with r and r′ located on the wire attach-

ment surface SaW . Moreover the next two different forms are

b∫

r=a

b∫

r′=a

2π∫

ϕ=0

G(r − r′)(r′ − b)(r − b) cosϕdϕdr′dr, (8.44)

b∫

r=a

b∫

r′=a

2π∫

ϕ=0

G(r − r′)dϕdr′dr, (8.45)

where |r− r′| =
√
r2 + r′2 − 2rr′ cosϕ, where r and r′ are located on the wire attachment

disk SaD. Finally, the last type of integral

∆z∫

z=0

b∫

r′=a

2π∫

ϕ=0

G(r − r′)dϕdr′dz, with |r− r′| =

√
r′2 + a2 − 2ar′ cosϕ+ z2, (8.46)

occurs when r ∈ SaW and r′ ∈ SaD or vice versa r ∈ SaD and r′ ∈ SaW

b∫

r=a

∆z∫

z′=0

2π∫

ϕ=0

G(r − r′)dϕdz′dr, with |r − r′| =

√
r2 + a2 − 2ar cosϕ+ z′2. (8.47)

From reciprocity, we note that integrals (8.46) and (8.47) are identical.

Expression for the elements CB,a

The generic m-th element CB,a
m represents the effect of the current distribution along the

attachment region on the m-th RWG surface element. This element is defined as follows

CB,a
m = −jωµ

∫

T+
m∪T−

m

ψB
m(r) ·




∫

SaW∪SaD

G(r − r′)ψa(r′)dS ′


 dS

+
1

jωε

∫

T+
m∪T−

m

ψB
m(r) ·


∇S

∫

SaW∪SaD

G(r − r′) (∇S′ ·ψa(r′)) dS ′


 dS. (8.48)
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A relation similar to (7.18) is valid for the equation (8.48). Thus, writing the attachment

function ψa as the sum of the two contributions ψaW and ψaD in (8.22) leads to

CB,a
m = −jωµ

∫

T+
m∪T−

m

ψB
m(r) ·




∫

SaW

G(r− r′)ψaW (r′)dS ′


 dS

− 1

jωε

∫

T+
m∪T−

m

(
∇S ·ψB

m(r)
) ∫

SaW

G(r − r′)
(
∇S′ ·ψaW (r′)

)
dS ′dS

− jωµ

∫

T+
m∪T−

m

ψB
m(r) ·




∫

SaD

G(r − r′)ψaD(r′)dS ′


 dS

− 1

jωε

∫

T+
m∪T−

m

(
∇S ·ψB

m(r)
) ∫

SaD

G(r − r′)
(
∇S′ ·ψaD(r′)

)
dS ′dS. (8.49)

We focus now on the first term of (8.49). Using the fact that the wire is perpendicularly

connected to the surface means that the first term on the right-hand side vanishes. Us-

ing the explicit expression (7.13) of the RWG function, and of ψa (8.22) and using the

properties (7.21) and (8.23), we can write equation (8.49) as

CB,a
m = − 1

jωε

`m
2π∆z




1

A−
m



∫

T−

m

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)dz′dφ′dS



{r′=a}

+

− 1

A+
m



∫

T+
m

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)dz′dφ′dS



{r′=a}


+

−jωµ `m
4π(b− a)




1

A+
m



∫

T+
m

b∫

r′=a

2π∫

φ′=0

G(r− r′)(r′ − b)ir(φ
′) · ρ+

m(r)dr′dφ′dS



{z′=0}

+

+
1

A−
m



∫

T−

m

b∫

r′=a

2π∫

φ′=0

G(r − r′)(r′ − b)ir(φ
′) · ρ−

m(r)dr′dφ′dS



{z′=0}


+

− 1

jωε

`m
2π(b− a)




1

A+
m



∫

T+
m

b∫

r′=a

2π∫

φ′=0

G(r − r′)dr′dφ′dS



{z′=0}

+
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− 1

A−
m



∫

T−

m

b∫

r′=a

2π∫

φ′=0

G(r − r′)dr′dφ′dS



{z′=0}


 . (8.50)

We observe that the computation of each coupling matrix element requires the calculation

of six different four-fold integrals of three different forms

∫

T

∆∫

z′=0

2π∫

φ′=0

G(r − r′)dz′dφ′dS, r′ = a cosφ′ix + a sinφ′iy + z′iz, (8.51)

∫

T

b∫

r′=a

2π∫

φ′=0

G(r − r′)(r′ − b)ir(φ
′) · ρ(r)dr′dφ′dS, r′ = r′ cosφ′ix + r′ sinφ′iy, (8.52)

∫

T

b∫

r′=a

∫

φ′=0

G(r − r′)dr′dφ′dS, r′ = r′ cosφ′ix + r′ sinφ′iy, (8.53)

where T = T±
m is a generic triangular patch and ρ denotes the position of the observation

point r in the triangle T , r = r cosφix + r sin φiy, see Fig. 8.2.
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Figure 8.2: Geometry of the attachment problem on the (x, y)-plane.

Expression for the elements of CW,a

In this case the n-th coupling element CW,a
n represents the effect of the current distribution

along the wire-to-surface attachment on the n-th rooftop element and it has the following
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expression

CW,a
n = −jωµ 1

2π

(n+1)∆z∫

z=(n−1)∆z

ψW
n (z) ·




2π∫

φ=0

∫

SaW∪SaD

G(r− r′)ψa(r′)dS ′


 dφdz

+
1

jωε

1

2π

(n+1)∆z∫

z=(n−1)∆z

ψW
n (z) ·




2π∫

φ=0

∇S

∫

SaW∪SaD

G(r − r′) (∇S′ ·ψa(r′)) dS ′


 dφdz. (8.54)

The second integral term on the right-hand side of (8.54) can be written as

1

jωε

1

2π

(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

ψW
n (z) ·


∇S

∫

SaW∪SaD

G(r − r′) (∇S′ ·ψa(r′)) dS ′


 dφdz. (8.55)

Moreover, since the n-th triangular function ψW
n (8.3) vanishes at the contour boundaries

of the surface SW
n , the following property is valid

(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

ψW
n (z) ·


∇S

∫

SaW∪SaD

G(r− r′) (∇S′ ·ψa(r′)) dS ′


 dφdz =

−
(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

(
∇S ·ψW

n (z)
) ∫

SaW∪SaD

G(r − r′) (∇S′ ·ψa(r′)) dS ′dS. (8.56)

Therefore, from (8.54), writing the attachment function in terms of ψaW and ψaD we

obtain

CW,a
n = −jωµ 1

2π

(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

∫

SaW

G(r − r′)ψW
n (r) ·ψaW (r′)dS ′dφdz

−jωµ 1

2π

(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

∫

SaD

G(r − r′)ψW
n (r) ·ψaD(r′)dS ′dφdz

− 1

jωε

1

2π

(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

(
∇S ·ψW

n (r)
) ∫

SaW

G(r− r′)
(
∇S′ ·ψaW (r′)

)
dS ′dφdz

− 1

jωε

1

2π

(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

(
∇S ·ψW

n (r)
) ∫

SaD

G(r − r′)
(
∇S′ ·ψaD(r′)

)
dS ′dφdz. (8.57)
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Using the fact that the wire is perpendicularly connected to the surface, with the aid of

(8.22), (8.23) and of the explicit expressions (8.3) of the n-th triangular function, we write

the coupling matrix element (8.57) as

CW,a
n = −jωµ 1

4π2




(n+1)∆z∫

z=(n−1)∆z

2π∫

φ=0

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)

(
1 − z′

∆z

)
×

(
1 −

∣∣∣ z
∆z

− n
∣∣∣
)
dφ′dz′dφdz



{r=r′=a}

+

+
1

jωε

1

4π2∆z2




n∆z∫

z=(n−1)∆z

2π∫

φ=0

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)dφ′dz′dφdz




{r=r′=a}

− 1

jωε

1

4π2∆z2




(n+1)∆z∫

z=n∆z

2π∫

φ=0

∆z∫

z′=0

2π∫

φ′=0

G(r − r′)dφ′dz′dφdz




{r=r′=a}

− 1

jωε

1

4π2(b− a)∆z




n∆z∫

z=(n−1)∆z

2π∫

φ=0

b∫

r′=a

2π∫

φ′=0

G(r − r′)dφ′dr′dφdz



{r=a, z′=0}

+
1

jωε

1

4π2(b− a)∆z




(n+1)∆z∫

z=n∆z

2π∫

φ=0

b∫

r′=a

2π∫

φ′=0

G(r − r′)dφ′dr′dφdz




{r=a, z′=0}

. (8.58)

Observing that all the integrands in (8.58) depend on ϕ = φ− φ′, we reduce the four-fold

integrals in (8.58) to three-fold integrals. Moreover, looking at the previous expression, we

recognize three different types of integrals

(n+1)∆z∫

z=(n−1)∆z

∆z∫

z′=0

2π∫

ϕ=0

G(r − r′)

(
1 − z′

∆z

)(
1 −

∣∣∣ z
∆z

− n
∣∣∣
)
dϕdz′dz,

|r− r′| =
√

(z − z′)2 + 4a2 sin2(ϕ/2), (8.59)

z2∫

z=z1

∆z∫

z′=0

2π∫

ϕ=0

G(r − r′)dϕdz′dz, |r− r′| =
√

(z − z′)2 + 4a2 sin2(ϕ/2), (8.60)

z2∫

z=z1

b∫

r′=a

2π∫

ϕ=0

G(r − r′)dϕdr′dz, |r − r′| =

√
r′2 + a2 − 2r′a cosϕ+ z2, (8.61)
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where the integration boundaries z1 and z2 can assume the values z1 = (n − 1)∆z and

z2 = n∆z, or z1 = n∆z and z2 = (n + 1)∆z. Note that the integral (8.59) is similar to

(8.42), while the integrals (8.60) and (8.61) are identical to (8.43) and (8.46), respectively,

except for the integration boundaries.

8.2.4 Evaluation of the matrix Z

In the previous section, the expressions for the elements of the matrix Z are given in (8.40),

(8.50) and in (8.58). The computation of these elements requires the integration of nine

different forms which are listed in Appendix G.1. We observe that these integrals contain

the Green’s function of the Helmholtz operator, G(r − r′), which exhibits a singularity

when the distance |r− r′| approaches zero. In this case, special attention should be taken

in the the numerical evaluation of all the integrals. For this reason, we followed different

approaches depending on the relative position between the source point r′ ∈ SaW ∪ SaD

and the observation point r over the triangular patch Tm or over the wire segment surface

or over SaW ∪ SaD. We distinguish three different situations:

• when r′ ∈ SaW and r is on the first wire segment surface, the integrand exhibits a sin-

gular behavior and we follow the strategy already developed for the single wire. The

singular term is extracted and analytically integrated, see Sec. 3.3, equation (3.35).

Also when r′ ∈ SaW and r is on the triangular patch Tm sharing a vertex with the

attachment point, the integrand is unbounded (i.e. exhibits a singular behavior). In

this case a series expansion of the Green’s function for the Helmholtz operator in

cylindrical coordinates has been introduced for the calculation of the integral (see

Appendix G.1);

• when r′ ∈ SaW and r is on the wire surface but is not on the mantle of the first

segment then the integrand is bounded and we perform a numerical integration;

• for all the other cases a brute-force numerical integration is performed by means of

an adaptive multidimensional routine [65] .

Details on treatments of singular cases are discussed in Appendix G.1. Numerical and ana-

lytical techniques are introduced in order to calculate the matrix elements with a computer

program in an accurate way. For ease of implementation, we discretize the attachment re-

gion with a triangular mesh as shown in Fig. 8.3.
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Figure 8.3: Symmetric mesh configuration in the attachment region.

At first sight, this simplification may appear as a limitation in positioning the attached wire

only at the surface mesh points. In reality, a proper mesh can be generated starting from

the attachment point, thus, the connection point can be located everywhere on the surface.

An advantage of the inherent symmetry is related to the evaluation of the coupling element

CB,a
m . The required four-fold integrations (8.50) over the patches involved in the attachment

need to be carried out only once over one triangular patch. In fact, the integrations over the

patches sharing a vertex with the attachment point will provide the same result. From the

expression (8.50) it follows that for those RWG functions defined on triangle pairs involved

in the attachment (i.e., both triangles T+
m and T−

m sharing a vertex with the attachment

point), the coupling element CB,a
m vanishes. Thus, in the numerical implementation, the

computation of these terms can be omitted, which saves CPU time.

8.2.5 Calculation of the vector Fa
e

As we have already pointed out, the vector Fa
e on the right-hand side of equation (8.37)

has only one element and it represents the contribution due to weighted external excitation

(i.e., an incident plane wave and/or a delta-gap voltage) on the attachment region. It is

defined as

F a
e =

〈
ψa(r), V (ω)δ(z − zg)iz + Ei(r)

〉
=

∫

SaW∪SaD

ψa(r) ·
(
V δ(z − zg)iz + Ei(r)

)
dS, (8.62)
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where SaW and SaD are the wire and the disk regions involved in the attachment. Substi-

tuting the explicit expression of the attachment function ψa as in (8.22) leads to

F a
e =

1

2π




∆z∫

z=0

2π∫

φ=0

(
1 − z

∆z

) (
V (ω)δ(z − zg)iz + Ei(r)

)
· izdφdz




{r=a}

+
1

2π(b− a)




b∫

r=a

2π∫

φ=0

(r − b)
(
V (ω)δ(z − zg)iz + Ei(r)

)
· ir(r)dφdr




{z=0}

. (8.63)

The first two-fold integral, where r = a cosφix + a sin φiy + ziz belongs to the wire attach-

ment region SaW , and, for an incident plane wave can be calculated analytically. While

the two-fold integral where r = r cosφix + r sin φiy is on SaD, is carried out numerically

with an adaptive multidimensional routine [65]. Explicit expressions of these integrals are

given in Appendix G.2.

8.3 Numerical results

The method outlined in Sec. 8.1 and Sec. 8.2 has been implemented in a FORTRAN

computer code referred to as GEKMoM+ which is able to calculate the current on the

perfectly electrically conducting surface (PEC) and along the PEC wire including the case

of a wire perpendicularly connected to a planar surface. Several test cases have been run

to validate the code.

8.3.1 Coupling between a thin wire and a PEC square plate

We consider a thin wire of length λ/2 with a radius a = 0.001λ, placed centrally and parallel

at a distance d from a square surface of dimensions λ × λ. The structure is excited by a

normally incident plane wave, x-polarized, with an amplitude of |Ei| = 1 V/m and λ = 1 m.

This configuration is depicted in Fig. 8.4. The wire current computed is compared with the

one obtained by using the commercial software NEC 4.1 [2]. It is important to underline

that our numerical scheme discretizes the planar surface with patches, Nx = Ny = 16,

which means that Np = 512 triangular patches are used. With NEC, we use a wire grid

of 21 wires parallel to the x-direction and 21 wires parallel to the y-direction spaced with

dw = λ/20 and with radius a = dw/2π, designed following the guidelines in [2]. The wire

current is expanded with N = 35 basis functions in both schemes.
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Figure 8.4: Geometry of the configuration.

A good agreement between the wire current computed by using the described numerical

scheme (named as “GEKMoM+”) and NEC 4.1, is shown in Fig. 8.5 when the wire and

the surface are placed at a distance d = 0.3λ. Figure 8.6 shows the amplitude of the

x-component of the surface current distribution together with its contour plot calculated

using GEKMoM+.
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Figure 8.5: Magnitude of the total current along the thin wire placed at a distance d = 0.3λ

from the square plate.
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Figure 8.6: Surface current distribution and contour plot of |Jx| on the square plate placed

at a distance d = 0.3λ from the thin wire.

Next we investigate what happens when the distance between the wire and the surface is

reduced to 0.1λ. In this case the mutual interaction between the two objects is stronger.

The amplitude of the x-component of the surface current distribution together with its

contour plot is depicted in Fig. 8.7. For the sake of comparison we report in Fig. 8.8 the
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results of the planar surface without the wire.
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Figure 8.7: Surface current distribution and contour plot of |Jx| on the square plate placed

at a distance d = 0.1λ from the thin wire.
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Figure 8.8: Surface current distribution and contour plot of |Jx| on the square plate without

the wire.

As additional case we compute the current distribution on the square plate when the wire

is asymmetrically located (see Fig. 8.9). In Figs. 8.10 and 8.11, the absolute value of the

x-components of the resulting currents are shown together with their contour plots for two

different distances d.
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Figure 8.10: Surface current distribution and contour plot of |Jx| on the square plate placed

at a distance d = 0.3λ from the thin wire asymmetrically placed.
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Figure 8.11: Surface current distribution and contour plot of |Jx| on the square plate placed

at a distance d = 0.1λ from the thin wire asymmetrically placed.

Further the wire current for varying d is analyzed. In particular, from Fig. 8.12, we

notice that decreasing the distance between the wire and the planar surface corresponds

to a reduction in the amplitude of the wire current distribution (to the extreme case of a

current equal to zero), as physically expected from image theory. In both cases the wire

current distribution has an invariant shape.
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Figure 8.12: Comparison between the total current magnitude along the wire in presence

of the square plate at different distances and for the thin wire without the surface: (a)-

centered configuration; (b)- offset configuration.

As further test, we calculate the total current along the same thin-wire antenna (i.e.,

h = λ/2, radius a = 0.001λ) fed by a delta-gap voltage in its center. This antenna is

placed centrally and parallel at a distance d = 0.3λ from a L × L square plate, Fig. 8.13-

(a). We consider three different plate dimensions: L = 0.75λ, 1λ and 1.75λ, discretized

with Nx = Ny = 12, 16 and 28, respectively. The wire current is expanded with N = 35

basis functions. Moreover, we analyze this scattering problem also applying the image the-

ory, referred to as “infinite ground plane”. In this case the problem is analyzed by placing

a virtual image wire at a distance d below the interface as depicted in Fig. 8.13-(b) [79].
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Figure 8.13: Geometry of the configuration: (a)- λ/2 wire and L square plate; (b)- source

wire and image (virtual) wire as follows from image theory [79].

Figures 8.14 and 8.15 show the wire current amplitude and phase for different plate di-

mensions, respectively. Enlarging the surface dimensions from L = 0.75λ to L = 1.75λ, we

observe, as expected, that the wire current approaches that found when an infinite ground
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plane (continuous line) is considered. As a matter of fact, the length of the wire becomes

smaller compared to the planar surface and the effect of the finite dimensions of the plate

are less noticeable in agreement with the image theory.
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Figure 8.14: Magnitude of the total current along a thin wire fed by a delta-gap voltage.

The wire is placed at a distance d = 0.3λ from the square plate.
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Figure 8.15: Phase of the total current along a thin wire fed by a delta-gap voltage. The

wire is placed at a distance d = 0.3λ from the square plate.
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8.3.2 Coupling between a thin strip and a thin wire

In this section we investigate the electromagnetic coupling present between two parallel

thin wires due to an incident plane wave. To validate the numerical code GEKMoM+, this

configuration is modeled in two different ways as depicted in Fig. 8.16.
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Figure 8.16: Geometry of the configuration: (a)- wire 1 modeled as a surface thin-strip and

wire 2 as a cylindrical straight thin wire; (b)- two cylindrical straight thin wires.

