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Summary

Noise reduction in feedforward active noise control systems with a rapidly changing primary path requires rapid

convergence and fast tracking. This can be accomplished with a fast-array Kalman method which uses an efficient

rotation matrix technique to calculate the filter parameters. However, finite precision effects lead to unstable

behavior. In this paper results of a recent algorithm are presented, which exhibits the fast convergence, tracking

properties and the linear calculation complexity of the fast array Kalman method, but which does not suffer from

the numerical problems. This is achieved by using a convex combination of two parallel finite length growing

memory recursive least squares filters. A periodic reset of the filter parameters with proper re-initialization is

enforced, preventing the numerical instability. The performance of the algorithm is demonstrated in numerical

simulations and in real-time experiments. Convergence rate and tracking performance are similar to that of a

fast-array sliding window recursive least squares algorithm, while eliminating the numerical issues. It is shown

that the new algorithm provides significantly improved convergence and tracking as compared to more traditional

algorithms, such as based on the filtered reference least mean squares algorithm.

PACS no. 43.50.Ki, 43.60.Ac, 43.60.Mn

1. Introduction1

The main reason for the low convergence rate of the

fxLMS algorithm is the assumption that both the adaptive

filter and the secondary path estimate are Linear Time In-

variant (LTI) and therefore can be interchanged [2]. This

assumption only holds if the adaptive filter changes slowly

in comparison to the secondary path dynamics. Neverthe-

less, to improve the convergence rate, multiple changes to

the fxLMS algorithm have been proposed in the literature,

for example the modified fxLMS [3], fast affine projec-

tions [4] and preconditioned LMS [2]. Another way to im-

prove the rate of convergence can be obtained by reformu-

lating the ANC problem as a state estimation problem, as

has been proposed by Sayyarrodsari et al. [5] .

The assumption of the LTI adaptive filter and sec-

ondary path also potentially influences the tracking perfor-

(c) European Acoustics Association

1 Text and figures of the present paper are based on S. van Ophem

and A.P. Berkhoff, A numerically stable, finite memory, fast array

recursive least squares filter for broadband active noise control,
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mance of primary path changes. These changes will occur

when the primary noise source is moving relative to the

ANC system or when the reference microphone is mov-

ing. Some examples of moving noise sources are airplanes

and cars. With such noise sources, the primary path can

change rapidly, violating the assumption of a system with

slowly varying dynamics. Some examples of ANC with

moving noise sources are given by Omoto and Fujiwara

[6], Berkhoff [7] and Van Ophem and Berkhoff [8].

A real-time implementation of a fast array Kalman fil-

ter [9, 10] was presented by Van Ophem and Berkhoff [8].

In this implementation an output normal parameterization

of the estimated secondary path was used to reduce the

amount of floating point operations and to remove redun-

dancy from the state space model. Although the fast ar-

ray Kalman filter shows the desired high rate of conver-

gence, it was shown by Van Ophem and Berkhoff [8] that

the tracking performance is diminishing with progressing

time. The reason for this behavior is that the Kalman fil-

ter uses all old data to calculate the estimate of the filter

coefficients. Therefore, a logical way to improve tracking

would be a mechanism which throws away old data in the

recursions. In Fraanje et al. [10] a forgetting factor, which

exponentially weights the data, was proposed to improve

the tracking performance. Although the improved tracking

Copyright© (2015) by EAA-NAG-ABAV, ISSN 2226-5147
All rights reserved

2183



ui

ŵi
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Figure 1. Modified filtered-RLS.

was observed by Van Ophem and Berkhoff [8], a disas-

trous instability caused by the round-off errors in digital

systems, was also observed by the authors [8]. An alterna-

tive solution for improving the tracking performance has

been proposed by Sayed [9] in the form of a sliding win-

dow. A description of this filter in fast array form has been

described by Park et al. [11].

The sliding window RLS algorithm works by running

two RLS filters in parallel. The first filter works as a

standard growing memory RLS filter, but the second fil-

ter throws away old information, which results in a finite

memory filter. It was found [12] that this filter also suf-

fers from round-off errors, especially in single precision

floating point arithmetic, but with a linear error growth, as

opposed to the exponential error growth with a forgetting

factor.

