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6.

Voor een optimaal gebruik van de baanpredictor dienen de
baanpredictorconsole en de stuurautomaatconsole te worden gecombineerd tot
een functioneel logisch geheel binnen een geintegreerde manoeuvreer- en
navigatieomgeving. Deze integratie van bedieningsmiddelen sluit conceptueel
goed aan bij de geintegreerde presentatie van  predictie- en
manoeuvreergegevens op het navigatiescherm.

Voor het aantonen van het effect van de baanpredictor op de
navigatieprestatie van de mens is de mogelijkheid tot het uitvoeren van een
gecontroleerd experiment in een realistische omgeving noodzakelijk. Vanwege
deze vereiste controleerbaarheid en de benodigde grote hoeveelheid data voor
een statistisch verantwoorde toetsing van de hypothese, is een "full scale”
simulatorexperiment met proefpersonen te prefereren boven experimenten op
zee.

Equation-error en Output-error identificatieschema’s zijn te herleiden tot twee
extreme vormen van gecombineerde toestands- en parameterschatting.

Het modelreferentie adaptief regelen met behulp van een Extended Kalman
filter is analoog aan een regeling volgens het model update principe. Het
verschil tussen beide methoden uit zich in de wijze waarop de toestand van
het referentiemodel wordt aangepast aan de metingen.

J. van Amerongen, "Digital model-reference adaptive control with applications to ship’s steering",
Proceedings 6th IFAC/IFIP Conference on Digital computer applications to process control, 1980

Introductie van (additieve) systeemruis op de parameters ter verkrijging van
adaptatie bij parameterschatting is (volgens de principes van Kalman filtering)
methodologisch beter verantwoord dan de introductie van een (multiplicatieve)
vergeetfactor.

Baanpredictie is zinvol voor het vinden van de juiste baan.
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11.

12.

Vanwege het multidisciplinaire karakter van de regeltechniek dient de
regeltechnicus te beseffen dat zonder wederzijds aanvaarde definities van
begrippen een gedachtenwisseling over begrippen kan ontaarden in een
woordenwisseling zonder wederzijds begrip.

Het dragen van formele kleding tijdens een sollicitatiegesprek levert een
nodeloos kleurloze waarneming van de sollicitant als informatiebron op.
Het dragen van vrijetijdskleding tijdens een dergelijke gelegenheid zou
derhalve dienen te worden gestimuleerd.

Gezien het accent dat bij bepaalde vormen van sport op het routinematig
verrichten van motorische handelingen wordt gelegd, dient men zich als
trainer af te vragen of het op de lange termijn niet méér de moeite loont
om met een robot, voorzien van enige elementaire vormen van kunstmatige
intelligentie, in zee te gaan dan te proberen door middel van training de
vereiste motorische routines bij een menselijke pupil te ontwikkelen.

Voor het verhogen van het inzicht van de gemiddelde leerling in de exacte
vakken op het Voorbereidend Wetenschappelijk Onderwijs, dient meer
aandacht te worden besteed aan het tonen van de onderlinge verbanden
tussen en de historische ontwikkeling van de verschillende vakgebieden. Op
deze wijze wordt voor de leerling het accent verplaatst van het moeten
opstellen van verschillende beschrijvende modellen tussen vragen en
antwoorden naar het kunnen opstellen van een verklarend model ten aanzien
van de gepresenteerde theorie, met mogelijkheid tot extrapolatie naar andere,
niet in het kader van het onderwijs vallende, gebieden.

Volgens de stelling van Godel is artikel 3.7 van het promotiereglement, dat
de promotoren na dienen te gaan of de stellingen van de promovendus
verdedigbaar zijn, niet in alle gevallen uitvoerbaar.

E. Nagel en J.R. Newman, "Gddel’s proof”, 1958

Programmeren is rangschikken van iets en niets, van niets tot iets.
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SAMENVATTING

Dit proefschrift beschrijft het ontwerp van cen baanpredictor voor schepen. Het
voornaamste doel van deze baanpredictor is om de navigator tijdens het
manoeuvreren te assisteren in zijn anticiperende vermogens, en zodoende een
veiliger navigatic te bereiken.

Het werk is gestart als een vervolg op eerder onderzoek naar baanpredictie op het
Laboratorium voor Regeltechniek van de Technische Universiteit Delft. Tevens
werd op het Laboratorium voor Regeltechniek een aanzienlijke vooruitgang geboekt
op het toepassen van adapterend regelen op het automatisch sturen van schepen.
De behaalde resultaten zijn voornamelijk vastgelegd in het werk van Van
Amerongen (1982) en van Van der Klugt (1987).

Vanwege bepaalde ontwikkelingen in de richting van integratie van manoeuvreer-
en navigatiesystemen in combinatic met een nauwkeurig plaatsbepalingssysteem,

is voor de ontwikkeling van het baanpredictiesysteem tevens gekozen voor een
geintegreerde opzet met betrekking tot navigaticinformatie en de stuurautomaat.

Het ontwerp van de feitelijke baanpredictor is gebaseerd op cen relatief eenvoudig
wiskundig model, dat wordt aangepast aan de variérende omstandigheden, in plaats
van een meer complex, niet-lineair model, dat moeilijk is aan te passen.

Een geschikte methode voor het "on-line" identificeren en adapteren van de
parameters van het predictiemodel en de verstoringen is bepaald door een
structurele vergelijking van verschillende, bekende identificatiemethoden. Dit heeft
geresulteerd in het toepassen van "extended-Kalman filtering" op het identificatie-
en adaptatieprobleem. Hetzelfde concept blijkt ook toepasbaar te zijn op de
koersregelaar, vergelijkbaar met de analogie tussen model referentie adapterend
identificeren enerzijds en regelen anderzijds.

Voor wat betreft de presentatie van de predictieinformatie aan de navigator is
gekozen voor een methode van directe superpositie van de voorspelde baan op een
geintegreerd manoeuvreer- en navigatiebeeldscherm, zoals ontwikkeld door het TNO
Instituut voor Zintuigfysiologie. De invoer van gebruikerscommando’s voor de
predictor kon worden gerealiscerd door een kleine uitbreiding van de
stuurautomaatconsole. Het blijkt dat, volgens deze geintegreerde aanpak, de
baanpredictor aan de scheepsbrug kan worden toegevoegd als een logische functie
tussen navigatie (route planning) en manoeuvreren (het feitelijke koersveranderen).
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Naast experimenten in een laboratoriumomgeving, voor het testen van de
algoritmen voor predictie, identificatic en regeling, is met de experimentele
baanpredictieopstelling een experiment uitgevoerd op de manoeuvreersimulator van
het IZF-TNO in Soesterberg.

In dit experiment is de baanpredictor vergeleken met meer conventionele methoden
van navigeren zoals "parallel indexen” en het gebruik van een grondsnelheidsvector.
De met de baanpredictor behaalde nauwkeurigheid neemt in alle gevallen toe,
maar de behaalde verbetering van de navigatieprestatie manifesteert zich vooral
voor grote koersveranderingen. In dat geval wordt een reductie van de gemiddelde
baanfout met 70% procent behaald, vergeleken met de conventionele condities.
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SUMMARY

In this thesis the design of a track predictor for ships is reported. The principle
purpose of this track predictor is to assist the navigator in his anticipating
capabilities during manoeuvring, thus achieving safer navigation.

The work was originally started as a follow-up of previous research on this subject
of track prediction at the Control Laboratory of Delft University of Technology.
Also some considerable advances were made at the Control Laboratory in the
field of applying adaptive control to the automatic steering of ships. The results
are mainly reported in the work of Van Amerongen (1982) and of Van der Klugt
(1987).

Because of certain developments towards the integration of manoeuvring and
navigation systems in combination with an accurate positioning system, the
development of the track-prediction system is based on an integrated approach
with respect to the navigation information and the autopilot.

The design of the actual track predictor is based on a relatively simple
mathematical model, which is adapted to the changing conditions, instead of using
a morce complex non-lincar model, which is difficult to adapt.

A suitable method for on-line identification and adaptation of the prediction-model
parameters and disturbances has been determined by a structural comparison of
different, well-known, identification schemes. This has resulted in the application
of Extended-Kalman filtering to the identification and adaptation problem. The
same concept is shown also to be applicable to the course-changing controller,
comparable to the analogy between Model-reference adaptive identification and
control.

Regarding the presentation of the prediction information to the navigator, a
straightforward method has been chosen of superimposing the predicted track on
an integrated manoeuvring and navigation display, as designed by the TNO
Institute for Perception. The input of user commands for the predictor could be
obtained by a minor extension of the autopilot console. It appears that, for this
integrated approach, the track predictor may be added to the ship’s bridge as a
logical function between navigation (track planning) and manoeuvring (actual course
changing).
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Besides experiments in a laboratory environment to test the algorithms for
prediction, identification and control, a manoeuvring-simulator experiment was
performed with the experimental track-prediction set-up at the TNO Institute for
Perception in Soesterberg.

In this experiment the track predictor was tested against more conventional
methods of navigation such as parallel indexing and the presentation of a ground-
speed vector.

Although the overall accuracy is improved by using the track predictor, this
improvement of the navigational performance especially manifests itself for large
course changes. In these cases a reduction of the average track error with 70 %
was obtained, compared to conventional conditions.
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1 INTRODUCTION

1.1 Track prediction

During coastal navigation, the safety of the ship, the avoidance of groundings and
collisions, is directly related to the accuracy of the own-ship’s heading and position
control (Kristiansen, 1980). To realize accurate control of the ship’s motions
relative to the ship’s surroundings, the navigator should have anticipating
capabilities with respect to the ship’s actual track in relation to the planned track.
Using this anticipation the future error between the planned (desired) track and
the expected position may be minimized. The human behaviour to realize this
minimization may be characterized by two elements (Schuffel, 1986):

- Open-loop element: the choice of manoeuvring actions on the basis of initial
conditions and knowledge of the ship’s manoeuvring properties (cognitive
anticipation).

- Closed-loop element: corrections of manoeuvring actions on the basis of
references. These references are used to judge the correctness of the actual
track sailed with respect to the planned track (perceptive anticipation).

In his study on human control of ships, Schuffel showed that the open-loop
element is not accurate, whereas the use of references (closed-loop element) can
lead to accurate manoeuvring.

To improve the navigator’s anticipating capabilities and thus the resulting accuracy
of the ship’s control, a track-prediction system can be useful. Previous research
on this topic ranges from extrapolation methods (Bernotat, 1971) to prediction on
the basis of a mathematical model of the process to be controlled (Kelley, 1968).
A more practical study to demonstrate the possible advantages of track prediction
for the accurate control of the ship’s motions has been carried out by Van
Berlekom (1977).

At the Control Laboratory of Delft University of Technology previous research has
been carried out on possible structures of the mathematical prediction model to
achieve an acceptable prediction of the ship’s track (Nanninga, 1974; Reissenweber,
1975; Boonekamp, 1978; Van den Arend, 1979). Lack of display and computing
power, however, prohibited the realization of an experimental set-up which could
be tested in a realistic environment.
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Since then there have been some important developments regarding the information
presentation to the navigator:

- development of synthetic displays for the presentation of radar information,

- start of the development of an electronic chart for the presentation of navigation
information,

- design of a bridge set-up for the 1990s with integration of manoeuvring and
navigation information. This set-up should enable one-man-bridge ship steering
(Van Breda et al.,, 1985).

Further, the availability of an accurate and world-wide positioning system such as
the Global Positioning System (G.P.S.) opens further possibilities for automatic
navigation such as a track-keeping system (Van Amerongen and Van Nauta Lemke,
1986).

1.2 The track-prediction project

In December 1984 new developments enabled a continuation of the former work
on track prediction. The project "Track prediction of ships for safer navigation"
was started at the Control Laboratory of the Delft University of Technology. This
project was supported (in part) by the Netherlands Technology Foundation (STW).
The aim of the project was to develop a track predictor as a manoeuvring aid for
the navigator, in order to achieve safer navigation.

At the same time, considerable advances were made at the Control Laboratory in
the field of applying adaptive control to the automatic steering of ships, which is
mainly reported in the work of Van Amerongen (1982) and Van der Klugt (1987).
Therefore, at the start of the track-prediction project, it was decided to adopt the
following approach:

- apply the concepts of adaptive filtering and control to the track-prediction
problem,

- realize an experimental set-up to test the contribution of the track predictor to
the navigational performance.

Because of the developments with respect to integration of navigation and
manoeuvring systems, the integration of the track predictor with the autopilot was
taken as a starting point. In this way an integrated system could be obtained for
accurate track keeping and changing from one straight track to another. Further,
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an acceptable level of automation could be obtained with respect to the navigation
tasks to be performed by the navigator.

The actual design of the track predictor was based on two elements which
characterize the human steering behaviour:

prediction of the ship’s track by a relatively simple mathematical model of the
ship’s manoeuvring behaviour (open-loop element), which is adapted on the basis
of observations during manoeuvring (closed-loop element).

In the first phase of the project the research was devoted mainly to the
development of the experimental set-up. This development consists of:

- research on simple mathematical prediction models which are sufficiently
accurate to reflect the ship’s dynamics, but may be identified and adapted to
varying surroundings on the basis of measurements,

- research on the application and implementation of adaptive schemes into the
predictor and autopilot,

- testing of the algorithms in a laboratory environment.

A suitable method for on-line identification of the prediction-model parameters and
the disturbances on the basis of noise-corrupted measurements has been
determined by a structural comparison of different, well-known, identification
schemes. This has resulted in the application of Extended-Kalman filtering to the
identification and adaptation problem. The same concept was shown also to be
applicable to the course-changing controller, analogous to Model Reference
Adaptive Control.

During the final phase of the project there was closer cooperation with the TNO
Institute for Perception in Soesterberg. Because the usefulness of the predictor can
only be judged when it is really used by the human operator in a realistic
environment, the purpose of the cooperation with TNO was:

- To prepare and carry out a simulator experiment on the manoeuvring simulator
of the TNO institute in order to demonstrate the effect of the track predictor
on the navigational performance in tracking tasks.

- To determine how the interaction between the predictor and the navigator could
take place in an efficient way. This resulted in an integration of the prediction
information with a General Navigation Display as was designed by the TNO
institute for the "Bridge 90" experiment (Boer and Schuffel, 1985) and a
proposal for a user’s console for the interaction with the predictor (Passenier,
1987).
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The results of this simulator experiment are regarded as being a good indication
as to whether the developed track predictor could be useful as a manoeuvring aid
on board a real ship. The experiment indicates that the proposed predictor was
quite successful.

1.3 Preview

This thesis describes the design of an adaptive track predictor, which is mainly
based on the theory of Kalman filtering. The thesis is organized as follows:

Chapter two deals with the mathematical models of the ship’s steering behaviour
and their relation to the ship’s track. Further, a mathematical description of the
disturbances acting upon the ship will be given.

Chapter three describes the development of a relatively simple, basic prediction
model for the prediction of the ship’s track, which is sufficiently accurate. For this
purpose a generalized description of the ship’s track is presented as a tool for
comparison between different prediction models.

Chapter four discusses the theoretical background of different schemes for on-line
state and parameter estimation. This results in a unified description of both
equation-error and output-error based identification schemes on the basis of the
theory of Kalman filtering. Further, the unification is extended from identification
to the field of Model-Reference Adaptive Control (MRAC).

In Chapter five the theory, presented in Chapter four, is applied to the actual
track-prediction system. This yields different algorithms for filtering, identification,
prediction and control.

Chapter six deals with the actual realization of the algorithms on an experimental
set-up. Further, the results obtained with this experimental set-up are presented.
Besides several experiments in a laboratory environment, in order to test the
prediction and adaptation algorithms, a simulator experiment was performed on the
manocuvring simulator of the TNO Institute of Perception in Soesterberg. This
controlled experiment was set up to investigate the usefulness of the track
predictor as a manoeuvring aid.

Finally in Chapter seven conclusions are drawn and suggestions are given for
further research.
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2 MATHEMATICAL MODELLING

2.1 Introduction

Mathematical models which describe the motions of a manoeuvring ship cover a
wide range of applications which can be divided into the following classes:

- Ship design:
Improvement of the ship’s manoeuvring properties in the design phase on the
basis of mathematical models which relate the parameters of the ship design
(for instance rudder surface) to the manoeuvring behaviour of the ship (for
instance turning-circle diameter).

- Simulation:
Description and improvement of the human steering behaviour, especially for
large ships, by means of a manoeuvring simulator. The mathematical model
implemented in this simulator should relate the steering actions to the resulting
ship’s motions as realistically as possible on a "real time basis". Detailed
simulation studies of this type also provide the possibility of improving the
dimensioning of the ship’s restricted manoeuvring area in, for instance, coastal
navigation.

- Autopilot design:
Design of an autopilot for the accurate control of the ship’s motions (course-
keeping and track-keeping). Models for this purpose are usually identified for
a specific ship on the basis of full-scale trials after which the suitable
controller structure and parameters can be determined on the basis of this
"control" model.

From this brief description of the different types of applications for the
mathematical models it already has become clear that the structure of the
mathematical model itself (the type of the model) depends largely on the
application for which the model is intended:

- The mathematical models used to improve the ship’s design are derived from
the physical laws which govern the ship’s motions. For this purpose the
hydrodynamic forces which are exerted on the ship are divided into several
components the coefficients of which may be determined from scale model tests
in, for instance, a towing tank. By changing the design parameters of the ship,
the relation between these parameters and the manoeuvring behaviour of the
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ship can be determined. Because the mathematical models of this type are
characterized by the hydrodynamic approach, these models will from now on be
referred to as hydrodynamic models (see, for instance, Eda and Crane, 1965).

- For the realistic simulation of manoeuvres a mathematical model of the
hydrodynamic type could be used, but this is no longer a necessity. In principle,
a model which describes the empirical relations between the relevant variables
of a manoeuvring ship would be sufficient. A proper structure for this empirical
model may be obtained by the simplification of the complex hydrodynamic
equations. Because the empirical models do not require the detailed knowledge
of all the ship’s hydrodynamic coefficients, model tuning can be achieved on the
basis of the measured ship’s response to properly chosen test signals at the
input of the system during full-scale trials (Van Leeuwen, 1970).

- Transforming the linear part of an empirical model to the Laplace domain
yields a set of (coupled) transfer functions. To account for the static non-linear
relationship between the different variables, usually a non-linear part of the
algebraic type is added. This yields a description of the ship’s dynamics in a
suitable form for the design of an autopilot, such as a course-keeping con-
troller (for a survey on this type of model, see Van Amerongen, 1982).

Reviewing these different types of mathematical models it can be concluded that
for a track-prediction application the analysis may be restricted to an empirical
model. Such a model is able to give a sufficient description of the ship’s
manoecuvring behaviour without the need for an extensive identification procedure.
Because the empirical model gives a relation between different signals, the
variables of interest for a track-prediction system first have to be introduced (the
term signals is used to emphasize the nature of the empirical model which relates
different variables to each other on the basis of measurements).

The principle input signal for the manoeuvring ship is the rudder angle which has
a direct dynamic relation to the ship’s heading angle. This heading signal is,
together with the ship’s speed, related to the ship’s path by kinematic relations.
Other factors which cannot be instantaneously controlled but have an effect on the
ship’s manoeuvring behaviour are considered to be part of the ship’s environment
and are therefore classified as disturbances (Figure 2.1). These disturbances can
be subdivided into two categories (Van Amerongen, 1982):

- disturbances which can be structurally incorporated into the model as additional
input signals (additive disturbances).

- disturbances which influence the parameters of the model and are incorporated
as multiplicative signals (rmultiplicative disturbances).
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Fig. 2.1 Definition of the ship’s input and disturbances

Note that in Figure 2.1 also the thrust is classified under the disturbances, because
for prediction purposes, the thrust during a manoeuvre is considered to be
constant and therefore any thrust deviation is regarded as a disturbance influencing
the speed of the ship.

2.2 Mathematical models based on physical laws

In this section the ship’s equations of motion are derived directly from Newton'’s
law, after defining those ship’s motions which are of interest to this study.

2.2.1 The ship’s motions

To define the different ship’s motions a coordinate system is introduced according
to Figure 2.2. The origin of this ship-fixed axis system coincides with the ship’s
center of gravity G, from which the axes x, y and z are chosen along the ship’s
axes of symmetry.

Although in Figure 2.2 there are in total six degrees of freedom for the ship’s
motions (displacement along the xy and z axis and rotations around these axes),
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Fig. 2.2 Choice of the coordinate system

the only motions considered relevant to this study are those in the horizontal xy
plane, thus three motions of interest:

- Displacement along the x-axis (surge motion)
- Displacement along the y-axis (sway motion)
- Rotation around the z-axis (yaw motion)

2.2.2 The equations of motion
In order to apply Newton’s law for the mathematical description of the ship’s

motions (surge, sway and yaw) a space-fixed coordinate system is defined according
to Figure 2.3, with the variables of interest defined according to Table 2.1.



2.2.2 The equations of motion

Fig. 2.3 The space-fixed coordinate system

Table 2.1 Definition of variables

X0,Y0

X,y

space-fixed coordinate system
ship-fixed coordinate system
course angle or heading

rate of turn or course-angular velocity
rudder angle

drift angle

ship’s center of gravity
instantaneous speed vector

speed in forward direction

drift or sway speed

forces in the x4- or y,- direction
forces in the x- or y- direction
moment with respect to the z-axis
mass of the ship

moment of inertia with respect to the z-axis
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Direct application of Newton’s law on the moving object (ship) in this space-fixed
coordinate system yields:

m = X (2.1)

m =Y (2.2)

1 4y ooy (2.3)

To relate these general equations of motion to ship-fixed quantities such as
propeller thrust, hull resistance and so on, it is convenient to transform (2.1)-(2.3)
from the space-fixed coordinate system to the ship-fixed coordinate system, after
which the ship’s path relative to the space-fixed coordinate system can be
determined by kinematic relations described in Section 2.4.

This transformation yields:

m (1:1 - vr) = X (2.4)

m (\.r + ur) =Y (2.5)
I # - N (2.6)

2z

where X and Y are the total forces on the ship’s hull in the x- and the y-
directions which cause the moment N around the z-axis.

The terms -mvr and +mur which appear in (2.4) and (2.5) describe the added
resistance of the ship due to the turning (centripetal components). The effect of
these components on the ship’s path are treated in Section 2.4 where the
kinematic relations are discussed. Although it is difficult to determine the exact
relationship between X,Y and N and all the variables involved, a reasonable
approximation may be obtained by a Taylor-series expansion.

For this purpose X,Y and Z are written as:
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X = X(u,u,v,v,r,r,é’,é',uz,vz,rz, ..... ) (2.7)
Y = Y(u,u,v,v,r,r,é’,é’,u?‘,vz,rz, ..... ) (2.8)
N = N(u,u,v,v,r,r,é’,é’,uz,v?‘,rz, ..... ) (2.9)

which for small variations Au,Av,Ar,... yields:

AX = X Bu + X)Mu + X Av + X Ov + X_Or + X'0r +
(2.10)
* Xé,Aé’ + X&,Aé’ + higher-order terms
OY = ¥ Bu + Y 0u + Y Av + YAV + Y _Or + YoAr +
(2.11)
+ Yé,Aé’ + Yé,Aé’ + higher-order terms
AN = NuAu + NL'IAu + NVAV + N\;AV + NrAr + N;Ar +
(2.12)
+ Né,Aé’ + Né,Aé’ + higher-order terms
where X, X, ,.... are the hydrodynamic derivatives of X with respect to variables
U, Vo
_ & _ &
Xu ® Su ¥ Xv = 3% i nEEESEEES (2.13)

Denoting the small variations Au,Av,... as u,v,... and substituting this Taylor-series
expansion for X, Y and N in (2.4)-(2.6) finally yields:
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m (Q - Vvr)

=X u+t X&u t X vt X;v + er + Xgr +
(2.14)
* Xé,é’ + Xé,é’ + higher-order terms
m (v + ur) =Y u + Yﬁu + va + Y;V + Yrr + Y'r +
(2.19)
+ Yé,é’ + Yé,é’ + higher-order terms
Izzr = Nuu + Néu + va + NQV + Nrr + Nér +
(2.16)
+ Né,é’ + Né,é’ + higher-order terms

which are the general hydrodynamic equations for the surge, sway and yaw motions
of the ship. To determine the hydrodynamic coefficients X,, Y,, N, and so on,
it is convenient to split the forces and the moment exerted on the ship into
separate contributions of the hull (resistance), the propeller (thrust) and rudder
(resistance and moment):

i = Xhull * Xrudder * Xprop (2.17)
Y Yhuil ¥ Yrudder (2.18)
N (2.19)

Npuil * Nrudder

By using superposition the coefficients of (2.17)-(2.19) can be determined
independently.

The model (2.14)-(2.16) is a general approximation for the ship motions from
which models for design improvement (Eda and Crane, 1965) as well as models
for detailed simulation of manocuvring (Abkowitz, 1964) can be derived. For
control purposes the higher-order terms are in most cases disregarded, thus
obtaining a linear model which in principle is only valid for small variations of the
variables involved.

