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Computing system reliability when system components are correlated presents a challenge because it
usually requires solving multi-fold integrals numerically, which is generally infeasible due to the compu-
tational cost. In Dutch flood defense reliability modeling, an efficient method for computing the failure
probability of a system of correlated components – referred to here as the Equivalent Planes method –
was developed and has been applied in national flood risk analysis. The accuracy of the method has never
been thoroughly tested, and the method is absent in the literature; this paper addresses both of these
shortcomings. The method is described in detail, including an in-depth discussion about the source of
error. A suite of system configurations were defined to test the error in the Equivalent Planes method,
with a focus on extreme cases to capture the upper bound of the error. The ‘exact’ system reliability
was computed analytically for the special case of equi-correlated components, and otherwise using
Monte-Carlo directional sampling. We found that errors in the system failure probability estimates were
low for a wide range of system configurations, and became more substantial for large systems with
highly-correlated components. In the most extreme cases we tested, the error remained within three
times the true failure probability. We provided an example of how one can determine if such error is tol-
erable in their particular application. We also show the computational advantage of using the Equivalent
Planes method; large systems with small failure probabilities which take over 17 h for Monte Carlo direc-
tional sampling were computed with the Equivalent Planes in less than one second.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

System reliability analysis investigates the probability that a
system will maintain its functionality; that is, the probability that
the system will not fail. Computing the failure probability of com-
plex systems, where the components within the system are corre-
lated, usually requires multi-fold integrals, which are generally
impossible to evaluate analytically. Consider a vector of random
variables, X ¼ ½x1; x2; . . . ; xn�, containing both load and strength
variables. The failure of the system is represented by the n-fold
integral:

Pf ¼
Z

XðXÞ
f XðXÞdX; ð1Þ

where f XðXÞ is the multivariate density function of X, and XðXÞ is
the failure space, consisting of all realizations of X that lead to
failure of the system. The configuration of the failure space depends
on how the components in the system are connected: in series, in
parallel, or in some hybrid combination. When connected in series,
which is typical in levee systems, XðXÞ ¼

S
iZiðXÞ < 0, where ZiðXÞ is

the limit state function of the ith component, and where failure of
each component is defined by ZiðXÞ < 0. Monte Carlo methods to
estimate the integral in (1) are typically prohibitively slow, espe-
cially in cases where evaluating the limit state functions requires
calls to finite element models.

A number of methods have emerged in the past decade to
address the need for efficient methods to compute system reliabil-
ity. Sues and Cesare ([1]) proposed a method (Most Probable Point
System Simulation, or MPPSS) in which the reliability of the system
components is first computed via a method that returns a closed
form of the limit state function (e.g. first- or second-order reliabil-
ity methods). The limit state functions, together with the Boolean
expressions defining failure, are then sampled in a Monte Carlo
framework. The authors claim that the size of the system is trivial
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because of the closed form of the limit state functions, but for
highly reliable components and/or large systems, it can require bil-
lions of samples to acquire the desired accuracy, making this
method potentially prohibitively time-consuming. Naess et al.
([2]) proposed a Monte-Carlo-based method in which some tail
properties of the distributions are used to substantially improve
efficiency. In a follow-up paper ([3]), they tested the method on
a large system with thousands of components and found an uncer-
tainty band in which the upper bound is approximately five times
the failure probability of the lower bound, for 200,000 samples and
a computation time of about 30 min to an hour. The method has
not yet been tested on systems in which the limit state function
requires calls to an intensive external model (e.g. a finite element
model), but will most likely be prohibitively slow given the num-
ber of samples required. Kang and Song ([4]) proposed an efficient
method (sequential compounding method, or SCM) in which the
reliability of the components is first computed, and the compo-
nents are subsequently combined into equivalent components,
two at a time, until the full system reliability is obtained. They
tested their method on various system configurations, and found
very good accuracy for all the configurations considered in the
paper. Chun et al. ([5]) presented a complimentary method to
SCM, which computes the sensitivity of the system failure proba-
bility to the reliability indexes of the components. The method
does not consider the sensitivity of the system failure probability
to the random variables that influence the component reliability
indexes.

In the Netherlands, the reliability of flood defense systems has
been a key research area for decades. Based on a series of papers
from the 1980s ([6–9]), an efficient method for combining the fail-
ure probabilities of correlated components – referred to here as the
Equivalent Planes method – was developed for series systems and
implemented in reliability software for the Dutch flood defense
system ([10,11]). We want to emphasize that the method was
designed for series systems (as flood defense systems are primarily
connected in series); two components connected in parallel within
a system that is primarily connected in series poses no problem,
but the method is not intended for systems of numerous compo-
nents all connected in parallel. Similar to the MPPSS method of
Sues and Casare ([1]), the Equivalent Planes method first computes
the failure probability of the components, and then replaces their
limit state functions with closed-form expressions for subsequent
combining. While the MPPSS method allows generic mathematical
formulation, the Equivalent Planes method is restricted to lin-
earized forms of the limit state function (hyperplanes). In contrast
to the MPPSS method, the Equivalent Planes method does not rely
on Monte Carlo methods. Similar to the Sequential Compounding
method from Kang and Song ([4]), the Equivalent Planes method
combines components sequentially; they differ most notably in
the method to derive the correlation between a combined compo-
nent and the remaining system components. To accomplish this,
the Equivalent Planes method requires information about the auto-
correlation of the underlying random variables contributing to fail-
ure; the Sequential Compounding method only requires the
correlation between components.

The Equivalent Planes method was developed to simultane-
ously meet two requirements for Dutch flood defense reliability
modeling: fast computation for large highly-reliable systems, and
the ability to compute influence coefficients of both the random
variables and the components. These influence coefficients are crit-
ical in Dutch flood defense reliability modeling on two fronts: (1)
in deltas, where the flood defense system is subjected to loads fluc-
tuating at different time scales, the influence coefficients are
needed to scale the failure probability from the time scale of the
highest-fluctuating load to the time scale of interest ([11]), and
(2) they give flood defense managers a clear overview which
variables, levee segments, or failure mechanisms are contributing
the most to the failure probability and require the most attention.

