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The probability of geo-technical failure depends for a significant part on random system effects,

i.e. parallel system effects due to averaging of fluctuations along failure surfaces and series sys-

tem effects due to partial correlation among potential failure modes. Decisive for these effects is

the structure of spatial correlation of soil properties or, equivalently, the so-called scales of fluc-

tuation. Although much is known about the implications of scales of random fluctuation, very

little is known about its magnitudes in practice. Classical geo-statistical methods to evaluate the

scale of fluctuation of a soil property are only effective if a large range of sample values is avail-

able. As the determination of mechanical soil properties may be quite expensive, the number of

sample points in routine soil investigation is usually very limited. Consequently, classical geo-

statistical method may be of little help in the assessment of spatial correlation of mechanical soil

properties. In this paper a new approach, based on Bayesian statistical inference, will be dis-

cussed. It will be demonstrated that this approach leads to fairly accurate estimates of scale of

fluctuation in the case of limited number of measurements.

Key w o r d s : s oil m e ch øni c s I g e o - s t ati s ti cs I sp øti øI c o rr el øti on I B øy e si øn inf er en c e

Introduction

Properties of naturally deposited soils generally exhibit considerable spatial variation. Apart from

possibly explainable or at least detectable average trend or drift, generic type of fluctuations may

be part of it. Magnitudes of these fluctuations, though of zero mean, are often such that they may

have significant effects on the design of geo-technical structures. In order to give due consideration

to these fluctuations, two approaches may be considered. Either one attempts to establish a detailed

map of the actual pattern of fluctuation, or one chooses to establish a statistical characterization of

the fluctuation pattern, applying a probabilistic analysis of the geo-technical phenomenon in ques-

tion.

The latter approach is indicated when detailed mapping of the fluctuation pattern is out of the

question, considering the involved cost of soil investigation. An example of this is spatial fluctua-

tion of soil shearing strength. Considerable effort has therefore been given to the development of
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probabilistic procedures for the analysis of stability of earth slopes. Examples have been presented

by, among others, Alonso [1] and Vanmarcke [2]. In these applications the fluctuation pattern of

soil strength (and other properties) is modeled as a homogeneous random field, the characteristics

of which are its probability density function (pdf) and auto-correlation function. Usually the

Gaussian distribution type is adopted, which is described by a mean and a standard deviation. The

auto-correlation function is often expressed in terms of an exponential decaying function, involving

one or two parameters, the so-called scales of fluctuation (Vanmarcke [3]). In particular these scales

of fluctuation are of vital influence in the probabilistic analysis.

Even when the first approach, detailed mapping, is pursued the question may arise what sample

grid size should be adopted to ensure that the fluctuation pattern is represented up to some

required degree of accuracy. To tackle this problem, theories of stochastic interpolation such as

kriging (Journel and Huijbrechts [4], Delfiner [5]) or conditional estimating (Dagan [6], [7]) come

into mind. These techniques rely or-r a sirnilar random field modeling of the fluctuation pattern and

again scales of fluctuation are important determining parameters.

Though the effects of decay of auto-correlation, or equivalently of scales of fluctuation, are known

to be of vital interest, see a.o. Elkateb [21], actual values of scales of fluctuation of specific soil

deposit properties are less known. Estimates of autocorrelation parameters for soil properties have

been given in the literature (Alonso [2], Höeg and Tang [8], Catalan and Cornell [9]), however;

these should be regarded as indicative. It is conceivable that correlation distances depend largely

on deposition regime and loading history. Methods to determine scales of fluctuation from small

sets of sample observations have been proposed by Vanmarcke [3], Tang [10], Tabba and Yong [19],

and DeGroot and Baecher 122], among others, but relatively little attention has been given to

robustness of these procedures. In geostatistical applications robust valiogram fitting is often based

on Least Squares, Weighted Least Squares or Geueralized Least Squares teclrniques( see a.o. Cressie

[25], Genton [26]),yet also basecl on availability of many data.

In this paper attention will be focussed on a Bayesian type of statistical inference, which leads to

reliable estimates of the scales of fluctuations and yields, besides best guesses, also indications of its

variances. The procedure is robust, in the sense that numerical instability hardly occurs, contrary to

a direct fitting procedure, which has been investigated. It has a built-in property to detect whether

a set of observed sample values intrinsically contains sufficient information about scales of fluctua-

tion. The procedure has been tested on various generated random field realizations (pseudo mea-

surements), giving excellent results. An application to the analysis of spatial correlation of average

resistances, based on a series of cone penetration tests (CPT's), will be discussed.

