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Chapter 1

Introduction

In this thesis, we examine the interaction between the maintenance frequency,

inventory of repairable spare parts and the capacity needed to repair these spare parts to

achieve high system availability levels in a cost effective way. Specifically, we focus on k-

out-of-N systems. We give the motivation for this research in Section 1.1. In Section 1.2 we

explain the research design including the research objective, research questions and research

approach. To position our research in this field we give an overview of related literature in

Section 1.3. We end this chapter, Section 1.4, with an outline for the remaining part of this

thesis.

1.1 Research motivation

Many of today’s technological systems, such as aircraft, military installations,

wafer steppers or advanced medical equipment are characterised by a high level of complex-

ity and sophistication. The users of such capital assets usually demand a high availability,

because the consequences of downtime can be serious. For example, downtime of a wafer

stepper in the semiconductor industry may cause loss of production while downtime of mili-

tary equipment during a military operation may lead to a mission failure. Availability is in-

fluenced by many decisions, both during system design (component choice, redundancy) and

during exploitation (maintenance frequency, amount of maintenance resources like service

engineers, equipment and spare parts). Because of the large number of factors influencing

both system availability and life cycle costs, the trade-off between system availability and

the costs involved is complex. A common approach is to decompose the overall trade-off in
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a set of subproblems. However, it is not always clear to what extent each subproblem can

be solved independently of the other subproblems.

An example of two related subproblems is the choice of maintenance frequency

on the one hand and the choice of spare parts inventories on the other. Traditionally,

these decisions are separated. Still, it can be argued that there is an interaction indeed.

Demand for spare parts arises from both preventive and corrective maintenance. Choosing

the preventive maintenance frequency partially determines the timing of the demand for

spare parts. A higher preventive maintenance frequency leads to higher maintenance cost,

but at the same time leads to a more predictable demand for spare parts and hence leads

to smaller spare part safety stocks. Therefore, it is worthwhile to examine the interaction

between spare part inventories and the maintenance frequency.

Another example is the choice of repairable spare part inventories on the one hand

and the capacity needed to repair these spare parts on the other. Although these seem to

be separate decisions, there is a clear interaction as has been noticed before in the literature

(see e.g. Sleptchenko (2002)). Low repair capacity means a high utilisation rate of the

repair shop, and therefore long spare part repair lead times. As safety stocks should cover

the demand during the lead time, this means that savings on the repair capacity lead to a

need for more spare parts and vice versa. In this thesis we study the interaction between

maintenance frequency, spare part inventories and repair capacity as described above. We

illustrate the occurrence of such interactions in practice by three examples.

Active Phased Array Radar (APAR)

The Active Phased Array Radar (APAR), see Figure 1.1, is designed and produced

by Thales and it is (amongst others) in use by the Royal Netherlands Navy. This radar has

a cubical shape and is fixed on top of the ship as opposed to the conventional radars that

turn around. On each of the four sides, it has a so-called face, consisting of thousands of

transmit and receive elements. Each face covers a quarter of a circle, and together they cover

the whole space around the frigate of which it is a part. A certain percentage of the total

number of elements per face is allowed to fail, without loss of the function of the specific

radar face. Therefore the faces of the radar can be seen as k-out-of-N systems, which means

that a system consists of N components while only k < N are needed for the system to

perform well enough. To maintain the radar, it has to be taken off of the frigate, because
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Figure 1.1: The Active Phased Array Radar (left) consists of four ’faces’, each having a
large number of elements (right). A face can be modelled as a k-out-of-N system.

repair and replacement of elements have to be done in a dust-free environment and because

of the special equipment and skills of personnel that are required. So the set-up costs for

maintenance are high. Therefore maintenance is performed periodically only and not upon

each element failure. Performing maintenance less often saves costs in terms of set-up costs.

Minimising the maintenance costs implies to do maintenance after N − k + 1 failures, so
after the system fails. This maintenance rule also implies the number of failed elements to

be high, compared to doing maintenance more often, and we therefore need to have more

spare components to limit the maintenance duration. However the spare components are

rather expensive too. Maybe, we can reduce this extra amount of spare parts by using extra

repair capacity, but this also costs money and so we have a cost trade-off. Minimising the

costs for maintenance set-ups, spare parts and repair capacity in order to achieve a certain

availability level of the APAR cannot be done by sequential optimisation. As a result, we

need explicit relations between maintenance frequency, spare part inventories and repair

capacity.

Active Towed Array Sonar (ATAS)

Another example which does not have as much components as the APAR is the

Active Towed Array Sonar (ATAS). This is a hose-like system dragged behind a frigate.



4 Introduction

It consists of several tens of hydrophones used to detect objects beneath the water surface

(such as submarines). This system is also a k-out-of-N system since not all hydrophones

need to be functioning to have the system perform satisfactorily. Just like the APAR it

is not possible to replace hydrophones on board of the frigate due to calibration activities

that need to be done together with the replacement.

Anaconda

A system similar to the ATAS is the Anaconda. The Anaconda consists of sev-

eral k-out-of-N systems within acoustic modules. Each module contains a number of hy-

drophones. Next to these hydrophones, six of the seven acoustic modules can be modelled

as k-out-of-N systems with low frequency amplifiers. The seventh module consists of a

k-out-of-N system with high frequency amplifiers. This latter k-out-of-N system of high

frequency amplifiers is considered in our case study, described in further detail in Section

6.4.1.

1.2 Research design

1.2.1 Problem definition and research objective

As stated in the previous section our research focus is on operational availability

and the key factors that influence this performance measure. We face the following problem

definition:

Although preventive maintenance optimisation is usually done separately from the spare

parts inventory optimisation and repair capacity choice, these problems are interrelated. It

is not clear how strong this relation is and which cost reduction is possible using a joint

optimisation.

Since, we do not know how strong the problems are interrelated we have to start

by gaining insight in this relationship. Then we are capable of developing a model for joint

optimisation. This leads us to the following research objective, which is:

To gain insight in the relation between maintenance frequency, spare parts inventories and

repair capacity, their joint impact on the operational availability and to develop joint



1.2 Research design 5

optimisation methods for the related costs that can balance these factors given a certain

desired level of operational availability.

1.2.2 Scope

It may be clear that it is impossible to address the research objective in general,

because the variety of possible applications with their system structure, spare parts network

structure and maintenance concept is huge. Also, because the integration of spare parts

inventory and maintenance optimisation is quite a novel topic (see Section 1.3), we restrict

ourselves to a certain class of models. To make a demarcation, we let us inspire by the

applications, the APAR, the ATAS and the Anaconda, as briefly discussed in Section 1.1.

We only consider a single location serving an installed base of technical systems.

We assume that each system has a single critical item. For example, for the APAR this is the

transmit-and-receive element, for the ATAS this is the hydrophone and for the Anaconda

this is the amplifier. The critical item is repairable and all items are repaired at a single

repair facility. The number of these critical items in each system is not constrained and we

also allow for redundancy. This kind of subsystems is known in the literature as k-out-of-N

systems. That is, a subsystem containing N identical components of which only k < N

components are needed to have the subsystem functioning satisfactorily.

1.2.3 Research questions and approach

To reach our goal we deal with the following research questions.

1. What is the relation between maintenance frequency, spare parts inventories and re-

pair capacity on the one hand and the operational availability on the other hand for a

single k-out-of-N system (Chapters 2 and 3)?

We start with a simple model for a k-out-of-N system. Initially, we assume that

the components do not show any wear-out, i.e., the time to failure of a single com-

ponent is exponentially distributed. Maintenance is initiated based on the number

of components that have failed. This simple model is inspired by the APAR, as we

explain in Chapter 2. Because of the model simplicity, we are able to derive an exact

method to calculate the system availability. We also develop a simple approximate

approach that requires less computation time and that is more suitable to deal with
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model extensions. We use Delphi to implement and test our algorithms. Because we

have both an exact and an approximate method, we can easily analyse the accuracy

of our approximations. We use our methods to get a basic insight in the relation

between maintenance, spare parts and repair capacity.

Next, we make a first model extension in Chapter 3 by allowing for component wear-

out, which we model as a two-phase failure process (again, inspired by the APAR).

That is, a component is either as good as new or degraded or failed. This is a serious

complication, because now we have more information on the system state that we

can use to initiate maintenance. Also, we can have two different types of components

in the repair shop (degraded and failed). Because an exact method is hard for this

extended model, we develop two approximate methods and we examine their accu-

racy by comparison to results from discrete event simulation. To this end, we build

a discrete event simulation model using the simulation software eM-Plant. We use

this model to examine the interaction between maintenance, spare parts and repair

capacity in more detail.

2. What is the relation between maintenance frequency, spare parts inventories and re-

pair capacity on the one hand and the operational availability on the other hand for

an installed base of k-out-of-N systems (Chapters 4 and 5)?

Just like we do for the single k-out-of-N system we start with a simple model for

systems consisting of components that do not show any wear-out (Chapter 4). We

assume that all systems are maintained by a single repair shop and that the spare

components available have to be shared by the different systems. Therefore, we do

not use the number of failed components to initiate maintenance as opposed to the

single k-out-of-N system, but instead we use a fixed maintenance interval. Compared

to the situation in which there is only one system we have a continuous parameter for

the maintenance frequency instead of a discrete parameter (i.e. the number of failed

components). For this model we develop an approximate method and use Delphi to

implement our algorithm. The accuracy of the algorithm is again tested by compari-

son with a discrete event simulation model built in eM-Plant.

We use a similar approach for the installed base of k-out-of-N systems with com-

ponents that are subject to wear-out, modelled as a two-phase failure process. We
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develop two approximations, one in which the repair rates from both phases are equal,

and one in which the repair rates are allowed to be different.

3. How can we find a cost effective balance between maintenance frequencies, spare parts

inventories and repair capacity in order to achieve a target availability level (Chapter

6)?

To find a cost effective balance between the maintenance frequency, spare parts and

repair capacity we use the models from Chapters 2 until 5 and we develop optimisa-

tion algorithms.

Our first algorithm (Section 6.2) is applicable for the models described in Chap-

ters 2 and 3. The algorithm optimises simultaneously three discrete parameters, the

number of failed components to initiate maintenance, the number of spare parts and

the repair capacity. We use standard operations research techniques that are avail-

able in literature. We are able to check the accuracy of these optimisation algorithms

by performing a full enumeration and check which combination of maintenance rule,

spare parts inventory and repair capacity gives us the target availability level at the

lowest cost.

Our second algorithm (Section 6.3) is applicable for the models described in Chapters

4 and 5. This algorithm simultaneously optimises two discrete parameters (i.e. the

number of spares and the capacity) and one continuous parameter (i.e. the time in-

terval between two maintenance periods). To check the accuracy of this algorithm we

have to discretise the continuous parameter such that we can perform a full enumer-

ation again to check which parameter setting provides the target availability against

the lowest cost.

4. Which implications does the use of ours models have for a practical situation, the

Anaconda (Section 6.4.1)?

In order to test our models for applicability in practice, we use a case study. As

subject for this case study we use one of the systems of the Royal Netherlands Navy,

the Anaconda. This system is mentioned briefly before in Section 1.1 and is described

in further detail in Section 6.4.1.
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Chapter 2:
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Chapter 3:

Single k-out-of-N system

with wear-out

Chapter 4:

Multiple k-out-of-N systems

no wear-out

Chapter 5:

Multiple k-out-of-N systems

with wear-out

Chapter 6:
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Chapter 6:
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Figure 1.2: Schematic representation of the models described in each chapter.

In Figure 1.2 an schematic representation is given of the models described together

with the relevant chapters.

1.2.4 Core concepts

In our research design, we used some terminology that needs further clarification.

Because we use this terminology throughout this thesis, it is important to define what we ex-

actly mean by ”availability”, ”spare part inventories”, ”repair capacity” and ”maintenance

policy”.

Availability

In literature, various notions of availability are described. In the system design

phase, the relevant notion is the inherent availability, defined as (see Sherbrooke (2004)):

Avi =
MTBF

MTBF +MTTR
(1.1)

where MTBF denotes the mean time between two successive system failures and

MTTR denotes the mean time to repair the system. This performance measure refers to
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corrective maintenance activities only and does not take into account the impact of preven-

tive maintenance activities during the exploitation phase. Therefore, a more appropriate

measure for the availability during the exploitation phase is the operational availability,

defined as (Sherbrooke (2004))

Avo =
MTBM

MTBM +MDT
(1.2)

where MTBM is the time between two successive maintenance activities (either

preventive or corrective) andMDT is the mean downtime. The mean time between mainte-

nance (MTBM) is generally less than the mean time between failures, because maintenance

is usually carried out to prevent system failures. The mean downtime (MDT ) can be more

or less than the mean time to repair.

On the one hand, preventive maintenance (e.g. cleaning) can take less time than

corrective maintenance. Also, downtime caused by a failure can be reduced using repair by

replacement, i.e., a failed component or module is replaced by a spare one after which the

system can be operational again whereas component repair is carried out off-line.

On the other hand, many resources (personnel, equipment, spare parts) are usually

needed for maintenance activities and waiting time occurs if one or more of the resources

needed is not immediately available.

To clarify these two effects, we can split the mean downtime MDT into two com-

ponents, the mean supply delay MSD and the mean maintenance timeMMT . Sherbrooke

(2004) refers to the mean supply delay as the waiting time for spares, because he focuses

on spare part inventory policies. However, in general the MSD may include waiting time

for other maintenance resources as well. Also, Sherbrooke (2004) decomposes the mean

maintenance time in the mean corrective maintenance time MCMT and the mean pre-

ventive maintenance time MPMT , which is correct if the MCMT (MPMT ) is the mean

corrective (preventive) maintenance time per maintenance occasion weighted with the per-

centage wc (wp)of maintenance occasions that is corrective (preventive). In other words, if

we maintain wcMCMT+wpMPMT =MMT , then we do not count any maintenance time

twice and thus our approach to characterise the MDT is correct. Hence, we can rewrite

the operational availability as

Avo =
MTBM

MTBM + wcMCMT + wpMPMT +MSD
(1.3)
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The operational availability is a crucial performance indicator during the exploita-

tion phase of capital goods. Sherbrooke (2004) argues that we can decompose the opera-

tional availability further into two components to simplify the analysis: the maintenance

availability Avmaint and the supply availability Avsupply which are defined as

Avmaint =
MTBM

MTBM +wcMCMT + wpMPMT
(1.4)

Avsupply =
MTBM

MTBM +MSD
(1.5)

If both components are close to one, the operational availability is approximately

equal to the product of the maintenance availability and the supply availability. Sherbrooke

argues that the supply availability is independent of the maintenance policy, and hence

he focuses on the supply availability for spare parts inventory optimisation. In this way,

Sherbrooke justifies that spare part inventory optimisation can be considered as a separate

sub-problem of the overall cost-availability trade-off.

In this thesis we focus on the operational availability. However, since the supply

availability is not independent of the maintenance policy, we do not split the operational

availability into maintenance availability and supply availability. If we use the shorthand

term availability in this thesis, we refer to the operational availability.

In the remainder of this section we discuss the influence of spare parts inventories,

repair capacity and maintenance policies on the supply availability and as a result also on

the operational availability as well as the interrelations.

Spare parts inventories

Spare part inventory optimisation has received a lot of interest in the scientific

literature for the following reason. Complex systems consist of many components and mod-

ules that are subject to failure and these components and modules can be very expensive.

Particularly if the installed base is geographically dispersed, this may lead to very high

spare parts inventory holding costs, because multiple stocking locations may be needed.

The objective of the spare parts inventory research is to determine how much of each spare

part (components and modules) to stock at which location in order to achieve a target
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availability level against the lowest spare parts investment costs. This leads to multi-item,

multi-location inventory models.

For the determination of the spare parts inventories it is important to make a

distinction between repairables and consumables. Repairables are components or modules

for which it is in principle technically possible and economically useful to be repaired after

failure. A failure may of course be severe, such that repair is not possible or profitable

anymore. Consumable items however are never repaired, either because it is technically

not feasible or because it is always cheaper to buy a new one. Usually, the most expensive

spares are repairable (thousands of Euros and even up to 100.000 Euros). Therefore, a lot of

spare parts inventory research has a specific focus on repairable items and take into account

return flows and repair throughput times. Our focus in this thesis is on the repairable spare

parts in a single item and single location model.

Repair capacity

Most models for spare parts optimisation do not explicitly take into account the

repair capacity. Of course, the capacity of service engineers and equipment is an important

factor determining throughput times and work-in-process in the repair process and hence

influencing repairable spare parts inventory levels. To simplify the analysis, most models

use the assumption of an infinite capacity repair shop, which can be interpreted as ample

capacity in practice. This may be the case if a repair shop has multiple activities and

spare parts repair has high priority such that waiting time hardly occurs. Because it is not

common that waiting times are negligible, another approach is to observe repair throughput

times in practice (net repair times plus waiting time for capacity) and to use these values

as gross repair times in an infinite capacity model.

This seems to be a practical and reasonable approach at first sight, but it also has

several drawbacks. First, repair throughput times are influenced by factors as the size of

the installed base, repair shop priority settings and working methods in the repair shop.

Therefore, we cannot assume that the throughput times as observed in history remain

constant in the future, and in fact we need a separate model predicting the repair shop

throughput times. Second, there is a cost trade-off between investment in spare parts

inventories and repair capacity that infinite capacity models do not cover. If we invest in

additional repair capacity, the throughput times of the repair process decrease and therefore
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we need less spare parts to achieve the same supply availability. The other way around, less

investment in repair capacity leads to the need for more investment in spare parts. Note

that investment in repair capacity does not necessarily mean additional service engineers or

repair equipment, but may also include training programmes for personnel.

In this thesis, we assume finite repair capacity. We focus on capacity for the repair

of spare parts and not on the capacity for maintenance activities. Since, we consider a single

item and a single location, we are dealing with dedicated repair capacity.

Maintenance policy

Maintenance is defined as (see e.g. Blanchard (1998) and Van Dijkhuizen (1998)):

Definition 1 a series of actions to be taken with the intention to retain an item in, or

restore it to, a state in which it can perform its intended function.

There exist many ways of performing maintenance. Generally, maintenance poli-

cies consist of two procedural parts: one prescribing when to act, and the second one

prescribing what to do. Actions may involve several repair or restoration modes, or replace-

ment of the item considered. Here restoration is used for actions that bring back the item in

a better condition than the one observed before the action. The simplest maintenance pol-

icy is to wait until failure and postpone any maintenance activity until this moment. This

principle is called failure-based maintenance and does only prescribe what actions should

be taken in case of a failure. In case of a constant or decreasing failure rate, it is intuitively

clear that such a policy is the best one can do. But even in case of an increasing failure rate

such a policy may be cost effective, if breakdown costs are relatively low. A failure-based

maintenance strategy implies that the number of maintenance activities is minimal. How-

ever, when the failure of a particular item may cause consequential damage to other parts

of the system, this may lead to higher (and unexpected) capacity requirements and often

to more spare parts to replace both failed and damaged items. Under these conditions, a

preventive maintenance policy may be preferred.

The availability and reliability of a system can be increased, compared to a system

maintained according to a failure-based maintenance strategy, by performing preventive

maintenance actions. These maintenance actions will in general increase the system’s re-

liability by decreasing its actual failure rate (e.g. due to bringing the system in a better
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state, representing a better condition). Preferably, preventive maintenance actions should

be planned such that they have the least influence on the operational availability of the sys-

tem. This type of maintenance is called time-based maintenance or age-based maintenance

and is generally the preferred strategy in case of an increasing failure rate. Often, policies of

this type are so-called critical point policies, i.e. an action is planned whenever the system

reaches a pre-specified age, or when a failure occurs before it reaches this specified age. The

actions can be revision/repair or replacement. In case a system is not used continuously,

it may be better to consider usage-based maintenance strategies. Basically, these are simi-

lar to time-based strategies, except that “actual operation time” is substituted for “time”.

Optimisation of these strategies often boils down to determining the optimal time between

two successive maintenance instants.

Using a time based-maintenance policy for replacements of items could imply that

the number of replacements is higher than strictly necessary. Therefore it may be more cost

effective to replace or perform maintenance depending on a system’s condition or state,

in which case we speak of condition-based maintenance. Again, such policies are often of

a critical point type: if the condition of an item is below a pre-specified level, this item

is either replaced by a new one or restored to an acceptable state. Clearly, in order to

be able to apply a condition-based policy, we have to monitor the system continuously or

to inspect it regularly. Thus in comparison to failure-based, age-based and usage-based

maintenance we need more information about the system, but hopefully this leads to a

better timing of maintenance activities. Clearly, the costs of inspection and monitoring

have to be outweighed by the costs of maintenance activities based on less information.

For k-out-of-N systems with a known condition we could wait until the number of

failed components passes a certain level of m failed components. This is called an m-failure

group replacement policy or failure limit policy.

All strategies discussed so far consider items in isolation. However, systems gen-

erally consist of many items, often structured in a hierarchical way. Clearly, it may be

advantageous from the point of view of effective resource use to combine maintenance ac-

tions on different items.

Block-replacement maintenance policies are usually based on age or usage time

criteria, but consider groups of the same items simultaneously. Clearly, under a block-

replacement policy more unfailed components are removed. However, no records are re-
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quired on individual component use, while also the fixed cost component of replacement

is less (efficient set-ups). Under reasonable conditions, the expected number of failures

under an optimal block-replacement policy appears to be less than under an optimal age-

replacement policy.

Often, when a system is down for maintenance on a certain item, there are oppor-

tunities to maintain other items at the same time. Hence, we speak of opportunity-based

maintenance. Again, this may save a lot of time when it is necessary to perform certain

preparations before maintenance actually takes place. But, contrary to block-replacement

policies, the trigger for action here is based on the required maintenance (corrective or

preventive) of at least one component. The total amount of downtime of a system will

often decrease as a result of combining several maintenance actions. Therefore, opportunity

based maintenance may have a positive effect on the availability of the system.

In this thesis we use two different maintenance policies. For the single system

(research question 1) we use an m-failure group replacement policy, see Chapters 2 and

3. In the Chapters 4 and 5, we consider an installed base of k-out-of-N systems with a

block-replacement policy.

1.3 Literature

In literature we did not find quantitative models that fully describe the interac-

tions between maintenance, spares and capacity. There is however extensive literature on

maintenance models, spare parts models or inventory models and there is literature on re-

pair capacity. We did find literature on setting a maintenance policy combined with the

amount of spare parts or setting a maintenance policy combined with the repair capacity.

Also literature on spare parts combined with repair capacity was found. In this section we

discuss the literature in these various areas of research.

1.3.1 Maintenance models

As stated in the previous section there exist many ways of performing maintenance.

The easiest is to wait until failure and postpone any maintenance activity until this moment,

failure-based maintenance. See for instance Pham, Suprasad and Misra (1996) for reliability
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and time between successive failures predictions for k-out-of-N systems.More about the

failure-based maintenance can be found in Pintelon and Gelders (1992), Pintelon, Gelders

and Van Duyvelde (1997).

For the preventive maintenance strategies we explained in the previous section that

there are two maintenance strategies based on a time duration. The first one is the age-based

maintenance strategy, based on the calendar time, and the second one is the usage-based

maintenance strategy, based on the operation time. Optimisation of these strategies often

boils down to determining the optimal time between two successive maintenance instants;

see e.g. Van Der Duyn Schouten (1996).

For the condition-based maintenance strategy, a commonly used technique to de-

termine optimal critical points as well as optimal actions of a condition-based maintenance

policy is through the use of Markov Decision Process modelling and analysis techniques, see

e.g. Hillier and Liebermann (1995). For the so-called m-failure group replacement policy

or failure limit policy, maintenance is done after a k-out-of-N system reaches a condition

of m failed components. This maintenance policy is described by Wang (2002).

As discussed in the previous section there are not only maintenance policies based

on a single item. For instance the block-replacement policy is based on multiple items.

A comparison between age replacement of individual items, and block-replacement of the

group, has been made by Barlow and Proschan (1996). Also opportunity-based maintenance

is based on maintenance on multiple items at the same time. Van Dijkhuizen (1998) studies

a variety of models for the clustering of maintenance activities.

Maintenance models are involved with decision variables like intervals for inspec-

tion, maintenance (perfect, minimal or imperfect repair) and replacements, see e.g. Abdel-

Hameed (1995). Sometimes the action is dependent on the number of failures, like in the

model presented by Love and Guo (1996) with Weibull failure rates. Bahrami-G, Price and

Mathew (2000) present a model to determine the optimal length of the maintenance interval

for equipment that deteriorates in time.

For extensive reviews we refer to Cho and Parlar (1991) (covering the period 1976-

1988 for multi unit systems), Dekker (1996) (covering the period 1960-1996) and Dekker,

Wildeman and Duyn-Schouten (1997) (for multi component systems). For an overview of
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single unit and multi unit systems see Wang (2002). In Kececioglu (1995) a large amount

of maintenance strategies and variants are described.

1.3.2 Spare parts models

For the spare parts models we distinguish two kinds of models. The first kind of

models is concerned with non-repairable spare parts, also called consumables. This means

that the item is not repaired and hence is disposed of after usage. For these kind of items we

have to answer questions like when to order spare parts and how many spare parts (see e.g.

Zipkin (2000)). Especially when we could save ordering costs by ordering different items at

the same time. For these models we refer to the reviews of Osaki, Kaio and Yamada (1981)

and Kennedy, Patterson and Fredendall (2002). The second kind of models is concerned

with the repairable spare parts, which are called repairables. In this thesis, we restrict

ourselves to the second kind, the repairables.

The main stream of repairable spare parts models is based on the METRIC (Multi

Echelon Technique for Recoverable Inventory Control) theory. METRIC is a technique de-

veloped initially by Sherbrooke (1968) for applications into the US Air Force. The models

basically focus on determining optimal inventory levels for items that together determine

the optimal availability of a complex system or installation under budget constraints. The

initial models were multi-item and multi-echelon in nature but did consider only one level

of a complex product structure (single indenture models). Extensions considered multi-

indenture models and hence distinguished failures on the level of assemblies, subassemblies

or parts. This raises interesting but highly complex questions as to whether parts, sub-

assemblies or sometimes even assemblies should be kept in stock. For an extensive overview

of the history of METRIC based models, the reader is referred to Guide Jr and Srivastava

(1997) and Cho and Parlar (1991). For a more recent overview of spare parts models see

Kennedy, Patterson and Fredendall (2002).

The basic trade-off in METRIC models concerns the balancing between achieving

a target system availability and the overall investment in spares. Important in the analysis

is the system approach, instead of focussing on individual item service levels it is the contri-

bution of each item to the overall system availability that counts. A typical outcome of the

optimisation procedures is that cheap items are stocked in much larger quantities whereas
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expensive items require a more careful investment strategy.

METRIC basically provides a foundation for deciding on the initial investments in

spare parts. An extension of the METRIC models to include resupply of spares instead of

the initial supply has been made by Rustenburg (2000). During the life cycle, consumable

and condemned items have to be procured for which often again a limited budget is available.

Rustenburg discusses close-to-optimal investment strategies during the life cycle for these

items, based on similar considerations as in the static METRIC models, i.e. a limited

budget constraint and with the aim to maximise overall system availability.

For a description of the different METRIC extensions the reader is referred to

Sherbrooke (2004) and Muckstadt (2005).

1.3.3 Interaction between maintenance and spare parts

Limited spares availability is taken into account simultaneously with the mainte-

nance interval by e.g. Kabir and Al-Olayan (1996), Kabir and Farrash (1996) and Park

and Park (1986). All these papers deal with an age based maintenance strategy and non

repairable components. Chiang and Yuan (2001) try to find an optimal inspection period

combined with the best spare part replenishment period and stock level. Brezavšček and

Hudoklin (2003) present a model with a joint optimisation of a block replacement interval

and the maximum inventory level. In Chelbi and Aït-Kadi (2001) the block replacement

interval, the optimal stock level as well as the replenishment cycle are optimised simultane-

ously using a kind of enumeration method. Again the components are not repairable, which

is encountered in most models that are concerned with joint optimisation of a maintenance

policy and a spares provisioning policy. The same holds for the few maintenance policies

mentioned by Kececioglu (1995) in which spare parts provisioning is mentioned. In those

cases with non-repairable components, the repair shop is not modelled. Sarkar and Sarkar

(2001) consider a one-component model with maintenance based upon periodic inspections

where the function of the component, degraded or failed, is taken over by a spare one.

Armstrong and Atkins (1996) and Armstrong and Atkins (1998) also consider

maintenance combined with spares. They assume only to order one spare component that is

replaced when the used one has a certain age. If the spare is delivered before the component

fails, it is kept in inventory. If failure before the ordering moment occurs it is possible,
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against higher cost, to get a spare quicker. The authors determine the cost per cycle in an

analytical way.

1.3.4 Interaction between maintenance and repair capacity

Keizers (2000) proposes a model for the maintenance organisation of the Royal

Netherlands Navy, in which he distinguishes three kinds of maintenance and repair: pre-

ventive maintenance projects, corrective maintenance and repair of repairable spares. For

this last category a percentage of the resource capacity is allocated beforehand. The re-

maining part of the capacity is dedicated to corrective maintenance activities, which have

a high priority, and to preventive maintenance projects. Depending on the due dates of

these preventive maintenance activities the projects have to be subcontracted to finish all

projects in time.

In Zhang (1999) a system is considered with a single working unit and a cold

stand-by unit. The units are repairable, although there is no perfect repair (a unit is not

as good as new after repair) and there is limited repair capacity. Each time a unit fails the

repair time increases and the expected time until the next failure decreases. In the paper

the replacement time of the system is determined, considering the costs for repair and the

costs for replacement. A similar problem is found in Lam (1997), in which the replacement

time is determined based on the working age or based on the number of failures.

1.3.5 Interaction between spare parts and repair capacity

To support the trade-off between spare part inventory investment and component

/ module repair capacity, models with finite repair capacity (modelled as multi-class, multi-

server queues) have been developed. Gross, Miller and Soland (1985) were among the

first to realise that the combination of inventory and queueing models might lead to useful

insights in the trade-off with respect to maintenance flexibility achieved either through

stocks or through sufficient capacity. They attempt to find a cost-optimal combination of

the number of spare parts and the number of repair channels, under the constraint that a

target service level is met. The cost function is a linear combination of the number of spare

parts and the number of repair channels. They assume constant failure and repair rates

and consider N identical systems consisting of a single item, in a multi-echelon setting.

For a more extensive overview of the model developments between 1983 and 1989, we refer
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to Cho and Parlar (1991). More recently Kim, Shin and Park (2000) have presented an

iterative algorithm to determine a cost optimal combination of repair capacities and spare

part levels. This model is a single item, multi echelon model as well. They claim that a

similar modelling technique can be used to tackle more complicated situations, like lateral

supply for instance.