This paper describes results of a Single Input Single

Output (SISO) ANC algorithm presented in Ref. [1] hav-

ing a rate of convergence and tracking performance similar

to that of a fast array sliding window RLS filter, but with-

out the numerical error growth. Results of the algorithm

are given in simulations and in real-time experiments.

2. Methods

2.1. Modified filtered-RLS

In this paper a SISO ANC system with a modified structure

is considered. A block diagram of this system is shown

Fig. 1. The goal of the adaptive filter is to find a set of Fi-

nite Impulse Response (FIR) filter coefficients ŵi ∈ R
nw ,

which minimize the modified error ǫi. This modified error

will be calculated by summing the estimated disturbance

d̂i and the output of the adaptive filter ỹi:

ǫi = d̂i + ỹi. (1)

The output of the adaptive filter is calculated by multi-

plying the filtered reference signal r̂i with the filter coeffi-

cients ŵi:

ỹi = −r̂Tnw ,iŵi, (2)

in which r̂nw ,i is a vector with the last nw values of the

filtered reference signal:

r̂nw ,i =
[

r̂i r̂i−1 · · · r̂i−nw+1

]T
. (3)

The filtered reference signal is calculated by filtering the

measured reference signal with the estimated secondary

path state space model:

θri+1 = Asθ
r
i +Bsxi, (4)

r̂i = Csθ
r
i +Dsxi, (5)

in which θri is the internal path state and As, Bs, Cs

and Ds are the estimated secondary path state matrices.

The estimated value of the disturbance is calculated by

subtracting the estimated output ŷi of the secondary path

Ĝ(z) from the measured error ei:

d̂i = ei − ŷi. (6)

The estimated output of the secondary path is calculated

by filtering the control signal ui with the estimated state

space model of the secondary path:

θ̂i+1 = Asθ̂i +Bsui, (7)

ŷi = Csθ̂i +Dsui, (8)

The control signal ui is calculated by filtering the refer-

ence signal xi with the adaptive filter, as follows

ui = xT
nw

ŵi, (9)

xnw
=

[

xi xi−1 · · · xi−nw+1

]T
. (10)

This filter structure is well known in the context of ANC

and has been applied both to filtered-reference LMS and

RLS algorithms [2], [10].

2.2. Mixed windowed RLS

For the adaption of the filter coefficients we propose a

filter which behaves like a constant length finite mem-

ory RLS algorithm with a linear calculation complexity

O(nw), equivalent to the Chandrasekhar form of the slid-

ing window RLS filter [11], but does not exhibit the round-

off error propagation. To achieve this, a convex mixing ap-

proach is used to emulate the sliding window RLS filter.

Convex combinations of filters have been a popular

topic in recent years, see Refs. [13], [14] and [15]. An ex-

ample of convex filters in the context of ANC is given by

Ferrer [16]. The main difference between these approaches

and the proposed filter in this paper, is the way the convex

combination is applied. In the literature the convex com-

binations of the filters are used to mix two filters, which

have different filter parameters, such as forgetting factors
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and convergence coefficients. The optimal mixing param-

eters, which give the lowest MSE, then will be determined

by an extra adaptive filter.

The proposed implementation will use two filters with

identical filter parameters and predetermined time-varying

mixing coefficients. This means that not necessarily the

convex combination with the lowest MSE will be found.

Instead, it simulates a filter with a constant memory length,

such as the sliding window RLS filter.

Two parallel growing memory filters are mixed in such

a way, that the total available information used for calcu-

lating the least squares solution will be equal at every time

instance.

Firstly, the equations for a recursive update of the mixed

solution are presented. The mixing parameters αi and βi

are constrained by 0 ≤ αi ≤ 1 , 0 ≤ βi ≤ 1, and sum up

to unity:

αi + βi = 1, ∀i. (11)

A possible choice for the mixing parameters can be found

in Fig. 2.

