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Abstract. On Navy ships, technological developments enable crews to work 
more efficiently and effectively. However, in such complex, autonomous, and 
information-rich environments a competition for the users’ attention is going on 
between different information items, possibly leading to a cognitive overload. 
This overload originates in the limitations of human attention and constitutes a 
well-known and well-studied bottleneck in human information processing. The 
concept of adaptive automation promises a solution to the overwhelmed opera-
tor by shifting the amount of work between the human and the system in time, 
while maintaining a high level of situation awareness. One of the most critical 
challenges in developing adaptive human-machine collaboration concerns the 
design of a trigger mechanism. This paper discusses and evaluates a number of 
possible triggers for the usage in closed-loop adaptive automation from the per-
spective of command and control.   

1 Introduction 

On navy ships, technological developments enable crews to work more efficiently and 
effectively. However, in such complex, autonomous, and information-rich environ-
ments, task demands may exceed the users’ limited cognitive resources, possibly lead-
ing to a state of overload. This constitutes a well-known and well-studied bottleneck 
in human information processing. Besides the technical developments, the manning 
reduction initiatives of many navies cause a further increase of the workload of crew.  

It is suggested that the adaptive automation paradigm may present a good equilib-
rium between task demands and the available cognitive resources. Adaptive automa-
tion (AA) takes as its starting point that the division of labor between man and ma-
chine should not be static but dynamic in nature. It is based on the conception of 
actively supporting the operator only at those moments in time when human perform-
ance in a system needs support to meet operational requirements [1]. Some argue that 
the appliance of adaptive automation enhances performance, reduce workload, and 
improve situation awareness [2]. Since 1988 various empirical studies have proven 
beneficial effects of the concept of adaptive automation [3] [4] [5] [6] [7] [8].  

One of the challenging factors in the development of a successful adaptive automa-
tion concept concerns the question of when changes in level of automation must be ef-



fectuated. With respect to methods of invocation, one of the most critical challenges 
facing designers of adaptive systems is how to effectively switch between the levels 
and/or modes of operation. The definition of augmented cognition extends the AA 
paradigm by explicitly stating the symbolic integration of man and machines in a 
closed-loop system whereby the operator’s cognitive state and the operational context 
are to be detected by the system [9].  

Workload generally is the key concept to invoke such a change but this concept is 
used in the broadest sense only. The measurement of workload is again much debated 
and we would like to elucidate the relationship between workload, task demands, and 
performance. Fig 1 shows the relationship between these three variables.  

 

 
Fig. 1. The relation between task demands, performance, and workload (taken from [10]). 

It shows that an operator can experience different levels of workload dependent on the 
demands of a task. It also shows that the performance does not necessarily decline as 
the operator experiences a high workload. We can cope with changing conditions 
without decreasing our performance or getting into a state of overload by putting 
more energy into it thereby making ourselves an adaptive system. The difference be-
tween maintaining the level of performance and an increased workload is referred to 
as the effort of the operator.  

The majority of the studies have facilitated allocations based on critical events, 
performance models, or physiological measurements, all with their benefits and pit-
falls. The critical-event method uses specific tactical events as triggers and suffers 
from the fact that this method is insensitive to the operator’s available resources. Per-
formance models have been argued as being totally reactive and unlikely to craft a 
comprehensive database [11]. The psychophysical approach uses deviations in EEG 
power bands, heart rate variability, respiration, galvanic skin response, and brain ac-
tivity as trigger mechanisms. These studies suggest that it is indeed possible to obtain 
indices of one’s brain activity and use that information to drive an adaptive automa-
tion system to improve performance and moderate workload. There are, however, still 
many critical conceptual and technical issues that must be overcome before systems 
such as these can move from the laboratory to the field [12].  



None of the studies have reported on the application of AC in the actual operational 
field such as command and control (C2), although a number of studies have general-
ized a number of tasks from C2 for experimental purposes. These studies demonstrate 
enhanced performance, a reduction of workload, and improved situation awareness, 
though none report on the utilization of AA in an operational settings. Manning re-
duction initiatives  and technological developments confront warfare officers with 
more information and the risk of overload and underload seems eminent. This study 
centralizes on the application of AA in the field of C2, particularly on the question 
which triggers are useful in this area of operation. This study abstains from the usage 
of psychophysical triggers since research by Veltman & Jansen [10] report on the dif-
ficulties of such measure in the field of C2. This study centralizes on the operational 
field and the question which factors could contribute as indicators of overload. We 
gathered data from the same as study Veltman & Jansen [10] and demonstrate that 
performance modeling provides one indicator, but should be extended with clever us-
age of environmental data. This paper suggests that creating triggers based on envi-
ronmental data in combination with performance measurement might deliver a reli-
able trigger for applying the concept of AA.  

Section two reports the theory on the performance model and section three vali-
dates the performance model with data from the study by Veltman & Jansen [10]. 
Chapter four demonstrates how environmental data from the field of C2 might be 
used as an indication of workload and section five learns how pro-active behavior can 
be incorporated. The last section concludes this paper.  