Ebeling (1991) proposes a single echelon, multi-item model. The installed base

consists of N identical systems, each having of M different components. Each component

has its own resource capacity, which consists of at least one repair channel. Because of

these dedicated repair capacities, the model remains single item. A drawback is that the

interaction between the repairs of various components is not taken into account. Avsar and

Zijm (2003) consider more general multi-echelon resource structures in which each repair

facility may be a queueing network, and show how under Poisson failure rates stock levels at

all echelons can be optimised. A similar approach can be used for multi-indenture structures

and for combinations of multi-echelon and multi-indenture structures, see Zijm and Avsar

(2003).

In Muckstadt (2005) a model is developed to find stock levels for multiple items for

which the expected holding and backorder cost are minimised. Sleptchenko (2002) deals with

the optimisation of the number of spare parts and repair capacity in a multi-item system.

He describes what priority rules are needed in the repair shop in order to minimise the cost

investment (see Sleptchenko, Van der Heijden and Van Harten (2005)). He also shows that

repair priorities may seriously reduce the spare parts investment needed to obtain a target

supply availability. To use this model for supply availability optimisation as a component

in operational availability optimisation, a prerequisite is that component repair capacity is

not shared with maintenance capacity. If the same service engineers and/or equipment is

used for both (preventive) maintenance and component repair, the decomposition of the

availability into maintenance availability and supply availability as proposed by Sherbrooke

is not valid anymore.

1.3.6 Interaction between maintenance, spares and repair capacity

The importance of integrating the maintenance strategy with spare parts and

repair capacity has been pointed out in the literature, see for example Gross, Miller and
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Soland (1985) and Dinesh Kumar et al. (2000). However, only very few publications describe

quantitative models. Natarajan (1968) considers a single unit with spares and a number

of repair facilities. By determination of the time to failure the availability is determined.

Furthermore, Wang (1995), Wang and Wu (1995), Wang (1994a), Wang (1994b), Wang

(1993) consider a single system consisting of a number of operational components and

a number of stand-by components. All components are identical. Whenever one of the

components fails, a stand-by component takes over and the failed one immediately sent to a

repair shop with finite repair capacity for repair. They optimise simultaneously the number

of stand-by components, number of spares and the number of repairmen. These models are

the ones that come the closest to our problem definition. The strongest resemblance is found

in Wang (1993) in which there is a number of operating units, a number of warm stand-by

units and a number of cold stand-by units (i.e. spare units). Choosing the failure rate of

the operating and warm stand-by units to be equal, we have a redundant system in which

replacements are done after each component failure (one warm stand-by component turns

into an operating unit and a cold stand-by unit becomes warm stand-by). However, they do

not cover the interactions we consider in this thesis. They do consider a parameter affecting

the time until a system failure, namely, the number of warm stand-by units; but they do

not have a parameter for the maintenance frequency. Therefore, there is no parameter that

influences the number of maintenance set-ups (maintenance is done after every unit failure)

and as a consequence there is no parameter that affects the total maintenance costs.

To the best of our knowledge there are no books or papers that describe quanti-

tative models concerning the integration of maintenance strategy, spare parts management

and repair capacity.

1.4 Outline

The outline of this thesis is as follows. We start in Chapter 2 with the description

of a model for a single k-out-of-N system that determines the system availability for a

given maintenance strategy, a given number of spare parts and given repair capacity. In

this chapter we assume that the components have a constant failure rate. This model is

extended in Chapter 3 to a model for a single k-out-of-N system in which the components

are subject to wear-out.
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The same is done in the Chapters 4 and 5 respectively for an installed base con-

sisting of multiple identical k-out-of-N systems without component wear-out and with com-

ponent wear-out. These systems share the same spare parts and capacity.

For each of the models from Chapters 2 till 5, we develop optimisation algorithms

in Chapter 6 so that we can find the most cost effective combination for the maintenance

strategy, number of spares and capacity without having to compute all possible combina-

tions. With these optimisation models we answer the research goal of this thesis. To show

the applicability of the models in practice we apply the model to a specific military system

called the Anaconda in Section 6.4.1.

We end this thesis with conclusions and suggestions for further research in Chapter

7.



22 Introduction



Chapter 2

Single system without wear-out

We begin this chapter1 by describing the k-out-of-N system with hot stand-by

redundancy and its maintenance process in more detail. Hot stand-by redundancy means

that all non failed components are functioning, even if this number is larger than k. So,

all components have the same failure rate. The expected number of component failures

decreases over time. Knowing the number of failed components at each moment in time

we are dealing with a condition-based maintenance strategy. The condition on which the

maintenance initiation is based is the condition of the system, the components in total, and

not the individual components.

At the start of a system uptime, all N components are as good as new. The failure

process of each component is characterised by a negative exponential distribution with rate

λ, where we assume that the component failure processes are mutually independent. The

system functions properly as long as at most N − k components have failed. To prevent
system downtime, maintenance is initiated if m ≤ N − k components have failed. It seems
reasonable to choose m = N − k if the maintenance set-up costs are high, but a lower
number may be chosen if some lead-time L ≥ 0 is required between maintenance initiation
and the actual start of maintenance activities. Looking at the naval defence systems that

motivated our research, this lead-time may be interpretted as the time needed for a ship to

come to the harbour to receive maintenance. The system is assumed to be in use during

this lead-time and it is therefore likely to degrade further.

1This chapter is based on the paper: K.S. de Smidt-Destombes, M.C. van der Heijden and A. van Harten
(2004); On the availability of a k-out-of-N system given limited spares and repair capacity under a condition
based maintenance strategy; Reliability Engineering and System Safety ; 83 (3); 287-300.
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The actual maintenance activities consist of replacing all failed components by

spares. However, if insufficient spares are available in an as-good-as-new condition, the

maintenance completion is delayed until sufficient failed ones have been repaired. We assume

that the components have independent and identical exponentially distributed repair times

with rate μ. The capacity for repairing components is limited and equal to c parallel

channels. For the time being, we ignore the replacement time of the components after

repair (see Section 2.4.5 for an extension in this direction). When all failed components are

replaced, the system cycle starts over again. During the time until the next maintenance

initiation (i.e., when m components have failed) plus the lead-time L, the same capacity c is

available for restoring components (see Section 2.4.2 for a generalisation to different repair

capacities during system maintenance time and non-maintenance time). It is not guaranteed

that the repair capacity is always sufficient to repair the remaining spares during the system

uptime, so the number of available spares when maintenance starts may be less than S.

Our analysis in this thesis is based on the following additional assumptions:

• The failure process of components continues during the maintenance set-up time L,
even if more than N − k components have failed; the reason is that the APAR radar
is always able to make partial observations in that case, so that the system will not

be shut down; we refer to Section 2.4.3 for relaxing this assumption.

• During maintenance, all failed components are replaced by new components; if it

would be optimal to replace less components (say restoring up to N1 < N), we have

in fact an k-out-of-N1 system; then, we conclude that too many components have

been included in the system design. This assumption can be relaxed in the case the

components are subject to wear-out, see Section 3.4.2.

In fact, we have two interrelated cycles, namely, a cycle for the k-out-of-N system

(uptime and downtime) and a cycle for the component repair process, see Figure 2.1.

The system cycle starts with all N components as good as new. After maintenance

initiation and the set-up period L, a number of n components have failed (m ≤ n ≤ N).
During maintenance, these n components are replaced. Then, the system is restored and the

next cycle starts. The spares cycle starts at the beginning of the maintenance period, just

before the k-out-of-N system comes in for maintenance. Then, s spare parts are available

(0 ≤ s ≤ S), while the remaining S − s spares still have to be repaired. If sufficient spares
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# failed comp.
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# failed comp.
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0 m m 00
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n1 n2

operational time operational timeL Lmaint. maint.

Figure 2.1: Interrelated cycles for a single system. The first cycle concerns the system
components. The second cycle concerns the spare components.

are available (s ≥ n), all failed components are replaced and the system is operational again
without delay. Otherwise, the system is down during the time to repair the remaining n−s
components needed. After maintenance completion, the repair process continues until the

end of the cycle, i.e. just before the next maintenance period starts.

It is clear that the number of components at the start of a spares cycle depends

on the number of components repaired during the cycle and the number of spares to be

repaired at the start of the preceding cycle. Therefore, these cycles are interrelated. As a

solution, we will derive the steady state distribution of the number of spares s at the start of

a spares cycle. An exact steady state distribution provides us a way to an exact availability

analysis.

The operational availability equals the expected uptime during a cycle (i.e., when

at least k components are operational) divided by the expected cycle length. The expected

uptime equals the expected time until maintenance initiation E [Tm] plus the expected time

during the set-up time L that at least k components are operational E [Um]. So, we find:

AVm,S,c =
E [Tm] +E [Um]

E [Tm] + L+E [Dm,S,c]
(2.1)

where E [Dm,S,c] is the expected maintenance time to restore the system to the new state.

Equation 2.1 implies that it is sufficient to find exact expressions for E [Tm], E [Um] and

E [Dm,S,c] as function of the three decision variables m, S and c.

We develop an exact algorithm for determining the system availability in Section

2.1 in case the lead-time is equal to zero and in case the lead-time is larger than zero.

However, it is not easy to determine the expressions needed for the availability, E [Tm],

E [Um] and E [Dm,S,c] (see equation 2.1). Therefore we also describe an approximation to

find the same system availability in Section 2.2. The results of both models are discussed in
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Section 2.3. We end this chapter with Section 2.4 in which some variations on the described

model are considered.

2.1 An exact algorithm

We first derive the expressions for L = 0 in Section 2.1.1, next we extend our

analysis to a positive lead-time in Section 2.1.2.

2.1.1 Zero lead-time (L = 0)

As the lead-time L = 0 we have E [U ] = 0. Hence, we only have to calculate E [Tm]

and E [Dm,S,c]. The operational time until maintenance initiation Tm can be derived by

splitting this period in the time until the first component failure, the time between the first

and the second failure, etc. The memoryless property of the exponential distribution gives

us that the time between the ith and the (i+ 1)th failure is exponentially distributed with

rate (N − i)λ. So, the expected time until the mth failure equals

E [Tm] =
m−1X
i=0

1

(N − i)λ (2.2)

To derive the expected maintenance duration E [Dm,S,c], we condition on the number of

available spare parts s just before the system arrives for maintenance at the repair shop.

Then, the system downtime equals the time for restoring the m− s spares needed to repair
the system:

E [Dm,S,c] =
SX
s=0

E [Rc (m− s, S − s+m |s)]πm,S,c (s) (2.3)

where Rc (m− s, S − s+m |s) is the time to restorem−s spares using c servers if S−s+m
components are waiting to be repaired, and πm,S,c (s) is the steady state probability of

having s spares ready for use at the start of the maintenance period (just before the system

arrives), given m, S and c.

Below, we derive expressions for the two variables involved in equation 2.3. We

start with E [Rc (i, j)], where we omit the conditioning variable s since it does not contain

information and where we write i = m− s and j = S − s+m for simplicity. As obviously

E [Rc (i, j)] = 0 if i ≤ 0, we focus on the case i > 0. Then, we can determine the expected
maintenance period analogously to the derivation of E [Tm] by splitting the period in the
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time until the first repair completion, the time between the first and the second repair

completion, etc. We consider two situations, j ≤ c and j > c. If j ≤ c, the time to restore
the components is determined by the number of components to be restored j and not by the

repair capacity c, so the mean time until the next repair completion equals 1
jμ . Otherwise,

the repair capacity is the bottleneck, and the mean time until the next repair completion

equals 1
cμ . In fact, we have the recursive relation

E [Rc (i, j)] =
1

min {j, c}μ +E [Rc (i− 1, j − 1)] (2.4)

We can elaborate this, finding the expression

E [Rc (i, j)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i ≤ 0
i−1P
h=0

1
(j−h)μ if 0 < i ≤ j ≤ c

i
cμ if j > c and i ≤ j − c
j−c
cμ +

i−j+c−1P
h=0

1
(c−h)μ if j > c and j − c < i ≤ j

(2.5)

We determine the steady state probabilities πm,S,c (s) of having s spares ready for use

at the start of the maintenance period (just before the system arrives) using a Markov

chain. Because both failure and repair times are exponentially distributed, the transition

probabilities solely depend on the state s at the beginning of a spares cycle. Each entry

(i,j) of this matrix equals the probability qi,j that j spares are available at the start of a

maintenance period while i spares were available at the start of the previous maintenance

period (i, j ∈ {0, .., S}).
For computational efficiency, we first aggregate all states s ≤ m in a single state

M , so the dimension of the Markov chain reduces from S+1 to S−m+1. The aggregation
is useful, because we have insufficient spares available to repair the system immediately for

all s ≤ m. Therefore, the number of spares to be repaired when the new system uptime

starts equals S anyway, and so the probability of being in a specific state at the start of

the next cycle is the same for all s ≤ m. We disaggregate the aggregate state M into states

s = 0, 1, ..,m later on. Note that we have πm,S,c (M) = 1 as a special case if S < m, because

we always have insufficient spares.

We calculate the transition probabilities qi,j by conditioning on the time to main-

tenance initiation Tm = t. Given that i spares are available just before a maintenance

period starts and m spares are needed for repair, the number of spares to be repaired just
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after maintenance has started equals S− i+m. However, if insufficient spares are available
(i < m), we have to wait until the number of spares available have increased to m, i.e. until

the number of spares to be repaired has reduced to S. Hence, the number of spares to be

repaired at the start of a system uptime equals min {S, S − i+m}. This number has to be
reduced to S − j during the period Tm to arrive in spares state j at the start of the next

cycle. Therefore, we have

qi,j =

∞Z
t=0

fm(t)Hc (min {S, S − i+m} , S − j, t) dt (2.6)

where fm (t) is the density function of Tm and Hc (a, b, τ) is the probability that the number

of failed spares reduces from a to b during τ , i.e. exactly a− b out of a spares are repaired
during τ with c servers. As j = M represents the aggregate state 0, ..,m, Hc (a, S −M, τ)
equals the probability that at most a−S+m out of a spares are repaired during τ . Because

the number of component failures during t has a binominal distribution with parameters N

and 1− e−λt, we can derive that the density function fm (t) can be written as:

fm (t) =

µ
N

m− 1

¶
(N − (m− 1))λe−(N−(m−1))λt

³
1− e−λt

´m−1
(2.7)

Regarding Hc (a, b, τ), we first note that only a positive number of components can be re-

stored during τ , so that Hc (a, b, τ) = 0 if b > a. If a = b, no components have been restored

during τ . As the repair rate equals min {b, c}μ, we have that Hc (b, b, t) = e−min{b,c}μt. For
b < a. we distinguish two cases: a ≤ c (all failed components are being repaired imme-
diately) and a > c (c repairs are started initially). In the first case, the number of failed

items remaining after a period t is binomially distributed with parameters a and e−μt. In

the second case, the number of spares to repair exceeds c and only c spares can be repaired

simultaneously. We derive Hc (a, b, t) as follows. Let τ be the time at which the first repair

is completed. In the remaining time t− τ , a− 1− b out of i− 1 failed components have to
be repaired. Hence,

Hc (a, b, t) =

tZ
τ=0

cμe−cμτHc (a− 1, b, t− τ) dτ (2.8)

We distinguish two situations, b < c and b ≥ c. In the first situation, we start with
Hc (c+ 1, b, t):
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Hc (c+ 1, b, t) =

tZ
τ=0

cμe−cμτHc (c, b, t− τ) dτ (2.9)

=

tZ
τ=0

cμe−cμτ
µ
c

b

¶
e−bμ(t−τ)

³
1− e−μ(t−τ)

´c−b
dτ

=
c−bX
i=0

µ
c

b

¶µ
c− b
i

¶
(−1)i cμe−(b+i)μτ

tZ
τ=0

e−(c−b−i)μτdτ

=
c−b−1X
i=0

"µ
c

b

¶µ
c− b
i

¶
(−1)i

cμe−(b+i)μτ
¡
1− e−(c−b−i)μt

¢
(c− b− i)μ

#

+

µ
c

b

¶
(−1)c−b cμte−cμt

=
c−b−1X
i=0

"µ
c

b

¶µ
c− b
i

¶
(−1)i

c
¡
e−(b+i)μτ − e−cμt

¢
c− b− i

#
+

µ
c

b

¶
(−1)c−b cμte−cμt

This way, we can calculate Hc (a, b, t) recursively for a = c+2, a = c+3 etcetera.

If c ≤ b < a we start with a = b+ 1:

Hc (b+ 1, b, t) =

tZ
τ=0

cμe−cμτHc (b, b, t− τ) dτ =

tZ
τ=0

cμe−cμτe−cμ(t−τ)dτ = cμte−cμt (2.10)

Again, we can calculate Hc (a, b, t) recursively for a = b + 2, a = b + 3 etcetera

resulting in:

Hc (a, b, t) =
(cμt)a−b

(i− j)! e
−cμt (2.11)
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Combining it all together, we find that:

Hc (a, b, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
a < b ∨
a, b < 0

e−min{b,c}μt a = b¡
a
b

¢
e−bμt

¡
1− e−μt

¢a−b
b ≤ a ≤ c¡

c
min{b,c}

¢ (−1)c−min{b,c}(cμt)a−max{b,c}
(a−max{b,c})! e−cμt

+
c−b−1P
g=0

¡c
b

¢¡c−b
g

¢
(−1)g

µ³
c

c−b−g

´a−c ¡
e−(b+g)μt − e−cμt

¢
−
a−c−1P
h=1

ca−c

(c−b−g)h
(μt)a−c−h

(a−c−h)! e
−cμt

¶ b ≤ a
∧ a > c

(2.12)

Using equations 2.7 and 2.12, we can find an explicit (but complicated) expression for the

transition probabilities qi,j as defined by equation 2.6.

Next, we have to derive the steady state probabilities πm,S,c (i) for the states

0 ≤ i ≤ m. We can use the following set of equations to derive these probabilities from the

steady state probabilities πm,S,c (i), m+ 1 ≤ i ≤ S and πm,S,c (M) for the aggregate state

representing the states 0 ≤ i ≤ m:

πm,S,c (i) = πm,S,c (M) qM,i +
SP

j=m+1
πm,S,c (j) qj,i if 0 ≤ i ≤ m (2.13)

For the transition probabilities qM,i, we use the fact that S spares have to be repaired at

the start of a system uptime if the spares state at the start of the cycle was s ≤ m, no
matter what the exact value of s was:

qM,i =

∞Z
t=0

fm (t)Hc (S, S − i, t) dt (2.14)

Note that, as usual in Markov chains, we have a dependent system of equations, which

we can solve by replacing one arbitrary equation by the condition that the entries of the

vector πm,S,c (i) add up to one. We can solve this system of equations using any standard

numerical procedure, see e.g. Press [2002].

Combining all stationary probabilities πm,S,c(s) with equation 2.5 we findE [Dm,S,c]

from equation 2.3.
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2.1.2 Positive lead-time (L > 0)

To solve the case L > 0, we extend our expressions. There are three consequences

of a positive set-up time. Firstly, we need the expected system uptime during maintenance

set-up time E [Um], see equation 2.1, as the system fails if more than (N−k−m) components
fail during L. Secondly, the number of failed components in the system upon arrival at the

repair shop is uncertain, because we have an additional number of component failures during

L. Thirdly, the repair shop has more time to restore spares.

As the set-up time does not affect the expected operational time until maintenance

initiation Tm, we can still use equation 2.2. The expected uptime during L depends on

maintenance policy m. As the number of component failures during t (0 ≤ t ≤ L) has a
binomial distribution with parameters N − m and e−λt, the probability that the uptime

exceeds t equals the probability that the number of failures during t is at most N −m− k.
From this observation, we can derive that

E [Um] =
N−m−kX
i=0

iX
j=0

µ
N −m

N −m− i

¶µ
i

j

¶
(−1)j 1− e

−(N−m−i+j)λL

(N −m− i+ j)λ (2.15)

For the expected maintenance duration E [Dm,S,c], we extend equation 2.3 by conditioning

on the number of n failed components in the system as well. Then, the expected system

downtime equals the time needed to restore the n− s spares that are needed to repair the
system:

E [Dm,S,c] =
SX
s=0

NX
n=m

E [Rc (n− s, S − s+ n |n, s)]Pm (n)πm,S,c (s) (2.16)

where Pm(n) is the probability that n components have failed at the start of system main-

tenance, given initiation upon failure of the mth component. This is the probability that

n −m components failed during the lead-time L. As the number of failures is binomially

distributed with parameters N −m and 1− e−λL, we find

Pm(n) =

µ
N −m
n−m

¶
e−(N−n)λL

³
1− e−λL

´n−m
(2.17)

As the expression for E [Rc(i, j)] remains identical to equation 2.5, we only have to modify

the derivation of the steady state probabilities πm,S,c(i). To this end, we have to modify the

transition probabilities qi,j , because we have to condition on both the time to maintenance
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initiation Tm and the number of component failures during the lead-time L:

qi,j =
NX
n=m

Pm(n)

∞Z
t=0

fm(t)Hc (min {S, S − i+ n} , S − j, t+ L) dt (2.18)

We derive an explicit expression for the transition probabilities qi,j from equation 2.18,

using equations 2.7, 2.12 and 2.17. We can rewrite qij such that the integral is eliminated.

We distinguish the case i ≤ m and i > m. In the first case equation 2.18 can be written as:

qij =
NX
n=m

Pm(n)

∞Z
t=0

fm(t)Hc (S, S − j, t+ L) dt =
∞Z
t=0

fm(t)Hc (S, S − j, t+ L) dt

Substituting fm (t) as defined in equation 2.7 and Hc (S, S − j, t+ L) as defined
in equation 2.12, we find expression 2.19 if j = 0 or S ≤ c and expresison 2.20 if j > 0 and
S > c.

µ
N

m− 1

¶
(N −m+ 1)λ

µ
S

S − j

¶
· (2.19)

m−1X
h=0

jX
g=0

Ãµ
j

g

¶
(−1)g+h e−(min{c,S−j}+g)μL

(N −m+ 1 + h)λ+ (min {c, S − j}+ g)μ

!

µ
N

m− 1

¶
(N −m+ 1)λ

∙µ
c

min {c, S − j}

¶
(cμ)S−max{c,S−j} · (2.20)

m−1X
h=0

S−max{c,S−j}X
d=0

(µ
m− 1
h

¶
(−1)c−min{c,S−j}+h LS−max{c,S−j}−de−cμL

(S −max {c, S − j}− d)! ((N −m+ 1 + h)λ+ cμ)d+1

)

+

µ
c

S − j

¶c−S+j−1X
g=0

(µ
c− S + j

g

¶Ãµ
c

c− S + j − g

¶S−c m−1X
h=0

½µ
m− 1
h

¶
·Ã

(−1)g+h e−(S−j+g)μL
(N −m+ 1 + h)λ+ (S − j + g)μ −

(−1)g+h e−cμL
(N −m+ 1 + h)λ+ cμ

!)

−
S−c−1X
h=1

cS−cμS−c−h

(c− S + j − g)h
m−1X
f=0

S−c−hX
d=0

µ
m− 1
f

¶
·

(−1)f+g LS−c−h−de−cμL

(S − c− h− d)! ((N −m+ 1 + f)λ+ cμ)d+1

!)#
In the second case, i > m, we split equation 2.18 into two parts:
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qi,j =
NX
n=m

Pm(n)

∞Z
t=0

fm(t)Hc (min {S, S − i+ n} , S − j, t+ L) dt

=
i−1X
n=m

Pm(n)

∞Z
t=0

fm(t)Hc (S − i+ n, S − j, t+ L) dt

+
NX
n=i

Pm(n)

∞Z
t=0

fm(t)Hc (S, S − j, t+ L) dt

For the latter part we use the expression found in case 1. For the first part, we

find:

µ
N

m− 1

¶
(N −m+ 1)λ

⎡⎣min{N,i−1,c−S+i}X
n=m

½
Pm(n)

µ
S − i+ n
S − j

¶
· (2.21)

m−1X
h=0

S−n−i+jX
g=0

(µ
m− 1
h

¶µ
n− i+ j

g

¶
(−1)g+h e−(S−j+g)μL

(N −m+ 1 + h)λ+ (S − j + g)μ

)⎫⎬⎭+
min{N,i−1}X

n=1+min{i−1,c−S+i}

⎧⎨⎩Pm (n)
µ

c

min {c, S − j}

¶
(cμ)S−i+n−max{c,S−j}

m−1X
h=0

S−i+n−max{c,S−j}X
d=0Ãµ

m− 1
h

¶
(−1)c−min{c,S−j}+h LS−i+n−max{c,S−j}−de−cμL

(S − i+ n−max {c, S − j}− d)! ((N −m+ 1 + h)λ+ cμ)d+1

!

+Pm (n)

µ
c

S − j

¶c−S+j−1X
g=0

(µ
c− S + j

g

¶Ãµ
c

c− S + j − g

¶S−i+n−c
·

m−1X
h=0

µ
m− 1
h

¶Ã
(−1)g+h e−(S−j+g)μL

(N −m+ 1 + h)λ+ (S − j + g)μ −
(−1)g+h e−cμL

(N −m+ 1 + h)λ+ cμ

!)

−
S−i+n−c−1X

h=1

⎧⎨⎩cS−i+n−cμS−i+n−c−h(c− S + j − g)h
m−1X
f=0

S−i+n−c−hX
d=0

½µ
m− 1
f

¶
·

(−1)f+g LS−i+n−c−h−de−cμL

(S − i+ n− c− h− d)! ((N −m+ 1 + f)λ+ cμ)d+1

)!))#
Given these modified transition probabilities, the approach remains the same.

First, we aggregate all spare states s ≤ m to a single state M , then we solve the re-

duced Markov chain and finally we derive the state probabilities for s ≤ m from equation

2.13.
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2.2 An approximation

Deriving the exact system availability given the decision variables S, c and m

is not easy, because the expressions for the expected maintenance duration E [Dm,S,c] are

complex. Therefore, we present an approximation in this section. We reduce the complexity

by calculating the first two moments of the key stochastic variables involved rather than

calculating the complete distribution. This approximation is based on the empirical finding

that many stochastic systems are not very sensitive to the higher moments of the underlying

probability distribution functions; see e.g. Tijms (1994).

The expected maintenance time E [Dm,S,c] depends on the number of available

spares just before the system arrives for maintenance, denoted by Bm,S,c (having probability

distribution πm,S,c(i)). Let us further define Am as the number of component failures during

L (having a binominal distribution with parameters N −m and 1− e−λL). Then, the num-
ber of components to be repaired during system maintenance equals [m+Am −Bm,S,c]+,
where we denote X+ = max {X, 0} for any variable X. If we assume that this number of
components exceeds the number of parallel repair channels, we can approximate equation

2.5 as

E [Rc(i, j)] ≈
i

cμ
(2.22)

As a consequence, we can rewrite equation 2.16 as

E [Dm,S,c] ≈
E
£
[m+Am −Bm,S,c]+

¤
cμ

(2.23)

Now the idea is to use a two-moment approximation for the random variables Am and

Bm,S,c. That is, we calculate their first two moments and fit an appropriate distribution,

such that the expected maintenance time E [Dm,S,c] can easily be approximated. We may

approximate the distributions of Am and Bm,S,c by some discrete distributions or, more

conveniently, by some continuous distributions if their mean is not too small (which is

valid for large systems like the APAR). For continuous distributions, we may use Normal

distributions or Erlang mixtures (cf. Tijms (1994)). Normal distributions are more conve-

nient, because the difference of two normally distributed random variables, Am − Bm,S,c,
is again normally distributed. Note that Am has a binominal distribution, that converges

to a normal distribution indeed if N − m → ∞. For small numbers of components, a
continuous approximation may be inaccurate. Then, Adan, Van Eenige and Resing (1995)

provide a method to fit a convenient discrete distribution to the first two moments of any
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discrete random variable on Z+. Depending on the mean and variance, a choice is made

between a Poisson distribution and mixtures of binominal, negative binominal or geometric

distributions.

To apply a moment approximation, we need to find the first two moments of Am

and Bm,S,c. The number of component failures during L, Am, is binomially distributed, so

that we have:

E [Am] = (N −m)
³
1− e−λL

´
(2.24)

V ar [Am] = (N −m)
³
1− e−λL

´
e−λL (2.25)

For the derivation of the first two moments of Bm,S,c, we use a stochastic equation, thereby

avoiding the analysis of the Markov chain equation in 2.13. As the demand for spares

equals m + Am, the number of spares available just before the next system uptime starts

equals [Bm,S,c −m−Am]+. Let us define Zc(Tm + L) as the number of spares that can be
repaired before the start of next maintenance period using c servers. Taking into account

Zc(Tm + L), and the maximum number of spares that can be ready-for-use S, we find the

following recursive relation:

Bm,S,c = min
©
[Bm,S,c −m−Am]+ + Zc (Tm + L) , S

ª
(2.26)

Unfortunately, [Bm,S,c −m−Am]+ and Zc (Tm + L) are mutually dependent. Therefore,
we propose to approximate Zc (Tm + L) by eZc (Tm + L), being the number of spares that can
be repaired before the start of next maintenance period using c servers if the number of items

to be repaired is infinite. Then, we achieve that (1) [Bm,S,c −m−Am]+ and Zc (Tm + L)
are mutually dependent, and (2) the moments of eZc (Tm + L) are easy to calculate (to be
discussed below).

Now we can approximate the first two moments of Bm,S,c applying the moment

iteration approach that De Kok (1989) introduced to analyse the G/G/1 queue. That is,

given an initial estimate for the first two moments of Bm,S,c, we fit a simple (discrete or con-

tinuous) probability distribution function to the random variables Bm,S,c and Am. Based on

these approximate distributions, we calculate the first two moments of [Bm,S,c −m−Am]+.
This is straightforward if we use normal approximations, but more cumbersome for discrete

approximations, given the diversity of specific distributions that we use. We solved the

latter by brute force, i.e. by calculating the first two moments for each possible value of

Am, cutting the series off when the probability density has faded.
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Next, we calculate the first two moments of [Bm,S,c −m−Am]+ + eZc (Tm + L).
Then, again, we fit a (discrete or continuous) distribution to these first two moments and

we calculate new approximations for the first two moments of Bm,S,c from equation 2.26.

We repeat these calculations until our approximations for the first two moments of Bm,S,c

converge. Although convergence is theoretically not guaranteed, application of this method

has not led to convergence problems until now (see e.g. De Kok (1989)).

