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Abstract In the analysis of randomized controlled tri-
als (RCTs), treatment effect heterogeneity often occurs,
implying differences across (subgroups of) clients in treat-
ment efficacy. This phenomenon is typically referred to as
treatment-subgroup interactions. The identification of sub-
groups of clients, defined in terms of pretreatment character-
istics that are involved in a treatment-subgroup interaction,
is a methodologically challenging task, especially when
many characteristics are available that may interact with
treatment and when no comprehensive a priori hypothe-
ses on relevant subgroups are available. A special type
of treatment-subgroup interaction occurs if the ranking of
treatment alternatives in terms of efficacy differs across sub-
groups of clients (e.g., for one subgroup treatment A is
better than B and for another subgroup treatment B is bet-
ter than A). These are called qualitative treatment-subgroup
interactions and are most important for optimal treatment
assignment. The method QUINT (Qualitative INteraction
Trees) was recently proposed to induce subgroups involved
in such interactions from RCT data. The result of an anal-
ysis with QUINT is a binary tree from which treatment
assignment criteria can be derived. The implementation
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of this method, the R package quint, is the topic of this
paper. The analysis process is described step-by-step using
data from the Breast Cancer Recovery Project, showing the
reader all functions included in the package. The output
is explained and given a substantive interpretation. Fur-
thermore, an overview is given of the tuning parameters
involved in the analysis, along with possible motivational
concerns associated with choice alternatives that are avail-
able to the user.
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Introduction

In the field of evidence-based health and mental health care,
the gold standard method to establish treatment efficacy is
a randomized controlled trial (RCT). In such a trial, clients
with a certain problem or disorder are randomly assigned
to one out of (at least) two treatments (e.g., two alternative
treatments, or one alternative treatment versus treatment as
usual). In the analysis of the resulting data, for a long time
the usual research question has been: Which treatment is, on
average, most effective? This question typically reflects the
goal of determining the best treatment for all clients with the
problem or disorder under study within a one-size-fits-all
approach. The merit of such an approach is obvious: Every
client with the problem in question then can be assigned
to the best treatment, regardless of her or his individual
characteristics (Fierz, 2004).

When the difference in efficacy between the treatments
under study is not equal across all subgroups of clients,
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that is, differential treatment efficacy is present, this reflects
statistically speaking a treatment-subgroup interaction (or
treatment-covariate interaction). A special type of such an
interaction occurs if for some subgroups of clients treatment
A is more effective than B, while for other subgroups the
reverse holds true. This is called a disordinal (Lubin, 1961)
or qualitative (Byar, 1985) treatment-subgroup interaction.
By contrast, if in all subgroups the same treatment is more
effective than the other, and the subgroups only differ in the
magnitude of the treatment effect, the treatment-subgroup
interaction is called ordinal or quantitative. For optimal
treatment assignment in clinical practice, quantitative inter-
actions are less consequential, because optimal assignment
would simply come down to assigning all clients to the
same treatment (i.e., the marginally best treatment alter-
native). However, qualitative interactions imply that some
subgroups of clients should be treated differently than other
subgroups, and are therefore most relevant for clinical prac-
tice (Byar, 1985). For example, in case of two treatments A
and B, qualitative interactions imply that some subgroups
should preferably be assigned to A whereas other subgroups
should preferably be assigned to B. From the client charac-
teristics that define the subgroups involved in a qualitative
treatment-subgroup interaction, rules for an optimal treat-
ment assignment can be derived. In this way, therapies
tailored to the client can be realized, which are of key inter-
est in the field of personalized health care (Fierz, 2004).
Over the last few decades, this field has become increas-
ingly important. By focusing on the question: What works
for whom? personalized health care can be regarded as a
movement away from the one-size-fits-all approach (Roth
& Fonagy, 2006).

When a priori hypotheses are available about possi-
ble moderator variables or when the number of pretreat-
ment characteristics is small, several statistical methods
exist to examine treatment-subgroup interactions. Exam-
ples include analysis of variance with prespecified contrast
codings (Shaffer, 1991), and moderated regression analysis
(Cohen, Cohen, West, & Aiken, 2003). (For a description
of moderated regression analysis within the framework of
randomized controlled trials, see Kraemer, Wilson, Fairbun,
& Agras, 2002). In practice, however, it often occurs that
no clear or comprehensive a priori hypotheses on relevant
subgroups are available, and that many pretreatment charac-
teristics have been measured. In such exploratory situations,
it is quite a task to identify the characteristics of subgroups
that are involved in treatment-subgroup interactions and, at
the same time, to control for inferential errors involved in
hypothesis testing (i.e., type I and type II errors).