As the reference configuration we consider two cylindrical straight wires (wire-wire model)

already validated in Chapter 6. GEKMoM+ is applied to a perfectly conducting thin strip

of infinitesimal thickness and width w = 0.05 m coupled with a cylindrical straight wire

(strip-wire model) and results are compared with the ones for the reference configuration.

The incident electric field is taken to be a normally incident plane wave with the electric

field vector parallel to the x-axis and with an amplitude of |Ei| = 1 V/m and a frequency

of f = 75 MHz. The two wires of length λ/2 are placed at a distance d = 3 m. The first

wire, wire 1, has the same length as the strip and has a diameter d such that the lateral

surface of the wire is equal to the strip surface (i.e., d = w/π, where w is the strip width).

The two wires in the wire-wire model have been discretized with 35 segments, while two

different meshes are used for the strip-wire model: Nx = 35, Ny = 1 and Nx = 35, Ny = 5,

where Nx and Ny denote the discretization numbers along the x- and y-directions. For the

sake of comparison, we refer the reader to Fig. 7.11, where the current along the straight

thin wire without the surface has been shown. For both models we evaluate the total

current flowing along the two wire antennas and we compare the results. Figure 8.17

shows the current along wire 1 which is modeled in two different ways: as a strip and as

a cylinder. In this case, as already explained in Sec. 7.6.2, when the strip-wire model is

used, the output of the numerical code is expressed in terms of a surface current density
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and therefore an integration in the transverse direction is needed to compare the results

with the ones obtained with the wire-wire model. The current along wire 2, modeled as

a straight thin cylinder, is depicted in Fig. 8.18. Even with a coarse strip discretization

(Ny = 1) in the strip-wire model, we observe a good agreement in the magnitude of the

current for both cases. We observe that the GEKMoM+ code is able to reproduce the

correct behavior of the current with a relative error of 0.03.
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Figure 8.17: Total current along dipole 1: (a)- magnitude; (b)- phase.
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Figure 8.18: Total current along dipole 2: (a)- magnitude; (b)- phase.
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8.3.3 Wire antenna perpendicularly mounted on a finite PEC

square plate

We consider a wire antenna (monopole) orthogonally connected to the center of a 1.4λ×1.4λ

square ground plane. The monopole has radius a = 1 mm and is fed by a delta-gap voltage

V = 1 V at its base. We compute the input impedance of this monopole. First, the wire

current is approximated by means of N = 4 rooftop functions. Results computed with

GEKMoM+ by varying the number M of RWG functions are shown in Fig. 8.19-(a) for

the resistance R and in Fig. 8.19-(b) for the input reactance X versus the length h of the

monopole. Focusing on the ground plane discretization, we observe that stepping from

a mesh size of 0.35λ (i.e., M = 40) to 0.14λ (i.e., M = 280) does not affect the input

impedance values significantly, see Fig. 8.19.

Second, the surface current on the ground plane is approximated by means of M = 176

RWG functions while the number N of rooftop functions varies. From the input impedance

values in Fig. 8.20 we can conclude that the method converges for the example described.

Moreover, in Figs. 8.21 and 8.22, the input impedance values (i.e., R and X) are compared

with the ones computed by considering an infinite ground plane and applying image the-

ory (see [79]), and with similar analysis found in the literature [20]. In this case M = 280

RWG functions and N = 4 rooftop functions are used to discretize the surface current and

the wire current, respectively. According to image theory, we analyze a dipole of length

2h in free space, discretized with Ndip = 2N triangular basis functions. From the dipole

impedance values (i.e., Rdip and Xdip) we obtain those of the monopole as Rmon = Rdip/2,

Xmon = Xdip/2.

Results are given in Figs. 8.21-(a) and 8.22-(a) for the numerical scheme presented (GEK-

MoM+), and in Figs. 8.21-(b) and 8.22-(b) as obtained in the literature [20]. Comparing

results for a 1.4λ × 1.4λ ground plane (continuous line) with those for an infinite ground

plane (black circles), we observe a good agreement particularly for a decreasing length of

the dipole. Indeed, the ground plane becomes large compared with the length of the dipole

in agreement with the image theory. From our results, we calculate a relative error

εR =
|RinfGP −RGP|2

|RinfGP|2
, εX =

|XinfGP − RGP|2
|XinfGP|2

, (8.64)

for the resistance R and reactance X, where RinfGP, XinfGP are the values for infinite ground

plane (image theory) and RGP, XGP are those for a 1.4λ× 1.4λ ground plane. Reducing

the monopole length from 0.3λ to 0.1λ we obtain a reduction in the relative error εR from

0.0145 to 0.0054 and in the relative error εX from 0.0788 to 0.0002.
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Figure 8.19: Input impedance of a monopole mounted in the center of a 1.4λ× 1.4λ square

ground plane versus the monopole length by varying the number M of RWG functions used:

(a)- resistance R; (b)- reactance X.
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Figure 8.20: Input impedance of a monopole mounted in the center of a 1.4λ× 1.4λ square

ground plane versus the monopole length by varying the number N of rooftop functions

used: (a)- resistance R; (b)- reactance X.
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Figure 8.21: Input resistance R of a monopole mounted in the center of a 1.4λ × 1.4λ

square ground plane versus the monopole length, computed by using the attachment mode

and by considering the plane infinite: (a)- results from GEKMoM+; (b)- results from [20].
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Figure 8.22: Input reactance X of a monopole mounted in the center of a 1.4λ×1.4λ square

ground plane versus the monopole length, computed by using the attachment mode and by

considering the plane infinite. (a)- results from GEKMoM+; (b)- results from [20].
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As a second test case, we consider a monopole antenna perpendicularly mounted in the

center of a finite square PEC plate with dimensions 0.914 m×0.914 m. The wire antenna

has length h = 0.421 m and has radius a = 0.8 mm. We compute the input admittance of

this monopole in the frequency range 140–220 MHz. Figure 8.23 shows results obtained

with our code (GEKMoM+) and measurements and results from the literature [20]. The

calculation was performed with N = 4 rooftop functions for the wire and with M = 40

RWG functions for the square plate.
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Figure 8.23: Input admittance of a 0.421 m monopole mounted in the center of a square

finite plane with dimensions 0.914 m×0.914 m versus the frequency: (a)- conductance G;

(b)- susceptance B.

8.4 Conclusions and discussion

In this chapter, we have proposed a numerical method to analyze the electromagnetic cou-

pling between wire antennas and open surfaces. The connection between wires and surfaces

has been theoretically investigated and a numerical treatment of the attachment has been

analyzed by introducing a proper attachment basis function. The current is considered

flowing continuously along the mantle of the wire to the surface and vice versa. The care-

fully designed attachment mode in combination with the Galerkin MoM formulation leads

to nine types of four-fold integrals. Moreover, in case of coincident source and observa-

tion points the integrands exhibit a singular behavior. Using analytical techniques, we

have accounted for all weakly singular integrands and their four-dimensional integrals have

been reduced to a lower dimension. This complexity reduction is reflected in reduction of
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computation time involved in integral evaluations. For ease of implementation we made

two basic simplifications:

• the attachment region has been discretized with a symmetrical triangular mesh;

• wires are orthogonally attached to the surface.

As described in Sec. 8.2.4, thanks to the symmetric configuration used, the four-fold inte-

grals associated with a certain test and expansion triangle pair involved in the attachment

can be used up to eight times (eight triangles are involved in the attachment). The advan-

tage of a more efficient filling of the MoM-matrix due to the use of the “nice” symmetric

configuration (Fig. 8.3) can always be achieved by defining a proper surface mesh.

The simplification of having a wire perpendicularly attached to the surface may be gener-

alized as follows. We may think of a first short wire with an end connected orthogonally

to a surface and joined with the other end to an arbitrarily tilted second wire.

Although the GEKMoM+ code is not fully optimized, the introduction of a special attach-

ment basis function in combination with the Galerkin MoM does not lead to computational

problems. As further development, the implementations of dedicated (ad-hoc) routines to

evaluate integrals involved in the attachment may be required to increase the efficiency of

the proposed method.



Chapter 9

Design of a loaded monopole by

using an evolved PSO algorithm

Over the years, wire antennas have been widely used in many communication systems.

Their various fields of application require a specific design of wide-band antennas. More-

over, conventional antennas operating at low frequencies have very large dimensions. In

naval applications where antennas operate in VHF (30–300 MHz) and/or UHF (300 MHz–

3 GHz) frequency bands, particular miniaturizing techniques are needed to design small

efficient antennas [80,81]. Loading wire antennas with resonant traps, as for instance RLC

parallel circuits, is one possible way to obtain broadband performance. In particular, in-

ductors and capacitors guarantee a multi-resonant frequency system while resistors permit

achieving wide-band characteristics [80]. In the design of such kind of antennas, the dif-

ferent loading configurations (positions, RLC values) play a crucial role in achieving the

required performance in terms of gain and VSWR. An accurate electromagnetic model

of the antenna configuration is essential in the design of such a loaded antenna system.

To this end, the developed Galerkin MoM code suitable for the analysis of wire antenna

structures is embedded in a Particle Swarm Optimization (PSO) algorithm. In this way,

we obtain a synthesis program by means of a stochastic optimization technique.

The choice of using a stochastic optimization technique, as Particle Swarm Optimization,

is mainly due to its ability to converge to a global minimum together with its simplicity and

robustness. Indeed compared to deterministic algorithms (e.g., gradient-based techniques),

stochastic algorithms are very useful tools for optimization problems involving a space of

solutions with a large amount of local minima. Stochastic optimization techniques are less

inclined to converge to a local minimum than deterministic optimization methods [82].

On the other hand, stochastic algorithms require many more forward computations, and
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therefore it is important to use efficient antenna modeling in combination with them.

In Section 9.1.1 the PSO mechanism is briefly described and a possible modification to

increase the efficiency in terms of convergence is provided in Sec. 9.1.2. The MoM/PSO

is applied to a wide-band wire antenna design in Sec. 9.2, where a tailored scheme to

enhance efficiency is introduced for the computation of matrix elements, see Sec. 9.2.2.

Finally, in Sec. 9.2.3 the relevant results are discussed and compared with those obtained

with a Genetic Algorithm (GA) approach.

9.1 Particle Swarm Optimization algorithm

Particle Swarm Optimization (PSO) is a rather new optimization technique, which was

developed by Kennedy and Eberhart [83] in 1995. The full merit of the introduction

of this stochastic evolutionary algorithm into the electromagnetic community is due to

Rahmat-Samii [84] who successfully applied this technique to antenna design.

9.1.1 Conventional PSO

A particle swarm optimizer is a population-based stochastic optimization algorithm that

emulates the social behavior of a swarm of bees looking for the most fertile feeding lo-

cation [84]. In a PSO system, a swarm of individuals (called “agents” or “particles”) fly

through the search space. Each particle represents a candidate solution to the optimiza-

tion problem. The position of a particle is influenced both by the best position visited

by itself (that is its historical experience) and by the position of the best particle in its

neighborhood. As in Genetic Algorithms (GA) a key element of PSO is the definition of

a “fitness function” that accurately quantifies the quality of candidate solutions. Recent

results in the literature show that PSO is generally faster, more robust and performs better

than GA, especially when the dimension of the problem increases [26].

A problem that requires the simultaneous optimization of P parameters varying in a rea-

sonable range of values can be defined on a P -dimensional bounded space where the optimal

solution has to be found. In a standard PSO algorithm we define a collection of M agents

that change their positions iteratively within this P -dimensional space. In particular, for

each agent the updated step in each dimension p ∈ [1, P ] is specified according to

xp(t+ ∆t) = xp(t) + vp(t)∆t, (9.1)

where the initial position xp(0) is randomly defined while vp(t) represents the p-th com-

ponent of the agent velocity. As will be explained in Sec. 9.1.2, the implemented rule
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for velocity update is a key issue for high performance PSO. The conventional stochastic

iterative equation, valid for each p-th component of the agent velocity, describes the PSO

mechanism [84] and reads

vp(t+ ∆t) = wvp(t) + c1rp,1(t) [pbest,p − xp(t)] + c2rp,2(t) [gbest,p − xp(t)] . (9.2)

The first right-hand side term in equation (9.2) represents the inertial agent tendency to

maintain the previous direction, where w is referred to as “inertial weight”. The other two

terms are pulling toward the best position pbest ever found by the m-th agent and the best

position gbest found by any particle, respectively. Increasing the value of w will increase

the speed of the particles, which results in more exploration (gbest) and less exploitation

(pbest).

The constant coefficients c1 and c2 are the “cognitive” and the “social” rate, respectively,

whereas rp,1 and rp,2 are two random numbers uniformly distributed within the range

[0, 1]. This means that c1 is a factor determining how much the particle is influenced by

the memory of its best location, while c2 is a factor determining how much the particle is

influenced by the rest of the swarm. Increasing the value of c1 will encourage the exploration

of the solution space since each particle moves towards his own pbest. Increasing the value

of c2 will encourage the exploitation of the supposed global maximum gbest.

Positions pbest,p and gbest,p depend strongly on the chosen fitness function that is used to

test each agent performance.

9.1.2 Modified PSO for convergence improvement

The PSO capability to converge to the global optimum and its velocity of convergence

strongly depend on the weighting factors w, c1, c2 in equation (9.2). In particular, high w

values encourage the tendency of the algorithm to expand the search space or, equivalently,

its ability to explore new areas. It results in a global search attitude. Realizing the

importance of the exploration to find a good seed at the beginning, we have defined w as

a decreasing function in the first Nw iteration steps, starting from a high value of w [28].

Noticing that the balance between global and local search through the course of run is

critical to the convergence of the algorithm, we have decided to vary both the cognitive

and social rate. To be more specific, at certain instants, we set c1 and c2 to a high and a low

value respectively, recovering their initial values after a pre-defined number of iterations

(Nc − Nw). This procedure, called modified or extended PSO, is applied to encourage

exploration compared to exploitation both at instant Nw and when a stagnation in a local

minimum occurs.
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9.2 Application of Particle Swarm Optimization to

wide-band wire antenna design

The adopted procedure is based on a parametrical description of an antenna model where

possible parameters are antenna dimensions and/or positions and values of lumped embed-

ded loadings. The PSO algorithm is therefore used to synthesize a suitable configuration

which meets the specifications. Each agent is a set of the mentioned parameters that rep-

resents a particular antenna model. The performance of each particle is measured by using

a fitness/objective function defined according to the antenna requirements. As a matter

of fact, the fitness function provides the link between the optimization algorithm and the

physical problem (i.e., the antenna characteristics). However defining this function is not

a trivial task. In general, since more than one characteristic has to be optimized simulta-

neously (e.g., gain, reflection coefficient), the fitness function should exhibit a functional

dependence relative to the importance of each one of these characteristics. The classical

way to solve this class of multi-objective optimization is to define a function as

F = k1F1 + k2F2 + · · · + kQFQ, (9.3)

where k1, k2, . . . , kQ are weighting coefficients that define the importance of each objective

function F1, F2, . . . , FQ with respect to the others. One example of fitness function will

be discussed in detail in Sec. 9.2.1 for the proposed antenna design.

9.2.1 Antenna design problem

As a preliminary design, a monopole of a fixed length h, loaded with parallel RLC lumped

circuits and fed through a matching network is considered (see Fig. 9.1). To guarantee

broadband characteristics in terms of VSWR and gain, positions and values of the embed-

ded loads as well as matching network elements are the parameters to be optimized [82].

We design a 1.75 m monopole loaded with five RLC groups. The monopole is placed

over an infinite ground plane at z = 0, it has radius a = 0.5 cm and the lumped ele-

ments, positioned at height hi, vary in the ranges 0 < Rpi < 1500 Ω, 0 < Lpi < 3 µH and

0 < Cpi < 200 pF. The i-th resistance Rpi, inductance Lpi, and capacitance Cpi are in

parallel as shown in Fig. 9.1. The constraints for the matching network components are

0 < Ls < 2 µH, 0 < Lp < 2 µH and 0 < Cp < 50 pF, whereas the transformer ratio is in

the interval 1 < n2/n1 < 5. Reasonable requirements are a system gain Gs in the hori-

zontal plane (θ = 90◦) greater than G0 = −5 dBi and a VSWR < 3.5 in a 30–450 MHz

frequency band. Therefore, on the whole, the space of solutions has P = 24 dimensions,
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Figure 9.1: Loaded monopole antenna with its matching network structure.

which means that 24 parameters have to be optimized. These specifically are: values and

positions of 5 lumped loadings (i.e., 4 × 5 = 20), and 4 values related to the matching

network components and transformer. Moreover, a set of Nf = 84 uniformly distributed

frequencies fi, i = 1, . . . , Nf have been considered in the band of interest. We have chosen

a population of M = 32 agents for the PSO and, in the Method of Moments analysis, we

have approximated the monopole current by N = 31 basis functions (i.e., 32 segments).

The infinite ground plane has been accounted for by applying the image theory [79].

From the calculated current I in the feeding point z = 0, the antenna input impedance Zin

is computed as

Zin = V0/I(0), (9.4)

where V0 = 1 V is the voltage in the feeding point. Consequently, the reflection coefficient

at the matching network input port is determined as

Γs =
1 − Z0/Zs

1 + Z0/Zs

, (9.5)
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where Z0 = 50 Ω and Zs is the impedance at the matching network input port (see Fig. 9.2)

given by

Zs =

(
1

Zin + jωLs

+ jωCp +
1

jωLp

)−1

. (9.6)

The VSWR of the system can now be calculated as

VSWR =
1 + |Γs|
1 − |Γs|

. (9.7)

Consequently, the system gain Gs is determined as

Gs = Ga + 10 log10

(
1 − |Γs|2

)
, (9.8)

where the gains Ga and Gs are expressed in dBi. In this way, the antenna and the matching

network are optimized simultaneously rather than in two subsequent steps [85].
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Figure 9.2: Impedance Zs at the matching network input port.

As discussed in Sec. 9.2, the choice of the fitness function is probably the most important

factor affecting the success of the optimization and therefore the performance of the final

design. To reflect the design goals on the gain and VSWR, the following fitness function

has been minimized

F = k1Fg + k2Fs + k3FVSWR, (9.9)

where k1, k2 and k3 are weighting constants. The first term Fg expresses a penalty when

the system gain Gs in the horizontal plane is smaller than the minimum requested value

G0 for each frequency fi, i ∈ [1, Nf ]

Fg =

Nf∑

i=1

(G0 −Gs(fi, θ = 90◦))3 H (fi) , (9.10)
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where the cubic emphasizes the penalty when Gs ≤ G0 [82]. The function H(fi) in (9.10)

is a step function

H (fi) =

{
1 Gs(fi, θ = 90◦) ≤ G0,

0 Gs(fi, θ = 90◦) > G0,
(9.11)

which ensures that the penalty Fg vanishes when Gs > G0.