To apply the moment-iteration approach to the recursive equation 2.26, we need

the first two moments of eZc (Tm + L). We find these by conditioning on Tm. First, we note
that we can find that the variance of the time until maintenance initiation, similarly to

equation 2.2:

var [Tm] =
m−1X
i=0

1

(N − i)2 λ2
(2.27)

The number of components that can be repaired during a period with length t is approx-

imately Poisson distributed with mean cμt, provided that the workload of the repair shop

is sufficiently high initially (and it is exact for c = 1). By conditioning on the length of the

time until maintenance initiation Tm, we find that the mean and variance of eZc (Tm + L)
equal

E
h eZc (Tm + L)i = cμÃL+ m−1X

i=0

1

(N − i)λ

!
(2.28)

var
h eZc (Tm + L)i = cμÃL+ m−1X

i=0

1

(N − i)λ

!
+ (cμ)2

m−1X
i=0

1

(N − i)2 λ2
(2.29)

Now we can approximate the expected maintenance time E [Dm,S,c] using equation 2.23, be-

cause it holds thatE
£
[m+Am −Bm,S,c]+

¤
= m+E [Am]−E [Bm,S,c]+E

£
[Bm,S,c −m−Am]+

¤
and E

£
[Bm,S,c −m−Am]+

¤
has been evaluated in the recursion equation 2.26.

Now that we found E [Dm,S,c], we only have an expression for E [Um] left to find.

Note that we can use a simple approximation for E[Um] using a moment-approach as well.

To this end, we calculate the first two moments of the time to failure of a k-out-of-(N −m)
system from equations 2.2 and 2.27, and we fit an Erlang-mixture on these two moments

(cf. Tijms (1994)). Let us denote the approximating distribution by T ∗. Then we can easily

calculate E [Um] ≈ E [min {T ∗, L}]. For a pure Erlang distribution, we have

E [min {T ∗, L}] = r

λ

Ã
1−

rX
i=0

(λL)i e−λL

i!

!
+ L

Ã
1−

r−1X
i=0

(λL)i e−λL

i!

!
(2.30)
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Finally, we note the moment iteration approach is very simple if we may assume normally

distributed random variables, because (1) it is trivial to fit a normal distribution to the first

two moments of a random variable, and (2) sums and differences of normally distributed

random variables are normally distributed again. This seems a reasonable approach for

large systems as the APAR.

2.3 Numerical results

We implemented the exact algorithm from Section 2.1 and the approximate algo-

rithm from Section 2.2 (both the discrete and the continuous variant). During preliminary

numerical tests, we found that our exact method works well for small and reasonable large

systems, up until about 100 components. However, for very large numbers of components

(say > 100), we encountered numerical problems when calculating the transition probabil-

ities from equations 2.8 and 2.9. This is due to the extremely high binominal coefficients

involved. Despite standard numerical tricks to reduce these computational problems (us-

ing recursive formulas and logarithms), stability problems remain for very large systems.

Therefore, we have to use our approximate approach for such systems.

In this section, we first discuss numerical results for a moderate system size like the

ATAS (58-out-of-64 system). We present trade-off figures between spare parts inventory and

repair capacity using our exact method. Running the same experiments for our approximate

approach provides insight in the approximation accuracy. Next, we discuss numerical results

for very large systems like the APAR (2700-out-of-3000) using our approximate method.

We judge the accuracy of our approximation by comparison to results from discrete event

simulation and we present trade-off figures.

2.3.1 Exact and approximate analysis for a 58-out-of-64 system

For a 58-out-of-64 system, maintenance can be initiated for some value of m be-

tween 1 and 6. We chose the set-up time L equal to 168 hours (= 1 week). We chose the

time until component failure and component repair around eighteen months and one week

respectively, so λ = 0.00008 (failures/hour) and μ = 0.006 (repairs/hour). We calculated

the availability using our exact method for c = 1, .., 4 and S = 0, .., 10. The calculation

time per case is less than one second.
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Figure 2.2: The availability as function of the number of spares S and the repair capacity
c, where the maintenance initiation level m has been chosen such that the availability level
is maximal

In Figure 2.2, we show the trade-off between the spare parts inventory level S and

the repair capacity c for this 58-out-of-64 system. We show the combinations of S and c

yielding the same availability. For each point, we selected the maintenance initiation level

m such, that the system availability is maximal (by enumeration over m = 1, .., 6). We

see that the only few spares are needed to compensate for less repair capacity if the target

availability is low: both combinations (S, c) = (1, 1) and (0, 2) lead to an availability around

0.68. Considerably more spares are needed to compensate for repair capacity if the target

availability is high. The combinations (S, c) = (8, 1) and (3, 2) are more or less equivalent

for an availability around 0.95. Depending on specific cost parameters, a trade-off between

spare part inventories and repair capacity can be made using Figure 2.2.

To examine the impact of the maintenance control parameterm, we show in Figure

2.3 the availability as function of m and S for a given repair capacity c = 3. If the criterion

is to maximise availability, we see that the optimal value of m depends on S. If S = 0,

the availability increases with m, whereas the availability decreases with m for S ≥ 1. In
the first case, the extra uptime gained from postponing maintenance initiation is larger

than the extra downtime resulting from the component repairs. If we have spares available

however, it is better to initiate maintenance at the first failure. When the set-up costs
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Figure 2.3: The values of the availability for a combination of m, the number of failures
until maintenance initiation for different values of the number of spares. The capacity is
chosen equal to 3.

for maintenance are high, this might not be the best value for m. Instead of having one

spare and initiating maintenance at the first failure, we can also choose for three spares and

initiate maintenance at the sixth failure. Both options give similar values for the availability

(see Figure 2.2) but the cost involved can be very different.

We also used our approximate method to evaluate the same scenarios and we

compared the results to the exact solution. We found that our approximations yield similar

results. As can be expected, we find more accurate results using discrete probability dis-

tributions than using continuous (Normal) probability distributions. The average relative

error for the discrete and continuous approach is 0.28% and 0.87% respectively over 120

cases. The maximum relative error that we encountered is 4%, both for the discrete and

the continuous approximation. The advantage of the continuous approximation is that it is

much simpler and faster, because equation 2.27 is easier and faster to evaluate if all random

variables are normally distributed. Simulation requires the largest computation times.

2.3.2 Approximate analysis for a 2700-out-of-3000 system

As a primary motivation for our research is the APAR radar, we analysed this

system with the following fictitious parameters: N = 3000, k = 2700, λ = 0.00008, μ = 0.03

and L = 168. In order to make trade-off figures, we calculated the availability for a large
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range of values for m (1..300), c (6..10) and S (5..200 with step size 5). Because we consider

a very large system, we expect that the use of Normal distributions is probably as good as

the use of discrete distributions. Surely, it is much faster. To check the accuracy of the

approximation using Normal distributions, we simulated 25000 cycles for a representative

subset of 120 cases out of the parameter range above. We found that the deviation between

approximate and simulated availability is 0.15% on average with a maximum of 1.64%.

The most serious approximation errors occur if m = 1. For more reasonable values of m

(we further tested m = 50, 150, 25), the deviation between approximation and simulation is

only 0.02% on average (and 0.25% maximum). Therefore, we conclude that it is safe to use

normal distributions.

Availability as function of S (at optimal m)
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Figure 2.4: The approximate availability as function of the spare parts inventory level S for
various repair shop capacities c (m is chosen such that the availability is maximal).

In the Figures 2.4 and 2.5, we show the main results from our numerical exper-

iments. The first figure gives the approximate availability as function of the spare part

inventory level S for various repair shop capacities c, where m has been chosen such that

the approximate availability is maximal. The corresponding values of m are given in Fig-

ure 2.5. We see that remarkably small values of m (less than 200 while failure occurs at

m = 301) are optimal if we use the system availability as criterion, irrespective of costs. If

the number of spare parts is somewhat small (which could occur if these spare parts are

very expensive) and maintenance set-up costs are negligible, it is better to repair the system
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more frequently. After a certain spare part level, m increases almost linearly with the spare

part stock level (i.e., the maintenance frequency decreases).
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Figure 2.5: Value of m for which the system availability is maximal.

Figures like the two as shown in this section can be used to make a trade-off

between spare part inventories and repair capacities if the relevant cost factors are known.

2.4 Model variations

In this section, we discuss some model extensions and variations, namely (1) the

repair capacity is sufficient, (2) the repair capacity during system uptime and maintenance

time is different, (3) the component failure process stops if less than k components are

available, (4) cold stand-by redundancy, and (5) account for component replacement times.

2.4.1 Sufficient repair capacity

We can simplify the expressions from Section 2.1 considerably if we assume that the

repair capacity is sufficient to repair all spares during the time the system is not maintained,

Tm + L. In that case, it holds that πm,S,c(S) = 1 and πm,S,c(i) = 0 if 0 ≤ i < S, and so

equation 2.16 is simplified to
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E [Dm,S,c] ≈
NX

n=max{S,m}
E [Rc (n− S, n |n)]Pm(n) (2.31)

Now we can evaluate equation 2.31 simply by substitution of equations 2.5 and

2.17. A drawback of this approximation is that it does not facilitate a proper trade-off

between maintenance policy, spare part inventory and repair capacity. Reducing the repair

capacity may lead to a serious violation of our approximating assumption, so that our

approximation becomes very inaccurate.

2.4.2 Different repair capacities during Tm + L and during maintenance

time

When a system fails and the number of spares is insufficient, it is possible that

additional repair capacity will be deployed. Suppose that the normal repair capacity (during

Tm +L) equals c1 and that the capacity during maintenance equals c2 > c1. We can easily

incorporate this refinement by using repair capacity c = c1 in equation 2.12, affecting the

steady state probabilities πm,S,c(i), and repair capacity c = c2 in equation 2.16, affecting

the mean system maintenance time E [Dm,S,c].

2.4.3 System is shut down after more than N − k component failures

If the system shuts down when less than k components are available, the component

failure process can stop before maintenance starts. The only expression that has to be

modified in that case is the distribution of the number of failed items in the system when

maintenance starts, Pm(n), because we have an upper bound on the number of failed items.

As a consequence, expression equation 2.17 remains valid for m ≤ n ≤ N − k, but the
probability mass for all n ≥ N − k + 1 is concentrated in N − k + 1:

Pm (N − k + 1) =
N−mX

i=N−k+1−m

µ
N −m
i

¶
e−(N−m−i)λL

³
1− e−λL

´i
(2.32)

2.4.4 Cold stand-by redundancy

Let us assume that components cannot fail during stand-by status and that the

system is shut down if less than k components are available. Then we have to modify

the expressions regarding the failure process. As the mean time between two successive
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component failures in the k-out-of-N system equals 1
kλ , the time until maintenance initiation

has an Erlang-m distribution with scale parameter kλ, so we modify equations 2.7 and 2.2

respectively to

fm(t) =
(kλ)m tm−1

(m− 1)! e
−kλt (2.33)

E [Tm] =
m

kλ
(2.34)

The probability that n components have failed at the start of system maintenance Pm(n)

can easily be derived, as the number of component failures during the lead-time L is Poisson

distributed, with all mass for n ≥ N − k + 1 being concentrated in N − k + 1:

Pm(n) =

⎧⎪⎨⎪⎩
(kλL)n−m

(n−m)! e
−kλL m ≤ n ≤ N − k

1−
N−k−mP
i=0

(kλL)i

i! e−kλL n = N − k + 1
(2.35)

To derive the mean system uptime during maintenance set-up E [Um], we use that the

probability of this uptime exceeding t equals the probability that at most (N − k − m)
components fail until t. As this number of failures is Poisson distributed with mean kλ, we

find

E [Um] =

LZ
t=0

Pr (Um > t) dt =

LZ
t=0

N−k−mX
i=0

(kλt)i

i!
e−kλtdt

Some algebra yields

E [Um] =
N − k −m+ 1

kλ
− 1

kλ
e−kλL

N−k−mX
i=0

(N − k −m− j) (kλL)i

i!
(2.36)

We obtain an analytical expression for the transition probabilities qi,j by substituting the

above expressions in equation 2.18.

2.4.5 Including component replacement times

Next to component repair, component replacement is a part of the maintenance

activities. Let us assume that the time required for a single component replacement v

is deterministic and that the same repair capacity is needed for component repair and

replacement (otherwise the model extension is trivial). Component replacement occurs as

soon as sufficient components have been repaired. Then, the system availability should be

calculated as

Am,S,c =
E [Tm] +E [Um]

E [Tm] + L+E [Dm,S,c] +E [Vm]
(2.37)
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where Vm denotes the time needed for component replacement. If all repair capacity is used

for component replacement, the fact that the number of failures during the lead-time L is

binominally distributed (see equation 2.17) leads us to:

E [Vm] = v

&
m+ (N −m)

¡
1− e−λL

¢
c

'
(2.38)

where dxe denotes the smallest integer larger than or equal to x. However, if only a single
repair man is used for component replacement while the remaining capacity (c−1) is used for
repair, the steady state probabilities πm,S,c(i) should be modified as well, which influences

E [Dm,S,c]. For the transition probabilities qi,j , we have to take into account that c − 1
servers are available to repair components during the replacement time V :

qi,j =
NX
n=m

Pm(n)

jX
h=0

Hm,S,c−1 (min {S, S − i+ n} , S − h, nv) · (2.39)

∞Z
t=0

fm(t)Hm,S,c (S − h, S − j, t+ L) dt

It should be possible to derive a closed form expression for qi,j , but it is clear that this is

complex.

2.5 Conclusions

In this chapter we presented both an exact and approximate method to make a

trade-off between spare part inventories, repair capacity and maintenance policy in a simple

model. The exact method works very well for systems up to 100 components, for larger

systems the approximation can be used. If the number of components is high, as for the

APAR for instance, we recommend to use Normal distributions for convenience and to

reduce computational efforts.

Although we discussed various model extensions, it is clear that this model is just

a first step towards the integration of spare part management and preventive maintenance

optimisation. In the following chapter we extend this model applicable for systems of which

the components show signs of wear-out.



Chapter 3

Single system with wear-out

In this chapter1 we consider a single k-out-of-N system with wear-out of the com-

ponents. Compared to the model in the previous chapter the introduction of wear-out

complicates the analysis considerably. We have different repair jobs, and so we may con-

sider repair priorities to reduce the system downtime. Also, the computation of the system

uptime and particularly the system downtime is more complex. At the same time, the intro-

duction of multiple states allows for a wider class of maintenance policies if the component

states are observable during system uptime.

To introduce component wear-out we extend the component state space. In the

previous chapter we assumed components have only a working state in which it is as-good-

as-new and a failed state. In this chapter we assume that a component can have multiple

states. See for instance Bloch-Mercier (2002) where the wear-out of a component is also

modelled using multiple states. Therefore we have to adjust the model from the previous

chapter and as becomes clear in this chapter extending the number of component states

implies a number of additional complexities. We elaborate the situation in which there

is only one component state added: a degraded state which is in between of the good-as-

new-state and the failed state. This same way of modelling component wear-out is found

in Sarkar and Sarkar (2001). Although, we do not use arbitrary transition distributions.

We assume that a component in a good-as-new state degrades according to an exponential

distribution with parameter λ1 (defined as a transition from state 0 to state 1). From this
1This chapter is based on the paper: K.S. de Smidt-Destombes, M.C. van der Heijden and A. van Harten

(2006). On the interaction between maintenance, spare part inventories and repair capacity for a k-out-of-N
system with wear-out; European Journal of Operational Research ; 174 (1); 182-200.
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degraded state a component fails according to an exponential distribution with parameter

λ2 (defined as a transition from state 1 to state 2). For the repair of components we assume

exponentially distributed repair times, with parameters μ1 for the transition from state 1

to state 0 and with parameter μ2 for the transition from state 2 to state 0.

We model the evolution of the system state (n0, n1, n2) as a renewal process, see

Figure 3.1. A system cycle starts when the system is as good as new. The operational period

lasts until maintenance is initiated upon themth failure. During the lead-time L, the system

is still operational and degrades further, where it may even fail. Then maintenance starts,

where all failed and degraded components are replaced and the system is as good as new

again.

A second cycle, the spares cycle, describes the evolution of the spares state (s0, s1, s2).

It starts when the system arrives for maintenance. Assuming we can observe the state of

each component, the failed and degraded components are replaced by good ones. If the

number of ready-for-use spares is insufficient (s0 < n1 + n2), the system has to wait until

the remaining components have been repaired. After the system maintenance is finished

the spares in state 1 and state 2 represent repair jobs that have to be addressed during the

next operational period of the system plus the lead-time. Note that the subsequent cycles

are generally not independent. Because the state of the spare parts in the beginning of each

cycle may be different, we use a stationary distribution.

Lead-time

(N,0,0) (N-m-i,i,m) (N-n1-n2,n1,n2) (N,0,0)system

spares (S-s1-s2,s1,s2)

Operational time Maint. period

System operational System downSystem partly operational, partly down

Lead-time

(N,0,0) (N-m-i,i,m) (N-n1-n2,n1,n2) (N,0,0)system

spares (S-s1-s2,s1,s2)

Operational time Maint. period

System operational System downSystem partly operational, partly down

Figure 3.1: Schematic presentation of the system’s cycle above and the spares’ cycle beneath.

The same complication as we found in Chapter 2 arises, namely that the system

cycle and the spare cycle are interrelated. We can explain this intuitively as follows. Suppose

that in a certain system cycle the operational time is relatively long. Then it is likely that

many components are degraded until the time that m components have failed. Hence, the



3.1 An analytical approximation 47

number of components in state 1 (n1) is relatively large at the start of maintenance. At

the same time, the number of restored spares (s0) is likely to be relatively large when the

operational time is relatively long. Therefore the system state and the state of the spares

at the beginning of the maintenance period are not independent. As an approximation,

however, we assume both cycles to be independent. Whether this approximation has a

significant impact, is discussed when comparing our approximate methods with results

from discrete event simulation (Section 3.3).

Assuming that all components in state 1 and state 2 are replaced by new ones dur-

ing maintenance and there is no correlation between the system state and the spares state

we compute E [Tm], E [Um] and E [Dm,S,c] exactly in Section 3.1. After discussing compu-

tational issues in Section 3.1.4, we present a model to approximate E [Um] and E [Dm,S,c] in

Section 3.2.The results for both models are given in Section 3.3. Finally, give some model

variation in Section 3.4.

3.1 An analytical approximation

3.1.1 Operational time

The operational time until maintenance initiation Tm is the time until the mth

component failure (1 ≤ m ≤ N − k + 1). If L = 0, it is clear that we should choose

m = N − k + 1. If L > 0, m is likely to be chosen smaller. The distribution function F (t)

for Tm is given by

F (t) = Pr (number of failed components at t ≥ m)

=
NX
i=m

µ
N

i

¶
(p02(t))

i (1− p02(t))N−i (3.1)

where p02(t), the probability that a component moves from state 0 to state 2

in time t, equals 1 − e−λ1t − λ1
λ1−λ2

¡
e−λ2t − e−λ1t

¢
. Although we could derive E [Tm]

from
∞R
t=0

(1 − F (t))dt, it is far easier to use a recursive approach. Let us define Tm(i, j)

as the time needed for a transition from state (N − i− j, i, j) to the set of states in
which maintenance is initiated (n2 = m). Obviously, we have that Tm(i,m) = 0. If

j < m, the mean value of Tm(i, j) equals the expected sojourn time in the current state

(N − i− j, i, j) plus the expected time needed from the next state on. The expected
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sojourn time in state (N − i− j, i, j) equals τ(i, j) = 1
(N−i−j)λ1+iλ2 . Next, the system

state changes to (N − i− j − 1, i+ 1, j) with probability α(i, j) = (N−i−j)λ1
(N−i−j)λ1+iλ2 and to

(N − i− j, i− 1, j + 1) with probability β(i, j) = iλ2
(N−i−j)λ1+iλ2 . Note that if i = 0 then

α(i, j) = 1 and β(i, j) = 0 and if i+ j = N then α(i, j) = 0 and β(i, j) = 1, Hence,

E [Tm(i, j)] =

⎧⎨⎩ 0 j = m

τ(i, j) + α(i, j)E [T (i+ 1, j)] + β(i, j)E [T (i− 1, j + 1)] else
(3.2)

Observing that E [Tm] = E [Tm(0, 0)], we can compute this value starting with

E [T (i,m)] = 0. It can be shown that we need 1
2m(m+N − 3) simple computations, which

is no problem at all from a computational perspective.

3.1.2 Expected Uptime during lead-time L

We denote the uptime during the lead-time L by Um, which can be written as L

minus the downtime during L, so

E [Um] = L−
LZ
t=0

NX
j=N−k+1

N−jX
i=0

Q(i, j, t)dt (3.3)

Here Q(i, j, t) is defined as the probability of reaching state (N − i− j, i, j) at
time t, given that there were m failed components at time 0 (the time of maintenance

initiation). This implies that each system state (N − x−m,x,m) with x = 0, 1, .., i +

j −m is possible at time 0. We define P (x,m) as the probability of the system being in

state (N − x−m,x,m) at time 0. Defining x as the number of components in state 1 at
maintenance initiation, we define the number of transitions from state 1 to state 2 as y,

with y = max {0, x− i} , ..,min {j −m,x}. Given the system state at time 0, the system

state at time t and the number of transitions from state 1 to state 2, we also know the

number of transitions from state 0 to state 1 and the number of transitions from state 0

to state 2. The probability of a component transition from state i to state j is denoted as

pij(t). Hence,

Q(i, j, t) =
i+j−mP
x=0

P (x,m)
min{j−m,x}P
y=max{0,x−i}

¡
x
y

¢¡
N−m−x
i−x+y

¢¡
N−m−i−y
j−m−y

¢
·

(p00(t))
N−i−j (p01(t))

i−x+y (p02(t))
j−m−y (p11(t))

x−y (p12(t))
y

(3.4)
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We can explicitly write the transition probabilities as:

p00(t) = e
−λ1t

p01(t) =
λ1

λ1−λ2
¡
e−λ2t − e−λ1t

¢
p02(t) = 1− p00(t)− p01(t)
p11(t) = e

−λ2t

p12(t) = 1− p11(t)

(3.5)

Now let us derive an expression for the probability P (x,m). Because at this state

(N − x − m,x,m) maintenance is initiated, it can only be reached through a transition
from state (N − x−m,x+1,m− 1). Otherwise, (N − x−m,x,m) would not be the state
that initiates maintenance but state (N − x − m + 1, x − 1,m) or an even earllier state.
As a result, we obtain a recursive calculation scheme for the probabilities of reaching each

possible system state until maintenance initiation. This scheme is given in equation 3.6,

and an example is illustrated in Figure 3.2.

P (i, j) =

⎧⎨⎩ 1 if i = j = 0

α(i− 1, j)P (i− 1, j) + β(i+ 1, j − 1)P (i+ 1, j − 1) else
(3.6)

(4,0,0)

(3,1,0)

1

1
λ
λ

(2,2,0) (1,3,0) (0,4,0)

(3,0,1) (2,1,1) (1,2,1) (0,3,1)

(2,0,2) (1,1,2) (0,2,2)

21

1
3

3
λ+λ

λ

21

2
3 λ+λ

λ

XX XX  

Figure 3.2: Example of a 2-out-of-4 system with m=2. Transitions from (1,1,2) to (0,2,2)
and from (2,0,2) to (1,1,2) are not taken into account, because these states would have
initiated maintenance themselves.

3.1.3 Expected maintenance duration

For the expected maintenance duration E [Dm,S,c], we condition on the system

state and the spares state just before the system arrives for maintenance at the repair shop.
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Because we assume that the spares cycle and the system cycle are independent, we have

that:

E [Dm,S,c] =
SX

s0=0

S−s0X
s2=0

NX
n2=m

N−n2X
n1=0

PL(n1, n2)π(s0, s2) · (3.7)

E [R(n1 + n2 − s0, n1 + S − s0 − s2, n2 + s2)]

PL(n1, n2) is the probability of the system having n1 degraded and n2 failed compo-

nents when actual maintenance activities starts and π(s0, s2) is the steady state probability

of the spares inventory consisting of s0 ready for use spares and s2 failed spares (note that

s1 = S−s0−s2). R(r, es1, es2) is the time to repair r components with capacity c when there
are es1 degraded and es2 failed components available at the start of the repair. Regarding the
system state at maintenance initiation, we have that n2 = m and PL(n1,m) = P (n1,m) if

L = 0. If L > 0 then PL(n1, n2) = Q(n1, n2, L). We provide expressions for R(r, es1, es2) and
π(s0, s2) respectively.

Repair time R (r, s1, s2) and priority rule

The repair time R (r, s1, s2) depends on the order in which the s1 degraded and

s2 failed components are repaired, which can be given by a certain repair priority rule.

The other way around, the repair priority rule influences the spares state at the start

of system maintenance. For our priority rule we assume the repair time for a degraded

component to be smaller on average than the repair time of a failed component. In other

words, we assume μ1 > μ2. We try to minimise the maintenance duration by repairing as

many degraded components as possible. When the number of degraded components is not

sufficient to replace all failed and degraded components (n1 + s1 < N − s0 − n0), we have
to repair some failed components as well. It is well known that we minimise the makespan

(and hence the system repair time) by selecting the longest mean processing times first, see

Pinedo and Chao (1999). So we use the following repair priority rule:

If there are sufficient degraded spares (in state 1), then only repair degraded components.

If the number of degraded components is insufficient, start repairing the minimum number

of failed components needed to repair the system. Next, repair the degraded components.

If we have both degraded and failed spares to be repaired after system repair, we

need a second repair priority rule. It is logical to aim for handling as many jobs as possible



3.1 An analytical approximation 51

before Tm + L (the time between maintenance instances). Therefore we complete the jobs

with the shortest mean repair time first.

Now let us apply the repair priority rule to find the mean repair time E[R(r, s1, s2)].

We define r = [n1 + n2 − s0]+ as the total number of repairs needed to repair the system.
Then we need to restore [r − s1]+ failed spares during the maintenance period. Since we
have at most c spares in the repair shop, we start with the min

©
c, [r − s1]+

ª
failed spares

in repair at the start of the repair period. Together with these failed spares we assign

a = min
©
s1, c−min

©
c, [r − s1]+

ªª
degraded spares to the repair shop. If there is still

repair capacity left, we use this capacity for the remainder of the failed components. The

number of failed spares in the repair shop is now equal to b = min {s2, c− a}. Let us denote
the number of components in state 1 and state 2 in the repair shop at the start of the repair

period by a and b respectively. Using R (r, s1, s2) = 0 if r = 0 or s1 < 0 or s2 < 0, we find

the following recursive relation for the expected repair time:

E [R (r, s1, s2)] =
1

aμ1+bμ2
+ aμ1

aμ1+bμ2
E [R (r − 1, s1 − 1, s2)]

+ bμ2
aμ1+bμ2

E [R (r − 1, s1, s2 − 1)]
(3.8)

Steady state probabilities of the spares states

We use a Markov chain to determine the steady state probabilities π(i). Here

we use a short hand notation i = (s0, s2). We want to solve the steady state conditions

π =MTπ with
P

π(i) = 1. Each entry (i, j) of the transition matrixM equals the transition

probability qij that j = (s00, s
0
2) is the spares state just before the maintenance period starts,

while the spares state just before the previous maintenance period was i = (s0, s2). We

calculate the probability qij by conditioning on the time to maintenance initiation T = t:

qij =
NP

n2=m

N−n2P
n1=0

PL (n1, n2) ·
∞R
t=0

f(t)H
¡
min

©
s1 + n1, [S − s2 − n2]+

ª
,min {s2 + n2, S} , s01, s02, t+ L

¢
dt

(3.9)

where f(t) is the density function of T and H (w, x, y, z, t) is the probability that

the spares state changes from w degraded and x failed spares to y degraded and z failed

spares during t with c servers. In the special case L = 0, we have that n2 = m and so the

transition probabilities consist of one summation only. The density function f(t) can be

found as the derivative of F (t) from equation 3.1:
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f(t) =
NX
g=m

N−gX
h=0

µ
N

g

¶µ
N − g
h

¶
(−1)h(g + h)λ2p01(t) (p02(t))g+h−1 (3.10)

Let us now derive an expression for H (w, x, y, z, t). We first note that only a non-

negative number of spares can be restored, so H (w, x, y, z, t) = 0 if w < y and/or x < z.

Because our repair priority rule states that we should first restore degraded components, it is

not possible to restore one or more failed components if the number of degraded components

remaining is at least equal to the number of servers, thus H (w,x, y, z, t) = 0 if y ≥ c and
x > z. If no spares are restored (i.e. w = y and x = z) we have a repair rate that is

equal to min {c, w}μ1 + min {x, c−min {c, w}}μ2 and therefore H (w, x, y, z, t) decreases
exponentially with that rate. If spares are restored, we distinguish two cases: one in which

all spares are being repaired immediately (w+ x ≤ c) and one in which not all repairs, but
only c repairs, start immediately (w + x > c).

In the first case we have a combination of two binomial distributions, one with

parameters w and e−μ1t, and one with parameters x and e−μ2t. In the second case, where

w + x > c, we can write H (w, x, y, z, t) in a recursive formulation. In case w ≤ c, it is

possible to have a failed spare restored before a degraded spares is restored or the other

way around. In case w > c the only possibility is to restore a degraded spare. In the

recursive formulation y and z play the role of fixed parameters, which we suppress for

readability. We find that:

H (w, x, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
w < y ∨ x < z
∨ (y ≥ c ∧ x > z)

e−(min{c,w}μ1+min{x,[c−w]
+}μ2)t w = y ∧ x = z¡

w
y

¢¡
x
z

¢
e−(yμ1+zμ2)t

¡
1− e−μ1t

¢w−y ¡
1− e−μ2t

¢x−z
w + x ≤ c

tR
τ=0

W (τ) ((c− w)μ2H (w, x− 1, t− τ)

+wμ1H (w − 1, x, t− τ)) dτ

w + x > c ∧ w ≤ c

tR
τ=0

wμ1W (τ)H (w − 1, x, t− τ) dτ w + x > c ∧ w > c

(3.11)

Here W (τ) = e−wμ1τe−(c−w)μ2τ . From the equations 3.10 and 3.11 we are able to

determine all the elements qij of the transition matrix M (see equation 3.9).
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3.1.4 Computational issues

Our approach as described in Sections 3.1.1 till 3.1.3 has several drawbacks. Firstly,

equations 3.3 and equation 3.4 contain binominals of high order and large summations.