Neglecting these higher-order terms and assuming the forward speed to be
constant, leads to the simple linear model of (2.20)-(221) which has been
suggested by Davidson and Schiff (1946):
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m (v + ur) Y. &8 + Yv+Yv+Yr+VYr (2.20)
v v r r

é!

Izz r = Né,

&’ + Nv + NNv + Nr + N'r (2.21)
v v r r

Although it is difficult to determine the parameters of this model on the basis of

full-scale trials, the model will be demonstrated to be a good starting point for the

derivation of the empirical models in the following section.

2.3 Empirical models

As stated in the introduction, models which arc based on the equations of motion
arc not attractive for control and prediction applications because of the complexity
and the number of unknown parameters involved. Taking the underlying structure
of these models as a starting point, however, rather simple models can be derived
which are of an cmpirical nature, and may be described by transfer functions.

2.3.1 The transfer from rudder to rate of turn

Considering the model as suggested by Davidson and Schiff and eliminating the
sway velocity v yields a very simple second-order model for the transfer from
rudder to rate of turn, which again may be approximated by a first-order model
according to (2.22) (Nomoto, 1957):

e

Ir + r = Ké (2.22)

Note that in order to obtain a positive gain in the transfer functions from rudder
angle (o rate of turn, in (2.22) and in the following the rudder angle is defined
as:

6 = =& (2+23)
The corresponding transfer function of (2.22) is given by:

r(s) _ K
&(s) sT + 1

(2.24)

Because this model has been derived from the Davidson and Schiff model the
first-order Nomoto model has, of course, the same limitations:
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- Valid only for small rudder angles (The Davidson and Schiff equations became
linear by neglecting the higher-order terms in the Taylor-series expansion).

- Valid only for a specific and constant forward speed (under this assumption the
equation for the description of the forward speed vanishes).

Therefore, although for control applications such as course-keeping this model is
still very attractive (Van Amerongen, 1982), for track-prediction purposes the
limitations mentioned here have to be considered more carefully.

To examine the non-linearity of the transfer from rudder to rate of turn for large
rudder angles, the spiral characteristic may be used, which describes the static
rclation between rudder angle and rate of turn for all rudder angles. From this
spiral characteristic the course stability or course unstability of the ship can be seen.
The phenomenon of course stability can be best illustrated by Figure 2.4, where
a spiral characteristic for both types of ship is given.

1 1

Course stable Course unstable

Fig. 2.4 Spiral characteristic for a course stable and unstable ship

In order to give a mathematical description of the phenomenon of course
unstability and to get a better approximation for the non-linear relation between
rudder and rate of turn for course-stable ships some authors suggest the addition
of a non-linear component to the second-order Nomoto (Bech, 1969) or first-order
Nomoto model (Norrbin, 1963) according to (2.25).

Tr + H(r) = Ké (2.25)

where H(r) is a non-linear function of r.
From (2.25) it follows that the stationary relation (r =0) between rate of turn and
rudder angle, which is called the reversed spiral characteristic, is given by:
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H(rss) = Ké (2.26)

with rg the stationary rate of turn.

This reversed spiral characteristic may, also for coursc-unstable ships, rather easily
be determined on the basis of the reversed spiral test (Bech, 1968).

A suitable function for H(r) which cnables, among others, the description of
course unstability is in a general form:

H(r) = oc3r + oczr + oclr + oco (2.27)
In (2.27) the coefficient oy can be used to describe the asymmetry of the ship
(steady turning at zero degrees rudder) and a negative value of «; enables a good
approximation for the reversed spiral characteristic of a course-unstable ship. To
describe the reversed spiral characteristic of symmetrical ships a sufficient form of
H(r) is given by (2.28), which together with (2.25) is Norrbin’s model.

_ 3
Hs(r) = oc3r + oclr (2.28)

The corresponding block-diagram is presented in Figure 2.5

Fig. 2.5 Norrbin'’s model

Having eliminated the inability of the Nomoto model to describe the relation
between rudder angle and rate of turn for large rudder angles, the fact remains
that the resulting models of Bech and Norrbin are still only valid for a specific,
constant value of the ship’s thrust. Therefore, in order to apply (2.25) for different
thrusts and to describe some characteristic phenomena which are caused by the
loss of forward speed during a manocuvre, in the following sections attention will
be focussed on the empirical description of this forward speed for a manoeuvring



16 An adaptive track predictor for ships

ship and the resulting effect on the ship’s yaw motion.

2.3.2 Description of the ship’s forward speed

In Section 2.2.2 an equation for the ship’s forward speed was derived, based on
the Newtonian equations of motion:

m (1.1 -vr) = X = (2.29)

Xprop * Xhull
where the propeller thrust X, is related to the number of propeller revolutions
by the propeller thrust function and the hull resistance Xy, is, among others, a
function of the forward speed u.

For a non-manoeuvring ship (zero rate of turn) this implies that the ship is
accelerated to a cruising speed Uy at which the hull resistance equals the
propeller thrust:

mu = 0 = Xprop+ Xhull (2.30)

u = U, (2.31)

For a manoeuvring ship (2.29) can be rewritten to (2.32) with +mvr the added
resistance due to the ship’s turning:

mu = X + mvr (2.32)
Carrying out a first-order Taylor expansion around u = Uy yields:
mu = X, 6 _ X Au + mvr
(=T “ (2.33)
= 0 - X Au + mvr
u
where
. X -
Xu = 0 H Au = UO - u (2.34)
(u=U,)

Noting that dUydt = 0, Eq. (2.33) may be written as an equation for Au:

mAu = XuAu -  mvr (2.35)

Approximating the sway velocity by v = -yr (Section 2.3.3) and noting that X is
negative finally yields:
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M Ay o= my 2

Tl Au Du  + s (2.36)
u u

which by definition can be written as:

TuAu + Au = Kurz (2.37)
This is a simple first-order relation with gain K, and time constant T, between
the loss of forward speed Au during a manoeuvre and the rate of turn r.
Following the same procedure as was carried out in Section 2.3.1 for the yaw
motion, a non-linecar term may be added to (2.37) to compensate for the
neglecting of the higher-order terms in the Taylor-series cxpansion, resulting in:

’ _ 2
TuAu + Hu(Au) = Kur (2.38)

where
H (bw) = Mu + Byou’ (2.39)

The block-diagram for (2.38) is presented in Figure 2.6

Fig. 2.6 Transfer from rate of twurn to forward-speed loss

2.3.3 Generalizing the empirical relations

Although the limitation of the Davidson-and-Schiff model of a constant forward
speed during a manoeuvre was eliminated in the previous section, the parameters
of the transfer functions derived in Sections 2.3.1 and 232 for the rate of turn
and the loss of forward speed are still only valid for a specific value of the ship’s
cruising spced Ug. Furthermore the characteristic overshoot in the ship’s rate of
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turn for a turning circle manoeuvre (Figure 2.7) cannot be reproduced by the
linear first-order yaw model presented in Section 2.3.1.

64
P
[®/sec]
0
5
u
[m/sec]
0 + + + + + + + + + —+—
0 . 100

tlsec]
Fig. 2.7 Rate of turn and forward speed for a turning-circle manoeuvre
Van Leeuwen (1970) showed that these limitations could be eliminated by non-

dimensionalizing the derived equations on the basis of the ship’s forward speed u
and length L. For this purpose he introduced the dimensionless variables:

. %r (2.40)

*

o = Au (2.41)
U
0

and
* u
ds” = g dt (2.42)

where L is the length of the ship and u = Ug-Ou is the instantaneous forward
speed. By using the distance sailed by the ship instead of the time as the
independent variable, the following rather simple relations could be derived for the
dimensionless variables:
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* * *

CE 4 e = K (2.43)
ds

* 2

o d“* + Hu(u*) = K: g (2.44)

ds
with

* * *3 *

H(r ) = oc3 r + r (2.45)
* *

H(u) = u (2.46)

Further an algebraic relation for the normalized sway velocity was derived:

* *
v o+ Hv(r )y =0 (2.47)
with
B e T
v =S (2.48)
* * *3 * *
H(r) = vy, ¢ + vy, r (2.49)
v 3 1 :

Substituting (2.42) in (2.43) and (2.44) yields the time-dependent relations from
which the rate of turn, the forward speed and the sway velocity can be calculated
by (2.53):

*
* L dr %
T G CK T H(I‘ ) = K (250)
* 1, d * * R
u B % 4
Ts & dn r Hu(u ) = Kur (2:51)
* *
v + Hv(r )y = 0 (Z2:52)

and
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*
r : u = Uo(l - u ) v v u (2.53)

<
I

By relating the rate of turn to u and r' according to (2.53) it follows that even
for a first-order relation between r and & an overshoot may appear in the rate
of turn for a constant rudder angle, which according to (2.53) is caused by the
loss of forward speed.

To obtain a model which obtained a better fit with experimental data (Van
Amerongen; De Keizer, 1977), Eq. (2.50) was modified to (2.54) to introduce
dynamics between variations in forward speed and rate of turn. This finally leads
to the multivariable model of De Keizer (1977) which together with the drift
equation of Van Leeuwen (2.52) gives a complete empirical description of the
relevant ship motions during manoeuvring:

De Keizer:

* 1L dr u * _ * u

T % dt + L H(r ) = K L é (2.54)

* L d * * 2

u =

’Eu ol + Hu(u ) KL1 r (2.55)
Van Leeuwen:

v + H(r) = 0 2.56

a V(r y o= (2.56)

with a minimal choice for the feedback polynomials:

* * * * * * %
H(r ) = r 3 Hu(u ) = u - Hv(r Yy = v r (2.57)

For this minimal choice of the polynomials the equations become:

dr _
T HE + r = K 6 (2.58)
du” x 2
u P
’tu It + u = Kur (2.59)
v = -Yr (2.60)

with the gain-scheduling formulas given by:
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- L - u
T =T 3 : K K L (2.61)
- x5 (k2
Ty = By 5 ; Ku Ku ( = ) (2.62)
*
Yy =vyL (2.63)

A block-diagram for the combined De Keizer and Van Leeuwen model is
presented in Figure 2.8.

To summarize: the attractivity of using this multivariable model as a starting point
for more specific research on the topic of track prediction lies in the following:

- applicability for different classes of ships,

- validity for different rudder angles and cruising speeds,

- limited number of parameters, especially in relation to the ability to describe
quite complex phenomena such as loss of forward speed and overshoot in the
rate of turn during a manoecuvre,

- parameters may be identified on the basis of full-scale trials.

2.3.4 The steering machine

To complete the mathematical description of the ship’s dynamics, the dynamics of
the steering machine have to be considered. This steering machine is a
servomechanism which makes the actual rudder angle & equal to the rudder angle
$, , ordered by the helmsman or the autopilot. Without a further description of
this, mainly hydraulic, device - for a more thorough description, Van Amerongen,
1982 may be consulted - the main parameters by which the steering machine can
be characterized are:

a rudder limiter which limits the ordered rudder angle &, to a maximum value
of é’max ’

- a speed limiter which reflects the limited speed with which the actual rudder
angle can be changed (typical values range from 2.5 to 7 degrees per second).

This leads to the block-diagram of Figure 2.9 which has proved to be sufficiently
accurate for simulation and control purposes (Van Amerongen, 1982; Van der
Klugt, 1987).
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Hr®) ‘

Fig. 2.8 The multivariable model of De Keizer and Van Leeuwen

rudder speed
limiter limiter

max

Fig. 2.9 Block-diagram of the steering machine
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2.4 The kinematic relations

In the previous sections the equations of motion for the ship were derived after
the transformation of Newton’s law from the space-fixed coordinate system to the
ship-fixed coordinate system. The effect of this transformation on the actual
equations of motion was the introduction of two centripetal forces +mvr and
-mur in the ship’s x- and y-direction, due to the ship’s turning.

To obtain the equations of the ship’s path relative to the space-fixed coordinate
system the inverse transformation has to be applied with respect to the ship-fixed
variables, which yields the kinematic relations:

X

5 u cosy - v siny (2.64)

Y u siny + v cosy (2.65)
with xgy, the ship’s position in the space-fixed coordinate system xg,yq.

To describe the effect of the centripetal forces on the turning ship, Figure 2.10
was constructed for a steadily turning ship (r =0).

From Figure 2.10 it follows that the resulting ship’s circular path can be
constructed by the addition of two separate circular motions due to the ship’s
forward speed u and drift speed v, which are perpendicular with respect to each
other. The angle between the ship’s speed U along the path and the ship’s
forward speed u is defined as the drift angle B.

The kinematic relations for this combined circular motion are given by:

xS = U cosy’ (2.66)

Y U siny’ (2.67)

with ¢ =y + B

The diameter D of the resulting circular path may be determined by integrating
the y-displacement from t=0 to t=Ty/2 (see Figure 2.10), with T, the period of
the circular motion, and substituting y = yt = rt

m

T
D = Ay = J U sin(rt) dt = - (2.68)
0

and the radius R becomes:
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\ 4

X0

Fig. 2.10 Effect of centripetal forces

Ia i

(2.69)

Normalizing this relation with respect to the ship’s length yields, together with

(2.40), a geometrical interpretation of the normalized rate of turn r for the
steadily turning ship:

il
{ors

1
i = r—* (2.70)



2.5.3 Wind 25

2.5 Disturbances
2.5.1 Introduction

In Section 2.1 the disturbances were defined as the factors which influence the
manoeuvring behaviour of the ship but are of an uncontrollable nature and are
therefore considered to be part of the ship’s surroundings. The additive
disturbances discussed in this section can be classified according to their principal
effect on the mathematical description of the ship’s motions:

- Additional factor in the kinematic relationships:
currcnt

- Additional factor in the equations of motion:
wind, waves

2.5.2 Current

Although current of a non-uniform nature may influence the ship’s rate of turn,
the most characteristic influence of current is considered to be a change of the
ship’s speed vector with respect to the ground which causes the direction of this
speed vector to differ from the ship’s heading. Therefore the influence of this
uniform current is modelled as an additional term to the kinematic relationships
discussed in Section 2.4 according to Egs. (2.71) and (2.72):

.

X
S

u cosy - v siny + UccosxyC (2.71)

Te u siny + v cosy + chin\yc (2.72)

The current speed U, and direction y, are defined with respect to the space-fixed
coordinate system according to Figure 2.11. In this figure also the wind speed V,,
and direction v, are defined.

2.53 Wind
Wind exerts an additional force on the ship which can be described by:

_ L 2
F, = 5 Py C,(y) Vi S (2.73)

where
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v

Yo

Fig. 2.11 Definition of current and wind speed and direction

P is the air density
Co(Yr) is a geometrical factor depending on the relative wind angle vy,
Var is the relative wind speed

S is the relevant area of the ship’s superstructure

The relative wind speed V,,, and wind angle y, (as would be measured on board
the ship) may be determined by transforming the real wind speed and direction,
as defined in Figure 2.11, to the ship-fixed coordinate system. In vector notation
this yields:

\') =V - U (2.74)
—wWIr -—w -

with V.. , V,, the relative and true wind speed vectors and U the ship’s speed
vector.

The resulting wind force given by (2.73) can be split into a force in the x-
direction, the y-direction and an additional moment around the z-axis. The
equations of motion for the ship-fixed coordinate system then become:



2.5.3 Wind 27

m (u - vr) = X Xwind (2.75)
m (v +ur) =Y Ywind (2.76)
Izzr = N + Nwind (2.77)

These separate components of the wind forces and moment may be written in a
more or less identical form to (2.73):

. & 2
Roing = F P BelYe) Ve Sax (2. 78]
v = Lo ey vios (2.79)
wind 2 P1 %y Tr wro wy ’
N = Lo g ¢y & L (2.80)
wind 2 P1 “n'7r wr "Wy )

where Sy, and S, are determined by the projection of the ship’s superstructure
S at planes perpendicular to the x-axis and y-axis and L is the ship’s length along
the water line. The geometrical factors C, , C, and C can be approximated as
a function of the relative wind angle y, by the following general formula
(Schelling, 1977):

(2]
Cw(yr) = k2=20 akcos(kyr) + bksin(kyr) (2.81)

with k an integer and a, and b, specific for each ship.
For simulation purposes a simple approximation may be obtained by choosing

(based on the experimental data of Wagner, 1967):

Cx(yr) = axcos Yr (2.82)
Cy(yr) = ays:.n Yr (2.83)
Cn(yr) = ansin 2yr (2.84)

These approximations of the geometrical factors as a function of vy, are sketched
in Figure 2.12.

The additional wind moment around the z-axis and force in the x-direction may
be incorporated into the Van Leeuwen model of Eqgs. (2.43) and (2.44) according
to (Schelling, 1977):
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Fig. 2.12 The geometrical factors as a function of v,

* * * * *
T 4 B = KTs o+ ot N (2.85)
ds
* du * S— * _*
T, —% + H(r ) = K r + T F (2.86)
u ds u u u w

In these equations the normalized wind moment and force are given by:

2

N = N _( )2 sin Zyr Vwr (2.87)

w

’

* & *
o =

F - FW 2
u

) cos Yr szvr (2.88)

3

with N’ and F,’ specific and approximately constant for each ship.

The effect of turbulence may be reflected by adding a stochastic component with
zero mean to V.

2.5.4 Waves

Waves, which have quite different origins and characteristics (Groen and
Dorrestein, 1976), cause an additional yaw motion of a high frequency and a
negligible displacement. '

Because of the stochastic nature of the wave influence, an analytical description
has to be restricted to the frequency domain. For this purpose a description of
the theoretical wave spectrum as a function of the wind speed or the significant
wave height and the average period has been suggested by several authors (Pierson
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and Moskovitz, 1964; Gerritsma, 1979). The general formula proposed by Gerritsma
to relate the wave spectrum to the significant wave height and the average period
is given by:

Sg(w) = Aw Pexp(-Bw ) (2.89)

where the coefficients A,B and p,q can be determined when statistical information
is available on both the significant wave height and average period, which are
approximately cqual to the wave height and period as visually estimated by a
human observer. For fully developed seas, the result of constant wind over a long
period of time, the significant wave height and average period are directly related
to the wind speed V.

For the influence on the ship’s motions the relative wave frequency, which depends
on the ship’s speed and the angle between the ship’s heading and the mean wave
direction, has to be determined. The formula for this relative wave frequency is
(Van Amerongen, 1982):

w(U,yw) = Wy - ngcos(yw)/g (2.90)
with

Wy the actual wave frequency

U the ship’s speed

Yo the angle between the ship’s heading and the wave direction

g the acceleration of the gravity

In a manner analogous with the analysis of the yaw motions induced by the wind
influence as discussed in the previous section, the wave influence can be treated
as an additional input to the yaw model which may be approximated by:

Ng(w) = Hg(w) sin 2yw (2.91)

with Hy(w) a function of the relative wave frequency w, depending on the shape
of the hull, the water viscosity cte. and vy, the angle of incidence of the waves
relative to the ship.

For simulation purposes, a different approach may be followed by externally adding
the wave influence to the undisturbed rate-of-turn signal (Van Amerongen, 1982)
as sketched in Figure 2.13.

The wave disturbance signal can be generated by using a second-order shaping
filter, driven by white noise according to Figure 2.14. The level of the white noise
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WAVE-INDUCED
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WIND — MATHEMATICAL
MODEL
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RUDDER —»

Fig. 2.13 Externally adding the wave disturbances

and the filter parameters { and w,, which are related to the sea-state parameters
and the ship’s dynamics, may be determined from full-scale measurements of the
wave-disturbed rate-of-turn signal for a specific ship (Van Amecrongen, 1982).

. 2 ]
white- Wy
noise 2 2 —S:
generator s + 20eps + oy v

SHAPING FILTER

Fig. 2.14 Generation of wave motions
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3 THE BASIC PREDICTOR

3.1 Introduction

The principle aim for the development of the track-prediction system is to assist
the navigator during course-changing manoeuvres, in such a way that safety
increases regarding groundings and collisions. Because, especially during coastal
navigation, safety is directly related to the accuracy of the own ship’s heading and
position control (Kristiansen, 1980), research is directed towards the accurate
control of the ship’s motions.

In theory, two approaches may be followed to realize accurate position control
with the assistance of a track predictor:

- "Open-loop" approach:
Accurate prediction of the ship’s track from the initial conditions before the
execution of a manoeuvre, on the basis of a complex mathematical model of,
for instance, the hydrodynamical type. With such a complex prediction model,
adaptation to changing conditions and disturbances is difficult, if not
impossible, to achieve.

- "Closed-loop" approach:
Prediction of the ship’s track on the basis of a relatively simple mathematical
model which is adapted to changing conditions and disturbances during the
execution of a manoeuvre on the basis of measurements. For this type of
prediction model the empirical models as discussed in Chapter 2 are a good
starting point, because these models were intended to relate the different
relevant variables to each other on the basis of measured signals.

As to the feasibility of these two different approaches, it is obvious that the
closed-loop approach offers the best perspective, just because of the required
simplicity of the prediction model for this approach. Therefore, research on the
prediction-model structure will be restricted to the mathematical models of an
empirical nature, which may be provided with a closed-loop nature in combination
with available techniques for on-line state and parameter estimation.

Previous research on the prediction-model structure was based on the second-
order Bech model for the rate-of-turn prediction (Nanninga, 1974; Reissenweber,
1975) and on the first-order Nomoto model for the rate-of-turn prediction and a
separate model for the loss-of-speed prediction (Boonekamp, 1978; Van der Arend,
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1979). The underlying assumption in this approach was a demand for overall
correspondence between real and predicted signals such as rate of turn and
forward speed, which would guarantee track correspondence between real and
predicted path. This track correspondence is defined as the matching of the ship’s
real path and its predicted path with respect to the ship’s surroundings.

In the present study, the demand for track correspondence is taken as the single
starting point for the development of the basic predictor structure, instead of
simultaneous rate-of-turn and forward-speed correspondence, which is a more
severe demand.

After the generalization of the mathematical track description in Section 3.2, the
effect of the ship’s speed on the ship’s track is analyzed in Section 3.3.

As well as this prediction-oriented analysis of the ship’s dynamics, the effects of
the disturbances on the predicted track are analyzed in Section 3.4. After the
presentation of some simulation results in Section 3.5, to back up the theoretical
analysis, finally in Section 3.6 on the basis of these results some conclusions will
be drawn regarding the basic predictor.

3.2 Generalized track description
3.2.1 Introduction

The kinematic relations, presented in Section 2.4, relate the relevant ship-fixed
variables to the ship’s path relative to a space-fixed coordinate system. For a
correct path prediction, the ship’s forward speed u(t), sway velocity v(t) and
heading y(t) are to be predicted:

&
xS(O) + [u(r)cos(w(r)) - v(t)sin(y(t)) dt (3.1)
0

xs(t)

t
ys(t) yS(O) + J.u('t)sin(\y(T)) + v(t)cos(y(T)) dt (3.2)
0

The underlying demand for this approach is that the predicted track and real
track correspond to each other on a time basis. This is reflected in the fact that
the time is used as the independent variable for the description of the kinematic
relations of (3.1) and (3.2).

A generalization of the track description may be achieved by examining the
kinematic relations for different "independent" variables. In this way the underlying
demand for correspondence on a time basis may be changed to a more general
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demand for correspondence between the real path and the predicted path with
respect to the ship’s surroundings.

This is illustrated by Figure 3.1.a,b , where it is demonstrated that whereas the
ship’s rate of turn and speed are not correctly predicted as a function of the time
(Figure 3.1.a), the resulting real and predicted path have a good track correspon-
dence with respect to a space-fixed coordinate system (Figure 3.1.b).

Achieving the generalization will yield more insight into the demands which are
minimally to be satisfied by the predictor in order to guarantee the desired track
correspondence. The analysis shows a direct link with the work of Van Leeuwen
(1970) presented in Section 2.3, where some empirical relations for the relevant
ship motions were derived after changing the independent variable from time to
distance covered by the ship.

61 predicted ————--

” T 4 =~ real

u
[m/sec]

v 1
Im/sec]

=2 t + t + t t + ' + +
0 —
tlsec ] 108

Fig. 3.1.a Real and predicted rate of turn and speed
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Fig. 3.1.b Corresponding real and predicted track

3.2.2 General kinematic relations

The relations for the determination of the ship’s path relative to the space-fixed
coordinate system are given in their most general form by:

u
x, = Jv dxu + J~ dxv (3.3)
0 0

«
1]

u v
dy + [ dy (3.4)
S 0[ u 0 v
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with
Xg,Ys the ship’s position,
Ox,, By, the ship’s displacement due to the forward speed,
Ox,, Dy, the ship’s displacement due to the sway speed,
dx,,dy, infinitesimal position change due to the forward speed,
dx,,dy, infinitesimal position change due to the sway speed.

and, without loss of generality, the initial value of the ship’s position is assumed
to be zero.

According (o these relations, the ship’s motion may be divided into separate
contributions from the forward speed and from the sway velocity. For now, the
analysis is continued for the forward speed only. The influence of the sway velocity
can be examined in a similar way.

The displacement due to the forward speed may be rewritten as (3.5)-(3.6), which
is illustrated by Figure 3.2 for an arbitrary ship path.