The smoothness of the antenna gain Ga in the horizontal plane [82] versus frequency is

insured by the second term Fs in the fitness function (9.9)

Fs =

Nf−1∑

i=1

∣∣∣Ga (fi+1, θ = 90◦) −Ga (fi, θ = 90◦)
∣∣∣
2

. (9.12)

However, since Fs depends on the number Nf of frequencies used, the smoothness behavior

of Ga can be achieved only if Nf is chosen such that the set of fi frequencies densely cover

the frequency band of interest.

Finally, the third term FVSWR in (9.9) has been added to emphasize solutions having a

VSWR < 3.5

FVSWR =

Nf∑

i=1

(
|Γs(fi)| − |Γ|

)
V(fi), (9.13)

where Γs(fi) is the reflection coefficient at the matching network input port and Γ corre-

sponds to a goal (VSWR = 3.5). Function FVSWR in (9.13) expresses a penalty when |Γs|
is greater than the maximum allowed value |Γ| for each frequency fi, i ∈ [1, Nf ]. Besides,

the step function V ensures that this penalty vanishes when |Γs| < |Γ|

V(fi) =

{
1 |Γs(fi)| ≥ |Γ|,
0 |Γs(fi)| < |Γ|.

(9.14)

To avoid the PSO algorithm to run indefinitely a maximum number of iterations is fixed at

10000. Nevertheless, a stop criterion has been introduced to terminate the PSO procedure

when all agents have reached (within a fixed tolerance) the same position in the solution

space.

9.2.2 Efficiency improvement in the numerical scheme GEKMoM

The PSO-based antenna design procedure described in the previous sections calls for the

evaluation of a fitness function for each of the M agents for all the Nf frequencies of in-

terest in each iteration step. This means that at each iteration, M monopole structures
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with different loadings have to be analyzed by using the Galerkin Method of Moments

developed in Chapter 3. Even though this analysis is relatively simple, a direct application

of the GEKMoM embedded in the PSO algorithm would result in a very expensive proce-

dure in terms of computation time. Indeed, each agent that represents a loaded monopole

configuration, requires the computation of the full system matrix A = Z + Zload and the

solution of the associated linear system equation as described in Sec. 4.1. Assume that

the monopole current has been expanded by means of N basis functions. The symmetric

Toeplitz matrix Z, which depicts the unloaded antenna configuration, demands the eval-

uation of N elements involving two-fold integrals (see equation (3.12) in Sec. 3.1.1). This

calculation is computationally expensive. The effects of the loadings are included in the

tri-diagonal matrix Zload comprising not more that 3N − 2 elements which are rapidly

evaluated since they are known in an analytic form. Therefore, for all the Nf frequencies

of interest, 4N − 2 matrix elements have to be computed and, subsequently, the linear

system A I = F in (4.4) has to be solved. In this case solving this system is far less time

consuming than constructing the “unloaded” matrix Z.

Since the unloaded monopole does not vary as the PSO evolves, we notice that the calcu-

lation of the unloaded matrix elements can be performed only once (before the first i = 1

iteration step) for all the frequencies of interest and stored in an array. At the i-th iteration

step (with i ≥ 1), the m-th agent will require only the efficient computation of the loading

matrix Zload for all the frequencies of interest. Typically for N = 31 basis functions and

Nf = 84 frequencies, we reduce the CPU time up to a factor of 20.

9.2.3 Results and comparison

In this section results relevant to the antenna design problem described in Sec. 9.2.1 are

discussed and compared with those obtained with a Genetic Algorithm (GA) approach [82].

The PSO combined with GEKMoM solver converges to a design whose load values (Rpi,

Lpi, Cpi) and positions with respect to ground (hi) (see Fig. 9.1) are reported in Ta-

ble 9.1. The matching network results in Ls = 0.072 µH, Lp = 1.358 µH, Cp = 1.372 pF

and n2/n1 = 1.917.

The gain of the antenna system and the VSWR behavior with respect to the frequency are

shown in Figs. 9.3 and 9.4 (continuous line), respectively. In the same figures our results

are compared with those obtained in [82] by using a genetic algorithm (dashed line). We

observe that PSO and the GA optimizer converge to solutions having similar performance

in terms of gain and VSWR.
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In Fig. 9.5 the effectiveness of our modified PSO algorithm is demonstrated. The fitness

behavior versus the iteration steps obtained by using M = 32 agents both for the modi-

fied (continuous line) and conventional (dashed line) PSO are plotted. As apparent from

Fig. 9.5 in the interval [N1 = 16, Nc = 60] the algorithm stagnates in a local minimum.

Indeed, it results in a smooth behavior of the fitness function.

Table 9.1: Load positions and RLC values of the designed monopole antenna.

Load hi [cm] Rpi [Ω] Lpi [µH] Cpi [pF]

1 49.736 1256 0.4 0.4

2 70.107 134 0.05 3

3 87.556 201 0.5 8

4 91.936 546 1.4 68

5 134.610 607 0.9 126
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Figure 9.3: Gain of the monopole-matching network system: results computed by using

PSO (continuous line) and GA optimizer (dashed line) [82].
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PSO (dashed line) versus the iteration steps in the initial 90 iterations.
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Figure 9.6 shows that starting from step N2 = 79 the modified PSO converges to an

optimum solution faster than the conventional PSO. This improvement results from the c1

and c2 variation procedure described in Sec. 9.1.2.
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Figure 9.6: Zoom for iteration steps i ≥ 30 of the fitness behavior of the modified PSO

(continuous line) and the conventional PSO (dashed line) versus the iteration steps.

Further, we have run different optimizations with the same fitness function (9.9) and same

design specifications to investigate how the described PSO algorithm is able to reproduce

the same solution. The antenna parameters obtained by the five different optimizations

are reported in Table 9.2 ordered by hi and the gain system and the VSWR behavior

versus the frequency are shown in Figs. 9.7 and 9.8. Moreover, Figs. 9.9 and 9.10 show the

convergence rate of the five different optimizations. From Table 9.2, we observe that the

five optimization runs converge to different values and position of loadings. Nevertheless,

antenna performances are within the specified requirements for all the cases as reported in

Figs. 9.7 and 9.8. This means that since the gain and the VSWR of the system are within

the specifications, the contribution given by Fs (9.12) in the fitness function (9.9) is still

to be optimized, assuring a smoothness behavior of the gain versus frequency. Finally the

effectiveness of the presented modified PSO (see Sec. 9.1.2) is evident in Figs. 9.9 and 9.10,

where no stagnation is observed.
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Table 9.2: Load positions and RLC values of the designed monopole antenna in five opti-

mization runs.

run 1 run 2 run 3 run 4 run 5

h1 [cm] 49.736 47.336 48.874 10.164 48.606

Rp1 [Ω] 1256 1392 1422 383 1473

Lp1 [µH] 0.4 0.32 0.35 2.69 0.35

Cp1 [pF] 0.4 0.75 0.3 108 0.4

h2 [cm] 70.107 70.678 71.392 37.049 72.397

Rp2 [Ω] 134 295 291 1497 248

Lp2 [µH] 0.05 0.77 0.77 0.18 0.76

Cp2 [pF] 3 0.186 0.2 1.1 0.7

h3 [cm] 87.556 97.564 89.224 103.905 94.433

Rp3 [Ω] 201 702 978 557 452

Lp3 [µH] 0.5 2.16 0.98 1.52 0.5

Cp3 [pF] 8 118 96 95 164

h4 [cm] 91.936 98.038 91.345 118.842 98.755

Rp4 [Ω] 546 625 149 593 291

Lp4 [µH] 1.4 1.297 2.3 1.74 0.77

Cp4 [pF] 68 76 39 147 138

h5 [cm] 134.610 100.145 94.7 121.458 169.94

Rp5 [Ω] 607 1060 1196 502.5 814

Lp5 [µH] 0.9 2.94 0.71 1.38 1.7

Cp5 [pF] 126 46 124 1.3 40

Ls [µH] 0.072 0.044 0.076 0.079 1.857

Lp [µH] 1.358 1.977 1.206 0.95 0.078

Cp [pF] 1.372 0.356 1.527 1.546 1.444

n2/n1 1.917 1.896 2.008 1.92 2.024
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Figure 9.7: Gain of the monopole-matching network system: results computed by using the

GEKMoM for five different optimization runs.
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Figure 9.8: VSWR at the input port of the matching network: results computed by using

the GEKMoM for five different optimization runs.
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optimization runs.
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Figure 9.10: Zoom for iteration steps i ≥ 60 of the fitness behavior of the modified PSO

versus the iteration steps for five different optimization runs.

It is worth mentioning that, in the PSO algorithm implemented so far, the trajectories of

a population of M particles vary in a P -dimensional space of continuous variables. As an

alternative, the PSO can also operate in a space of discrete variables. To show the applica-
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bility of this PSO option, the same monopole design is studied when the lumped loadings

can be placed only at the lattice positions. Since the monopole antenna is discretized

with N + 1 segments, we restrict the locations of lumped loading to the interconnections

between two adjacent segments. In this case loading positions are specified by discrete

variables instead of by continuous ones, and the evolution of the swarm (i.e., of the PSO

algorithm) is confined in a “discrete” space of solutions. The optimization algorithm con-

verges to a design whose matching network components are Ls = 0.065 µH, Lp = 1.795 µH,

Cp = 2.068 pF and the transformer ratio is n2/n1 = 1.682. Positions and values of RLC

loadings are summarized in Table 9.3. Figures 9.11 and 9.12 show the performance in

terms of gain and VSWR of the designed system (i.e., antenna and matching network).

Table 9.3: Load positions and RLC values of the designed monopole antenna.

Load n-th segment hi [cm] Rpi [Ω] Lpi [µH] Cpi [pF]

1 1 5.469 940 2.39 170.47

2 9 49.219 1428 0.34 0.26

3 16 87.5 399 1.16 3.68

4 25 136.719 297 0.54 197.47

5 29 158.594 161 1.93 50.75
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Figure 9.11: Gain of the monopole-matching network system: results computed by using

the GEKMoM (with fixed loadings’ locations) embedded in a discrete version of the PSO

algorithm.
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Figure 9.12: VSWR at the input port of the matching network: results computed by using

the GEKMoM (with fixed loadings’ locations) embedded in a discrete version of the PSO

algorithm.

9.3 Conclusions and discussion

In this chapter we have discussed an optimization method for the design of broad-band

wire antennas. To this end, the full-wave MoM code (GEKMoM) implementation (see

Chapter 3) has been embedded in a Particle Swarm Optimization algorithm. In particu-

lar, values and positions of the RLC loadings are considered as optimization parameters in

the design of a fixed-length loaded monopole over a ground plane. Requirements in terms

of system gain and VSWR have been specified.

To enhance efficiency of the proposed GEKMoM/PSO algorithm, a tailored scheme is

introduced for the computation of matrix elements. For the practical design studied, a

computation time reduction of a factor 20 is achieved.

Further, as discussed in Sec. 9.1.2, we have proposed an improved methodology relevant

to the velocity update of the particle swarm algorithm. Results show a convergence im-

provement of the optimization algorithm without suffering from local minima stagnation.

Results obtained by the GEKMoM/PSO algorithm have been compared with those by

Genetic Algorithm (GA) [82]. Both optimization approaches are stochastic evolutionary

methods based on a population of candidate solutions. By using a PSO algorithm we

gain in terms of simplicity and robustness. Indeed, the PSO method is simply based on

updating the particles velocity.
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Besides, thanks to the particle swarm versatility, a “discrete” version of the GEKMoM/PSO

has been implemented. In this case, since optimization parameters (e.g., loadings’ loca-

tions) can take only discrete values, the particles trajectories change in a discrete space.

Compared with the continuous case, the space of solutions is restricted.

Even though stochastic algorithms are particularly effective in handling a large number of

optimization parameters, our results show that the particle swarm procedure is not very

repeatable. This is mainly due to the solution space, which contains many local minima.

Moreover, the swarm may prematurely converge to a solution (a set of parameters). This

means that small variations in the parameter values can cause large variations in the per-

formance (e.g., gain, VSWR) of the monopole. A sensitivity study can be done by looking

at derivatives of gain and VSWR with respect to each parameter.

The complementarity of stochastic and deterministic approaches suggests as improvement

to this optimization procedure, a hybridization of the two methods as possible solution to

these problems. Indeed, hybridization refers to combining different approaches to benefit

from the advantages of each approach.
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Chapter 10

Conclusions and recommendations

In this thesis an efficient Galerkin Method of Moments (MoM) has been described to cal-

culate the electric current distribution along wire antennas as well as on planar surfaces

including wire-to-surface junctions. The theoretical formulation presented has been imple-

mented in a FORTRAN computer language program which has been successfully validated

with results from the literature. The key elements of this electromagnetic modeling tool,

each one corresponding to a FORTRAN module, are:

• arbitrarily oriented loaded wires,

• open surfaces,

• connection of wires with surfaces.

For all three above mentioned key elements, an Electric Field Integral Equation (EFIE)

is introduced where the scattered field is written as a function of the unknown current

distribution (flowing along arbitrarily oriented loaded wires, or on open surfaces or on

wire-to-surface junctions). Next, the pertinent equation is discretized applying a Galerkin

Method of Moments and leading to a relevant system matrix equation (ZI = F). Thanks

to the Galerkin method, the MoM matrix Z holds the symmetry property. Each element

of Z expresses the influence of a current along a “source” element on an “observation”

element. An element should be read here as the support of a basis function defined to

approximate the current flowing along wires, open surfaces or wire-to-surface junctions.

Typically, the complete set of interactions requires the computation of four-dimensional

integrals. Moreover, matrix elements belonging to the diagonal, so-called self terms, repre-

sent the electromagnetic interaction between coincident source and observation elements.

In this case, integrands may show a singular behavior and special care has to be taken
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in their numerical integration to guarantee a good numerical accuracy and limit the CPU

time.

First, for a straight thin wire, we have formulated the two most important thin-wire equa-

tions: the Pocklington equation with exact and with reduced kernel. The Pocklington

equation with exact kernel is used as a basis for further discretization applying a Galerkin

Method of Moments. We have discussed a way to efficiently calculate elements of the re-

sulting system matrix by performing a singularity extraction and a Landen transform. The

numerical method described has been implemented in the first software module referred

to as GEKMoM. By means of numerical examples we have demonstrated that, when

the number of expansion functions is increased, the exact kernel formulation gives stable

and converging results, whereas, due to its ill-posed nature the reduced kernel does not.

Moreover, a root-mean-square (RMS) error has been defined to study the accuracy of the

discretization method implemented. We have observed that when the number of expansion

functions is doubled, this RMS error is halved.

Further, we have extended the analysis to loaded wires and we have discussed the elec-

tromagnetic interaction between two or more wires having different orientation. Generally

speaking, when coupling between wires is studied, two possible approaches are investigated.

In fact, the current along a “source” wire radiates an electric field which illuminates all

other “observation” wires. In particular, this radiating current can be considered flow-

ing along the wire axis or along its mantle. In the first case a single one-dimensional

integration along the wire axis is required to evaluate the radiated field (so called thin-

wire far-field approximation), while in the second case, an additional integration along the

wire mantle is also needed, which increases the complexity to a two-dimensional integra-

tion. These two theoretical approaches are implemented in two numerical programs which

are compared in terms of computation time and accuracy. Results have confirmed that

the thin-wire far-field approximation is computationally less expensive than the straight-

forward two-dimensional integration. Moreover, we have observed that root-mean-square

errors introduced by placing the radiating current on the wire axis are usually smaller than

the discretization error introduced by the GEKMoM numerical method. For the approach

that assumes the current along the mantle of the wire, a numerically efficient interpolation

algorithm has been developed to reduce the required CPU time. Numerical examples have

demonstrated that the proposed interpolation algorithm results in a reduction of the CPU

time comparable with the one achieved with the thin-wire far-field approximation.
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The numerical method (GEKMoM) has been extended to determine natural frequencies

of loaded straight wires. Typically, the Singularity Expansion Method (SEM) [50–52] pro-

vides a convenient mean for characterizing the electromagnetic behavior of loaded wires

in terms of natural frequencies. For simple geometries these complex natural frequencies

are generally computed by searching for the zeros of the MoM matrix determinant. Ob-

serving that natural frequencies correspond to complex frequencies for which the system

matrix is singular, we have presented a numerical algorithm that calculates these values

by performing a Singular Value Decomposition (SVD) of the system matrix. This scheme

represents an attractive alternative to the commonly used approaches since SVD produces

in addition to the natural frequencies much additional information useful to characterize

the time-domain current distribution (eg., residual matrix, natural current mode, etc.).

Moreover, for resistively loaded wires, we have shown how the location of these poles vary

in the complex plane for an increasing value of the load. A marching-on-in loading ap-

proach has been presented and successfully validated. For increased resistive loads, waves

traveling along the wire are much more attenuated. In fact, as expected, results showed

that a conjugate pair of natural frequencies moves towards the real axis and collapses to a

single value (i.e., a double pole occurs). As the loading is further increased this pair splits

up and remains on the negative real s-axis, one natural frequency moving to −∞ and

the other to 0. This overall study is also beneficial to additionally validate our numerical

method.

Taking advantage of the existing literature [16–19], we have shown an efficient numerical

method to calculate the current distribution on open surfaces. In particular, the open

scatterer has been discretized by means of a triangular mesh, and well-known RWG func-

tions are used to approximate the surface current. Also in this case, the evaluation of

MoM matrix elements involves the calculation of integrals with integrable singularities in

the integrands. In the developed method, all singularities are extracted and the resulting

integrals are calculated in closed form; numerical integration is applied only to regular

functions. For open surfaces, the software module developed has been named GMoMOS.

Results showed the delicacy of dealing with RWG functions and a triangular mesh. Indeed,

depending on the mesh selection, the evaluation of matrix elements introduces errors. It

is expected that uniformity in size and shape of randomly distributed triangles will be

beneficial to reduce these errors.

Further, we have proposed a numerical method to analyze the electromagnetic coupling

between wire antennas and open surfaces. The connection between wires and surfaces
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has been theoretically investigated and a numerical treatment of the attachment has been

proposed by introducing a proper attachment basis function. With respect to the connec-

tion between wires and surfaces, including the carefully designed attachment mode into

the Galerkin MoM formulation leads to nine types of four-dimensional integrals. More-

over, in case of coincident source and observation points the integrands exhibit a singular

behavior. Using analytical techniques, we have accounted for all integrable singularities,

reducing the four-dimensional integrals to a lower dimension. This reduction in numerical

complexity corresponds to a reduction of computation time. Besides, the numerical method

described has been implemented in the software module referred to as GEKMoM+. Even

though the code is not fully optimized, results prove the success of the proposed method.

Implementations of dedicated (ad-hoc) routines for integral evaluations may enhance the

efficiency of the proposed numerical treatment. This research has also increased our expe-

rience in dealing with the attachment mode in the sense that we are aware of conditions

that the special basis function should meet and of the implications for a further numerical

treatment.