Therefore, we encountered numerical problems and long computation times when evaluating

the equations for larger systems (say N > 80). The computation time for a system with

N = 80 components is several hours on a Pentium II, 800 MHz pc. A similar problem

occurs for the maintenance duration (equation 3.7, 3.8 and 3.9). Secondly, we found that

the computation time to evaluate the transition probabilities becomes large even for smaller

problems, because we evaluated the integrals numerically. The number of integrals is very

large because of the recursive character of equation 3.11. The system size for which we

can find the maintenance duration within a reasonable amount of time (less than about an

hour) is up to 10 or 20 components.

3.2 An iterative approximation

Because of the drawbacks of the exact method, we developed simpler and faster

approximations for E [Um] and E [Dm,S,c]. These approximations are based on the first

two moments by fitting an appropriate distribution. For continuous distributions on [0,∞)
we use phase type distributions, see Tijms (1994). For discrete distributions on [0, 1, 2, ...)

we use either a mixture of two binomial distributions, a mixture of two negative binomial

distributions, a mixture of two geometric distributions or a Poisson distribution dependent

on the mean and variance, see Adan, Van Eenige and Resing (1995).

3.2.1 Expected uptime during lead-time L

Let us denote the time from maintenance initiation to system failure by bT , the
time from m component failures until the (N − k + 1)th component fails if L → ∞. Then
the mean uptime during the lead-time equals E

h
min

nbT ,Loi = E
h bTi − E ∙h bT − Li+¸.

We can evaluate such an expression easiliy for specific classes of probability distributions,

particularly for phase type distributions (for example, hyperexponential distributions or

mixtures of Erlang distributions). Therefore, a simple approximation is to calculate the

first two moments of bT exactly and next to approximate the distribution of bT by a mixture
of Erlang distributions with the same first two moments. Such an approach has appeared to
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be fruitful in many applications where the performance measure to be approximated does

not depend heavily on the tails of the probability distribution, see Tijms (1994).

The first two moments of bT can be found by conditioning on the system state at

maintenance initiation:

E
h bTi = N−mX

i=0

P (i,m)E
h bT (i,m)i (3.12)

E
h bT 2i = N−mX

i=0

P (i,m)E
h bT 2(i,m)i (3.13)

Here bT (i,m) is the time until the (N − k + 1)th component failure occurs when
the system is in state (N − i−m, i,m) at maintenance initiation. E

h bT (i,m)i is found
analogously to equation 3.2 with only a small difference in the restriction, which becomes

equal to j = N−k+1. For the second moment, the recursion is not straightforward because
the transition depends on the sojourn time. After some algebra we find equation 3.14 using

E
h bT 2(i, j)i = 0 if j = N − k + 1.

E
h bT 2(i, j)i = 2τ(i, j)E

h bT (i, j)i+ α(i, j)E
h bT 2(i+ 1, j)i (3.14)

+β(i, j)E
h bT 2(i− 1, j + 1)i (3.15)

3.2.2 Expected maintenance duration

The basic idea for our approximation of the mean system downtime is to use a

moment iteration scheme as has been proposed by De Kok (1989) for the analysis of the

waiting time in the G/G/1 queue. First, we define W1 and W2 as stochastic variables for

the number of repairs of type 1 and type 2 respectively during the maintenance time. We

can approximate the maintenance duration by:

E [D] ≈ E [W1]

cμ1
+
E [W2]

cμ2
(3.16)

This is an approximation, because we pretend that first all c servers are busy with

failed components at a joint rate cμ2 and next they are all busy with degraded components at

a joint rate cμ1. The reality is that failed and degraded items can be repaired simultaneously

and that the repair rate can be less than cμ1 at the end of the maintenance period if less
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than c components are available, leaving one or more servers idle. The variables W1 and

W2 depend on the system state and the spares state at the start of maintenance. We define

Ai as the number of system components and Bi as the number of spare components in state

i (i = 0, 1, 2) when the system arrives for maintenance. Because of our repair priority rule,

failed spares are only repaired if the total number of failed components exceeds the number

of spares S, hence:

W2 = [A2 +B2 − S]+ (3.17)

The number of type 1 repairs equals the total number of components needed,

which equals [N −A0 −B0]+, minus the components that are obtained by repairing failed
components:

W1 = [N −A0 −B0]+ −W2 (3.18)

The variables Bi depend on the number of spares in each state at the end of the

previous maintenance period. Defining the variables Ci as the number of spare components

in state i after the maintenance is finished:

C0 = [B0 − (A1 +A2)]+ = [B0 +A0 −N ]+ (3.19)

C1 = S − C0 − C2 (3.20)

C2 = min {A2 +B2, S} (3.21)

Because we start with repairing the type 1 spares when maintenance is finished,

C1 decreases with the number of type 1 spares that can be repaired during T + L with

capacity c and repair rate μ1, which is denoted by Zμ1(T +L). If there is any time left, C2

decreases with the number of failed spares that can be restored during the remaining time.

Therefore we denote Rμ1(C1) as the time needed to restore C1 components with repair rate

μ1 and capacity c. For Bi we find:

B0 = S −B1 −B2 (3.22)

B1 =
£
C1 − Zμ1 (T + L)

¤+ (3.23)

B2 =
h
C2 − Zμ2

³£
T + L−Rμ1(C1)

¤+´i+ (3.24)
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Unfortunately, we face correlations between Ai and Bi. To simplify calculations

we assume that B1 = 0. This means that T + L is long enough to restore all spares that

are degraded at the end of the maintenance period. This is a reasonable assumption, since

the degraded spares have priority to be repaired. The set of equations is simplified to:

B0 = S −B2 (3.25)

B2 =
£
C2 − Zμ2

¡
T + L−Rμ1(C1)

¢¤+ (3.26)

C0 = [B0 +A0 −N ]+ (3.27)

C1 = S − C0 − C2 (3.28)

C2 = min {A2 +B2, S} (3.29)

Now we find E [W1] and E [W2] using the following moment iteration algorithm:

Step 0: set the first two moments of B2 to 0, determine the first two moments of

A0 and A2

Step 1: fit a discrete distribution to A2 +B2 assuming that A2 and B2 are uncor-

related.

Step 2: determine the first two moments of B0, using equation 3.25 and fit a

discrete distribution for A0 +B0 assuming that A0 and B0 are uncorrelated.

Step 3: calculate the mean and variance of C0 and C2 using two moment approx-

imations (equations 3.27 and 3.29).

Step 4: calculate the mean and variance of C1 from equation 3.28 taking into

account cov(C1, C2).

Step 5: calculate the mean and variance of B2 by approximating the first two

moments of X = S − (C2 − Zμ2

¡
T + L−Rμ1(C1)

¢
) and using B2 = [S −X]+.

Step 6: determine E [W2] and E [W1] from equations 3.17 and 3.18 using the mean

of W = [N − (A0 +B0)]+. If the convergence criterion is not satisfied then go to step 1,
otherwise stop.

The first two moments of A0 and A2 that we need for step 0 are relatively easy to

find:
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E [A0] =
N−mX
i=0

P (i,m)(N −m− i)p00(L) (3.30)

E
£
A20
¤
=
N−mX
i=0

P (i,m)(N −m− i)p00(L) {1− p00(L) + (N −m− i)p00(L)} (3.31)

E [A2] = m+
N−mX
i=0

P (i,m) {(N −m− i)p02(L) + ip12(L)} (3.32)

E
£
A22
¤
=
N−mX
i=0

P (i,m) {(N −m− i)p02(L) {1− p02(L) + (N −m− i)p02(L)} (3.33)

+ ip12(L) {1− p12(L) + ip12(L)}+ 2i(N −m− i)p02(L)p12(L)

+ 2m(N − i−m)p02(L) + 2mip12(L) +m2
ª

For step 2 we have E [B0] = S − E [B2] and var [B0] = var [B2] and we are able
to fit a distribution for A0 +B0.

For step 3 we have a distribution for A0 + B0 from step 1, which allows us to

determine E [C0] and var [C0]. E [C2] and var [C2] are found using the distribution we

found for A2 +B2 in step 0 or in step 5.

In step 4 we use equations 3.34 and 3.35 with only the covariance as unknown

term.

E [C1] = S −E [C0]−E [C2] (3.34)

var [C1] = var [C0]− var [C2]− 2cov [C1, C2] (3.35)

For cov [C1, C2] we condition on A1:

cov [C1, C2] = E [cov [C1, C2 |A1 ]] + cov [E [C1 |A1 ] , E [C2 |A1 ]] (3.36)

= cov [min {A1, S − C2} , C2] = Pr (A1 > S − C2) cov [S − C2, C2]

= −var [C2] Pr (A1 > S − C2) = −var [C2] Pr (N −A0 +B2 > S)

= −var [C2] Pr (A0 +B0 < N)
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In step 5 we define X = S −
¡
C2 − Zμ2

¡
T + L−Rμ1(C1)

¢¢
and we approximate

the mean and variance of Rμ1 (C1) and Zμ2 (X) by:

E
£
Rμ1 (C1)

¤
≈ E [C1]

cμ1
(3.37)

var
£
Rμ1 (C1)

¤
≈ E [C1]
(cμ1)

2 +
var [C1]

(cμ1)
2 (3.38)

E
£
Zμ2 (X)

¤
≈ cμ2E [X] (3.39)

var
£
Zμ2(X)

¤
≈ cμ2E [X] + (cμ2)2 var [X] (3.40)

The mean and variance of X are now written by:

E [X] = S −E [C2] + cμ2
µ
E [T ] + L− E [C1]

cμ1

¶
(3.41)

var [X] = cμ2

µ
E [T ] + L− E [C1]

cμ1

¶
+ (cμ2)

2 var [T ] +

µ
μ2
μ1

¶2
(E [C1] + var [C1]) (3.42)

+ var [C2] + 2
μ2
μ1
cov [C1, C2]

For B2 we find E [B2] = E
£
[S −X]+

¤
and var [B2] = var

£
[S −X]+

¤
. With the

mean and variance for A2 from step 0 and the mean and variance for B2 from step 4, we

fit a discrete distribution to A2 +B2.

In step 6 we determine E [W2] using the distribution we found for A2 + B2 in

step 5. We use the distribution for A0 + B0 to find the mean for the total workload

W = [N −A0 −B0]+. Then E [W1] is found by E [W ]−E [W2].

3.3 Numerical results

Because both methods as discussed in Sections 3.1 and 3.2 are approximations, we

need to test the accuracy of both methods. To this end, we constructed a discrete event

simulation model as benchmark. The simulation results given in this paper are based on

5000 cycles.

We computed over 460 scenarios divided into three different system sizes: 7-out-

of-10 system, 58-out-of-64 system and 2700-out-of-3000 system.

In Table 3.1 we give an overview of the different scenarios we used. We used the

method presented in Section 3.1 (if feasible within a few hours computation time), denoted
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Table 3.1: Input used for our numerical examples. For the 2700-out-of-3000 system we used
a step size of 10, 20 and 5 for respectively m, S and c.

L λ1 λ2 μ1 μ2 m S c

7-out-of-10 30, 168 0.01 0.05 0.2 0.1 1..3 1..6 1..3
58-out-of-64 168 0.000125 0.00025 0.05 0.03 1..7 1..10 1..3
2700-out-of-3000 168 2.9·10−5 5.8·10−5 0.125 0.0625 250..300 250..350 5..20

as method A, and the method presented in Section 3.2, denoted as method B. To compare

these results with our simulation model, we need to make sure that the simulation results are

accurate. In our simulation model we compute Tm, Um and Dm,S,c for a number of cycles.

Given 95% confidence intervals for the maintenance duration, we found a relative accuracy

of 6%, 2.5% and 0.2% for 7-out-of-10 systems, 58-out-of-64 systems and 2700-out-of-3000

systems, respectively. The values for the availability are even better.

The computation times for the 7-out-of-10 system using method A vary between

0.25 and 30 seconds, dependent on the number of spares. Using method A for the 58-out-

of-64 system the computation times are at least 140 minutes per scenario. With method

B the dependency on the system size is very small and the computation times found are

approximately 0.01 seconds per instance. All computation times are measured on a Pentium

II, 800 MHz pc.

The maximum correlation found for the systems between the system cycle (num-

ber of components in state 1 at the start of maintenance) and the spares cycle (number

of spares in state 0 at the start of maintenance) is 0.08 at the most, which justifies our

model approximation to neglect this correlation. The differences in E [Dm,S,c] between the

computations according to method A and method B compared to simulation are given in

Table 3.2.

Table 3.2: For different system sizes the mean and maximum differences for the repair time
per method based on roughly 200 instances for the small system, 100 instances for the
medium sized system and 150 instances for the large system

mean differences max. differences
meth.A meth.B meth.A meth.B

7-out-of-10 system 2.7% 4.2% 44.3% 22.4%
58-out-of-64 system - 1.4% - 10.6%
2700-out-of-3000 system - 0.2% - 0.9%
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For the 7-out-of-10 system the maximum differences are rather large. However,

when we only take into account the scenarios with L = 168 the maximum difference for

method A reduces to 1.2%. This is due to the fact that a lead-time of 30 is too small for the

assumption that all spares of type 1 will be restored. For method B the maximum difference

hardly changes, only the mean difference changes to 1.0%. The instances with the largest

differences, have a rather extreme combination of parameters, e.g. m = 1, S = 6 and c = 1.

This results in high utilisation rates, which gives uncertainty about the assumption that all

type 1 spares are repaired before the next maintenance period. Larger lead-times reduce

this uncertainty and therefore give better results for the repair time.

The maximum difference of 10.6% for a 58-out-of-64 system is also obtained in a

rather extreme situation where m = S = 1 and c = 3. Leaving out such scenarios, the

maximum difference would be 5%. For the 2700-out-of-3000 system scenarios we found

similar results as we did for the other systems.

0.5
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Figure 3.3: Columns are depicted for a 7-out-of-10 system with different values for main-
tenance initiation and capacity. In each column a new shading represents an extra spare.
Each column shows the parameter combination needed to reach a certain availability level.

Next, we show that various combinations of control parameters (m,S, c) may lead

to a similar system availability. To give an impression of the different possibilities for

achieving a certain availability see Figure 3.3 for a 7-out-of-10 system.

In Table 3.3, we give six examples (two for each system size) using various combi-
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nations for the control parameteres and comparable availabilities.

Table 3.3: Some results for different system sizes with comparable availability results for
different combinations of values for maintenance initiation, spares and repair capacity

E [T ] E [U ] E [D] Av
input A sim. A B sim. A B sim. A B sim.

N=10,k=7,L=30
m=1,S=4,c=2
λ1=0.01,λ2=0.05
μ1=0.2,μ2=0.1

22.44 22.86 27.46 27.48 27.29 2.03 1.85 1.93 0.92 0.92 0.92

N=10,k=7,L=30
m=2,S=5,c=3
λ1=0.01,λ2=0.05
μ1=0.2,μ2=0.1

37.76 38.01 22.46 22.44 22.57 1.23 0.99 1.23 0.87 0.88 0.88

N=64,k=58,L=168
m=1,S=3,c=2
λ1=0.000125,λ2=0.00025
μ1=0.05,μ2=0.03

950 916 168 168 168 - 52.86 54.16 - 0.95 0.96

N=64,k=58,L=168
m=4,S=2,c=3
λ1=0.000125,λ2=0.00025
μ1=0.05,μ2=0.03

2230 2247 167 167 167 - 108 111 - 0.96 0.95

N=3000,k=2700,L=168
m=250,S=250,c=10
λ1=2.9·10−5,λ2=5.8 · 10−5
μ1=0.125,μ2=0.0625

11740 11745 - 168 168 - 506 508 - 0.96 0.97

N=3000,k=2700,L=168
m=300,S=270,c=10
λ1=2.9·10−5,λ2=5.8 · 10−5
μ1=0.125,μ2=0.0625

13102 13104 - 26.52 27.39 - 580 582 - 0.95 0.95

In Figure 3.4 we show the availability of the 2700-out-of-3000 system as a function

of S for different values of c. The value of m is chosen such that the availability is maximal

(without bothering about the effects on the cycle length or cost).
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Availability as function of spares (optimal m)
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Figure 3.4: For a 2700-out-of-3000 system and several values of capacity we show the
availability as a function of the spares amount. The maintenance initiation level is chosen
such that the availability is the highest.

3.4 Model variations

3.4.1 Maintenance also based on degraded components

Until now, we discussed a maintenance policy dependent only on the number of

failed components. If we are able to observe the number of degraded components in the

system during the operational time, we could use another rule. Denoting a system state as

(i, j), which means there are i degraded components and j failed components in the system,

we have one set with all system states Ω = (i, j) with i = 0, 1, .., N and j = 0, .., N − i. We
divide Ω into three subsets:

ΩU : all system states in which the system is operational and maintenance is not

yet initiated.

ΩM : all system states in which the system is operational and maintenance has

been initiated.

ΩD : all system sets in which the system has failed.

Of course, the sets need to be defined such that it is impossible to make a tran-

sition to a state in ΩU once the system state is in one of the other sets, except caused by

maintenance.
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The expression for the operational time until maintenance initiation only changes

slightly. In equation 3.2, the condition j = m changes into (i, j) ∈ ΩM . For the expected
uptime during the lead-time, equation 3.3 remains unchanged because the definition of a

failed system remains unchanged. We define a subset of ΩM with only the system states

that initiate maintenance, thus the system states (i, j) ∈ ΩM with (i + 1, j − 1) /∈ ΩM or

(i − 1, j) /∈ ΩM , denoted by ΩI . The uptime is estimated using the equations of Section
3.2.1. Taking into account the number of degraded components, the expressions for E

h bTi
and var

h bTi are modified by replacing m by j and we sum over (i, j) ∈ ΩI . In expression
3.6, for P (i, j) we only change the restriction j = m into (i, j) ∈ ΩI . For the expected
maintenance duration, we only change E [Ai] and E

£
A2i
¤
for i = 0, 1, 2. This change is

similar to the other changes: replace m by j and sum over (i, j)²ΩI .

Note that a maintenance policy should define the set ΩM . Optimisation of such a

maintenance policy is not straightforward, but at least we are able to evaluate the conse-

quences of a given choice. Explicit optimisation is subject for further research.

3.4.2 Replacement of failed components only

If it is impossible to distinguish the condition of type 0 and 1 components, we

can only replace failed components during maintenance. The system state at the start of

a cycle is then unknown and could be any state (N − i, i, 0) with 0 ≤ i ≤ N −m. As a
consequence we cannot use E [Tm(0, 0)] because the system is not as-good-as-new at the

start of the cycle. We adjust the equation to:

E [Tm] =
N−mX
i=0

Pstart(i)E [T (i, 0)] (3.43)

Here Pstart(i) is the probability that the system state at the start of a cycle is

equal to (N− i, i, 0). This probability Pstart(i) equals the sum of probabilities of the system
being in state (N − i− j, i, j) with j = m, ..,N−i at the start of the preceding maintenance
period.

Pstart(i) =
N−iX
j=m

Pmaint(i, j) (3.44)
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Here Pmaint(i, j) is the probability that the system state equals (N − i− j, i, j)
at the start of maintenance. This probability depends on the system state at maintenance

initiation and state transitions during the lead-time:

Pmaint(i, j) =

i+j−mX
h=0

Pinit(h,m)Ptrans ((h,m), (i, j), L) j ≥ m (3.45)

Here Ptrans ((h,m), (i, j), L), the probability of a transition from state (N − h −
m,h,m) to state (N − i− j, i, j) in time L, which is given by:

Ptrans ((h,m), (i, j), L) =

min{j−m,h}X
y=[h−i]+

µ
h

y

¶µ
N − h−m
N − i− j

¶µ
i+ j − h−m
j − y −m

¶
(p00(L))

N−i−j

× (p01(L))i+y−h (p02(L))j−y−m (p11(L))h−y (p12(L))y

The probability Pinit(h,m) is defined as the probability of the system state being

(N − h−m,h,m) at maintenance initiation, which is a function of the system state at the

start of the cycle:

Pinit(i,m) =
i+mX
h=0

Pstart(h)Ph,m(i,m) (3.46)

Ph,m(i, j) is the probability of reaching state (N − i− j, i, j) given initial state
(N − h, h, 0) and maintenance initiation at m failed components. This probability is found

recursively using:

Ph,m(i, j) =

⎧⎨⎩ 1 (i, j) = (h, 0)

α(i− 1, j)Ph,m(i− 1, j) + β(i+ 1, j − 1)Ph,m(i+ 1, j − 1) else

By filling in equation 3.46 into equation 3.45 filled into equation 3.44 we have a set

of equations with only Pstart(i) which can be solved using
N−mP
i=0

Pstart(i) = 1. With Pstart(i),

we have E [Tm].

For the uptime during the lead-time we can use our approximation with Pinit(i,m) =

P (i,m).

For the maintenance duration our model becomes less complex because we only

have type 2 components in our repair shop. This enables us to use the method we used
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in our model without ageing (see De Smidt-Destombes, Van Der Heijden and Van Harten

(2004)) with the repair rate equal to μ2.

For large systems we encounter the same problem with Ptrans((h,m), (i, j), L) as

we did before with Q(i, j, t). An alternative is to use a moment iteration approach. To find

the distribution of the system being in state (N − i, i, 0) is equal to finding the distribution
of A1 with the first two moments:

E [A1] =
N−mX
i=0

P (i,m) {(N −m− i)p01(L) + ip11(L)} (3.47)

E
£
A21
¤
=
N−mX
i=0

P (i,m) {(N −m− i)p01(L) {1− p01(L) + (N −m− i)p01(L)} (3.48)

+ ip11(L) {1− p11(L) + ip11(L)}+ 2i(N −m− i)p01(L)p11(L)}

The distribution of P (i,m) is the only expression that changes. We start by

choosing an initial distribution for A1. Then we determine P (i,m) using the recursion of

equation 3.2. We then have E [A1] and E
£
A21
¤
. By iteration we find the system state

distribution at the start of the cycle.

3.4.3 Stochastic lead-time L

In our model we assumed the lead-time to be deterministic. In case of a stochastic

lead-time we have to adjust the calculations for E [Um] and E [Dm,S,c]. For method A this

means changing equations 3.3 and 3.4. We could do this by conditioning on the lead-time.

Equation 3.4 results in terms of the form exL. The expectation of these terms is found using

the Laplace transform of L and taking a Gamma function for instance. Adjusting equation

3.3 can also be done but takes more effort.

In method B only the second expectation of E [Um] = E
h bTi − E ∙h bT − Li+¸

changes. Because bT and L are independent it is rather easy. For E [Dm,S,c] the equation
3.26 for B2 and the equations for the first and second moment of A0 and A2 change. In

equation 3.26 we need Zμ2(Tm+L−Rμ1(C1)) for which the mean and variance are still the

same because Tm, L and Rμ1(C1) are independent of one another. The expressions for the

moments of Ai we condition on L and find terms of the form exL. The expectation of these

terms is found by using Laplace transforms and a Gamma distribution for L for instance.
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See for a more detailed explanation Chapter 4 or De Smidt-Destombes, Van der Heijden

and Van Harten (2006a).

3.4.4 Cold stand-by redundancy

If components are easily switched on, it may be possible to have the components

that are not necessary for the system turned off. This results in a system with k active

components that degrade while being used, whereas the other components are inactive and

therefore are not subject to degradation. This variant is known as cold stand-by redundancy.

This changes the transition probabilities between and the sojourn times in system states. For

E [Tm] we modify E [Tm(i, j)] from equation 3.2. We change τ(i, j) = 1
(k−i)λ1+iλ2 , α(i, j) =

(k−i)λ1
(k−i)λ1+iλ2 and β(i, j) = iλ2

(k−i)λ1+iλ2 . For E [Um] we are able to use the approximation

given in method B, for which E
h bT (i, j)i, E h bT 2(i, j)i and P (i, j) changes equivalently to

E [Tm]. For E [Dm,S,c] the only parameters effected in method B are the Ai. If we assume

L = 0 then we know the first and second moment for Ai by using P (i,m). When L > 0,

we encounter difficulties with the determination of the first and second moment. This is

caused by the fact that we need to take into account the exact timing of the transitions.

Otherwise we do not know the number of components in state 0 that are subject to failure.

Hence, we can analyse cold stand-by redundancy if L = 0, but need another

approach if L > 0.

3.5 Conclusions

In this chapter, we introduced component wear-out in a model for the trade-off

between spare part inventories, repair capacity and maintenance policy. This extension

implies a lot of complications. The first complication is the correlations between different

parameters. The state of the spares at the start of maintenance is not independent of the

state of the system at the start of maintenance. Even if we ignore this correlation, we found

it impossible to compute the different expressions we need to determine the availability. On

the one hand it is impossible because of large binomials in the expression for the uptime

during the lead-time. On the other hand it is impossible because of the large state space for

the spares needed to compute the steady state probabilities of the spares at the start of the

maintenance period. Especially if we want to use the model presented in the paper as a basic

model for an optimisation between cost and availability we are in need of an accurate model
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with small computation times. Our numerical examples show that the second approximation

(Section 3.2) fulfils these requirements and can be used for this purpose.
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Chapter 4

Multiple systems without wear-out

The previous two chapters are concerned with the availability of a single k-out-of-

N system. In this chapter1 we consider multiple k-out-of-N systems that share the same

resources. They share the available spare parts and the repair capacity. It is harder to use

the same condition-based maintenance rule as we did for a single system when the spares

and capacity are used for several systems because we could end up with a queue in front of

the repair shop, if two or more systems reach the critical condition (almost) simultaneously.

Obviously it is not very attractive to have systems lined up while they are not even failed

yet. So therefore when we are dealing with more than one system we choose a time-based

maintenance rule. At the same time this helps to spread the work load in the repair shop

more equally.

We consider an installed base of M > 1 identical k-out-of-N systems with hot

stand-by redundancy. We assume that each system is maintained with a fixed maintenance

interval of length T . In other words, we use a block replacement policy with no action

taken if the system fails before its maintenance period. We assume that when a system has

failed and less than k components are working, the system is not shut down. As an example,

consider the APAR that can still work if less than 2700 out of the 3000 transmit-and-receive

elements are available, although the performance is inferior (but better than nothing).

Therefore, the components are still subject to failure after system failure. Just like for the

single system without component wear-out, we assume the components to fail independently

1This chapter is based on the paper: K.S. de Smidt-Destombes, M.C. van der Heijden and A. van Harten;
Spare parts analysis for k-out-of-N systems under block replacement and finite repair capacity; International
Journal of Production Economics ; to appear.
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and identically distributed according to a negative exponential distribution with parameter

λ. During maintenance, all failed components are replaced by spare components. The total

number of spares for the installed base equals S. The components are repairable and are

processed by a single repair shop with c identical, parallel repair channels. If the number of

functional spares is insufficient, the maintenance period is extended with the time needed

to restore the lacking number of components. Repair of a failed component is exponentially

distributed with parameter μ. The total maintenance time, D, only consists of the waiting

time for spares. We neglect the replacement time of components.

system 1

system 2

system 3

repair shop

maintenance

maintenance

maintenance

maintenancemaintenancemaintenance

operational time

repairs repairsrepairs

maintenance

maintenance

maintenance

maintenancemaintenancemaintenance
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repairs repairsrepairs

System cycle T

Repair shop cycle T/3
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maintenance
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Figure 4.1: A schematic representation for an installed base consisting of three identical
systems. The cycle length of the systems equals T , an operational time (in which the system
may fail) and a maintenance period. The maintenance periods are spread such that the
repair shop has a cycle length of T3 . Between the maintenance periods the repair shop
repairs spare parts that are not ready-for-use.

In Figure 4.1, we show the various cycles that we distinguish when modelling

the system. We have a cycle for each system in the installed base, defined as the period

between two consecutive arrivals of the same system at the repair shop for maintenance

(a fixed period with length T ), and a repair shop cycle, defined as the period between the

arrival of two consecutive systems (a fixed period with length T
M ). Both cycles start just

before a system arrives for maintenance. The figure shows an example with an installed base

of M = 3 systems. The availability of each system is defined as the uptime of the system

divided by the uptime plus the downtime, which equals T−D
T if no system failure occurs

during the operational time. Taking into account system failures and defining U(T −D) as
the uptime during T −D, the availability equals:
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Av =
E [U(T −D)]

T
(4.1)

The maintenance duration D depends on the number of failed system components

and the number of spares available at the start of maintenance as well as the repair capac-

ity. Assuming that the failure rate and repair rate are known, we can control the system

availability by the cycle length T , the number of spares S and repair capacity c. Hence, we

should denote the maintenance duration as DT,S,c but for simplicity we omit the subscripts.

For the analysis of this system, queueing models seem to be suitable at first sight.

The repair shop can be modelled as a multi-server queue with batch arrivals, similar to the

DX/M/c queue. The time between the arrivals of batches is deterministic (equal to T
M ) and

the number of components in each batch is a random variable that, unfortunately, depends

on the system uptime T − D and is therefore dependent on the repair shop performance.

If the repair shop is highly utilised, the maintenance duration D increases, so the system

uptime T −D decreases and so the work offered to the repair shop decreases. Theoretically,

it is even possible that D > T , and then there are no failed components offered to the

repair shop in the next cycle. As a consequence, the system is always stable having a

utilisation of at most 1. Of course, the system availability is very low if the repair shop

capacity is low. We also observe that it is not straightforward to estimate the repair shop

utilisation in advance because of the relation between repair shop capacity and component

arrival rate. Therefore, we have to use approximations or simulations to estimate the repair

shop utilisation. We conclude that the repair shop can be modelled as a non standard

queueing system for which no suitable results are available in the literature to the best of

our knowledge.

As another option, it seems to be logical to use renewal theory. However, we face

the complication that consecutive system cycles are (possibly heavily) correlated, which

induces correlations between repair shop cycles as well. We can explain this as follows using

Figure 4.2.

A k-out-of-N system arrives every T time units for maintenance. Maintenance

is finished as soon as sufficient ready-for-use components are available to replace all failed

components, which takes some time D (where D = 0 if the number of functional spares

is sufficient to replace all failed components immediately). The operational time in the

next system cycle equals the time until the start of the next system maintenance, T −D.
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Figure 4.2: Arrivals at the repair shop for an installed base of three systems. If system 1
arrives with more failed components A1 than average, the maintenance duration will take
longer than average. As a consequence the succeeding operational time will be shorter and
therefore the number of failed components at the next arrival at the repair shop is likely to
be smaller. This implies a negative correlation between the A1 of succeeding system cycles.
For the repair cycles, cycle i and cycle i+M are negatively correlated.