In the Netherlands, the results of the method – the failure prob-
ability of a system of flood defenses – have been used in national
flood risk analysis, on which major decisions about the safety stan-
dards of the defenses have been based ([12–14]). However, the
accuracy of the Equivalent Planes method for large systems has
never been well investigated. Additionally, although the method
is in long-standing use, it remains absent from the literature.
This paper serves thus two purposes. The first is to document the
method in the literature, and the second is to set up a suite of aca-
demic system configurations which we can use to investigate the
accuracy of the method.

The paper is laid out as follows. We first describe the Equivalent
Planes method in Section 2; we then discuss the source of error in
the Equivalent Planes method in Section 3; in Section 4 we
describe the various system configurations that we define for
investigating error propagation and show the performance of the
Equivalent Planes method for these systems; we discuss the idea
of tolerable error in Section 5, and close with discussion and con-
clusions in Section 6.

2. Equivalent Planes method

The Equivalent Planes method computes the failure probability
(Pf ) of a system of two correlated components, and – by applying it
iteratively – the failure probability of a system of any number of
components. The ith component is described by a limit state func-
tion, Zi; failure occurs whenever Zi < 0. The method starts with
two components, connected in parallel (Eq. (2)) or in series (Eq.
(3)). Often these components are correlated; that is, failure of
one component will influence the failure probability of the second
component.

Pf ¼ PðZ1 < 0 \ Z2 < 0Þ ¼ PðZ1 < 0Þ � PðZ2 < 0jZ1 < 0Þ ð2Þ

Pf ¼ PðZ1 < 0 [ Z2 < 0Þ ¼ PðZ1 < 0Þ þ PðZ2 < 0Þ � PðZ1 < 0 \ Z2 < 0Þ
ð3Þ

The strategy of the Equivalent Planes method is to replace the
conditional probability PðZ2 < 0jZ1 < 0Þ with an equivalent
marginal distribution PðZ02 < 0Þ which incorporates the condition
Z1 < 0 by having a non-zero density only in the failure space of
component 1.

We will describe how the equivalent marginal distribution is
computed. But first we will highlight the required information
for getting started.

2.1. Getting started

To apply the Equivalent Planes method, we need to know the fail-
ure probability of each of the individual components and the corre-
lation between component failures. The latter is driven by common
variables. For example, consider a levee section along a river with
two failure modes – overtopping and internal erosion; the water
level in the river will influence the failure probability of both
components, creating correlation between them. To compute the
correlation between components, we need information about
the variables that cause the correlation: (i) their autocorrelation –
the correlation between a variable in component 1 and the same
variable in component 2 – and (ii) influence coefficients, which
describe how strongly each variable contributes to failure.

The autocorrelation of the variables can be equal to one in some
cases (e.g. variables – like water level – which contribute to differ-
ent failure modes at the same location will be the same for each
failure mode). In other cases (consider soil permeability in two



Fig. 1. Density function of w1 and w01.
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neighboring levee sections), the autocorrelations can be obtained
from measurements or from expert opinion, or a combination. To
obtain the influence coefficients of the variables, we compute the
component failure probabilities using first order reliability method
(FORM) (for a description of the FORM method, see [15]). FORM
approximates the limit state function as a hyperplane at the design
point, with the linearized form shown in Eq. (4); for component i,
the coefficients ai ¼ ½ai1; :::;ain� are the influence coefficients corre-
sponding to a vector of random variables u ¼ ½ui1; :::;uin�; the mag-
nitude of each coefficient indicates the relative influence of each
variable on component failure. The random variables are standard
normally distributed (they are transformed from their actual mar-
ginal distributions via FORM), and the influence coefficients are
normalized such that

Pn
k¼1a2

ik ¼ 1.

Zi ¼ bi � ai1ui1 � ai2ui2 � :::� ainuin ð4Þ

The component reliability index, bi, is related to the component
failure probability Pf ;i:bi ¼ U�1ð1� Pf ;iÞ, where U�1ð�Þ is the inverse
standard normal distribution function.

Once we have the autocorrelations of the variables and the
influence coefficients for each component, we calculate the corre-
lation between components according to Eq. (5).

qðZi; ZjÞ ¼
Xn

k¼1

aik � ajk � qijk; ð5Þ

where qijk is the autocorrelation between uik and ujk. In the remain-
der of the paper, we use the symbol q, without subscripts, to denote
the correlation between components; we use the symbol qac to
denote the autocorrelation of the variables.

2.2. Failure probability of a two-component system

We start by expressing the limit state function of each compo-
nent (Zi) in terms of a single standard normally distributed vari-
able, wi (Eqs. (6) and (7)). Note that this formulation is
equivalent to Eq. (4). For computing the correlation between Zi

and Zj, we need the individual random variables and their influ-
ence coefficients; once we know the correlation, it is more efficient
to use the form given in Eqs. (6) and (7).

Z1 ¼ b1 �w1 ð6Þ

Z2 ¼ b2 �w2 ð7Þ

From Eqs. (6) and (7), we can see that, because the reliability
index is a constant, the correlation between Z1 and Z2 will be the
same as the correlation between the variables w1 and w2. We
therefore write the variable w2 as a function of w1 and an indepen-
dent standard normally distributed variable w�2 (Eq. (8)), and sub-
stitute this expression in the limit state function for the second
component (Eq. (9)). This ensures that the correlation between
the two components is preserved and ensures that w2 is still stan-
dard normally distributed.

w2 ¼ q �w1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�w�2 ð8Þ

Z2 ¼ b2 � ðq �w1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�w�2Þ ð9Þ

Because of the simplified form of the Z functions, the condition
Z1 < 0 is equivalent to w1 > b1 (see Eq. (6)). Therefore, to condition
on Z1 < 0 we can simply replace the variable w1 in Eq. (9) with a
new variable w01, which captures the tail of the w1 density function
above b1. The density function of w01, and how it relates to the den-
sity function of w1 is illustrated in Fig. 1.