Having all the previously mentioned key modules at our disposal, we have studied a prac-

tical design problem. The developed tool constitutes a valuable starting point for the

synthesis and design of HF-VHF antennas widely used in naval communication applica-

tions. To this end, the antenna analysis software (GEKMoM) has been embedded into an

Particle Swarm Optimization (PSO) algorithm. This stochastic algorithm searches for an

antenna that best meets the desired antenna performance as defined in a fitness function.

Moreover, we have described a tailored scheme to enhance efficiency in the computation of

matrix elements for the proposed GEKMoM/PSO algorithm. Further, owing the versatil-

ity of the PSO, a “discrete” version of GEKMoM/PSO has been successfully implemented;

this resulted in a reduction of the problem’s complexity (i.e., a smaller space of solutions).

We have observed that the solution of the particle-swarm procedure is not very repeat-

able. This is mainly due to the large solution space, which contains many local minima.

Improvements may be achieved through a hybridization between evolutionary (stochastic)

and deterministic optimization methods.

As a continuation of this work, our code should be validated by means of experimental

results. We would pursuit the manufacturing of a loaded monopole to be tested as bench-

mark. Moreover, with respect to future implementation it is recommended to include

tapered and curved wires as well as connections between wires. These are missing key

elements to analyze more complex structures as for instance kite antennas, whip antennas
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and folded monopoles.

Several measures can be suggested to reduce the CPU time, which makes the numerical

code even more efficient and useful for synthesis and design of wire antennas installed in

complex environments. If the design of antennas to be installed on conducting surfaces

(i.e., antennas performance on board of navy ships) is considered, the use of an inter-

polation algorithm might be beneficial to gain efficiency in the optimization process,

drastically reducing the time to compute the wire-surface coupling matrices. Research

towards the feasibility of this application could be pursued. Nevertheless, when a large

number of parameters is considered, the increased optimization time could become a show-

stopper. Indeed the convergence of the optimizer to a good solution is limited by the huge

space of solutions. Moreover, we would consider preserving the matrix elements that

are not affected by a design change. For example, a small change in the position of

the antenna installation will keep most interactions unaffected, and therefore only a small

number of matrix elements needs to be updated. However this interesting idea would lead

to a significant CPU time reduction only if the mesh generator used is aware of our desire

to keep most of the matrix elements untouched and acts accordingly.
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Appendix A

Transverse component of the vector

potential

We start writing the expression (2.38) of the transverse component AT of the vector po-

tential

AT (r, ω) =

h∫

z′=0

2π∫

φ′=0

Jφ(r
′, ω)G(r− r′, ω)iφ(φ

′)adφ′dz′. (A.1)

In Cartesian components (A.1) becomes

AT (r, ω) = Ax(r, ω)ix + Ay(r, ω)iy

=

h∫

z′=0

2π∫

φ′=0

Jφ(r
′, ω)G(r− r′, ω) cosφ′ixadφ

′dz′

+

h∫

z′=0

2π∫

φ′=0

Jφ(r
′, ω)G(r− r′, ω) sinφ′iyadφ

′dz′. (A.2)

Further, we write the transverse components of the current density as in Sec. 2.2.1

Jφ(r
′, ω) = Ĵφ(z

′, ω) + ∆Jφ(r
′, ω), (A.3)

and the Green’s function as

G(r − r′, ω) = Ĝ(z − z′, ω) + ∆G(r − r′, ω), (A.4)



192 Transverse component of the vector potential

Now, we substitute (A.3) and (A.4) in (A.2) and for simplicity we consider the x-component

in (A.2). This results in

Ax(r, ω) =

h∫

z′=0

2π∫

φ′=0

Ĵφ(z
′, ω)Ĝ(z − z′, ω) cosφ′adφ′dz′

+

h∫

z′=0

2π∫

φ′=0

∆Jφ(r′, ω)Ĝ(z − z′, ω) cosφ′adφ′dz′

+

h∫

z′=0

2π∫

φ′=0

Ĵφ(z
′, ω)∆G(r− r′, ω) cosφ′adφ′dz′

+

h∫

z′=0

2π∫

φ′=0

∆Jφ(r′, ω)∆G(r− r′, ω) cosφ′adφ′dz′. (A.5)

Analogously a similar expression can be derived for Ay in (A.2). From the closed-form

separation-of-variables expression for the current density induced by an incident plane

wave we have that Ĵφ(z
′, ω) = O(1) and ∆Jφ(r

′, ω) = O(a) [32], [33, pp.481–483], [34].

Moreover ∆G(r− r′, ω) = O(a). The first leading term of AT in (A.5) is of order O(a) and

it is organized such that the integral over φ′ reduces to zero. The other terms are of order

O(a2) or smaller. Therefore, it follows that AT ≈ 0 up to a second-order accuracy O(a2)

AT = O(a2). (A.6)
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Radiated field thin-wire axis

approximation.

The field radiated by a surface current JS along the wire can be written as a function of

the vector potential A

E(r, ω) =
1

jωε

[
k2A(r, ω) + ∇ (∇ · A(r, ω))

]
, (B.1)

where A assumes the form

A(r, ω) =

h∫

z′=0

2π∫

φ′=0

exp(−jk|r − r′|)
4π|r − r′| JS(r′, ω)adφ′dz′, (B.2)

with the source point r′ on the surface of the wire, and the observation point r in the volume

outside the wire. We note that since the exact expression (B.2) and the approximation

(2.45) found in Sec. 2.2.1 and rewritten in (B.3) are both integral representations for the

solutions to the three-dimensional homogenous wave equation, we take the gradients of the

approximate expression as approximations for gradients of the exact expression. The one-

dimensional expression of the vector potential as a function of the current I(z ′, ω) along

the axis of the wire is here given as

A(r, ω) = iz

h∫

z′=0

exp(−jk|r − z′iz|)
4π|r− z′iz|

I(z′, ω)dz′, (B.3)



194 Radiated field thin-wire axis approximation.

where a second-order error is neglected (see Sec. 2.2.1). First, we determine the operator

∇ · A. To this end, we write

∇
(

exp(−jkR)

R
dz′
)

=

[
∂R

(
exp(−jkR)

R

)]
(∇R)

= (−jkR − 1)
exp(−jkR)

R2

r− z′iz
R

, (B.4)

where R = |r − z′iz|. Therefore substituting (B.4) in (B.3) leads to

∇ · A(r, ω) =
1

4π

h∫

z′=0

(−jkR− 1)
exp(−jkR)

R3
(z − z′)I(z′, ω)dz′. (B.5)

Second, we determine the gradient

∇
[
(−jkR − 1)

exp(−jkR)

R3
(z − z′)

]

= (∇R)

[
∂R

(
(−jkR− 1)

exp(−jkR)

R3

)]
(z − z′) + (−jkR − 1)

exp(−jkR)

R3
iz

=
[
3 + 3jkR + (jkR)2] exp(−jkR)

R3

r − z′iz
R

(z − z′) + (−jkR− 1)
exp(−jkR)

R3
iz. (B.6)

Subsequently, substituting (B.6) and (B.3) in (B.1) yields the one-dimensional integral

expression of the radiated field for a current flowing on the wire axis

E(r) =
1

jωε

1

4π

h∫

z′=0

I(z′)
exp(−jk|r − z′iz|)

|r − z′iz|3
{
−
[
(jk|r− z′iz|)2 + jk|r − z′iz| + 1

]
iz

+
[
3 + 3jk|r − z′iz| + (jk|r − z′iz|)2

] z − z′

|r − z′iz|2
(r − z′iz)

}
dz′. (B.7)

We referred to expression (B.7) as the radiated field thin-wire axis approximation.
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Analytical parts for the thin-wire

equation and Landen transform

C.1 Known excitation: incident plane wave

In this section we give the analytical expression of the known excitation element on the

right-hand side of matrix equation (3.8) in Sec. 3.1.1. Starting from equation (3.19)

Fm = jωεE0θ sin θiJ0(ak
i sin θi)

(m+1)∆z∫

z=(m−1)∆z

ψm(z) exp
(
jzki cos θi

)
dz, (C.1)

where J0 is the first-kind Bessel function. We recall here the expression of the testing

function ψm

ψm(z) = ψ0 (z −m∆z) =

{
1 −

∣∣∣ z
∆z

−m
∣∣∣,

∣∣∣ z
∆z

−m
∣∣∣ < 1,

0, otherwise.
(C.2)

Thus, applying the change of variable z in x = z/∆z −m to (C.1) yields

Fm = −jωε∆zE0zJ0(ak
i sin θi)

1∫

x=−1

ψ0(x∆z) exp
(
−jki

z(x+m)∆z
)
dx, (C.3)

where E0z = −E0θ sin θi and ki
z = −ki cos θi. The evaluation of the integral

Am =

1∫

x=−1

ψ0(x∆z) exp
(
−jki

z(x +m)∆z
)
dx, (C.4)
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is carried out as follows

Am =

0∫

x=−1

(1 + x) exp
(
−jki

z∆z(x +m)
)
dx +

1∫

x=0

(1 − x) exp
(
−jki

z∆z(x +m)
)
dx

= −2
cos(ki

z) − 1

(∆zki
z)

2
exp

(
−jki

zm∆z
)
. (C.5)

For a normally incident plane wave (i.e., ki
z = 0), applying a Taylor expansion around

ki
z = 0 to (C.5), leads to Am = 1. For wires with aki � 1, the first-kind Bessel function J0

is approximated by means of series expansion as J0(ak
i sin θi) ≈ 1 and the forcing element

Fm in (C.1) can be evaluated as

Fm =





−jωε∆zE0z, ki
z = 0,

2jωεE0z
cos(ki

z∆z) − 1

ki
z
2∆z

exp
(
−jki

zm∆z
)
, otherwise.

(C.6)

C.2 Landen transform method

In this section we describe the Landen transform method in a similar fashion as in [1].

This method has been used in the evaluation of the real part F1 (3.46) of the exact kernel

KE as introduced in Sec. 3.3.1. One of the most known forms of the Landen transform is

the following

(1 + q1)

α∫

0

dϕ1√
1 − q2

1 sin2 ϕ1

= 2

β∫

0

dϕ√
1 − q2 sin2 ϕ

, (C.7)

where

0 ≤ q =
2
√
q1

1 + q1
⇔ q1 =

1 −
√

1 − q2

1 +
√

1 − q2
, q1 sinα = sin(2β − α). (C.8)

The transform may be proven by carrying out the substitution (see [86, pp. 250–251])

tanϕ1 =
sin(2ϕ)

q1 + cos(2ϕ)
, or q1 sinϕ1 = sin(2ϕ− ϕ1). (C.9)

We start from the expression of the complete elliptic integral of the first kind [39, eq.

17.3.1]

Kell (q) =

π/2∫

0

dϕ√
1 − q2 sin2 ϕ

=

1∫

0

dt√
(1 − t2)(1 − q2t2)

, with 0 ≤ q < 1, (C.10)
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where we carried out the substitution sinϕ = t. Now we introduce the change of variables

t =
(1 + q1)z

1 + q1z2
, where q1 =

1 −
√

1 − q2

1 +
√

1 − q2
⇔ q =

2
√
q1

1 + q1
. (C.11)

Then it follows that

dt =
(1 + q1)(1 − q1z

2)

(1 + q1z2)2 dz, (C.12)

or

dt√
(1 − t2)(1 − q2t2)

=
(1 + q1)dz√

(1 − z2)(1 − q2
1z

2)
. (C.13)

Subsequently,

τ∫

0

dt√
(1 − t2)(1 − q2t2)

= (1 + q1)

η∫

0

dz√
(1 − z2)(1 − q2

1z
2)
, (C.14)

where τ = (1 + q1)η/(1 + q1η
2). In the special case τ = η = 1 the integral (C.10) may be

rewritten as

Kell (q) = (1 + q1)K
ell(q1), (C.15)

which is a special case of (C.7) with α = π and β = π/2. Therefore, the complete elliptic

integral is computed by employing the Landen transform. From the substitution

q1 =
1 −

√
1 − q2

1 +
√

1 − q2
⇔ q =

2
√
q1

1 + q1
, (C.16)

it follows that 0 < q1 < q. Successive application of this transform results in a sequence of

values qn which converges quadratically to 0, see [87]. Since Kell(0) = π/2, the complete

elliptic integral may be obtained from the following algorithm:

q0 = q

F =
π

2
n = 0

do while 1 + qn > 1

n = n+ 1

qn =
1 −

√
1 − q2

n−1

1 +
√

1 − q2
n−1

F = F (1 + qn)

enddo



198 Analytical parts for the thin-wire equation and Landen transform

After this algorithm is carried out, F contains an approximation of Kell(q). A similar

routine may be followed for the numerical evaluation of integral F1 in (3.46), Sec. 3.3.1.

The function F1, reported here for the sake of clarity

F1(λ̃, ν̃) =

π/2∫

0

cos(ν̃R̃)

R̃
dϕ, (C.17)

is a special case of the integral

K
ell

(q) =

π/2∫

0

g(sinϕ)√
1 − q2 sin2 ϕ

dϕ =

1∫

0

g(t)√
(1 − t2)(1 − q2t2)

dt, (C.18)

where

q =
1√

1 + λ̃
, g(t) = q cos

(
ν̃

q

√
1 − q2t2

)
. (C.19)

The scaled variables λ̃ and ν̃ are defined in (3.37). The following algorithm has been

developed and implemented in a FORTRAN code. We start with the initial values

q0 =
1√

1 + λ̃2
, (C.20)

F1 = q0, (C.21)

n = 0, (C.22)

and we proceed computing the following quantities

n = n + 1, (C.23)

qn =
1 −

√
1 − q2

n−1

1 +
√

1 − q2
n−1

, (C.24)

F1 = F1 · (1 + qn), (C.25)

while the condition (1 + qn) > 1 is satisfied. During the algorithm, the values of the

sequence of Landen parameters q` with ` = 0, 1, ..., n (C.24) are stored in an array and are

used for the evaluation of the final integral

F1 = F1 ·
π/2∫

ϕ=0

gn(sinϕ)dϕ. (C.26)
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This integration is carried out with a composite trapezoidal rule, where the function

gn(sinϕ) is evaluated recursively as follows

g`(t) = g`−1

(
(1 + q`)t

1 + q`t2

)
, ` = 1, 2, ..., n, (C.27)

where t = sinϕ and the initial value at ` = 0 is

g0(t) = q0 cos

(
ν̃

q0

√
1 − q2

0t
2

)
. (C.28)

The convergence is guaranteed since the sequence of values qn converges quadratically to

zero.

C.3 Analytical expression for integral I2

In this section we give the analytical expressions of integral I2 in (3.35) for the different

types of polynomials P . We consider the constituting element ZE
` in (3.30), for which the

polynomial is P (s) = 1 − s. The following integration has to be carried out:

IE
2 (θ) =

1∫

s=0

(1 − s)Ksing((s+ θ)∆z)ds, (C.29)

where θ = ±` with ` = 0, 1, . . . , N − 1. By applying a change of variable x = (s + θ)∆z

and by writing the explicit expression of Ksing (3.51), we obtain

IE
2 (θ) =

1

4π2a∆

x2∫

x=x1

(
1 − x

∆z
+ θ
)

(− ln |x| + |x| − 1) dx

=
1

4π2a∆

[(
1 + θ

)
x

( |x|
2

− ln |x|
)
− 1

2∆
x2

(
2|x|
3

− ln |x| − 1

2

)]x2

x1

, (C.30)

where x1 and x2 are found from distinguishing between the following five cases:

condition x1 x2

θ < −1 − 1/∆z IE
2 = 0

−1/∆z − 1 < θ < −1/∆z −1 ∆z(1 + θ)

−1/∆z < θ < 1/∆z − 1 θ∆z ∆z(1 + θ)

1/∆z − 1 < θ < 1/∆z θ∆z 1

θ > 1/∆z IE
2 = 0
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Subsequently, for the constituting element ZM
` in (3.32), we have to evaluate the following

integral

IM
2 (θ) =

1∫

s=0

Ksing((s+ θ)∆z)(
s2

2
− s2 +

2

3
)ds+

2∫

s=1

Ksing((s+ θ)∆z)
(2 − s)3

6
ds

=
1

4π2a∆z

x2∫

x=x1

(− ln |x| + |x| − 1)

(
2

3
−
( x

∆z
− θ
)2

+
1

2

( x

∆z
− θ
)3
)
dx

︸ ︷︷ ︸
=IM1

2

+

+
1

24π2a∆

x2∫

x=x1

(− ln |x| + |x| − 1)
(
2 −

( x

∆z
− θ
))3

dx

︸ ︷︷ ︸
=IM2

2

= IM1
2 + IM2

2 ,

(C.31)

where the same change of the variable x = (s + θ)∆z has been used as before. Therefore,

focusing on the first integral IM1
2 (i.e., when s belongs to the interval 0 ≤ s ≤ 1), and

carrying out the analytical integration results in

IM1
2 (θ) =

1

4π2a∆z

x2∫

x=x1

(− ln |x| + |x| − 1)

(
2

3
−
( x

∆z
− θ
)2

+
1

2

( x

∆z
− θ
)3
)
dx

=
1

4π2a∆

[
αx

( |x|
2

− ln |x|
)

+
βx2

2

(
2|x|
3

− ln |x| − 1

2

)]x2

x1

+

+
1

4π2a∆

[
γx3

3

(
3|x|
4

− ln |x| − 2

3

)
+
δx4

4

(
4|x|
5

− ln |x| − 3

4

)]x2

x1

,

(C.32)

with

α =
2

3
− θ

2 − θ
3

2
,

β =
θ

∆
(2 +

3

2
θ),

γ = − 1

∆2

(
1 +

3

2
θ

)
,

δ =
1

2∆3
. (C.33)

The five different values of x1 and x2 are now given by
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condition x1 x2

θ < −1 − 1/∆z IM1
2 = 0

−1/∆z − 1 < θ < −1/∆z −1 ∆z(1 + θ)

−1/∆z < θ < 1/∆z − 1 θ∆z ∆z(1 + θ)

1/∆z − 1 < θ < 1/∆z θ∆z 1

θ > 1/∆z IM1
2 = 0

For the second integration IM2
2 (i.e., interval is 1 < s ≤ 2) we have

IM2
2 (θ) =

1

24π2a∆z

x2∫

x=x1

(− ln |x| + |x| − 1)
(
2 −

( x

∆z
− θ
))3

dx

=
1

24π2a∆z

[
αx

( |x|
2

− ln |x|
)

+
βx2

2

(
2|x|
3

− ln |x| − 1

2

)]x2

x1

+

+
1

24π2a∆z

[
γx3

3

(
3|x|
4

− ln |x| − 2

3

)
+
δx4

4

(
4|x|
5

− ln |x| − 3

4

)]x2

x1

,

(C.34)

with

α =
(
2 + θ

)3
,

β = − 3

∆z

(
2 + θ

)2
,

γ =
3

∆z2

(
2 + θ

)
,

δ = − 1

∆z3
. (C.35)

In this case the following table summarizes the five different integration intervals.

condition x1 x2

θ < −2 − 1/∆z IM2
2 = 0

−1/∆z − 2 < θ < −1/∆z − 1 −1 ∆z(2 + θ)

−1/∆z − 1 < θ < 1/∆z − 2 (1 + θ)∆z ∆z(2 + θ)

1/∆z − 2 < θ < 1/∆z − 1 (1 + θ)∆z 1

θ > 1/∆z − 1 IM2
2 = 0
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Appendix D

Coordinate Transformations

D.1 Transformation formulas

A point P can be identified by a vector r expressed in terms of the global coordinates

r = xix + yiy + ziz, (D.1)

and by a vector r′ expressed in terms of the local coordinates

r′ = x′ix′ + y′iy′ + z′iz′, (D.2)

where the global (ix, iy, iz) and local (ix′ , iy′, iz′) coordinate systems are depicted in Fig. D.1.