The proposed procedure shows resemblance with the maximum likelihood estimation techniques,

as discussed, among others, by Kitanidis [11], Friis Flansen et. al. [23), Pardo- Ig,izquiza [24] related

to different fields of application. The occurrence of uniformly distributed likelihood scores in our

computations, due to non informative data, raises doubts concerning convergence and uniqueness

of a maximum likelihood technique in such case. These complications, however, have not been
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p(^x)= exp(- [îi)',

(2)

*[e(Lr) 
d(Lx)

reported in the mentioned papers. A maximum likelfüood technique, involving unknown pdf para-

meters, has been reported by Feinerman et al. [12]. They suggested extension of this procedure to

involve trend coefficients. Based on our experience, however, we expect that such extension will
suffer from heavy computational burden.

Outline of the Bøyesiøn øpproøch

In its simplest form the problem can be stated as follows. Consider a one-dimensional homoge-

neous Gaussian random field w(x), x being the spatial coordinate. Assume that the mean value p

and the standard deviation o are known quantities and that the auto-correlation function is of a

known type, for example:

where D is the auto-correlation parameter. Suppose that the field has been sampled at locations

x., i = 1 ..n, and that the observation results are w(xr) = oi. The problem is to determine the auto-cor-

relation parameter D on the basis of these measurement results. The parameter D will be referred to

as scale of fluctuation. It should be noted, however, that this does not correspond exactly to the def-

inition given by Vanmarcke [1,6], [17]:

According to this definition it follows that a = 7.78D. The method to determine D is a straightfor-

ward application of the standard procedure for Bayesian inference 173, 1,41. Consider a set of values

{Dk}, k = 1...m, which may be thought of as a representative discrete set of possible D values. Using

Bayes' theorem, the posterior probability that D takes one of the Do values, given the measure-

ments {or.}, can be expressed as:

P{D = Dr, lw - ú)}: C f*(co lDk )P{D = Dr}

where P{D=D*} is the prior probability of D being equal to Do and P{D=Dk I w= o} the posterior

probability, given the measurements. Further, w and o.¡ are vector representations of {w(x.)} and

{or,} (i=1...n), f*(cr I D=Dr.) is the likelihood function and C a normalizing constant. \¡Vhen the joint

probability distribution of w is assumed to be Gaussian then the likelihood function becomes:

exp{-;.((D - E)t r[t þ- u)]

(1)

(3)

(4)f*(r¡ lDr)=
1zn¡! oetl>¡ ¡
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where Ik is an (nxn) covariance matrix with elements:

Ir(i,j)=[o2 p(lxi -xj l)]=o2

If it is assumed that all values Dk are equally likely a priori the prior probabitities P{D = Do} in eq

(3) can be merged with the normalizing constant C. The sequence of probabilities according to eq

(3) constitutes the posterior pdf of the scale of fluctuation, provided that the range of Do values has

been chosen adequately.

Applicøtion to random generated fields
In order to investigate the performance of the outlined procedure, it has been applied to a series of

Gaussian pseudo measurements (generated measurements). The following field statistics have

been adopted in the simulations: expected mean value p(w) = 0.0, standard deviation o(w) = 1.9

and scale of fluctuation D = 1.0 with correlation decay according to eq. (1). Based on these parame-

ters 11 equidistant realizations have been generated with sample distance Ax=0.5. Figure 1 shows

the generated sarnple values. The resulting posterior probability distribution for D is presented in
figure 2. The distribution has an average E[D] = 1.048 and a standard deviation o(D)=9.933, which

is a very close approximation of the value D=1.0 which was applied in the simulation.
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Figure 1: example of pseudo reølizøtion of homoge-

neotts Gaussian røndom field; sømple dístance

Ax = 0.5. Field parømeters: expected mean aølue

p, = 0, støndørd deuiøtion o ='L nnd correlntion

parømeter D = 7. Correlationfunction type: eq. (1)

o.2 0-4 0.6 l.O 1-2 1.¡t

Figure 2: Posterior pdf for correløtion parameter D,

based on 11 pseudo obseruations (sample distance

Ax = 0.5)

Similar calculations using a sample distance Lx = 0.2 gave an alike, however narrower, distribu-

tion. \¡Vhen increasing the sample distance to Ax= 1.0 a different probability distribuiion came out

(figure 3). In this case the sample distance is relatively wide compared to the scale of fluctuation.