1]

s
Mx (s) [ cos(y(o)) do (3.5)
b 0

s
Ayu(s) [ sin(y(o)) do (3.6)
0

with y the ship’s heading and s the distance travelled by the ship.
The relation between ds, u and dt is given by:

ds = u(t) dt (3.7)

where u is the forward speed of the ship.
After substitution in Egs. (3.5) and (3.6) this yields the time-dependent kinematic
relations. Instead of doing this, ds is written as:

ds = Lds* (3.8)

with 5" the distance travelled by the ship, normalized with respect to the ship’s
length, as introduced by Van Leeuwen:

ds = == = dt (3.9)

Alter substitution of (3.8) in Egs. (3.5) and (3.6), these equations become:
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3

X
dx Y

Fig. 3.2 Relation between position and distance travelled by the ship

*
* * 5 * *)
Axu(s ) = [ cos(y(oc ) do (3.10)
0
*
" g8 * *
Ayu(s ) = Jv sin(y(oc ) do (3.11)
0
where Ox," Dy,” is the ship’s normalized displacement:
Ox By
% e M , Foa o8
Axu =T = Ayu T (3.12)

To determine a sufficient condition for track correspondence, the ship’s heading
y has to be expressed as a function of the newly chosen independent variable s .
This can be achieved by writing:
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* *

s s
\P(s*) = [dw = [ d_\g* dcs* = J‘ r*(cs*) dc* (3.13)
0 0 do 0

with r'(s") the ship’s normalized rate of turn as a function of s
Just as for the position, the initial value of the ship’s heading is assumed to be

zero.,
Substituting (3.13) in Egs. (3.10) and (3.11) yields:

Ax* * _ S c * * * d * 14

u(s ) = o[ cos ( o[ r (cz)dc2 ) do (3. )
* *

4 * ok ~ s C % % 4t g * o

yu(s ) = 0,[ sin ( of r (02) 52 ) do (3. )

Evaluating this expression for the ship’s normalized displacement, which is
dependent on r* only, it follows that track correspondence between the ship’s real
and its predicted path is guaranteed by demanding:

* * _ * * v * 0 * 3.16
rS (s ) = rp( s ) s € [ ,se] (3. )
with s.” the normalized travelled distance for the prediction horizon and r, and

rp* the real and predicted normalized rate of turn as a function of s .
In this case it also holds:

* * _ * v * *
yg(s ) = wp(s ) s € [o,se] (3.17)

To complete this general analysis, the contribution of the sway velocity has to be
considered. Carrying out this analysis in the s* domain, the expression for this
sway contribution is given by (analogous to Egs. (3.10) and (3.11)):

*
s
Ax* * _ v * *
V(sv) = - [ 31n(w(ov)) dcv (3.18)
O *
s
* % v * *
Ayv(sv) = OJV cos(\y(cv)) dcv (3.19)

with the relation between ds,”, v and dt given by:
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oo v(r)
dSv = L dt (3.20)

Combining (3.20) with (3.9) yields:

* v
ds = — ds = v ds (3.21)
v u

where v equals the normalized sway velocity, as introduced by Van Leeuwen.
Substituting (3.21) in Eqs. (3.18) and (3.19), the normalized sway displacement as
a function of the normalized travelled distance due to the forward speed becomes:

*
* 8 * * % *
Axv(s ) = - [sin(\y(o )) v (o ) do (3.22)
0
*
* ok s * *  * *
Ayv(s ) = [cos(\y(c )) v (o ) do (3.23)
0

In the case of track correspondence with respect to the forward speed it must
hold that \ys(s‘) = \yp(st) by condition (3.17). The remaining condition for track
correspondence with respect to the sway displacement then becomes:

* * _ * * * *
vs(s) = vp(s) V s € [O’Se] (3.24)

Adding the normalized displacements with respect to the forward speed and the
sway speed, yields for the ship’s normalized position:

* ok * k  * * Kk k. k *
x (s ) = Mx (r (s )) + Ox (r (s ),v (s )) (3.25)
-s -u -v

with )_:s' given by (xs* , ys')T.

In summary, it may be stated that track correspondence between the real path and

the predicted path is guaranteed if the two normalized variables r' and v are
correctly predicted as a function of § .

3.2.3 Translation criteria
During the execution of a manoeuvre the predicted track needs to be adjusted

according to the distance already covered by the ship since the start of the
manoeuvre. Therefore a method of translating the predicted track during the
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exccution of a manoeuvre has to be determined in such a way that the track
correspondence between the ship’s real path and its predicted path is preserved.
This translation problem can be formulated so as to determine the predicted
normalized position xp' , yp‘ for which it holds that (see also Figure 3.3):

5 * *
[ do = J‘ do (3.26)
0 0 P

*
Yo
/
/
/
- X 4 -
Yg !
!
I
x“: x"
8 0

Fig. 3.3 Determination of the translation point

To solve this problem (3.26) is transformed to the course domain:

5y, Yo,
[ Ro(y) dy = [ R*(y) dy (3.27)
0 0 P
with
*
*
R (y) = géaéwl (3.28)

In the case of track correspondence between the real and the predicted path the
following condition is satisfied:
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* *
Rs(q}) Rp(\y) YV y e [O,\ye] (3.29)
which is the equivalent of (3.16) for the course domain.

Because of this condition, (3.27) can only be satisfied by selecting:

vy =Yg (3.30)
This implies that, also in the case of an unknown speed of the ship, a correct
translation method is provided by selecting the ship’s predicted position X5 5 Yp
for which (3.30) is satisfied as the translation origin for the predicted track. Only
in the case where both the speed of the ship and the ship’s heading are known,
can the time also be used as a means of translating the predicted track.
In that case it must hold:

t £ *
s ds* p ds
f EE. g - [ —F g (3.31)
dt dt
0 0
or:
t t
S , P
[ uS(T) dt = [ u (t) dt (3:32)
0 0 P
Therefore
tp = ts (3.33)
because
uS(t) = up(t) YV t e [O,te] (3.34)

In the following sections the influence of the speed of the ship and the
disturbances on the ship’s track will be investigated more explicitly on the basis
of the generalized track description.



3.3.2.1 The open-loop configuration 41

3.3 Influence of the speed of the ship
3.3.1 Introduction

To examine the influence of the speed of the ship on the ship’s track, the
following aspects are considered:

- influence of the ship’s cruising speed Uy, which is the ship’s speed before the
start of a manocuvre,

- influence of the loss of forward speed Au during the execution of a
manoeuvre, due to the ship’s turning,

- influence of the sway speed v during the execution of a manoeuvre.

For this analysis a simple prediction model with constant forward speed U
compared in the s* domain to three empirical models in which the aspect under
consideration is incorporated. By following this approach the aspect to be analyzed
may be examined in an undisturbed way.

For the aspects mentioned here, the empirical models are chosen as:

- First-order Nomoto model with gain scheduling with respect to U, for the
analysis of the cruising-speed influence,

- Non-lincar Van Lecuwen model for the analysis of the influence of the loss
ol forward speed,

- Van Lecuwen model for the analysis of the influence of the sway speed.

The corresponding investigation scheme is presented in Figure 3.4.

3.3.2 Influence of the cruising speed

For the analysis of the cruising-speed influence on the ship’s track, the transfer
from rudder to rate of turn is examined in Section 3.3.2.1 (open-loop analysis).
Further this analysis will be extended to the closed-loop system (ship supplied
with a course-changing controller) in Section 3.3.2.2.

3.3.2.1 The open-loop configuration

The first-order Nomoto model describes the ship’s transfer from rudder angle to
rate of turn for a fixed cruising speed Uj,. It is given by:
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Preadiction Mode/

Section 332 Section 3.33/334

First-order
Nomoto

Time Domain

First-order
Nomoto Empirical Mooe/s Van Leeuwen

loss

Cruising speed

REAL SHIP

Open/Closed /loop

Sway velocity

Fig. 3.4 Influence of the speed of the ship

(=}

* 70

L dr _ -0
T U__d_E + r K i é (3.35)

which is the time-domain relation for r.
Assuming the parameters 1, K' and the ship’s length L to be known but the
cruising speed Uy to be unknown, the prediction model is chosen as:

Ldr *[_J_P_
T U—d—p—t + r = K I é (3.36)

with U, the predicted velocity.
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To carry out the analysis for the comparison of the ship’s "real' path,
corresponding to (3.35), and the ship’s predicted path according to (3.36), these
equations are transformed to the s* domain by substituting:

* _ UO
ds = . dt (3.37)
U
x
N -
dSp i dt 3., 38)
This yields:
*
A s s ke (3.39)
ds
and
d *
r
R e (3.40)
ds P
P
for the predictor,
with
e = ‘H’; - B O3 (3.41)
i UO dt
and
dy dy
"
w b = B P
T T g = (3.42)
s P

Because (3.39) and (3.40) are identical relations the following equivalence condition
is satisfied:

¥ ok k%

r (s ) = rp(sp) (3.43)
which is a sufficient condition for track correspondence with respect to the
forward speed according to (3.16). Note that knowledge of the cruising speed U,
is irrelevant. This implies that knowledge of T, K’ is sufficient to give an cxact
prediction of the ship’s normalized track, while knowledge of the ship’s length
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can be used to denormalize this predicted track to the actual ship positions x ,
y, on the basis of (3.12).

3.3.2.2 The closed-loop configuration

The same analysis as performed in the previous section can be carried out for the

closed-loop configuration, when the ship is supplied with a course-changing
controller according to Figure 3.5

:Aufo,o//oz‘ ! ”
|
wﬁ—*»@—- e »@—o AJrV R SHIP >
| I
| _4 R | i
| S |
! K, max [
| | .
S . SR | v |V

Fig. 3.5 Ship with course-changing controller

The basic course-changing controller is characterized by two gains K and K,y and

a rudder limit 6 For the analysis the course-changing manoeuvre is divided into

max-
two parts:

- Stationary part, for which the rudder angle equals the maximum value as given
by the rudder limiter.
- Counter-rudder part at the end of the manoeuvre.
During the stationary part the rudder angle is given by:
S = 6 (3.44)

and the open-loop analysis of the previous section may be referred to.

For the counter-rudder part 6 is given by:
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& = Ko (y. - W) - Ky (3.45)
with y, the new course setting.

Because the autopilot gains K, and K arc known, Eq. (3.45) may be substituted
as well in (3.35) as in (3.36), which yields:

Bk o2 g L, = k% KKy 3.46
T (U—O) y oot ﬁ; y = K p(wr- y) - q¥ (3.46)
for the "real" ship and
ikt Loy KK ( ) - KRy (3.47)
T fi- = = - - .
Up Wp Up Wp p \Pr ‘Pp de

for the prediction.
To transform these equations to the s domain the last terms of (3.46) and (3.47)
are written as:

K*K y = K*K UO L, ¢ = K*K UO * 4
a¥ aL o, ¥ T aL * 1258
; U ; U
* * * *
= PL = _P
KKd\yp KKd i Up \pp KKd L rp (3.49)
and thus:
* dr + * K*K K*K Uo #
T 1 = r = p(\yr— V) - a o r (3.50)
s
*
* dr + * _ K*K K*K L_IE *
T 2o Ty = pl¥em W) - 4T Tp (3.51)

These relations for the real and the predicted normalized rate of turn are not
identical because of the last term, and therefore the track-correspondence
condition cannot be satisfied. This problem may, however, be solved if, instead of
using a fixed derivative gain, K, is chosen according to:
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(3.52)

o
Q%
(=l

S

with U, given by the forward speed u for the real ship and the predicted speed
Up for the predictor. This choice for K is in accordance with suggestions found
in literature (see, for instance, Van Amerongen, 1982).

Noting that, for now, the forward speed of the ship is considered to be constant
and equal to the cruising speed Uy, the values for Ky for the real autopilot and
for the predictor are given by:

(3.53)

(3.54)

After substituting these values for Ky in Egs. (3.50) and (3.51) the final equations
become:

* dr* * * * * * % * *

T S5 + r(s) = KKe(s) - KKyr(s) (3.55)
ds P

*

€ p + sy = KR e (sT) K'Kir (s") (3.56)

ds”* P PP d'p '
with

* *

e(s’) = wy. - w(s) (3.57)
& *

ep(s ) = Y = \yp(s ) (3.58)

Examining (3.55) and (3.56), the relations for the description of r" and rp' in the
s  domain have become identical again, so track correspondence is guaranteed.
Therefore from this closed-loop analysis it can be concluded that, whereas forward-
speed information remains irrelevant for the predictor, this information should be
available for correct gain-scheduling of the autopilot gains according to (3.52).
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3.3.3 Influence of the loss of forward speed

In the previous sections the influence of a constant forward speed Uy on the
ship’s track was examined. To analyze the influence of the loss of forward speed,
duc to the ship’s turning, the equations proposed by Van Leeuwen for the
mathematical description of the ship’s normalized yaw and surge motions are
reconsidered (Section 2.3.3):

x
T A I G (3.59)
ds
* du* * —
T, + H(r ) = K r (3.60)
u da u u

with u” the relative speed loss and a minimal choice for the polynomials:
* * * *
H(r ) = ¢ H Hu(u ) = u (3u61)
Considering the main cause of the non-linearity in the transfer from rudder to

rate of turn to be the loss of forward speed, a sufficient model for the description
of this effect becomes:

*
* * *
S A (3.62)
ds
* du* * * *2
. %+ H(r) = K 1 (3.63)
u de u u

Comparing (3.62) with the first-order prediction model of the previous section:

*
dr
o=l o o= E & (3.64)
de” P
S

it may be concluded that r" as a function of s" can be exactly predicted by this
model. This implies that the track-correspondence condition is satisfied, regardless
of Eq. (3.63) for the description of the loss of forward speed. Thercfore, the
simple prediction model of (3.64) is also sufficient to deal with the non-linearities,
introduced by the loss of forward speed.
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3.3.4 Influence of the sway speed

Van Leeuwen proposed the normalized sway speed v* as a function of the
normalized rate of turn r':

* *
v + Hv(r y = 0 (3.65)
with v = v/u and a minimal choice for the polynomial:
* x *
H(r) = y r (3.66)

Assuming the sway velocity for the predictor to be proportional to the predicted
rate of turn, the prediction relation becomes:

= - 3.67
v, Ypfp ( )

Normalizing this relation with respect to the constant forward speed of the
predictor U, yields:

* Y *
p -
s t L5 0 (3.68)
with
* ’p
v,o- Up (3.69)

In the case of track correspondence with respect to the forward speed (r'(s’) =
r*p(s')), the prediction relation (3.68) for the normalized sway velocity is rendered
cquivalent to relation (3.65) in combination with (3.66) by choosing:

Y, = Y L (3.70)

Because for this choice of Yp the condition Vi) = v'p(s‘) is satisfied, by (3.24)
this implies that overall track correspondence is guaranteed.

Summarizing the results of these scctions regarding the speed analysis, the
{ollowing conclusions may be drawn:
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- Section 3.3.2.1:
A sufficient prediction model for the open-loop prediction of the ship’s track for
different cruising speeds Uy (as described by the Nomoto model) is:

L « Up
rU—rJrr=KLé> (3.71)

with the predicted speed U, arbitrary.
Section 3.3.2.2:

The gain scheduling for the derivative gain K of the autopilot for correct closed-
loop prediction for different cruising speeds U, should be:

Shi - K B 3.72
hlgoT Kd~ 40 (3.72)

0
L
g (3.73)

P

. _ *
Predictor: de = Kd

with the predicted speed Up arbitrary.
- Section 3.3.3:

The prediction model of (3.71) with constant predicted speed U, is also sufficient
for the prediction of the ship’s track with loss of forward speed, due to the ship’s
turning (as described by the Van Leeuwen model).

- Section 3.3.4:

A sufficient prediction model for the correct prediction of the sway contribution
to the ship’s track (as described by the Van Leeuwen model) is:
(3.74)

Vo= - Y

r
P PP

in combination with (3.71) and ¥y = Yy L.
To sum up: a prediction model for the correct prediction of the ship’s track has

been derived which does not require predictability of the ship’s instantaneous
speed vector U = (u,v)' during manoeuvring.
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3.4 Disturbances

Having examined the predictability of the ship’s path by a first-order Nomoto
model on the basis of the generalized track description, in this section the
influence of the disturbances will be analyzed. The disturbances under
consideration are wind and current.

3.4.1 Wind

To carry out the analysis for the wind influence, this influence is incorporated
into the Van Leceuwen model as suggested by Schelling (1977):

*dr* * *
T = + H(r ) = K & + = NW (3.75)
ds

For prediction purposes the additional displacement of the ship, due to the wind
force, is treated as current influence.
In (3.75) the normalized wind moment is given by:

* y
N = N (
W W

)2 sin(Zyr) Vflr (3.76)

=Nl

with y, and V,, the relative wind angle and speed and N’ specific and
approximalely constant for each ship. Denoting the normalized relative wind speed
as:

A s 4 (3.77)

an alternative form for the normalized wind moment becomes:

* 2 *2

Nw = NW s:.n(Zyr) Vwr (3.78)
From (3.75) it follows that for a correct prediction of r" as a function of s -
which guarantecs track correspondence - knowledge about N, and therefore by
(3.78) knowledge about VWT‘ and vy, is required. Because both these quantities
depend on the ship’s instantancous speed vector U along the ship’s path, exact
prediction becomes impossible without information on the ship’s forward speed u
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and sway speed v.
However, global information about the wind effect on the ship’s yawing behaviour
may be incorporated into the predictor by writing:

*
dr
o =2 4 - ks o+ N sin(zy_) (3.79)
ds P wp rp

with pr‘ based on the maximum rudder angle necessary to compensate for the
wind influence according to:
* *
= K ¢ (3.80)
wp wmax
and vy, the angle between the absolute wind direction and the ship’s predicted
heading:

Yep = Wy o ¥ (3.81)

Another possible approach is to compensate for the wind influence by the course-
changing controller according to Egs. (3.82) and (3.83):

* dr* * * 0 * %
K" =5 + H(xr) = K & + T N (3.82)
ds
where
’ * A*
$ = & - LN (3.83)
K w

and I/\\TW‘ is provided by an on-line estimation procedure on the basis of the
measured relative wind angle and speed.

In the case of a first-order polynomial for H(r"), substitution of this choice for &
in (3.82) yields for the description of the ship’s normalized yaw motion r

*
* * *
&r ¢ - s (3.84)

*
ds

and track correspondence is guaranteed for the first-order prediction model
without wind influence:
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« —B 4+ 7 = k¢ (3.85)

3.4.2 Current

The effect of uniform current may be added to the kinematic relations in the
time domain according to (Section 2.5.2) :

t

t 15
[Uccos(\yc)dr (3.86)

JV u cos(y)dt - [v sin(y)dt +
0 0

I

xs(t) .

k
{ UCSJ.n(qJC)dT (3.87)

t t
y (t) u sin(y)dt + v cos(y)dT +
S 0 0

0

with U, and y, the current speed and direction. Adding this current influence
to the predictor, the cquations for the predicted track in the time domain
become:

t i

xp(t) =o[ Upcos(\yp)dt —o[

y<t>=[
P 0

Comparing (3.86)-(3.87) with (3.88)-(3.89) it follows that in the time domain the
influence of the current is identical for the real and the predicted path, regardless
of Up , Vp and Yo This, however, does not imply track correspondence between

t
Vpsin(\pp)dr +of Uccos(\yc)dt (3.88)

t

t
[ U sin(y,)dt (3.89)

E
U sin dt + cos dt +
D (\Vp) O[ vp (Wp) .

the real and the predicted path, as can be seen by transforming the equations to
the s* domain. This yields, for instance, for the x-coordinate:

*)
* * (3
* 8 * s % % ¢ *
X = f cos(y)do - J sin(y) v do + {cos(\y Ydo (3.90)
s c é
0 0 0
*
* * S
s e

ol
I

- (‘«P:) i ( :) . (LIJ: C ( )
CcOos dG S1.1 \Y dc cos dO’ 3. 91
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where

c

* * *

U
C = =
. dt = ds UC ds (3.92)

*
ds =
c

o
:3[0

and u, = u for (390), u, = U, for (3.91).
substituting (3.92) in Egs. (3.90) and (3.91) yields:

* * *

* 5 * 8 * % 8 UC *
X = [ cos(y)do - { sin(y)v do + [ cos(y_ ) — do (3.93)

s c’ u

0 0 0
* * *

) ®cos(yydo™ [ sincyviact+ [costy) oE ot (3.94)
X = cos c - sin v_do cos — do .

P OJ : oJ o7 o[ Ye Up

Examining the current-dependent parts of Eqs. (3.93) and (3.94) it may be
concluded that for track correspondence between the real and the predicted path,
regarding the current contribution, the following condition must be satisfied:

U U
i, o U sy = ush) [8.95)
= g or 5 .
p
Therefore information about the ship’s forward speed becomes essential for a
correct prediction.
An approximation may be obtained by selecting:

Up = Uo (3.96)

with Uy the ship’s cruising speed before the start of a manoeuvre.
3.5 Simulation results

To illustrate the theoretical conclusions on the basis of the generalized track
description some simulations were carried out. These simulations were performed
with the Interactive Simulation Package PSI, which was developed at the Control
Laboratory (Van den Bosch, 1981). For this purpose the basic prediction scheme
was compared to the non-linear De Keizer model of the "ROV Zeefakkel", a naval
training vessel for which this model had been identified on the basis of full-scale
trials (De Keizer, 1977). The simulations were performed both with and without
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the influence of uniform current.

3.5.1 Results for different rudder limits

The closed-loop prediction scheme, described in Section 3.3.2.2, was tested for a

large course change of 120 degrees for 3 different rudder limits at a cruising
speced of 9 knots (4.5 m/s), which was also the value for the constant predicted
speed. The results for the ship’s "real" (according to the De Keizer model) and

predicted rate of turn, forward speed and sway velocity for a rudder limit of 10,20

and 30 degrees arc presented in Figures 3.6, 3.7 and 3.8:

61 predicted - - — —-
r real
[°/sec]
0} e
-] e
u
[m/sec]
0 —
v 4
[m/sec]T 4
-5 4 e f— 3 +
0 — 100

t[sec]
Fig. 3.6 Results for a rudder limit of 10 degrees
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u
[m/sec]

v
[m/sec]

=5

[m/set]T

v
[m/sec]

predicted

S real

0

t - t + 4 + +
tlsec.] 154

Fig. 3.7 Results for a rudder limit of 20 degrees

predicted

real

+ 4 o
t[sec] 100

Fig. 3.8 Results for a rudder limit of 30 degrees

From these results it may already be concluded that the real and predicted tracks
certainly cannot correspond on a time basis because of the deviations between the
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real and predicted rate-of-turn and speed signals. To analyze the track
correspondence between the real and the predicted paths, in Figures 3.9, 3.10 and
3.11 the ship’s real and predicted normalized rate of turn r* and sway velocity v’
are presented for the different rudder limits as a function of s .

11
predicted — ———-

+ real
r"T

-0.5 t t t + ! . ' + ¢ —
0 T 10

Fig. 3.9 Normalized results for a rudder limit of 10 degrees
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predicted ——— ——

real

0 —ST> 10

Fig. 3.10 Normalized results for a rudder limit of 20 degrees

predicted —— ——-

real

0 —_s—*—» 10

Fig. 3.11 Normalized results for a rudder limit of 30 degrees

Comparing these real and predicted normalized signals to each other, a reasonable
correspondence between the real and predicted values may be observed. This leads
to the conclusion of a reasonable track correspondence between the real and the
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predicted path on the basis of the generalized track description. This is confirmed
by Figure 3.12, where the real and predicted tracks are presented for the three
rudder limits.

240 1
predicted —————
Ys + real
[m] o
Omax=10
0
(o]
i szzo
- Omax=30°
-240 ¢ } + + 4 + + + ;
=450 0 Xg [m] 450

Fig. 3.12 Real and predicted tracks for the different rudder limits

3.5.2 Results in the presence of uniform current

To demonstrate the effect of adding the influence of uniform current to a
predicted path with reasonable track correspondence in the absence of
disturbances, the experiment described in the previous section was repeated for
a rudder limit of 20 degrees, both with and without the influence of current. The
current direction and speed were 315 degrees and 3 knots. The results obtained
without and with current influence are presented simultaneously in Figure 3.13,
to enable a direct comparison.

From this figure the conclusion of Section 3.4.2 is confirmed in that, although
there is an exact track correspondence between the real and the predicted path
in the absence of current, and although the current speed and direction are exactly
known, a deviation between the real and the predicted path will occur under the
influence of current, because of the incorrect prediction of the ship’s forward
speed. However, the results also confirm that a reasonable track correspondence
may still be obtained by choosing for the predicted speed U, the ship’s cruising
speed Uy,
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240
predicted ——— ——

¥s T real

[m]
0 \
no current

-240 + t
e

- 4,50 0 X [m] 450

Fig. 3.13 Real and predicted tracks without and with current

3.6 Discussion

In this chapter a generalized track description has been derived on the basis of
which a correct translation method was proved to be a translation of the predicted
track on the basis of a correspondence between the real and the predicted course
(Section 3.2).