The expression for Z02 is thus:

Z02 ¼ b2 � ðq �w01 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�w�2Þ ð10Þ
Note that with Eq. (10), the problem has been reduced from an
n-dimensional problem (where n is the number of variables) to a
two-dimensional problem, which is why the Equivalent Planes
method is so efficient. Computing the marginal distribution
PðZ02 < 0Þ can be done with any probabilistic technique; we recom-
mend numerical integration because Z02 is only a function of two
variables, so even with very small intervals, numerical integration
is efficient and very accurate.

Once we’ve replaced the conditional distribution PðZ2 < 0jZ1 < 0Þ
with the equivalent marginal distribution PðZ02 < 0Þ, computing
the two-component system failure probability is straightforward;
see Eqs. (11) and (12) for the parallel and series systems,
respectively.

Pf ¼ PðZ1 < 0Þ � PðZ02 < 0Þ ð11Þ

Pf ¼ PðZ1 < 0Þ þ PðZ2 < 0Þ � PðZ1 < 0Þ � PðZ02 < 0Þ ð12Þ

With the application of Eq. (11) or (12) we are able to derive the
failure probability of a two-component system. The next step is to
iterate over this procedure to arrive at the multi-component
system reliability.

2.3. Failure probability of an multi-component system

The Equivalent Planes method is iterative, so that once two
components have been combined, the two-component system
can be considered a new component to combine with a third com-
ponent, and so on, until all components have been combined.

Computing the correlation between the two-component system
and a third component presents a challenge. To compute it via
Eq. (5) we will need to know the influence coefficients for the
two-component system; that is, we need to represent the
two-component system by a linearized limit state function (i.e. a
hyperplane). Consider Eq. (4); at the limit state, when Zi ¼ 0, the
influence coefficient aik represents the partial derivative of the reli-
ability index bi with respect to variable uik. We can use this to esti-
mate the influence coefficients of the two-component system. In
the case where all variables have autocorrelation equal to 1, we
obtain the influence coefficients by numerically estimating
@bij=@uk (where bij is the reliability index for the system composed
of the two components i and j) for each variable uk. Note that when
the autocorrelation is equal to 1, uik ¼ ujk ¼ uk. When the autocor-
relations are not equal to 1, the concept is similar, but the method
to compute the influence coefficients is a bit more complex,
because the variable uk is not exactly the same in component i as
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it is in component j (i.e. uik–ujk). Because uik and ujk are correlated,
we can write one as the function of the other, where the function
consists of a correlated (uk;c) and uncorrelated part (uk;uc). We then
take the partial derivatives of the system reliability relative to uk;c

and uk;uc separately and then combine them as shown in Eq. (13),
where ae

k is the influence coefficient of the kth variable in the
equivalent hyperplane for the two-component system.

ae
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@bij

@uk;c

� �2

þ
@bij

@uk;uc

� �2
s

ð13Þ

Once we have computed the influence coefficients for the com-
bined two-component system, we can compute the correlation
between it and a third component, and combine these into a
three-component system, and so on until we have combined all
of the components in our system.

Note that method name – Equivalent Planes – comes from
expressing a two-component system as an equivalent hyperplane
(of the form in Eq. (4)).

2.4. Practical information

We implemented the methodology described in the preceding
sections in Matlab and have made it freely available via
Open Earth Tools (https://publicwiki.deltares.nl/display/OET/
OpenEarth), which is a repository for free and open source code
to handle a variety of problems related to delta and coastal areas
([16]). Open Earth Tools also includes a library of probabilistic tools
which are generic and applicable to many problems; the
Equivalent Planes algorithm is a part of this library.

3. Error source

The Equivalent Planes method is very efficient, but it comes at a
price: it is an approximation. In this section we discuss how the
approximation introduces error into the system reliability esti-
mate. In this paper we are focusing on the error incurred using
the Equivalent Planes method for combining components with lin-
earized limit state functions. It is important to note that there may
also be error introduced in the linearization step; the magnitude of
that error is dependent on the behavior of the limit state function,
and is not the focus of this paper. For two components with lin-
earized limit state functions in the form of Eq. (4), the Equivalent
Planes method is exact; error is introduced when a third compo-
nent is combined with the equivalent two-component system.
Fig. 21 illustrates the process by which error is introduced. We begin
with a two-component series system (see Fig. 2a), with the failure
space defined by the area where Z1 < 0 [ Z2 < 0, and the original
two-component failure probability Pf ¼ PðZ1 < 0 [ Z2 < 0Þ. After
application of the Equivalent Planes method (see Fig. 2b), we have
an equivalent limit state function Ze, and an equivalent failure space
defined by Ze < 0. This step is exact which means:

PðZe < 0Þ ¼ PðZ1 < 0 [ Z2 < 0Þ ¼ Pf ð14Þ

Fig. 2b shows the trade that was made in failure space; the area
A1 was released in trade for the area A2 (see also Table 1). This step
is exact, so PðA1Þ ¼ PðA2Þ; thus, you can consider this a fair trade.
With the introduction of a third component (Fig. 2c), we have a
failure space defined by Ze < 0 [ Z3 < 0. Fig. 2c shows that the fair
trade we had in Fig. 2b is now violated. The area A3, which
represents the portion of A1 that falls in the failure space of Z3,
represents the error in Fig. 2. We can explain this most clearly as
follows.
1 Note that for legibility, Zi is denoted Zi for i ¼ 1;2;3; e and Ai is denoted Ai for
i ¼ 1;2;3;4; Z3 in Figs. 2 and 3.
Consider the failure probability of the original two component
system, Pf . If we add the third component to the original
two-component system (Fig. 2a), we are adding the area AZ3