2 Performance modeling 

As stated previously, we focus on a performance measure and state that the measure 
of operator performance provides an indication of the cognitive state. Specifically, the 
acknowledgement time (AT) of the operator on signals from the combat management 
system (CMS) is the primary base of the performance measure. Accordingly, a per-
formance-decrease is regarded as a situation where the operator fails to cope with the 
situation and the operation requires assistance of the system. These situations arise 
due to temporal limited human information processing capacity.  

The chosen feedback approach works only under the premise that the system sig-
nals the operator intelligently. Hence, the operator is prompted only when true infor-
mation is available and true information should be regarded according to the defini-
tion of Shannon & Weaver [13] as the reduction of uncertainty. This premise is 
achieved through the separation of the user and system understanding of the surround-
ing world (see fig. 2). Both user and system use its own particular reasoning mecha-
nisms to create such an understanding. The system reasons through artificial intelli-
gence mechanisms using sensory information while the human applies cognitive 
resources to craft such an understanding. The information elements (e.g. track) are 
present in each view though their attributes (e.g. speed, height) may differ. Each ele-
ment can be compared for differences. For instance, the identities assigned by system 
and user may not be the same. Accordingly, the CMS signals information to the op-
erator only when the system finds new evidence that adjusts the current understand-



ing. The operator on the other hand, can acknowledge signaled information by explic-
itly stating its understanding of the situation and the CMS stores this opinion in the 
user world view (see fig. 2).  

 
Fig. 2. The workstation receives information from the system and communicates the operator’s 
understanding of the situation opinion to the system for storage in the user understanding space. 
The operator performance is calculated real-time and is based on the acknowledgement of the 
operator responses to signals 

The workstation has two responsibilities. First, the workstation ought to keep the in-
formation element within the system synchronized with the user’s state of mind. Sec-
ondly the workstation must measure the user’s cognitive state. The first responsibility 
is achieved through the passing of the user’s understanding, and the second responsi-
bility is accomplished by comparing the acknowledgement times against an operator 
performance model (OPM). A significant increase in the AT corresponds with a drop 
in performance and with a state of overload, which on its turn leads to increased as-
sertiveness of the workstation.  
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Fig. 3. Detecting an increase in acknowledgement time means a decrease in performance  

The OPM is crafted in a learning phase from the average AT of the user to signals of 
the CMS regarding elements that are signaled. The OPM determines the average re-
sponse (AVG) time and the standard error of means (SEM). Standard errors of means 
are important because they reflect how much sampling fluctuation, that is the extent 



to which a statistic takes on different values with different samples, a statistic will 
show.  

As stated, the OPM is crafted in a learning phase. Once the OPM is properly 
trained, the model defines a bandwidth of the average AT +/- SEM (see fig 3). Any 
AT that is larger than the average AT + SEM is a trigger to increase the authority of 
the system.   

3 Validation 

This section presents a preliminary validation of the described performance model for 
three reasons. First, although sensitive to momentary changes, the performance mod-
eling approach is criticized as being totally reactive. Secondly it is unlikely that a 
comprehensive database could be established [11]. Thirdly, we surmise that the de-
scribed signaling paradigm might demonstrate a low sample rate, since signaling is 
only done in those cases where reduction of uncertainty is achieved. Prior to running 
an experiment with the performance model, we applied the model using data from an-
other experiment and looked into these issues.  
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Fig. 4. The average acknowledge time and standard error of means per scenario for one WO 

During the evaluation of a novel workstation [14] with eight warfare officers (WO) of 
the Royal Netherlands Navy, acknowledgement-times were recorded. The evaluation 
was arranged to prove the power of the workstation. Mitigation strategies were not 
available. The workstation was designed around a simulation environment that fed 
environmental and entity data to a ship model containing sensors, weapons and a 
highly automated combat management system (CMS). The information flow from the 
CMS communicates information in the form of tracks that include position, velocity, 
identity, and threat-level. The CMS is able to build and retrieve track information 
thanks to its range of sensors and reasoning functionality. When new information re-
garding a track becomes available, the CMS signals this information to the work-
station only when the user has a different understanding of the situation. Said differ 
ently, no signaling is undertaken when the operator already identified a track as hos-



tile. After an acquaintance period of one day, the WO performed three scenarios. Fig. 
4 and table 1 summarize the average AT and the standard error of means for each 
scenario for one WO. These three scenarios served in the learning phase and the last 
column describes the outcome of the operator performance model by combining all 
three AT for the three scenarios. Accordingly, the OPM states that the operator should 
be aided by the CMS when the average response time reaches the threshold of 35.9 
seconds (=32.9 + 3 seconds).   
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Fig. 5. The acknowledgement time and the OPM as a function of the second scenario 
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Fig. 6. The number of signals for the second scenario displays quiet areas 

Fig. 5 demonstrates the acknowledgement times as a function of scenario two. The 
two horizontal lines illustrate the bandwidth of the model, i.e. the average plus or mi-
nus the SEM. Fig. 5 shows that for a total of 21 signals the operator requires in seven 
occasions more time to acknowledge a signal, and in twelve occasions the operator 
requires less time to acknowledge with respect to the OPM. At t = 148 seconds and at  
 



t = 605 seconds the mechanism is not triggering additional support of the system be-
cause the SEM absorbs slight fluctuation around the average. This seems beneficial in 
one case for not triggering, and another case (t = 605) it looks as if the mechanism 
should lead to a trigger. These results suggests that the OPM might facilitate trigger-
ing occasionally but, as stated by Scerbo [11], the model requires more information to 
become useful, and proactive.  