Using the generalized track description, in Section 3.3 the predictability of the
ship’s track by a first-order Nomoto model with regard to the ship’s dynamics
was examined.

The main conclusion, which is confirmed by the simulation results.in Section 3.5,
is that a sufficient prediction scheme is provided by the lincar first-order model
of Figure 3.14 if the only demand for the predictor is one of track correspon-
dence between the real and the predicted path.
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uo

8in

Fig. 3.14 The basic prediction scheme

with parameters K, t° and ¥ for the ship’s dynamics,

K, , Ky for the autopilot,

Uy and L for the scheduling of these parameters

For the incorporation of the disturbances like wind and current into the predictor
it was demonstrated that knowledge about the ship’s forward speed u becomes
essential for exact prediction. However, an approximation may be obtained by
selecting the predicted speed cqual to the ship’s cruising speed U, (Section 3.4).
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4 IDENTIFICATION AND ADAPTATION

4.1 Introduction

In Chapter 3 an approach to predicting the ship’s track on the basis of a relative-
ly simple mathematical model which is adapted to changing conditions was
discussed. This closed-loop approach requires a method for on-line identification
and adaptation of the model parameters. This chapter will concentrate on the
available theory regarding on-line state and parameter estimation and adaptive
control.

Because of the crucial role which the measurements play in the chosen approach,
in Section 4.2 attention will be focussed on the optimal interpretation of measure-
ments by following a statistical approach. This can be applied to both static and
dynamic measurement problems.

As an extension of this analysis, the Kalman filter will be derived for state estima-
tion by treating dynamic model knowledge as a-priori information for the optimal
measurement-filtering scheme (Section 4.3).

Regarding the estimation of the model parameters, in Section 4.4 the theories of
discrete MRAS and Least Squares identification will be unified by analyzing them
both from the optimal measurement-reconstruction point of view.

For a combined estimation of the model state and parameters, the principle of
Kalman filtering may be extended to the parameter domain. This results in a non-
linear filtering problem, which after linearization yields the relations for the
Extended Kalman filter (Section 4.5).

Further, the analogy between MRAS identification and control will be extended
to the field of Kalman filtering in Section 4.6.

Finally, in Section 4.7 some conclusions will be drawn regarding the applicability
of the theory presented here to the development of the actual track-prediction
system.

4.2 Optimal measurement interpretation

To clarify the basic concept behind Kalman filtering, in this section attention will
be focussed on the optimal estimation of variables on the basis of inexact
observations (measurements). Put formally, this problem can be stated as the
determination of the probability density function of a stochastic process, by using



62 An adaptive track predictor for ships

the observations of another, related, stochastic process (Maybeck, 1979).
For the present study a distinction will be made between the optimal filtering
(Section 4.2.1) and reconstruction of variables (Section 4.2.2).

4.2.1 Measurement filtering

To make the distinction between the filtering of measurements and the reconstruc-
tion, a linear statistical model of the type of Eq. (4.1) is assumed for the descrip-
tion of the inaccurate measurement:

z = 2z + v = Hx + v (4.1)

is the vector quantity to be estimated, x € R

is the observation of x through the observation matrix H,
ze R2 He R%2x R

is observation noise, v € R

is the noise-corrupted measurement of x, z € R

where

IN =

IN <

This model will be referred to as the measurement model. The linear measurement
model can be rewritten to Eq. (4.2), where the variable x is separated into a
directly observable part x; and an indirectly observable part x; (see also Figure
4.1):

z = (Hy 0) (x5, x ) + v (4.2)

where x5 € R, x;, € R% and Hy ¢ R x R | n, > ny

The problem of determing x4 from z , which now is defined as the filtering
problem, will be treated in this section, whereas the problem of determing the
indirectly observable part x; from the measurements, which is defined as the
reconstruction problem, will be deferred to in the next section.

The measurement of the directly observable part of x may be written as:

d X4

If information on x4 is available before the measurement z is known (based on,
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FProcess Observation matrix

! V Observation

| : | | = noise
I X |
 —d | I
I ' | !

| | =
-1 , :
| : | ' Measurement
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I_— _ _ |

e [
'x, 'H"

Fig. 4.1 Measurement model for the observation of x

for instance, previous measurements) the estimation of x4 on the basis of this
information is called the a-priori estimation of x4. In the same way the a-posteriori
estimation of x4 is the estimation of x4 , once the measurement z is known:

~ ~

a priori: id + measurement: z —> a posteriori: X4
In accordance with this measurement scheme the optimal filtering problem may be
rcformulated to determine the optimal a-posteriori estimation of x4 on the basis
of the measurement z and the a-priori information on xy.

For a definition of the term "optimal" the statistics of the observation noise v have
to be considered:

In the case of unknown statistics of v (which also implies the accuracy of the
measurement to be unknown), the mcasurcmcntz does not provide any reliable
new information about x4, and the optimal a-posteriori estimation obviously reduces
to the a-priori estimation:

A

Xq4 = X4 (4.4)
When some of the statistics of v are known in the form of, for instance, a
probability-density function, an optimal choice of the a-posteriori estimation is
possible. A
Knowledge of this probability density function of v can be used for the
determination of the probability density function of the a-posteriori estimation, once
the measurement z is known. The statistically optimal choice for this a-posteriori
estimation of x; would then be given by the conditional mean:
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A~

X, = E Xaql2z 4.5
e { %i/* } ( )
When, for instance, a Gaussian model for v is assumed, knowledge of the mean
valuc and covariance of v is sufficient for the description of the Gaussian
probability density function. The mean and covariance of v are defined as:

E{v} = (4.6)

1<

E{ (v - } = R (4.7)

<
<1

Y(v -

According to the notation of (4.6), E{v} may also be regarded as the a-priori
estimation of v, which of course is correct because E{v} is by definition the
statistical expectation of v.

In this case of a Gaussian density it can be shown that the conditional mean of
(4.5) also maximizes the conditional probability density function of x,, which is
referred to as the maximum-a-posteriori choice:

xqg = E{x4/z} = max! p(x4/2) (4.8)
X4

Without loss of generality, in the following it will be assumed that v has zero
mean. Further, the separate components of this noise vector are assumed to be
statistically independent of each other, which reduces the covariance matrix R to
a diagonal matrix:

E{v})= 0 (4.9)
_ 2 . 5

rij = csi : i=] (4.10)

rij = 0 ; i+] (4.11)

with rj; an element of R and oiz the variance of v;.

For the comparison of the a-priori and a-posteriori estimations of xy, the
covariance matrices of these estimations are introduced. The a-priori covariance
matrix M and a-posteriori covariance matrix P are defined as:

T

M = E { %d)} (4.12)

(g - %) (xq

e}
|

E { (xg - £)(x; - xD1) (4.13)

An alternative form for the problem of determing the optimal a-posteriori estima-
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tion which is equivalent to (4.8) is then given by:

mini trace {P(Ed)} (4.14)
X4

with trace {P} the summation of the diagonal elements of the a-posteriori

covariance matrix P, given by (4.13).

For the solution of (4.14), two extremes of this minimization problem are

considered:

- In the case of large measurement noise (large variance R) the solution of (4.14)
becomes trivial (just as in the case where no information about the reliability
of z is available):

~

Xy = (4.15)

=< éf“

P =

min (4.16)

with P_. . the minimal value of P
- In the absence of measurement noise (v. = 0, R = 0), on the basis of the

measurement model (4.3) the corresponding trivial solution of (4.14) becomes:

x, - Hi'z - 'z (4.17)
P = 0 (4.18)

with Hy! the inverse or pseudo inverse of the observation matrix Hy, depending
on the redundancy of the measurement vector z. The observation matrix Hy
is invertible because x4 is by definition directly observable from z.

Now for arbitrary R, the a-posteriori estimation of x; is written as a linear
interpolation between the 2 extreme solutions of (4.15) and (4.17):

. AN e Ry RY (4.19)

or
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a Ed) (4.20)

&N)

=
B

d d (4.21)

The extreme solutions of (4.15) and (4.17) are obtained by choosing for the
interpolation matrix A = 0 or A = L

Substituting the measurement model of (4.3) for z in (4.20) yields a relation
between the a-posteriori and a-priori estimation error:

(}id - gd) = (I - Kde)(§(1 - Ed) + Kd v (4.22)

and together with Egs. (4.7), (4.12) and (4.13):

e T T
P = (I - Kde)M(I - Kde) + K,RK (4.23)

by treating the a-posteriori error as the summation of two statistically independent
variables.
This expression for P may be written as:

T

T,,T
d + R) - MHd)Kd (4.24)

P = (I -K M+ (Kd(HdMH

aa
The choice for K4 which minimizes trace {P} is given by:

T -1

_ T
Kdopt = MHd(HdMHd + R) (4.25)

By (4.24) the a-posteriori covariance matrix P for this choice of Ky reduces to:

Pmin = (I - Kde)M = (I - A)M (4.26)
Because of the assumed Gaussian density for v the a-posteriori estimation for x4
given by (420) in combination with (4.25) also maximizes the conditional
probability density function for x4. Further, it equals the conditional mean of this
density function, which is, from a statistical viewpoint, the best estimation available
for x4, once the measurement z is known.

Resuming, an optimal filtering of the measurement z is provided by:
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4

(4.27)

1]
5
—+
=~

I~

1
s}
al

Xy

+ R) (4.28)

[
=
(&S

T
Ka d

In this case the a-posteriori and a-priori covariance matrices P and M are related
by:

P = (I - Kde)M (4.29)

The block-diagram for the optimal update of the a-priori estimation to the a-
posteriori estimation on the basis of the measurements is presented in Figure 4.2.

v (O,R)
Observation
Process + Measurement
Z 4+ -
Interpolation
+
A -1
Hd
A priori Calculation
X >Z
—d Hd LS E
(x M)

Fig. 4.2 Measurement filtering by optimal interpolation

The notation v (O,R) is introduced to state that v has zero mean and covariance
R.
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4.2.2 Measurement reconstruction

As defined in the previous section, by measurement reconstruction the estimation
of not directly observable variables from the measurements is meant. This implies
that the observation matrix H equals zero for these variables, according to (4.30):

5 = I8 T, T

(S
g Olixg. %)W + ¥ (4.30)

where x; is the indirectly obscrvable part of x = @dT , zi_iT)T .
Assuming a-priori information on x; to be available, the overall a-priori estimation
for x becomes:

T T, T

x = (x5, 51) (4.31)
and the covariance matrix M :
M M,.
M = E{(x-X(x-X") = ad - di (4.32)
id ii
with the submatrices:
M = E {(x, - x,)(x, - X )T} (4.33)
dd X¥a " X' % T Xg :
_ - - T
My; = B llxy - x)(x; - x.)7) (4.34)
M = E {(x X.)( X )T} - W 4.35
id B~ EitEy - 3y di (4.33)
_ o - T
Moo = B {(x; - x)(%; - x)7) (4.36)

Noting that M;y and My, can be treated as regression coefficients for x; with
respect to x4, these variables are related to each other by:

(e - Fe) = M, ME

=i =i id dd(Ed (4287}

- ?-(-d)
Substituting the best estimation for x4 after the measurement, obtained by optimal
measurement  filtering, yields for the a-posteriori estimation of the indirectly
obscrvable part:
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~ _ —l ~ -
(x; - x;) MiaMaaXq - X (4.38)
or
; = x + M M_l(; - x,) (4.39)
=i =i iddd*d T Hd
where by (4.27) :
x, = X, + Aﬁ_l(; - H, x,) (4.40)
=d 24 g & d =d :

Thus a combined update scheme for the estimation of both the directly and the

indirectly observable parts of x on the basis of the measurement z is obtained:

x = x + K(z - Hx) (4.41)
with
¥ = I 1| x (4.42)
MigMaa| ¢

and K given by (4.28).
Substituting (4.28) in (4.42) finally yields for the overall update gain K:

K = M (aMHT + R)°% (4.43)

Concluding, for the linear measurement model, the combined solution of the
overall filtering and reconstruction problem becomes:

x = % + Kz - HR) (4.44)
with K given by (4.43).
This combined filtering scheme in this case can be treated as the result of linear

interpolation for the directly observable part X4 of x and linear regression for the
indirectly observable part x; (see Figure 4.3).
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Fig. 4.3 The combined optimal filtering and reconstruction scheme

Combining the update of the a-priori estimation on the basis of optimal
interpolation and linear regression results in the equivalent block-diagram of Figure
4.4, where the combined update is called innovation.

4.3 State estimation: theory of Kalman filtering

In the previous section it was assumed that besides the measurements some a-
priori knowledge was available on the variables to be estimated. For some
applications, especially in the field of control and systems engineering, this a-priori
information is available in the form of a dynamic model. In the discrete case a
common choice for the structure of the dynamic model is a first-order Markov
chain, given by:
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FProcess

X

Fig. 4.4 Equivalent scheme for Figure 4.3

x(k) = Ax(k-1) + Bu(k-1) + Dw(k-1) (4.45)

where  x(k) is the variable to be estimated (model state),
u(k) stands for external signals which influence the state,
but are known (model input),
w(k) are unknown external influences of a statistical nature,
incorporated as (white) system noise,
and AB and D are the known model parameters

at time t = kT, , with T, the time unit of the discrete system.
For the estimation of the state of this discrete model, measurements are performed

which may be described in a form identical to the general linear measurement
model introduced in Section 4.2:
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y(&) = y(k) + v(k) = COOx(k) + v(k) (4.46)

with y(k) the noise-free and y(k) the noise-corrupted process output
(measurement),
v(k) white measurement noise with zero mean and covariance R,
C(k) the (time-dependent) observation matrix.

Once an a-priori estimation of x(k) is available, the a-posteriori estimation can be
calculated as discussed in the previous section:

x(k) = %(k) + K(y(k) - C(k)x(k)) (4.47)
with K provided by (4.43).

Assuming that the state-estimation scheme is performed in a recursive way, the a-
posteriori estimation at t = (k-1).T; and the dynamic model of (4.45) are available
for the a-priori estimation at t = k.T,. Obviously, because by definition the white
system noise w(k-1) is unknown, the best choice for this a-priori estimation would
be:

x(k) = Ai(k—l) + Bu(k-1) (4.48)

Finally, for the determination of the update gain K according to  optimal
measurement [iltering, the covariance matrix M for the a-priori estimation error
is nceded. By combining (4.48) with (4.45) this a-priori estimation error is given
by:

(x(k) - Z(k)) = A(x(k-1) - x(k-1)) + Dw(k-1)  (4.49)

Treating Eq. (4.49) as the summation of two statistically independent variables, the
propagation equation for the covariance matrix M in time becomes:

M(k) = AP(k—l)AT * DQDT (4.50)

where Q is the covariance matrix of the white Gaussian system noise and P(k-1)
is the covariance matrix of the previous a-posteriori estimation error.

This results in the following equations for the estimation of the model state x(k)
on the basis of the measurements y (k), which are a combination of dynamic
model knowledge and optimal measurement filtering:
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a priori:

x(k) = A:E(k—l) + Bu(k-1) (4.51)

M(k) = AP(k-1)AT + DQDT (4.52)
measurement:

y(k) = clox(k) + v(k) (4.53)
a posleriori:

T T =1

K(k) = M(k)C(k) (C(k)M(k)C(k)  + R) (4.54)

x(k) = x(k) + K(k)(y(k) - C(k)x(k)) (4.55)

P(k) = (I - K(k)C(k))M(k) (4.56)

This is the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) for state
estimation on the basis of the measured process output y .

The corresponding block-diagram for this combination of a-priori model knowledge
with optimal measurement filtering is presented in Figure 4.5.

An equivalent form for this filter is presented in Figure 4.6, where the naturc of
the Kalman filter, that of being a matching filter between process and model, is
emphasized.
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Fig. 4.5 Adding dynamic model knowledge to the measurement scheme

4.4 Parameter estimation: theory of MRAS

The theory of Model Reference Adaptive Systems (MRAS) has a wide range of
applications both in the field of adaptive control and that of system identification
(see, for instance, Van Amerongen, 1982).

Identification schemes, which arc based on MRAS theory, can be divided into two
categories, namely Scries-Parallel MRAS and Parallel MRAS, which refer to the
way the adjustable model is updated. Depending on the application, both schemes
have their specific advantages (for instance, better noise-rejecting properties for the
Parallel MRAS scheme (Landau, 1976; Dugard and Landau, 1980), high
convergence speed for the Series-Parallel scheme).

In this section the basic equations of discrete MRAS identification schemes, which
are structurally identical both for Parallel and Series-Parallel MRAS, will be
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Fig. 4.6 The Kalman filter for state estimation

analyzed from the point of view of optimal measurement filtering and
reconstruction, as described in Section 4.2.

Further, on the basis of this approach, it will be demonstrated in a heuristic way
how the advantages of Series-Parallel and Parallel MRAS identification can be
unified into one, combined, identification scheme. In Section 4.5 this combined
identification scheme will be shown to be a simplified version of the Extended
Kalman filter.

4.4.1 The general equations of the recursive identification scheme

Both in the case of discrete Series-Parallel and Parallel MRAS identification, the
unknown parameters of a process are estimated by minimizing a criterion V, which
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is based on the difference between the observed output of the process and the
one-step-ahead predicted output of a model, where model and process have the
same input. For identification purposes the model prediction or a-priori estimation

of the process output y at t = k.Ty is commonly written as:

s = ¢ ()8(k-1) (4.57)
with

QT(k) = (;(k~l),;(k—2),...,u(k),u(k—l),...)

S(k-1) the estimated parameter vector at t = (k-l).TS
u(k) the input for both process and model at t = k.TS

y (k) to be defined in the following.

After the measurement y (k) at t = k.Tg the prediction crror e(k) is defined as:

e(k) = y(k) - y(k) (4.58)

This prediction error is used to update the estimation of the parameter vector

according to:

8(k) S(k-1) + F)w(k)e(k) (4.59)
with

F(k-1)p(k)y" (K)F(k-1)
(4.60)

it

F(k) F(k-1) -

(1 + y (k) F(k-1)y(k))

This is a recursive formulation of the solution to the Least Squares problem, which
minimizes the criterion (see, for instance, Mendel, 1973):

vio = L DF ef(D) (4.61)

In the casc of Series-Parallel MRAS ;(k—l) in _Qr(k) is replaced by ;(k—l):

y(k-1) = y(k-1) (4.62)
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In this case the prediction error, given by (4.58), is commonly referred to as the
equation error.

For Parallel MRAS the prediction is based on the previous model output, by
substituting:

y(k-1) = y(k-1) (4.63)

The corresponding prediction error is called the owput error.

Besides this single difference, the equations for Least Squares or Series-Parallel
and Parallel MRAS identification are identical.

Because, from the MRAS point of view, F(k) is the adaptive gain, with (4.60) the
adaptation to changing parameters will decrease. To ensure permanent adaptation
after the initial estimation has converged, there are several possibilities. One of
them is the introduction of a forgetting factor X according to (see, for instance,
Lammers, 1983):

) F(k-1)y(k)y (k)F(k-1)
F(k) = 3 ( F(k-1) - = s b {4
(A + Y (OF(k-1)y(k))

with 0 < A <1

A choice of A < 1 prevents F(k) from becoming zero, and therefore permanent
adaptation 1s ensured. For the following analysis, without loss of generality, X is
assumed to be one.

4.4.2 Analysis from the optimal measurement point of view

In order to analyze the performance of both Series-Parallel and Parallel MRAS
identification schemes in the presence of observation noise, the parameter-
estimation problem will be considered as a problem of optimal measurement
filtering. For this purpose the process equations are written as:

y(k) = \yT(k)\? (4.65)
y(k) = y(k) + wv(k) (4.66)
with  y(k) the noise-free process output,
v = (k) y(ke2),e, u(k), u(k-1),.),
9 the constant process parameter vector and

v(k) the observation noise, Gaussian (0,R).
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Eqgs. (4.65) and (4.66) can be combined to:

y(k) = g9 + vk (4.67)

Comparing this equation for y (k) to the linear measurement model:

2(k) = HOOx(k) + v(k) (4.68)

with x the variable to be estimated from the mecasurement z, it follows that (4.67)
can be regarded as a measurement equation for the process parameters 9 through
the observation vector yT(k) and observation noise v(k).

For the optimal estimation of the parameters from the measurements an a-priori
estimation of the output y(k) is required, which of course is the model prediction:

vy =yl 8k) (4.69)

with 8(k) = §(k-1) (4.70)

This yields for the optimal estimation of the process parameters:

a priori:
9(k) = §(k-1) (4.71)
M(k) = F(k-1) (4.72)
mcasurement:
y(k) = ¢ 09+ v(k) (4.73)
a posteriori:
Kg(k) = F(k-1)y(k) (w(k) F(k-1)y(k) + 1yt (4.74)
Bk) = B(k-1) + Kg(k)(y() - ¢ (0)8(k-1))  (4.75)
F(k) = (I- Kgy (K))F(k-1) (4.76)

by substituting P(k) = F(k) and setting R = 1 in the basic cquations for optimal
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measurement filtering.

These equations arce equivalent to the gencral cquations (4.57)-(4.60) of the
recursive identification scheme described in the previous section by substituting in
(4.74)-(4.76):

y(k) = y(k) (4.77)

This implies that these general equations can be regarded as the result of applying
optimal measurement filtering to the parameter estimation problem, where for the
observation vector y(k) an estimate according to (4.77) is substituted (See Figure
4.7).

Process v (0,1)

+ Measurement
'9' + z..1 ;
+
*
&€
+
+

-1 -
z +Y

Fig. 4.7 Measurement scheme for MRAS identification

The effect of the substitution of (4.77) for the different choices of the estimated
observation vector in the case of Series-Parallel and Parallel MRAS in the
presence of observation noise will be discussed in the next section.
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4.4.3 Performance in the presence of observation noise

To analyze the noise-rejecting performance of both the Series-Parallel and Parallel
MRAS identification schemes, which are both characterized by a different choice
for the estimation of the observation vector w(k), the simple case is considered for
which this observation vector is given by (u = 0):

y(k) = y(k-1) (4.78)

This simple first-order case will be sufficient for the qualitative noise analysis to
come.
The estimation of the observation vector then becomes:

y(k) = y(k-1) (4.79)
with

y(k-1) = ;(k-l) (4.80)

for the Series-Parallel identifier and

y(k-1) = y(k-1) (4.81)

for the Parallel MRAS identifier.

Combining these different estimations for the observation vector with the parameter
estimation scheme of Figure 4.7, yields the equivalent filtering scheme of Figure
48. In this figure Ky = 1 for the Serics-Parallel identifier and Ky, = 0 for the
Parallel identificr.

From Figure 4.8 it follows that for the Series-Parallel identifier (Kg, = 1) in the
absence of observation noise the estimated observation vector becomes:

y(k) = y(k) (4.82)

which for the Parallel identifier will only be the case after convergence of the
estimator. Therefore, for small observation noise v, the Series-Parallel scheme is
to be preferred above the Parallel scheme, for which both the estimation of the
paramelers and the observation vector have to converge.

However, in the presence of considerable observation noise, for the Series-Parallel
scheme an unacceptable biasing of the estimated parameter vector may occur,
which can be explained by examining part of Figure 4.8 (see Figure 4.9).
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Fig. 4.8 Equivalent filtering scheme for MRAS identification

For this situation in the a-priori estimation of the process output y a cross term
caused by v(k-1) will occur, which will have a non-zero mean value. This again will
cause the parameter estimation to be biased after convergence.

For the Parallel identifier Figure 4.8 reduces to Figure 4.10 (Kyp = 0) and
therefore the cross term will not exist.

As a result of this structural analysis it may be concluded that the Parallel MRAS
identifier has better noise-rejecting properties but has a slower convergence when
compared to the Series-Parallel identifier. This is confirmed by the simulation
results presented in Chapter 6.

In the next section it will be shown, in a heuristic way, how to combine these
specific advantages for both methods into one identification scheme.
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Frocess | Observation v

Parameter yodate

Fig. 4.9 Biasing problem for the Series-Parallel identifier

4.4.4 A combined approach

To combine the advantages of Series-Parallel (faster convergence) and Parallel
MRAS (better noise rejection), the filtering scheme of Figure 4.8 is reconsidered.
Without loss of generality, the relations for the estimation of the observation vector
w(k) are given for the first-order case:

¢h (k) = (y(k-1),u(k)) (4.83)
y(k) = ¢ (0)8(k) (4.84)
yao = Yo+ Ky - y) (4.85)
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|
Process

Parameter wodate

Fig. 4.10 Equivalent scheme for the Parallel identifier

»\//Pere Ksp = 1 for Series-Parallel (31\ k) = ;(k))and Ksp = 0 for Parallel MRAS
(y (k) = y(k)). Examining these choices for Ksp Eq. (4.85) can be regarded as
an extreme form of updating the estimated observation vector, given by (4.83). For
a more sophisticated choice for the update gain K, , a separate filtering scheme
for the optimal estimation of the observation vector y(k) can be set up according
to Figure 4.11.