(shown in Fig. 2c) to the failure domain. Thus, the system probabil-
ity becomes:

PðZ1 < 0 [ Z2 < 0 [ Z3 < 0Þ ¼ Pf þ PðAZ3Þ ð15Þ

If we add the third component to the equivalent two-component
system (Fig. 2b), we are adding the area AZ3 and A3, and the system
probability would be estimated as:

PðZe < 0 [ Z3 < 0Þ ¼ Pf þ PðAZ3Þ þ PðA3Þ ð16Þ

The error that the Equivalent Planes method makes is thus
equal to the difference between Eqs. (15) and (16), which is PðA3Þ.

Similarly, it can also occur that Z3 includes some of the gained
area (A2) in its failure space – this area we describe as A4. This sit-
uation is illustrated in Fig. 3 The net error in this case is the prob-
ability of A3 reduced by the probability of A4.

4. Error under various system configurations

In this section, we investigate the accuracy of the Equivalent
Planes-computed system failure probability estimate for various
series system configurations. For this, we needed to compute a
reference calculation; that is, an estimate of the system failure
probability that can be considered exact, with which to compare
the Equivalent Planes estimate.

4.1. Reference calculation

For systems whose components have equal reliability indexes
and are equi-correlated, we were able to compute the exact failure
probability of the series system using the formula:

P ¼
Z 1

�1
1� 1�U � bc � v ffiffiffiffiqpffiffiffiffiffiffiffiffiffiffiffiffi

1� q
p

 !" #m( )
uðvÞdv ; ð17Þ

where bc is the reliability index of the components, q is the corre-
lation between components, v is a standard normally distributed
variable, uð�Þ is the standard normal density function, and Uð�Þ is
the standard normal distribution function.

To compute the ‘exact’ system failure probability for systems
where the components were not equi-correlated, we used a
method similar to Sues & Cesare ([1]), only we used Monte Carlo
Directional Sampling (MCDS) ([17–19]) instead of crude Monte
Carlo, and we implemented a dynamic sample size criterion to
ensure a high accuracy (described in Section 4.1.2). We chose
MCDS because it is relatively efficient compared with crude
Monte Carlo, particularly for the case of linearized limit state
functions.

In the following sections we provide a brief explanation of
directional sampling (including an efficient approach valid for
the case of linearized limit state functions) and the implementa-
tion of the dynamic sample size criterion.

4.1.1. Monte Carlo directional sampling
Directional sampling works by sampling directions in the fail-

ure space (Eq. (18)), computing the conditional failure probability
given the direction (Eq. (19)), and estimating the failure probability
as the mean of the conditional probabilities over all N sampled
directions (Eq. (20)).

h ¼ u
kuk ¼ ð

�u1; �u2; :::; �unÞ ð18Þ

Pf ;h ¼maxfPi; Pi ¼ PðZi < 0jhÞ; i ¼ 1:::m; g; ð19Þ

https://publicwiki.deltares.nl/display/OET/OpenEarth
https://publicwiki.deltares.nl/display/OET/OpenEarth


Fig. 2. Introduction of error in the Equivalent Planes method (overestimate). In each subplot, the blue shaded space represents the failure space. The plots show (a) the
original failure space of two components with limit state functions Z1 and Z2; (b) situation after application of the Equivalent Planes method – we see the equivalent limit
state function Ze and the equivalent failure space; A1 is the released area, and A2 is the area that was gained in trade; (c) situation after the inclusion of a third limit state
function Z3 – the shaded area is the failure space of Ze and Z3; A3 is the area that was released in (b) in trade for A2, but is recaptured by Z3, violating the fair trade. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Description of the areas in Fig. 2 and/or Fig. 3.

Area Description Z1=Z2 Ze Z3

A1 Failure space released Z1 < 0 [ Z2 < 0 Ze > 0 –+

A2 Failure space gained Z1 > 0 \ Z2 > 0 Ze < 0 –+

A3 Failure space overestimate Z1 < 0 [ Z2 < 0 Ze > 0 Z3 < 0
A4 Failure space underestimate Z1 > 0 \ Z2 > 0 Ze < 0 Z3 < 0
AZ3 Correct contribution to failure

space by Z3

Z1 > 0 \ Z2 > 0 –* Z3 < 0

+ These steps are prior to the inclusion of the third component.
* Not relevant.
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where m is the number of components in the system.

P̂f ¼
1
N

XN

j¼1

Pf ;hðjÞ ð20Þ
Each direction is defined by a unit vector h in the standardized
normal space; see Eq. (18). We obtain this unit vector by first sam-
pling all of the n standard normally distributed variables. The vec-
tor from the origin to the sampled point in the n -dimensional
variable space gives us the vector u in Eq. (18). Normalizing this
vector gives us the directional unit vector h.

In general, Eq. (19) can be cumbersome to compute because it
requires searching in an n-dimensional space for the limit state
nearest to the origin (in the given direction). However, we can
exploit the linearity of the limit state functions in our case to sim-
plify this process. Let k be the distance from the origin to the near-
est limit state function; then the vector giving the direction and the
distance to failure is kh ¼ ðk�u1; k�u2; :::; k�unÞ. Because our limit state
functions are linear we know that Z ¼ b� a1u1 � :::� anun, so we
can plug in the failure vector ðk�u1; k�u2; :::; k�unÞ and solve for k by
setting Z ¼ 0.