Over the last decade, a group of tree-based methods
has been developed to deal with this type of exploratory

situations, including STIMA (simultaneous threshold inter-
action modeling; Dusseldorp, Conversano, & Van Os, 2010;
Dusseldorp & Meulman 2004), Interaction Trees (Su, Tsai,
Wang, Nickerson, & Li, 2009), Model-based recursive par-
titioning (Zeileis, Hothorn, & Hornik, 2008), Virtual Twins
(Foster, Taylor, & Ruberg, 2011), and SIDES (subgroup
identification based on differential effect search; Lipkovich,
Dmitrienko, Denne, & Enas, 2011). All these methods rely
on a recursive partitioning type of algorithm with cross-
validation or bootstrap-based bias-correction procedures to
control for inferential errors. A major difference between
these methods is that Virtual Twins and SIDES focus on
the extraction of only those subgroups in which the effect
of an alternative treatment is considerably larger compared
to a reference treatment, whereas the solutions found by
the other three methods represent the full group of persons
(for a more extensive comparison, see Doove, Dusseldorp,
Van Deun, & Van Mechelen, 2014). Yet, a shortcoming
of the methods in question is that the user is not given
any control over the type of interactions (qualitative or
quantitative) resulting from the analysis. This is regrettable
because, as was mentioned before, especially qualitative
treatment-subgroup interactions have serious consequences
for optimal (personalized) treatment assignment. Another
shortcoming of these methods is that the accompanying
software lacks instructions about how to use it to iden-
tify treatment-subgroup interactions. Some of these meth-
ods merely provide software code without a manual (e.g.,
SIDES) and some of them provide only general instructions
that are not adapted to treatment-subgroup interactions (e.g.,
STIMA).

As a solution, recently a new tree-based method, called
Qualitative INteraction Trees (QUINT), was proposed (Dus-
seldorp & Van Mechelen, 2014). QUINT was specifi-
cally designed to induce subgroups that are involved in
qualitative treatment-subgroup interactions. In the present
paper, we introduce the corresponding software quint,
which is a package in R, a free software environment (R
Core Team, 2014). The R package can be installed from
the CRAN repository. Our aims are to explain and illustrate
the usage of the package to study qualitative treatment-
subgroup interactions in behavioral research. The following
issues will be discussed: For which type of data is the
package suitable, which steps need to be taken during the
analysis process, what are the available choice options for
the analysis, and how to postprocess and interpret the output
of quint. The reader is guided through the analysis process
by means of data from the Breast Cancer Recovery Project
(Scheier et al., 2007). Below, we start with a short concep-
tual outline of the method. Subsequently, the software will
be introduced.
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The method QUINT

Goal of QUINT

QUINT is a tree-based clustering method for data obtained
from a two-arm RCT that include an outcome variable and
a number of variables measured before treatment started
(i.e., at baseline). These baseline variables are typically
client characteristics, but could also be therapist character-
istics or characteristics of the setting and so on. The aim of
QUINT is to identify three subgroups of clients (i.e., parti-
tion classes), each of which comprises one or more client
types as defined by different combinations of client char-
acteristics. Subgroup ℘1 contains those clients for whom
Treatment A is better than Treatment B, Subgroup ℘2 those
for whom B is better than A, and (the optional) Subgroup℘3

those for whom it does not make any difference. In the latter
group, the difference in treatment outcome between A and
B is negligible (also called by others “the region of uncer-
tainty”, Shuster & van Eys, 1983). The subgroups and client
types are not known beforehand, but are to be induced dur-
ing the data analysis. Therefore, QUINT can be considered
an unsupervised learning method (Hastie et al., 2001). The
subgroups are represented by a binary tree. For an example
of such a tree, one may refer to Fig. 1, which is a represen-
tation of a tree produced by the package quint. The root
node (i.e., the ellipse at the top) represents the total group of
clients. Each split of the tree divides a node into two child

nodes on the basis of a threshold value (i.e., a split point) on
a client characteristic. For example, the root node in Fig. 1 is
split into two internal nodes on the basis of the value 18.5 on
the variable “disopt1”. Clients who score 18.5 or lower fall
into the left child node and the others fall into the right child
node. How the splitting variable and split point are chosen
will be explained below (see “the QUINT algorithm”). Each
leaf or end node of the tree (in Fig. 1 the leaves are dis-
played by rectangles) represents a client type and is assigned
to one of the three subgroups, colored in green, red, or grey.
A green leaf belongs to Subgroup ℘1, a red leaf to Subgroup
℘2, and a grey leaf to Subgroup ℘3. Note that several leaves
can be assigned to the same subgroup, for example, both
Leaf 1 and Leaf 4 in Fig. 1 are assigned to ℘2.

The underlying goal of QUINT is to identify sub-
groups that are involved in an optimal qualitative treatment-
subgroup interaction. Optimality comprises two compo-
nents here: (a) In both Subgroup ℘1 and Subgroup ℘2, the
absolute difference in treatment outcome between A and B
should be as high as possible, and (b) the sample sizes of
both Subgroup ℘1 and ℘2 should be as large as possible (to
avoid trivial interactions based on small subgroups of clients
only). The advantage of also having the possibility to assign
patients to a Subgroup ℘3 is that the difference in treat-
ment outcome in Subgroups ℘1 and ℘2 can be increased.
The two optimality components are referred to, respectively,
as the Difference in treatment outcome component and the
Cardinality component. Both components are taken into

Fig. 1 Example of a pruned qualitative interaction tree for the out-
come Improvement in depression using the Breast Cancer Recovery
Project data, as produced by the package quint. The splitting vari-
ables are: disopt (dispositional optimism), negsoct1 (negative social
interaction), and trext (treatment extensiveness index). Each leaf of the

tree is assigned to one of the three subgroups ℘1, ℘2, or ℘3, denoted
in the figure by P1, P2, and P3, respectively, and visualized by differ-
ent colors of the leaves (green, red, and grey). The vertical axis of the
leaves pertains to the effect size d
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account by the partitioning criterion (C) of QUINT (for for-
mula, see Dusseldorp & Van Mechelen, 2014). With regard
to the Difference in treatment outcome component, two
options are available: (1) the standardized mean difference,
expressed as Cohen’s effect size d (Cohen, 1988), and (2)
the raw mean difference in treatment outcome between the
groups. The resulting two possible specifications of the par-
titioning criterion are referred to as the Effect size criterion
and the Difference in means criterion, respectively. Which
criterion is most appropriate depends on the research prob-
lem at hand, as will be discussed in the section on the R
package quint.