We describe here all the steps to obtain the transformation formulas to transform (x, y, z)

to (x′, y′, z′) and vice versa. These can be summarized as follows.

• Translate the local coordinate system such that its origin is in the origin of the global

coordinate system.

• Rotate the local system about the z-axis such that the image i
(1)
z′ of iz′ is in the

(x, z)-plane with x ≥ 0.

• Rotate the local system about the y-axis such that the image i
(2)
z′ of i

(1)
z′ is on the

positive z-axis.

• Rotate the local system about the z-axis such that the image i
(3)
x′ of i

(2)
x′ is on the

positive x-axis.

First we write the unit vectors iz′, ix′ in global Cartesian coordinates

iz′ = xzix + yziy + zziz, (D.3)

ix′ = xxix + yxiy + zxiz. (D.4)
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Figure D.1: Global and local coordinate systems.

We now translate the local coordinate system such that the origins of the two coordinate

systems coalesce. This is a simple translation over the vector −r1, see Fig. D.1. For the

subsequent steps we will write iz′ in Cartesian components in both Cartesian and spherical

coordinates

iz′ = xzix + yziy + zziz = sin θ cosφix + sin θ sin φiy + cos θiz, (D.5)

where the angles θ, φ are defined as follows

sin θ =
√
x2

z + y2
z , cos θ = zz, (D.6)

sinφ =
yz√
x2

z + y2
z

, cosφ =
xz√
x2

z + y2
z

. (D.7)

In the first step we carry out a rotation about the z-axis such that the image i
(1)
z′ of iz′ is

in the (x, z)-plane with x ≥ 0. The upper index represents the number of rotations that

has been carried out thus far. This rotation can be written as



x
(1)
z

y
(1)
z

z
(1)
z


 =




cos φ sin φ 0

− sinφ cosφ 0

0 0 1







xz

yz

zz


 . (D.8)

In the second step we carry out a rotation about the y-axis such that the image i
(2)
z′ of i

(1)
z′

is on the positive z-axis. This rotation is written as




x
(2)
z

y
(2)
z

z
(2)
z


 =




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ







x(1)

y(1)

z(1)


 . (D.9)



D.1. Transformation formulas 205

Applying these two rotations to the unit vector ix′, we find its image i
(2)
x′ as follows




x
(2)
x

y
(2)
x

z
(2)
x


 =




cos θ cosφ cos θ sinφ − sin θ

− sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ







xx

yx

zx


 . (D.10)

The final step is to rotate about the z-axis such that the image i
(3)
x′ of i

(2)
x′ is on the positive

x-axis




x
(3)
x

y
(3)
x

z
(3)
x


 =




cosχ sinχ 0

− sinχ cosχ 0

0 0 1







x
(2)
x

y
(2)
x

z
(2)
x


 , (D.11)

in which the angle χ is calculated from

sinχ = −xx sin φ+ yx cos φ, (D.12)

cosχ = xx cos θ cosφ+ yx cos θ sinφ− zx sin θ. (D.13)

The composition of the three rotations results in the following transformation matrix

T =




cos χ cos θ cos φ − sinχ sinφ cosχ cos θ sinφ + sinχ cos φ − cosχ sin θ

− sinχ cos θ cos φ − cos χ sinφ − sinχ cos θ sinφ + cosχ cos φ sinχ sin θ

sin θ cos φ sin θ sinφ cos θ


 .

(D.14)

In conclusion, knowing the vector r1 = x1ix +y1iy +z1iz and the global coordinates (x, y, z)

of a point P , we determine its local coordinates (x′, y′, z′) as




x′

y′

z′


 = T




x− x1

y − y1

z − z1


 . (D.15)

The inverse transformation, which transforms the local coordinates (x′, y′, z′) in the global

(x, y, z), can be written as




x

y

z


 = T T




x′

y′

z′


+




x1

y1

z1


 , (D.16)

where T T = T−1 thanks to the orthogonality property of matrix T .
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D.2 Arbitrary oriented wires

For a wire with end points r1 and r2, defined in a global coordinate system, we would like

to calculate the electric field at the position r in the direction v0 given the expression of

the electric field for a wire along the interval 0 < z < h as in equation (6.12) valid in a

coordinate system local to the wire.

Firstly we define a coordinate system (ix′, iy′ , iz′) local to the wire in the following way:

iz′ =
r2 − r1

|r2 − r1|
=

x2 − x1

|r2 − r1|
ix +

y2 − y1

|r2 − r1|
iy +

z2 − z1
|r2 − r1|

iz, (D.17)

where (ix, iy, iz) are the unit vectors of the global coordinate system, as depicted in

Fig. D.2. Then we determine unit vectors ix′ , iy′ such that ix′ · iz′ = 0 and iy′ = iz′ × ix′.

The way to calculate the field is to translate and rotate the wire such that it extends along

the z-axis from 0 to h and the local unit vector ix′ is on the positive x-axis of the global

coordinate system as described in the previous section. Then we use the same translation

and rotations to find the images r′ and v′
0 of the vectors r and v0 in the local coordinate

system. Next we calculate the electric field in the direction v′
0.

PSfrag replacements

r1

r2

ix
iy

iz

ix′

iy′iz′

Figure D.2: The global coordinate system (ix, iy, iz) and the arbitrarily oriented wire with

its local coordinate system (ix′, iy′ , iz′).

Once the transformation matrix T has been determined (D.14), having defined an arbitrary

point r and the wire end point r1 as

r = xix + yiy + ziz, (D.18)

r1 = x1ix + y1iy + z1iz, (D.19)

we can determine the image r′ of point r in a coordinate system local to the wire by

applying equation (D.15). For the direction vector v0, it is crucial that the translation



D.2. Arbitrary oriented wires 207

over −r1 is not carried out. Hence the image v′
0 of v0 is




v′0x

v′0y

v′0z


 = T




v0x

v0y

v0z


 . (D.20)

If we define the electric field in r in the original coordinate system as E(r) and the electric

field in r′ in the transformed one as E′(r′), then we end up with

v0 · E(r) = v′
0 · E(r′). (D.21)
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Appendix E

The Rao-Wilton-Glisson function

E.1 Description

In this appendix we summarize the main properties of the well-known RWG functions [17]

extensively used in Chapter 7. Figure E.1 shows a possible set of triangles, edges and

vertices for a closed surface (Fig. E.1-(a)) and for a open surface (e.g., a planar sur-

face, Fig. E.1-(b)).

P
S
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en
ts

edge

edge boundary edge
face

face
vertex

vertex

(a) (b)

Figure E.1: (a)- Closed surface of a box approximated by triangular patches. (b)- Planar

surface modeled by triangular patches, where a boundary edge is shown.

The use of RWG functions as expansion functions, is therefore related to the usability of a

relatively good mesh generator. As already mentioned (Sec. 7.5), an in-house simple mesh

generator has been developed to discretize structures like planar surfaces.
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We recall here briefly the expression of an n-th RWG function

ψB
n (r) =





`n
2A+

n

ρ+
n , r ∈ T+

n ,

`n
2A−

n

ρ−
n , r ∈ T−

n ,

0, otherwise,

(E.1)

defined on two adjoining triangles T+
n and T−

n connected through the n-th common edge of

length `n as shown in Fig. E.2-(a). Points on the RWG function can be designated either

by the position vectors r±n with respect to the global origin O, or with the position vectors

ρ±
n in T±

n with respect to triangular vertices O±
n . A±

n is the area of triangle T±
n and `n is

the length of the common edge.
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Figure E.2: (a)- Local coordinates associated with an edge. (b)- Geometry for the normal

component at the common edges.

Now we will describe the main properties of the RWG basis function ψn(r).

1. The normal component of the current is continuous across the common edge, and

the currents have no component normal to the boundary of the surface formed by

T+
n ∪T−

n . Consequently, no line charges are present along the common (interior) edge

and along the outer boundary of the RWG function. Moreover the surface divergence

in T±
n of ψn(r), which is proportional to the surface charge density associated with
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the triangle patch, is

∇S ·ψn(r) =





`n
A+

n

, r ∈ T+
n ,

− `n
A−

n

, r ∈ T−
n ,

0, otherwise.

(E.2)

Hence, we can conclude that the surface charge density is constant within a single

triangle and the total charge associated with the triangle pair T+
n , T−

n is zero (i.e.,

the integral of the surface divergence on the triangle pair vanishes).

2. The normal component on the boundary of T+
n ∪T−

n is zero, which facilitates the eval-

uation of the ∇S· term in the integral equation (7.17) as discussed in Appendix E.2.

3. The moment of ψn(r) is given by (A+
n + A−

n )ψn(r)avg, which is determined as (see

also Fig. E.3)

(
A+

n + A−
n

)
ψn(r)avg ≡

∫

T+
n ∪T−

n

ψn(r)dS =
`n
2

(
ρc+

n + ρc−
n

)
= `n

(
rc+

n − rc−
n

)
, (E.3)

where ρc±
n is the vector between the free vertex and the centroid of T±

n , with ρc+
n

directed toward and ρc−
n directed away from the common edge `n. The vector from

the global origin O to the centroid of T±
n is represented by rc±

n .
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Figure E.3: Coordinates for calculating centroids and moment of RWG function.
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E.2 Employing the properties

Thanks to the properties of the RWG functions, we will now prove an important result

which simplifies the expression (7.17). For the sake of clarity we rewrite here the second

term on the left-hand side of (7.17)

∫

T+
m∪T−

m

ψm(r) ·


∇S

∫

T+
n ∪T−

n

G(r, r′) (∇S′ ·ψn(r′)) dS ′


 dS. (E.4)

With the definition of the function p(r) as

p(r) =

∫

T+
n ∪T−

n

G(r, r′) (∇S′ ·ψn(r′)) dS ′, (E.5)

the expression (E.4) becomes
∫

T+
m∪T−

m

(∇S p(r)) ·ψm(r)dS, (E.6)

where the surface gradient operates directly on p(r). Thanks to RWG properties, the

integral in (E.5) can be simplified to
∫

T+
m∪T−

m

(∇Sp(r)) ·ψm(r)dS = −
∫

T+
m∪T−

m

p(r)∇S ·ψm(r)dS, (E.7)

where the surface divergence is applied to the basis function ψn(r).

PROOF : The integral with respect to the primed coordinate in (E.4) is a scalar depending

solely on r, for which the property (E.7) holds. With the aid of the vector identity

∇ · (pA) = A · ∇p+ p∇ · A it follows that
∫

T+
m∪T−

m

(∇Sp(r)) ·ψm(r)dS =

∫

T+
m∪T−

m

∇S · (p(r)ψm(r)) dS −
∫

T+
m∪T−

m

p(r)∇S ·ψm(r)dS. (E.8)

Applying Gauss’ theorem now results in
∫

T+
m∪T−

m

∇S · (p(r)ψm(r)) dS =

∮

C

ib · (p(r)ψm(r)) d`, (E.9)

where C is the contour around the surface T+
m ∪T−

m and where ib is the unitary vector

normal to the contour, pointing outward of the contour. Since the RWG function
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ψm(r) has no components normal to the outer boundary (in this case the contour

C), it follows that

∮

C

ib · (p(r)ψm(r)) d` = 0. (E.10)

Thus the property in (E.7) is demonstrated and therefore can be applied to the second

term on the left-hand side of equation (7.17):

∫

T+
m∪T−

m

ψm(r) ·


∇S

∫

T+
n ∪T−

n

G(r, r′) (∇S′ ·ψn(r′)) dS ′


 ·ψm(r)dS =

−
∫

T+
m∪T−

m

(∇S ·ψm(r))

∫

T+
n ∪T−

n

G(r, r′) (∇S′ ·ψn(r
′)) dS ′dS.

(E.11)
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Appendix F

Integration over a triangular surface

F.1 Normalized area local coordinates

To determine the surface integrals related to the test and basis RWG function (7.13) and

(E.1) it is convenient to use a local coordinate system for each triangle. The triangle Tn

with area An is subdivided into three sub-triangles of areas A1, A2, A3, respectively, see

Fig. F.1.

P
S
frag

rep
lacem

en
ts

r1

r2

r3

A1

A2

A3 r

O

`1

`2

`3

ξ2 = 0

ξ2 = 1

Figure F.1: The subdivision of triangle Tn in sub-triangles for the definition of the normal-

ized area local coordinates.

The normalized area coordinates (also referred to as barycentric coordinates) are defined
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as

ξ1 =
A1

An
, ξ2 =

A2

An
, ξ3 =

A3

An
, (F.1)

where A1, A2, A3 satisfy the relation

A1 + A2 + A3 = An, (F.2)

and therefore ξ1 + ξ2 + ξ3 = 1 is valid. The position of a point in the triangle Tn is given

by

r = ξ1r1 + ξ2r2 + ξ3r3 = ξ1r1 + ξ2r2 + (1 − ξ1 − ξ2) r3. (F.3)

In the triangle Tn, all the three coordinates vary between zero and one; in particular at the

corners r1, r2 and r3, the area coordinates ξ1, ξ2 and ξ3 take the values (1, 0, 0), (0, 1, 0)

and (0, 0, 1), respectively. As a consequence, the surface integral of a function g(r) over

the triangle Tn becomes

∫

Tn

g(r)dS = 2An

1∫

ξ1=0

1−ξ1∫

ξ2=0

g (ξ1r1 + ξ2r2 + (1 − ξ1 − ξ2) r3) dξ2dξ1, (F.4)

where the factor 2An is the Jacobian.

F.2 Gaussian quadrature rule

This section describes the Gaussian quadrature integration rule which can be applied in lo-

cal normalized area coordinates (see Appendix F.1). The integration of a function g(ξ1, ξ2)

over the triangle is performed using Gaussian quadrature such that

2An

1∫

ξ1=0

1−ξ1∫

ξ2=0

g(ξ1, ξ2)dξ2dξ1 ≈ An

NG∑

n=1

wng(ξ1n, ξ2n). (F.5)

Here, An is the area of the n-th triangular patch, NG is the number of quadrature points.

The coordinates of the sample points (ξ1n, ξ2n, ξ3n) and the weighting coefficients wn in (F.5)

are given in Table F.1 for NG = 7 and can be found in [88, pag.358].
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n ξ1n ξ2n ξ3n wn

1 0.333333333333333 0.333333333333333 0.333333333333333 0.112500000000000

2 0.059715871789770 0.470142064105115 0.470142064105115 0.066197076394253

3 0.470142064105115 0.059715871789770 0.470142064105115 0.066197076394253

4 0.470142064105115 0.470142064105115 0.059715871789770 0.066197076394253

5 0.797426985353087 0.101286507323456 0.101286507323456 0.062969590272414

6 0.101286507323456 0.797426985353087 0.101286507323456 0.062969590272414

7 0.101286507323456 0.101286507323456 0.797426985353087 0.062969590272414

Table F.1: Gaussian points and weighting factors for integration over the triangle Tn,

ξ1n ≥ 0, ξ2n ≥ 0, ξ3n = 1 − ξ1n − ξ2n ≥ 0.

F.3 Analytic part of the integral over the self patch

In this section, the analytical expressions of integrals I1 and I2 in (7.27), (7.28) (rewritten

here for the sake of completeness)

I1 =
1

4π

∫

T

∫

T ′

1

R
dS ′dS, (F.6)

I2 =
1

4π

∫

T

ρα ·
∫

T ′

ρβ

1

R
dS ′dS, (F.7)

are given as found in [19] for coincident triangles T = T ′. Consider two generic coplanar

triangles T and T ′. In this case, the vectors R = r − r′, ρα and ρβ lie in the same plane

of the triangles (see Fig. F.2) and the following identity holds

1

R
= −∇S · ∇S′R. (F.8)

By applying Stokes’ theorem, the authors of [19] transform the two double-surface inte-

grals (F.6), (F.7) in double-line integrals. In the case of coincident triangles, analytical

expressions are found and are repeated here:

I1 = − 1

3π
A2

(
1

a
ln

(
1 − a

p

)
+

1

b
ln

(
1 − b

p

)
+

1

c
ln

(
1 − c

p

))
. (F.9)



218 Integration over a triangular surface

P
S
frag

rep
lacem

en
ts

α

β

O

ρα

ρβ

r

r′

T

T ′

R = r− r′

u

u′

C

C ′

Figure F.2: Geometrical quantities associated to triangle T and T ′.

Case of vertex α = β: a is the length of the edge opposite to vertex α

I2 =
1

4π

∫

T

ρα ·
∫

T ′

ρβ

1

R
dS ′dS

=
A2

120π

[(
10 + 3

c2 − a2

b2
− 3

a2 − b2

c2

)
a−

(
5 − 3

a2 − b2

c2
− 2

b2 − c2

a2

)
b

−
(

5 + 3
c2 − a2

b2
+ 2

b2 − c2

a2

)
c+

(
a2 − 3b2 − 3c2 − 8

A2

a2

)
2

a
ln

(
1 − a

p

)

+

(
a2 − 2b2 − 4c2 + 6

A2

b2

)
4

b
ln

(
1 − b

p

)

+

(
a2 − 4b2 − 2c2 + 6

A2

c2

)
4

c
ln

(
1 − c

p

)]
. (F.10)

Case of vertex α 6= β: a is the length of the edge between vertices α and β

I2 =
A2

240π

[(
−10 +

c2 − a2

b2
− a2 − b2

c2

)
a+

(
5 +

a2 − b2

c2
− 6

b2 − c2

a2

)
b

+

(
5 − c2 − a2

b2
+ 6

b2 − c2

a2

)
c+

(
2a2 − b2 − c2 + 4

A2

a2

)
12

a
ln

(
1 − a

p

)

+

(
9a2 − 3b2 − c2 + 4

A2

b2

)
2

b
ln

(
1 − b

p

)

+

(
9a2 − b2 − 3c2 + 4

A2

c2

)
2

c
ln

(
1 − c

p

)]
. (F.11)

In these expressions T denotes a generic triangular patch, a, b, c denote the lengths of

the triangle’s edges, A denotes the area and p=(a + b + c)/2 is the half-perimeter of the
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triangle.