,lt
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Figure 3: Posterior pdf for correlntion parameter D,

based on 11 pseudo obserantions; sømple distnnce

Ax = 1.0

r.o o.2 0-4 0.6 0.8 't.o 1-2 1.+

Figure 4: Posterior pdf for correlation roroìlO,'
bøsed on 11 pseudo obseraøtions; sample distance

Ax = 1.5

Therefore the pseudo measurements contain insuffi-

cient information to be decisive on the rejection of

low D values. This trend is even more pronounced

when sample distances are further enlarged. The

general picture then exhibits a uniformly distributed

D between zero and the sample distance and a van-

ishing probability density for D values exceeding the

sample distance (Figure 4). This result is indepen-

dent of the number of sample points, as can easily be

understood.

Actually the calculations mentioned above have

been carried out for a large number (100 for each

combination of n and Ax) of independent generated

fields. Table I gives an impression of the numerical

results of these calculations. From this table we can

draw the following conclusions:

(1) the resulting estimates E(D) for D are always

close to the value 1.0, used in the generation,

unless Âx is too large relative to D, as dis-

cussed previously;

(2) the calculated variances correspond very well

to the observed differences {E(D) -1.0} in the

various simulations. The simulations confirm

the small standard deviations for D, as pre-

dicted by the Bayesian procedure.

\

llil"
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Table I: Results of Bayesinn inference on the correlation parømeter D, bqsed on pseudo measurements of ø one

dímensional GatLssiøn Jield with lcnoun; expected menn uølue and støndard deaiøtion are knorun.

A similar exercise has been performed for a two dimensional field, having one unknown correla-

tion parameter D. Also in this case the results were very satisfactory, as long as the sample distance

was smaller than the scale of fluctuation (table II)

Table II: Results of Bayesinn inference on the correlntion parnmeter D, based on pseudo mensurentents of an

isotropic two dimensionsl Gøussinn field; expected mean uabLe nnd standnrd deuiation are known

nxn Ax=Ay Run E[D] S(D)

6x6 0.5 7

2

0.999

0.997

0.010

0.017

6x6 1.0 7

2

0.735

0.684

0.228

0.218

Characteristics of generated field: m(w) = 0.0, s(w) = 1.0, D = 1.0, correlation

function type eq. (1), with Ax replaced by Ar = J1l^2+ly2;;
N is number of sample point in x and y direction

Ax and Äy are sample distances

n Ax Run with (out of 100) EtD] S(D)

11 02 Greatest mean

Smallest mean

Greatest standard deviation

Smallest standard deviation

1.095

0.906

1.062

0.997

0.032

0.030

0.052

0.018

11 0.5 Greatest mean

Smallest mean

Greatest standard deviation

Smallest standard deviation

7.776

0.827

1..020

7.020

0.090

0.105

0.138

0.070

11 1.0 Greatest mean

Smallest mean

Greatest standard deviation

Smallest standard deviation

1.335

0.587

0.994

1.335

0.183

0.229

0.343

0.183

Characteristics of generated field: ¡r,(w)=0.0, o(w)=1.9, D:1.0, correlation function type eq. (1)

n is number of (pseudo) sample points, Ax is sample distance

Number of simulations for each combination (n,Ax): 100
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In practice the mean and standard deviation of the field are not known and must be estimated from

the available measured data. Basically the extension of the procedure to unknown pdf parameters

is straightforward. In table III results are given for unknown mean and unknown standard devia-

tion based on pseudo measurements for a one-dimensional field. Comparison with previous results

shows that the uncertainty in the estimate of D hardly is increased because of the additional

unknowns. Also this result has been verified by doing 100 simulations. \rVhat did increase substan-

tially, however, was the amount of computation time. This gives the idea that exorbitant computa-

tional burden may be expected when adding for instance some more unknown trend parameters.