Applying optimal measurement filtering again, an optimal choice for K, is provided
by (4.43) if the a-priori covariance M, of y is available. In this case K is given
by:

M (k)

Ky(k) = My(k) — (4.86)

with R the variance of the measurement noise.
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Fig. 4.11 Separate filtering scheme for the observation vector w(k)

The a-posteriori covariance of y then reduces to:

P _(k = 1 - K (k))M (k 4.87
y( ) ( y( )) y( ) ( )
or
M (k)
Py(k) = M_—__Ly(k) TR R (4.88)

To determine the a-priori covariance, the prediction step of the estimator is
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examined:
== ’\T ==
y(k)y =y (k)9(k) (4.89)
which may be approximated by:
- T i e O
y(k) = ¢ (k)9 + y (k) (8(k) - 9) + 9 (k) (y(k) - y(k)) (4.90)

or

(y(k) - y(k)) = QT(k><§(k> - 9) + §T<k)<y<k> - y(k)) (4.91)

Treating (4.91) as the summation of 2 statistically independent variables, and thus
neglecting all cross terms, the a-priori covariance matrix becomes:

M () =y OOFGeDyto + 8Tk, (K)B(K) (4.92)

By writing the model prediction as:

y(k) = (§(k-1),u) <§y(k),§&k)>T (4.93)

and noting that the uncertainty in the model input u is zero, (4.92) is equivalent
to:

AT - — P
M (k = k)F(k-1 k + S8 (k)P _(k-1)9 (k 4.94
e Yy (K)F(k-1)y(k) (P (k=18 (k) (4.94)

The resulting equation (4.94) for M, (k) consists of two components due to the a-
priori parameter and state uncertainty, with F(k) given by (4.76) and P (k) by
(4.87).

By giving F(k) and Py(k) high starting values, thus stating high initial uncertainty
on both the estimated parameters and state, from (4.86) and (4.94) it follows that
K.(0) = 1, and therefore the combined algorithm starts up as a Series-Parallel
identifier (prediction based entirely on measurements). Further, because of the
decreasing uncertainty both Py(k) and F(k) will decrcase and become zero for
large k, which will cause the nature of the combined algorithm to change from a
Series-Parallel identifier to a Parallel identifier (prediction based entirely on the
model). Thus a reasonable estimation of both the state and the parameters will be
obtained after convergence, also in the presence of considerable observation noise,
because of the noise rejecting properties of the Parallel MRAS identifier. This
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combined identification scheme may be adjusted to the level of the observation
noise by choosing an appropriate value for R in  (4.86), which stands for the
variance of thc observation noise. The filtering scheme for this combined Series-
Parallel / Parallel MRAS identifier is presented in Figure 4.12.
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Fig. 4.12 The combined filtering scheme

Alfter this rather heuristic derivation of a combined state and parameter estimation
scheme from the discrete MRAS identifier, a more formal and general presentation
of the theory of combined state and parameter estimation will be carried out in
the next section on the basis of the theory of Extended Kalman filtering.
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4.5 Combined state and parameter estimation

In the previous sections attention has been focussed on the separate cstimation of
the model state, for which optimal measurement filtering was applied to the state
space (Section 4.3), and the estimation of the model parameters, for which
measurement filtering was applied to the parameter space (Section 4.4). However,
it has also been demonstrated in a heuristic way that an improvement of the
parameter estimation could be achieved by combining parameter-space information
with state-space information, thus yiclding a combined state and parameter
estimator. The more formal and general derivation of the combined state- and
parameter-estimation scheme, which can be formulated as a non-linear filtering
problem, will be treated in this section.

4.5.1 Theory of Extended Kalman filtering

As has been demonstrated in Section 4.3, the Kalman filter may be derived by
adding a-priori information in the form of dynamic model knowledge to the
optimal measurement-filtering scheme, where for ordinary Kalman filtering the
model is supposed to be linear.

In the case of a non-linear model, the model can be linearized by using a Taylor-
scries expansion, after which ordinary Kalman filtering may be applied again. To
carry out this linearization the general form of the state-space equations is
supposed to be:

x (k)

?()_c(k-l),k-—l) s B(k—l)lll(k~l) + G(k—l)xf(k—l) (4.95)

i

z(k) = h(x(k),k) + v(k) (4.96)
with ¢ and h the non-linear vector functions describing the system dynamics and
the observations. Further, it is assumed that a discrete state trajectory x(k) can be
generated. The state-space equations may then be written as:

x(k) = [®(x(k-1),k-1) - ®(x(k-1),k-1)] +
_ T (4.97)
* <_I>(>_c(k-l),k-l) #* B(k—l)g(k—l) + G(k-l)v_v(k-l)
2(k) = [h(x(k),k) - B(x(K),K)] + h(X(k),k) + v(k)  (4.98)

For a small deviation from the trajectory a Taylor-series expansion yiclds:
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d(x(k-1),k-1) - d(x(k-1),k-1) ~
T - (4.99)
¢(x(k-1),k-1) [x(k-1) - x(k-1))

h(x(k),k) - h(x(k),k) = H(x(k),k)[x(k) - x(k)] (4.100)

with ¢ and H the matrices of partial derivatives of ¢ and h with respect to x for
X = X

By substituting (4.99)-(4.100) in (4.97)-(4.98), the non-linear system is approximated
by the linear system:

x(k) = ®(x(k-1),k-1)x(k-1) - ®d(x(k-1),k-1)x(k-1) +

- B - - - (4.101)
+ ®(x(k-1),k-1) + B(k-1)u(k-1) + G(k-1)w(k-1)

z(k) = H(x(k),k)x(k) - H(Z(k),0)X(k) + h(x(k),k) + (4.102)

+ v(k)

to which the equations of ordinary Kalman filtering can be applicd for the
estimation of x(k) from the measurements z (k).

For the generation of the discrete state trajectory there are several possibilities,
one of them being:

x (k) ¢(x(k-1),k-1) + B(k-1)u(k-1) (4.103)

x(0) %(0) (4.104)

where the trajectory is completely determined by the initial estimate of the system
state. This estimator is called the linearized Kalman filter.

To adapt the a-priori determined state trajectory to the observations along the
trajectory another possibility for the generation of this trajectory could be:

g(k) = ?()}(k—l),k-l) + B(k-—l)l_J.(k—l) (4.105)

Because of this adaptation of the trajectory to the observations, large initial
estimation errors will not be allowed to propagate in time. The choice of (4.105)
for the state trajectory in combination with the Kalman-filtering equations applied
to (4.101)-(4.102) is called the Extended Kalman filter (Heemink, 1986).
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4.5.2 Application to combined state and parameter estimation

A specific example of a non-linear filtering problem is the estimation of the state
and the parameters of a dynamic model (Eykhoff, 1974). To apply the theory of
Extended Kalman filtering to the state- and parameter-estimation problem, the
state-space equations introduced in Section 4.4 are written as:

]

y (k)

¥ (k)

\_yT(k)?(k-l) + Wy(k—l) (4.106)

y(k)y + v(k) (4.107)

with  8(k)  the time-varying process parameters,
w!(k) the observation vector,
wy(k) and v(k) the system and observation noise with zero mean and
variance Qy and R.

For the combined estimation of y(k) and 9(k) on the basis of y (k), the system
state is extended with 9(k):

?(k) = g(k-l) + v_vg(k-l) (4.108)

The white system-noise component wg is added to state permanent uncertainty
about the process parameters, thereby achieving permanent adaptation to the time-
varying parameters.

To obtain a linear model, the deterministic part of (4.106) is written as:

_ ~T = T ~T A

y(k) =y (k)8(k-1) + (y (k) - y (k))9(k-1) + (4.109)
+ QT(k)(g(k-1> - §(k-1)) +

T ~T o
+ (y (k) - y (k))(8(k-1) - 9(k-1))
Neglecting the last term, a linear approximation is obtained:

y(k) = ¢ (08(k-1) +  (yT(k) - ¢ (k))8(k-1) +

= ¥ x Y Y z (4.110)

+ (k) (8(k-1) - 8(k-1))

Together with (4.107) and (4.108) the combined linear state-space equations
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become:
A ~ /\T ~
y (k) _ ?Tk-l) \_VT(k) y(k) y (k)8(k-1) Wy(k-l)
9(k) 9(k-1) V_Ve(k—l)
(4.111)
y (k) %Et;} + (k)
and, for simplicity but without loss of generality, yi'k) = (yk-1) , uk))

For the Extended Kalman filter the a-priori estimations are generated by:

with a-priori covariance matrix M(k):

oT (k) 9(k-1)
9(k-1)

k

5

Pus

P

N

PyS

P

€ > 10|

98

~

\

(<o]

< >

99

0

L

by substituting wT(k) = (y(k-1) , u(k)) and 8T = (9, , 9,).

Calculation of the Kalman update gains by (4.54) yields:

(4.112)

(4.113)

(4.114)
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Ky(k) 1

M (k)
Kk - M__(k) + R) i
K
(k) M

M k
9y()

(4.115)

According to the principles of optimal measurement filtering and reconstruction,
discussed in Section 4.2, this may be written as:

Ky(k) 1

= A (k) (4.116)
Kok M k) /M k
o(k) gy (O M ()| Ty

with the optimal interpolation coefficient A (k) for the directly observable process
output y given by:

Myy<k>
)\y(k) = (Myy<k) TR (4.117)

The a-posteriori estimation then becomes:

ylk) | _ vy ky |y x Ay(k)(;(k) - y(k)) (4.118)

8(k) ?(k) ng(k)/Myy(k)
with covariance matrix P(k):

Pyy P (l—Ky)Myy (l—Ky)My8

P(k) = = (4.119)
P (l-Ky)ng Meg— KSMyQ

k k

The corresponding filtering scheme for this combined state and parameter
estimator is presented in Figure 4.13.

In this figurc the white system-noisc component wy(k) is written as wy’(k), to
show the structural correspondence between process and filter. The relation is
given by: w/(k) = wy(k)/8y(k)
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Fig. 4.13 The Extended Kalman filter for state and parameter estimation

4.5.3 Relation with other methods

To demonstrate the relationship of Extended Kalman filtering for combined state
and parameter estimation with the methods presented in Section 4.4, the equations
for the update gains of thc model state and parameters are considered in the
absence of system noise:

K (k) 1 M (k)
Ky(k) T M (W) TR Myy(k) P8 -t 28
S yy Sy

with My, and MSy components of the a-priori covariance matrix:



4.5.3 Relation with other methods 93

M

M(k) is related to the a-posteriori covariance matrix P(k-1) of the previous
measurement:

P
P(k-1) = Pyy

by relation (4.114).

Neglecting the cross terms Pyg and ng in P(k-1) it i1s assumed that correlation
between the a-priori estimates of y and $ at interval k is mainly due to the model
relation (4.114) for the propagation of the covariance matrices in time. Applying
(4.114) for this special choice of P(k-1), M(k) becomes:

— - ~T ~
M k = 8 (k)P k-1)8(k & k)P k-1 k 4.121
gy () g (0P (k-1)8(k) Y (K)Pgg(k-1)y(k) ¢ )
Y = A
ng(k) = MyS(k) = ng(k-l)y(k) (4.122)
MSS(k) = Pge(k-l) (4.123)

The non-zero terms of the a-posteriori covariance matrix P at interval k are given
by:

(k)

(1 - Ky(k)) M (k) (4.124)

P
yy Yy

ng(k) = (I - Kg(k)WT)Mgg(k) = (I - Kg(k)WT)ng(k—l) (4.125)

Combining this with the relations for K (k), Kg(k) results in the filtering scheme:

a priori:
_ _ A 7
M k = 9 (k)P k-1)9(k + k)P k-1 k «126
yy( ) y( ) yy( ) }Q ) Y (k)P gq( Yy (k) (4.126)
- MT - " .
MSy(k) = Mys(k) = Pge(k—l)y(k) (4.127)

MSQ(k) = Pse(k~l) (4.128)



94 An adaptive track predictor for ships

update gains:

M__ (k)
K (k) = (4.129)
M__(k) + R
y yy( )
Mg o (K) (k)
_ 99' /1
Bo) = Wy + X (4.130)
Yy
a posleriori:
P (k) = 1 - K. (k))M__(k 4.131
yy( ) ( y( )) yy( ) ( )
- o
Pgg(k) = (I - Kg(k)y (k))Mgg(k) (4.132)

These equations are equivalent to the basic combined filtering scheme, derived in
Section (4.4.4) by substituting:

M (k) =M (k) ; P k) =P (k) ; P k) = F(k 4.133
yy() y() yy() y() 99() (k) ( )

The simplification of the a-posteriori covariance matrix P(k) of the Extended
Kalman filter may be continued by also assuming, in addition to Pyg = 0, that
P, = 0. Thus it is stated that the uncertainty about the model state after the
measurement has become zero.

Combining this with the choice for Ky (k) = Kg,, where Kz = 0 or Ky, = 1, the

filtering relations further reduce to:

a priori:
_ AT A
Myy(k) = vy (k)PSe(k-l)W(k) (4.134)
= ML - >
M9y(k) = Myg(k) = Pse(k—l)&l(k) (4.135)

Meg(k) = Peg(k—l) 4 (4.136)
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update gains:

= 0 or 1 (4.137)

I
~

K _(k
y() sp

Mg (k) y(k)
M (k) + R
Yy

Kg(k) (4.138)

a posteriori:
- el
Pee(k) = (I - Kg(k)\_y (k))MQS(k) (4.139)

For Ky, = 1 and writing Pgg(k) as F(k) this filtering scheme yields the relations
for the Minimum Variance (MV) or Markov parameter estimator (Soderstrom and
Stoica, 1989).

As a final simplification it is assumed that no knowledge on the observation-noise
variance is available. Substituting R = 1 in (4.137) leads to the Series-Parallel
MRAS or Least-Squares filtering scheme for Ky, = 1 and to the Parallel MRAS
parameter-estimation scheme for Ksp = 0, as discussed in Section 4.4.1.

Regarding the adaptation of these filtering schemes it may be concluded that by
the introduction of system noise on the parameters, according to Eq. (4.108),
adaptation to time-varying parameters is inherently achieved. Therefore no
additional measures, such as the introduction of a forgetting factor, are required
to obtain adaptation. The system noise manifests itself as an additive component
to the parameter covariance matrix F(k), instead of the multiplicative nature of the
forgetting factor as described in Section 4.4.1.

Finally, to conclude this structural comparison of the different methods for state
and parameter estimation an overview is constructed, which summarizes the basic
correspondence between the different methods.
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Extended Kalman Filtering

Section 4.5.2:
state x = (y , 90T

K, , Kg by (4.115)

)

neglecting of | cross terms Pyg

Combined filtering scheme

Section 4'4"?":T
x = (y,9)

K, , Kg by (4.129),(4.130)

neglecting of state

uncertainty Pyy

Minimum variance or
Markov identifier

Section 4.5.3:
8 4
by (4.138)

X
Kg

No knowledge of | noise variance R

v

Series-parallel MRAS or
Least-squares estimator

(Equation-error identifier)

Section 4.4.1:
R 1;
X £

K9 by (4.138) ;

Parallel MRAS estimator

(Output-erroridentifier)

Section 4.4.1:
R 14
X g9

’

Kg by (4.138) ;
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4.6 Adaptive control

In the previous sections attention has been focussed on the identification of a
process on the basis of noise-corrupted measurements. The resulting estimated
parameters and filtered process state may be combined with a controller, designed
for the delerministic case, as will be described in Section 4.6.1.

An alternative scheme for the control of a noise-corrupted process is based on the
analogy between identification and control, as this exists for MRAS theory. This
underlying analogy between identification and model-reference control will be
applied to the field of Kalman filtering in Section 4.6.2.

4.6.1 Indirect adaptive control

For the control of a noise-corrupted process, the schemes for statc and parameter
estimation as discussed in the previous sections may, in principle, be combined
with a controller designed for the deterministic case according to:

~T
u =y

s gc (4.140)

= P(9) (4.141)

with 8, the controller parameters, which are determined on the basis of the
estimated process parameters by, for instance, a pole-placement algorithm P, and
u the process input based on the feedback of the estimated process output in
combination with the controller parameters. In (4.140) the estimated process output
is combined with the controller setpoint ug according to:

AT _ A ~
Yo = (y(k),y(k-1),... ,uR(k),uR(k—l) gk s ) (4.142)

Because in the case of changing process parameters, 8 will be adapted on the
basis of the parameter-estimation algorithm, after which the controller parameters

9. will be adapted according to (4.141), the control scheme (4.140)-(4.141) is of
an indirect adaptive nature.
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4.6.2 Model-reference control

To obtain a scheme of direct adaptive control, the process and model relations for
the Extended-Kalman-filter state and parameter estimator are reexamined:

Process:
y(k) =y (k)9(k-1) (4.143)
y(k) = y(k) + v(k) (4.144)
Modcl:
y(k) = ¢ (k)9(k-1) (4.145)

The a-priori estimation of the process state may be written as:

— ’\T AT A~
¥ (k) Y k9 4y () (8(k-1) - 8) (4.146)

or

y (k) yT<k)9R + wT(k)Ag(k—l) (4.147)
with 8p an a-priori chosen value of the parameter vector and A_/S:(kd) the
difference between this a-priori choice and the estimated process parameters. For
the direct adaptive control it is assumed that an additional input signal Au(k) is
available:

y (k) gl (k)9 + Du(k) (4.148)

y (k) v 08+ ¢ 0B8(k-1) 4 Bu(k)  (4.149)

Because the additional input signal Au(k) is common to process and model, the
equations for the Extended Kalman filter remain unaffected.
A suitable choice for this input signal is provided by:

Mu(k) = -y (k)A9(k-1) (4.150)

For this choice the relations for process and model modify to:
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1]

y (k) oTyek-1) -yl (k)88(k-1) (4.151)

Yo = yog (4.152)
Because the Kalman filter minimizes the difference between process and model
output, it implies that the process is controlled according to (4.152), which has
become a reference model.

Of course, the dircct-adaptive control scheme (4.151)-(4.152) in combination with
the Kalman-filtering relations for K, and Kg can be regarded as an extension of
discrete Model-Reference Adaptive Control (MRAC) on the basis of cither a
Series-Parallel model or a completely Parallel model, to a combined reference
model (comparable to the "model update method", Van Amerongen, 1980).

The analogy between identification and control with a Kalman filter 1is
demonstrated in Figure 4.14.a,b for a first-order system.

For this first-order system the different variables are given by:

(ap ’ bp)T’ _S.R = (aR > bR)T’
= (k1) u(kD)),
(Ka ’ Kb) F-

(ox}e_]lco
|

Il

4.7 Discussion

The theory presented in this chapter on the basis of optimal measurement filtering
(Section 4.2) has provided insight into some fundamental techniques for on-line
state (Section 4.3) and parameter (Sections 4.4 and 4.5) estimation of a noise-
corrupted process by using a Kalman filter.

Further, a modified Kalman-filtering scheme for direct adaptive control of a
process has been considered (Section 4.6) on the basis of the analogy between
MRAS identification and control.

Possible applications of this theory to the problems related to track-prediction
are:

- removing of the high-frequency wave motions from the measured heading or
rate-of-turn signal, which is a measurement-filtering problem,

- filtering of the position fixes and estimation of the current influence from these
measurements, which is a measurement-filtering and reconstruction problem,

- cstimation and adaptation of the prediction model parameters,
which is an identification problem,

- design of the course-changing controller on the basis of the model-reference



100 An adaptive track predictor for ships
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Fig. 4.14.a Using the Kalman filter for identification

techniques described in this chapter.

The applicability of the theory will be treated in the next chapter.
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5 APPLICATION OF THE THEORY TO TRACK
PREDICTION

5.1 Introduction

The prediction model, derived in Chapter 3, has a limited number of parameters
which have to be adapted to the ship’s changing dynamics. For this purpose a
method for on-line identification and adaptation is required.

Besides the parameters of the prediction model, the influence of the disturbances
also has to be estimated from the measurements in order to achieve adaptation
to changing conditions. In terms of Chapter 4 this is a reconstruction problem.
Further, the signals which are considered to be part of the ship’s state are to be
cstimated from the noisy measurements. These states construct the initial state of
the prediction model on the basis of which the prediction is calculated. The
estimation of this initial state may be formulated as a filtering problem.

In order to apply techniques of optimal measurement filtering to solving thesc
problems, in Section 5.2 the parameters and relevant variables for the track-
prediction system will be defined in relation to the available measurements. This
allows a separate treatment of the filtering problem of the yaw motions in Section
5.3 and the ship’s position in Section 5.4, resulting in a yaw filter and a position
filter.

In Section 5.5 possible levels of integration of the yaw filter with the course-
changing controller will be discussed on the basis of model-reference techniques
in combination with Kalman filtering as described in the previous chapter.

The combination of the yaw and the position filter with the actual track predictor
will be treated in Section 5.6. Further, direct adaptation of the predicted track
during the exccution of a manoeuvre will be discussed in this section. This will
provide the track predictor with the closed-loop element, as described in Chap-
ter 1.

The chapter will be concluded with a review (Section 5.7), in which the main
points of application of the theory of Chapter 4 to track prediction are
summarized.
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5.2 Definition of the measurement structure

For track prediction, the ship’s motions have to be considered in respect to a
space-fixed coordinate system. These motions are related to the motions with
respect to a ship-fixed coordinate system by the kinematic relations described in
Scction 2.4.

The ship-fixed motions of interest (displacement and rotation) for this purpose are
those in the horizontal x,y plane (Section 2.2.1):

- displacement along the x-axis (surge motion),
- displacement along the y-axis (sway motion),

- rotation around the z-axis (yaw motion).

The most important disturbances and their effects were considered to be (Section
2.5):

- current:  additional displacement and yaw motion,

- wind: additional yaw motion of the ship and displacement,
- waves:  additional yaw motion of a stochastic nature and a negligible
displacement.

For the on-line reconstruction of these disturbing influences, a distinction is made
only between additional yawing ("wind influence”) and displacement ("current
influence") of the ship. Further, the high-frequency yaw motions ("wave influence")
of the ship are regarded as undesirable, and have to be filtered (Van Amerongen,
1982; Van der Klugt, 1987).

For the observation of the motions of interest, the following signals are considered
to be available:

- the ship’s heading y and rate of turn r (provided by the compass after
differentiation or from a rate gyro),

- the ship’s forward speed u (provided by the log),

- the ship’s position x, (provided by a positioning system).

Together with the measured rudder angle &, which is the input signal for the ship,
the diagram of Figure 5.1 for the disturbances, the ship’s motions and the
monitoring of these motions on the basis of the measurements can be construc-
ted.

The wave influence is classified as system noise, causing high-frequency components
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in the measured rate-of-turn and heading signal.

Environment

WIND WAVES CURRENT

Kinematic
| Relations

+ | | +
y
+
Measurement W !széé)
v Observation vy v :/
s r Y u Xg

Fig. 5.1 Measurement diagram for the ship’s motions

In Figure 5.1 v, is the measurement noise on the measured forward speed and
v, is the measurement noise on the position fixes.

The measurement diagram can be separated into two substructures, according to
the yaw motions (resulting in the ship’s heading) and kinematics (resulting in the
ship’s position).

This separation has the following advantages for the filter design and
implementation:

- The non-linearity, introduced by the terms siny and cosy in the kinematic
relations to relate the ship-fixed quantities to the space-fixed quantities, has
been eliminated because these terms have become an input signal for this
substructure. The same applies to the role which the forward speed u plays for
the gain scheduling of the yaw-model parameters.

- Decrease of computational complexity, which will be considered in Section 5.4.
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This yields the separatc measurement diagram of Figure 5.2.a for the filtering of
the ship’s rate-of-turn and heading signal and estimation of the wind influence, and
the measurement diagram of Figure 5.2.b for the filtering of the measured forward
speed and position and reconstruction of the sway velocity and current influence.

WIND WAVES CURRENT
------- i R B _____--H-“_----—
- — Vv v x
s SHIP L o e i Kinematic s
> J Relations
Tl

<

<
<
<

v

-~
& r v

cl <

Fig. 5.2.a Yaw motions Fig. 5.2.b Kinematics

The application of optimal measurement filtering theory to these two separate
filtering and reconstruction problems will be described in the following sections.

5.3 The yaw filter

According to the concepts of discrete optimal filtering and reconstruction discussed
in Chapter 4, two types of information on the quantity to be filtered should be
available, namely a-priori information and  measurement information. For the
optimal filtering of the rate-of-turn signal (the filter for this purpose will be
referred to as the yaw filter) the two types of information become:

- a-priori information:
provided by a dynamic model of the ship’s yaw motions,
- measurement information:
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provided according to the measurement diagram of Figure 5.2.a

Focussing attention on the filtering problem for the moment, and therefore
disregarding the estimation of the wind influence which is a reconstruction
problem, the combination of model knowledge and measurement information yiclds
the filter structure of Figure 5.3 for the filtering of the wave motions:

|
Frocess : Waves

|
1 + Measurement
T + -

S SHIP : .7
|
!
|
|
|

__________________ _‘._.___.._.._____._____._______
|
B tor :AAposter/or/ Lboate "
r
| + Kl"
| + =
I —
|
YAW , T - F
MODEL 14 priori

|

Fig. 5.3 Structure of the yaw filter

For the filter design the wave influence is treated as measurement noise, which has
to be filtered from the measured rate-of-turn signal.