F.4 Integration over patches sharing an edge or a ver-

tex

When the integration triangles share an edge or a vertex as well as when they are coincident,

the integral over T ′ of the extracted singular terms in (7.27), (7.28) has a closed form. The

other integral over T is subsequently evaluated via a Gaussian quadrature rule for triangles.

Following the scheme proposed by Oijala and M. Taskinen [18], we give here the formulas

to calculate the integrals of extracted singular and non-continuously differentiable terms

K−1
1 =

∫
T ′

1

R
dS ′, K−1

2 =

∫

T ′

ρβ

1

R
dS ′, (F.12)

K1
1 =

∫
T ′

RdS ′, K1
2 =

∫

T ′

ρβRdS
′, (F.13)

present in equations (7.27) and (7.28). We make the assumption that the vertex β of the

triangle T is denoted by the position vector q3 (see Fig. F.3) and we rewrite the known

results found in [18]

I−1
i =

∫

∂iT ′

1

R
d`′ = ln

(
R+

i + s+
i

R−
i + s−i

)
, (F.14)

K−3
1 =

∫

T ′

1

R3
dS ′ =





0, if w0 = 0,

1

|w0|

3∑

i=1

βi, otherwise,
(F.15)

where ∂iT
′, i = 1, 2, 3, are the edges of T ′ and where

βi = arctan

(
t0i s

+
i

(R0
i )

2
+ |w0|R+

i

)
− arctan

(
t0i s

−
i

(R0
i )

2
+ |w0|R−

i

)
. (F.16)
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The other variables are defined as

u =
q2 − q1

`3
, w0 = (r − q1) · n,

v = n × u, v0 = (r − q1) · v,
u3 = (q3 − q1) · u, u0 = (r − q1) · u,
v3 =

2A

`3
,

s−1 = −(`3 − u0) (`3 − u3) + v0v3

`1
, s+

1 = s−1 + `1,

s−2 = −u3 (u3 − u0) + v3 (v3 − v0)

`2
, s+

2 = s−2 + `2,

s−3 = −u0, s+
3 = s−3 + `3,

t01 =
v0 (u3 − `3) + v3 (`3 − u0)

`1
, R+

1 = R−
2 =

∣∣r − q3

∣∣,

t02 =
u0v3 − v0u3

`2
, R+

2 = R−
3 =

∣∣r − q1

∣∣,
t03 = v0, R+

3 = R−
1 =

∣∣r − q2

∣∣,
R0

i =
√

(t0i )
2
+ w2

0.

(F.17)

Here, `i, i = 1, 2, 3, are the lengths of the edges ∂iT
′, qi, i = 1, 2, 3, are the vertices of

T ′, and A denotes the area of T ′, see Fig. F.3.

P
S
frag

rep
lacem

en
ts

β

O

ρβ

r′r q3

q1 q2

R
=

r−
r
′

m1m2

m3

T

T ′

Figure F.3: Notation for analytical formulas of integrals on triangle T ′ as in [18].
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Now, by using the above notation we can write (F.12) and (F.13) in closed form as

K−1
1 =

{ ∑3
i=1 t

0
i I

−1
i , w0 = 0,

−w2
0K

−3
1 +

∑3
i=1 t

0
i I

−1
i , w0 6= 0,

(F.18)

K1
1 =





1

3

3∑

i=1

t0i I
1
i , w0 = 0,

1

3

(
−w2

0K
−1
1 +

3∑

i=1

t0i I
1
i

)
, w0 6= 0,

(F.19)

K−1
2 = I1

m + (r − q3)K
−1
1 , (F.20)

K1
2 =

1

3
I3
m + (r − q3)K

1
1 , (F.21)

where

I1
m = m1I

1
1 + m2I

1
2 + m3I

1
1 , (F.22)

I3
m = m1I

3
1 + m2I

3
2 + m3I

3
1 , (F.23)

and where r is the observation point on triangle T , n is the unit normal of T ′, and mi is

the outer unit normal of the edge ∂iT
′, i = 1, 2, 3, see Fig. F.3. In addition, we need also

the following recursive formula

I1
i =

∫

∂iT ′

Rd`′ =
1

2

(
s+

i R
+
i − s−i R

−
i +

(
R0

i

)2
I−1
i

)
, (F.24)

I3
i =

∫

∂iT ′

R3d`′ =
1

4

(
s+

i

(
R+

i

)3 − s−i
(
R−

i

)3
+ 3

(
R0

i

)2
I1
i

)
. (F.25)
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Appendix G

Evaluation of integrals for a wire

attached to a planar surface

In this appendix we give an insight into the manner in which all integrals occurring in

the attachment mode can be calculated. With the aid of analytical techniques, all weakly

singular integrands have been accounted for.

The developed method is not optimized in details but it proves that the introduction of a

special attachment basis function in combination with the Galerkin MoM (Sec. 8.2) does

not lead to computational problems. Implementations of dedicated (ad-hoc) routines to

evaluate the integrals described below could lead to a more efficient code.

G.1 Types of integrals for matrix elements

In this section we describe the numerical procedure developed for the computation of the

elements of sub-matrices Za, CB,a, CW,a in (8.37) when the singularity occurs. Looking at

the integral expressions (8.40), (8.50), (8.58) of these sub-matrix elements, we recognize

nine different types of integrals

I1[n] =

(n+1)∆z∫

z=n∆z

∆z∫

z′=0

2π∫

ϕ=0

G(r− r′)

(
1 − z′

∆z

)(
1 − z

∆z
+ n
)
dϕdz′dz, n = 0, 1, . . . , N, (G.1)

I2[n] =

n∆z∫

z=(n−1)∆z

∆z∫

z′=0

2π∫

ϕ=0

G(r − r′)

(
1 − z′

∆z

)(
1 +

z

∆z
− n

)
dϕdz′dz, n = 1, 2, . . . , N, (G.2)
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I3[n] =

(n+1)∆z∫

z=n∆z

∆z∫

z′=0

2π∫

ϕ=0

G(r− r′)dϕdz′dz, n = 0, 1, . . . , N, (G.3)

where |r− r′| =
√

(z − z′)2 + 4a2 sin2(ϕ/2),

I4 =

b∫

r=a

b∫

r′=a

2π∫

ϕ=0

G(r − r′)(r′ − b)(r − b) cosϕdϕdr′dr, (G.4)

I5 =

b∫

r=a

b∫

r′=a

2π∫

ϕ=0

G(r − r′)dϕdr′dr, (G.5)

where |r− r′| =
√
r2 + r′2 − 2rr′ cosϕ,

I6[n] =

(n+1)∆z∫

z=n∆z

b∫

r′=a

2π∫

ϕ=0

G(r− r′)dϕdr′dz, n = 0, 1, . . . , N, (G.6)

where |r − r′| =
√
r′2 + a2 − 2ar′ cosϕ+ z2, and

I7 =

∫

T

∆∫

z′=0

2π∫

φ′=0

G(r − r′)dz′dφ′dS, r′ = a cosφ′ix + a sinφ′iy + z′iz, (G.7)

I8 =

∫

T

b∫

r′=a

2π∫

φ′=0

G(r − r′)dr′dφ′dS, r′ = r′ cosφ′ix + r′ sin φ′iy, (G.8)

I9 =

∫

T

b∫

r′=a

2π∫

φ′=0

G(r − r′)(r′ − b)ir(φ
′) · ρ(r)dr′dφ′dS, r′ = r′ cos φ′ix + r′ sin φ′iy, (G.9)

and r = r cosφix +r sin φiy belongs to the triangular patch T . As already explained in Sec.

8.2.4 all these integrals contain a free space Green’s function G(r − r′), which exhibits a

singular behavior when the distance |r− r′| approaches zero. In this appendix we describe

how the integrations (G.1)-(G.9) are carried out. Basically integrals (G.1)-(G.3) are com-

puted by following the same procedure developed for the single wire (see Sec. 3.3), where

the singular behavior of the integrand function is extracted and integrated analytically.

The other integrals (G.4)-(G.9) are carried out by introducing a series expansion of the

Green’s function for the Helmholtz operator in cylindrical coordinates (see [89, pag. 888]).

The procedure has been implemented in FORTRAN.
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We recall that the attachment self matrix Za consists of a single element (8.40) and its

computation requires the evaluation of

Za = jωµ
1

2π
I1[0] +

1

jωε

1

2π∆z2
I3[0] + jωµ

1

2π(b− a)2
I4

+
1

jωε

1

2π(b− a)2
I5 −

1

jωε

1

π(b− a)∆z
I6[0]. (G.10)

The matrix CB,a is a column vector of M elements, where M is the number of RWG

expansion functions used in the discretization of the planar surface. This means that for

the calculation of each m-th vector element, from equation (8.50), we have

CB,a
m = −jωµ `m

4π(b− a)

(
1

A+
m

I+
9 +

1

A−
m

I−9

)
− 1

jωε

`m
2π∆z

(
1

A−
m

I−7 − 1

A+
m

I+
7

)

− 1

jωε

`m
2π(b− a)

(
1

A+
m

I+
8 − 1

A−
m

I−8

)
, with m = 1, . . . ,M, (G.11)

where the superscript + or − shows that the integration region is T+
m or T−

m . Finally,

from (8.58), the sub-matrix CW,a, which is a column vector of N elements (i.e., N rooftop

functions are used in the wire current expansion) can be computed as

CW,a
n = −jωµ 1

2π
(I1[n] + I2[n]) − 1

jωε

1

2π∆z2
(I3[n] − I3[n− 1])

− 1

jωε

1

2π(b− a)∆z
(I6[n− 1] − I6[n]) with n = 1, . . . , N. (G.12)

G.1.1 Computation of integrals I1, I2 and I3

By using the exact kernel definition (2.64), integrals I1, I2 and I3 in (G.1)-(G.3) can be

written as

I1[n] = 2π

(n+1)∆z∫

z=n∆z

∆z∫

z′=0

(
1 − z′

∆z

)(
1 − z

∆z
+ n
)
KE(z − z′)dz′dz, (G.13)

I2[n] = 2π

n∆z∫

z=(n−1)∆z

∆z∫

z′=0

(
1 − z′

∆z

)(
1 +

z

∆z
− n
)
KE(z − z′)dz′dz, (G.14)

I3[n] = 2π

(n+1)∆z∫

z=n∆z

∆z∫

z′=0

KE(z − z′)dz′dz. (G.15)

Changing the variables x and x′ as follows




x =
z

∆z
− n,

x′ =
z′

∆z
,

(G.16)



226 Evaluation of integrals for a wire attached to a planar surface

leads to

I1[n] = 2π∆z2

1∫

x=0

1∫

x′=0

(1 − x′)(1 − x)KE (∆z(x− x′ + n)) dx′dx, (G.17)

I2[n] = 2π∆z2

0∫

x=−1

1∫

x′=0

(1 − x′)(1 + x)KE (∆z(x− x′ + n)) dx′dx, (G.18)

I3[n] = 2π∆z2

1∫

x=0

1∫

x′=0

KE (∆z(x − x′ + n)) dx′dx. (G.19)

Next a second change of variables is applied

{
s = x− x′,

s′ = x + x′,
(G.20)

which, after carrying out the integration in s′, yields

I1[n] = π∆z2

1∫

s=0

(
2

3
− s+

s3

3

)
[KE ((n + s)∆z) +KE ((n− s)∆z)] ds, (G.21)

I2[n] = π∆z2




2∫

s=1

(2 − s)3

3
KE ((n− s)∆z) ds

+

1∫

s=0

(
2s− 2s2 +

s3

3

)
KE ((n− s)∆z) ds


 , (G.22)

I3[n] = 2π∆z2

1∫

s=0

(1 − s) [KE ((n+ s)∆z) +KE ((n− s)∆z)] ds. (G.23)

In conclusion, each of the integrals in (G.21)-(G.23) can be written as a sum of integrals

of the form

Int[n] =

s2∫

s=s1

P (s)KE ((s+ n)∆z) ds, (G.24)

where P (s) is a polynomial. We have not been able to find a more simple closed form

expression for any of the required integrals. The main problem in the numerical evaluation

of (G.24) is again the singular behavior of the kernel function KE. We proceed as already
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proposed in Sec. 3.3. Thus we decompose the integral (G.24) into two terms

Int[n] =

s2∫

s=s1

P (s) [KE ((s+ n)∆z) −Ksing ((s+ n)∆z)] ds+

s2∫

s=s1

P (s)Ksing ((s+ n)∆z) ds,

(G.25)

where Ksing is a function that follows the asymptotic behavior of KE when its argument

approaches 0 (see Sec. 3.3.2). The integrand of the first term is non-singular and its integral

is finite and it is carried out numerically using a Gaussian quadrature rule. The second

integral

Intsing[n] =

s2∫

s=s1

P (s)Ksing ((s+ n)∆z) ds, (G.26)

is evaluated analytically.

Analytical expression of singular integral Intsing

The first step in evaluating the second term of (G.25) (i.e., Intsing in (G.26)) is the change

of variable v = (s + n)∆z. Substituting the explicit expression of Ksing (3.51) in equa-

tion (G.26) leads to

Intsing[n] =
1

4π2a∆z

v2∫

v=v1

P
( v

∆z
− n

)
(− ln |v| + |v| − 1) dv, (G.27)

valid for |v| < 1. Otherwise Ksing = 0 and also the integral (G.27) vanishes. All the

polynomials P in (G.21)-(G.23) have an order less or equal to 3 and can be written in the

general form

P
( v

∆z
− n

)
= α(n) + β(n)v + γ(n)v2 + δ(n)v3, (G.28)

where the expressions of coefficients α, β, γ, δ are different for each polynomial and for

each set of integration boundaries v1, v2 as summarized in Table G.1. Finally, the integral

(G.27) can be expressed in the following closed form

Intsing[n] =
1

4π2a∆z

[
αv

( |v|
2

− ln |v|
)

+
β

2
v2

(
2

3
|v| − ln |v| − 1

2

)

+
γ

3
v3

(
3

4
|v| − ln |v| − 2

3

)
+
δ

4
v4

(
4

5
|v| − ln |v| − 3

4

)] ∣∣∣∣∣

vb

va

, (G.29)
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where the values of v1 and v2 are found by distinguishing between the five cases listed in Ta-

ble G.2 when the integration boundaries in equation (G.27) are v1 = n∆z, v2 = (n+ 1)∆z.

By replacing the dummy argument n with n+ 1 in Table G.2 we can derive the values of

v1 and v2 when the integration boundaries are v1 = (n + 1)∆z, v2 = (n+ 2)∆z.

Table G.1: Polynomial coefficients in equation (G.28).

eq. v1 v2 α β γ δ

(G.21) n∆z (n + 1)∆z
2

3
− n − n3

3

(
−1 + n2

)

∆z
− n

∆z2

1

3∆z3

(G.22) n∆z (n + 1)∆z −2n − 2n2 − n3

3

(
2 + 4n + n2

)

∆z

−2 − n

∆z2

1

3∆z3

(G.22) (n + 1)∆z (n + 2)∆z
8

3
+ 4n + 2n2 +

n3

3

(
−4 − 4n − n2

)

∆z

2 + n

∆z2
− 1

3∆z3

(G.23) n∆z (n + 1)∆z 1 + n − 1

∆z
0 0

Table G.2: Values of va and vb valid when the integration boundaries in equation (G.27)

are v1 = n∆z, v2 = (n + 1)∆z.

condition va vb

n < −1 − 1

∆z
Intsing = 0

−1 − 1

∆z
< n < − 1

∆z
−1 (n + 1)∆z

− 1

∆z
< n < −1 +

1

∆z
n∆z (n + 1)∆z

−1 +
1

∆z
< n <

1

∆z
n∆z 1

n >
1

∆z
Intsing = 0
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G.1.2 Computation of the integrals I4 and I5

The two integrals I4, I5 in (G.4), (G.5) are carried out by a series expansion of the Green’s

function of the Helmholtz operator in cylindrical coordinates, (see [89, pag. 888]), which

leads to

I4 = −j 1

4π

∞∑

m=0

εm

b∫

r=a

(r − b)

b∫

r′=a

(r′ − b)

2π∫

ϕ=0

cos(mϕ) cosϕdϕ×




k∫

λ=0

Jm(λr)Jm(λr′)
λ√

k2 − λ2
dλ+

∞∫

λ=k

Jm(λr)Jm(λr′)
λ

−j
√
λ2 − k2

dλ


 dr′dr, (G.30)

I5 = −j 1

4π

∞∑

m=0

εm

b∫

r=a

b∫

r′=a

2π∫

ϕ=0

cos(mϕ)dϕ×




k∫

λ=0

Jm(λr)Jm(λr′)
λ√

k2 − λ2
dλ+

∞∫

λ=k

Jm(λr)Jm(λr′)
λ

−j
√
λ2 − k2

dλ


 dr′dr, (G.31)

where Jm is the Bessel function of the first kind of order m and εm is the Neumann factor

εm =

{
1, m = 0,

2, m = 1, 2, 3, . . . .
(G.32)

Because of the orthogonality property of cosine functions

2π∫

ϕ=0

cos(mϕ) cos(nϕ)dϕ =





2π, m = n = 0,

π, m = n,

0, m 6= n,

(G.33)

the previous two infinite sums of integrals in (G.30), (G.31) in fact consist of only one term

in separable variables. Thus, we can write

I4 = −j 1
2

k∫

λ=0




b∫

r=a

J1(λr)(r − b)dr






b∫

r′=a

J1(λr
′)(r′ − b)dr′


 λ√

k2 − λ2
dλ

+
1

2

∞∫

λ=k




b∫

r=a

J1(λr)(r − b)dr






b∫

r′=a

J1(λr
′)(r′ − b)dr′


 λ√

λ2 − k2
dλ, (G.34)



230 Evaluation of integrals for a wire attached to a planar surface

I5 = −j 1
2

k∫

λ=0




b∫

r=a

J0(λr)dr






b∫

r′=a

J0(λr
′)dr′


 λ√

k2 − λ2
dλ

+
1

2

∞∫

λ=k




b∫

r=a

J0(λr)dr






b∫

r′=a

J0(λr
′)dr′


 λ√

λ2 − k2
dλ. (G.35)

We note that the integrand functions exhibit a root-like singularity when λ approaches k.

Therefore, numerical problems can be experienced in the evaluation of these integrals. By

introducing the following change of variables

p2 = k2 − λ2, integration interval [0, k], (G.36)

p2 = λ2 − k2, integration interval [k,∞), (G.37)

we remove the singular behavior of the integrand. Then, by applying a change of variable

r = r′ integrals (G.34), and (G.35) are simplified to

I4 = −j 1
2

k∫

p=0




b∫

r=a

J1(r
√
k2 − p2)(r − b)dr




2

dp

+
1

2

∞∫

p=0




b∫

r=a

J1(r
√
k2 + p2)(r − b)dr




2

dp, (G.38)

I5 = −j 1
2

k∫

p=0




b∫

r=a

J0(r
√
k2 − p2)dr




2

dp+
1

2

∞∫

p=0




b∫

r=a

J0(r
√
k2 + p2)dr




2

dp. (G.39)

The integrals I4 and I5 consist of two contributions: integrals over a finite and a semi-

infinite interval, respectively. A first integration in r with finite boundaries, and a second

integration in p with finite or semi-infinite boundaries have to be carried out. For each

value of p, integrals of the Bessel functions J1 and J0 can be calculated numerically.