Consider two parallel RLS filters, both with a growing

data window bounded to W entries. The first filter will be

activated at time instance U and the second filter will be

activated after V = U + W/2 iterations. The filters have

the following data matrices Hi, HV :i and measurement

vectors yi, yV :i, with V < i < W :

Hi =











r̂Tnw,U

r̂Tnw,U+1
...

r̂Tnw,i











, HV :i =











r̂Tnw ,V

r̂Tnw ,V+1
...

r̂Tnw ,i











. (12)

yi =











d̂U
d̂U+1

...

d̂i











, yV :i =











d̂V
d̂V +1

...

d̂i











. (13)

The cost functions of the parallel RLS filters are [9]:

min
wi

[wT
i Πwi + ‖yi −Hiwi‖

2], (14)

min
wV :i

[wT
V :iΠwV :i + ‖yV :i −HV :iwV :i‖

2], (15)

in which the matrix Π ∈ R
nw×nw is a positive definitive

regularization matrix. In Ref. [1] it is shown that the re-

sulting update equations are:

ŵmix,i = αi(ŵi−1 +KiR
−1
i ǫi)+

βi(ŵV :i−1 +KV :iR
−1
V :iǫV :i). (16)

in which Ki is the Kalman gain, ǫi is the innovation and

Ri is the expected value of the innovation.

2.3. Fast array formulation

The parameters in Eq. (16) will be updated with two par-

allel growing memory (forgetting factor λ = 1) fast ar-

ray RLS algorithms. The complexity of these algorithms

grows linearly with nw. This linear complexity is achieved

by updating the difference of the state error covariance ma-

trices Pi between time instances i−1 and i. It assumes that

this difference can be factorized as follows[9]:

dPi = Pi −ΨPi−1Ψ
T = LiMiL

T
i . (17)

In this equation, Ψ is a first diagonal shift matrix. For

a system with a shift-invariant input signal, like the pro-

posed ANC system, the rank of the matrixM can be as low

as 2. Since an extensive derivation for the update equations

of a fast array RLS algorithm is available in the literature,

see Refs. [10], [9], we will simply state the results from

the literature and the resulting filter equations.

The filter parameters of the two filters will be calculated

completely in parallel and no interaction will take place

between the filters. Both filters will be reset every time a

window length W has passed. A complete description of

the algorithm can be found in Ref. [1].

3. Results and discussion

The performance of the new approach was tested both nu-

merically and experimentally. Firstly, the numerical per-

formance was tested and compared to a sliding window

RLS filter. The numerical experiments were done with

both measurement data from a duct and synthetic data.

For all the experiments a sampling frequency of fs =
2000 Hz was used.

3.1. Comparison with growing memory RLS

For the first simulation, the convergence and tracking of

the present method were compared to a fast array RLS fil-

ter, with a forgetting factor of λ = 1. Synthetic primary

and secondary paths were used to calculate the reference

signal, the error signal and the resulting control signal.

These paths result from a 1D acoustic model of a duct,

with a white noise source. The filter contains nw = 250
coefficients.

The tracking behavior was tested by changing the simu-

lation position of the reference sensor after 10 seconds. For

the mixed windowed RLS filter a data window of length

W = 6000 was chosen. The results are shown in Fig. 3.

It is clear that the new algorithm outperforms the growing

memory RLS filter when it is used for tracking purposes.

However, it is more interesting to compare the results of

the present approach with a fast array sliding window RLS

algorithm, such as described by Park et al. [11].
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Figure 3. Convergence and tracking performance of the growing memory RLS filter (left) and the mixed windowed RLS filter of data

length W = 6000 (right). The filter is activated after 1 second and the tracking performance is checked by shifting the reference signal

after 10 seconds.

3.2. Comparison with fast-array sliding window

RLS

For the comparison of the mixed windowed RLS with the

fast-array sliding window RLS two cases were considered:

A comparison of the convergence and tracking properties

and a comparison of the long term numerical behavior. The

rotation matrix of the sliding window RLS filter has been

calculated with the orthogonal diagonal method [17], be-

cause of its improved numerical behavior as compared to

hyperbolic Givens rotations.

In Fig. 4 the fast array sliding window RLS and the new

filter are compared. For these simulations the data win-

dow of the new filter was set to two times the length of

the fast array sliding window RLS filter. Just as with the

comparison of the new filter with the growing memory, the

tracking performance was tested by changing the reference

signal after 10 seconds and the results were averaged over

200 simulations. To obtain a good comparison, the filter

coefficients of the new filter were set to zero at every reset

point. This was done to emulate the behavior of the down-

date step of the sliding window algorithm.