The QUINT algorithm

The QUINT partitioning criterion C is maximized using a
sequential partitioning algorithm, that is, a stepwise binary
splitting procedure. In the Appendix, a flowchart of the
algorithm is shown, together with a description. The algo-
rithm starts with all clients in the root node; this node is split
into two child nodes on the basis of a threshold value on
one baseline characteristic. Subsequently, one of these two
child nodes is split, etc. (see e.g., Fig. 1). In each step of the
splitting procedure, the node, the baseline characteristic, the
admissible split point for that characteristic, and the admis-
sible assignment of the leaves of the resulting tree to the
three subgroups (℘1, ℘2, or ℘3) are chosen that maximize
the QUINT criterionC. Note that a split point and an assign-
ment are considered admissible if they satisfy a number of
boundary conditions (see further below). Also, note that the
specific assignment of the leaves to ℘1, ℘2, or ℘3 depends
on the value of criterion C, and not on a significance test
of the difference in treatment outcome. For example, a node
can be assigned to ℘2, while the 95 % confidence interval of
the effect size includes a 0 (e.g., Leaf 1 in Fig. 1). If the new
maximum value of C is higher than the current value, a split
is performed, and the algorithm proceeds to the next step, in
which the whole procedure is repeated. The repetition of the
whole procedure implies that after each split of the tree, all
leaves of the tree are re-assigned to the subgroups ℘1, ℘2,
or ℘3.

The algorithm stops automatically if no candidate parent
node can be found with an admissible triplet (i.e., baseline
characteristic, split point, and assignment to subgroup) and
a higher value of C than the current value, or if the current
total number of leaves equals a user-specified maximum.
The boundary conditions to determine the admissibility of a
split are:

1. The qualitative interaction condition: After the first
split, in each of the two resulting leaves the abso-
lute value of the treatment effect size, that is, Cohen’s
d should exceed a critical minimum value (dmin). To

ensure that this condition is independent of the type of
outcome measure, the standardized effect size is used
here (rather than the raw difference in means). As men-
tioned before, the QUINT analysis immediately stops
(i.e., no tree is fitted) if this condition is not satisfied.

2. The minimal sample size per treatment condition: A
minimum number of clients assigned to treatment A and
B is needed in each leaf of the tree.

3. The nonempty partition class condition: Partition
classes ℘1 and ℘2 should be nonempty. Partition class
℘3 may be empty.

4. The mean difference per node condition: A leaf can only
be assigned to ℘1 if the mean outcome of the clients in
treatment A is higher than the mean outcome of those
in treatment B; conversely, a node can only be assigned
to ℘2 if the mean outcome of treatment B is higher than
the mean outcome of treatment A.

The first condition concerns the admissibility of the first
split. It is a check whether a qualitative interaction is present
in the data, and helps to control for the type I error rate
(i.e., the risk of identifying spurious qualitative interac-
tions). The second condition pertains to the admissibility of
a split point, and the final two to the admissibility of a leaf
assignment. The first two boundary conditions include tun-
ing parameters that can be specified by the user (see section
R package quint).

With every split of the tree, the fit of the tree increases
and the tree may become very large and complex. The
resulting final tree may model the noise in the data in addi-
tion to the true signals. As a result, the final tree may
satisfactorily fit the training data, but may not fit future data.
To overcome this so-called overfitting (Hastie et al., 2001),
the tree needs to be pruned back.

For this pruning, we start from the observation that the
QUINT algorithm results in a series of nested subtrees of
sizes varying from two leaves to the number of leaves when
the algorithm stopped. Each of these subtrees goes with an
apparent value of the QUINT partitioning criterion, which
is usually biased because the subtree fits the data too well.
In other words, the apparent fit (i.e., the “observed fit”) is
overoptimistic, because it is estimated using the total sam-
ple (i.e., the original data) as training data, and based on a
greedy search of each variable and each possible split point.
Therefore, the criterion values are subjected to a bootstrap-
based bias correction procedure (LeBlanc & Crowley, 1993)
making use of QUINT analyses of B bootstrap samples
drawn from the original data. This procedure implies that for
each subtree of size L, the amount of optimism is estimated
in the following way: Each bootstrap sample is subjected to
a QUINT analysis, which results in a series of nested boot-
strap subtrees. We then select from this series, the bootstrap
subtree of size L. The value of the partitioning criterion
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for this bootstrap subtree is computed (i.e., training value).
Then, the bootstrap subtree is “frozen” (i.e., splitting vari-
ables, split points, and assignments to the classes are fixed)
and applied to the original data (which are now used as
test data) and the test value of the partitioning criterion is
computed. The amount of optimism is then calculated as
the difference between the training value and the test value
and by subsequently averaging this across all bootstrap sam-
ples (see Appendix B in the Supplementary materials of
Dusseldorp & Van Mechelen, 2014). Subsequently, this
amount can be subtracted from the apparent criterion value
for the subtree of size L as obtained from the QUINT analy-
sis of the original data, resulting in a bias-corrected criterion
value for that subtree. Finally, the optimal pruned tree size is
selected using a so-called one standard error rule (Breiman,
Friedman, Olshen, & Stone, 1984), meaning that the most
parsimonious subtree is chosen whose bias-corrected cri-
terion value is no more than one standard error below the
maximum bias-corrected criterion value (with the standard
error being derived from the standard deviation of the opti-
mism across the bootstrap samples of each tree size under
study).