In the evaluation of I4 and I5, we follow two different approaches depending on which

subinterval is considered. For the first contribution (i.e., interval [0, k]), we evaluate the

following integrals

b∫

r=a

J1(r
√
k2 − p2)(r − b)dr,

b∫

r=a

J0(r
√
k2 − p2)dr, (G.40)

using a 1D quadrature, adaptive rule suited for oscillating, non-singular integrands, (NAG

routine D01AKF [66]). The other integration in p is carried out by applying NAG routine
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D01AHF which implements the method proposed by Patterson suited for definite integrals

over a finite range.

In order to reduce the CPU time required in carrying out the second semi-infinite inte-

gral contribution (i.e., interval [0,∞)), maintaining a predefined accuracy, we proceed as

follows. The integrals in (G.38), (G.39) are rewritten as

b∫

r=a

J1(αr)(r − b)dr,

b∫

r=a

J0(αr)dr, (G.41)

where α =
√
k2 + p2. We know that, for large values of its argument, the Bessel functions

J1 and J0 have asymptotic forms, (see [39, eq. 9.2.1]), therefore the expressions in (G.41)

become

b∫

r=a

J1(αr)(r − b)dr ≈
b∫

r=a

√
2

παr
cos

(
αr − 3π

4

)
(r − b) dr, (G.42)

b∫

r=a

J0(αr)dr ≈
b∫

r=a

√
2

παr
cos
(
αr − π

4

)
dr, (G.43)

and these integrals are calculated as

b∫

r=a

√
2

παr
cos

(
αr − 3π

4

)
(r − b) dr = −α− 3

2

√
r

π
[sin (αr) + cos (αr)]

∣∣∣∣∣

b

r=a

+
1

α2
√

2

[
Si

(√
2αr

π

)
+ Ci

(√
2αr

π

)] ∣∣∣∣∣

b

r=a

+
b
√

2

α

[
Ci

(√
2αr

π

)
− Si

(√
2αr

π

)] ∣∣∣∣∣

b

r=a

, (G.44)

b∫

r=a

√
2

παr
cos
(
αr − π

4

)
dr =

√
2

α

[
Ci

(√
2αr

π

)
+ Si

(√
2αr

π

)] ∣∣∣∣∣

b

r=a

, (G.45)

where Ci and Si are Fresnel’s cosine and sine integrals, (see [39, eq. 7.3.1, 7.3.2]). We use

these closed forms (G.44), (G.45) when the Bessel functions’ argument (i.e., αr) is larger

than βs1 = 250, for J1 and larger than βs0 = 150 for J0. These switching values have been

chosen based on practical experience. We observe indeed that the Bessel functions’ approx-

imated values (calculated with their asymptotic forms) for βs1 and βs0 are accurate up to



232 Evaluation of integrals for a wire attached to a planar surface

the fourth decimal. For arguments smaller than βs1, βs0, we compute the Bessel functions

J1(x) and J0(x) using NAG routines S17AFF and S17AEF, and the integrals (G.41) are

then carried out with a 1D quadrature, adaptive method (i.e., NAG routine D01AKF) as

previously implemented for 0 ≤ p ≤ k. Finally, the evaluation of the external integral on

the semi-infinite interval p ∈ [0,∞) is carried out by using NAG routine D01AMF which

applies a change of integration variable and then uses an adaptive procedure based on

Gauss and Kronrod rules [66].

G.1.3 Computation of the integrals I6

The integral I6 in (G.6) is carried out following the same procedure already developed in

Sec. G.1.2. First, a Green’s function series expansion (see [89, pag. 888]) is applied in the

integral (G.6), which yields

I6[n] = −j 1

4π

∞∑

m=0

εm

z2∫

z=z1

b∫

r′=a

2π∫

ϕ=0

cos(mϕ)dϕ




k∫

λ=0

Jm(λr′)Jm(λa)
exp(−jz

√
k2 − λ2)λ√

k2 − λ2
dλ

+

∞∫

λ=k

Jm(λr′)Jm(λa)
exp(−z

√
λ2 − k2)λ

−j
√
λ2 − k2

dλ


 dr′dz, (G.46)

where z1 = n∆z and z2 = (n + 1)∆z. Owing to the orthogonality property (G.33), the

latter can be written as a product of integrals in appropriate variables in which the problem

can be separated

I6[n] = −j 1
2

k∫

λ=0

J0(λa)




b∫

r′=a

J0(λr
′)dr′






z2∫

z=z1

exp(−jz
√
k2 − λ2)√

k2 − λ2
dz


λdλ

+
1

2

∞∫

λ=k

J0(λa)




b∫

r′=a

J0(λr
′)dr′






z2∫

z=z1

exp(−z
√
λ2 − k2)√

λ2 − k2
dz


λdλ. (G.47)

At this stage we observe that when λ→ k the integrand in (G.47) has a root-like singularity.

By carrying out the integral in z analytically, and by applying the change of variables (G.36)

and (G.37), (G.47) changes into

I6[n] =
1

2

k∫

p=0

J0(a
√
k2 − p2)




b∫

r′=a

J0(r
′
√
k2 − p2)dr′


 exp(−jz2p) − exp(−jz1p)

p
dp

−1

2

∞∫

p=0

J0(a
√
k2 + p2)




b∫

r′=a

J0(r
′
√
k2 + p2)dr′


 exp(−z2p) − exp(−z1p)

p
dp. (G.48)
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We distinguish again between two different procedures used to carry out the finite and the

second semi-infinite integral:

1. for the finite subinterval, the integral of the Bessel function J0 in r′ is evaluated using

a 1D quadrature, adaptive rule (i.e., NAG routine D01AKF [66]) and the 1D integral

in p is carried out by using NAG routine D01AHF;

2. for the semi-infinite subinterval, we make again a distinction. If the argument of the

Bessel function J0 is larger than the switching value βs0, the asymptotic form of the

Bessel function is used (see [39, eq. 9.2.1])

b∫

r′=a

J0(r
′α)dr′ ≈

b∫

r′=a

√
2

παr′
cos
(
αr′ − π

4

)
dr′, (G.49)

and the integral over r′ is therefore calculated as

b∫

r′=a

√
2

παr′
cos
(
αr′ − π

4

)
dr′ =

√
2

α

[
Ci

(√
2r′α

π

)
+ Si

(√
2r′α

π

)] ∣∣∣∣∣

b

r′=a

, (G.50)

with α =
√
k2 + p2. If the argument of the Bessel function J0 is smaller than the

switching value βs0 then NAG routine S17AEF is used for the calculation of J0 and

routine D01AKF carries out the integrals in r′. Finally NAG routine D01AMF is

used to carry out the integral over the semi-infinite interval p ∈ [0,∞).

G.1.4 Computation of the integrals I7 and I8

The expressions (G.7) and (G.8) of integrals I7 and I8 contain a first 2D integration over

the triangular surface T and a second 2D integration along the mantle of the attached

wire segment (SaW ) or over the disk (SaD). In order to carry out these integrals, a series

expansion of the Green’s function (see [89, pag. 888]) and the orthogonality property

(G.33) of the cosine functions are again employed. Thus, expressions (G.7), (G.8) can be
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written as integrals in appropriate variables in which the problem can be separated

I7 = −jA
k∫

λ=0

J0(λa)




∆z∫

z′=0

exp(−jz′
√
k2 − λ2)√

k2 − λ2
dz′






1∫

ξ1=0

1−ξ1∫

ξ2=0

J0(λr(ξ1, ξ2))dξ2dξ1


×

λ√
k2 − λ2

dλ+ A

∞∫

λ=k

J0(λa)




∆z∫

z′=0

exp(−z′
√
λ2 − k2)√

λ2 − k2
dz′


×




1∫

ξ1=0

1−ξ1∫

ξ2=0

J0(λr(ξ1, ξ2))dξ2dξ1


 λ√

λ2 − k2
dλ, (G.51)

I8 = −jA
k∫

λ=0




b∫

r′=a

J0(λr
′)dr′






1∫

ξ1=0

1−ξ1∫

ξ2=0

J0(λr(ξ1, ξ2))dξ2dξ1


 λ√

k2 − λ2
dλ

+A

∞∫

λ=k




b∫

r′=a

J0(λr
′)dr′






1∫

ξ1=0

1−ξ1∫

ξ2=0

J0(λr(ξ1, ξ2))dξ2dξ1


 λ√

λ2 − k2
dλ, (G.52)

where A is the area of triangle T . Note that the integration over the triangular surface T

is written in local normalized area coordinates ξ1, ξ2 (see Appendix F.1) and therefore r

is now a function of them (i.e., r(ξ1, ξ2)).

Looking at the integral I7, we note that the 1D integration over the interval [0,∆z] can

be carried out analytically. Subsequently the changes of variables (G.36) and (G.37) are

introduced for both the integrals I7, I8, which results in

I7 = A

k∫

p=0

J0

(
a
√
k2 − p2

)



1∫

ξ1=0

1−ξ1∫

ξ2=0

J0

(
r(ξ1, ξ2)

√
k2 − p2

)
dξ2dξ1


 exp(−jp∆z) − 1

p
dp

−A
∞∫

p=0

J0

(
a
√
k2 + p2

)



1∫

ξ1=0

1−ξ1∫

ξ2=0

J0

(
r(ξ1, ξ2)

√
k2 + p2

)
dξ2dξ1


 exp(−p∆z) − 1

p
dp,

(G.53)

I8 = −jA
k∫

p=0




b∫

r′=a

J0

(
r′
√
k2 − p2

)
dr′






1∫

ξ1=0

1−ξ1∫

ξ2=0

J0

(
r(ξ1, ξ2)

√
k2 − p2

)
dξ2dξ1


 dp

+A

∞∫

p=0




b∫

r′=a

J0

(
r′
√
k2 + p2

)
dr′






1∫

ξ1=0

1−ξ1∫

ξ2=0

J0

(
r(ξ1, ξ2)

√
k2 + p2

)
dξ2dξ1


 dp.

(G.54)
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In both integrals, we recognize a first 2D integration over the triangular surface (i.e., ξ1, ξ2)

and a second integration in p over a finite interval [0, k] and a semi-infinite interval [0,∞).

The integral I8 contains an extra integration in r′ over the interval [a, b]. Both expressions

(G.53), (G.54) can be carried out numerically in the following way. Focusing on integral

I7 we consider

1. firstly the integral over the finite interval [0, k]. The 2D integral of the Bessel function

J0 is evaluated efficiently using a Gaussian quadrature rule applied in local normalized

area coordinates (see Appendix F.2). The Bessel function J0 is calculated with

NAG routine S17AEF and the 1D integral in p is carried out by using NAG routine

D01AHF [66];

2. secondly the semi-infinite interval is considered. When the argument of the Bessel

function J0 is larger than the switching value βs0, then the asymptotic form of the

Bessel function is used (see [39, eq. 9.2.1]). Otherwise NAG routines S17AEF is

employed for the calculation. Then, for both cases, the 2D integral is carried out

using a Gaussian quadrature rule applied in local normalized area coordinates (see

Appendix F.2). The final integral on the semi-infinite interval [0,∞) is carried out

by employing NAG routine D01AMF [66].

The same procedure is applied for the calculation of integral I8. In this case the extra 1D

integral of the Bessel function J0 is carried out by NAG routine D01AKF when the first

term in (G.54) is considered (i.e., p ∈ [0, k] ) or when the second term (i.e., p ∈ [0,∞)) is

calculated and the argument of J0 is smaller than the switching value βs0. In the other case

(i.e., argument larger than βs0 and integral over the semi-infinite interval) the integration

is analytically evaluated as in (G.50).

G.1.5 Computation of the integrals I9

The integral I9 in (G.9) contains a first 2D integration over the triangular surface T and a

second 2D integration over the attachment disk (SaD). The first step in carrying out these

integrations is to write the Green’s function of the Helmholtz operator as

I9 = −j A
2π

∞∑

m=0

εm

1∫

ξ1=0

1−ξ1∫

ξ2=0

b∫

r′=a

2π∫

φ′=0

cos(m(φ− φ′))ir(φ
′) · ρ(ξ1, ξ2)(r

′ − b)dr′ ×




k∫

λ=0

Jm(λr)Jm(λr′)
λ√

k2 − λ2
dλ+

∞∫

λ=k

Jm(λr)Jm(λr′)
λ

−j
√
λ2 − k2

dλ


 dφ′dr′dξ2dξ1, (G.55)
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having applied the series expansion in cylindrical coordinates (see [89, pag. 888]). We

would like to write the inner product ir(φ
′) ·ρ(r) such that it is a function of cos(φ−φ′). In

this way, owing to the orthogonality property (G.33), the infinite sum in (G.55) is reduced

to only one term.

Recalling that the triangular surface and the disk SaD are coplanar, we have introduced a

local cylindrical coordinate system with its origin in the attachment point as illustrated in

Fig. G.1.

P
S
frag

rep
lacem

en
ts

x

y

ρ

r′
r

φ

r3

Figure G.1: Geometry of the attachment problem on the (x, y)-plane.

Next, an observation point r is chosen in a triangular patch involved in the attachment

r = r cosφix + r sin φiy. (G.56)

By knowing the triangle vertex r3 = x3ix + y3iy in Cartesian coordinates, we can write the

vector ρ as

ρ = r − r3 = (r cosφ− x3)ix + (r sinφ− y3)iy. (G.57)

Therefore the inner product can be written as

ir(φ
′) · ρ = r cos (φ− φ′) − x3 cosφ′ − y3 sinφ′, (G.58)

where the cylindrical coordinates r, φ are functions of the local normalized coordinates

(ξ1, ξ2), see Appendix F.1. Once the point r is chosen, by applying the orthogonality
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property of the cosine functions

2π∫

ϕ=0

cos(m(φ− φ′)) cos (φ− φ′) dφ′ =

{
π, m = 1,

0, m 6= 1,
(G.59)

the integral is carried out as:

2π∫

φ′=0

cos(m(φ− φ′))ir(φ
′) · ρdφ′ =

r

2π∫

φ′=0

cos(m(φ− φ′)) cos (φ− φ′) dφ′ − x3

2π∫

φ′=0

cos(m(φ− φ′)) cosφ′dφ′

−y3

2π∫

φ′=0

cos(m(φ− φ′)) sinφ′dφ′. (G.60)

Therefore, we can finally write

2π∫

φ′=0

cos(m(φ− φ′))ir(φ
′) · ρdφ′ =

{
π (r − x3 cos(φ) − y3 sinφ) , m = 1,

0, m 6= 1.
(G.61)

Substituting the latter in (G.55) yields

I9 = −jA
k∫

λ=0




1∫

ξ1=0

1−ξ1∫

ξ2=0

J1(rλ) (r − x3 cos φ− y3 sinφ) dξ2dξ1


×




b∫

r′=a

J1(r
′λ)(r′ − b)dr′


 λ√

k2 − λ2
dλ

+A

∞∫

λ=k




1∫

ξ1=0

1−ξ1∫

ξ2=0

J1(rλ) (r − x3 cosφ− y3 sin φ) dξ2dξ1


×




b∫

r′=a

J1(r
′λ)(r′ − b)dr′


 λ√

λ2 − k2
dλ, (G.62)

where the dependence on (ξ1, ξ2) is omitted. We note that integral I9 consists of two terms,

basically a 1D finite and a 1D semi-infinite integral in p. For each value of p the product

between a 2D integral over the triangular surface T and a 1D integral over r ′ ∈ [a, b] has
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to be evaluated. To overcome the numerical problem due to the root-like singularity in the

integrand function for λ → k, we apply the change of variables (G.36), (G.37). Thus, the

integral (G.62) becomes

I9 = −jA
k∫

p=0




1∫

ξ1=0

1−ξ1∫

ξ2=0

J1(r
√
k2 − λ2) (r − x3 cos φ− y3 sinφ) dξ2dξ1


×




b∫

r′=a

J1(r
′
√
k2 − λ2)(r′ − b)dr′


 dp

+A

∞∫

p=k




1∫

ξ1=0

1−ξ1∫

ξ2=0

J1(r
√
λ2 − k2) (r − x3 cosφ− y3 sin φ) dξ2dξ1


×




b∫

r′=a

J1(r
′
√
λ2 − k2)(r′ − b)dr′


 dp. (G.63)

We focus our attention first on the finite integral. By employing a Gaussian quadrature

rule (see Appendix F.2), the 2D integral of the Bessel function J1 is evaluated. The other

1D integration is carried out by NAG routine D01AKF and the external 1D integral in p

is computed via NAG routine D01AHF [66].

Second, the integral over a semi-infinite interval [0,∞) is calculated as follows. If the

argument of the Bessel function J1 is larger than the switching value βs1, the asymptotic

form of the Bessel function is used (see [39, eq. 9.2.1]), and therefore the 1D integral

over r′ ∈ [a, b] has the expression (G.44). The 2D integral is carried out again using a

Gaussian quadrature rule. When the argument of the Bessel function J1 is smaller than

the switching value βs1, we employ NAG routine D01AKF for the 1D integral in r and a

Gaussian quadrature rule for the 2D integration. Finally, for both cases (i.e., independently

from βs1), the integral on the semi-infinite interval p ∈ [0,∞) is carried out by employing

NAG routine D01AMF.
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G.2 Known excitation element

Starting from the expression (8.63) of the known excitation element

F a
e =

1

2π




∆z∫

z=0

2π∫

φ=0

(
1 − z

∆z

) (
V (ω)δ(z − zg)iz + Ei(r)

)
· izdφdz




{r=a}

+
1

2π(b− a)




b∫

r=a

2π∫

φ=0

(r − b)
(
V (ω)δ(z − zg)iz + Ei(r)

)
· ir(r)dφdr




{z=0}

, (G.64)

we describe the way we calculate this term. Knowing that iz · ir = 0 and substituting in

(G.64) the explicit form of an incident plane wave

Ei(r) = E0 exp(−jki · r), (G.65)

we obtain

F a
e =

(
1 − zg

∆z

)
V (ω) +

1

2π




∆z∫

z=0

2π∫

φ=0

(
1 − z

∆z

)
E0 · iz exp(−jki · r)dφdz




{r=a}

+
1

2π(b− a)




b∫

r=a

2π∫

φ=0

(r − b)E0 · ir(r) exp(−jki · r)dφdr




{z=0}

. (G.66)

First, we consider the 2D integral on the surface SaW of the attached wire, that is

1

2π




∆z∫

z=0

2π∫

φ=0

(
1 − z

∆z

)
E0 · iz exp(−jki · r)dφdz




{r=a}

, (G.67)

where r ∈ SaW

r = a cosφix + a sinφiy + ziz, with 0 ≤ z ≤ ∆z. (G.68)

In the Cartesian coordinate system of Fig. G.2, recalling the derivation in Sec. 2.2.6, we

can write

ki · r = −kia sin θi cos(φi − φ) − kiz cos θi, (G.69)

E0 · iz = −E0θ sin θi exp(jzki cos θi) exp(jaki sin θi cos(φi − φ)). (G.70)
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Therefore substituting (G.69), (G.70) in the integral (G.67) leads to

− 1

2π
E0θ sin θi

∆z∫

z=0

(
1 − z

∆z

)
exp(jzki cos θi)dz

2π∫

φ=0

exp
(
(jaki sin θi cos(φi − φ)

)
dφ.