Now suppose that the system has more failed components than average, upon arrival for

maintenance at the repair shop in the first system cycle. Then the maintenance duration D

will probably be longer than average and so the operational time in the next cycle T −D
will be shorter than average. As a consequence, the number of failed components will be

less than average when the system arrives again at the repair shop for maintenance in the

second system cycle. Hence, we expect a negative correlation between the number of failed

system components at the start of two consecutive system cycles for the same system in

the installed base. From figure 4.2, we see that this also means a negative correlation

between repair shop cycles, because the start of a cycle for each system in the installed base

coincides with the start of a repair shop cycle. So, we expect a negative correlation between

the number of failed components arriving M repair shop cycles later. This correlation is

very hard to quantify. Therefore we ignore this correlation in our model and assume that

both the repair shop cycles and the system cycles are mutually independent. In Section 4.4,

we show the extent to which this assumption has a significant impact on the accuracy of

our approximations by comparison to results from discrete event simulation.

In this chapter, we focus on the approximation of E [U(T −D)] given the inde-
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pendence assumption as stated above. We derive a set of stochastic equations for the

maintenance duration D. We present two approximation methods to solve the system of

equations for D based on the first two moments of the key random variables involved. The

first approximation is based on continuous probability distributions (particularly suitable for

large systems) and the second approximation is based on discrete probability distributions

(particularly suitable for small systems).

4.1 Model analysis

As stated before, we need to determine the expected uptime U(T − D) of the
system during the operational time T −D. In the remainder of this thesis, we simply use
the shorthand notation U . If the system is still operational when it arrives for maintenance

(i.e. the number of failed components is at most N−k), we have that U = T −D. However,
if the system fails before maintenance starts, the uptime equals the time until system failure.

Let us use eU to denote the system time to failure if there is no maintenance. Then we can

write U = min{T −D, eU}. It is easy to find eU as we show at the end of Section 4.2. The

unknown variable we focus on first is the maintenance duration D. Before we do so, we give

a list of the assumptions we use throughout this chapter.

1. All components have the same exponentially distributed time to failure.

2. The failure behaviour of the components is independent of each other.

3. There are no component failures during maintenance activities, as the system is down.

4. During maintenance all servers c are continuously busy (which is always true when

the number of servers is less than the number of spares).

5. During the time between two system arrivals all c servers are continuously busy.

6. Consecutive system cycles are independent.

7. Consecutive repair shop cycles are independent.

Now let us derive stochastic equations for the maintenance duration D based on

the repair shop cycle. We define A1 as the number of failed components in the system that
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arrives for maintenance at the start of the repair shop cycle. Also, we define B1 as the

number of failed components waiting for repair at the start of the same repair shop cycle,

see Figure 4.2. If there is no other system still in maintenance, we have that B1 ≤ S. If at
least one other system is still in maintenance, B1 > S (all spares are failed and there are

some additional failed components from systems that arrived in the preceding repair shop

cycles that have not been repaired yet). If A1+B1 ≤ S, the number of ready-for-use spares
is sufficient to replace all failed components immediately and hence the repair time is zero.

If A1 +B1 > S, the maintenance duration equals the time needed to restore A1 +B1 − S
failed components. This is independent of the number of systems that arrived in earlier

repair shop cycles and are still in maintenance, since their failed components are included

in the value of B1. So if B1 decreases to the value of S all previous systems have left the

repair shop and the number of failed components A1 are left to be repaired. Denoting the

time to restore X components as R(X) and using the notation X+ = max{X, 0} for any
variable X, we write for D:

D = R
¡
[B1 +A1 − S]+

¢
(4.2)

We find a stochastic equation for B1 (using assumption 4) by noting that the

number of failed components at the start of a repair cycle equals the number of failed

spares from the previous cycle plus the number of failed components from the system that

arrived the previous cycle minus the number of spares restored between the two system

arrivals (repair cycle with length T
M ). In a stable situation, the probability distribution of

B1 should be identical at the start of all repair cycles. So if we define Z (X) as the number

of spares repaired during a period with length X, we find the stochastic equation

B1 =

∙
B1 +A1 − Z

µ
T

M

¶¸+
(4.3)

Next we have A1, which is the number of failed system components during T −D:

A1 = # failed components during T −D (4.4)

Conditioning on T − D, A1 has a binomial distribution with parameters N and

1 − e−λ(T−D), because the probability of a component failure during T − D equals 1 −
e−λ(T−D). Here, we write T −D instead of [T −D]+, where we ignore the possibility that
D > T . Since we are dealing with availability levels of at least 90%, the possibility of this
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unstable situation (in which a system is still in maintenance when its next maintenance

period begins) may be ignored

In theory, we can find the probability distributions of A1, B1 and D by solving the

set of stochastic equations 4.2, 4.3 and 4.4. Unfortunately, an analytical solution is in general

hard to find because of the complexity of these equations. A solution to our problem can

be found in using the moment iteration approach as has initially been suggested by De Kok

(1989) to approximate the waiting time in the G/G/1 queue from Lindley’s equation. The

moment iteration model we use to solve the set of equations is given in Section 4.2. For

specific details of the moment iteration method, we refer to 4.3.

4.2 Moment iteration scheme

The moment iteration method is suitable to solve an implicit stochastic equation of

the formX = f(X), where f(.) is some arbitrary function andX is some stochastic variable.

The idea is to approximate the distribution of X by fitting a convenient distribution to the

first two moments of the random variable X. In each iteration, we calculate improved

estimates for the first two moments of X from the equation X = f(X) using a two-moment

approximation. We continue until the estimates for the first two moments of X do not

change significantly anymore. We can do this, if it is relatively easy to calculate the first

two moments of f(X) for some specific family of probability distributions (e.g. Normal or

Erlang distributions). This is particularly true for simple but common functions like f(X) =

max{X − C, 0} and f(X) = max{C − X, 0} for some constant C. Although convergence
cannot be proven, the moment iteration approach appears to converge in many practical

situations, see e.g. Van der Heijden, Van Harten and Ebben (2001).

We can apply the same principle to a set of stochastic equations as we have here.

We start with some arbitrary initial values for the first two moments of several random

variables, approximate their distributions using a two-moment fit and generate improved

approximations for the first two moments of the random variables involved, repeating this

procedure until convergence. Again, we can do this if it is relatively easy to calculate the first

two moments of some function f(X,Y ) for some specific family of probability distributions

(e.g. Normal or Erlang distributions), particularly for simple but common functions like

f(X,Y ) = max{X − Y, 0}.



76 Multiple systems without wear-out

Our iteration scheme to find the expected maintenance duration D involves two

other key stochastic variables, A1 and B1, for which we use the set of equations given in 4.2,

4.3 and 4.4. To find the mean and variance of R (X) we use assumption 2. The conditional

probability distribution of R(X) (given X) has an Erlang distribution with X phases and

scale parameter cμ. Using the formulas for the conditional mean and variance, we find

equations 4.5 and 4.6. These expressions are used as an approximation, since it will not

always be true that all servers are busy during the whole time R(X). However, as long

as there is not a surplus of capacity the c servers will be busy most of the time and this

assumption is reasonable.

E [R(X)] ≈ E [X]
cμ

(4.5)

var [R(X)] ≈ E [X]
(cμ)2

+
var [X]

(cμ)2
(4.6)

In equation 4.3 for B1, we defined Z (X) for which we also use assumption 3,

which gives us a Poisson distribution with parameter cμX. Again we use an approximation

assuming that all capacity is active, which gives us a Poisson distribution with parameter

cμX. Hence we find that the mean and variance are approximately given by:

E

∙
Z

µ
T

M

¶¸
≈ cμ T

M
(4.7)

var

∙
Z

µ
T

M

¶¸
≈ cμ T

M
(4.8)

Finally, we need an expression for A1 or A0 = N − A1. Because of assumption
1, the conditional distribution of A0 given the length of the previous maintenance duration

D is a binomial distribution with parameters N and e−λ(T−D). Similarly, the conditional

distribution of A1 givenD is a binomial distribution with parametersN and
¡
1− e−λ(T−D)

¢
.

Hence,

E [A0] = Ne
−λTE

h
eλD

i
(4.9)

var [A0] = E [var [A0 |D ]] + var [E [A0 |D ]] (4.10)

= E [A0] +N(N − 1)e−2λTE
h
e2λD

i
− (E [A0])2
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Directly determining E
£
eλD

¤
by fitting a continuous distribution for D is not

very precise, due to the point mass in D = 0. Therefore we define D∗ as the maintenance

duration, given that the maintenance duration is larger than zero. Hence, with β = Pr(A1+

B1 > S) and E
£
eλD

∗¤
the Laplace transform of D∗,

E
h
eλD

i
= (1− β) + βE

h
eλD

∗
i

(4.11)

Our moment iteration scheme to find the mean maintenance duration consist of

the following steps:

Step 0: initialisation, choose starting values for E [A1], var [A1], E [B1], var [B1],

E [D] and var [D].

Step 1: determine the first and second moment of A1 using E [A1] = N − E [A0]
and var [A1] = var [A0] and the equations 4.9 and 4.10 with 4.11 and 4.15.

Step 2: fit a distribution to X = A1 + B1 using the new values of E [A1] and

var [A1] that we found in step 1, assuming that A1 and B1 are independent.

Step 3: determine the first and second moment of B1 =
£
X − Z

¡
T
M

¢¤+
with the

mean and variance of Z
¡
T
M

¢
as given in equations 4.7 and 4.8.

Step 4: find the first and second moment of [X−S]+ with X = A1+B1 using the

new values of E [B1] and var [B1] that we found in the previous step.

Step 5: approximate the first and second moment of D = R ([X − S]+) using
equations 4.5 and 4.6.

Step 6: convergence check. If the relative difference between the E [D] found in

this iteration and the previous one is smaller than some fixed ² then stop, else go to step 1.

In our model we chose ² = 10−5.

The impact of the initial values on E [D] is discussed in Section 4.4. After finding

an approximation for the maintenance duration, we still need to find the mean operational

time E [U ]. We define the operational time as:

U = min
n
T −D, eUo = T −D − hT −D − eUi+ (4.12)

We can determine relatively easy the first two moments of [X − Y ]+ with X and

Y positive random variables. Therefore, we define a positive random variable X = T −D
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and fit a distribution to X and to eU and find the mean of hT −D − eUi+. E [U ] then equals
E [T −D]−E

∙h
T −D − eUi+¸.

We therefore need the mean and variance of D, which we determine using our

iteration scheme, and we need the mean and variance of eU . eU is the sum of the interval

until the first component failure and the interval between the first and second failure,...,

until the interval between failures N − k and N − k+1. The mean eU equals the sum of the

mean interval lengths and the variance of eU equals the sum of the variances of the interval

lengths.

E
heUi = NX

i=k

1

iλ
(4.13)

var
heUi = NX

i=k

1

(iλ)2
(4.14)

4.3 Large versus small number of components

In the moment iteration scheme as presented in Section 4.2, we need the Laplace

transform of D∗ and we need to fit distributions. Therefore we distinguish systems with a

small number of components and systems with a large number of components. For large

systems (systems like the active phased array radar system) we are able to use an Erlang

distribution (see Tijms (1994)), while for smaller ones (systems like the active towed ar-

ray sonar system) we use some specific discrete distributions. Dependent on the first two

moments, we either use a mixture of two binomial distributions, a mixture of two negative

binomial distributions, a mixture of two geometric distributions or a Poisson distribution,

see Adan, Van Eenige and Resing (1995).

For systems with a large number of components, E
£
eλD

∗¤
is the Laplace transform

of D∗ for which we use an Erlang distribution with parameters α = E[D∗]
var[D∗] and r =

(E[D∗])2

var[D∗] .

This results in the following expression for the Laplace transform of D∗:

E
h
eλD

∗
i
=

TZ
t=0

eλtfD∗(t)dt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)r

³
α

λ−α

´r
+ αr

r−1P
i=0

(−1_i+r−1T ie(λ−α)T
i!(λ−α)r−i α < λ

(αT )r

r! α = λ³
α

α−λ

´r
− αr

r−1P
i=0

T ie−(α−λ)T

i!(α−λ)r−i α > λ

(4.15)
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For smaller systems, we use one of the discrete distributions as mentioned above.

• if the distribution of D∗ is approximated by a mixture of two binomial distributions:
qBin(n, p) + (1− q)Bin(n+ 1, p) the mean and variance of A0 become:

E [A0] = Ne
−λT

µ
(1− β) + β

µ
q
³
(1− p)peλ

´n
+ (1− q)

³
(1− p)peλ

´n+1¶¶
var [A0] = E [A0]− (E [A0])2

+N(N − 1)e−2λT
µ
(1− β) + β

µ
q
³
(1− p)pe2λ

´n
+ (1− q)

³
(1− p)peλ

´n+1¶¶
• if the distribution of D∗ is approximated by a mixture of two negative binomial dis-
tributions: qNegBin(n, p) + (1 − q)NegBin(n + 1, p) the mean and variance of A0
become:

E [A0] = Ne
−λT

Ã
(1− β) + β

Ã
q

µ
p

1− (1− p)eλ

¶n
+ (1− q)

µ
p

1− (1− p)eλ

¶n+1!!
var [A0] = E [A0]− (E [A0])2 +N(N − 1)e−2λT ·Ã

(1− β) + β

Ã
q

µ
p

1− (1− p)e2λ
¶n
+ (1− q)

µ
p

1− (1− p)e2λ
¶n+1!!

• if the distribution of D∗ is approximated by a mixture of two geometric distributions:
qGeo(p1) + (1− q)Geo(p2) the mean and variance of A0 become:

E [A0] = Ne
−λT

µ
(1− β) + β

µ
q

p1
1− (1− p1)eλ

+ (1− q) p2
1− (1− p2)eλ

¶¶
var [A0] = E [A0]− (E [A0])2

+N(N − 1)e−2λT
µ
(1− β) + β

µ
q

p1
1− (1− p1)e2λ

+ (1− q) p2
1− (1− p2)e2λ

¶¶
• if the distribution of D∗ is approximated by a Poisson distribution: Pois(ν) equations
the mean and variance of A0 become:

E [A0] = Ne
−λT

³
(1− β) + βeν(e

λ−1)
´

var [A0] = E [A0]− (E [A0])2 +N(N − 1)e−2λT
³
(1− β) + βeν(e

2λ−1)
´

4.4 Numerical results

In this chapter, we constructed a model for an installed base without component

wear-out. The convergence of the iteration scheme is found within roughly ten iterations.
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Since this model is an approximation we need to check the accuracy of the model. To

this end we constructed a discrete event simulation model in the object oriented simulation

software eM-Plant 7.5 as a bench mark. In all cases, we simulated 1010 system cycles, where

we ignored the first ten cycles for the output analysis (that is, we used a warm-up period

of ten system cycles). We used the batch means method (cf. Law and Kelton (1991)) to

calculate a confidence interval for the mean availability and found that the half width of

the 95% confidence interval is (considerably) less than 1% in most cases. We considered

three different system sizes: 7-out-of-10, 58-out-of-64 and 2700-out-of-3000. For the latter

one, which is a large system, we only used the approach with continuous distributions. For

the other two system sizes we used the approximation with discrete distributions and the

approximation with continuous distributions. The computation time for a 2700-out-of-3000

system is too large for the use of the approximation with discrete distributions.

In order to deal with realistic situations we consider systems with an availability

of at least 90%. For a realistic utilisation rate of the repair shop we consider rates between

50% and 90%.

For each of the three system sizes we constructed about 80 combinations of values

for the failure rates, repair rates, maintenance intervals, number of spares and number of

repair capacity, divided equally over the size of the installed base (see Table 4.1 for an

overview of the parameter combinations used).

Table 4.1: Combinations of input parameters used for the installed base without component
wear-out

M λ μ (T ,S,c)

7-out-of-10 2 0.001 0.0023-0.0036 (2000,4,1),(2200,4,1),(2500,4,1),(3000,4,1)
4 0.001 0.004-0.0075 (2000,3,1),(2000,4,2),(2500,5,1),(2750,4,1)
10 0.001 0.011-0.0175 (2000,1,1),(2000,2,1),(2000,3,1),(2750,4,1)

58-out-of-64 2 0.001 0.008-0.002 (800,4,1),(800,6,1),(900,5,1),(1000,6,1)
4 0.001 0.02-0.032 (800,4,1),(800,6,1),(900,5,1),(1000,6,1)
10 0.001 0.02-0.032 (800,4,3),(800,6,3),(900,5,3),(1000,6,3)

2700-out-of-3000 2 0.001 0.4-1 (800,250,1),(800,300,1),(900,275,1),(1000,300,1)
4 0.001 1-1.6 (800,250,1),(800,300,1),(900,275,1),(1000,300,1)
10 0.001 1-1.6 (800,250,3),(800,300,3),(900,275,3),(1000,300,3)

In Table 4.2 we show the mean and maximum relative differences that we found in

the maintenance duration and in the availability compared to our simulation results. These

deviations are in some cases underestimations and in other cases overestimations. We did
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not find evidence that the approximation errors depend on the repair shop utilisation rate

or the system availability.

Table 4.2: Mean (max) differences between the approximations and the simulation results
for both the maintenance duration and the availability using the model with discrete dis-
tributions and the model with continuous distributions

E[D] Av

discrete
7-out-of-10 22.2% (106.7%) 1.4% (11.7%)
58-out-of-64 3.5% (32.3%) 0.2% (2.1%)

2700-out-of-3000 - -
continuous
7-out-of-10 29.4% (111.6%) 1.6% (13.6%)
58-out-of-64 4.0% (29.8%) 0.1% (0.6%)

2700-out-of-3000 3.5% (13.6%) 0.1% (0.5%)

For large systems we have no choice other than to use an approximation with

continuous distributions. Although the approximation of the maintenance duration may not

be very accurate at all times, we have a good approximation for the system availability. This

is due to the fact that the availability of the systems is 90% or more and the maintenance

duration is a relatively small part of the system’s cycle. As a result the impact of an error

in the maintenance duration is small.

For the medium sized systems we can choose between an approximation with

continuous or discrete distributions. If we would split the results according to the size of

the installed base we would see that for a larger installed base the approximation with

discrete distributions is slightly better than the one with continuous distributions.

In case of the small systems we find a better performance if we use the approxi-

mation with discrete distributions.

As seen in Table 4.2 the approximations for smaller systems are less satisfying.

This can be explained by the fact that an absolute small approximation error for Ai or Bi

is a relatively large error when we only have a few components. As a result, the error in the

approximation of the maintenance duration is relatively large. For systems with a larger

number of components the relative approximation errors are therefore smaller. Without

exception the maximum errors given in Table 4.2 are all generated by the scenarios with a

smaller size of the installed base.
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When the installed base is small the errors in the approximations are bigger than

the errors we find for a larger installed base. This is probably due to the fact that there is

a dependency between the cycles in which the same system arrives at the repair shop. If

the installed base becomes larger this dependency becomes smaller because the number of

intermediate cycles (M −1) becomes larger. This is shown in Table 4.3, showing the results
for the different number of systems per installed base for a 7-out-of-10 system.

Table 4.3: Mean differences between the approximations and the simulation results for both
the maintenance duration and the availability for a 7-out-of-10 system

7-out-of-10 E[D] Av

2 systems 56.6% 3.7%
4 systems 26.4% 0.8%
10 systems 5.2% 0.3%

In Figure 4.3 we show the differences in approximation errors for the maintenance

duration as a function of the utilisation rate of the repair shop for the different sizes of the

installed base consisting of 58-out-of-64 systems. It is shown that the approximation errors

become smaller if the size of the installed base increases. For larger systems the errors for

the maintenance duration are less and for smaller systems the differences tend to be larger.
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Figure 4.3: In this figure the approximation errors in maintenance duration are shown as a
function of the utilisation rate of the repair shop. The smaller the installed base, the larger
the differences become.
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4.5 Conclusions

From the previous section we conclude that we have accurate approximations for

the availability as function of the maintenance interval, number of spare parts and the

number of repair capacity, provided that the number of components in a system is not too

small (a number of more than ten components seems to be sufficient) and the size of the

installed base is not too small (a number of at least four systems seems to be sufficient). We

can draw graphs in which we quantify the effect of the length of the maintenance interval

and the maintenance means (spares and capacity). Increasing the maintenance interval

means we can do with less spares or capacity (or both) and still have the same availability

performance. For systems with only a small number of components or a small installed base

we have to be careful because the approximation errors may be relatively large.
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Chapter 5

Multiple systems with wear-out

In this chapter1 we model a wear-out process using three component states 0, 1

and 2 for a fully functional, degraded and failed component, respectively. We use the same

assumptions as in the previous chapter, given in Section 4.1 and

1. State transitions from state 0 to state 1 occur according to an exponential distribution

with rate λ1.

2. State transitions from state 1 to state 2 occur according to an exponential distribution

with rate λ2.

3. There are no direct transitions possible from state 0 to state 2.

4. During maintenance all degraded and failed components are replaced by spare com-

ponents.

5. The repair times for degraded and failed components are exponentially distributed

with rates μ1 and μ2 respectively.

To derive approximations for this model, we use an intermediate step, namely the

special case where the repair rates of degraded and failed components are identical, μ1 = μ2

(Section 5.1). Next, we address the variant where the repair rates may be different (Section

5.2). In the latter case, it makes a diference in which order we repair degraded and failed
1This chapter is based on the paper: K.S. de Smidt-Destombes, M.C. van der Heijden and A. van Harten;

Spare parts analysis for k-out-of-N systems under block replacement and finite repair capacity; International
Journal of Production Economics ; to appear.
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components because of the different repair rates, μ1 6= μ2. Hence, we use a scheduling rule

to decide in which order the spares are restored.

5.1 Equal repair rates: μ1 = μ2

If the repair rates of the degraded and failed components are equal, it is sufficient

to know the total number of components that are waiting or in repair at the start of a repair

cycle, which we define as B. The total number of failed and degraded components at the

start of a repair cycle equals B + A1 + A2 with Ai is the number of system components

in state i at system arrival in the repair shop (i = 0, 1, 2). Then our equation for the

maintenance duration (4.2) changes to:

D = R
¡
[B +A1 +A2 − S]+

¢
= R

¡
[B +N −A0 − S]+

¢
(5.1)

Similar to the model without wear-out, the conditional distribution of the number

of components in state 0 at the start of a repair cycle given the length of the previous

maintenance time, A0|D, is binomial with parameters N and e−λ1(T−D). The unconditional

mean and variance of this stochastic variable are given by the equations 4.9 and 4.10 with

λ replaced by λ1.

The number of components that are not yet restored at the start of the repair

cycle B equals the number of spares to restore at the previous system arrival, plus the

failed components that came out of that system minus the number of repairs that is done

between the two system arrivals. Hence, we have the same equation as for the model without

wear-out, see equation 4.3 with A1 = N −A0.

B =

∙
B +N −A0 − Z

µ
T

M

¶¸+
(5.2)

Analogous to the model without ageing of components we use a moment iteration

method to solve this set of equations 5.1, 5.2 and 4.9 until 4.11. The generic iteration

scheme is as follows:

Step 0: initialisation, choose start values for E [A0], var [A0], E [B], var [B], E [D]

and var [D]. Approximate the mean and variance of Z
¡
T
M

¢
as in equations 4.7 and 4.8.

Step 1: determine the mean and variance of A0 using 4.9, 4.10 and 4.11.
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Step 2: find the mean and variance of Y = N −A0+B, assuming that A0 and B1
are independent.

Step 3: find the mean and variance of B =
£
Y − Z

¡
T
M

¢¤+
.

Step 4: find the mean and variance of X = [Y − S]+ after determining the mean
and variance of Y = N −A0 +B again with the new values for the mean and variance for

B found in step 3.

Step 5: approximate the mean and variance of the maintenance duration D =

R(X) using the equations 4.5 and 4.6.

Step 6: convergence check: If the relative difference between the E [D] found in

this iteration and the previous one is smaller than some fixed ² then stop, else go to step 1.

In our model, we chose ² = 10−5.

In order to find the mean operational time E [U ], we also need the mean and

variance of eU , which changes because of the ageing of components. In De Smidt-Destombes,
Van der Heijden and Van Harten (2006b) a recursive method is presented to find the first

two moments. In short, this method works as follows. We define T (i, j) as the time duration

to get from state (i, j) (state (i, j) refers to N − i− j components in state 0, i components
in state 1 and j components in state 2) to a failed state which has N −k+1 components in
state 2. This immediately gives us the starting values of the recursion, T (i,N − k+ 1) = 0
and T 2(i,N − k + 1) = 0 for every value of 0 ≤ i ≤ k − 1. The recursion is given by:

E [T (i, j)] = τ(i, j) + α(i, j)E [T (i+ 1, j)] + β(i, j)E [T (i− 1, j + 1)]

E
£
T 2(i, j)

¤
= 2τ(i, j)E [T (i, j)] + α(i, j)E

£
T 2(i+ 1, j)

¤
+ β(i, j)E

£
T 2(i− 1, j + 1)

¤
Here, τ(i, j) = 1

(N−i−j)λ1+iλ2 is defined as the expected sojourn time in state

(i, j), α(i, j) = (N−i−j)λ1
(N−i−j)λ1+iλ2 is the probability of a transition from state 0 to state 1 and

β(i, j) = iλ2
(N−i−j)λ1+iλ2 is the probability of a transition from state 1 to state 2. Now eU is

defined as the time from state (0, 0) to a failed state. Hence,

E
heUi = E [T (0, 0)]

var
heUi = E £T 2(0, 0)¤− (E [T (0, 0)])2

With the first two moments of eU and D, we are able to determine the expected

uptime U from equation 4.12.
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5.2 Different repair rates: μ1 6= μ2

5.2.1 Repair strategy

We denote the repair rate for degraded and failed components by μ1 and μ2,

respectively. It is plausible that repair of failed components takes more time on average

than repair of degraded components, so μ1 ≥ μ2. The remainder of our analysis be based on

this assumption for ease of notation. It is straightforward to modify the analysis if μ2 > μ1.

If the two repair types (degraded and failed components) have different repair

rates, we can influence the maintenance duration and hence the availability by choosing

the order in which the repair jobs are processed. Hence we have an additional degree

of freedom, namely a repair priority rule that we can use to minimise the maintenance

duration. We know that we should recover exactly [B +A1 +A2 − S]+ components to

restore the system that arrived at the start of a repair cycle. Therefore, we have to choose

(a) how many of these [B +A1 +A2 − S]+ components should be degraded components
and how many should be failed components (b) in which order we are going to repair these

[B +A1 +A2 − S]+ components. Regarding the first issue, it is obvious that we should

select as many degraded components as possible, because their repair rate is higher. If

we have insufficient degraded components, we add failed components until we reach the

required number of [B +A1 +A2 − S]+ components. Regarding the second issue, we can
use the fact that we can minimise the make span of a fixed set of repair jobs by selecting the

longest processing times first, see for instance Pinedo and Chao (1999). So, within the set

of degraded and failed components that we should repair to recover the system, we should

give priority to failed components. Summarised, our repair strategy is as follows:

If the number of degraded spares (state 1) is sufficient to replace all components in the

system, then only repair degraded ones. If the number of degraded spares is not sufficient,

start repairing the minimum number of failed components needed to repair the system and

next repair all degraded components.

During the time in which the repair shop repairs components without a direct

demand (the periods between maintenance periods in Figure 4.1) we want the repair shop

to restore as many spare parts as possible. Therefore, during this time the priority rule is:

First repair all degraded spares and then start repairing failed spares.
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Using these priority rules, we are able to define a set of equations, which is pre-

sented in Section 5.2.2.

5.2.2 Moment iteration scheme

The approach of the problem with ageing of components and different repair rates

is analogous to the one with distinguishing the components in state 1 and state 2. The

maintenance duration is therefore split into two parts, one part for the number of type 1

repairs and one part for the type 2 repairs. We defineW1 andW2 as stochastic variables for

the number of repairs of type 1 and repairs of type 2 respectively during the maintenance

time. Then, we approximate the expected maintenance duration and its variance by:

E [D] ≈ E [W1]

cμ1
+
E [W2]

cμ2
(5.3)

var [D] ≈ E [W1] + var [W1]

(cμ1)
2

+
E [W2] + var [W2]

(cμ2)
2

(5.4)

To determine the workload of type 1 and type 2 we use the priority rule as discussed

in the previous section. This implies the workload of type 2 components to be zero as long

as the total number of failed components, A2 + B2, is at most equal to S. Otherwise the

workload is equal to the difference between the total number of failed components and the

number of spares.

W2 = [A2 +B2 − S]+ (5.5)

For the workload of type 1 components we consider the total workload and subtract

the workload of type 2 components. The total number of degraded and failed components

in the system and the repair shop equals A1+A2+B1+B2 = N −A0+B1+B2. The total
workload is the total number of degraded and failed components minus the number that

does not need to be restored during the system maintenance period. In other words, if the

total number of components to restore is less than or equal to S, the total workload during

maintenance is zero, otherwise the workload is the difference between the components to

restore and S. Hence, we find for the workload of type 1 and type 2 components:

W1 = [N −A0 +B1 +B2 − S]+ −W2 (5.6)
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Because of the different repair rates, we split up the number of unrepaired spares

B into B1 and B2 where Bi denotes the number of components in state i in the repair shop

at arrival of a system. The number of spare components in state 1 is equal to the total

number of components in state 1 just after the previous system arrival (B1+A1) minus the

number of repairs done in the time left after the W2 type 2 repairs. For B2, we assume that

W2 is repaired before the next system arrives. This is a reasonable assumption since these

are the first components to be restored and the availability requirements of the systems are

rather high. Then B2 equals the total number of components in state 2 minus W2 minus

the number of restores done in the time left after W2 and B1 + A1 are repaired. We then

find the following equations for Bi:

B0 = [S −B1 −B2]+ (5.7)

B1 =

"
B1 +A1 − Z1

Ã∙
T

M
−R2(W2)

¸+!#+
(5.8)

B2 =

"
B2 +A2 −W2 − Z2

Ã∙
T

M
−R2(W2)−R1(A1 +B1)

¸+!#+
(5.9)

Here Ri(X) is defined as the time needed to restore X components of type i

and Zi(X) is defined as the number of repairs of type i during X. If we use a moment

iteration scheme to determine the maintenance duration using equations 5.3 until 5.9 the

results are not very good. In the expression for W1, we have a correlation between the

total workload during maintenance and the workload of type 2 components that we ignore

in our approximations. This affects the variance of W1 and consequently also affects the

variance of D. The simulations, that we describe in more detail in Section 5.3, show that

this correlation is often close to 1. For the approximation of B2 we have a correlation

between W2 and A2 + B2 which is at least 0.6 according to our simulation. To deal with

these problems, we can try to estimate the magnitude of the correlations. Unfortunately,

this is mathematically hard. As an alternative, we can reformulate equations 5.3 until 5.9

in terms of other random variables, such that the correlations are less severe. Below, we

derive such alternative expressions for W1 and B2.