Motivating example

As a guiding example, we will use data from the Breast Can-
cer Recovery Project (BCRP) for younger women with early
stage breast cancer who previously underwent a lumpec-
tomy and received combined radiation and chemotherapy
(Scheier et al., 2007). The participating women in this clin-
ical trial were randomly assigned to one of three therapy
conditions: a nutrition intervention (n = 85), an education
intervention (n = 83), and a control condition (n = 84).
The women were measured at three time points: at base-
line, at 4 months (i.e., immediately after treatment) and
at 13 months (i.e., 9 months post-treatment). The primary
outcome variables were measures of depression (CES-D;
Radloff, 1977) and health-related quality-of-life (i.e., phys-
ical and mental functioning; two subscales of the SF-36;
Ware & Sherbourne, 1992). In a first paper on the BCRP
(Scheier et al., 2005), it was shown that both the nutrition
intervention and the education intervention were superior
compared to the control. In a second paper (Scheier et al.,
2007), it was investigated whether the main effects of the
two interventions were moderated by one of the following
baseline characteristics:

• demographic variables: age, gender, and nationality;
• indicators of treatment severity: weight change, treat-

ment extensiveness index (created by standardizing
and aggregating type of surgery [lumpectomy or mas-
tectomy] with type of adjuvant treatment received

[none, radiation or chemotherapy, both]), and comor-
bidity (sum of the checked potential comorbidities, such
as, diabetes, migraines, arthritis, or angina, and the
reported conditions that the participant currently had
[open question]);

• personality characteristics: dispositional optimism (a
global expectation that more good and desirable things
will happen than their bad and undesirable counterparts;
Scheier, Carver, & Bridges, 1994), unmitigated commu-
nion (a focus on others to the exclusion of the self; Fritz
& Helgeson, 1998), and negative social interaction.

In our reanalysis of these data, we will focus on the
comparison of the nutrition and education intervention
making use of the above-mentioned client characteristics.
The same outcome variables are used as in the study of
Scheier et al. 2007: sum scores of a depression scale, and
a physical functioning scale, both measured at baseline and
at the 9- month post-treatment follow-up. More specifically,
the change scores from baseline to follow-up are used in the
analysis. For physical functioning, guidelines for clinically
important changes were available in the literature: change
scores of 5, 20, and 30, can be judged as, respectively, a
small, medium, and large difference (Wyrwich et al., 2005).
Our central research question is: For which subgroup of
women is a nutrition intervention more effective than an
education intervention, for which subgroup does the reverse
hold true, and for which subgroup do the two interventions
not lead to clearly different outcomes?

R package: quint

Preparation

Install the latest version of the R software environment
(R Core Team, 2014). In the menu of R, go to Packages,
install the package quint from CRAN, and load the
package.

Input: Data and formula

The study design for the data to be analyzed with quint
needs to be a randomized controlled trial. The data struc-
ture in R can be an R data frame or an R matrix. The
data set has to include at least the following variables, the
order and names of which are not important: one continu-
ous outcome variable (with the class of this variable being
numeric), a dichotomous treatment variable (i.e., class may
be factor or numeric), and several baseline characteristics
(i.e., candidate splitting variables) that can be ordinal or
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continuous (i.e., class is numeric), or dichotomous (i.e., cat-
egorical variables with only two categories, such as gender
or continuous characteristics that are dichotomized using a
prespecified clinically informed cut-off score). The current
version of quint is restricted to a dichotomous treatment
variable and can handle neither categorical baseline char-
acteristics with more than two categories, nor categorical
outcome variables. Our example data set is included in the
R package and can be inspected in the following way:

The two outcome variables, physical functioning (phys)
and depression (cesd), have been measured at baseline
(t1) and at 9 months post-treatment (t3). The variables
negative social interaction (negsoct1) and unmitigated
communion (uncomt1) are patient characteristics mea-
sured at baseline (i.e., a selection of the nine characteristics
in this data set). The treatment variable cond represents
three therapy conditions (nutrition, education, and control
condition, denoted by 1 to 3, respectively). To get more
insight into the meaning of the variables, one may use the
help function:

If a data set contains more than two treatment conditions,
as in this data set, the user needs to select two conditions of
interest, before performing a quint analysis. As we focus
in this example on the comparison between the nutrition and
the education condition, we create a new data set without
the third condition by the following command:

Before the analysis, the user needs to specify the role of
all variables by means of a formula, which looks as follows:
Y ∼ T | X1 + ... + XJ , with a single outcome variable
Y followed by two parts separated by the symbol |. The
first part represents the dichotomous treatment variable T

and the second part the baseline characteristics X1 to XJ ,
where J equals the total number of baseline characteristics
under study. The order of X1 to XJ within the second part
of the formula is arbitrary. In general, the outcome Y may
be a single follow-up measure, a change or rate of change
score from baseline to follow-up, a follow-up score adjusted
for baseline, or a variable indicating time to an event.
(Note that if outcome measurements at more than two time
points would be available, quint analyses could be run on
change scores between any two time points of interest.) We
recommend to use outcome variables measured on scales

that are calibrated in terms of what constitutes clinically
meaningful differences. Furthermore, we recommend to
construct the outcome variable in such a way that a higher
score indicates a better treatment outcome to facilitate the
interpretation of the output.