The reason for this is obvious: the covariance matrix ) has to be inverted for all combinations of

rmknown parameters. One way out might be to develop some First Order Second Moment type of

approximations. Another idea is to combine methods: use the Bayesian procedure for the correla-

tion parameters and use different types of estimators for mean, standard deviation and trend' An

efficient method of this type is presented in (Calle and Van Heteren [20]).

Tabte III: Rentlts of Bayesiøn inference on expected mean aalue m, standørd deuiøtion s ønd correløtion pøra-

meter D, bøsed on pseudo meøsurements of a Gøussian field (i.e. expected meøn anlue ønd støndard deuiation

were sLtpposed to be unknown)

It could be argued that the selected type of auto-correlation function itself is basically uncertain

when considering real field measurements. Howevet, it can be demonstrated that slightly different

types will not lead to significant changes in performance of stochastic interpolation techniques

(Calle and Van Heteren [15]), nor to essential changes in performance of probabilistic failure sur-

face analysis (Vanmarcke [2]). Therefore it is assumed that the selection of the auto-correlation type

is not as critical as might be expected at a first look.

Compørison with direct estimates

Most of the classical methods for the estimation of correlation functions or, equivalently, spectral

parameters are based on the assumption that there is a continuous record of sufficient length and

the availability of a large number of sample data. In practical geo-technical survey this lirnits the

n Ax EIr-r] o(p) Elol o(o) E[D] Cr(d)

11

simulations

11

27

0.2

0.5

0.5

0.43

0.0

-0.62

0.07

0.33

0.33

0.35

0.27

0.92

1.0

0.73

0.74

0.28

0.26

0.23

0.76

1.05

1.0

0.99

0.86

0.05

0.06

0.09

0.08

Characteristics of generated field: see table I

n is number of sample points and Ax is sample distance

simulations: results based on l-00 simulations for n=11 and Ax=0.2
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application to those properties which can be measured almost continuously by geo-electric, seismic

or radar devices.

A very simple method, for instance, is the estimation of the parameter D from the observed dis-

tances between up-crossings of the mean value of record:

where ¡r,(Ào) is the average distance between up-crossings of the mean value. It can be shown that

this is an unbiased estimator, however, the coefficient of variation equals L /{n, n being the number

of up-crossings [16]. In order to obtain a coefficient of variation equal to 0.2 we need about 25 up-

crossings and as a consequence a record length of 50 to 60 D. The method clearly does not work in

the case of the 11 data points of figure 1.

A direct estimate of the correlation is possible by the estimator

(6)

(Ði+k

This statistic is an unbiased estimator for

p(kAx), from which D can be calculated. The

confidence limits for such an estimator are

however very poor/ as can be concluded from

figure 5. For example, a correlation coefficient

estimate of 0.6, based on 50 sample values,

may range between 0.35 and 0.75 with proba-

bility 0.90. A further disadvantage of this esti-

mator is that it only can be used in case of an

equidistant grid.

In [19] Tabba and Yong have presented a

method which enables to estimate the para-

meters of a correlation function from a non-

equidistant grid. We will reproduce here the

original method, as well as the modification,

which has proven to give better results. It
should be noted that this method originally

was intended for a polynomial type of correlation function type instead of the exponential type

adopted in this paper. Define the function R(D):

n-k

)r'r
i=l

(7)

+1.0

+0.8

+0.6

+0.4

+O.2

0

-o-2

-0. +

-o- 6

-o.8

-1.O
-1.O -O.8 -0.6 -0.4 -0.2 0 +0.2 +0-4 +0.6

Figure 5: Confídence bounds (95 pct) of estimntes of

correløtion coefJicient (Dixon [78] )

nI('
j:1
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for some specific choice of i. In this equation r( ) is some chosen correlation function type and

Ax,, = | x,-x, L It is then possible to derive an unbiased estimate for D by requiring that R(D) is au 1l
minimum:

The modification works quite similar, but is based on:

nn
R(D): i i(r' -r(Ax¡1,D)o¡)2

i=1 j:1 (10)

There is no theoretical way by which we can establish effectiveness of this estimator. Therefore this

has been investigated by applying the method to a large number of generated fields, in the same

way as has been done to validate the Bayesian technique. Note that in the Bayesian case the theory

provides the standard deviation from only one record.