Regarding W1 we know that if the maintenance duration equals zero, then the

value of W1 equals zero. The probability that the maintenance duration is larger than zero,

is Pr (A1 +A2 +B1 +B2 > S) = Pr (N −A0 +B1 +B2 > S) = β. The total number of
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spares to restore during the maintenance period is N−A0+B1+B2−S, under the condition
that N −A0 +B1 +B2 − S > 0. The time needed to restore this number of spares equals
D∗. Now there are two possibilities. The first possibility is that we need to restore only

part of the components in state 1. Then the value of W1 becomes equal to the number of

restores that can be done during D∗, Z1(D∗). The second possibility is that we need to

restore all components in state 1 and maybe even a number of components in state 2. The

value of W1 is then equal to A1 +B1. Combining these different possibilities we find:

W1 = min {Z1(D∗), A1 +B1}β + 0(1− β) (5.10)

Regarding B2, we add the assumption that we are also able to restore all type 1

components, A1+B1, before the next system arrives in the repair shop. This assumption is

not an unreasonable one as long as we are dealing with utilisation rates of the repair shop

that are not too large, say 90% to 95%. Hence, we approximate B2 by using the following

expression:

B2 =

"
B2 +A2 − Z2

Ã∙
T

M
−R1(A1 +B1)

¸+!#+
(5.11)

For the mean and variance of A0 we use the previous expressions 4.9 and 4.10.

The number of components in state 1 also has a binomial distribution with parameters N

and λ1
λ1−λ2

¡
e−λ2(T−D) − e−λ1(T−D)

¢
and the number of components in state 2 is binomially

distributed with parameters N and 1− e−λ1(T−D) − λ1
λ1−λ2

¡
e−λ2(T−D) − e−λ1(T−D)

¢
. With

some algebra we find:

E [A1] = N
λ1

λ1 − λ2

³
e−λ2TE

h
eλ2D

i
− e−λ1TE

h
eλ1D

i´
(5.12)

var [A1] = (N
2 −N)

µ
λ1

λ1 − λ2

¶2 ³
e−2λ2TE

h
e2λ2D

i
− 2e−(λ1+λ2)TE

h
e(λ1+λ2)D

i
(5.13)

+e−2λ1TE
h
e2λ1D

i´
+E [A1]− (E [A1])2

E [A2] = N −E [A0]−E [A1] (5.14)

var [A2] =
2N(N − 1)λ1

λ1 − λ2

³
e−(λ1+λ2)TE

h
e(λ1+λ2)D

i
− e−2λ1TE

h
e2λ1D

i´
(5.15)

+ var [A0] + var [A1]− 2E [A0]E [A1]
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To find an approximation of the maintenance duration we use a moment iteration

method using equations 5.3 until 5.5, 5.7, 5.8, 5.10 until 5.15, 4.9 and 4.10. The iteration

scheme becomes as follows.

Step 0: initialisation, choose start values for E [A0], var [A0], E [B0], var [B0],

E [W2], var [W2], E [D] and var [D].

Step 1: determine the means and variances ofA0 (using equations 4.9 and 4.10) and

A1 and A2 using equations 5.12 until 5.15. Therefore, we take out the point mass ofD in zero

and use equation 4.11 with β = Pr (A1 +A2 +B1 +B2 > S) = Pr (N −A0 +B1 +B2 > S).
Step 2: find the mean and variance of B1 = [B1 +A1 − Z1(X)]+ with X =£

T
M −R2(W2)

¤+
. Therefore we first determine the mean and variance of R2(W2) using equa-

tions 4.5 and 4.6 with μ replaced by μ2 andX =W2. Secondly we find the mean and variance

of the time available for type 2 repairs during a repair shop cycle: X =
£
T
M −R2(W2)

¤+
.

Thirdly, we find the mean and variance of Z1(X) using the approximations given in equa-

tions 4.7 and 4.8 with μ replaced by μ1. Finally we find the mean and variance of B1.

Step 3: find the mean and variance of B2 = [B2 +A2 − Z2(Y )]+ with Y =£
T
M −R1(A1 +B1)

¤+
. Therefore we first find the mean and variance of R1(A1 + B1) ap-

proximated by equations 4.5 and 4.8 with X = A1+B1 and μ replaced by μ1. Secondly we

find the mean and variance of Y and thirdly we find the mean and variance of Z2(Y ) using

the approximations given in equations 4.7 and 4.8 with μ replaced by μ2. Finally, we find

the mean and variance of B2.

Step 4: find the mean and variance of B0 = [S −B1 −B2]+.
Step 5: find the mean and variance of W1 =

¡
A1 +B1 − [A1 +B1 − Z1(D∗)]+

¢
β

with β as found in step 1 and the mean and variance of Z1(D∗), with the mean and variance

of D∗ as we found in step 1 to take out the point mass.

Step 6: find the mean and variance of W2 = [A2 +B2 − S]+.
Step 7: approximate the mean and variance of the maintenance duration using

the equation 5.3 for E [D] and equation 5.4 for var [D] :

Step 8: convergence check. If the relative difference between the E [D] found in

this iteration and the previous one is smaller than some fixed ² then stop, else go to step 1.

In our model we chose ² = 10−5.

To compute the mean operational time for the systems E [U ] we use the same

method as described in the model with ageing of components and equal repair rates.
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In our model the maintenance duration is equal to zero as long as the number of

components in the system that need to be replaced is smaller than or equal to the number of

ready-for-use spares. This can be adjusted easily by adding the expected replacement time

to the maintenance duration. Let us assume that ν is the replacement rate of a component.

Then the replacement time for a component is approximated by 1
cν and therefore the main-

tenance duration is increased by EA1+EA2
cν = N−EA0

cν . Of course, one might argue that it is

not more reasonable to have a deterministic replacement time, because component replace-

ment is a well-defined task that usually shows little variation in the time required, unlike

component repair. See De Smidt-Destombes, Van Der Heijden and Van Harten (2004) for

extending the model to a model with replacement times with deterministic replacement

times.

5.3 Numerical results

We constructed a model for an installed base of systems with component wear-out.

The model is an approximation and we therefore need to check the accuracy of the model.

Therefore, we do basically the same as we did for the installed base without component

wear-out in Section 4.4. We constructed a discrete event simulation model as a bench

mark. Again we simulated 1010 system cycles of which the first ten system cycles are

used as a warm-up period. We considered the same three different system sizes: 7-out-

of-10, 58-out-of-64 and 2700-out-of-3000. For the latter one, which is a large system, we

only used the approach with continuous distributions. For the other two system sizes we

used the approximation with discrete distributions and the approximation with continuous

distributions. The computation times for a 2700-out-of-3000 system is too large for the use

of the approximation with discrete distributions.

In order to deal with realistic situations we consider systems with an availability

of at least 90%. For a realistic utilisation rate of the repair shop we consider rates between

50% and 90%. For each of the three system sizes we constructed about 80 combinations

of values for the transition rates, repair rates, maintenance intervals, number of spares and

number of repair capacity for both models, divided equally over the size of the installed

base, see Table 5.1 for an overview. We chose μ1 = μ2. This gives us the opportunity to

compare the model of Section 5.1 which requires equal repair rates and the more general

model of Section 5.2 which does not require equal repair rates.
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Table 5.1: Combinations of input parameters used for the installed base with component
wear-out

M λ1 λ2 μ1 = μ2 (T ,S,c)

7-out-of-10 2 0.0001 0.1 0.0023-0.0036 (2000,4,1),(2200,4,1),(2500,4,1),(3000,4,1)
4 0.0001 0.1 0.004-0.0075 (2000,3,1),(2000,4,2),(2500,5,1),(2750,4,1)
10 0.0001 0.05 0.011-0.017 (2000,3,1),(2750,4,1)
10 0.0001 0.1 0.01125-0.0175 (2000,1,1),(2000,2,1)

58-out-of-64 2 0.0001 0.1 0.008-0.002 (800,4,1),(800,6,1),(900,5,1),(1000,6,1)
4 0.0001 0.1 0.02-0.032 (800,4,1),(800,6,1),(900,5,1),(1000,6,1)
10 0.0001 0.1 0.02-0.032 (800,4,3),(800,6,3),(900,5,3),(1000,6,3)

2700-out-of-3000 2 0.0001 0.1 0.4-1 (800,250,1),(800,300,1),(900,275,1),(1000,300,1)
4 0.0001 0.1 1-1.6 (800,250,1),(800,300,1),(900,275,1),(1000,300,1)
10 0.0001 0.1 1-1.6 (800,250,3),(800,300,3),(900,275,3),(1000,300,3)

In Table 5.2 we show the mean and maximum relative differences that we found

in the maintenance duration and in the availability compared to our simulation results. For

large systems we find basically the same results as for the installed base without component

wear-out. We can only use an approximation with continuous distributions. Although the

approximation of the maintenance duration may not be very accurate at all times, we have

a good approximation for the system availability, due to the availability levels of at least

90%.

Table 5.2: Mean (max) differences between the approximations and the simulation results
for both the maintenance duration and the availability using the model with discrete dis-
tributions and the model with continuous distributions

with wear-out (μ1 = μ2) with wear-out (μ1 6= μ2)
E[D] Av E[D] Av

discrete
7-out-of-10 19.4% (93.6%) 0.9% (7.7%) 14.0% (74.2%) 2.2% (7.6%)
58-out-of-64 5.1% (38.0%) 0.2% (2.5%) 4.1% (32.0%) 4.3% (7.1%)

2700-out-of-3000 - - - -
continuous
7-out-of-10 63.2% (791%) 1.9% (19.0%) 32.7% (644%) 0.9% (12.5%)
58-out-of-64 5.0% (37.4%) 0.2% (2.5%) 4.6% (29.2%) 0.1% (1.0%)

2700-out-of-3000 3.7% (10.9%) 0.1% (0.4%) 2.5% (8.6%) 0.1% (0.4%)

For the general model (not necessarily μ1 = μ2), we find that the results for

medium sized systems are more accurate using continuous distributions. Arranging the

results according to the size of the installed base we see that for a large installed base it

is best to use the approximation with continuous distributions and the one with discrete
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distributions for the smaller sizes of the installed base.

Again, we see in Table 5.2 that the approximations for smaller systems are less

good. This is explained by the few number of components. Without exception the maximum

errors given in Table 5.2 are all generated by the scenarios with a smaller size of the installed

base. Also, when the installed base is small the errors in the approximations are much

worse than the errors we find for a larger installed base. This is caused by the fact that the

dependency between the cycles becomes smaller if the installed base becomes larger. This

is shown in Table 5.3, showing the results for the different number of systems per installed

base for a 7-out-of-10 system.

For the systems with component wear-out the approximation errors for the main-

tenance duration as a function of the utilisation rate of the repair shop shows the same

pattern as for the systems without component wear-out. See Figure 4.3 which shows the

differences in approximation errors for maintenance duration as a function of the utilisation

rate of the repair shop for the different sizes of the installed base consisting of 58-out-of-64

systems. The approximation errors become smaller if the size of the installed base increases.

Again, for larger systems the errors for the maintenance duration are less and for smaller

systems the differences become larger.

Table 5.3: Mean differences between the approximations and the simulation results for both
the maintenance duration and the availability for a 7-out-of-10 system

with wear-out (μ1 = μ2) with wear-out (μ1 6= μ2)
7-out-of-10 E[D] Av E[D] Av

2 systems 42.3% 2.0% 25.0% 1.3%
4 systems 13.7% 0.5% 11.9% 3.2%
10 systems 3.8% 0.2% 5.0% 2.2%

Looking at Table 5.2 again there is an other interesting result. When we look at

the approximation errors for the maintenance duration for the two models we see that the

model that does not require the repair rates μ1 and μ2 to be equal to give less satisfactorily

approximations. While for the same scenarios we find that for the approximations of the

availability the results are the other way around. The scenarios in which this happens are

scenarios with either a small installed base or an availability level of over 99%. For the

scenarios with a small installed base we already concluded that the model does not perform
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very well and for the scenarios with an availability level over 99% the absolute differences

in the approximation errors are small.

So, for the remaining scenarios with smaller availability levels and a sufficiently

large installed base the model that requires μ1 = μ2 outperforms the more general model

with component wear-out.
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Figure 5.1: Different combinations of maintenance interval length, number of spare parts
and repair capacity can lead to similar availability levels

We take a closer look at the relation between the decision variables T , S and c by

using an example. We look at the effects that variations in the different variables have on

the system availability and what trade offs there are between these variables. In Figure 5.1

an example is shown for an installed base of ten 2700-out-of-3000 systems. If for instance

the target availability level is 98%, we can see from the graph the different combinations of

length of maintenance interval, number of spares and repair capacity, with which to achieve

this availability level. Reducing the repair capacity can to a certain extent be compensated

for by more frequent maintenance. For instance, with c = 5 and S = 200 we find an

availability of 98.2% with a maintenance interval of 1050 time units. Bringing the capacity

down to 4 or 3, we can achieve the same availability if we decrease the maintenance interval

to 950 or 850 time units respectively. This confirms the expectations we mentioned in the
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introduction of this paper that a higher maintenance frequency of leads to less variation

in the component arrival process at the repair shop, so that less repair capacity is needed.

For the number of spares we see similar results. Looking at it the other way around we

see that with an increase of the spares from 200 to 300 we can increase our maintenance

interval from 650 to 1100 and still have an availability of almost 99.5% with c = 3. So,

with a decreasing maintenance interval we can decrease the repair capacity, decrease the

number of spares or decrease both. With this model the effects can be made quantitative

for specific cases. Which combination of parameters (T , S, c) is the best, depends on the

cost involved. Without loss of performance the cheapest option can be chosen.

5.4 Conclusions

The conclusions for the model for an installed base of systems with component

wear-out as we described in this chapter are not very different from the ones for the model

for an installed base of systems without component wear-out. As long as the system size

is not too small, roughly more than 10 components, and the installed base is sufficiently

large, at least 4, we have accurate approximations for the availability as function of the

maintenance interval, spare parts and repair capacity.

Given the approximations as provided in this chapter, we are not able to find the

optimal combination of maintenance interval, number of spares and repair capacity with

respect to costs. Given the number of combinations for the decision variables and the

computation times, enumeration is usually not an option. Therefore, the development of

an optimisation method is the subject of the next chapter.
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Chapter 6

Optimisation algorithms

In the previous chapters we developed mathematical models in order to compute

the operational availability as a function of the maintenance frequency, the number of spare

parts and the repair capacity. Various combinations of these three parameters lead to similar

availability levels at different costs levels. In this chapter we concentrate on finding the cost

optimal parameter setting such that a target system availability is attained. In Section

6.1 we discuss briefly the optimisation methods we found in the literature for these type

of problems. In Sections 6.2 and 6.3 we explain the optimisation methods we developed

for respectively the single system and an installed base including numerical results. We

illustrate our optimisation heuristic using a case study (a part of the Anaconda) in Section

6.4. We end this chapter with some conclusions in Section 6.5.

6.1 Introduction

We can use the models that we developed in the previous sections as a basis for

an optimisation method. However, this is not straightforward, since we are dealing with a

non-linear, integer optimisation problem under a nonlinear restriction as we explain in the

subsequent sections. In the literature, various approaches to tackle such a problem have

been described. In a series of papers by Wang (Wang (1995), Wang and Wu (1995), Wang

(1994a), Wang (1994b), Wang (1993)) different models with redundant components and

spares are considered and for every model a direct search heuristic is used. In the papers,

it is stated that this direct search approach is performed over a grid whose boundaries for

decision variables are selected in order to guarantee that the optimum is obtained in the
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interior region. This suggests that enumeration is used, and is therefore less applicable

for our problem. Sherbrooke (1968) shows that the determination of inventory levels in

multi-echelon, multi-indenture networks can be done by using another heuristic, a marginal

analysis called METRIC. He addresses the problem of maximising the average availability

of an installed base of systems under a budget restriction on the total spare part investment.

Decision variables are the stock levels of all repairable items that may be replaced on failure,

at all locations in a multi-echelon network. Sherbrooke (1968) shows that maximising

availability is approximately equivalent to minimise the sum of the expected backorders of

all main assemblies at all downstream locations. Starting from some initial inventory levels

(that may be zero), the heuristic subsequently adds an item to stock at a specific location

that yields the highest decrease in expected backorders per invested Euro. Sleptchenko

(2002) shows that this heuristic can be extended to a model for simultaneous optimisation

of spare parts inventory levels and repair capacity for spare parts. Because it turns out that

the costs as function of the number of spare parts and capacity are not always convex, the

author uses initial values for the number of spares larger than zero, a non-integer number

of servers and a technique for balancing the availability over the different locations in the

system.

A further extension of the model by including the maintenance frequency leads to

an additional complication because the availability might not be a monotonous function of

the maintenance frequency. When the frequency decreases, the probability that the system

fails before maintenance starts increases and this pushes the availability down. On the other

hand, the cycle length increases and the expected uptime in a cycle increases as well, which

pushes the availability up. The aggregate effect may both be a decrease and an increase in

the system availability. This effect was noticeable in all models as discussed in the previous

chapters.

The remark above indicates that the development of a joint optimisation method

for spare part inventories, repair capacity and maintenance frequency is not straightforward.

In this chapter we develop two optimisation methods, one for the single system (see the

model described in Chapter 2 and Chapter 3) and one for the installed base (see Chapter 4

and Chapter 5). We consider the following cost categories:

• The holding and depreciation costs of a spare per time unit, Cspare

• The cost of repair capacity per time unit, Ccapacity
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• The maintenance set-up cost per maintenance instance, Cinit

The goal is to minimise the expected costs per time unit given a lower bound for

the expected operational availability, denoted by Av∗.

6.2 Single system

For a single k-out-of-N system we define our optimisation problem as follows:

min Cm,S,c =
Cinit

E [Tm] + L+E [Dm,S,c]
+ SCspare + cCcapacity (6.1)

s.t. Avm,S,c ≥ Av∗

The decision variables are the maintenance initiation level m, the spare parts

stock level S and the repair capacity c. Recall that E [Tm] denotes the expected time until

maintenance initiation, L denotes the lead-time and E [Dm,S,c] the expected maintenance

duration. The expected availability is denoted by Avm,S,c. The cost function Cm,S,c consists

of the costs of a single setup Cinit divided by the cycle length E [Tm] + L+E [Dm,S,c], the

spare part inventory costs per time unit Cspare multiplied by the inventory level and the

repair capacity costs per time unit Ccapacity multiplied by the repair capacity. Note that

the maintenance set-up cost depend on all three decision variables m, S and c.

Depending on the system we are dealing with, a system without or with ageing

components, we use the definitions of the mean time to maintenance initiation E [Tm] and

the mean downtime E [Dm,S,c] as given in Chapter 2 or 3 respectively. For the expected

availability Avm,S,c we use the definition as given in equation 2.1.

In this section we describe two optimisation methods. The first one is a straight-

forward extension of METRIC (Section 6.2.1). It turned out that such an approach yields

inferior results (Section 6.2.2). Therefore, we develop a second method where we combine

multiple marginal analysis steps in order to find a near-optimal parameter setting (Section

6.2.3). In Section 6.2.4, we compare both methods in a numerical experiment.

6.2.1 Marginal analysis

Our marginal analysis is a METRIC-like iterative procedure, starting with an

initial setting for the decision variables (m,S, c). In each iteration, we consider a marginal
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change of each decision variable and we select the change leading to the largest quotient of

the increase in availability and the cost increase.

First, we have to decide upon the initial parameter setting of the decision vari-

ables. It is intuitively clear that the operational availability is an increasing function of the

spare part inventory level S. The same holds for the operational availability as function

of the repair capacity c. Therefore, S = 0 and c = 1 are logical initial settings. For the

maintenance initiation level m, we should select a high initial value, such as m = N −k+1.
This can be seen as follows. As stated earlier, the operational availability as function of the

maintenance frequency m is not monotonous, see Figure 6.1.
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Figure 6.1: Example of the availability as function of the number of failures at maintenance
initiation (7-out-of-10 system with L = 40, λ = 0.0008, μ = 0.001). The dotted line
indicates a possible value for Av∗.

Given a certain combination (S, c) of the number of spares and repair capacity we

either find a function for which the target availability Av∗ cannot be reached (for instance

S = 4, c = 1 and S = 5, c = 1) or a function that has one or multiple points at which

the target availability Av∗ is reached (the other parameter combinations in Figure 6.1). In

the first case, we need to increase the number of spares and/or the repair capacity. In the

second case we usually have multiple options for m (except if the top of the function exactly

equals Av∗). Then we should choose for the largest maintenance interval (i.e. largest value

of m) for which the target availability is reached, because then the setup costs per time
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unit are lowest (the maintenance interval and so the cycle length is higher). We therefore

start our marginal analysis with the largest realistic value for m and consider the option

of decreasing m by one. Then the maintenance frequency and hence the setup costs per

time unit increases, whereas the availability may both increase or decrease, as we see from

Figure 6.1. If the availability decreases then decreasing the value of m is not an option (we

would have a lower availability level against higher costs).

As high initial value of m, it is logical to choose m = N − k+1 at first sight. Any
choice m > N −k+1 is useless, because then we force unnecessary downtime. It is however
possible that for the large values of m the target availability cannot be reached, simply

because we get too much down time during the lead-time L. This is solely influenced by m

and cannot be compensated by adding spares or repair capacity, see equation 2.2. Therefore,

a tighter upper bound form is the value for which we are able to reach the target availability

Av∗ if the maintenance duration would be zero (this is independent of the values of S and

c). This results in the upper limit mmax :

mmax = max

½
1 ≤ m ≤ N − k + 1

¯̄̄̄
E [Tm] +E [Um]

E [Tm] + L
≥ Av∗

¾
(6.2)

where Um denotes the uptime during the lead time L if maintenance is initiated

when m components have failed. We conclude that the initial setting of our decision vari-

ables should be given by S = 0, c = 1 and m = mmax.

Next, as a straightforward extension of METRIC, we consider decreasing m, in-

creasing S and increasing c in each step of the algorithm. We select the option that yields

the highest increase in availability relative to the additional investment (i.e., setup costs,

spare costs or repair costs per time unit). We just use one additional modification. While

performing the algorithm, we may either encounter one or more options for which Av ≥ Av∗

and another option with the largest increment of the availability per cost unit andAv < Av∗.

By default, we select the latter option and move to the next iteration. However, it is pos-

sible that one of the first options turns out to be cheaper after all. Therefore, we store the

cheapest parameter setting satisfying Av ≥ Av∗ that we encounter during the execution

of the algorithm. If this alternative is better than the solution found with the standard

marginal analysis, we take the first option as the final solution. Although this modification

seems to be marginal, it improves the performance of our algorithm as we observed in our

preliminary numerical experiments. Summarising, the marginal analysis algorithm consists
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of the following steps:

Step 1 : Initialise S = 0, c = 1 and m = mmax

Determine Avm,S,c and Cm,S,c.

Step 2a : Determine Avm−1,S,c, Avm,S+1,c and Avm,S,c+1.

Determine Cm−1,S,c, Cm,S+1,c and Cm,S,c+1.

Step 2b : Choose parameter setting (x, y, z) ∈ {(m− 1, S, c), (m,S + 1, c), (m,S, c+ 1)}
where Avx,y,z−Avm,S,c

Cx,y,z−Cm,S,c is maximal.

Step 3a : If one or more parameter settings yield Av ≥ Av∗, then store the cheapest.
Step 3b : Choose (m,S, c) = (x, y, z), Avm,S,c = Avx,y,z and Cm,S,c = Cx,y,z.

If Avm,S,c < Av∗ then go to Step 2a else go to Step 4 .

Step 4 : Choose the cheapest parameter setting from Step 2b and Step 3a.

Unfortunately, the numerical experiments (that we discuss in more detail in Section

6.2.4) revealed that this algorithm may yield solutions that are far from optimal. Depending

on the number of components in the system, we find significant deviations from the true

optimum as found by enumeration. A cost difference of 10-20% is not uncommon and the

worst case is even a deviation of 171%! In the next section, we analyse the causes of this

problem. Next, we develop an alternative heuristic that avoids local optima that are much

worse than the global optimum.

6.2.2 Drawbacks marginal analysis

The key cause for the bad performance of the marginal analysis from the previous

section is the non-convexity of the function of expected costs Cm,S,c and the expected

availability Avm,S,c in the decision variables m, c and S. We distinguish four major issues

that oppose a good performance of the marginal analysis algorithm:

1. step size of the repair capacity c

2. choice of the initial parameter setting in the algorithm

3. shape of the availability as function of the maintenance initiation level m

4. overestimation of either spares S or repair capacity c
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The first issue arises from the large impact of an increase in repair capacity on both

costs and availability if the repair shop capacity c is small and the repair shop utilisation is

high. For example, suppose that we have a repair shop utilisation of 0.95 when c = 1. An

increase to c = 2 means a decrease in utilisation to 0.475, which has an enormous impact on

the repair shop throughput times. Such an effect can hardly be called ”marginal”. Besides,

it is plausible that an optimal repair shop utilisation may be around 0.6− 0.8, which values
are not even considered in this example. We can solve this problem by allowing c to have

non-integer values (see Sleptchenko (2002)). For practical purposes we can interpret this as

e.g. part time work or overtime. Then we can use a step size of (for example) 0.1 full time

equivalent (fte) instead of 1 fte. Similarly, we can also choose for only integer values of c

and decrease the repair rate with a factor of ten as well as the cost for capacity, so that

the minimum capacity is (for example) c = 10. In the next subsection, we discuss how this

minimum capacity can be computed.

The second issue, concerning the initial values of the parameters, is encountered if

the number of spares is small, say far less than the expected number of spares that is needed

for replacement during maintenance. In this case the amount of spares is far insufficient

and the marginal impact of an extra spare on the availability may be small. Consequently,

it is not likely that the marginal analysis will choose adding an extra spare. Instead, we see

an increase in repair capacity c or a decrease of m. However, when the number of spares

would have been larger, the marginal impact on the availability would be higher and so it

would be attractive to buy more spares. Therefore, we may conclude that the availability

is non convex in the number of spares.

In order to tackle this non convexity issue, Rustenburg (2000) suggests starting

values for the number of spares. These starting values are related to the average number

of spares in the pipeline at the time of a spare demand. In fact, it means that the starting

values are such that the safety stocks are approximately zero. It is plausible that the optimal

safety stocks will usually be nonnegative. In our model, zero safety stock would mean a

number of spares equal to the expected number of failed components in the system when

maintenance starts. This means that we only have spare parts available for the expected

demand and that our safety stock is zero. However, the corresponding stock level S increases

in the maintenance initiation level m (assuming c to be constant). So the initial value of S

depends on m = mmax, and when m decreases during the execution of the algorithm, the
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current value of S can be above the initial level for the new value of m. As a consequence,

S can have a value above the new initial stock level, even if no spares have been added

during the course of the algorithm, and therefore S can be higher than the optimal level,

as we encountered in our numerical experiments. Unfortunately, we will never find the

optimal value using the marginal analysis, because S can only be increased and cannot be

decreased. Hence, simply defining initial values for S as the stock levels corresponding to

zero safety stocks does not solve our problem.

We illustrate the third issue (the shape of the availability as function of the main-

tenance initiation level m) using Figure 6.1. Suppose that we have found an intermediate

solution S = 4 and c = 1, where m = 2 yields the highest availability. When increasing

the spares by one (S = 5, c = 1) the highest availability is attained for the maintenance

initiation level m = 3. This mean less frequent maintenance and therefore less setup costs

than for m = 2. However, the algorithm does not permit an increase of m. As a result, we

will not find the optimal parameter setting.

As a fourth issue, we found that the algorithm tends to increase the repair capacity

in the first iterations when the value of m is still relatively high. This is logical, because a

high value of m means infrequent maintenance and hence lumpy demand for repair capacity

at the repair shop (infrequent arrival of a large batch of item repair jobs at once). This

causes long repair shop throughput times, and so the added value of additional capacity

is relatively high. However, when the value of m decreases during the execution of the

algorithm, the demand for repair capacity becomes more regular and hence less repair

capacity is needed to attain similar repair shop throughput times. So in fact, we should

decrease the repair capacity, but the marginal approach only allows an increase. As a

consequence, we find a repair capacity c that is too high. A similar effect is seen with

the number of spares. When the value of m decreases during the algorithm, the number of

failed component arrivals in the repair shop decreases and therefore also the need for spares.

However, just like the repair capacity the marginal approach does not allow the number of

spares to decrease. This may result in a total number of spares that is too high.

We conclude that we can only easily deal with the first issue in the standard

marginal approach, but not with the other three issues. Therefore, we have to develop an

alternative method.
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6.2.3 Adjusted marginal analysis

To deal with the problems identified in the previous section, we propose the fol-

lowing adjustments:

1. Smaller step sizes for the capacity (first issue).

2. Small initial value for the maintenance initiation level (m = 1) to enable small initial

values for S and c (second issue).

3. Examining high values of m to avoid unnecessary high costs (third issue). Starting

with small values of m to solve the second issue concerning the starting values of

S and c we will often find a value of m that is smaller than the optimum, see the

discussion on the third issue.

4. Balancing the number of spares and repair capacity to reduce costs (fourth issue) to

prevent ending up with a solution in which the number of spares and / or capacity is

higher than necessary.

We developed a new algorithm using these four adjustments. In the remainder of

this section we describe the steps of this adjusted marginal analysis algorithm.

Step 0: initialisation

For the repair capacity we can choose the initial value of 1. However, as stated in

Section 6.2.2 we use smaller step sizes and as a result we know for sure that c = 1 implies

insufficient capacity. Therefore, we start with an initial value larger than 1. As initial

value for c, we choose the minimum capacity needed to repair all failed components in the

long run at an availability close to the target. The number of component failures per cycle

equals m plus the number of component failures during the lead-time, (N −m)
¡
1− e−λL

¢
.

Ignoring downtime during the lead-time, we find that we may at most use a period with

length E[Tm]+L
Av∗ to restore the components at rate cμ. Therefore, we find:

cmin(m) =

&
m+ (N −m)

¡
1− e−λL

¢
(E [Tm] + L)μ

Av∗
'

(6.3)
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where dXe denotes the smallest integer that is larger than or equal to X. Unfor-
tunately, this initial value depends on m. For simplicity we use the minimum over all m

as initial value for c, so that cmin = cmin(1). To avoid the problems with the part of the

function that is non convex in S, we choose the expected number of failed components when

the system comes in for maintenance as the initial value of S.