To determine the filter gain K, for the update of the rate-of-turn cstimation on
the basis of optimal filtering theory, the structure of the yaw model has to be
considered in more detail.

The continuous-time De Keizer model for the description of the yaw motions is
given by:

) (5.1)

with u the forward speed and L the length of the ship and & the rudder angle.
To obtain a discrete relation, there are several possibilities:
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- z-transformation
- numerical integration, for instance Euler, Tustin, Runge Kutta 2 etc.

Assuming the sampling frequency to be sufficiently high, the second approach may
be followed by using a first-order Euler approximation for the calculation of r:

r(k) = r(k-1) + T  r(k-1) (5x2)
with T, the sampling interval.
Combining this with (5.1) yields the discrete relation:

r(k) = asr(k—l) + bsé(k-l) (5:.3)

with the discrete parameters related to the continuous-time parameters by:

a_ = 1-71/t.% (5.4)
S s L
b, = K/t T E)? (5.5)
The discrete equations for the process become:
brocess:
r(k) = asr(k-l) F bsé(k—l) + wr(k-l) (5.6)
rk) = r(k) + v(k) (5.7)

where w (k) is white system noise, introduced to represent model uncertainty, and
v(k) represents the wave influence which, for now, is assumed to be white
measurement noise.

A suitable form for the a-priori estimation of the rate-of-turn signal may then be
obtained by combining (5.6) with the a-posteriori estimation at t = (k-1).T; :

a priort:
r(k) = aS;(k-l) + bsé(k-l) (5.8)

Applying the Kalman-filtering theory for state estimation, presented in Section 4.3,
and using Eqgs. (5.6)-(5.8) yields for the covariance m,(k) of the a-priori estimation
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error:
m_(k) = a2 (k-1) + 02 (5.9)
r s Prt¥s w ’
with p.(k-1) the covariance of the a-posteriori estimation error at t = (k-1).T,,

and o, the variance of the system noise.

If the variance of the wave influence is known, which may be provided by an on-
line estimation procedure proposed by Van Amerongen (1982) and worked out in
more detail by Van der Klugt (1987), the optimal gain for the update of the a-
priori estimation on the basis of the measurement becomes:

mr(k)

K (k) = ——% (5.10)
r m ik} % oo
r v

with o,? the variance of the wave influence.
This yields for the a-posteriori estimation:

a posteriori:

r(k) = r(k) + Kr(k)(;(k) - r(k)) (5.11)
with covariance:

p (k) = (1 - K (k) m (k) (5.12)

The more detailed structure of this yaw filter is presented in Figure 5.4.

In the case of unknown parameters of the discrete yaw model, the filter structure
of Figure 5.4 may be extended to a filtering and reconstruction scheme on the
basis of the Extended-Kalman-filtering approach, described in the previous chapter.
The wind influence may also be estimated by modelling this influence as an
additional input N, to the yaw model (Section 2.5.3).

The relations for the a-priori estimation, process and measurement and a-
posteriori estimation are for this purpose extended to:
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where the parameters ag , b, and N, arc modelled as constants to which white
system noise w;(k) is added to achieve adaptation.

measurement:

;(k) = r(k) + v(k) (5.21)
which yields the prediction error:

e(k) = (k) - (k) (5.22)
a posteriori:

~

r(k) = r(k) + K_(k)e(k) (5.23)
;S(k) = és(k) + K (k)e(k) (5.24)
Es(k) = Es(k) + Ky (k)e(k) (5.25)
ﬁw(k) = Nw(k) + K (k)e(k) (5:26)

The update gains K.(k), K,(k), K,(k) and K (k) are provided by the Kalman-
filtering relations in such a way that for the given a-priori covariances m,, m,, my,
m, and measurement-noise variance ©,% the a-posteriori covariances p;, P, Pp,
p, of the estimation errors become minimal, comparable to (5.9)-(5.12).
Together with Egs. (5.4) and (5.5) the update equations (5.24)-(5.25) for the
discrete parameters a, and by may be transformed to an expression for the update
of the continuous normalized parameters K and t :

(Lt = ()t ), - K /T .(L/lutk)).e(k) (5.27)

oy Al

(K /= D

Ao Aok & )
(K /T )k-l + Kb/Ts.(L/u(k)) .e(k) (5.28)

In these equations the ship’s forward speed u is replaced by a best estimation, to
be calculated by the position filter.

To complete the design of the yaw filter, the colouring of the measurement noise,
which up to now has been assumed to be white, has to be considered.
A possible discrete first-order description for the colouring of the wave motions,
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Wind Waves

Fig. 5.5 Extended Kalman filter for estimation of yaw-model parameters
based on the proposal by Van der Klugt (1987), is:

vf(k) = afvf(k—l) + bfw(k—l) (5.29)

v(k) w(k) - vf(k) (5.30)
with w(k) white noise and v(k) the wave influence, added to the rate-of-turn signal
(instead of to the heading signal, as was worked out by Van der Klugt):

;(k) = r(k) + wv(k) (5.31)

The discrcte paramelters of (5.29), which is a first-order filter for w(k), are related
to the time constant of the continuous-time filter by (using Euler): a; = 1 - Ty/t;
and by = Tyt

By using the colouring model of (5.29)-(5.30), high-frequency components in the
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rate-of-turn signal (selected by the filter time constant T;) arc regarded as
mecasurement noise in the observation equation (5.31), and therefore are filtered.

This colouring of the wave motions may be incorporated into the yaw filter by
extending the filter state with vg(k). This yields the following extensions for the
filter equations:

a priori:

vf(k) = ag vf(k-l) (5.32)
measurement:

r) = (k) - vk o+ w(k) + v (k) (5.33)

with v (k) the additional measurement error, introduced by the rate-of-turn sensor.
a posteriori:
vf(k) = Vf(k) + Kv(k)s(k) (5.34)

with K, (k) provided by the Kalman-filtering scheme and the prediction error €(k):

e(k) = r(k) - (r(k) - \_ff(k)) (5.35)

This substructure of the yaw filter is given in Figure 5.6.

In this figure r,, is the wave-disturbed rate-of-turn signal, before the measure-
ment noise v, of the rate-of-turn sensor is added.

As a final extension, heading information (provided by the compass) is added
to the yaw filter. By this extension of the filter a configuration is obtained for
the filtering of the undesirable high-frequency wave influence from the heading
signal. Further, if no rate-of-turn sensor is available, the filter can still provide
a reasonable estimation of the rate-of-turn signal on the basis of the measured
heading signal.

For this purpose the measured heading signal is written as:

yk) = wyk) + \yv(k) + V‘V(k) (5.36)
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YAW r

MODEL

Fig. 5.6 Yaw-filter substructure for the coloured wave influence

with y(k) the low-frequency component, y, (k) the wave influence and v\y(k) the
measurement error of the compass.

Together with the relations for the rate-of-turn signal, these quantities may be
expressed as:

y(k)
W, (k)

y(k-1)  + T _r(k-1) (5.37)
y,(k-1) + T_(w(k-1)-vg(k-1)) (5.38)

which yields the following process and measurement equations for y(k) and y, (k):
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Drocess:
(k) = y(k-1) + T r(k-1) (5.39)
y, (k) = Y, (k-1) - T ve(k-1) + T w(k-1) (5.40)
measurement:
y(k) = y(k) + wv(k) + vw(k) (5.41)

For the a-priori estimation, the previous a-posteriori estimations of the rate-of-
turn filter are substituted in the process relations, thus obtaining:

a priori:
w(k) = @(k-l) + Ts;(k—l) (5.42)
Yo(k) = g (k-1) - T vg(k-1) (5.43)

which together with the equations of the rate-of-turn filter provide sufficient
information for the calculation of the optimal updates on the basis of the
prediction error, which now has become a vector:

a posteriori:

y(k)

v (k)

wk)  + K oe(k) (5.44)

Y (k) + K (k)e(k) (5.45)

The prediction error vector g(k) = (e.(k) , Ew(k))T is given by:

e (k) r(k) - (E(k) - (k) (5.46)

]

€y (k) pk) - (y(k) + oy (k) (5.47)

The substructure for this extension of the yaw filter for the filtering of the
heading signal is presented in Figure 5.7.
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Fig. 5.7 Extension of the yaw filter for filtering of the heading

Resuming, the yaw filter is a Kalman filter for the estimation of a seven-
dimensional state vector:

~ A~ ~ ~ ~

T _ ~ A A
}_(y - (aS,bS'Nw,r' vf»W ,WV)

where the subscript y stands for yaw filter.

The filter input consists of: (& ,u YU, with & the actual rudder angle and 0 the
estimated forward speed provided by the position filter, to be described in the
next section.

The required measurements are:

-~ -
Ly (r ,y)
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The main parameter of the filter is the variance of the high-frequency wave
motions, which may be provided by an on-line estimation procedure in combination
with a first-order filter with discrete parameter a; or time constant T; (Van
Amerongen, 1982; Van der Klugt 1987). In this way the filter becomes adaptive
with respect to the sea state.

The variance of the different system-noise components on the parameters has to
be chosen in such a way that an acceptable performance (adaptation) of the filter
is obtained (calibration of the filter).

The variance of the measurement noise reflects the expected accuracy of the
sensors (compass and rate-of-turn gyro).

5.4 The position filter

As described in Section 5.2, for the determination of the ship’s position and the
influence of uniform current (Section 2.5.2), it is assumed that position fixes are
provided by a positioning system. Further, information on the forward speed u is
considered to be available, provided by the log, to enable gain scheduling of the
predictor and autopilot parameters (a separate speed filter for this purpose has
been described by Van der Klugt, 1987). Assuming information on the sway
velocity v to be determined from the position fixes, the measurement diagram of
Figure 5.2.b was obtained.

Because the variables mentioned here are, together with the ship’s heading w,
related to each other by the kinematic relations (Section 2.4), these kinematic
relations may be added to the measurement diagram as a-priori information. This
results in the filter structure of Figure 5.8, which has a filtering part (position and
forward speed, update gain K;) and a reconstruction part (current and sway speed,
update gain K.). In this figure x; is the ship’s position: x, = (x , ys)T , related
by the kinematic relations to the forward speed u, the sway velocity v and the
current speed u, = (uy , ucy)T.

The measurement noise of the positioning system and the log is given by v, and
v
Additional a-priori knowledge may be incorporated into the filter by assuming the
ship’s sway velocity proportional to the rate of turn (Section 2.3.3):

v = -yr (5.48)

Considering no a-priori information to be available on the forward speed of the
ship and the current influence, for filtering purposes these quantities are modelled
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Fig. 5.8 Structure of the position filter
as a constant, to which system noise is added to achieve adaptation.
Resuming, the relations for the process become:
process:
ship-fixed: forward speed u and sway velocity v
u(k) = u(k-1) + wu(k) (5.49)
y(k) = (k1) 4w (k) (5.50)
v(k) = -y(k) r(k) (5.51)
space-fixed: current speed in x and y direction
ucx(k) = ucx(k—l) + wcx(k) (5.52)
= - -+ /
ucy(k) ucy(k 1) t wCy(k) (5.53)
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kinematic relations: ship speed in x and y direction

usx(k—l) = u(k-1)cosy(k-1) - v(k-1)siny(k-1) + (5.54)
+ ucx(k-l)
usy(k—l) = u(k-1)siny(k-1) + v(k-1)cosy(k-1) + (5.55)
+ ucy(k—l)
position:
xs(k) = xs(k—l) + TS usx(k—l) (5.56)
ys(k) = ys(k-l) + TS usy(k-l) (5.57)

with the process state consisting of: u, v, ug , Ueys X5 and y .

The relations are written in this specific order to show how the ship-fixed and
space-fixed quantities are related to each other by the kinematic relations, which
yield the ship’s position.

The corresponding equations for the a-priori estimations of the position filter
become:

a priori:

ship fixed: forward speed and sway velocity

u(k) — G(k-l) (5.58)
y(k) = y(k-1) (5.59)
:r(k—l) = ;(k—l)g/(k-l) (5.60)

space fixed: current speed in x and y direction

ucx(k) ucx(k-l) (5.,61)

ucy(k) ucy(k—l) (5.62)
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kinematic relations: ship speed in x and y direction

asx(k-l) = G(k-l)cos@(k-l) - Q(k-l)sin@(k_l) + (5.63)
+ ch(k-l)
Gsy(k-l) = G(k-l)sin@(k-l) + G(k-l)cosQ(k-l) + (5.64)
+ ch(k-l)
position:
is(k) = ;S(k—l) + T Gsx(k-l) (5.65)
§S(k) = ;s(k-l) T Gsy(k_l) (5.66)

In this a-priori estimation scheme the estimations of the ship’s ratc of turn and
heading arc provided by the yaw filter, described in the previous scction.

After the a-priori estimation, the measurement is performed:

measurement:
wk) = ouk) v (k) (5.67)
xs(k) = xs(k) + Vx(k) (5.68)
ygtk)y =y k) 4+ v ) (5.69)

with u and ;555 the measured forward speed and the ship’s position, and v, ,
v, and v, the corresponding observation noise.

Finally, the a-priori estimations are updated on the basis of the prediction error
vector g(k):

_ - T - =\ T
g(k) = ((u - u), (xg- %)y (Y- ¥ o)) (5.70)

This yields the a-posteriori estimations:
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a posteriori:

speed:
G(k) = u(k) + Kzg(k) (5.71)
" = T
k = k + Ke(k 5.72
Z( ) Y (k) %,g( ) ( )
u (k) = u_ (k) + K_ e(k) (5.73)
~ - i
ucy(k) = ucy(k) + Kcyg(k) (5.74)
position:
» = T
x (k) = x (k) + K (k) g(k) (5.75)
~ _ = T
ys(k) = ys(k) + Ky(k) e(k) (5.76)

with the update gains K, Ky’ .... provided again by the Kalman-filtering equations,
which minimize the a-posteriori covariances p, , Py and so on.

The estimated sway constant may be normalized with respect to the ship’s length
L by:

A

v (k) = y(k)/L (5.77)

Resuming, the position filter is a Kalman filter for the estimation of a six-
dimensional state vector:

AT ~ ~ A A A

= (u .,y ,ucx,ucy, X ys)

where the subscript p stands for position filter.

The filter input consists of: (/r\, \]J\)T , with r the filtered rate of turn and y the
filtered heading, provided by the yaw filter.
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The required measurcments are:

~ 7 - o~ -
zp = (u,x.,y.)

The main parameter of the filter is the variance of the position-fix measurement
error, which is a characteristic of the positioning system. The variances of the
various system noise components have to be chosen in such a way that an
acceptable adaptation of the filter to changing current is obtained.

Computational aspects

In this and the previous section two separate Kalman filters have been derived for
the filtering of the ship’s heading (the yaw filter described in Section 5.3) and the
ship’s position (the filter described in this section). This resulted ‘in an on-line
estimation scheme of a seven-dimensional and a six-dimensional state vector on the
basis of the measurements (Figure 5.9).

To judge the computational complexity of these Kalman filters, the number of
elements of the covariance matrices, necessary for the calculation of the update
gains, is considered to be a good indication (see also Van der Klugt, 1987).
Because these covariance matrices are symmetrical, the number of elements
corresponding to an n-dimensional state vector is given by: n.(n+1)/2

For the 7-dimensional yaw filter this yields: Ny, = 7.(7+1)/2 = 28

and for the 6-dimensional position filter: N, = 6.(6+1)2 = 21

which yields a total amount of 28 + 21 = 49 elements.

If the two separate filters would be combined into one filter, this amount becomes:
13.(13+1)/2 = 91 , and thus also from a computational point of view the
advantage of making the separation has become clear.

5.5 The course-changing controller

5.5.1 Introduction

Although the course-changing controller is functionally separated from the actual
track predictor, there are several arguments to combine this unit with the yaw
filter, which is considered to be part of the track-prediction system. The principle

arguments are:

- minimization of the controller’s response to the wave influence by using the
filtcred signals, provided by the yaw filter, instead of the measurcd signals,
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Fig. 5.9 Yaw and position estimation by two separate Kalman filters

- adjusting of the autopilot parameters on the basis of the on-line identification
of the ship’s dynamics, performed by the yaw filter.

This combination of the yaw filter with the course-changing controller will be

discussed in Section 5.5.2

The integration of the yaw filter and the course-changing controller may be
extended on the basis of the model-reference techniques, discussed in Section 4.6.
In this way an integrated configuration is obtained for direct compensation of,
among others, non-linearities in the rudder to rate-of-turn transfer. This model-
reference approach will be discussed in Section 5.5.3.
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5.5.2 Combination of the yaw filter with the course-changing controller

The course-changing controller described in Section 3.3.2.2 consists of two gains

Kp , K4 and a rudder limiter &,,,,, according to Figure 5.10.

.
|

Kp 4@)—. I — SHIP g
& |
|
|
|
|

v

Fig. 5.10 Ship with a course-changing controller

The gains K, and K may be chosen in such a way that a desired closed-loop
response of the ship’s actual heading y to the autopilot-sctting y, is obtained. If
the transfer from rudder to rate of turn is approximated by the De Keizer model,
given by:

*

o

T %— r + r = K é (5.78)

L

a possible choice for K, and Ky becomes:

2 1 1f
_ T
K= o =2 (5.79)
28 FRK'T) -1
T -
L
Ky = =— B (5.80)

which relate the autopilot gains to the natural frequency w, and damping ratio
€ of the closcd-loop system (Van Amecrongen, 1982).

According to this pole-placement scheme, besides the ship’s forward speed u
(provided by the position filter), the ship’s normalized parameters K™ and T have
to be available. Moreover, for practical applications of the autopilot it is desirable
to minimize the controllers responsc to the wave influence, which causes high-
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frequency rudder motions (Van Amerongen, 1982).

From these demands it follows that the course-changing controller can be
combined in a natural way with the yaw filter, which provides an estimation of
the ship’s rate-turn, heading and parameters.

The on-line estimation of the parameters K and T, according to (5.27)-(5.28),
provides the course-changing controller with an indirect-adaptive nature.
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1//'_——. Autopilot SHIP
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Fig. 5.11 Course-changing controller in combination with the yaw filter

5.5.3 The model-reference approach

In Figure 5.11 the yaw filter is used entirely for identification purposes, on the
basis of which the parameters of the course-changing controller are adjusted. This
adjustment is based upon the first-order De Keizer model of the rudder to rate-
of-turn transfer. Because the parameters of this model depend on the ship’s actual
forward speed, part of the non-linear nature of the ship’s yaw transfer is
accounted for. However, additional non-linearities in the reversed spiral charac-
teristic as well as small time constants of the ship have been disregarded. This
will cause variations in the estimated parameters, which in principle could be used
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for dircet compensation according to the model-reference techniques discussed in
Section 4.6. For this purpose the estimated parameters have to be separated into
an average parl, yielding the paramecters of the reference model, and deviations
from this average value, used for direct compensation. By adjusting the parameters
of the course-changing controller on the basis of the reference-model parameters,
a configuration is obtained for compensating both long-term parameter deviations
and, if the adaptation is fast enough, short-term parameter deviations (causing
direct compensation).

In this way a combination with the track predictor also becomes more promising,
because this approach yields a more or less constant set of parameters for the
prediction model.

To modify the yaw-filter structure for model-reference control, the discrete
cquations for the process (ship) and the model (Section 5.3) arc reconsidered:

Process:

r(k) = a_(k-1)r(k-1) + bs(k-l)é(k-l) + N (k-1) (5.81)
a priort:

r(k) = ;S(k—l);(k-l) + gs(k-l)é(k-l) + ﬁw(k-l) (5.82)

To make the separation into long- and short-term parameter deviations, the
discrete parameters of the model are written as:

as(k-l) = ap + (as(k—l) - aR) = ap + Aas(k-l) (5.83)
bs(k—l) N bR + (bs(k-l) - bR) = bR + Abs(k-l) (5.84)
Nw(k-l) = 0 + (Nw(k-l) - 0) (5.85)

with ap and by "constant".
An equivalent form of the a-priori estimation may then be obtained by substituting
(5.83)-(5.85) in (5.82):

T(k) = apr(k-1) + bpé’(k-1) (5.86)

with the modificd rudder signal:
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8’ (k-1) 6(k-1) (5.87)

Aas(k~l)/bRr(k-l) * Abs(k-l)/bRé(k—l)

—+

-+

Nw(k-l)/bR

Eqgs. (5.86) and (5.87) can be regarded as a model-reference type formulation of
the Kalman-filter model for identification, where deviations of the estimated
parameters from the reference-model parameters ag and by (continuous-time: Ky
and If{ ) are added to the input signal of the reference model (Figure 5.12).
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Fig. 5.12 Model-reference type identification

For the model-reference control structure, the ship’s input signal &(k) in (5.87) is
modified to &”(k), in such a way that the reference-model input &(k) in (5.86)
transforms to (see also Figures 5.13 and 5.14):

6’ (k-1) = 6(k-1) (5.88)
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So, by (5.87) and (5.88):

d(k-1) 677 (k-1) (5.89)

~

i Aas(k—l)/bRr(k—l) ik Abs(k-l)/bRé”(k—l)

+ Nw(k—l)/bR

and thus:

&’ (k-1)

6(k-1) (5.90)

. Zas(k-l)/ﬁs(k-l)E(k-l) . Ags(k—l)/gs(k-l)é(k—l)
- Nw(k—l)/bs(k—l)

= &(k-1) - Nd(k-1)

This yields the modified filter structure of Figure 5.13, which by (5.88) is
equivalent to the model-reference control structure of Figure 5.14.

In this way deviations between the ship’s parameters ag and b, and reference
modcl parameters ap and bp arc compensated by an additional input signal Ad
for the ship.

Because the modification for model-reference control has been achieved by an
addition to the common input signal &(k) for both process (ship) and model
(Figure 5.13), the equations for the Extended Kalman filter for state and
parameter estimation remain unaffected.

Finally, the limitations on the rudder angle and speed, imposed by the steering
machine (Section 2.3.4), may be incorporated into this structure by using the actual
(measured) rudder angle as the input for the model, instead of the ordered rudder
angle. For the model-reference type presentation of Figure 5.14 this is equivalent
to subtracting the difference between ordered and actual rudder angle from the
input of the model, by which again the condition for identical input for process
and model is satisfied (Figure 5.15).

Resuming, the parameters of the course-changing controller may be adjusted on
the basis of the parameters ap and by of the "reference model”. Short-term
paramcter deviations are compensated by an additional rudder angle, according to
(5.90).

The determination of the reference-model parameters, especially in combination
with the predictor, will be investigated more explicitly in the next section.
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Fig. 5.13 Modified filter structure

5.6 The track predictor

In Chapter 3 a predictor structure was determined on the basis of a generalized
track description, derived from the kinematic relations. The determination of the
parameters of the resulting prediction model for the calculation of the predicted
track and the problem of track adaptation (to provide the predictor with the
desired closed-loop nature) will be discussed in this section.

5.6.1 Identification of the prediction model

The parameters of the prediction model are the gain K~ and the time constant T,
for the prediction of the normalized rate of turn r, and a constant y’, for the
prediction of the normalized sway velocity v’ (Section 3.3.4). Further, an estimation
of the ship’s forward speed u is required for the correct gain scheduling of the
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autopilot parameters.

The actual calculation of the predicted track is performed on the basis of the
initial state of the ship, which is assumed to be known. Under this assumption the
initial values of the different variables could be chosen zero for the comparison
between real and predicted track.

These relevant variables for the predictor consist of the ship’s heading y and
position X,Yys.

For an on-line estimation of the yaw-model parameters K* and T and the states
r and y, the yaw filter was designed (Section 5.3). An estimation of the ship’s
forward speed u, the sway constant y' and the position xy, is provided by the
position filter, described in Section 5.4.
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The combination of these filters with the predictor and course-changing controller
leads to the block-diagram of Figure 5.16.

In this figure the predicted track is calculated for a trial course setting y, and
rudder limit &.,., whereas the actual autopilot settings are given by y,. and &,,,.
The output of the track-prediction system for the trial settings consists of a set of
predicted positions {x,}, starting from the actual position.

5.6.2 Adaptation of the predictor

The adaptation of the track predictor to changing conditions and disturbances
(wind, current) may be divided into two parts:

- Adaptation of the prediction model parameters, to account for changing ship
dynamics. This kind of adaptation may be considered as a "long term"
adaptation to the changing (load) conditions. The aim of this adaptation is to
improve the initial prediction of the ship’s track, before the execution of a
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Fig. 5.16 Filters in combination with the predictor

manoeuvre, thus improving the navigator’s cognitive anticipation (the open-loop
element, discussed in Chapter 1).

Adaptation of the predicted track during the execution of a manoeuvre, due to
changing disturbances. Because this type of adaptation is performed on the basis
of the observed difference between what is expected (predicted) and what is

observed (measured), the navigator is assisted in his perceptive anticipation
(closed-loop clement).
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5.6.2.1 Adaptation of the prediction model

Because the parameter-estimation part of the yaw filter is of an adaptive nature
through the introduction of system noise, the structure of Figure 5.16 is also
adaptive with respect to the predictor.