Fig. 3. Introduction of error in the Equivalent Planes method (over- or underestimate). In each subplot, the blue shaded space represents the failure space. The subplots show
(a) the original failure space of two components; (b) situation after application of the Equivalent Planes method – we see the equivalent limit state function Ze and the
equivalent failure space; A1 is the released area, A2 is the gained area; (c) situation after the inclusion of a third limit state function Z3 – the shaded area is the failure space of
Ze and Z3; A3 is the area released in (b) in trade for A2, but is recaptured by Z3, the area A4 was gained in (b) but is already part of the system failure due to Z3. A3 and A4
represent a violation of the fair trade in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

58 K. Roscoe et al. / Structural Safety 57 (2015) 53–64
b ¼ a1ðk�u1Þ þ :::þ anðk�unÞ ¼ k
Xn

i¼1

ai�ui ) k ¼ bXn

i¼1

ai�ui

ð21Þ

We compute k using Eq. (21) for each limit state function in our
system and take the minimum as our distance to failure. We then
use the Chi Squared distribution to compute the conditional prob-
ability given the direction and the squared distance to failure
([19]).

4.1.2. Sample size criterion
Our criterion for when the sample size was large enough was a

95% confidence that the difference between the MCDS system reli-
ability estimate (b̂) and the true value (b) is less than a defined
value C:
Pðjb̂� bj < CÞ ¼ 95% ð22Þ

The important consideration when choosing a value for C in Eq.
(22) is that it should be small relative to the errors in the
Equivalent Planes method, or relative to errors that would be con-
sidered important. We chose a value C ¼ 0:01, which we felt was a
good compromise between efficiency (not requiring too many
samples) and having an error that was small relative to anything
we would be concerned about in practice.

The implementation of the stop criterion is described by the
flow chart in Fig. 4. The standard deviation of the failure probabil-

ity estimate P̂f is computed as follows:

r̂Pf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � ðN � 1Þ �
XN

i¼1

ðPf ;hðiÞ � P̂f Þ
2

vuut ð23Þ



Fig. 4. Flow chart describing the stop criterion for directional sampling.
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The 95% confidence interval on the reliability estimate b̂ is
described by the lower and upper bound on the interval (b� and
bþ, respectively):

b� ¼ �U�1ðP̂f þ 2r̂Pf
Þ; bþ ¼ �U�1ðP̂f � 2r̂Pf

Þ; ð24Þ

where U�1 is the inverse standard normal distribution function.
4.2. System configurations

We wanted to test various system configurations to explore
under which conditions the accuracy of the Equivalent Planes
may become a problem. We defined a system configuration based
on the following parameters:

(i) n – number of variables.
(ii) m – number of components.

(iii) q – correlation between components.
(iv) bc – component reliability index.
(v) qac – auto-correlation of the variables.

To test the influence of these parameters we considered a num-
ber of system configurations, which are described in the following
sections. For each system configuration we computed the ‘exact’
failure probability (Pf ) using either Eq. (17) for equi-correlated
components, or Monte Carlo directional sampling otherwise. We
then compared the exact system failure probability with the

Equivalent Planes-estimated system failure probability (P̂f ).
The system configurations we chose were based on a number of
considerations. First, we wanted to test extreme system configura-
tions, in an effort to compute bounds on the error in the Equivalent
Planes method. To this end, for all the systems we considered, we
kept the component reliability indexes equal across all the compo-
nents. We did this because if we had allowed the components of a
system to have different reliabilities, the smallest component reli-
ability would dominate the system reliability, and would make the
errors caused by combining the more reliable components negligi-
ble. Second, we only considered series systems, because the
Equivalent Planes method was specifically designed with levee
systems in mind, which are predominantly series systems.
Inclusion of two components connected in parallel within a pre-
dominantly series system should not impact the error. However,
the method was not designed to compute large parallel systems,
and hence we did not consider such systems. Third, we most exten-
sively considered cases with equi-correlated components, because
the exact solution can be computed analytically (see Eq. (17)). This
allowed us to investigate large systems with high reliability
indexes which would have been too computationally intensive to
compute with the Monte Carlo directional sampling method. We
investigated cases where the components were not equally corre-
lated, but not extensively.

4.2.1. Case I: equal correlation between components
Case I investigates series systems with equally reliable compo-

nents, and equal correlation between all components. We enforced
the correlation between components as follows. Assume m limit
state functions, each of which is a function of n variables. For a
desired correlation between components (q), we set the influence
coefficients of the variables equal for all m limit state functions
(a1i ¼ a2i ¼ . . . ¼ ami; i ¼ 1:::n), and set the autocorrelation of all
of the random variables equal to q. Eq. (5) then reduces to:

qðZi; ZjÞ ¼
Xn

k¼1

aik � ajk � qijk ¼ q
Xn

k¼1

a2
k ¼ q ð25Þ

We also varied the number of components (m), and the reliabil-
ity index of the components (bc). We fixed the number of variables
to three (n ¼ 3). Note that because the variables are only partially
autocorrelated, the dimensionality of the problem is much higher
than 3 (see Eq. (8)); in fact the dimensionality will be equal to
the product of n and m (the number of variables and the number
of components). Table 2 summarizes the system configurations
we considered for the case of equal correlations.

We computed the exact system reliability using Eq. (17), but we
also ran the Monte Carlo directional sampling for several of the
cases, to assess the computation time involved. In typical cases,
Eq. (17) cannot be used, and it is then useful to compare the com-
putation time of the Monte Carlo procedure with the Equivalent
Planes method. The computation times are presented in Section 6.