Smin(m) =
j
m+ (N −m)

³
1− e−λL

´k
(6.4)

where bXc denotes the largest integer that is smaller than or equal to X. In
practice, the target availability is not very low, and therefore it is not expected that this

initial number of spares is too high. However, this initial value depends on m again. We

solve this by choosing for the spares an initial value S = Smin(1) that corresponds to the

initial maintenance initiation level m = 1. In this way, we avoid an overestimation of the

number spares needed in the optimum. If we increase m during the algorithm, we evaluate

whether we violate the lower bound Smin(m) and if so, we increase S simultaneously.

Putting this together, we use as initial values m = 1, S = Smin(1) and c = cmin(1).

Step 1: improving availability without increasing costs

Here we only consider an increase in m as long as the costs Cm,S,c decrease and

the availability Avm,S,c increases. The lower bound Smin(m) increases simultaneously with

m. To avoid too high values of the capacity in the beginning of the algorithm, the value

of c = cmin(1) remains unchanged. In this step, we reduce the maintenance set-up costs

(decreasing maintenance frequency) but we increase the spare part inventory costs. As we

see from Figure 6.1, the combination of increasing m and S initially leads to an increase

in availability. Therefore, we proceed as long as the nett effect is a cost reduction and

an increase in availability. So, in the first part of this step (step 1a) we determine the

availability and costs corresponding to an increase of m (and possibly an increase of S as

well). The second part of this step (step 1b) consists of adjusting the parameters as long

as the availability increases and the costs decrease. The resulting values for m, S and c are

starting values for the next marginal analysis step.
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Step 2: improving availability until Av∗ with acceptance of increasing costs

If we have already reached the target availability Av∗, we move to step 3. Other-

wise, we apply a marginal analysis approach in which we consider an increase of the repair

capacity and an increase of spares. In step 2a we consider the following two options

• As a first option, we consider to increase c by one and we simultaneously increase the
value of m as much as possible such that the availability does not decrease compared

to the availability we found thus far. Note that we modify (increase) the number of

spare parts S if the increase in m causes a violation of the spare part lower bound

Smin(m). As an example of this option from Figure 6.1, consider the parameter setting

m = 2, c = 5 and S = 1. If we increase the capacity to c = 6, we could increase m to

m = 4 instead of m = 2, thereby reducing costs without loss of availability.

• As a second option, we consider to increase S by one and we simultaneously increase
m as much as possible such that the availability increases compared to the availability

we found thus far.

In step 2b we choose one of these options as the new parameter setting. Both

options may cause an increase of the costs as well as a decrease of the costs. In case of a

cost reduction (∆C < 0) we choose the option with the smallest, most negative, value for
∆Av
∆C . Otherwise (∆C > 0) we choose the option with the largest

∆Av
∆C .

We repeat this step until we reach or exceed the target availability level Av∗.

Step 3: reducing costs by increasing m and maintaining Av∗

Now we have reached the target availability, but probably not at minimum costs.

Therefore, we now look for other solutions having a similar availability but lower costs by

increasing the maintenance initiation level m. Without this step we often end up with a

value of m that is too small, because we started our algorithm with m = 1 (see Figure 6.1).

Basically, we continue the previous step, but now we accept cost reductions only. Also,

we accept all availability levels that satisfy the lower bound Av∗. This adjustment in the

algorithm solves the problems mentioned under issue two in the previous section.
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Step 4: balancing the parameter setting

Finally, we address the third issue from the previous section about possible com-

pensation between the spare part inventory level S and the repair capacity c. We perform

a last marginal analysis step to find a better balance between the parameter values, where

we also include the value of m. We consider four options to reduce the costs while attaining

the target availability level. Each option consists of a modification in two parameters simul-

taneously, where one parameter modification yields a cost increase and the other parameter

modification yields a cost decrease. As long as the overall cost impact is a decrease, we

improve our solution.

• The first option is to decrease the capacity by one (decrease in repair capacity costs)
and increase the number of spares (increase in spare part inventory costs), where we

choose a minimal increase in S is such that the availability is at least equal to Av∗.

• The second option is to decrease the capacity by one (decrease in repair capacity costs)
and decrease the value of m as much as necessary in order to obtain Av∗ (increase in

set-up costs).

• The third and fourth options are analogous to these two options, only then the number
of spares is decreased by one, with a necessary increase of the capacity or decrease of

the maintenance initiation level.

After determining the parameter settings for each option in step 4a, we choose

from these options the one that has the largest cost reduction in step 4b. We repeat this

procedure as long as we can find a cost reduction.

Summarised, our enhanced marginal analysis algorithm consists of the following

steps:
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Step 0 : Initialise m = 1, S = Smin(1) (equation 6.4) and c = cmin(1) (equation 6.3).

Determine Avm,S,c and Cm,S,c.

Step 1a : Determine Avm+1,Smin(m+1),c and Cm+1,Smin(m+1),c.

Step 1b : If Avm+1,Smin(m+1),c > Avm,Smin(m),c ∧ Cm+1,Smin(m+1),c < Cm,Smin(m),c

∧ m+ 1 < mmax

then (m,S, c) = (m+ 1, Smin(m+ 1), c) and go to Step 1a else go to Step 2a

Step 2a : If Avm,S,c ≥ Av∗ go to Step 3 else
Find max emS ∈ [m,mmax] with Avm,S,c < AvemS ,S+1,c

Find max emc ∈ [m,mmax] , eSc = max {S, Smin(emc)} with Avm,S,c < Avemc,eSc,c+1
Step 2b : If min

n
CemS ,S+1,c, Cemc,eSc,c+1

o
< Cm,S,c

choose (x, y, z) ∈
n
(emS, S + 1, c), (emc, eSc, c+ 1)o with min Avx,y,z−Avm,S,c

Cx,y,z−Cm,S,c

Else (x, y, z) ∈
n
(emS , S + 1, c), (emc, eSc, c+ 1)o with max Avx,y,z−Avm,S,c

Cx,y,z−Cm,S,c

Go to Step 2a.

Step 3 : Find max emS ∈ [m,mmax] with AvemS ,S+1,c ≥ Av∗

Find max emc ∈ [m,mmax] , eSc = max {S, Smin(emc)} with Avemc,eSc,c+1 ≥ Av∗
If min

n
CemS ,S+1,c, Cemc,eSc,c+1

o
< Cm,S,c choose cheapest and go to Step 3

Else go to Step 4a

Step 4a : Determine Sc with Avm,Sc,c−1 ≥ Av∗ and Avm,Sc−1,c−1 < Av∗

Determine mc with Avmc,S,c−1 ≥ Av∗ and Avmc+1,Sc,c−1 < Av
∗

Determine cS with Avm,S−1,cS ≥ Av∗ and Avm,S−1,cS−1 < Av∗

Determine mS with AvmS ,S−1,c ≥ Av∗ and AvmS+1,S−1,c < Av
∗

Step 4b : If min {Cm,Sc,c−1, Cmc,Sc,c−1, Cm,S−1,cS , CmS ,S−1,c} < Cm,S,c
then Cm,S,c = min {Cm,Sc,c−1, Cmc,Sc,c−1, Cm,S−1,cS , CmS ,S−1,c} and go to Step 4a

Compared to the simple marginal analysis algorithm from the previous section,

the number of availability computations has increased. However, we usually find a solution

that is much closer to the optimum. In the next section, we discuss the quality of this

method and its computational performance.

6.2.4 Numerical results

We study three system sizes: 7-out-of-10 systems, 58-out-of-64 systems and 2700-

out-of-3000 systems. For each system, we consider 108 parameter combinations for repair
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times and cost parameters. We consider the parameters that we initially used for the

marginal analysis algorithm from Section 6.2.1. For the adjusted algorithm (Section 6.2.3),

we divided the repair rate as well as the cost for capacity by 10. In this way, we start at a

higher value for cmin(1) and therefore the relative step size for the repair capacity is smaller.

In our comparison between both algorithms, we only use the adjusted input parameters,

which are given in Table 6.1. The cost parameters are given per time unit. For the failure

rate we choose λ = 0.0001 for all systems. The lead time equals L = 168 for the 2700-

out-of-3000 system and L = 40 for the other two systems. We use a target availability of

Av∗ = 0.99.

Table 6.1: For different system sizes we used different input parameters, resulting in 108
scenarios per system size

μ Cinit Cspare Ccap

7-out-of-10 0.00005, 0.000075, 0.0001 50000, 75000, 100000 0.5, 1, 2.5, 5 10, 15, 30
58-out-of-64 0.0005, 0.00075, 0.001 50000, 75000, 100000 0.5, 1, 2.5, 5 10, 15, 30
2700-out-of-3000 0.003, 0.015, 0.03 50000, 75000, 100000 0.5, 1, 2.5, 5 10, 15, 30

We used (time consuming) enumeration as benchmark. To this end, we need

upper and lower bounds for each of the three parameters. For m, we obviously search over

m ∈ [1,mmax]. Lower bounds for S and c are Smin(1) and cmin(1), respectively. However,

it is not immediately clear how to choose the corresponding upper bounds. To this end,

we proceed as follows. First, we look for an arbitrary parameter setting that satisfies the

availability restriction Av∗. We chose m = max {1, b0.5mmaxc} and c = cmin(m) and find

the minimum number of spares S needed to obtain Av∗. Next, we use the corresponding

cost bCm,S,c to find upper bounds for S and c. As the total costs of spares in the optimum
solution should be less than bCm,S,c, an upper bound for S is given by bCm,S,c

Cspare
. Analogously,

an upper bound for the capacity is given by
bCm,S,c
Ccap

. To reduce the computational effort of

enumeration, we recalculate these upper bounds each time we find a better solution during

enumeration.

We used the results from this enumeration as a benchmark for our algorithms. For

each system size, we show in Table 6.2 the mean and maximum relative deviation from the

optimal costs per time unit C∗m,S,c. Besides, we show the percentage of scenarios in which

the optimisation heuristic found exactly the optimal solution.

For the parameter settings we see that increasing the cost for capacity results in
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a decrease of capacity compensated by more spares and sometimes combined with a shift

in the maintenance frequency. If the cost for spare parts increases we see that the first

result is a lower maintenance initiation level often combined with an increase of the repair

capacity. An increase of the maintenance initiation costs is compensated by an increase of

the maintenance initiation level combined with an increase of the spares amount. The repair

capacity remains unchanged in almost every scenario. For all scenarios we see, independent

of the cost parameters, that the maintenance initiation level is such that the system does not

fail before arriving at the repair shop. So, the maintenance policy is obviously to perform

preventive maintenance.

Table 6.2: For different system sizes the mean and maximum cost differences are given for
the simple and adjusted marginal analysis algorithms compared to enumeration

Simple marginal analysis Adjusted marginal analysis
mean diff. max. diff. opt. found mean diff. max. diff. opt. found

7-out-of-10 6.07% 13.1% 21.3% 0.10% 2.5% 91.7%
58-out-of-64 13.32% 43.4% 13.0% 0.15% 1.5% 75.9%
2700-out-of-3000 29.13% 171.0% 0.0% 0.18% 3.2% 32.4%
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Figure 6.2: Deviations from the optimal solution found with the adjusted marginal analysis
for different system sizes. The percentages given are the percentages from the total number
of scenarios, so including the scenarios in which the optimal solution was found.



114 Optimisation algorithms

We see that the enhanced marginal analysis algorithm yields much better solutions

than the straightforward marginal approach. Using our enhanced algorithm we also find the

exact optimum solution more frequently. For the cases in which the parameter setting of

the adjusted marginal analysis differs from the optimal solution, we can classify the type of

deviation, see Figure 6.2. It shows the percentage of each type of deviation as a percentage

of the total number of scenarios. We see that for the large systems we find too small values

for m and S in most cases. For smaller systems, we tend to find the optimal value of m

combined with too large values for S and too small values for c.

The deviations that are relatively large, more than one percent, are mainly caused

by too many spares and too few capacity. In these cases we end up in a local minimum from

which we do not reach the global minimum by balancing the spares and capacity using our

heuristic. In Figure 6.3 we illustrate the balancing step of the algorithm. The parameter

setting marked as 0 is the solution we find after the third step. From there we have the

possibilities to improve the costs by moving to one of the black dots. Obviously, the option

marked as 1 is the cheapest. Finally, we end up in the red dot instead of the green one.

Unless we would except more expensive solutions, we are not able to make the change to

the line with m = 3, c = 12.

When we consider the utilisation rates, the differences are small as can be seen

from Table 6.3. The deviating utilisation rates are always found in the scenarios where the

parameter setting of the adjusted marginal analysis has a too large number of spares and a

too small number of capacity (sometimes combined with a maintenance initiation level that

is too large). So, we may conclude from this table that the utilisation rate is not affected

very much if we do not find the optimal parameter setting in all cases.

Table 6.3: For different system sizes the average utilisation rates are given for the solutions
found using enumeration and the adjusted marginal analysis

enumeration adjusted marg. analysis
min. mean max. min. mean max.

7-out-of-10 73.5% 81.4% 83.3% 78.4% 81.8% 89.0%
58-out-of-64 61.0% 85.3% 93.8% 74.0% 86.9% 93.8%
2700-out-of-3000 81.5% 92.4% 97.6% 81.5% 92.8% 98.0%

In Table 6.4 we show the average number of availability computations per solution

method. We see that the additional computational effort for the optimisation algorithm
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Figure 6.3: A schematic representation of the balancing step in the optimisation heuristic
for a 7-out-of-10 system with L = 40, λ = 0.0001, μ = 0.0001, Cinit = 100000, Cspare = 5
and Ccap = 10. All parameter settings that are given satisfy the target availability level.
The optimal solution is represented by the green dot, while the red dot is the sub-optimal
solution we find.

remains within reasonable bounds. Although enumeration is an option for small systems,

it becomes cumbersome for large systems. Especially, since the computation times (on a

Pentium III 996 MHz) for the large systems become almost 7.5 hours for 108 scenarios

(compare to 3.8 minutes using the optimisation algorithm). Of course, one can argue that

it is possible for large systems to do a rougher enumeration (say a step size 5) for the

parameters S and m and then do a more extensive enumeration for a few of the best

solutions. However, for this heuristic to be quicker than the one we propose the number of

computations needs a reduction of more than 99.8% of the enumeration we performed.

Table 6.4: The table shows for the different system sizes the average number of availability
compuations for the enumeration, the simple marginal analysis and the adjusted marginal
analysis algorithm

enumeration marg. analysis adjusted marg. analysis

7-out-of-10 442 85 87
58-out-of-64 2348 45 73
2700-out-of-3000 658361 826 1249
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There is however one disadvantage when using this optimisation algorithm. The

algorithm finds a near-optimal solution, but not via a path of near-optimal solutions for

various target availability levels as is true for METRIC. This property of METRIC can be

used to construct an availability-cost trade-off curve. As a consequence, in principle we have

to start our computations all over again if the target availability level changes. Of course,

one could use the solution found for a certain target availability as initial value to find the

best solution for a somewhat higher target availability, just like METRIC. However, some

experiments revealed that this may lead to inferior results.

6.2.5 Extension to component wear-out

Until now, we only considered the model in which all components have an exponen-

tially distributed time to failure. In this section we show how our approach can be extended

to include wear-out (Chapter 3). The only adjustments needed are the initial values cmin(1)

and Smin(m). We need the expected number of components in state 1 and state 2. We

know these expectations from equations 3.30 and 3.32 and E [A1] = N − E [A0] − E [A2].
Obviously, the values for E [A1] and E [A2] are functions of the parameter m. As a result

we find for the lower bound of spares:

Smin(m) = bE [A1(m)] +E [A2(m)]c (6.5)

For the lower bound of the capacity we use a weighted average for the repair rate,

which is also a function of the parameter m:

μ(m) =
E [A1(m)]

E [A1(m)] +E [A2(m)]
μ1 +

E [A2(m)]

E [A1(m)] +E [A2(m)]
μ2 (6.6)

Combining the expected system state at arrival in the repair shop with the weighted

average repair rate and the target availability, we find:

cmin(m) =

»
E [A1(m)] +E [A2(m)]

(E [Tm] + L)μ(m)
Av∗

¼
(6.7)

6.3 Multiple systems

In this section, we consider optimisation of the model for an installed base of

systems as discussed in Chapters 4 and 5. We show that we can modify our adjusted
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marginal analysis algorithm rather easily to deal with an installed base of systems. We

start with the model without wear out. Afterwards, we discuss how component wear-out

can be included in the model.

We define our optimisation problem as follows:

min
Cinit
T

+ SCspare + cCcapacity

s.t. AvT,S,c ≥ Av∗

where T denotes the fixed maintenance interval and the other notation is identical

to the previous section. The decision variables are T , S and c. The optimisation problem is

basically the same as the one discussed in the previous section, with the key difference that

we now have a continuous maintenance parameter T instead of the discrete maintenance

initiation level m. Therefore we can expect to encounter the same issues as in Section

6.2.2, including the non-monotonous relation between the availability and the maintenance

frequency. Although we do not have a lead time now, the availability still decreases if the

maintenance interval becomes too small. This is due to the fact that during the very short

time between maintenance instances the repair shop is not able to restore spare parts and

therefore the fraction of T that is needed for maintenance increases. Another reason is the

fact that the speed at which components fail decreases as T increases. Components can fail

only once and the number of components subject to failure decreases over time.

6.3.1 Adjusted marginal analysis algorithm

The main modification needed to apply our algorithm from Section 6.2.3 to the

installed base model is to replace the discrete parameter m for maintenance initiation by

the continuous parameter T for the fixed time between preventive maintenance epochs of

a single system in the installed base. Just like in the situation of a single system we can

determine a minimum value for the interval length Tmin (analogous to m = 1 for the single

system) as well as a maximum value Tmax for T (analogous to m = mmax for the single

system). To find these boundaries for T , we discretise the interval length by choosing

the values of T such that they correspond with an integer number m of expected failures

before the start of maintenance. The expected time until the first component failure equals
1
Nλ . Including the maximum maintenance duration for which the system availability is



118 Optimisation algorithms

at least equal to Av∗ we find Tmin = 1
NλAv∗ as a lower bound for the total time between

succeeding maintenance instances. Analogously, we find
m−1P
i=0

1
(N−i)λ for the maintenance

interval corresponding to m expected failures at system arrival at the repair shop. This also

gives us an upper bound for the interval length, which is found in the maintenance interval

corresponding to N − k + 1 failures. Hence, we find 1
Av∗

N−kP
i=0

1
(N−i)λ . If T would be larger

than this value we would introduce extra down time only (no additional operational time is

acquired since the number of failed components already exceeds N − k) and as a result the
system availability drops below the required Av∗, even if the maintenance duration would

be zero.

Just like the case of a single system it may happen that with this value of T =

1
Av∗

N−kP
i=0

1
(N−i)λ it is impossible to achieve the desired availability Av

∗, even if there are no

bottlenecks caused by the number of spares or repair capacity. Therefore, we search for the

largest number of failures, mmax, such that we cannot achieve Av∗ while we can achieve

Av∗ if the number of failures is decreased by one. Hence, we find the interval containing

Tmax:

Tmax ∈
"
1

Av∗

mmax−2X
i=0

1

(N − i)λ ,
1

Av∗

mmax−1X
i=0

1

(N − i)λ

#
with 1 ≤ mmax ≤ N − k + 1 (6.9)

The left boundary of this interval in which Tmax lies is such that the maximum

availability is larger than Av∗ and in the right boundary the maximum availability is lower

than Av∗. Using a standard bi-section method, we find the value of Tmax.

In this section we discuss our modifications to the algorithm of Section 6.2.3 to

deal with the installed base model. Just like the in the previous section we concentrate on

the case in which the components are not subject to wear-out.

Step 0: initialisation

Analogously to the previous algorithm we start with the determination of the

initial values for the decision variables T , S and c. Again we start with a small maintenance

interval. Just like we chose m = 1 in the Section 6.2.3, we choose the maintenance interval

corresponding to the expected time until a single component failure as initial value for T ,

so Tmin = 1
NλAv∗ .
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For the minimum repair capacity we choose the interval length corresponding to

the initial value of T (analogously to the situation with m = 1 in the single system case,

see Section 6.2.3), so Tmin = 1
NλAv∗ . This results in a minimum capacity of:

cmin =

&
MN

¡
1− e−λTminAv∗

¢
μTmin

'
=

⎡⎢⎢⎢
MN2λAv∗

³
1− e− 1

N

´
μ

⎤⎥⎥⎥
For the minimum number of spares we use the equivalent of m for a continuous

parameter T :

Smin(Tmin) =
j
MN

³
1− e−λTminAv∗

´k
The initial value for the number of spares equals Smin

¡
1

NλAv∗
¢
.

Step 1: improving availability without increasing costs

In this step we increase the maintenance interval until there is no further incre-

ment possible without either increasing the costs per time unit or reducing the availability.

We start by increasing the parameter T discretely such that each increment corresponds

to increasing the expected number of failures at arrival for maintenance by one (equivalent

to increasing m by one, in case of the single system). Therefore, the values of T become

1
Av∗

1P
i=0

1
(N−i)λ ,

1
Av∗

2P
i=0

1
(N−i)λ ,...,Tmax. Tmax is the maximum length of the maintenance inter-

val for which it is possible to obtain the required availability level Av∗ as explained earlier

in this section (see equation 6.9).

As long as there is a cost reduction and the availability increases, we increase the

interval T discretely (under the condition that T ≤ Tmax). Together with the increasing
maintenance interval we increase the number of spares if the number of spares becomes

less than Smin(T ). If there is no increment of the maintenance interval possible anymore

(and T < Tmax) we use the bi-section method to find a more precise value of T . So,

suppose we found T = 1
Av∗

2P
i=0

1
(N−i)λ and for T = 1

Av∗

3P
i=0

1
(N−i)λ either the costs increase

or the availability decreases. Then we search for the largest possible value for T , with

T ∈
∙

1
Av∗

2P
i=0

1
(N−i)λ ,

1
Av∗

3P
i=0

1
(N−i)λ

¸
that improves the availability without increasing the

costs using bi-section.
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Step 2: improving availability until Av∗ with acceptance of increasing costs

For the second step in the algorithm we either increase the capacity or the number

of spares together with an increase of T as much as possible without a reduction of the

availability. If increasing the capacity and T implies that the expected number of failed

components at arrival in the repair shop increases (S < Smin(T )), we also increase the spare

part level S. So, we do basically the same with parameter T as we did in the previous step.

We start with the value for T we found in step 1 and increase T to the largest discrete point

we mentioned in the previous step resulting in an increase of the availability. Knowing that

the maintenance interval length we are looking for lies between this value of T and the next

higher discrete point we again use bi-section to find the right interval length.

Step 3: reducing costs by increasing T and maintaining Av∗

The third step of the algorithm is, just like in the algorithm for the single system,

the same as step 2 except for the fact that we only accept cost reductions.

Step 4: balancing the parameter setting

In the fourth step we have two options that do not involve adjusting the mainte-

nance interval length. Therefore, these options remain unchanged. The other two options

do need adjustments because the maintenance interval length is decreased. The idea is to

use a bi-section again with the right boundary TR equal to the interval length we found

thus far. The left boundary TL is found as follows. The decrease of the spares or capac-

ity (dependent on the considered option) gives an increase of the system down time. The

relative increase of the down time is the same ratio we use to decrease TR to TL. This TL

is an underestimation for the maintenance interval length due to the fact that we adjust

the maintenance interval only based on the increase of the maintenance duration resulting

from the capacity reduction. Decreasing the maintenance interval also has an impact on the

operational time until maintenance is performed. We can now determine T by searching

the interval [TL, TR] using bi-section. However, to find the value of T more quickly, we

use linear interpolation between TL and TR first, finding a value T ∗. If T ∗ results in an

availability level larger than Av∗, we find T ∈ [T ∗, TR]. Otherwise, we have T ∈ [TL, T ∗].
Now, we perform a bi-section again to find the maintenance interval length T .
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Figure 6.4: A schematic representation of the determination of T ∗ within the interval
[TL, TR].

To give an example, suppose we found parameter setting (TR, S, c) at the end of

step 3. Decreasing the capacity leads to an availability of AvTR,S,c−1 < Av∗. Using the

ratio of the expected maintenance durations, we find TL =
EDTR,S,c
EDTR,S,c−1

TR. Because the

down time of the system increases with the capacity reduction, EDTR,S,c−1 > EDTR,S,c,

we know for sure that TL < TR. We also know that the availability corresponding to the

parameter setting (TL, S, c) is likely to be larger than Av∗. The new value of T is contained

in the interval defined by TL and TR. We can search for this value directly by using the

bi-section method or we can decrease the length of the interval to consider first by using

linear interpolation and find:

T ∗ =
Av∗ −AvTR,S,c−1

AvTL,S,c−1 −AvTR,S,c−1
TL +

AvTL,S,c−1 −Av∗
AvTL,S,c−1 −AvTR,S,c−1

TR

Dependent on the AvT∗,S,c−1 we search for T in interval [TL, T ∗] or [T ∗, TR].

The same procedure is applied when the spares are reduced and we need to find a

new value for T as large as possible such that the availability is at least equal to Av∗.

With these steps we translated the complete algorithm for the single system to a

situation in which we have multiple systems. In the next section we discuss the numerical

results to judge the accuracy of this heuristic for multiple systems.
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6.3.2 Results

The comparison between our results and the optimal parameter setting is fairly

difficult, since we do not have an easy way to compute the optimal values. Discrete enumer-

ation as we did for the single system is not possible since one of the parameters is continuous.

Therefore we divided the maintenance interval in discrete periods with length 1 (which can

always be achieved by standardisation of time). Using these discrete time periods we can

perform enumeration. With a step size that is small enough, the solution found should be

very close to the global optimum.

Just like for the single system situation we considered 108 scenarios. In each

scenario, we chose an installed base of M = 10 systems. We compared the results of our

optimisation algorithm to the results from enumeration. The input parameters that we

used are given in Table 6.5.

Table 6.5: For different system sizes we used different input parameters, resulting in 108
scenarios per system size

μ Cinit Cspare Ccap

7-out-of-10 0.0005, 0.00075, 0.001 50000, 75000, 100000 0.5, 1, 2.5, 5 10, 15, 30
58-out-of-64 0.005, 0.0075, 0.01 50000, 75000, 100000 0.5, 1, 2.5, 5 10, 15, 30
2700-out-of-3000 0.03, 0.15, 0.3 50000, 75000, 100000 0.5, 1, 2.5, 5 10, 15, 30

Table 6.6: For different system sizes the mean and maximum cost differences are given
compared to enumeration with discretised interval length

mean diff. max. diff.

7-out-of-10 0.70% 3.7%
58-out-of-64 0.83% 3.4%
2700-out-of-3000 0.49% 5.2%

Table 6.6 shows the key results, namely the mean and maximum relative deviation

from the near-optimal costs found by enumeration of the discrete version of our model.

Based on these results, we conclude that our algorithm provides solutions that are close

enough to the optimum. Similar to the single system (Section 6.2.4), we find that our

optimisation heuristic requires a reasonable number of iterations. The number of iterations

does not explode with the system size, see Table 6.7.

Just like we did for the single system we compared our parameter settings from

the optimisation method with the enumeration. Obviously, there are no cases in which we
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Table 6.7: The table shows for the different system sizes the average number of availability
compuations for the enumeration (based on a subset of scenarios due to computation times)
and the adjusted marginal analysis algorithm (based on all scenarios)

enumeration adjusted marg. analysis

7-out-of-10 14234 145
58-out-of-64 14274 182
2700-out-of-3000 664979 384

found the exact same parameter setting because T is a discrete parameter in the enumeration

method and a continuous one in the optimisation method. Figure 6.5 shows the deviations

from the optimisation method compared to the enumeration. While we find mainly too

large values for T for the 7-out-of-10 and 58-out-of-64 systems, we find mainly too small

values for T for the 2700-out-of-3000 systems.
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Figure 6.5: Deviations from the parameter setting of the optimisation method compared to
the enumeration.

Table 6.8 gives the utilisation rates for the different system sizes. Comparing the

utilisation rates we see for the 2700-out-of-3000 system we see a huge difference in the

minimum utilisation rates we found. This is caused by a single scenario in which the cost

for a spare part equals 5 and the cost for the repair capacity equals 10. Dependent on the

maintenance interval we found that decreasing the number of spares with 2 and increasing
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the repair capacity by 1, that we either still meet our availability target or increase the

availability such that we suddenly do meet our availability target. The total costs are not

influenced, only the availability and the utilisation rate. Therefore, we found a rather high

capacity in case of enumeration. Due to the length of the maintenance interval we found

in the optimisation algorithm, we did not have this switch of spares and repair capacity

retaining the availability target.

Table 6.8: The table shows for the different system sizes the minimum, average and maxi-
mum utilisation rates for the enumeration and the adjusted marginal analysis algorithm

enumeration adjusted marg. analysis
min. mean max. min. mean max.

7-out-of-10 92.9% 95.5% 97.7% 74.3% 93.0% 97.8%
58-out-of-64 69.2% 80.2% 92.2% 69.2% 84.7% 95.8%
2700-out-of-3000 47.9% 92.1% 95.7% 94.5% 94.9% 96.1%

6.3.3 Extension to multiple systems with wear-out

Just like for the single system model, this model is easily extended to multiple

systems with components that are subject to wear-out. The only modification that we need

is the calculation of the value for cmin where we have to use a weighted repair rate (as in

the previous section for the single system). The repair rate becomes equal to:

μ =
p01(T )

p01(T ) + p02(T )
μ1 +

p02(T )

p01(T ) + p02(T )
μ2 (6.10)

with T = 1
NλAv∗ and p01(T ) and p02(T ) as defined in equation 3.5.

6.4 Example: the Anaconda

Now that we developed a set of optimisation heuristics, we want to test their

applicability. To this end, we chose a system that is used by the Royal Netherlands Navy

to detect objects beneath the water surface: the Anaconda. In Section 6.4.1 we describe

the Anaconda system and give its hardware breakdown structure. From this hardware

breakdown we choose a specific component for which we describe the current maintenance

situation of the Anaconda in Section 6.4.2. The translation from the real life situation to
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input parameters for our model is given in Section 6.4.3. Section 6.4.4 contains some results

of the application of our model.

6.4.1 What is the Anaconda?

Since 1992 the Royal Netherlands Navy has placed the Anaconda, see Figure 6.6,

on board of the eight multi purpose frigates. The Anaconda is a towed array sonar system

used for tactical and surveillance operations. The depth at which the Anaconda is dragged

depends on the speed of the frigate and/ or on the length of the tow cable.

Figure 6.6: Left: a part of the Anaconda modules and the winch. Right: a picture of the
Anaconda towed behind the frigate.

The Anaconda processes noise received at depths between 30 and 600 metres.