Tøble IV: Estimntion of correlation pørameter D based on pseudo meøsurements of a one dimensionøI

Gnussiøn field, tLsing the originøl and modified procedure of Tabba ønd Yong. Mean snd stnndørd deaiation

were supposed to be known.

n Ax Procedure

Tabba & Yong

k E[D] o(D)

11

11

71

1.1

'1.1

11

21

27

27

21

27

27

0.2

0.2

0.5

0.5

1.0

1.0

0.2

0.2

0.5

0.5

1.0

1.0

Original

Modified

Original

Modified

Original

Modified

Original

Modified

Original

Modified

Original

Modified

/J

9B

44

98

40

89

31

99

21.

57

25

30

6.04

7.36

3.1.4

1.13

7.63

0.95

5.62

7.34

2.72

7.27

1.59

1.11

2.74

0.76

0.73

0.48

0.32

0.35

2.56

0.66

0.63

0.74

0.27

0.63

Characteristics of the generated field: see table I
Each case is based on 100 simulations; k is number of simulations where convergence is

achieved

Estimations of expected mean E[D] and standard deviation o(D) are based on the k

successful simulations

(e)
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The results are presented in the tables IV and V for the one and two-dimensional fields respective-

ly. The results clearly are disappointing, especially for the one-dimensional field. In the case where

D had to be determined from 1L points with Ax = 0.2, the coefficient of variation equals about 50%

for the modified method, which should be compared with 4"/" for the Bayesian analysis. In many

cases the method did not even converge (see column 4). Knowing, however the results of the

Bayesian analysis we have reason to believe that the Ax is too large and, consequently, the record

not informative. On the other hand it is interesting to observe that, if the method manages to con-

verge for large Ax, the results are better than for small Ax. This is surprising if we compare it with

the trend in the Bayesian analysis.

Table V: Results of the modifíed Tabbø and Yong procedure for the estimøtion of the correlation paranteter D

based pseudo rneasuretnents of øn isotropic 2D Gaussiøn field; meøn and støndørd deuiøtion are supposed to

beknown

nxn Ax=Ay EtD] S(D)

5x5
5x5

7x7
7x7

1.0

0.5

1.0

0.5

1.05

t.20

1.00

1.09

0.32

0.s0

0.21.

0.29

Characteristics of generated field: see table II

n is number of sample points in x and y direction,

Ax and Ay are the sample distances

Number of simulations for each case: 50

From these analyses we conclude that it is very difficult to find a simple and efficient estimator for

D. It is absolutely necessary to use all the information which is contained in the data. The Bayesian

method clearly does better, its only disadvantage being the large amount of computational effort.

Application in a practicøI cøse

In order to obtain some experience with the Bayesian method and to get some first indications of

correlation distances in real soil, a practical case has been analyzed.IJse was made of availatrle

cone penetration tests on a site in Leidschendam in the Netherlands, originally conducted to

investigate the effects of different CTP-devices on test results. It should be kept in mind that the site

was chosen because of an expected low variability.

The cone penetration tests have been performed on 18 locations at the test site, with two tests at

every location with distance of 2 to 5 m. The distances between the locations varied from 40 to

250 m (see Figure 6). The variable of interest was the average penetration resistance over a depth of
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2.8 m in the deep sand layer, approximately

8 meters below terrain level. The measured

values and the corresponding x and y coor-

dinates are presented in Table VI for the

mechanical cone and for the electrical cone.

Figure 6: Map of Leidschendøm site showing the test

Iocations

The correlation function for this analysis was assumed to be of the exponential type:

roll'\ (r1)p(Ax):aexp(-l;
\D, 

t

where r is the distance between measurement locations. The factor a has been added to account for

possible direct fall of the correlation among penetration resistances for Ax > 0, due to a lack of

reproducibility of the penetration test (random measurement errors and very small-scale fluctua-

tions).
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Tnble VI: Obserued aaerage CPT-aalues øt Leidschendnm site

Mechanical CPT Electrical CPT

NRof
test

Location

x-coordinate

lml

Location

y-coordinate

lml

CPT value

[0.1MPa]

Location

x-coordinate

lml

Location

y-coordinate

lml

CPT value

[0.1MPa]

1

2

3

4

5

6

7

I
9

10

11

12

13

74

15

16

17

18

t9

20

21.