As an extension of this approach the structure of Figure 5.16 may be combined
with the model-reference controller, described in Section 5.5.3. In this case the
filler model, which provides the parameters for the prediction model, has become
a reference model for the ship for the compensation of short-term parameter
deviations. As pointed out in Section 5.5.3, a reasonable choice for the parameters
of the reference model may be obtained by splitting the estimated parameters into
an average part ap and bp , which ensures a "long-term" adaptation of the
reference and prediction model, and a deviation from the average value Ags and
Ags , caused by, for instance, additional non-linearities. These parameter deviations
from the average value may then be translated by Eq. (5.90) into an additional
rudder angle AS for direct compensation (Figure 5.17).

The actual splitting of the estimated parameters into an average value and
deviations from this value may be performed by filtering the estimated parameters,
for instance for ag

aR(k) = aR(k—l) + KR(aS(k) - aR(k-l)) (5.91)

With the filter gain Ky the adaptation speed of the reference-model and thus the
prediction-model parameters can be adjusted, with extreme values:

- Kp = 0, which implies no update of the reference-model and prediction-model
parameters (yaw filter used entirely for compensation),
The short-term parameter deviations, used for direct compensation by (5.90),
then become:

Aas(k) = as(k) - aR(k) = as(k) - aR(O) (5.92)
with agp(0) the initial value of ap.
- Kg = 1 , which implies complete update of the reference-model and

prediction-model parameters (yaw filter used entirely for identification). In this
case the compensation part becomes:
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Aas(k) = as(k) - aR(k) = 0 (5.93)

and thus, by (5.90), A6 = 0

5.6.2.2 Track adaptation

The adaptation mechanism described in the previous section was intended to adjust
the parameters of the prediction model to changing ship dynamics. Further, the
estimated offset and short-term parameter deviations, due to wind influence,
unmodelled dynamics and non-linearities may be compensated by the course-
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changing controller of the model-reference type.

Although in this way the quality of the relatively simple prediction model is
improved, deviations between real and predicted track will still occur during the
execution of a manoeuvre. To account for these remaining deviations, a track-
adaptation mechanism has to be designed which by definition should be
independent of the prediction model and its parameters (otherwise this adaptation
mechanism should be classified under the adaptation methods for model
improvement).

For this model-independent adaptation of the predicted track, the general
kinematic relations described in Section 3.2.2 are reconsidered for the real (with
current influence) and predicted normalized x-coordinate of the track:

* * s*
*  * 8 * S . * ok € *
x (s ) = cosy do - siny v do + cosy do (5.94)
s 0 0 0 c ¢

* *

*s™y ° do” " *do" (5.95)
X = CcOSs - sin v c .
P oJ. *p of Yo Tp :

with . the current direction.
From these general relations it may be concluded that the principle causes of
deviations between real and predicted track are:

- heading (rate-of-turn) deviations, caused by, for instance, wind influence,
- position deviations, caused by current influence.

These principle causes of deviations will be considered in more detail.

- Rate-of-tum deviations

For the direct adaptation of the predicted track, due to rate-of-turn deviations, a
multiplicative relation between the real and predicted rate of turn is assumed.
Under this assumption a simple, but efficient geometrical update mechanism for
the predicted track will be shown to be feasible.

Thus it is assumed that the real and the predicted normalized rate of turn roas
a function of the normalized travelled distance s are related to each other by:

*s™y K r (s) (5.96)
r S = r S .
PP
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with K_ a constant.
Noting that r'(s’) = dy/ds" , this has the following effect on the kinematic
relations (forward-speed part, x-coordinate):

* *

* * _ S c * *) * i * 5 7

xsu(s ) = OJr cos{ o[ Kprp(cz)dcz} c (5.97)
* *

* * _ s c * * d %* d * 5.98

xpu(s ) = o[ cos{ OJ‘ rp(cz) 02} (o) (5.98)

which is difficult to interpret in terms of track adaptation.

To gain more insight into the effect of (5.97)-(5.98) on the difference between real
and predicted track, these equations are transformed to the course domain by
substituting:

ds = —dy = =7 dy (5.99)

and r has to be considered as a function of the new independent variable .
This yields for the kinematic relations:

* ¥ 1 N 1
xsu(w = OJ\ cose K——;—— de = T OJ\ cos¢p — de (5.100)
olpl® P I
* Y 1
X 0 = cosp —5— do (5.101)
P 0 r(9)

The relation between x, and x,, becomes:

*
X =
su

*
Xpu (5.102)

N|r—4

p

and in an analogous way for the y-position:



136 An adaptive track predictor for ships

*
Ypu (5.103)

«
1}
W‘l‘-'

P

This implies that a direct adaptation mechanism for rate-of-turn deviations is
provided by scaling the forward-speed part of the predicted track with a factor
1/Kp.

The sway contribution to the real and the predicted track is given by:

* v, v*
xsv(\y) = - J sinp — de¢ (5.104)
0 r
*
* v ¥
xpv(\y) = - [ sing —g deo (5.105)
0 r
P
Substitution of the drift equations:
* * %
vV = Y F (5.106)
¥ = et (5.107)
vp = Yprp :
in (5.104)-(5.105) yields:
* v *
x  (y) = J sing y de (5.108)
sV 0
* (¢) = Yo » d (5.109)
va Y OJV sing Yp @ .

According to this result, the sway contribution to the predicted track does not
need to be updated for rate-of-turn deviations, because this contribution only
depends on the estimated sway constant y’, an estimation of which is provided by
the position filter.

For an on-line estimation of the scaling factor Kp , it 1s assumed that the
predicted normalized rate of turn r;, is available as a function of the predicted
heading y, (which could be realized as a look-up table). The estimation of K
may then be written as the determination of a constant, observed through the
predicted normalized rate of turn:
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Kp(k) = Kp(k—l) + wk(k—l) (5.110)

* * A
r (k) = rp(\p(k)).Kp(k) + Vk(k) (5.111)

with system noise w; to achieve adaptation and observation noise v, to state the
uncertainty in the ship’s estimated normalized rate of turn:

A~

(k) = Ltk
(k)

Lo S

~—

.L (5.112)

e

The estimations T (k) and § (k) are provided by the yaw filter and the estimated
forward speed by the position filter.

The filter structure for the on-line determination of K_ is presented in Figure
5.18. In this figure K, is the update gain for the track-scaling factor.

x>

Fig. 5.18 Estimation of track-scaling factor Kp
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- Position deviations:

As described in Section 3.4.2, the effect of uniform current may be separately
added to the predicted track in the time domain by:

tA

xp(t) = xpu(t) + xpv(t) + o[ ucxdr (5.113)
Tx

yp(t) = ypu(t) + ypv(t) + 0[ ucydr (5.114)

with a forward-speed contribution XpwYpu » @ sway-speed contribution x5y, and

l,l\v:x, ch the on-line estimated current speed in x, y direction, provided by the
position filter.

The corresponding discrete equations are (again using an Euler approximation):

x_ (k) + k.TSuC (5.115)

xp (k) pu pv x

]
»
-
§-

pu Fatdd ¥ Bl Mg (5.116)

n

<
~
4

k
}’p( )

which constitute an additive update mechanism for the predicted track.
The overall structure for track adaptation is shown in Figure 5.19.

5.7 Review

In this chapter the techniques for optimal measurement filtering, presented in
Chapter 4, have been applied to the track-prediction problem. This has resulted
in the following filters:

- A Kalman filter for the filtering of the wave motions and an on-line
identification of the yaw-model parameters (Section 5.3). For this filter the
following signals have to be available:

- the actual rudder angle 6,
- the ship’s rate of turn r,
- the ship’s heading y.

- A Kalman filter for the filtering of the ship’s forward speed and position and
estimation of the current influence (Section 5.4).
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Fig. 5.19 Track adaptation: overall structure

The filter requires the following measurement information:
- the ship’s forward speed u,
- the ship’s position X, Y,

Further, in Section 5.5 an extension of the course-changing controller has been
proposed on the basis of the model-reference approach for direct adaptive control
in combination with an Extended Kalman filter (based on the concept discussed
in Section 4.6).

This allows a direct compensation of short-term parameter deviations.

By combining the on-line identification, performed by the yaw filter, with the
predictor (Section 5.6.1), the prediction model is provided with an adaptive nature
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(Section 5.6.2.1) to deal with, for instance, changing ship dynamics. In this way the
quality of the prediction model and the resulting initial predicted track is
improved.

Finally, in Section 5.622 a track-adaptation mechanism has been derived by
reconsidering the general kinematic relations, presented in Section 3.2.2. On the
basis of this approach the analysis of the track-adaptation problem could be split
into a separate analysis for rate-of-turn deviations and position deviations. This has
resulted in a scheme for direct adaptation of the predicted track during the
execution of a manoeuvre to the changing conditions, without an explicit need for
the complete recalculation of the prediction on the basis of the dynamic prediction
model.
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6 REALIZATION AND RESULTS

6.1 Introduction

In this chapter the realization of and the results obtained with an experimental
track-prediction system are described. In this experimental set-up the different
algorithms for identification, control and prediction, described in the preceding
chapter, are implemented.

The experiments performed consist of:

- laboratory experiments to evaluate the performance of the algorithms,

- a manocuvring-simulator experiment at the TNO Institute for Perception in
Soesterberg. This experiment was carried out to evaluate the performance of the
track predictor as a manocuvring aid for the navigator.

The results of the various experiments will be presented after a global description
of the chosen hardware and software configurations for the implementation of the
experimental track PREdiction SYStem (PRESYS).

6.2 Implementation of PRESYS
6.2.1 Hardware

To determine the contribution of the track predictor to the navigational
performance, a user interface had to be developed. On the functional level this
user interface may be subdivided into an input part (console), for the input of
user commands, and an output part (display), for the presentation of the predicted
track. This yields the functional diagram of Figure 6.1, for the overall track-
prediction system.

In this diagram the "Ship I/O" part stands for all the interaction to be performed
between the ship’s sensors and the navigation bridge.

In correspondence with this functional diagram a hardware configuration was
chosen according to Figure 6.2. The configuration consists of a PDP 11/73
minicomputer for the implementation of the different modules for control and
prediction, and an IBM PC/AT for the intelligent user interface.
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Fig. 6.2 Hardware configuration of PRESYS

The PDP 11/73 is provided with a hard disk and two floppy disk drives for data
storage. For the interfacing to the ship’s sensors the system is connected to the
special-purpose ADIBUS interface. This interface consists of several A/D and D/A
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converters and I/O ports for digital communication,
The IBM PC/AT is provided with a Professional Graphics Controller (resolution
480 x 640) in combination with a Professional Graphics Display for the
presentation part and a special purpose user’s console for the user input. For the
typical man/machine related aspects of the user-interface design, the experience of
the TNO Institute for Perception was called upon.

6.2.2. Software
The different tasks to be carried out by PRESYS on a real-time basis are:

- filtering and identification:
on-line filtering of the measured signals and identification of the prediction-
model parameters, according to the discrete filtering and identification
algorithms described in the preceding chapter,

- control:
automatic course changing and course keeping,

- prediction:
calculation and adaptation of the predicted track,

- data logging:
monitoring and storage of signals of interest on hard disk.

Further, the intelligent user interface (IBM PC/AT) monitors the input of user
commands and is used to display the predicted track.

To realize these different tasks, the PDP 11/73 is provided with the multi-tasking
operating system RSX 11M +, which has special facilities for real-time applications.
In this way the different functions could be realized as separate FORTRAN tasks
which are scheduled periodically. This enables an on-line substitution of, for
instance, different prediction schemes to make a comparison between different
algorithms. In addition, switching to an external autopilot or from an internal ship
model to a real or externally simulated ship is quite casy. For an eventual final
version of the track-prediction system, however, it will be more efficient to
combine several modules into one task. In this single task the different calculations
for filtering and control may be rearranged, not according to function but
according to primary (before the rudder output) and secondary (after the rudder
output) calculations. In this way the time delay of the control loop is decreased.
Typical values of the different periods range from 0.4 seconds for the yaw filter
and controller to 2 seconds for the position filter and the predictor.
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The software of the IBM PC/AT is also mainly realized in FORTRAN, apart from
some low-level communication routines for the PDP 11/73 and the user’s console.
Because all the functions connected with console handling and graphic presentation
are performed by this intelligent user interface, the data exchange between the two
computer systems is reduced to a minimum and can be performed on the basis
of a serial RS232 link.

For the presentation part of the track predictor an integrated navigation display,
as developed by the TNO Institute for Perception, was taken as the starting point.
On this synthetic display, which was designed to enable one-man-bridge steering
(Boer and Schuffel, 1985; Van Breda and Van de Kooij, 1985), navigation
information is integrated with manocuvring information.

For the combined presentation the total information on the display is divided into
different categories, to which the prediction information is added. For the
presentation on a colour display, the colours were chosen according to these
different types of information.

More information on the realization of the user interface will be given in Section
6.4, where the manoeuvring-simulator experiment is described.

6.3 Simulation results
6.3.1 Simulation set-up

To test the experimental track-prediction system, various simulations were
performed in a laboratory environment. These simulations range from:

- Simulations with the interactive simulation program PSI, to verify the algorithms
for identification, prediction and control which were derived in Chapter 5 on
the basis of the theory.

- Simulations with externally simulated dynamics of a ship, to test the PRESYS
software and hardware (interfaces). The external ship model consisted of an
analog part, for the simulation of the yaw dynamics, and a digital part for the
calculation of the ship’s position. The simulations were performed as a final test
before the system was moved to Soesterberg for the experiments on the
manoeuvring simulator.
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For the simulations the disturbances were realized as:

- Wind: additional yaw moment, depending on the relative wind angle.

- Waves: high-frequency signal, added to the rate-of-turn signal according to
Figures 2.13 and 2.14.

- Current: additional displacement, calculated from the current speed and

direction, according to (2.71)-(2.72).

6.3.2 Performance of the yaw filter

To demonstrate the performance of the yaw filter as a combined state and
parameter estimator, a zig-zag trial was performed with the simulated dynamics of
the "R.O.V. Zeefakkel" (see also Section 3.5). In Figure 6.3 the results for the
combined estimation scheme are compared to those obtained with a Parallel
MRAS identification structure. For this simulation no a-priori knowledge on the
parameters was assumed. The performance of the parameter-estimation part may
be judged on the basis of the criterion function Ipi

* *
J = [ (IS‘_K)2+(u)2 dt (6.1)
0

In Figure 6.3 the following signals are shown:

T the ship’s rate-of-turn signal with wave influence,
T the filtered rate-of-turn signal,
Kt the normalized parameters,
SE Ax . .
K,t the estimated normalized parameters,
Jp  the parameter criterion function, integrated with a time constant of 10

seconds instead of the pure integration as defined in Eq. (6.1)

To demonstrate the model-reference control application of the Extended Kalman
filler, in Figure 6.4 a second simulation was performed with the simulated
dynamics of a container vessel with a length of 200 m. and a cruising speed of 19
knots. The steering machine was simulated as described in Section 2.3.4, with a
maximum rudder speed of 2.5 degrees/second.

The direct compensation was switched on after 250 seconds. This direct
compensation forces the ship to follow the response of the reference model, analog
to the principles of discrete MRAC discussed in Chapter 5. The parameters of
the reference model are slowly adapted to the ship’s dynamics by averaging the
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Fig. 6.3 Performance of the yaw filter

estimated parameters of the yaw filter, with initial values K'/4 and T'/4 (see also
Section 5.6.2.1). In this way the prediction model, which receives its parameters
from the reference model, finally becomes optimally adjusted to the ship’s
dynamics. This can be seen from the fact that towards the end of the simulation



6.3.2 Performance of the yaw filter 147

almost no additional rudder angle (the difference between & and &p) is required
to compensate for the differences between ship and reference model.

To give an impression of the quality of the yaw prediction, a criterion function J,
is introduced. This criterion function is based on the principles of track
correspondence, discussed in Chapter 3:

*

* S % * k2 %
J (s ) = [ (r (6 ) - r (o)) do (6.2)
r 0 S %

with rs‘(o’) and rp'(cs‘) the real and prcdictf:d normalized rate of turn as a
function of the normalized travelled distance o .

For a constant predicted speed Uy, the criterion function may be evaluated as a
function of the time by:

T w * % 2
J = J\ (rs(t) - r (o (t)/U_))” dt (6.3)
0 P p

In Figure 6.4 the following signals are shown:

l

r the ship’s rate-of-turn signal with wave influence,
I, the predicted rate-of-turn signal,
& the actual rudder angle (compensation included after t = 250 seconds),
6p the predicted rudder angle (without steering machine),
J.  the criterion, integrated with a time constant of 100 seconds,
Kt the ship’s normalized parameters,
K,{ ,TI{ the normalized parameters of the reference model and the prediction

model.

The performance of the yaw filter in combination with the course-changing
controller, described in Section 5.5, is illustrated in Figure 6.5. In this simulation
some course changes were performed in the presence of wind. The initial values
of the reference-model parameters were again chosen as K'/4 and t'/4. Becausc
the autopilot parameters Kp and Ky are calculated from these parameters by
(5.79)-(5.80), the course-changing controller is initially not well adjusted to the
ship’s dynamics. This is clearly demonstrated by the first course change. Further,
the rudder signal is rather noisy because the measured rate-of-turn and heading
signals were used for the autopilot. After the first course change both the filtered
signals were used and the direct compensation was switched on (at t = 350
seconds). The direct compensation again gives a great improvement of the quality
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of the yaw prediction, which can be seen by comparing the real and the predicted
course error. The long-term adaptation of the prediction-model parameters to the
ship’s dynamics is illustrated by comparing the different course changes and the
amount of rudder compensation to each other.
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To prevent the drifting of the parameters because of the wave influence, the
parameter adaptation is only switched on during the course changes. The offset
estimation, which is used for compensation of the wind influence, is permanently
switched on.

In addition to the signals shown in Figure 6.4, the real and predicted course errors
€ and € are shown.

6.3.3 Performance of the position filter

The filtering of the ship’s observed position and the reconstruction of the current
influence from the position fixes is illustrated by Figure 6.6.a,b. The zig-zag trial
was performed with a hydrodynamic model of a container vessel. The position fixes
were provided at an interval of 2 seconds with a standard deviation of 50 m.
(which is more than the standard deviation of a satellite navigation system such
as the Global Positioning System G.P.S.).

The adaptation of the filter to a changing current influence is demonstrated by
"switching off' the current influence at t = 430 seconds. The current speed and
direction were chosen 3 knots and 30 degrees.

The estimation of the forward speed was tested by changing the cruising speed
from 19 knots to 10 knots at t = 760 seconds.

For the estimation of the drift speed, the sway velocity was modelled proportional
to the rate of turn, as described in Chapter 5:

A% ~ A~

vy .L.r =y.r (6.4)

with ? the cstimated sway constant and L the length of the ship.

In Figure 6.6.a the following signals are shown:

Ues Uy the current speed in x and y direction,

Uy Uy the estimated current speed in x and y direction,
? the estimated sway constant,

u v the ship’s forward speed and sway speed,

u the ship’s observed forward speed,

u, v the estimated forward speed and sway speed.
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Fig. 6.5 Yaw filter in combination with the course changing controller
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Fig. 6.6.a Estimation of the different speed components

151

The corresponding actual, observed and filtered tracks are presented in Figure

6.6.b.
In this figure

ke okt

is the observed track,
is the filtered track,
is the ship’s actual track.
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Fig. 6.6.b Observed and filtered track

6.3.4 Track prediction and adaptation

The predicted track is calculated on the basis of the estimated parameters of the
yaw transfer, provided by the yaw filter. This initial predicted track is adjusted to
rate-of-turn (wind influence) and position deviations (current influence) by the
track-adaptation mechanism, described in Section 5.6.2.2. The calculation of the
final predicted track therefore consists of three parts:

- Calculation of the initial prediction on the basis of the prediction model of the
ship’s dynamics (without current influence and disturbances). This yields the
track xy(i), i = 1,.,N,, with N the number of predicted positions.
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- Scaling of the predicted track for rate-of-turn deviations:
Ep(i) = _)go(i)/Kp y 1= LuNy
with the scaling factor Kp provided by the on-line estimation scheme, described
in Section 5.6.2.2.

- Addition of current influence on the basis of the estimated current speed in X
and y directions, provided by the position filter:

0 = 2,0 + LiT, i = 1,...N,

To demonstrate the track adaptation mechanism, two course changes of + and -
120 degrees were carried out under the influence of wind and current, with the
direct compensation of the course-changing controller switched off.

The on-line estimation of the track-adaptation factors is presented in Figure 6.7.a
for the two course changes.
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Fig. 6.7.a Estimation of the track adaptation factors

In Figure 6.7.a the following signals are shown:

Uge Uy the current speed in x and y direction,
g Upy the estimated current speed in x and y direction,
K the estimated track-scaling factors for the 2 course changes.
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The determination of the adapted predicted track from the initial prediction and
the adaptation factors for wind and current is illustrated in Figure 6.7.b.

In this figure

X is the ship’s observed track,
X is the ship’s actual track,
X is the predicted track, adapted to wind and current influence,
X is the initial predicted track,
X is the predicted track, adapted to the wind influence.
1700 Xs

-1600 0 _x[—m]> 1600

Fig. 6.7.b Track prediction and adaptation
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6.4 Experiment on the manoeuvring simulator
6.4.1 Introduction

In 1985 investigations were carried out by the TNO Institute for Perception,
regarding the feasibility of one-man-bridge ship steering. For this purpose a bridge
set-up was designed with all the information, essential to manoeuvring and
navigation, presented in an integrated way to the navigator (Van Breda and Van
de Kooij, 1985). This bridge was called Bridge 90 (The bridge of the 1990’s).
The integrated information presentation consisted mainly of:

- A synthetic display (NAVDIS) on which both manoeuvring (heading, rate of
turn, speed and rudder, according to Figure 6.8, part I) and navigation
information (radar information concerning the ship’s surroundings and other
traffic and the planned track, according to Figure 6.8, part II) was presented.

- A Semi-Automatic Chart table, consisting of a conventional chart table on
which the actual position of the ship was plotted automatically by means of a
light dot.

An overview of the overall Bridge 90 mock-up is presented in Figure 6.9

In order to compare this Bridge 90 condition with one person on the bridge,
with the conventional bridge condition with two people, a simulator experiment was
set up, called the Bridge 90 experiment. For this purpose several tracking tasks
were designed in a balanced way (Figure 6.10) under the following conditions:

presence of other traffic

- presence of disturbances such as wind and current

- presence of an outside view

presence of an extra monitoring task to measure the mental work load
of the subjects under the different conditions.
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Fig. 6.8 The integrated navigation display NAVDIS

The experiment was carried out with 18 navigators who were instructed to sail the
planned tracks ("reference tracks" in control terms) as accurately as possible. These
tracks were to be sailed with a 40.000 DWT container vessel at an instructed
speed of 19 knots.

A-posteriori analysis of the measured data, the results of which include the mean
deviation of the reference track, showed that the subjects who had sailed under
the Bridge ’90 condition scored better than those who sailed under the
conventional bridge condition (Boer and Schuffel, 1985).

In addition to this main conclusion, it became evident that the presence of an
outside view was irrelevant for this kind of tracking experiments.

To evaluate the contribution of the experimental track-prediction system to the
navigational performance it was decided that the track-predictor experiment could,
just as the Bridge ’90 experiment, be set up as a tracking experiment with the
conditions adapted to this specific situation:
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Fig. 6.9 The Bridge 90 mock-up (Van Breda et al., 1985)

- absence of other traffic
- absence of an outside view
- presence of wind and current

The outcome of the experiment under these conditions should give a clear insight
into the contribution of the track predictor to the accuracy with which the

reference track could be sailed.

Before presenting the outcome of the actual simulator experiment (see also
Passenier, 1988; Van Breda and Schuffel, 1989), the integration of the track-
prediction system with the ship’s bridge, according to Figure 6.9, will be described.
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Fig. 6.10 The reference tracks for the Bridge 90 experiment
This integration consisted of:

- Integration of the prediction system with the user’s consoles for navigation and
manoeuvring on the ship’s bridge (user input).

- Integration of the prediction information with the integrated navigation display
of Figure 6.8 (user presentation).

6.4.2 Integration of the track predictor with the ship’s bridge

The predictor input, which consists of settings of the trial heading and rudder
limit, is closely related to the inputs of the course-changing controller. The
predictor output (the predicted track) is to be related to the ship’s surroundings
and the planned track. This suggests the use of the predictor in an integrated
environment; integration with respect to manoeuvring and navigation information.
A combined user console for the trial manoeuvre settings as well as for the actual
autopilot settings is a logical choice, whereas the predicted track is superimposed
on an integrated display, as discussed in Section 6.4.1.
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According to this integrated approach, the predictor could be implemented in the

Bridge 90 mock-up according to Figure 6.11.
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Fig. 6.11 Integrated Prediction and Navigation set-up

In this figure

L
with

is the integrated Manoeuvring/Navigation/Prediction Display

- manoeuvring information: heading, rate of turn, rudder and forward

speed (1.),

- navigation information: the ship’s surroundings and the planned track (ii.),
- prediction information: predicted track superimposed on the planned

track (iii).
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II. is the user console for the display consisting of:
- Range input: 124 or 8 nm,
- variable range marker (VRM) input which enables the plotting of
targets on the radar screen,
- On/Oft switches for the various markers (VRM, heading and trial
heading marker).