The signals received are processed into data for detection, tracking and classification of

torpedoes, submarines and surface ships. The Anaconda consists of several components

that each perform a part of the signal processing: an array for receiving and digitalising

the noise and some additional components, such as a tow cable, a winch, a terminal unit

and a signal processing unit. The array consists of seven acoustic units and several other

modules. One of these acoustic units is the D-D module that contains among other parts

46 high frequency amplifiers. These are repairable components, satisfying the hot stand-by

redundancy property. The Royal Netherlands Navy considers the high frequency amplifiers
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as a k-out-of-N system with N = 46 and k = 43.

6.4.2 Current situation

Currently, the Royal Netherlands Navy has eight multi purpose frigates that are

equipped with the Anaconda. During a mission, amplifiers may fail. If the operators

find that the performance of the Anaconda drops too much (caused by too many failed

amplifiers), they replace the complete module by a spare one if available. Therefore, some

spare acoustic modules are stored on board, among which one D-D module.

Failed amplifiers cannot be repaired on board, but only at depot level (which is

located ashore). If one of the modules is replaced during a mission, the failed one is removed

and sent to the depot repair shop at the end of the mission. The frigate does not provide the

repair shop with more than one D-D module since the Anaconda would then be incomplete.

Module repair involves removing the amplifiers from the module and testing each

amplifier separately. The failed amplifiers are replaced by spares, and all amplifiers are

placed back into the module. Failed amplifiers are repaired off-line in the repair shop. The

repair shop, however, has more tasks to perform and therefore the modules are not always

repaired immediately. After repair, the amplifiers are returned into the spares inventory,

either separately or built in one of the modules.

In order to have spare modules ready in time for the next mission, the repair shop

currently has 4 D-D modules and 46 separate high frequency amplifiers at its disposal.

These spares need to be shared by 8 frigates. The number of spare amplifiers may seem

to be rather high, since their failure rate is relatively low as can be seen in Section 6.4.3.

This can be explained by the fact that at the time the Anaconda was procured (several

years ago) spare parts were bought for the system life time. It was then assumed that the

amplifiers would be non-repairable parts. Together with the decision to buy life time spares

a lot of components were purchased. Later on, the amplifiers appeared to be repairable in

most cases.

Next to the corrective maintenance as described above, opportunity-based preven-

tive maintenance is applied to the Anaconda modules. This happens when the frigate is

docked for its intermediate or long term maintenance. The interval between these main-

tenance periods is approximately three years. Currently, there are no real performance

indicators for the effectiveness of this maintenance concept. There are developments to
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change the maintenance concept and to introduce performance measures like availability

and reliability. Therefore, it is interesting to examine whether our models can support

these kind of decisions. Here, the main focus is on the trade-off between maintenance

frequency and spare parts inventories.

6.4.3 Translation into input parameters

We assume that the eight frigates arrive at the harbour equally distributed over

time. Because the amplifiers only have two states (working and failed), we are dealing with

the model from Chapter 4 for multiple systems without ageing of components. Each frigate

performs three missions a year with the Anaconda, with a duration of 6 weeks each. During

these 6 weeks the Anaconda is used 24 hours a day, 7 days a week for 5 weeks. The failure

rate of the high frequency amplifier equals λ = 1
333000 per hour and the operating time

during the mission equals 840 hours (5 ·24 · 7 hours). The probability that during a mission
that starts with 3 already failed amplifiers, has more than 4 failed amplifiers afterwards is

approximately equal to 0.5%. Therefore, we neglect the spare module on board.

Three missions a year means approximately one mission every 17 weeks. Only

after a mission the Anaconda modules can be transported to the repair shop. As a result

we are not dealing with a continuous time problem, but with a discrete time problem with

time intervals equal to 17 weeks.
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Figure 6.7: Schematic representation of the current high frequency amplifier’s cycle.

In Figure 6.7, a schematic representation of the repair of the D-D modules and
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the high frequency amplifiers of the Anaconda is depicted. Both the set-up and completion

need to be done by two persons. This means that the calendar time needed is respectively

4 and 8 hours and the costs involved are respectively 8 and 16 times the hourly wages.

The transportation requires time that cannot be influenced by the repair capacity. So, it

is not really part of the maintenance activities and it is not a lead time either because the

system is not in use. We have similar situations with the set-up time in the repair shop,

the replacement time and the completion time. We choose to subtract these time durations

from the first 17 weeks mission duration, as it is down time that can only be influenced by

the maintenance frequency. The duration of all repair related activities equals:

• 4 hours transportation time from the frigate to the repair shop,

• 4 hours set-up time in the repair shop,

• 8 hours for failure detection per module,

• 4 hours for the replacement time per failed component,

• 8 hours completion time,

• 4 hours transportation time from the repair shop to the frigate.

We assume the maintenance intervals in a cost optimal situation to be a multiple

of the mission length. Therefore we assume that the total replacement time equals 16 hours,

corresponding to 4 failed components. If the number of failed components is likely to be

larger than 4, we are dealing with a maintenance frequency that is obviously too low to

obtain high availability levels. As a consequence, the down time is 44 hours. As a standard

working week contains 40 hours instead of 168 we have to multiply the down time by 4.2 to

translate it to calendar time, resulting in 184.8 hours. For the repair time we know that it

takes 8 working hours, which is 33.6 hours in calendar time. So, μ = 1
33.6 .

Summarised, we use the following input parameters:
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M = 8 frigates

k = 43 amplifiers

N = 46 amplifiers

T = 2856i− 184.8 hours

λ =
1

333000

840

2856
= 8.8 · 10−7 per hour

μ =
1

33.6
per hour

We introduce i to indicate the number of missions between successive arrivals for

maintenance. In the current situation we have c = 1 and maintenance after each mission.

This implies i = 1 and T = 2671.2. The number of spare amplifiers is 4 · 46 as part of the 4
spare modules ashore plus 46 separate amplifiers, which equals 230 spares (230+8 ·46 = 598
if we include the spare modules on board the frigates).

The hourly cost for transportation is 20, 72 Euro and the hourly cost of personnel

at the repair shop is 24, 26 Euro per hour. So, the initial costs for maintenance set-up

consist of:

• 2 times (back and forth) 4 hours transportation costing 165.76 Euros in total,

• 4 hours set-up time with 2 persons costing 194.08 Euros,

• 16 hours for replacements costing 388.16 Euros,

• 8 hours for completion with 2 persons costing 388.16 Euros.

The total set-up costs are 1136 Euros. The costs for a single spare part are 3700

Euros, assuming the life time of a spare to be 20 years we find 0.022 Euros per hour

( 3700
20·3·17·168).

The maintenance time is very small compared to the operational times, therefore

we need to adjust the capacity. To avoid the problem mentioned in Section 6.2.2 as issue

1, we define the capacity step size such that we need at least 10 units of capacity. Hence,

cmin = 10 and the utilisation rate of the repair shop does not fall from very high to very low

when one unit of capacity is added. Due to the small maintenance times compared to the
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operational times we need small capacity units. We have chosen the capacity equivalent to

10 minutes per week or 0.004 fte. We adjust the repair rate and the costs accordingly and

find μ = 2.95 · 10−5 and Ccap = 0.024 Euro.
In this case, we set the value of T to be a multiple of the mission duration. So if

the maintenance frequency is once per 3 missions (once a year) we use T = 2856∗3−184.8.
We therefore do not need the extra steps in the algorithm with the bi-section method, we

only need the discrete points in time at the end of a mission.

The operational availability also needs to be adjusted a little due to the 184.8

hours of down time that cannot be influenced. We adjust the availability calculation in the

model to:

Av =
E [U (T −D)]
T + 184.8

Because we only consider the options of maintenance between missions, we only

have to consider a limited number of values for T . This simplifies our algorithm. However,

because we discrete values for T and we have a number of downtime hours that cannot be

influenced, we are not able to achieve an availability level of 100%. The highest possible

availability we can achieve is almost 98.9% (considering the largest possible interval, the

expected time until the fourth amplifier fails, and the maintenance duration equals zero).

6.4.4 Results

Using the input parameters given in the previous section, we find the results for

different target levels for the availability, given in Table 6.9. As can be seen, the parameter

setting found for the target availability of 0.9 is not the optimal one since the parameter

setting with Av∗ = 0.925 has lower costs. However, the cost difference is small, only

1.3%. Furthermore, we see that the cost increment becomes larger as the target availability

increases, as could be expected.

With a maintenance period every 6 years (corresponding to 18 missions), a module

contains two failed amplifiers on average upon arrival at the repair shop. The probability

of having a failed module (more than three failed amplifiers) after the operational time of

6 years is 0.14. So, maintenance is mostly performed before a failure of the module occurs.

Taking into account a spare module on board, the probability of having a disfunctioning
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Table 6.9: For different availability target levels we find a different number of missions be-
tween maintenance instances, number of spares and capacity using our optimisation heuristic

Av∗ # missions S c (min. p.w.) c (fte) Costs (p.w.) Av

0.90 18 10 120 0.050 114.51 0.901
0.925 17 8 130 0.054 113.04 0.926
0.95 17 9 140 0.058 120.71 0.950
0.975 13 10 150 0.063 138.06 0.975
0.988 9 12 180 0.075 175.73 0.988

Anaconda reduces to almost zero and the availability becomes even higher than computed

in Table 6.9.

Obviously, the number of purchased spare amplifiers, 230 in total (46 separate

amplifiers and 4 times 46 amplifiers in complete modules) is a lot more than the number

needed according to our results, which is between 8 and 12 amplifiers, depending on the

availability level. As mentioned before, this is caused by the fact that amplifiers were

considered to be non-repairable when the Anacondas were procured.

Table 6.10: For different availability target levels we find a different number of missions be-
tween maintenance instances, number of spares and capacity using our optimisation heuristic

initial parameter setting resulting parameter setting
Av∗ # missions S c (min. p.w.) # missions S c (min. p.w.)

0.925 18 10 120 17 8 130
0.95 18 10 120 17 9 140
0.975 18 10 120 13 10 150
0.988 18 10 120 9 12 180

0.95 17 8 130 14 11 130
0.975 17 8 130 13 10 150
0.988 17 8 130 9 12 180

0.975 17 9 140 13 10 150
0.988 17 9 140 9 12 180

0.988 13 10 150 9 12 180

As mentioned in Section 6.2.4, a drawback of our optimisation heuristic is that we

have to start all over if the target availability level increases. To examine the impact, we

proceed as follows. Given the parameter combination from Av∗ = 0.9, we used it as starting

value for the other target availabilities. We do the same for the other parameter settings.

The results are shown in Table 6.10. As can be seen, there is only one case in which the

parameter setting found using an initial parameter setting is worse than without the initial
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parameter setting. This occurs when we use the parameters we found for Av∗ = 0.925 for

the scenario with Av∗ = 0.95. The cost become 130.67 Euro instead of 120.71 Euro, a

difference of more than 8%. However, the computation times of the algorithm are only a

few seconds, so there is no need to use initial values and end up with possibly higher cost

than necessary.

6.5 Conclusions

In this chapter, we discussed optimisation heuristics for the models that we dis-

cussed in Chapters 2-5. We found that simply extending the marginal analysis heuristic

METRIC to include both repair capacity and maintenance frequency does not work prop-

erly. The main reason lies in the fact that the relation between the maintenance frequency

and the system availability is not monotonous. Therefore, we developed an improved al-

gorithm based on marginal analysis. In numerical experiments, we found that the cost

difference compared to the (near) optimal solution as found by enumeration and the solu-

tion found by our optimisation heuristic are less than 0.2% (0.83%) on average for the single

system (installed base) with a maximum cost difference of 3.2% (5.2%) for the single system

(installed base). We applied our optimisation heuristic to the high frequency amplifiers as

component of the Anaconda system and we showed that our model is applicable to the case.

The results are encouraging for future extensions such as multi-item with shared

repair capacity. This extension would also be useful for the Anaconda example, since the

other parts could not be included in this example with the current model. In the next

chapter we explain how this extension of the model and of the optimisation method might

be realised.



Chapter 7

Conclusions and further research

In this chapter, we summarise the conclusions from the models we developed in

this thesis and we discuss relevant model extensions for further research.

7.1 Conclusions

In Chapter 1 (Section 1.2.1) we set ourselves the following research goal:

To gain insight in the relation between maintenance frequency, spare parts inventories and

repair capacity , their impact on the operational availability and to develop joint

optimisation methods for the related costs that can balance these factors.

In order to reach this goal, we posed four research questions, which we answered

in this thesis. In this section we present our conclusions concerning the research questions

from Section 1.2.3.

Research question 1

Research question 1 is concerned with the relation between maintenance frequency,

spare parts inventories and repair capacity on the one hand and operational availability on

the other hand for a single k-out-of-N system?

In the Chapters 2 and 3, we modelled a single k-out-of-N system without ageing

of components and with ageing of components respectively. The operational availability is

determined as a function of the maintenance frequency, the spare parts inventories and the
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repair capacity, which makes the relations explicit. As a parameter value changes, we can

calculate the impact on the operational availability.

For these models we assumed an operational period which starts after a mainte-

nance period and ends as soon as a specified number of failed components is reached. Then

we have an optional deterministic time until the actual maintenance activities start during

which the system components are still subject to failure. Then the actual maintenance

starts, which means that all failed components are replaced by new ones. If the number

of available components is insufficient the system has to wait in the repair shop until the

lacking components are restored. The model for systems without ageing of components is

an exact model that can be used for systems with up to 100 components. For larger sys-

tems we developed an approximation method based on the moment iteration approach. A

simulation model was used to check the accuracy of the approximation, which resulted in a

deviation of the system availability of 0.02% on average. For the single system with wear-out

(ageing of components) we found that there is an interrelation between the system cycle and

spares cycle. In our models we ignored this relation because of the modelling complexity.

However, our results are fairly good compared to simulation. With ignorance of the cycles

interrelation we used an exact model for systems with a mall number of components and

find a deviation in the repair time of 2.7% on average. The deviation for the system avail-

ability is a lot smaller, assuming that we are dealing with very low availability levels. For

the larger models we used two moment approximations again. The results are a deviation

in the repair time between 0.2% and 1.4%, dependent on the number of components in the

system. With these models we quantified the relations between the maintenance frequency,

spare parts inventories and the repair capacity and their effect on the system availability

for a single k-out-of-N system.

Research question 2

Research question 2 is concerned with the relation between maintenance frequency,

spare parts inventories and repair capacity on the one hand and operational availability on

the other hand for an installed base of k-out-of-N systems.

In the Chapters 4 and 5 we modelled an installed base of k-out-of-N systems re-

spectively without ageing of components and with ageing of components. The operational

availability is determined as a function of the maintenance frequency, the spare parts in-
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ventories and the repair capacity, which makes the relations explicit. As a parameter value

changes, we can calculate the impact on the operational availability.

For these models we assumed that the systems of the installed base share the

same repair capacity and spare parts inventory. To prevent an irregular arrival of systems

at the repair shop we use a fixed time interval for the systems to receive service from the

repair shop. We encountered the complexity of dependency between the cycles. This effect

was ignored in the model we presented. Depending on the size of the installed base we

compared our results of the system availability to a simulation model an found that the

average deviation is between 0.1% and 1.6%. We extended this model to two models with

component wear-out. The first model assumes equal repair rates while the second one can

handle different repair rates for degraded and failed components. The algorithm used for

different repair rates performs better than the one with equal repair rates. Compared to

simulation the deviation in the system availability is on average between 0.1% and 0.9%.

With these models we quantified the relations between the maintenance frequency, spare

parts inventories and the repair capacity and their effect on the system availability for an

installed base of k-out-of-N systems.

Research question 3

Research question 3 is concerned with finding a cost effective balance between

maintenance frequencies, spare parts inventories and repair capacity in order to achieve a

target availability level.

To find this cost effective balance we developed an optimisation heuristic in Chap-

ter 6 for the different models we described in the Chapters 2 and 4 and explained how these

models can be extended to systems with component wear-out, the models from Chapters

3 and 5. With this opimisation heuristic we can a find cost effective balance between the

maintenance frequency, the spare parts inventories and the repair capacity.

We started our optimisation heuristic by ”simply” extending the METRIC model.

However, this does not work very well since the relationships between the decision para-

meters and the operational availability is not a monotonous one. Therefore, we adjusted

the heuristic to a heuristic that is still based on METRIC, and compared the results to the

results of a complete enumeration. As the system size increases the number of parameter

combinations increases and we find more often a local optimal solution. However, the cost
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differences are limited to 0.2% on average. For a single system with component wear-out

we described how to adjust this heuristic such that it is applicable for this ageing system

as well.

In the second part of Chapter 6, we translated the optimisation heuristic to an

installed base of systems without ageing of the components. Because the model is somewhat

different because the time interval is a continuous parameter. We solved this problem by

using discrete time intervals analogous to the maintenance intervals of a single system,

based on the number of failed components (which is obviously discrete). In our algorithm

we search for upper and lower boundaries of the maintenance interval length we are looking

for and we find this value by performing a bi-section method. We compared the results

of this algorithm with an enumeration in which we discretised the maintenance interval

into small steps. Of course, we never found the exact same solution since the optimisation

heuristic is not limited to these discrete values. However, the results were on average only

0.8% more expensive than the enumeration. At the same time the computation times were

a lot smaller, minutes compared to hours or even days. Also for the installed base we

explained which minor modifications are needed to make the heuristic suitable for systems

with wear-out.

Research question 4

Research question 4 is concerned with the applicability in practice.

With only a minor modification we used our optimisation heuristic for an installed

base without component wear-out and found the model is applicable in practical situations.

To show the applicability we used the Anaconda, which is placed on 8 frigates of the

Royal Netherlands Navy, as an example, see Section 6.4.1. We considered the D-D module

with high frequency amplifiers, which is a 43-out-of-46 system. Our optimisation heuristic

for the installed base without component wear-out was used. We needed minor modifications

since maintenance is only possible between missions and not during a mission. Hence, the

maintenance interval is discrete for this example instead of continuous. For different target

availability levels we determined the maintenance frequency, the number of spares and the

repair capacity. The results show that the optimisation heuristic is applicable to real-life

systems, although some small modifications might be necessary.
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Research goal

The models we developed in this thesis are applicable in practice. We feel that

with our models we made a step forwards into the integration of maintenance policies, spare

parts inventories and repair capacity. We gained insight of how all three parameters are

related and how they influence the operational availability of a k-out-of-N system. At some

point, these relations turned out to be more complex than they appeared in the beginning.

Especially the impact of the maintenance frequency on the system availability was more

complex than we anticipated, because this function proved to be not even monotonuous.

Also for the number of spare parts and repair capacity we discovered that we need to

be careful. Although the trade-off between these two parameters is theoretically clear

(i.e. spares can replace to some extent the need for repair capacity and vise versa), it is

not automatically seen in a simple greedy heuristic like marginal analysis to optimise the

parameter combination.

7.2 Further research

To extend the applicability of our models, some extensions are needed. In this

section we discuss some possibilities to include in the models

1. multi item

2. multiple k-out-of-N systems within one system

3. cold and warm stand-by redundancy

Multi-item

Looking at the Anaconda we discussed in this thesis we see that it consists of

multiple k-out-of-N systems with different components. For instance, there is a k-out-of-N

system with high frequency amplifiers and there are k-out-of-N systems (other modules)

with low frequency amplifiers. Since they share the same repair capacity, they cannot be

considered separately. Suppose, we are dealing with a single system consisting of these

k-out-of-N systems. Then we are dealing with the models from Chapters 2 and 3. We need

a decision rule for the maintenance initiation. The most logical rule would be to initiate

maintenance if one of the systems reaches its maintenance initiation level. So the operational
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time is the minimum of the times to maintenance initiation. Next we need to determine

the uptime during the lead-time (assuming that the lead-time is larger than zero). The

computational effort is larger because each of the components can initiate maintenance and

for each we need a probability distribution for the number of failed components of the other

items. Finally, we need the number of failed components for each k-out-of-N system at

arrival in the repair shop. The systems arrive at the repair shop in batches, just like we

have a batch of aged and failed components in case of the single system with component

wear-out. The maintenance time can be determined analogously to the method we used for

the model with component wear-out. That is, knowing the number of failed components

and the number of spares at arrival of the system, we know how many of each item to

repair. Using the rule of repairing the items in order of their processing time, starting with

the longest processing times, we minimise the total maintenance duration. What the repair

strategy for spare components during the systems operational time should look like is not

very obvious. Simply using the processing times would mean that the components with the

longest processing time do not get repaired, which leads to waiting times for spares. At the

same time we may realise an overshoot (more available parts than required for repair by

replacement) of the components with a short processing time. Obviously, this is not very

efficient.

In case of an installed base we are dealing with the models from Chapters 4 and

5. Here we have a fixed time interval between the maintenance instances, which makes

it easier to adjust in comparison to the single system. To find the system availability we

need the minimum of this fixed time interval without the maintenance duration and the

expected operational time if no maintenance would be done. This expected time is the

minimum expected operational time of each k-out-of-N system separately, which is not

very difficult to determine. Then we need the expected maintenance duration, which is

determined analogous to the determination of the maintenance duration given degraded

and failed components, see Section 5.2.2. Again, we have the issue of the order in which

components are repaired during the operational time of the systems. This is subject to

further research.
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Multiple k-out-of-N systems within one system

Examples of such systems are the modules of the Anaconda with low frequency

amplifiers and the APAR system with its four faces. The case of multiple k-out-of-N systems

is in fact a special case of the multi-item extension. The difference is that we consider in

this case multiple k-out-of-N systems that are identical instead of different. This makes

the extension easier, since we have only one type of components that need to be repaired.

So, the computation of the maintenance duration remains unchanged. Only the number of

components that arrives at the repair shop for maintenance will be larger. Also the decision

rules for the order in which the repair jobs are handled is the same as the one we had in

the models with component wear-out (Chapters 3 and 5).

Cold and warm stand-by redundancy

In other (military and civil) applications, like aircraft and trains for instance one

sees redundancy at system level instead of component level. For instance, every day a certain

flight schedule needs to be flown by a number of aircraft. There are often additional aircraft

available in case one of the scheduled aircraft becomes non-operational (or in military terms

non mission capable). However, we are dealing with a cold stand-by redundancy instead of

hot stand-by redundancy. The number of available aircraft or trains does not determine the

usage hours, only the planned schedule. In De Smidt-Destombes et al. (2006) the authors

handle this issue, but they consider only the spare parts and do not take into account the

maintenance strategy or limited repair capacity. Another option to handle cold and warm

stand-by redundancy is to take a closer look at the models presented by Wang et al.(Wang

(1995), Wang and Wu (1995), Wang (1994a), Wang (1994b), Wang (1993)) and to try to

integrate these with our models.

Obviously, the directions for further research as mentioned in this section are not

the only directions possible. We could also look deeper into directions like multi-echelon

models or other maintenance policies. There are a lot of directions in which the developed

models can be extended and made applicable for other systems as well. However, we feel

to have given a good insight in the complexity of these maintenance questions and to have

given a foundation to exploit the models into the direction of ones needs.
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Appendix A

List of notation

c Repair capacity

k The least number of components needed for a functional system

L Lead-time: time from maintenance initiation until the start of maintenance

activities

m The number of failed components to initiate maintenance activities

N The total number of components in the system

S The total number of spares

λi The transition rate of a system component from state i− 1 to state i

μi The repair rate of a component from state i to state 0

T (i, j) Time from system state (N − i− j, i, j) until maintenance initiation

α(i, j) Probability of system transition from state (N − i− j, i, j)
to (N − i− j − 1, i+ 1, j)

β(i, j) Probability of system transition from state (N − i− j, i, j)
to (N − i− j, i− 1, j + 1)

τ(i, j) Sojourn time of the system in state (N − i− j, i, j)

Q(i, j, t) Probability of the system reaching state (N − i− j, i, j) at time t given m
failed components at time 0

pij(t) Probability of a component transition from state i to state j during time t
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P (i,m) Probability of the system being in state (N − i−m, i,m) at maintenance
initiation

PL(i, j) Probability of the system being in state (N − i − j, i, j) at the start of
maintenance

π(i, j) Probability of the spares being in state (i, S − i − j, j) at the start of
maintenance

R(r, s1, s2) Time to repair r components from spares state (S−s1−s2) given capacity c

H(w, x, y, z, t) Probability that spares state changes from (S−w−x,w, x) to (S−y−z, y, z)
in time t, given repair capacity cbT Time from maintenance initiation until system failure, given maintenance

initiation level mbT (i,m) Time from system state (N − i − m, i,m) to failure, given maintenance
initiation level m

Ai Number of system components in state i at the start of maintenance ac-

tivities

Bi Number of spare components in state i at the start of maintenance activities

Ci Number of spare components in state i at the end of maintenance activities

Wi Number of components in state i to repair during the maintenance period

Rμ(X) Time needed to repair X components given repair rate μ and repair ca-

pacity c

Zμ(X) Number of components repaired in time X given repair rate μ and repair

capacity c

Avm,S,c The system availability, given the maintenance initiation level m, number

of spares S and the repair capacity c

Tm Time until maintenance initiation given maintenance initiation level m

Um Uptime during the lead-time L, given maintenance initiation level m

Dm,S,c Downtime caused by maintenance activities, given maintenance initiation

level m, number of spares S and repair capacity c



Samenvatting

Tegenwoordig worden de systemen steeds complexer en geavanceerder. Tegelijker-

tijd worden ten aanzien van de beschikbaarheid en betrouwbaarheid van de systemen ook

steeds hogere eisen gesteld. Een van de manieren om aan deze eisen te voldoen is onderde-

len redundant uit te voeren. Dit wil zeggen dat een onderdeel vaker wordt ingebouwd dan

nodig om het systeem te kunnen gebruiken. Hierdoor wordt een keuzemogelijkheid voor

onderhoud gecreëerd. Het is namelijk niet noodzakelijk om bij het falen van een enkel on-

derdeel onderhoud uit te voeren (door middel van vervanging of reparatie van het defecte

onderdeel). Om wille van het beperken van het aantal onderhoudsmomenten, zeker wanneer

hier hoge opstartkosten mee gemoeid zijn, kan ervoor gekozen worden te wachten tot een

zeker aantal onderdelen gefaald is.

Als het moment van onderhoud is aangebroken dan wordt in veel gevallen (mede

bepaald door de hoge beschikbaarheidseisen) gekozen voor het repareren van het systeem

door de defecte onderdelen te vervangen door reserveonderdelen. Het systeem is dan snel

weer beschikbaar en de defecte onderdelen worden achteraf gerepareerd (mits dit kostenef-

fectief is). Echter bij kapitaalintensieve systemen zijn ook de reservedelen erg prijzig en is

het van belang niet meer onderdelen aan te schaffen dan nodig is. Om deze reden is het

frequenter vervangen van defecte onderdelen juist gunstig. Per onderhoudsmoment is het

aantal te vervangen onderdelen beperkter en stabieler. Hierdoor kan worden volstaan met

minder reservedelen. Er is dus een zekere interactie tussen de frequentie waarmee onder-

houd wordt uitgevoerd en het aantal benodigde reservedelen om een zekere beschikbaarheid

te bereiken.

De interactie tussen onderhoudsfrequentie en het aantal reservedelen is echter

niet de enige. Om ervoor te zorgen dat de defecte onderdelen tijdig gerepareerd zijn is

reparatiecapaciteit nodig. Deze reparatiecapaciteit wordt zowel ingezet voor het repareren



van defecte onderdelen nadat alle vervangingen hebben plaatsgevonden als voor het repar-

eren van onderdelen wanneer niet alle vervangingen direct kunnen worden uitgevoerd door

een gebrek aan reservedelen. Door extra reparatiecapaciteit in te zetten kunnen defecte on-

derdelen sneller worden gerepareerd en de voorraad reservedelen sneller worden aangevuld.

Hierdoor kan, zonder dat de operationele beschikbaarheid van een systeem wordt beïnvloed,

een tekort aan reservedelen gedeeltelijk worden opgevangen door extra reparatiecapaciteit

in te zetten en andersom. Afhankelijk van de kosten van de onderdelen en de kosten voor

reparatiecapaciteit kan een keuze gemaakt worden.

Kort gezegd, het beperken (verhogen) van het aantal onderhoudsmomenten betekent

(minder) pieken in de vraag naar reservedelen en daarmee een grotere (kleinere) behoefte aan

reservedelen en/ of reparatiecapaciteit. Terwijl het beperken van het aantal onderhoudsmo-

menten een kostenbesparing oplevert, levert het verhogen van het aantal reservedelen en

reparatiecapaciteit juist een kostenverhoging op. Hierdoor is het niet eenvoudig aan te geven

hoe op een kosteneffectieve manier een zekere beschikbaarheidseis gehaald kan worden: hoe

vaak onderhoud en met hoeveel reservedelen en reparatiecapaciteit?

In de literatuur zijn geen (kwantitatieve) modellen gevonden die al deze interacties

gelijktijdig beschouwen. In dit proefschrift worden kwantitatieve modellen beschreven die de

operationele beschikbaarheid van systemen bepalen als functie van de onderhoudsfrequentie,

het aantal reservedelen en de hoeveelheid reparatiecapaciteit. In de hoofdstukken 2 en 3

worden modellen beschreven die de beschikbaarheid van een enkel systeem bepalen waarbij

de onderdelen in het ene geval geen slijtage kennen en in het andere geval wel slijten of

verouderen. In een aantal gevallen is het mogelijk om een exacte modelbeschrijving te

geven, in andere gevallen is volstaan met benaderingen. De hoofdstukken 4 en 5 beschouwen

soortgelijke modellen voor de situatie waarin meerdere identieke systemen van dezelfde

reservedelen en reparatiecapaciteit gebruik maken.

In de hoofdstukken 2 tot en met 5 worden exacte of benaderende uitdrukkingen

gevonden voor de operationele beschikbaarheid als functie van de onderhoudsfrequentie,

aantal reservedelen en hoeveelheid reparatiecapaciteit. Om nu de beste combinatie te vin-

den kan gekozen worden alle parametercombinaties met de gevonden modellen door te

rekenen en vervolgens te bepalen welke, van degenen die aan de beschikbaarheidseis vol-

doen, het goedkoopste is. Echter voor systemen met wat meer onderdelene loopt het aantal



mogelijke combinaties snel op en daarmee ook de rekentijden. Het is dan noodzakelijk

te beschikken over een model dat de optimale parametercombinatie kan bepalen zonder

alle mogelijkheden door te rekenen. De hiervoor ontwikkelde optimalisatieheuristiek staat

beschreven in hoofdstuk 6, zowel voor het enkele systeem als de groep van systemen (ook

wel installed base genoemd). Tenslotte wordt in hoofdstuk 6 een praktijksituatie beschouwd

om de toepasbaarheid van de ontwikkelde modellen te illustreren.
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