22

ZJ

24

25

26

27

28

29

30

31

32

JJ

34

35

Ju

285.25

286.75

283.90

283.90

258.90

266.70

261.75

260.25

238.25

238.25

21,0.25

214.75

238.25

235.25

213.25

27L.25

191.10

191.10

'163,70

158.90

191.10

186.30

158.90

161.30

L43.20

t43.20

138.40

140.80

1,04.40

t09.20

t04.40

106.80

83.90

91.L0

83.90

88.7

158.80

158.80

188.25

186.75

160.75

1.59.25

191.10

788,70

116.10

111.30

116.10

108.90

9r.70

83.90

88.70

83.90

88.25

85.25

88.25

86.75

63.25

60.25

64.75

64.74

88.25

86.75

56.75

56.75

92.25

92.25

57.25

55.25

77.25

72.25

50.25

50.25

105

1,02

74

60

99

85

79

68

89

82

97

105

86

61,

9B

B5

64

t)J

97

108

57

75

76

71,

89

88

B1

65

73

82

98

105

60

39

70

95

285.25

289,75

286.30

291..10

263.70

258.90

264.75

263.25

239.75

238.25

21,3.25

21,3.25

270,25

274.75

186.30

188.70

1.66.70

163.70

191.10

191.10

763.70

766.10

140.80

145.60

140.80

743.20

t04.40

106.80

1,04.40

I04 40

88.70

91.10

88.70

83.90

1.63.60

158.80

t89.75

188.25

160.75

1,57.75

191.10

183.90

111.30

108.90

111.30

108.90

86.30

86.30

86.75

86.75

89.75

85.25

64.75

60.25

63.25

63.25

85.25

85.25

55.25

53.75

87.75

87.75

60.25

58.75

75.75

75.75

47.25

45.75

712

123

109

105

131

125

1,17

L01

t07

110

131

725

122

723

9I

81

11,7

122

81

83

81

92

1,02

109

113

108

67

86

1,37

1t9

59

69

87

74

Average value:

Standard deviation:

81.1

76.5

103.5

20.7
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The results have been summarized in table VII. In the case of the mechanical cone, the expectation

of the parameter a equals 0.73, which implies that27 percent of the variance of measured values is

due to irreproducibility of the CPT-tests. Similarly, for the electrical cone the percentage of variance

due to test irreproducibility is 14, which is a significant better result.

For the correlation distalce D values of 12.6 m (mechanical cone) and 19.0 m (electric cone) were

found. The standard deviations were 5.0 m and 4.3 m respectively. From the likelfüood scores a

negative correlation between a and D could be derived, implying that over estimation of repro-

ducibility combines with underestimation of scale of fluctuation and vice versa. The point is proba-

bly that the distances of 2 to 5 meters at the test locations do not allow distinguishing between

these possibilities, while the 50 meters and up between the test locations is too large to be informa-

tive. For the moment we only may conclude that a cone penetration test only gives location specific

information for a radius of about 10 m. Beyond that limit the hformation is of statistical character.

Table VII: Results of Bøyesian inference on the correlation pørameters ø ønd D for the naerage CPT ualues of

the Leidschendam site.

Summary and conclusions

In order to describe the fluctuation patterns of soil properties, use can be made of random field

models. A common assumption is to model the pattern of spatial variability as the superposition of

some deterministic trend function and a homogeneous Gaussian process. The problem that bas

been discussed in this paper is how to find the parameters of the auto-correlation function of the

Gaussian process, i.e. the scale of fluctuation. It has been demonstrated that classical ways of direct

estimation are not very effective. A Bayesian procedure proved to work very well. In the first place

because of the small variance of the posterior distribution and secondly because of the built in

warning system: if the data do not contain sufficient information to determine the correlation para-

meters, the method gives a clear indication. The method worked well for a number of artificially

generated fields as well as in a practical example

A disadvantage of the method is its computational burden, which makes it unrealistic to extend the

method to the general case of a large number of trend and correlation parameters for the time

being.
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Cone type Elal o(a) EtDl [m] o(D) [m] Correlation

p(a,D)

Mechanical

Electrical

0.73

0.86

0.15

0.07

12.6

19.0

5.0

4.3

-0.44

0.04
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