The results are presented in Figs. 5–8, one figure for each of the
correlations 0.2, 0.5, 0.7, and 0.9. It is clear that the Equivalent
Planes method performs best for components with high reliability
indexes, and where the correlation between components is not too
high. Fig. 9 highlights the relationship between the error in the
Equivalent Planes method and the correlation between the compo-
nents; the error is given as a factor difference in the failure proba-
bility, which is the ratio of the Equivalent Planes-computed failure
probability to the exact failure probability. Table 3 shows the factor
difference in the failure probability for systems with 250 compo-
nents. It shows that in the worst case the system failure probability
estimated with Equivalent Planes is 2.5 times the exact system fail-
ure probability. In the best cases, they are equal. Table 4 shows the
error in the Equivalent Planes estimate of the reliability indexes.
The conclusions are the same as for Table 3, but viewing the error



Fig. 7. Performance of the Equivalent Planes (EP) method for series systems with
3–250 components, all equi-correlated with correlation coefficient 0.7.

Fig. 5. Performance of the Equivalent Planes (EP) method for series systems with
3–250 components, all equi-correlated with correlation coefficient 0.2.

Fig. 6. Performance of the Equivalent Planes (EP) method for series systems with
3–250 components, all equi-correlated with correlation coefficient 0.5.

Fig. 8. Performance of the Equivalent Planes (EP) method for series systems with
3–250 components, all equi-correlated with correlation coefficient 0.9.

Table 2
Parameters defining the system configurations for the Case I.

Variable Value(s)

Number of variables (n) 3
Number of components (m) 3–250
Component reliability (bc) 3, 4, 5, 6
Autocorrelation (qac) q
Correlation between components (q) 0.1–0.9 (in increments of 0.1),

0.95, 0.99

Fig. 9. Factor difference in system failure probabilities (ratio of Equivalent Planes-
computed to exact) for series systems with 250 components, for correlation
between components ranging from 0.1 to 0.99.
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in terms of reliability index will be useful when we give an exam-
ple of how to assess tolerable error in Section 5.1.

4.2.2. Case II: unequal correlation between components
Case II investigates a series system of components with equal

reliability indexes but unequal correlation coefficients. The correla-
tion between component i and component j in an m–component
system was computed according to Eq. (26), as in [4]; this formu-
lation ensures the correlation matrix is positive definite.



Table 3
Factor difference in the system failure probabilities (ratio of Equivalent Planes-
computed to exact) for the configurations in Case I, for a system with 250
components.

q ¼ 0:2 q ¼ 0:5 q ¼ 0:7 q ¼ 0:9

bc ¼ 3 1.3 1.8 2.2 2.2
bc ¼ 4 1.0 1.4 2.0 2.4
bc ¼ 5 1.0 1.1 1.6 2.5
bc ¼ 6 1.0 1.0 1.3 2.4

Fig. 10. Performance of the Equivalent Planes (EP) method for series systems with
5, 10 and 50 components, correlated according to the correlation structure defined
in Eq. (26).

Table 4
Error in the Equivalent Planes reliability indexes for the configurations in Case I
(difference between Equivalent-Planes computed and exact), for a system with 250
components.

q ¼ 0:2 q ¼ 0:5 q ¼ 0:7 q ¼ 0:9

bc ¼ 3 �0.18 �0.36 �0.40 �0.33
bc ¼ 4 �0.02 �0.13 �0.22 �0.26
bc ¼ 5 0.00 �0.03 �0.11 �0.20
bc ¼ 6 0.00 �0.01 �0.05 �0.16

K. Roscoe et al. / Structural Safety 57 (2015) 53–64 61
qij ¼ 1� ji� jj
m� 1

; i; j ¼ 1; . . . ;m ð26Þ

Enforcing the correlation structure given by Eq. (26) requires
choosing the right mixture of influence coefficients and autocorre-
lations for the random variables in the limit state functions, given
the constraint in Eq. (5). We set the number of variables in each
limit state function equal to m (the number of components), and
set the autocorrelation of each variable equal to 1. This reduces
the relationship between the influence coefficients and the correla-
tion matrix (see Eq. (5)) to:

q ¼ aTa ð27Þ

The advantage of having the correlation matrix in the form of
Eq. (27) is that we can easily derive the influence coefficients for
any positive-definite correlation matrix using Cholesky
decomposition.

a ¼ CHOLðqÞ ð28Þ

We computed the ‘exact’ system reliability using Monte Carlo
directional sampling. We considered 5-, 10-, and 50-component
systems, and component reliability indexes of 3, 4, and 5. We did
not consider systems larger than 50 components, because of the
computational cost of the Monte Carlo simulations. For example,
for 50 components and a component reliability index of 5, we
needed 1.3 ⁄ 108 samples for the Monte Carlo directional sampling
to converge (see sample size criterion in Section 4.1.2). The details
of this case are given in Table 5.

The results are shown in Fig. 10. We find very good agreement
between the Equivalent Planes-computed system failure probabil-
ity and the Monte-Carlo-computed system failure probability.
Table 5
Parameters defining the system configurations for Case II.

Variable Value(s)

Number of variables (n) n ¼ m
Number of components (m) 5, 10, 50
Component reliability (bc) 3, 4, 5
Autocorrelation (qac) 1
Correlation between components (q) See Eq. (26)
4.2.3. Case III: limit states which span all directions
This case investigates an extreme situation in which the direc-

tions of the linearized limit state functions of the components span
a three-dimensional space. For many components – all with equal
component reliability indexes – this begins to enclose a spherical
safe region. This is a very unrealistic situation, but is useful for test-
ing how the method performs under such extremes.

To generate the limit state functions, we generated directional
normal vectors (perpendicular to the limit state hyperplane) by
using an three-dimensional integer-based grid. Essentially we
chose a maximum integer, xmax, and constructed a grid with points
placed at all integers from �xmax to xmax. We then connected each
point to the origin, normalized these vectors, and removed any
duplicates. Duplicates arise when the line between the origin and
multiple grid points share the same angle (e.g. consider a
two-dimensional grid with the points [1,1] and [2,2]). The number
of limit state functions (i.e. the number of components m) is then a
function of the total number of integers (which is equal to
Fig. 11. Directional normal vectors defining the limit state functions which densely
span a 3-dimensional space.
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2xmax þ 1), the number of dimensions n, and the number of dupli-
cates d:

m ¼ ð2xmax þ 1Þn � d ð29Þ

An example of a set of directional normal vectors is illustrated
for three dimensions in Fig. 11.