For our example data, we create two formulas, one
for each outcome variable. For change in depression, the
formula is specified as follows:

In the above formula, the expression I (cesdt1 - cesdt3) is
used to calculate the change score. The posttest depression
score (cesdt3) is subtracted from the baseline (cesdt1)
to ensure that a higher score indicates a better treatment out-
come, that is, a larger improvement in depression. Further-
more, the nine patient characteristics are listed as candidate
splitting variables, in addition to the baseline measurement
of the outcome variable.

For change in physical functioning, the formula is speci-
fied as follows:

In the above formula, the baseline score is subtracted
from the posttest score to ensure that a higher score indicates
a larger improvement in physical functioning.

First analyses with default values of parameters

We now start with the first analyses using the main func-
tion (called quint) of the package with default values for
the tuning parameters. In the next section, an overview of
the tuning parameters is given, and it will be shown how
(and why) default values can be changed. Just before run-
ning the code, we fix the seed to be able to replicate the
results of the bootstrapping. During the analysis, screen out-
put is generated automatically to enable the user to follow
the process.
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The first two lines of this output explain the relation
between the categories of the treatment variable T used in
the analysis, and the categories of the treatment variable
in the data set (in our case variable cond). The third line
shows the number of patients that are used in the analysis;
these are the patients without missing values on any of the
variables included in the formula. Thus, in our example data,
148 out of the total of 168 patients who received nutrition
or education therapy have no missing values on the out-
come and baseline variables included in formula1. The
end of the output shows the reason why the splitting process
stopped. In this case, no split 7 could be found that implied
a higher value of C. For this analysis, the output also gives
two warning messages of which one is displayed above. It
refers to difficulties in the bootstrap procedure that suggest
instability of the tree after split 5. The result of the anal-
ysis is an object of class quint, from which the fit, split
and leaf information can be obtained using the summary
function:

The first line of this output concerns the type of parti-
tioning criterion C, in this case the default criterion was
used, namely, the Effect size criterion. The fit informa-
tion of the full tree displays per split the apparent value of

C, the bias-corrected value of C (which resulted from the
bootstrap procedure), and the corresponding standard error
(se). Note that the apparent value of C increases with an
increasing number of splits (this is always true), whereas the
bias-corrected value of C reaches its maximum at four
splits, and then decreases.

The split information shows in the first two columns the
node numbers of the parent nodes that were split and those
of the resulting child nodes. The node numbering is the
same as the one commonly used (e.g., in Breiman et al.,
1984). In the third and fourth column, the splitting variable
and corresponding split point are displayed per split.

The leaf information contains standard descriptive statis-
tics (group size, mean outcome, and standard deviation
[SD]) for each treatment group per leaf of the full tree (i.e.,
the tree after six splits). In addition, the effect size d (i.e., the
standardized mean difference of T = 1 minus T = 2), its
standard error (se), and the class assignment are displayed.
When instead of the Effect size criterion, the Difference in
means criterion is used, the same leaf information is given.
In this example, the first leaf consists of 11 women from the
nutrition condition (T = 1), with a mean improvement in
depression of 1.00 (SD = 3.10) and seven women from the
education condition (T = 2), with a mean improvement of
3.71 (SD = 4.75). The corresponding effect size d equals
−0.71 (se = 0.54), and the leaf is assigned to ℘2, indi-
cating that for these women education therapy outperforms
nutrition therapy.

The fit information (fi), split information (si), and leaf
information (li) are stored in three matrices that can also be
inspected separately:

As explained before, the full tree may be too large and
needs to be pruned back to avoid overfitting. The best tree
is selected automatically by the function prune.quint.
The input of this function is the object of the full tree (i.e.,
quint1).
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The resulting pruned tree with four splits (i.e., five
leaves) is an object of class quint, from which fit, split,
and leaf information can be obtained using the summary
function, and it can be visualized by plot.quint:

The plot of the pruned tree is displayed in Fig. 1. The
inner nodes of the tree contain the labels of the split-
ting variables, and next to the branches the split points
are shown. In the leaves of the tree, the effect sizes d are
displayed by black dots, along with a 95 % confidence
interval.

For the interpretation of the pruned tree, we inspect the
assignment of the leaves to the partition classes and the
paths of the tree leading to the leaves. Figure 1 shows
that for one group of women (Leaf 2, green) the nutri-
tion intervention outperforms the education intervention,
in particular, the nutrition intervention resulted in a higher
improvement in depression for those women with a lower
level of dispositional optimism, a higher level of negative
social interaction, and the least extensive form of primary
treatment (i.e., lumpectomy without or with only one form
of adjuvant therapy). In contrast, for two groups of women
(Leaves 1 and 4, red), the education intervention outper-
forms the nutrition intervention; one of these groups of
women reported a lower level of dispositional optimism
and a lower level of negative social interaction, whereas
the other group reported a medium level of dispositional
optimism. For the remaining types of women (Leaves 3
and 5, grey) both interventions resulted in about the same
improvement in depression. To learn more about the exact
levels of improvement and the effect sizes, we inspect
the leaf information of the pruned tree, rounded at two
decimals:

Also, for the second outcome variable, Improvement in
physical functioning, a quint analysis with default values
of the tuning parameters was performed:

Because the result of this analysis was a tree with just two
leaves, there was no need for pruning, and we continued by
just inspecting the leaf information and the plot of the tree:

The resulting plot (see Fig. 2) shows that for women with
four or fewer comorbidities (Leaf 1, the red one assigned to
℘2) the education intervention was better than the nutrition
intervention. The leaf information shows that in this leaf the
mean improvement was 3.28 for the nutrition intervention
and 6.88 for the education intervention. This latter value was
larger, but can be considered as a small improvement from

comorbid

4.5 > 4.5

Leaf 1
P2

1
0.5

0
0.5

1

Leaf 2
P1

1
0.5

0
0.5

1

Fig. 2 Example of a qualitative interaction tree for the outcome
Improvement in physical functioning from the Breast Cancer Recovery
Project data, using default values of the tuning parameters. The leaves
of the tree are assigned to subgroups ℘2 and ℘1, denoted in the figure
by P2 and P1. The vertical axis of the leaves pertains to the effect
size d
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a clinical viewpoint, taking into account the guidelines from
Wyrwich et al. (2005).

For women with more than four comorbidities (Leaf 2,
the green one assigned to ℘1), the leaf information shows
that the nutrition intervention resulted in a larger improve-
ment in physical functioning (i.e., 4.33) than the education
intervention (1.53). Yet, 4.33 can also be considered as a
small change from a clinical viewpoint.

Second analyses with modified values for the tuning
parameters

Several values of the tuning parameters used in a quint
analysis can be adapted by the user. Table 1 gives an
overview of all parameters involved, subdivided in those
concerning the partitioning criterion, the stopping criterion,
the boundary conditions, and the bootstrap procedure. In
this section, we will describe how to change the parameters,
and the considerations associated with these changes.

With regard to the partitioning criterion, a first parameter
concerns the type of partitioning criterion, that is, the Effect
size criterion (which is the default as mentioned before) or
the Difference in means criterion. For this choice, one pos-
sible consideration concerns the measurement scale of the
outcome variable: If the outcome is measured on a scale
with values that do not have a well-specified meaning (such
as, Improvement in depression), the Effect size criterion
may be preferred. In contrast, if a scale is used with val-
ues that bear a well-defined clinical interpretation (such
as, Improvement in physical functioning), the Difference
in means criterion is to be preferred. Another considera-
tion pertains to whether and how one is willing to take
into account subgroup heterogeneity. If one wants to iden-
tify subgroups that are homogeneous in treatment effect,
then the Effect size criterion is to be preferred (note that an
effect size of the same difference in means is larger when
the pooled standard deviation of the treatment groups is
smaller); if, in contrast, the only research concern is to iden-
tify subgroups with a mean difference in treatment outcome
that is as large as possible, then the Difference in means cri-
terion is to be preferred. A final consideration pertains to the
robustness of the results. Baguley (2009) showed that the
raw difference in means is more robust than the standardized
effect size.

A second parameter concerns the weights of the two
components of the partitioning criterion, the Difference
in treatment outcome and the Cardinality component, that
is, w1 and w2 (see also formula 6 in Dusseldorp & Van
Mechelen, 2014). As mentioned before (see section Goal
of QUINT), the Cardinality component concerns the sam-
ple sizes of the leaves assigned to ℘1 and ℘2. The default

weights are chosen in such a way that the two components
are weighted equally with the maximum possible value for
each component being 2. The default value of w1 depends
on the criterion that is used: if this is the Difference in
means criterion, the default value of w1 is put equal to
1/ log(IQR(Y )), where IQR denotes the interquartile range
(which can be considered as a plausible maximum value for
the difference in means). If the Effect size criterion is used,
the default value of w1 is put equal to 1/ log(1 + 3), with 3
being considered as a plausible maximum value of the effect
size. In a specific research field this value may be typically
lower (e.g., 2), and the weight can be changed accordingly
(see Table 1 for an example).

We change the values of the tuning parameters, using the
function quint.control. For example, if we want to use
the Difference in means criterion for Improvement in physi-
cal functioning, we first make a new control object, and then
we use this control object in the analysis:

For this example, the resulting tree is the same as the tree
grown with the Effect size criterion. In our experience this
is often the case, but subtle differences may occur.

With regard to the stopping criterion, the maximum num-
ber of leaves of the tree can be changed. This enables the
user to stop the tree algorithm before the maximum value
of the partitioning criterion C was reached, for example,
to inspect a tree of a certain fixed size (e.g., two leaves).
The default value is set at ten leaves (which most of the
times suffices in practice because the maximum value of
C is reached earlier). This value can be changed into, for
example, two leaves using the following commands:

With regard to the boundary conditions, a first tuning
parameter concerns the critical minimum value of the abso-
lute effect size in each leaf (dmin) that is checked by the
algorithm after the first split (i.e., the qualitative interac-
tion condition). The results of an extensive simulation study
(Dusseldorp & Van Mechelen, 2014) showed that a good
balance between type I error and type II error is obtained for
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Table 1 Overview of the tuning parameters that are by quint and can be the user via the function quint.control

Argument Meaning Possible values Default value Example

Partitioning criterion

crit Type of partitioning criterion “es” (effect size criterion) and “dm” “es” crit=“dm”