It can be seen that the mixed window RLS filter approx-

imates the sliding window RLS filter, but that the MSE is

not as smooth. Closer inspection shows that this variation

in the MSE is related to the window length, so this is an

artifact of the mixing scheme. Further tests show that the

amplitude of the fluctuation depends on the magnitude of

the regularization coefficient δ. A high value of δ causes

an overshoot when the filter converges and since at every

reset one of the parallel filters has to converge again, this

can cause a higher MSE. A possible solution to overcome

this overshoot would be to incorporate the uncertainty in

the secondary path estimates, as described by Fraanje et

al. [10].

3.3. Numerical behavior

Even when the stable orthogonal diagonal method is used

to perform the hyperbolic rotations, the fast array sliding
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Figure 4. The convergence and tracking performance of the mixed windowed RLS filter (left) and the fast array sliding window RLS

(right) for different window lengths, averaged over 200 simulations. The filter coefficients are reset to zero.

window RLS filter exhibits a linear error growth, which

means that the performance of the algorithm will deteri-

orate, when it runs through a large number of recursions.

To keep this numerical inaccuracy within bounds, a reset

of the algorithm is needed. This means that a third filter

has to run in parallel with the sliding window filter, when

the reset is applied. The mixed windowed RLS filter does

not need this extra filter.

This is shown in Fig. 5, where the results of simula-

tions with both double and single floating point preci-

sion are shown for both filters. This simulation uses time-

invariant data, so it is expected that the average of the fil-

ter parameters should converge to a certain solution and

must not deviate. It can be seen that the value R
(2)
i of

the sliding window fast array RLS filter starts to deviate

after about 5e5 iterations. The weighted average value of

Ri,new = αiR
(1)
i + βiR

(2)
i stays constant in both single

and double floating point precision. Similar comparisons

of the numerical accuracy of the fast array sliding window

RLS algorithm with and without a third parallel filter have

been done by Van Ophem and Berkhoff [12].

From the numerical simulations it can be concluded that

both the new filter and the fast-array sliding window RLS

filter have their benefits, but it is has to be noted that the

numerical problems of the sliding window fast array RLS

cannot be overcome without adding a third parallel filter,

while the fluctuations in the MSE of the new filter are con-

trollable by tuning the filter parameters, such as the regu-

larization term δ.

3.4. Experimental results

The algorithm was also tested in a real-time environment.

For the experiment a duct was used, which was closed on

the left hand side and open on the other side. A sound

source, emitting white noise, was placed in the pipe on the

left hand side and the goal of the experiment was to mini-

mize the sound pressure at the open end of the pipe by us-

ing feed forward control. This was done by sending a con-

trol signal to the secondary loudspeaker, placed in duct at

about 45 cm from the end of the duct. An error microphone

was placed at the open end. The details of the control plat-

form are specified in [4]. The secondary path identification

was done off-line, by using a sub-space identification algo-

rithm in the SLICOT libraries. This led to estimates with a

variance accounted for value of about 99.8%. A digital ref-

erence signal was used, so that no feedback from the actu-

ator to the reference signal would occur. The experimental

results were in agreement with the simulation results [1].
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Figure 5. The numerical performance of the sliding window fast-

array RLS algorithm, indicated by R
(2)
i

(top) and the mixed win-

dowed RLS filter, indicated by αiR
(1)
i

+ βiR
(2)
i

(bottom) in sin-

gle and double point floating precision.

4. Conclusions

A new algorithm for feedforward active noise control

has been presented which has the fast convergence and

tracking properties of the sliding window Resursive Least

Squares filter and which has a stable numerical implemen-

tation. The algorithm has a calculation complexity which

is linear with the number of filter parameters. The stable

numerical implementation is obtained by using a convex

mixing scheme of the filter coefficients, resulting from two

parallel finite length, growing memory fast-array RLS fil-

ters. This mixing scheme is chosen in such a way that the

amount of data used for the calculation of the control sig-

nal remains constant.

Although the approximation of the fast-array sliding

window RLS is not perfect, especially for longer window

lengths, the advantage of this algorithm is the elimination

of long term round-off error propagation without adding

any redundancy, in contrast to the fast-array sliding win-

dow RLS filter. The performance of the filter has been val-

idated in both numerical and experimental tests.
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