Because the number of components grows exponentially with
the number of variables, we restricted this case to three dimensions.

We chose an autocorrelation equal to 1 for all of the variables to
limit the dimensionality of the case, in order to make the reference
(Monte Carlo) computations more efficient. The correlations
between components (which are variable in this case) were not
explicitly chosen. Table 6 summarizes the system configurations
we considered.
Table 7
Factor difference in the system failure probabilities (ratio of Equivalent Planes-
computed to exact), for the configurations in Case III.

m ¼ 26 m ¼ 98 m ¼ 310 m ¼ 598

b ¼ 3 1.3 1.9 2.5 2.8
b ¼ 4 1.2 1.7 2.2 2.6
b ¼ 5 1.1 1.5 2.0 2.4
b ¼ 6 1.0 1.4 1.9 2.2

Table 8
Error in the Equivalent Planes system reliability indexes (difference between
Equivalent Planes-computed and exact), for the configurations in Case III.

m ¼ 26 m ¼ 98 m ¼ 310 m ¼ 598

b ¼ 3 �0.12 �0.30 �0.43 �0.49
b ¼ 4 �0.05 �0.16 �0.25 �0.30
b ¼ 5 �0.02 �0.09 �0.17 �0.21
b ¼ 6 �0.01 �0.06 �0.11 �0.15

Table 6
Parameters defining the system configurations for the case spanning an n-dimen-
sional space.

Variable Value(s)

Number of variables (n) 3
Max integer (xmax) 1, 2, 3, 4
Component reliability (bc) 3, 4, 5, 6
Autocorrelation (qac) 1

Fig. 12. Performance of the Equivalent Planes (EP) method for series systems with
components whose linearized limit state functions span a 3-dimensional space,
with unequal correlation coefficients between components, for 26, 98, 310, and 598
components.
The results of Case III are presented visually in Fig. 12. Table 7
shows the factor difference in the system failure probability, and
Table 8 shows the error in the system reliability index. The worst
case tested – 598 components and component reliability indexes
of 3 – results in an Equivalent Planes system failure probability
estimate that is 2.8 times the exact (Monte-Carlo computed)
system failure probability. In the best case – 26 components and
component reliability indexes of 6 – the errors in the Equivalent
Planes method are negligible.

4.2.4. Case IV: uncorrelated components
This case investigates the extreme situation where all compo-

nents are uncorrelated. This situation is easy to compute analyti-
cally (Eq. (2) reduces to the product of the component
probabilities). It is relevant to test how the method performs under
this extreme, since some cases might be nearly uncorrelated in
practice. The analytical solution was used for comparison of the
results.

To set up the uncorrelated case, we set the number of (indepen-
dent) random variables equal to the number of components
(n ¼ m), where each component depends on only one of the vari-
ables, which will have an influence coefficient of 1 (see Eq. (4)).
Each limit state function is written in terms of all of the variables,
but all but one of the influence coefficients will be zero. We chose
the number of components, which then determines the number of
variables. We also chose the component reliability indexes. The
value of the autocorrelation is irrelevant, because each variable
appears in only one limit state function. Table 9 summarizes the
system configurations we considered for the case of uncorrelated
components.

The results show that the Equivalent Planes method is practi-
cally exact for uncorrelated components (Fig. 13).
Fig. 13. Performance of the Equivalent Planes (EP) method for series systems with
3–250 uncorrelated components.

Table 9
Parameters defining the system configurations for the case of uncorrelated
components.

Variable Value(s)

Number of variables (n) m
Number of components (m) 3–250
Component reliability (bc) 3, 4, 5, 6
Autocorrelation (qac) Irrelevant (each variable appears in only one

component)
Correlation between

components (q)
0



Fig. 14. Cost curve for levee heightening, for a rural and urban levee, based on data
for Dutch levees.
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5. Acceptable error

This section focuses on translating the error in the Equivalent
Planes method to real, tangible terms (e.g. costs), so that we can
determine how much error is acceptable. This translation is
application-dependent, but we provide an example here for the
case of levee systems, principally for illustration purposes. Each
specific application will need its own case-specific analysis, but
the approach should be similar.

5.1. Example: levee systems

We considered the application to levee systems and provide a
simple example of how errors in system reliability can be trans-
lated to impacts on levee design, and further to costs. The idea of
this section is not to provide full rigor in determining the impact
on levee design and costs, but to obtain an order-of-magnitude
estimate that can help us decide if the error in our estimate is
tolerable.

We considered the failure mechanism overflow, which essen-
tially considers whether the crest height of the levee is high
enough to hold back extreme water levels. The limit state function
for overflow is the difference between the levee height (H) and the
water level at the levee (W).

Z ¼ H �W ð30Þ

We assigned a Type I generalized extreme value distribution to
the water level, with a scale parameter of 0.28 and a location
parameter of 2.6, which corresponds to 1/100, 1/1000, and
1/10,000 year water levels of 3.9, 4.5, and 5.2 m, respectively. The
system reliability index, b, informs us of the failure probability,
or equivalently (in this case) the probability that the water level
is higher than the levee height.

Pf ¼ Uð�bÞ ¼ PðH �W < 0Þ ¼ PðW > HÞ ð31Þ

Because we know the distribution of the water level Fw, we can
determine the design height – that is, the levee height that corre-
sponds to the reliability index b:

H ¼ F�1
W ð1�Uð�bÞÞ ð32Þ

We can use Eq. (32) to translate errors in the system reliability
to errors in the design levee height. We considered system reliabil-
ity indexes b ¼ f3;4;5;6g, and errors in the system reliability
e ¼ f0:01;0:05;0:1;0:2;0:5g, and computed the difference in
design levee height between the erroneous and true system relia-
bilities; the results are presented in Table 10.