(difference in means criterion)

w Weights of the Difference in two positive real numbers, at least (w1, w2) = w=c(1/log(1+2),

treatment outcome and one of which should be nonzero (1/log(1 + 3), 1/log(.50∗)) or 1/log(.50∗148))
Cardinality components (1/log(IQR(Y)), 1 /log(.50∗))a

Stopping criterion

maxl Maximum number of leaves any integer between 1 and 50 10 maxl = 3

Boundary conditions

dmin Minimum absolute value of d in each any real between 0 and 3 0.30 dmin = 0.40

of the two leaves after the first split

a1 Minimal sample size of treatment A any integer between 1 and n1, where .10∗n1 a1 = 25

(T = 1) in a leaf n1 denotes the sample size of T = 1

a2 Minimal sample size of treatment B any integer between 1 and n2, where .10∗n2 a2 = 25

(T = 2) in a leaf n1 denotes the sample size of T = 2

Bootstrap procedure

Bootstrap Whether to perform bootstrapping FALSE and TRUE TRUE Bootstrap = FALSE

B Number of bootstrap samples any integer larger than 1 25 B = 50b

aThe default values of the weights are automatically adapted, depending on the choice of the type of partitioning criterion
bIf the value of B is chosen by the user (e.g., B = 50), the value of Bootstrap needs to be kept at TRUE

dmin = 0.30 and N ≥ 400. Therefore, the default value of
dmin equals 0.30. For smaller sample sizes, a higher value
of dmin is recommended to control for the risk of finding
spurious interactions. In our example with a sample size of
N = 148, it may be advisable to increase the value to 0.40.
For Improvement in depression, this change will not influ-
ence the result, because the effect sizes in the two leaves
after the first split (see output above) are both greater than
0.40. However, if we change dmin to 0.40 for Improvement
in physical functioning, we obtain the following result:

The error message shows that the qualitative interac-
tion condition (as explained at length in the section on the
QUINT algorithm) is violated, and, as a consequence, no
tree is grown. This result suggests that the interaction we
found earlier for Improvement in physical functioning using
the default values, may be a spurious one.

The remaining tuning parameters associated with the
boundary conditions concern the minimal sample size per
treatment condition in T = 1 (a1), and in T = 2 (a2). The
default values have been set at 10 % of the treatment group
sample sizes. However, the user is free to choose any value
as minimum treatment sample size. When on the one hand
treatment sample sizes are relatively small, 10 % of them
may not allow to estimate the mean outcome in a treatment
group with sufficient confidence. When on the other hand
treatment sample sizes are large (i.e., 500 or more), we rec-
ommend to choose a lower value than the default to avoid
that the tree algorithm stops (too) early (see Table 1 for an
example).

With regard to the bootstrap procedure, a first tuning
parameter determines whether or not this procedure is per-
formed. If bootstrapping is not performed, the computation
time of quint is much shorter, yet at the expense of a lack
of information on the amount of overfitting. A second tun-
ing parameter concerns the number of bootstrap samples,
with a higher number (e.g., B = 200) leading to more sta-
ble results. The default value has been put to B = 25 (i.e.,
the recommended minimum value by LeBlanc & Crowley,
1993).
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Discussion

We proposed a new R package quint that can be used
to study the important clinical problem of differential
treatment efficacy. When many client characteristics (or
other baseline characteristics) have been measured that
may moderate treatment outcome, the problem of subgroup
identification is a very difficult one with a high risk of type
I and type II errors. In such a situation, the package quint
can be most useful through its versatile way of searching
for subgroups and its procedures that control for inferential
errors and overfitting. The quint analysis focuses especially
on the identification of subgroups that are involved in so-
called qualitative treatment subgroup interactions. This type
of interactions implies that for some subgroup of clients, one
treatment alternative outperforms another while for another
subgroup the reverse holds, and is therefore of utmost
importance for personalized treatment assignment. It should
be noted that a quint analysis does not aim at identifying
quantitative interactions. If data contain no qualitative inter-
actions, no tree will be grown by quint. In this paper, we
demonstrated the functions of the package using data from
the Breast Cancer Recovery Project, and highlighted possi-
bilities to direct the analysis on the basis of theoretical and
practical considerations.

The R package quint can be used for data from a ran-
domized controlled trial. In this paper, we focused on a
clinical trial involving cancer patients, but the method is
applicable to controlled experiments in any setting, such as
randomized experiments in which two interventions, train-
ing programs, or any other type of experimental manipula-
tions are compared (e.g., Taylor, Davis, & Maxwell, 2001),
including controlled web-based experiments (so-called A/B
tests) in marketing research (Kohavi, Longbotham, Som-
merfield, & Henne, 2009). Most important features of the
data are that the persons are randomly assigned to two
conditions (A and B) and that the person characteristics
are measured before the treatment is received (unless it is
very unlikely that the treatment has altered the character-
istic, e.g., gender or age in years). Also, a total sample
size of higher or equal to 400 is recommended, based
on results from a simulation study (Dusseldorp and Van
Mechelen, 2014), to allow for the study of more complex
treatment-subgroup interactions.