II1. is the combined user console for the predictor and the autopilot.
The heading selector, which is combined with a compass read out,
is used together with the rudder limiter as the predictor input
to calculate the predicted track, becoming the real autopilot
settings after pressing the EXECUTE push button.

The logical consistency of this approach manifested itself during the experiments
when the subjects had hardly any difficulties in using the predictor in combination
with the autopilot during the different tracking tasks.

A genceral impression of the integration of the track predictor with the NAVDIS
and the user’s console in the ship’s bridge and the interfacing with the
manoeuvring simulator is given in Figures 6.12, 6.13 and 6.14.

More detailed information can be found in Appendix A.
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Fig. 0.12 Integration of the predictor with the ship’s bridge
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Fig. 6.13 The track-prediction computer

6.4.3 Set-up of the experiment

Based upon the experiences with the Bridge 90 experiment it was decided to
design 6 tracks which were to be sailed by 12 experienced navigating officers in
active service, in the age from 25 to 30.

The tracks were to be set up in such a way that the manoeuvring tasks would vary
from easy to difficult, to get an indication of the contribution of the predictor for
the different tasks.

In each track 5 course changes were incorporated, varying from 15 degrees (easy)
to 105 degrees (difficult). The distance between the waypoints varied from 2 to 2.5
nm., to enable the ship to get a new "steady state" between the course changes.
The course changes were divided randomly over the waypoints of the 6 tracks,
according to table 6.1.a,b:
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Fig. 6.14 The manoeuvring-simulator computers

Course change: Cl: 15 degrees
C2: 30 degrees
C3: 45 degrees
C4: 75 degrees
CS: 105 degrees

Table 6.1.a The different course changes
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Tracks: T1: C4 C3 C2 C5C1
T2: C1 C4 C5C2C3
T3: C3 C1 C5C4C2
T4: C5 C2 C4 C1 C3
TS5: C2 C1 C3 C4 C5
T6: C3 C5 C1 C2 C4

Table 6.1.b The course changes divided over the fracks

To these tracks 9 buoys were added to enable the subjects to verify their position
by means of the VRM.

The disturbances were chosen to be constant for each scenario according to Table
6.2:

Speed Direction
Current: 2.5 knots South West
Wind: 7 m/s North West

Table 6.2 The disturbances

Figure 6.15 gives a combined overview of the 6 scenarios (North up) which were
located in the same area in which the Bridge 90 experiments were performed (see
Figure 6.10).

To determine which types of information should be weighed against each other,
the following demands have to be satisfied:

- The effect of the predictor should become clear in an "undisturbed" way.
This implies that when 2 conditions are compared, one of them with the
assistance of the track predictor, other factors which could influence this
comparison (such as the type of presentation of the manoeuvring information,
presence of the chart table) should be kept constant. In this way a mixed effect
in the outcome of the comparison is avoided.

- The conditions should be realistic, which means realizable on a real ship in the
near future.

The integration of the track predictor with the ship’s bridge is described in Section
6.4.2 (integration with the autopilot, integration with radar information). It can be
concluded that the most realistic environment in which the track predictor can
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Fig. 6.15 Overall picture of the scenarios

be implemented is an integrated one, according to the type of Bridge 90.
Therefore the starting point for the design of the different conditions has been the

following;
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- Integrated navigation display NAVDIS present, displaying the ship’s manoeuvring
and navigation (planned track) information.

- Semi-Automatic Chart table present, receiving its information from an integrated
positioning system on board the ship (based, for instance, on the satellite
navigation system G.P.S.). The chart table is intended to give the navigator an
overall view of the manoeuvring area and can be used as a back-up system by
plotting NAVDIS targets with the aid of the Variable Range Marker.

Because for this reference condition the planned track is made visible, the
navigation method is comparable to a simplified version of parallel indexing (Shell,
1975; Spaans, 1979).

A good alternative for the track predictor could be the presentation of the own
ship’s ground-speed vector (Sheridan, 1966) on the NAVDIS, which can be
regarded as a linear predictor (extrapolator), into which no rate-of-turn information
is incorporated.

This condition surely is interesting both from a scientific and an economic point
of view:

- Scientific viewpoint:
What is the extra effect on the navigational performance of adding rate-of-turn
information to this "linear predictor”, resulting in the actual track predictor?

- Economic viewpoint:
ARPAs with presentation of the ship’s ground vector already exist and would
be a less expensive solution than the track predictor.

Together with the reference condition of simplified parallel indexing, 3 conditions
A,B and C were obtained to be evaluated on the basis of the simulator experiment
(Figure 6.16.a,b,c):
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Fig. 6.16.a Condition A : simplified parallel indexing
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Fig. 6.16.b Condition B : ground-speed vector
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Fig. 6.16.c Condition C : track predictor

The 3 conditions were divided over the 12 subjects according to table 6.3, which
was set up in such a way that undesirable learning effects would cancel out:

A BCBCACAB: subject 1+2
BACACBCB A : subject 3+4

BCACABA B C: subject 4+6
A CBCBAB A C: subject 7+8

CABABCBC A : subject 9+10
CBABACACB: subject 11+12

Table 6.3 Division of the 3 conditions over the subjects
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6.4.4 Results

The experiments were carried out with a simulated (hydrodynamic) model of a
40.000 DWT container vessel, with a length of 226 m. This model will from now
on be referred to as the "ship". More information about the dimensions of the
ship, which had also been used for the Bridge ’90 experiment, can be found in
Appendix B.

Before carrying out the actual experiment (described in Section 6.4.4.2), first some
preliminary tests (Section 6.4.4.1) were performed.

6.4.4.1 Preliminary tests

As a first test, the parameters of the ship’s yaw dynamics were identified. This
yielded the parameters of the reference model on the basis of which the autopilot
and predictor parameters were calculated during the actual tracking experiment.
The on-line identification was performed by the yaw filter on the basis of a zig-
zag trial with a rudder deflection from +15 to -15 degrees.

The corresponding results are presented in Figure 6.17, which was realized by the
Signal Monitor Program SMP.

In this figurc the following signals are shown:

IR the rate-of-turn signal of the reference model,
r the ship’s rate-of-turn signal,

) the actual rudder angle,

K',T" the estimated normalized parameters,

N the estimated offset.

w

Comparing the ship’s response to the response of the parallel reference model
gives a good indication of the performance of the parameter estimator. The
parameter estimator has converged after approximately 5 minutes, resulting in (at
a cruising speed of 19 knots and a ship’s length of 226 m):

* *

K =1.6 T = 1.7

K

K'.U/L = 0.07 T = 1T.L/U = 45 sec.

During the actual experiment the adaptation of the reference-model parameters
was switched off. By using direct compensation the ship is forced to follow the
response of the reference model.
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Fig. 6.17 Identification of the yaw dynamics

To test the behaviour of the autopilot with gain scheduling on the basis of the
reference-model parameters, two course changes of +90 and -90 degrees were
carried out for a rudder limit of 15 degrees. The results for the ship’s rate of
turn and course error are presented in Figure 6.18.
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In this figure the following signals are shown:

r the ship’s rate-of-turn signal,
&  the actual rudder angle (direct compensation included),
€ the course error.

0 t + } + 3 $ : 3
’ flsec] 600

Fig. 6.18 Performance of the course-changing controller
The corresponding ship’s path for the course change of 90 degrees is presented

in Figure 6.19. In this figure the influence of the drift angle on the ship’s track,
due to the ship’s sway velocity, is also made visible.
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Fig. 6.19 Ship’s path for a course change of 90 degrees

The reconstruction of the sway velocity from the position fixes by the position
filter is illustrated in Figure 6.20 for a zig-zag trial.

In this figure ¥ is the estimated sway velocity on the basis of the estimated sway
constant y .

From Figure 6.20 it may be concluded that the estimated sway constant ? does
not converge so well, probably due to unmodelled dynamics in the transfer from
rate of turn to sway velocity. For the tracking experiment ¥ was fixed to a value
of 2.26 (the dashed line in Figure 6.20), using the current-estimation part of the
position filter to account for sway deviations between ship and model.

The current estimation by the position filter, and the resulting adaptation of the
predicted track on the prediction display by the track-adaptation mechanism, were
tested by switching on a strong current of 6 knots, direction 210 degrees, during
sailing. The results are presented in Figure 6.21.a,b.
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Fig. 6.20 Estimation of the sway velocity v

By using the heading selector, which is coupled to a trial marker on the NAVDIS,
the navigator can directly determine the necessary course change to compensate
for the current influence from Figure 6.21.b.

After the identification, autopilot and track-adaptation tests, a complete reference
track was sailed by a nautical expert, who was consulted on the experiment. The
track was sailed with the assistance of the predictor at a cruising speed of 19
knots (Figure 6.22.a,b). At the third course change additional current was switched
on, activating the track-adaptation mechanism to enable compensatory actions by
the navigator. Just before the last course change an evasive action was undertaken
at a maximum rudder value of 40 degrees, after which the track predictor was
used to get back on the reference track. This clearly illustrates the fact that the
predictor is a manoeuvring aid to the navigator, instead of a track-keeping
autopilot.
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In Figure 6.22.a the course-error, rate-of-turn and rudder signals are presented for
this trial. In Figure 6.22.b the reference track and the actual sailed track are
presented. The compensations, carried out by the navigator after each course
change, are a result of the track adaptation caused by the imperfect prediction of
the sway velocity. Further, the estimated current influence, used for the track-
adaptation mechanism, is recorded.

|

|

|

|

R |
Ucx T T |
1 |
[m/sec] 0 :
I

|

I

|

|

8...
[m/sec] 0f , I
l |
3 I |
0 ' } " Ly ' . - - } t
0 2900

tlsec]

Fig. 6.22.a Recorded signals
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Fig. 6.22.b Reference track versus sailed track

6.4.4.2 Results of the tracking experiment

After consulting an expert in radar-assisted navigation from the "Hogere
Zeevaartschool Vlissingen', some final alterations were carried out regarding the
information presentation. At this stage the system became ready for the actual
tracking experiment.

The 12 subjects were instructed to sail the reference tracks as accurately as
possible, at a cruising speed of 9.5 m/s or 19 knots (corresponding to the Bridge
90 experiment). The rudder limit was fixed at 10 degrees, resulting in a nominal
rate of turn of approximately:

U 9.5
i =K, — . & = 1.6 . — . 10 . 60 = 40 deg/min
L 226

The rudder limit was fixed to produce results which could be compared to each
other, which would not be the case if the subjects were allowed to choose the
rudder limit, and the resulting turning-circle diameter, according to their own
preference.
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To get a realistic comparison, information was provided before hand regarding the
ship’s rate of turn, forward speed and the resulting turning circles at different
rudder angles and cruising speeds. Also information was given about the values of
the disturbances (wind and current speed and direction).

In total 9 tracks were sailed by each subject, resulting in 9 x 12 = 108 tracks for
the experiment. (Each track took approximately 40 minutes to sail.)

To give a visual impression of the obtained results, for each of the 3 information
conditions A,B and C a representative track was determined, based on the mean
deviation between the actual and the reference track. These results are presented
in Figure 6.23.a,b,c, where the figure subscripts a,b and c¢ correspond to the
information conditions A,B and C.

To determine the accuracy for the sailing of a particular track, the root-mean-
square (RMS) error with respect to the reference track was calculated according
to (Poulton, 1974; Boer and Schuffel, 1985):
iw 2
Lo o - )
N

In this equation (X, - M,) is the perpendicular lateral distance between the ship’s
position X; and the reference trajectory M; at interval i, with a total of N intervals
(the data was sampled every 2 seconds). The RMS error was corrected for the
ship’s inherent manoeuvrability for the different course changes. This means that
the ship’s turning dynamics was accounted for in the calculation of the distance
between ship and reference trajectory.

Averaging the RMS error over the 36 tracks which were sailed for each of the 3
conditions A,B and C yields a quantitative result which is a good basis for
carrying out the comparison.

RMS error = J (

) (6.5)
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The results for the mean RMS error for the information conditions A,B and C are
given in Table 6.4:

Condition RMS [m]
A (parallel indexing) : 117
B (speed vector) : 95
C (track predictor) : 33

Table 6.4 Mean RMS error for
the 3 conditions

with a very high level of significance (p < < .01).

The level of significance of the effects for the 3 conditions was determined by
performing an analysis of variance on the RMS error (Van Breda and Schuffel,
1989).

The results of Table 6.4 are evidence that the track predictor makes a significant
contribution to the accuracy with which a reference track can be sailed: a decrease
of the mean RMS error from 100 m., for conditions A and B, to 30 m. for
condition C.

The analysis has also demonstrated a rather poor separation between the
conditions A and B, although, on the average, the ground-speed vector condition
scores slightly better than the parallel-indexing condition.

To take into account the learning effect, for each condition the mean RMS errors
were determined for each replication of a particular condition: by each subject 9
tracks were sailed, divided over 3 conditions, thus each condition was repeated 3
times. The results for the RMS-error analysis for the replications are presented
in Figure 6.24.

Due to the learning effect, there is a significant improvement for the conditions
A and B after the 3 replications. However, a comparison of the final scores after
the third replication still shows a significant improvement in accuracy for the
predictor-assisted condition C.

From Figure 6.24 it also can be concluded that for the track-predictor condition
the learning effect is relatively small and is more or less cancelled out at the
second replication. This probably is an illustration of the fact that for predictor-
assisted manoeuvring the navigator’s acquired knowledge about the ship’s
manoeuvrability has become less relevant in regard to the navigational performance.
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To evaluate the influence of the information conditions on the navigational

performance for the different navigation tasks, in Figure 6.25 the results of Figure
6.24 were split up according to the magnitude of the course change:
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Fig. 6.25 RMS analysis according to course change and replication
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The analysis shows a significant increase of the average RMS error as a function
of the magnitude of the course change for all information conditions. From these
results it also follows that the largest contribution of the track predictor, relative
to the other information conditions, is to be expected for large course changes
(>45 degrees). In this case the average track deviation (RMS error) is reduced
by 70% for the track-predictor condition, compared to the parallel-indexing or
ground-speed vector conditions.

To investigate the influence of the information conditions on the way in which the
ship was controlled by the subjects, the variability of the recorded rate-of-turn
signal was considered to be a measure (Van Breda and Schuffel, 1989).

A calculation of the standard deviation of this signal shows a small difference for
the 3 conditions: '

Condition o, (deg/sec)
A (parallel-indexing) : 0.202
B (speed vector) : 0.202
C (track predictor) : 0.190

Table 6.5 Standard deviation of the
rate-of-turn signal

This small difference might be explained by the fact that for the track-predictor
condition (anticipating) steering corrections are performed by the navigator on the
basis of even the smallest deviations between predicted and planned track.
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7 CONCLUSIONS AND SUGGESTIONS

In this thesis the design of a track predictor for ships is reported. The principle
purpose of the track predictor is to assist the navigator in his anticipating
capabilities during manoeuvring, thus achieving safer navigation.

To determine a sufficiently accurate prediction model, a geometrical analysis was
performed to determine the different variables which are relevant to the shape of
the ship’s track during manoeuvring. The underlying assumption for this approach
was that the navigator’s performance could be improved by presenting a predicted
track with a shape identical to the ship’s actual track.

As a result of the mathematical analysis, a geometrical relation was constructed,
by which the shape of the ship’s track is completely determined:

* * * * * * * * * *
x, (s ) = bMx (r (s)) + Mx (r (s),v(s)) (7.1)

From this relation it could be concluded that for a correct prediction of the ship’s
track, with respect to the ship’s surroundings, the ship’s rate of turn r and sway
velocity v' (both normalized with respect to the forward speed) need to be
correctly predicted as a function of the distance covered by the ship s .

This implies that the loss of forward speed during manoeuvring, which is the main
cause of the time-domain manoeuvring models becoming non-linear, is not required
to be explicitly predicted for a prediction of the ship’s track. Therefore, regardless
of the ship’s forward-speed dynamics, a sufficient model to reflect the ship’s
turning dynamics in relation to the ship’s track is given by the relations:

*
* dr * *

T = + r = K ¢ (7.2)

ds

vV = - ¥YTr (7:3)

A correct translation of the predicted track, to adjust the track to the distance
covered by the ship since the prediction was calculated, was proven to be a
translation of the track on the basis of a correspondence between the real and
predicted course.

Further, it has been shown that a global adaptation of the predicted track to
disturbing influences such as wind and current, could be obtained by a track-
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adaptation mechanism on the basis of rate-of-turn and position deviations.

A suitable method for on-line identification of the prediction-model parameters and
the disturbances on the basis of noise-corrupted measurements has been
determined by a structural comparison of different, well-known, identification
schemes. The common factor of these identification schemes is the calculation of
a one-step-ahead predicted output, which is used for the update of the parameters.
On the basis of optimal measurement interpretation, an alternative method has
been proposed to base the model-prediction on the filtered process output:

y(k) = y(k) + Ky(k)(;’(k)-f'(k)) ;0 < Ky(k) <1l (7.4)

with K (k) determined according to the principles of discrete Kalman filtering.
The identification algorithm with y (k) chosen according to (7.4) may be
interpreted as a combined equation-error (Ky(k) = 1) and output-error identifier

(Ky(k) =

The advantages related to the choice of (7.4) are:

- improvement of the convergence speed of the parameter-estimation part,
compared to the Parallel MRAS identification algorithm (K, = 0),

- after convergence, considerable bias reduction, compared to the Series-Parallel
MRAS or Least-Squares identification algorithm (K, =

- besides the estimation of the parameters, a noise-free estimation of the process
state is obtained.

Adaptation to varying parameters is inherently achieved by assuming system noise
to be added to the parameters, instead of the introduction of a forgetting factor
A, which is a more artificial way of stating permanent uncertainty about the
estimated parameters.

Continuation of the structural analysis of the combined state and parameter
estimation scheme showed a direct link with the field of Extended-Kalman filtering.
On the basis of this analysis two Extended-Kalman filters were designed for the
filtering of the wave motions and the estimation of the ship’s yaw dynamics and
for the filtering of the ship’s position and estimation of the current influence.

Analogous to the relation between MRAS identification and control, a method has
been proposed to use the Extended Kalman filter for adaptive model-following
control. On the basis of this analogy, a direct compensation mechanism was
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derived to compensate for rate-of-turn deviations between ship and model by the
autopilot. The resulting control scheme shows a resemblance to the model-update
technique proposed by Van Amerongen et al. (1980). The main difference lies in
the method of updating the state of the reference model to improve the
controller’s performance.

Regarding the presentation of the prediction information to the navigator, a
straightforward method was chosen of superimposing the predicted track on an
integrated manocuvring and navigation display, as designed by the TNO Institute
for Perception. The input of user commands for the predictor could be obtained
by a minor extension of the autopilot console. It appeared that, for this integrated
approach, the track predictor could be added to the ship’s bridge as a logical
function between navigation (track planning) and manoeuvring (actual course
changing).

Besides experiments in a laboratory environment to test the algorithms for
prediction, identification and control, a manoeuvring-simulator experiment was
conducted with the experimental track-prediction set-up at the TNO Institute for
Perception in Soesterberg.

For this experiment, the track predictor was tested against more conventional
methods of navigation such as Parallel Indexing and the presentation of a ground-
speed vector.

To judge the influence of the different information conditions on the navigational
performance, the experiment was focused on the tracking of various routes, with
course changes varying {rom "easy" (15 degrees) to "difficult” (105 degrees). An
analysis of the average route deviation for the different conditions showed the
following:

The overall accuracy is improved by using the track predictor. The improvement
of the navigational performance manifests itself especially for course changes larger
than 45 degrees. In those cases the average route deviation was reduced with 70
%, compared to conventional conditions.

No significant differences were found between the ground-speed vector condition
and the Parallel-Indexing condition. This suggests that the speed vector might
be useful for the compensation of current influence during track-keeping between
two waypoints, while for course changing rate-of-turn information becomes more
important.
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An analysis of variance of the rate-of-turn signal showed no significant differences
for the three conditions, although a decrease of the variance was expected for the
track-prediction condition. It seems however that for this condition additional
(anticipating) compensatory steering actions are carried out by the navigator, on
the basis of relatively small deviations between the desired track and the predicted
track.

On the basis of these results it is concluded that the largest contribution of the
track predictor is to be expected for large course changes (> 45 degrees). For
most existing fairways with course changes up to 30 degrees (IMCO 1972), a less
accurate but satisfactory result may also be obtained with the parallel-indexing or
ground-speed vector navigation method, compared to the track predictor.

The attractiveness of the track predictor lies mainly in navigation in confined areas
(terminal navigation) and emergency manoeuvring: in these situations large course
changes are involved, while the effect of these course changes, leading the ship off
the planned track, should be made clear to the navigator (avoidance of
groundings). For the application of terminal manoeuvring, knowledge about the
current and wind speed and direction may rather easily be incorporated into the
track-prediction system as a-priori information.

For these conditions the combination of the track predictor with the "autopilot-
assisted manual mode" as suggested by Van Amerongen (1982) might particularly
be useful. Integration of this rate-of-turn control with the track predictor yields a
configuration with which the future effect of the choice of rudder deflections,
instecad of course changes, may be judged by the navigator.

Further, to extend the usefulness of the track predictor for these situations, time
and speed information becomes relevant (collision avoidance). For this purpose
more research needs to be done on the predictability of the different relevant
signals in the time domain, which requires a more complex prediction model.

Another possible application of the track predictor may be found in the
manoeuvring with mine sweepers, where reference tracks with large course changes
(180 degrees) are to be sailed as accurately as possible. For this application
possible benefits are to be expected from a fully automatic path controller, which
could be achieved by extending the integration of the track predictor with the
course-changing controller.

Regarding a practical implementation of the track predictor, integration with an
clectronic sea chart offers a promising combination. A similar simulator experiment
demonstrated the improvement of the navigational performance obtained with the
clectronic chart, when used on its own, to be marginal when compared to a
conventional condition (Van Breda and Schuffel, 1989).
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APPENDICES

Appendix A

Interfacing between the track predictor and the manoeuvring simulator

The experimental track-prediction system consists of 2 subsystems:

PDP 11/73 for real-time aspects such as:

- on-line paramecter cstimation (period 400 ms)
- autopilot (course-changing controller) (period 400 ms)
- calculation and adaptation of the predicted track  (period 2 sec.)
- data logging (period 2 scc.)

IBM PC/AT with Professional Graphics Controller for:

- user interaction (autopilot and radar settings)
- presentation of the manoeuvring information (NAVDIS)
- presentation of the predictor information

Information interchange between the 2 systems takes place on a serial basis, with
a baud rate of 9600.

For the experiment these 2 systems were interfaced to the IZF manouevring
simulator, consisting of:

- PDP 11/23  : supervisor
- PDP 11/34  : ship model (period 80 ms)
- Bridge set-up : navigation display, SAC and user consoles

For the interfacing between the PDP 11/73 (prediction and control) and the
manoeuvring simulator, a mixed analog/digital approach was chosen:
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PDP 11/73 <--> PDP 11/34 (model) :

analog interfacing:

- 11/73 analog input: - rate of turn r [deg/sec]
forward speed u [m/s]
actual rudder angle & [deg]

- 11/73 analog output: ordered rudder angle &, [deg]

PDP 11/73 <--> PDP 11/23 (supervisor) :

serial interfacing:

- 11/73 serial input: - ship’s course Y [deg]
- ship’s position X,y [m]

The IBM PC/AT for the user interaction was interfaced to 2 user consoles in the
ship’s bridge by means of the TNO NIC/NOC interface:

user console 1 :

- autopilot and predictor settings
- compass read out

user console 2 :

navigation display settings such as:

range input (1,2,4 or 8 nm)

Variable Range Marker input (range and bearing)

- on/off switches for the various markers on the display

For the presentation of the Navigation Display NAVDIS the IBM Professional
Graphics Controller RGB output was connected to a 19" colour display in the
ship’s bridge, thus completing the interfacing according to Figure A.l
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Appendix B

The ship model

In this appendix specific information is given about the 40.000 DWT container
vessel "STS Soesterberg", used for the manoeuvring-simulator experiment.

The principle dimensions are as follows:

Length over all: 22587 m
Breadth: 30.50 m
Depth: 16.40 m
Draught: 1120 m
Displacement: 40.000 DWT
Diameter propeller: 7.00 m
Power: 32450 SHP
Service speed: 22 kn

S.T1.S. SOESTERBERG

A
L EEEEEEES 7

 — .y

I

Fig. B.1 Sketch of the "own ship"

The ship’s movements are related to a fixed, rectangular, clockwise turning axis
system:
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Fig. B.2 Coordinate system and definition of forces and velocities
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