4 Task Load Model 

This section elaborates on environmental factors that lead to an expected increase of 
the workload. The current task load model (CTL) [15] is utilized for this purpose. The 
(CTL) model distinguishes three factors that have a substantial effect on the work-
load. The first factor, percentage time occupied (TO), has been used to assess work-
load in practice for time-line assessments. Such assessments are often based on the 
notion that people should not be occupied more than 70 to 80 percent of the total time 
available [16]. The second load factor is the level of information processing (LIP). To  
address the cognitive task demands, the cognitive load model incorporates the skill-
rule-knowledge framework of Rasmussen (1986) where the knowledge based compo-
nent involves a high load on the limited capacity of working memory. To address the 
demands of attention shifts, the cognitive load model distinguishes task-set switching 
(TSS) as a third load factor. The tree factors present a three-dimensional space in 
which human activities can be projected with regions indicating the cognitive de-
mands that the activity imposes on the operator. It should be noted that these factors 
represent task demands that affect the operator workload (i.e., it is not a definition of 
the operator cognitive state). Fig 7 shows from the perspective of the operational de-
mands a number of expected cognitive states. 

 
Fig. 7. The three dimensions of the task load model. Neerincx [14] distinguished several critical 
regions 

 



The workload cube may inspire us to find more workload indicators. First of all the 
number of information element, i.e. the tracks, may lead to an increase in the number 
of TS (switching between information elements for monitoring purposes) and TO. Fig 
6 provides a nice example of this case in the timeframe t =496 untill t = 694. The 
LIP, sometimes referred to as complexity, of the information element in C2 depends 
mainly on the identity (friend or foe) of a track. The identity often provides an inten-
tion, but sometimes the identity involves a lot of uncertainty. We state that uncertain 
elements lead to a higher LIP and table 1 provides an overview of the identities and 
expected LIP. For example, an increase in unknown tracks results in an increase in 
complexity since the operator has to put effort in the process to ascertain the identity 
of a track of which relatively little is known. The cognitive burden will be less when 
the same increase of track is labeled friendly.  

Table 1. The expected level of information of an important feature of a track 

Identity Presumable intention Expected LIP 
Pending System is gathering information Skill-based 
Unknown Unknown Knowledge-based 
Friendly Track of own nation Skill-based 
Assumed Friendly Presumably own nation track Knowledge-based 
Neutral Track is commercial Skill-based 
Suspect Track might attack Knowledge-based 
Hostile Track might attack Rule-based 

5 Workload Predictors 

Scerbo [11] mentions that a mitigation strategy should not be entirely reactive but 
preferably demonstrate a kind of pro-active behavior. This section describes an ap-
proach where such pro-activeness is achieved.  

In C2, tracks are the predominant information elements and it is common that a 
number of operators split the surrounding world into sectors. Usually these sectors are 
divided geometrically (e.g. range), but not necessarily and the sectors could easily 
consist other attributes (e.g. speed, identity). Each operator is responsible for informa-
tion elements in that sector, and the amount and identity of tracks provide an indicator 
of workload. The amount of information elements that is likely to enter the operator’s 
sector in the following few minutes could therefore be an indicator of future work-
load, so pro-active adaptation could be based on estimates of this variable. The CMS 
uses the trajectories of the tracks to infer a velocity vector (see fig 8). This velocity 
vector is extrapolated into the future which provides the estimated number of tracks in 
the future hence an indication for future workload.  
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Fig. 8. Information elements that are not in the operational space may eventually enter  

6  Conclusion 

Technological developments enable crews of navy frigates to work more efficiently 
and effectively. These complex, autonomous, and information-rich environments cre-
ates a competition for the operator’s attention between different information items, 
possibly leading to a cognitive overload. Limitations in human cognition are due to 
intrinsic restrictions and these may fluctuate from moment to moment depending on a 
host of factors including mental fatigue, novelty, boredom, and stress. The concept of 
adaptive automation promises a solution to the overwhelmed operator by shifting the 
amount of work between the human and the system in time, while maintaining a high 
level of situation awareness. One of the most critical challenges in developing adap-
tive human-machine collaboration concerns the design of a trigger mechanism. This 
paper discusses a performance model in the field of C2 and the proposed model hints 
towards a description of cognitive state. The evaluation shows that additional factors 
should be incorporated in the model. These are found by applying the cognitive task 
load model [15] to the field of C2 and a number of workload factors are identified. 
Also, it is suggested that triggering could be improved by a predictive measure.  

This study demonstrates that the design of a trigger mechanism is difficult and that 
a number of factors need to be incorporated. We will continue research and evaluation 
along this path, and combine critical workload factors to an operator model.  
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