The core idea of random assignment of clients to treat-
ment groups, is that the clients only differ with respect to
the treatment variable. This implies that the client charac-
teristics are not associated with the treatment variable and
it enables that the observed differences in the (sub)groups
can be attributed to the differences in treatment. However,
this does not imply that the result of a subgroup analysis,
such as the tree found by quint, is always generalizable

towards the full client population. In some cases, indeed, the
distribution of some characteristics in the study sample may
not be the same as those in the population. For example, our
sample might consist for 20 % of male clients, while the
population to which we want to generalize consists for 50 %
of male clients. One possible solution to take this imbalance
into account, is to incorporate weighting in the analysis by
quint. A vector of weights can easily be implemented for
the Difference in means criterion of quint. For the Effect
size criterion, this is more difficult, due to the estimation of
a pooled standard deviation.

The current implementation of quint has several lim-
itations: (a) weighting of clients according to some known
population distribution is not possible; (b) clients with one
or more missing values on any of the variables are omit-
ted from the analysis (so-called listwise deletion); (c) the
outcome variable should be numeric, and (d) categorical
baseline characteristics involving more than two categories
cannot be handled by the software. Currently, we are work-
ing on a new version of the R package that can deal with
categorical baseline characteristics involving more than two
categories.

Because QUINT is a post hoc method, it is recom-
mended for clinical practice to check whether the results of
QUINT can be replicated in a new randomized controlled
trial. Ideally, for the sampling of the participants in this new
trial a stratified sampling scheme should be used with strat-
ification on the patterns of moderator variables identified
by QUINT.
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Appendix

In this Appendix, a detailed description of the algorithm
underlying the quint function is given using a flowchart
(see Fig. 3). In a preliminary step, the data are read, sev-
eral tuning parameters need to be specified (with the default
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Read: Y, T, and Xj with j = 1,…, J.
Specify:     values of tuning parameters.
Initialize:   L = 1, Root node = R1; CL = 0.

Fill in design matrix D with all possible assignments of the full set of leaves after the 
next split to the partition classes that satisfy the nonempty partition class condition.

For each leaf (i.e., candidate parent node) of the current tree:
For each candidate splitting variable Xj: 

Identify admissible split point and admissible row of D that imply the highest 
value of C.

Identify the optimal triplet consisting of the splitting variable, the split point, and 
the leaf assignment that imply the highest value of C.

Optimal triplet 
found for at least one 

parent node
?

L = 1
?

Compute Cohen’s d in the two 
child nodes that result from a 
split on the basis of the optimal 
triplet.

Across all parent nodes: Select 
parent node Rℓ* for which the 
optimal triplet implies the 
highest value of C (= CL+1).

Split Rℓ* into two child nodes on 
the basis of the optimal triplet.
L ← L + 1
Renumber the new leaves from 
left to right with ℓ = 1,…, L.

each |d| ≥ dmin
?

CL+1  > CL
?

L < Lupperlimit

?

stop

stop

stop
no

yes

no

stop

yes

yes yes

yes

no

no

no

Fig. 3 Flowchart of the algorithm for tree growing underlying quint

values being given in Table 1), and three variables are ini-
tialized, that is: the total current number of leaves L is put
equal to 1, the root node is given number 1, and the current
value of the QUINT criterion C is put equal to 0. The algo-
rithm then continues with the actual splitting procedure. As
a preparatory step in this procedure, a design matrix D of
size (3L+1 − 2L+2 + 1) × (L + 1) is constructed, each row
of which contains a theoretically possible assignment of all
leaves that will result after the next split to the three partition
classes; at this point “theoretically possible” simply means
that both ℘1 and ℘2 are nonempty (which implies that at

least one leaf should be assigned to each of the two classes
in question).

After this preparatory step, the splitting procedure con-
tinues as follows: Each leaf of the current tree is considered
as a candidate parent node for the next split. Given a
candidate parent node, the algorithm looks for the best pos-
sible split of that node in terms of an optimal combination of
three ingredients (i.e., a so-called optimal triplet): a splitting
variable Xj , an admissible split point, and an admissible
assignment (i.e., a row of D), with a split point and an
assignment being admissible if: 1) each of the two leaves
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resulting from the split contains a pre-specified minimum
number of clients assigned to treatment A and B, and 2) any
leaf can only be assigned to ℘1 if in that leaf the mean out-
come of the clients in treatment A is higher than the mean
outcome of those in treatment B (and vice versa for ℘2); the
optimal triplet then is the one that implies the highest value
of the criterion C.

Next, if L = 1 then the flowchart shows that the
qualitative interaction condition (i.e., one of the boundary
conditions) is to be checked. If this condition is satisfied,
the root node is split, the new value of L is set at 2, the new
set of leaves is renumbered, and the splitting procedure is
repeated. If L > 1 then the values of C are compared across
all candidate parent nodes, and the node with the highest
value is chosen as the node to be split (R�∗). If the value of
C implied by the split of (R�∗) exceeds the current criterion
value, then (R�∗) is split effectively, the new value of L is
increased by one unit, the new set of leaves is renumbered,
and the splitting procedure is repeated.

The tree growing stops: (1) if no candidate parent node
can be found with an admissible triplet (upper circle on the
right side of the flowchart), (2) if the qualitative interaction
criterion is not met (lower left circle in the flowchart), (3)
if the value of C implied by the split of R�∗ does not
exceed the current value of C (i.e., lower right circle in the
flowchart), or (4) if the current total number of leaves equals
a user-specified maximum, Lupperlimit (i.e., circle at the end
of the flowchart). (Note that Lupperlimit is called maxl in
the R package quint.)
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