To translate the design height differences into costs, we used
cost curves derived as part of a national cost-benefit analysis of
flood protection measures in the Netherlands ([14,20,21]). We con-
sidered the extreme cases of a very rural levee and a very urban
levee. A very rural levee is one in which the area surrounding the
levee is undeveloped, and thus allows for easy expansion of
the levee base when the levee is heightened; this ensures that
the slope of the levee does not become too steep. Such an
expansion will be impossible for a very urban levee because the
Table 10
Difference in design levee height (in meters) due to errors in the system reliability
estimate, for different system reliability indexes (b) and different error magnitudes
(e).

e ¼ 0:01 e ¼ 0:05 e ¼ 0:1 e ¼ 0:2 e ¼ 0:5

b ¼ 3 0.01 0.05 0.09 0.19 0.48
b ¼ 4 0.01 0.06 0.12 0.24 0.61
b ¼ 5 0.01 0.07 0.14 0.29 0.75
b ¼ 6 0.02 0.09 0.17 0.34 0.88
surrounding area is already fully developed. In such cases, retain-
ing walls are often required to compensate for the steep slope
resulting from the levee heightening. Furthermore, in the urban
case, a road and a bike lane are also typically present on the levee.
For both the rural and urban case there is a base cost – that is, a
portion of the cost that is height-independent. In the rural case,
this is the cost of removing and replacing the levee revetment; in
the urban case, it is the cost of the retaining wall and the road
and bike lane. Fig. 14 shows example cost curves for rural and
urban levees. The costs are expressed per km of levee, and as a
function of the required levee height increase.

To use the cost curve (Fig. 14) to translate the error in design
height to costs, we must consider the specific case at hand. For
example, suppose we have a situation where our current levee
must be raised by 1 m to satisfy a required reliability; however,
the error in our reliability estimate leads us to believe it must be
raised by 1.5 m. Then we would read from the curve the difference
in costs between 1 and 1.5 m: approximately 2 million Euros per
km of levee for the rural case, or about 4 million Euros per km
for the urban case. Whether this error is tolerable depends on a
number of factors that are case-specific. Note that the converse sit-
uation – that our error would be an underestimate of the levee
design height – would result in a less expensive improvement
measure, but a higher risk. The costs associated with the increased
risk are more complex to assess than the costs of an improvement
measure.
6. Discussion and conclusion

The Equivalent Planes method has been used in Dutch system
reliability modeling of flood defenses for decades. The reliability
model is at the heart of national flood risk analysis, the results of
which are used to drive major flood prevention policies in the
Netherlands. The critical role of the model motivated this research
to determine the accuracy of the Equivalent Planes method, and
under which situations we may encounter unacceptable error.

We used Monte Carlo directional sampling method to compute
‘exact’ reliability estimates with which to compare the Equivalent
Planes results. Table 11 shows the computation times2 (in minutes)
required for Monte Carlo directional sampling (with an imposed
accuracy of 0.01 on the estimate of the system reliability index),
2 Computation times are based on a 2.8 GHz computer with 8 GB RAM.



Table 11
Computation time (in minutes) for Monte Carlo directional sampling to compute the
system reliability, for series systems of m = 3, 10, 50, 100, and 250 components with
equal component reliability indexes (bc) and equally correlated with a correlation
coefficient of 0.9.

m ¼ 3 m ¼ 10 m ¼ 50 m ¼ 100 m ¼ 250

bc ¼ 3 <1 <1 1 1 3
bc ¼ 4 <1 1 7 13 32
bc ¼ 5 <1 8 188 424 1079
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for some of the system configurations that we tested as part of Case I
(see Section 4.2.1), for an inter-component correlation of 0.9. The
Equivalent Planes method computed each of these configurations
in less than 1 s. Consider a system with 250 components and compo-
nent reliability indexes of 5; in this case, the Monte Carlo directional
sampling method required 1079 min – over 17 h – compared with
0.95 s required by the Equivalent Planes method. In reality, systems
are likely to have a large number of components, and component
reliability indexes that are greater than 5; thus, the reduction in
computation time for real systems will be substantial.

We computed the error in the Equivalent Planes method for dif-
ferent system configurations, and found that when the compo-
nents are not too correlated (e.g. a correlation coefficient up to
about 0.5), the error in the method is generally negligible, particu-
larly when the components have high reliability indexes.
Inaccuracies become apparent for large systems with highly corre-
lated components, and for components with lower reliability
indexes. In all cases, the Equivalent Planes system failure probabil-
ity estimates were within a factor of three times the correct system
failure probability. Recall that we are investigating upper bounds
on the error; these results are for extreme system configurations
in which the components all have equal reliability indexes. In real-
ity, a few components will likely dominate the failure probability,
and the error will be much lower. Furthermore, even three times
the correct failure probability can be quite negligible for systems
with very small failure probabilities. For example, consider a sys-
tem of 250 equi-correlated components, with component reliabil-
ity indexes of 6, correlated with a coefficient of 0.9; the true failure
probability is 4.81E�8 and the estimate is 1.14E�7, for a factor dif-
ference of 2.4 (see Table 3). In many applications, where the prob-
ability needs to be below a certain safety standard, this difference
will not be important. Furthermore, other uncertainties in the reli-
ability analysis – for example, due to the parameterization of the
random variables contributing to failure – will likely overshadow
this small error, making it essentially negligible.

We discussed how to evaluate if the error is tolerable, and pro-
vided an example for a levee system with loads similar to those
found in the river regions of the Netherlands. It is important that
researchers investigate tolerable error for their specific case to
determine if the Equivalent Planes method will be sufficiently
accurate. When it is, it is a very attractive method, particularly
when considering the gain in computational time over more exact
methods.
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