(G.71)

Carrying out this integration analytically yields

J0(ak
i sin θi)E0z

(
1 − j∆zki

z − exp(−j∆zki
z)

∆z(−ki
z)

2

)
, (G.72)

where E0z = −E0θ sin θi, k
i
z = −ki cos θi and where J0 is the Bessel function of the first

kind and order zero (see [39, eq. 9.1.21]). For thin wires (i.e., aki � 1) we approximate

J0(ak
i sin θi) ≈ 1 estimating a second-order error of (aki sin θi)

2/4. Thus, we can finally

write

E0z

(
1 − j∆zki

z − exp(−j∆zki
z)

∆zki
z
2

)
. (G.73)
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Figure G.2: Geometrical parameters associated with a wire-to-surface junction.

Second, we consider the 2D integral over SaD in equation (G.66)

1

2π(b− a)




b∫

r=a

2π∫

φ=0

(r − b)E0 · ir(r) exp(−jki · r)dφdr




{z=0}

, (G.74)
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where

r = r cosφix + r sin φiy, with a ≤ r ≤ b. (G.75)

In this case r is on the attachment disk SaD, and therefore we have

ki · r = −ki sin θir cos(φi − φ), (G.76)

E0 · ir = (E0x cosφ+ E0y sin φ) exp(jki cos θir cos(φi − φ)), (G.77)

where

E0x = E0θ cos θi cosφi − E0φ sinφi, (G.78)

E0y = E0θ cos θi sinφi + E0φ cosφi. (G.79)

Substituting equations (G.76), (G.77) in expression (G.74) leads to

1

2π(b− a)

b∫

r=a

2π∫

φ=0

(r − b) (E0x cosφ+ E0y sin φ) exp(−jki
zr cos(φi − φ))dφdr. (G.80)

This integration is carried out numerically by using an adaptive multidimensional routine

DCUHRE [65]. In conclusion, from equation (G.66), with the aid of (G.73), (G.80) we

write

F a
e =
(
1 − zg

∆z

)
V (ω) + E0z

(
1 − j∆zki

z − exp(−j∆zki
z)

∆zki
z
2

)

+
1

2π(b− a)

b∫

r=a

2π∫

φ=0

(r − b) (E0x cosφ+ E0y sinφ) exp(−jki
zr cos(φi − φ))dφdr, (G.81)

which, for ki
z = 0 becomes

F a
e =
(
1 − zg

∆z

)
V (ω) +

∆zE0z exp(−j∆zki
z)

2

+
1

2π(b− a)

b∫

r=a

2π∫

φ=0

(r − b) (E0x cosφ+ E0y sinφ) dφdr. (G.82)
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Summary

Efficient computation techniques for Galerkin MoM

antenna design

In this thesis, an appropriate computational method for the modeling and the synthesis of

wire antennas is formulated. To this end, we study the electromagnetic behavior of struc-

tures consisting of wires, surfaces and wire-surface junctions which represent the three key

elements of our modeling tool. The basis of this method is the Electric Field Integral Equa-

tion (EFIE), which is numerically solved with the Galerkin Method of Moments (MoM). A

system of linear equations is formulated and numerically solved by a Conjugate Gradient

(CG) iterative scheme. In general, MoM matrix elements express the interaction between

a “source” element (support of a basis function) and an “observation” element (support

of a testing function). In particular, interactions between source and observation points

belonging to the same geometrical support are referred to as self terms and correspond to

diagonal matrix elements.

The first problem is the calculation of the total current along a single wire illuminated by

an incident plane wave and/or fed by a delta-gap voltage source. The motivation for con-

sidering only the total current is that this quantity governs the behavior of the scattered

field. We have presented two thin-wire integro-differential equations, namely Pocklington’s

equation with reduced kernel and Pocklington’s equation with exact kernel. As known from

the literature, the exact kernel exhibits a singular behavior when the distance between the

source and the observation points goes to zero. By combining a singularity extraction and a

Landen transform, we have developed a numerical method to compute accurately the total

current distribution along a wire. We have found in many examples that by refining the

discretization, results obtained by a reduced-kernel formulation show oscillatory behavior

near the end faces of the wire and where the delta-gap voltage is applied. In contrast with

this anomalous behavior, our results show a stable behavior. We conclude therefore, that



252 Summary

the numerical effort in handling the exact-kernel singularity is well rewarded. Besides, by

means of a convergence study of a wire current distribution, an estimation of the discretiza-

tion error introduced by the Method of Moments can be given and analyzed.

Aiming at the design of wire antennas, broadband performance can be achieved by loading

antennas with RLC circuits represented by complex valued impedance loads. Consequently,

our numerical code has been extended to the analysis of wires loaded with lumped as well

as distributed loadings. In this case the generalized MoM matrix can be regarded as a sum

of a matrix corresponding to the unloaded wire configuration and a (sparse) matrix that

includes the effects of the loading.

Moreover, the numerical method for the analysis of (unloaded and loaded) thin wires has

been extended to calculate natural frequencies of this kind of structures. This analysis

is performed in the complex plane of Laplace’s variable s. Examining how these poles

change their locations in the complex s-plane when some characteristic parameters (e.g.,

length-radius wire ratio, discretization number, impedance profile, etc.) are varied gives

an insight into the electromagnetic behavior of wires. Natural frequencies are obtained by

performing the Singular Value Decomposition (SVD) of the MoM matrix together with a

suitable searching algorithm. In particular, for loaded wires, by gradually increasing the

impedance value, a marching-on-in-loading approach is adopted. Since the SVD method

gives also useful information to characterize the time-domain current, it represents a valid

alternative to more conventional methods such as searching zeros of the MoM-matrix de-

terminant. By comparing natural frequencies of an unloaded thin wire as calculated by

our numerical scheme with those in the literature, an agreement of about one percent is

found. Additionally, this study offers a further validation of the proposed method.

Next, we have discussed the electromagnetic interaction between two or more arbitrarily

oriented wires. In general, the current along a “source” wire radiates a field which illumi-

nates all the other “observation” wires. In particular this field can be regarded as generated

by a current on the source wire axis (thin-wire axis approximation) or by a current along

the source wire mantle (thin-wire mantle approximation). The first approach leads to a

one-dimensional integration while the second approach requires a two-dimensional integra-

tion. An additional double integral is needed for the evaluation of the current induced

along the observation wire mantle. The two approaches have been investigated and com-

pared in terms of accuracy and CPU time. From the results, it is concluded that the

axis approximation is considerably less expensive than the mantle approximation. Besides,

the RMS error introduced by the thin-wire approximation is usually negligible compared

to the discretization error introduced by the Galerkin Method of Moments. On the other

hand, for the mantle approximation we have also presented an interpolation algorithm that
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significantly reduces the computation time involved in the coupling matrix evaluation.

The second problem is the calculation of the current distribution on an open surface il-

luminated by an incident plane wave. In this case, the well-known Rao-Wilton-Glisson

(RWG) functions (defined over triangular domains) are used as basis and testing functions

in the Method of Moments, this leads to two times two-dimensional integrals in the com-

putation of system matrix elements. Taking advantage of the existing literature, we have

implemented efficient algorithms to deal with all the occurring singularities. Moreover,

by means of numerical examples we have investigated how the grid of points selected to

represent the surface current can influence the final result.

The third problem concerns the study of the electromagnetic interaction between wires

and open surfaces including the wire-surface connection. To describe the physical behavior

of the current distribution in the neighborhood of a wire-surface junction, a proper basis

function (attachment mode) has been introduced. As a consequence, the interaction be-

tween three types of basis functions needs to be computed: rooftop basis functions along

wire segments, RWG basis functions on triangular patches and the attachment mode. The

resulting evaluation of MoM matrix elements leads to four-dimensional integrals whose

integrands exhibit a singular behavior when source and observation points coincide. The

increased numerical complexity of the problem is reduced by using analytical techniques

in the treatment of all integrable singularities. The test cases analyzed show numerical

results in agreement with the literature. However, code efficiency can be improved by im-

plementing dedicated (ad-hoc) routines beneficial for a further reduction of computation

time.

Finally, the developed numerical code has been embedded in a stochastic optimization

algorithm (Particle Swarm Optimization) for the synthesis and design of loaded wire an-

tennas. As practical design problem, a loaded monopole over a ground plane operating

in a wide frequency range with a high gain level and a specified VSWR is studied. Posi-

tions and (R,L,C) values of the loadings are optimization parameters in the PSO algorithm

which is used to synthesize a suitable configuration fulfilling the specifications. To enhance

efficiency in terms of computation time, we have proposed a tailored scheme for the compu-

tation of MoM matrix elements. Besides, we have described an improved procedure for the

velocity update of the swarm’s particles in the PSO algorithm. The improved convergence

appears evident in the presented results where stagnation in local minima is avoided.
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Samenvatting

Efficient computation techniques for Galerkin MoM

antenna design

In dit proefschrift wordt een geschikte rekenmethode voor het modelleren en de synthese

van draadantennes geformuleerd. Deze rekenmethode is in staat om objecten bestaande

uit draden, oppervlakten en draden aangesloten op oppervlakten te modelleren. Met deze

drie belangrijke basiselementen kunnen we het gedrag van complexe elektromagnetische

structuren nauwkeurig bestuderen en uiteindelijk voorspellen. De basis van de methode

wordt gevormd door de bekende Electric Field Integral Equation (EFIE), die numeriek

wordt opgelost met behulp van de Galerkin Momenten Methode (MoM). Deze methode

levert een systeem van lineaire vergelijkingen dat vervolgens numeriek wordt opgelost door

een iteratieve Conjugeerde Gradiënten (CG) methode. De elementen van de MoM matrix

representeren de interactie tussen een “bron”-element dat wordt gedefinieerd door een ba-

sisfunctie en een “waarnemings”-element dat wordt beschreven door een testfunctie. De

diagonaal-elementen zijn de zogenaamde zelf-termen en treden op als de bron- en obser-

vatiepunten corresponderen met hetzelfde geometrische element.

Het eerste probleem dat in dit proefschrift wordt beschouwd betreft de berekening van

de gëınduceerde stroom langs een enkele draad welke wordt belicht door een vlakke, in-

vallende golf en/of door een excitatie met de zogenaamde delta-gap spanningsbron. De

motivatie voor het berekenen van de gëınduceerde stroom is dat, als deze bekend is, het

verstrooide veld in de volledige driedimensionale ruimte kan worden berekend. We hebben

de keuze uit twee dunne-draad integro-differentiaalvergelijkingen, namelijk de vergelijking

van Pocklington met gereduceerde kern en de vergelijking van Pocklington met de exacte

kern. Zoals bekend uit de literatuur heeft de exacte kern een singulariteit wanneer de

afstand tussen de bron- en de observatiepunt naar nul gaat. Door het singuliere gedrag af

te trekken van de integrand en door gebruik te maken van de Landen transformatie ver-
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krijgen we een nauwkeurige numerieke methode om de totale gëınduceerde stroom langs

een draad te berekenen. In het onderzoek is geconstateerd dat bij het verfijnen van de

discretisatie, de numerieke resultaten met de gereduceerde kern zowel aan de uiteinden van

de draad als bij de delta-gap spanningsbron oscillerend gedrag vertonen. Onze numerieke

resultaten vertonen dit instabiele gedrag niet. Daarom mag worden geconcludeerd dat de

extra numerieke bewerkingen bij de berekening van de complexere exacte-kern singulariteit

de moeite waard zijn. Een schatting van de discretisatiefout die wordt veroorzaakt door de

Momenten Methode is door middel van een convergentiestudie van de gëınduceerde stroom

op een draad uitgevoerd en nader toegelicht.

Bij het ontwerpen van breedband draadantennes worden in de regel parallel- of serieschake-

lingen van discrete weerstanden (R), spoelen (L) en condensatoren (C) gebruikt. De nu-

merieke code is uitgebreid om de elektromagnetische analyse van dradenstructuren met

deze discrete RLC-elementen te kunnen uitvoeren. Dit is verkregen door de introductie

van een gegeneraliseerde MoM systeemmatrix die de som is van de originele MoM systeem-

matrix en een sparse matrix die specifiek hoort bij de numerieke discrete RLC-elementen.

De numerieke implementatie is gebruikt om de natuurlijke frequenties van dunne draad-

structuren te analyseren. Deze analyse is uitgevoerd in het complexe Laplace domein met

complexe variabele s waar de polen in het complexe vlak overeenkomen met de natuur-

lijke frequenties van het systeem. Onderzocht is welke contour deze polen in het complexe

vlak doorlopen waarbij een aantal karakteristieke parameters (bijvoorbeeld lengte/straal

verhouding van de draad, aantal discretisatie elementen, impedantie-profiel, enz.) zijn

gevarieerd. Dit onderzoek heeft inzicht in het elektromagnetische gedrag van dergelijke

draadstructuren gegeven. De natuurlijke frequenties zijn berekend door gebruik te maken

van de Singular Value Decomposition (SVD) van de MoM matrix gecombineerd met een

geschikt zoekalgoritme. Voor draden met complexe impedanties is, door geleidelijke ver-

hoging van de waarde van de weerstand, de marching-on-in-loading methode met succes

toegepast. De SVD methode is een gebruikte methode en een geschikt alternatief voor de

meer traditionele methoden zoals het zoeken van polen in de determinant van de MoM-

matrix. We hebben de natuurlijke frequenties van een dunne draad zonder impedanties

met onze methode berekend en die vergeleken met de literatuur. De resultaten stemmen

binnen ongeveer een procent met elkaar overeen. Dit kan worden beschouwd als een extra

validatie van de door ons ontwikkelde methode.

Vervolgens wordt de elektromagnetische interactie tussen twee of meer willekeurig georiën-

teerde draden beschouwd. In het algemeen straalt een stroom op een “bron”-draadelement

uit en belicht alle andere naburige “waarnemings”-draadelementen. Het invallend veld

op het “waarnemings”-draadelement wordt veroorzaakt door een stroom op de as van de



Samenvatting 257

“bron”-draad (dunne draad as-benadering) of door een stroom op de mantel van de “bron”-

draad (dunne draad mantel-benadering). De eerste benadering leidt tot één ééndimensionale

integratie, terwijl de tweede benadering één tweedimensionale integratie vereist. Een extra

integratie is ook nodig voor de evaluatie van de gëınduceerde stroom op de mantel van de

“waarnemings”-draad. Beide benaderingen zijn onderzocht en vergeleken in termen van

nauwkeurigheid en CPU tijd. De benadering op de as van de draad is aanzienlijk efficiënter

dan de benadering die uitgaat van de mantel van de draad. Daarbij komt dat de RMS-fout

gëıntroduceerd door de dunne-draad benadering doorgaans te verwaarlozen is ten opzichte

van de discretisatiefout die wordt gëıntroduceerd door het gebruik van de Galerkin Mo-

menten Methode. Om de benaderingsmethode op de mantel efficiënter te maken hebben

we een interpolatiealgoritme ontwikkeld, dat een aanzienlijke vermindering van de reken-

tijd van de berekening van de MoM systeemmatrix oplevert.

Het tweede probleem betreft de berekening van de oppervlaktestroomdichtheid op een open

oppervlak dat wordt belicht door een vlakke invallende golf. In dit geval gebruiken we de

bekende Rao-Wilton-Glisson (RWG) functies (gedefinieerd over driehoekige domeinen) als

basis- en testfuncties in de Momenten Methode. Deze procedure leidt tot herhaalde tweed-

imensionale integralen bij de berekening van de MoM systeem matrixelementen. Uit de

bestaande literatuur halen en gebruiken we efficiënte algoritmen om de integralen van de

aanwezige singulariteiten te kunnen berekenen. Aan de hand van numerieke voorbeelden is

door ons bovendien onderzocht welke invloed het gekozen grid van de RWG functies heeft

op de berekening van de oppervlaktestroomdichtheid.

Het derde probleem heeft betrekking op de studie van de elektromagnetische interactie

tussen draden en open oppervlakken, inclusief de draad/oppervlakte verbindingen. Het

fysische gedrag van de oppervlaktestroomdichtheid in de buurt van een draad/oppervlakte

knooppunt wordt verdisconteerd door een geschikte basisfunctie (met een knooppuntmodus

voor de stroomverdeling) te ontwikkelen. Bij een dergelijk knooppunt dient de interac-

tie tussen drie soorten basisfuncties te worden berekend: rooftop basisfuncties langs de

draadsegmenten, RWG basisfuncties op driehoekige oppervlakken en de basisfunctie op de

knooppuntmodus. De berekening van de MoM matrixelementen leidt tot vierdimensionale

integralen waarvan de integranden een singulier gedrag vertonen als bron- en observatiepunt

samenvallen. De toegenomen numerieke complexiteit van dit probleem is verkleind door

gebruik te maken van analytische technieken om alle integreerbare singulariteiten op de

juiste wijze te evalueren. De numerieke resultaten van de berekeningen zijn in overeen-

stemming met die in de literatuur. De computercode kan echter efficiënter worden gemaakt
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door gebruik te maken van specifieke (ad-hoc) routines.

Tenslotte zijn de ontwikkelde numerieke routines in een stochastisch optimalisatie algoritme

(Particle Swarm Optimalisatie) gebruikt om de synthese en het ontwerp van draadantennes

met impedanties te onderzoeken. Als praktische testcasus is gebruik gemaakt van een

monopool met meerdere complexe impedanties die is aangesloten op een vlak. Met spec-

ificaties zoals een hoge versterking en een breed frequentiebereik met een bepaalde staan-

degolfverhouding (VSWR) is de toepasbaarheid van dit ontwerptool onderzocht. De te

optimaliseren parameters zijn de locaties van de impedanties evenals de (R, L, C) waarden.

Deze parameters zijn in het PSO algoritme geoptimaliseerd om zodoende een configuratie

te verkrijgen die aan de gestelde specificaties voldoet. Ter verbetering van de efficiëntie

in termen van rekentijd, hebben wij een op maat gesneden schema voor de berekening

van MoM matrixelementen gepresenteerd. Om de snelheid verder te verhogen is een ver-

beterde procedure voor de update-snelheid van de deeltjeszwerm in het PSO-algoritme

gëıntroduceerd. De verbeterde convergentie blijkt duidelijk uit de verkregen resultaten

waarbij stagnatie in lokale minima wordt vermeden.
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