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Abstract: Detection of early warning signals for the imminent failure of large and complex 

engineered structures is a daunting challenge with many open research questions. In this 

paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood 

protection systems (levees, earthen dikes and concrete dams) using sensor data. We present 

a robust data-driven anomaly detection method that combines time-frequency feature 

extraction, using wavelet analysis and phase shift, with one-sided classification techniques 

to identify the onset of failure anomalies in real-time sensor measurements. The methodology 
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has been successfully tested at three operational levees. We detected a dam leakage in the 

retaining dam (Germany) and ―strange‖ behaviour of sensors installed in a Boston levee 

(UK) and a Rhine levee (Germany). 

Keywords: anomaly detection; structural health monitoring; time-frequency analysis; sensors; 

flood protection systems; levee monitoring; one-side classification; leakage detection 

 

1. Introduction 

1.1. Flood Defence Structures  

There are thousands of kilometres of flood defence structures around the World protecting 

infrastructure and populations against floods. There are about four times more floods registered 

nowadays as compared to the 1980s [1], some of them caused by weaknesses in flood defence structures.  

Flood defences are defined as defences which protect against flooding by a river or the sea [2]. 

There are different types of flood protection structures. Usually they are classified as fluvial and 

coastal [2]. Vertical wall, slope (or embankment), high ground and culverts are related to the first 

class; vertical seawalls, sloping seawalls and beaches are related to the second class. 

A dam is as an artificial barrier constructed across a watercourse for the purpose of storage, control, 

or diversion of water [3]. Dams are typically constructed of earth, rock or concrete. Based on structure 

and design, dams can be classified in the following manner: gravity, embankment, arch, buttress and 

others [4]. 

Embankment dams are made from compacted earth, and have two main types: rock-fill and  

earth-fill dams. Embankment dams rely on their weight to hold back the force of water.  

A levee is a natural or an artificial structure designed to contain, control, or divert the flow of water 

to prevent flooding of adjacent lands. Artificial levees are constructed using various materials, e.g., 

soil, rock, concrete [3].  

Dikes (or dykes) are typically earth-fill dams [5]. The terms dike and levee are often used 

interchangeably. Historically a dike is used to defend against storm surges from the sea such as the 

system of dikes that protects The Netherlands. A levee stops flood waters from streams and lakes such 

as the system of levees that protects cities along the Mississippi River [6]. 

In our work we consider two river dikes and one retaining dam. One of the purposes of retaining 

structures is to create large bodies of water, or reservoirs that have a variety of functions, including 

land irrigation, power generation, water supply and flood control [7]. 

The performance of a defence structure depends [2] on the magnitude of the loads (water level, 

waves, wind, traffic etc.) acting on the structure; response of the structure to the loading; and 

performance of the foundation (especially important for the embankments).  

According to a study of dam failures in the USA [8] overtopping (Figure 1a) is the reason for 34% 

of the observed floods. Foundation defects due to differential settlement, slides, slope instability, uplift 

pressures, and foundation seepage lead to 30% of all dam failures. Failure due to piping and seepage 
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accounts for 20% of all failures. The remaining 16% of failures are caused by the problems with 

conduits and valves, and other miscellaneous problems. 

Between 1134 and 2006 there were 1,735 dike failures in The Netherlands [9]. Of these events 67% 

were caused by erosion of inner slope protection, 11% by ice drift, 6% by erosion or instability of 

outer slope protection (Figure 1c), 5% by sliding inner slopes (Figure 1e), 4% by external reasons 

(human and animal), 3% by sliding outer slopes (Figure 1f), 2% by liquefaction of the shore line, 1% 

by piping, 1% by micro-instability (Figure 1b), horizontal shear (Figure 1d) and other related 

mechanisms.  

Figure 1. Classification of dam failures [10]: (a) wave overtopping; (b) micro-instability; 

(c) erosion of the outer slope; (d) horizontal shear; (e) sliding of the inner slope; (f) sliding 

of the outer slope. 

a) b)

d) e)

c)

f)  

1.2. Dam Health Monitoring  

The mechanism of a possible failure is unknown beforehand and is therefore difficult to predict. 

Visual inspection cannot guarantee detection of the onset of a levee failure early enough to prevent its 

collapse, therefore a continuous levee health monitoring process is required. Development of physical 

models could provide a robust solution for levee behaviour assessment [11], but these rarely include 

real-time health monitoring. For continuous dike monitoring two approaches are used: remote sensing 

by LiDAR [12] or by satellite [13] and by sensors installed inside the dike. The use of fibre optic 

cables for deformation analysis is described in [14]. The advantage of the first method is that it is  

non-intrusive. The second method is more accurate and reliable.  

In our research we install sensors into the levees to monitor their condition. Pore water pressure 

sensors proved to be useful in levee stability analysis [15]. Inclinometers are generally used to measure 

tilt and to monitor lateral movements for embankments and dams [16]. Leakage can be detected by 

fibre optic sensors measuring the temperature inside the levee [17]. A detailed overview and 

comparison of existing sensor technologies for levee monitoring can be found in [18]. 

Automated generation of early warning alarms using real-time streams of sensor measurements 

requires dedicated data-driven methods. For instance, the application of singular value decomposition 

(SVD) to distributed temperature values is suggested for automatic leakage detection in [19]. Artificial 

neural networks were applied for slope stability analysis in [20]. 
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Modern sensor technologies and intelligent data processing methods have been developed by the 

UrbanFlood project for early detection of anomalies in flood protection systems. In this paper, we 

present a robust data-driven anomaly detection method that combines time-frequency feature 

extraction, using wavelet analysis and phase shift (time-frequency feature for monitoring of phase 

difference between oscillating signals of different sensors) with one-sided classification techniques to 

identify onset of failure anomalies in real-time. The methodology has been successfully tested at three 

operational levees. We detected a dam leakage in a retaining dam (Germany), and sensor malfunctions 

in the Boston levee (UK), and a non-saturated area in a Rhine levee (Germany). This paper includes 

results previously presented in [21]. In the next Section we introduce the general anomaly detection 

approach and present the one-side classification method (Neural Clouds) and describe the applied 

feature extraction methods. 

2. Anomaly Detection Approach  

2.1. General Concept  

One of the main goals of the UrbanFlood project was the development of an on-line early warning 

system (EWS) based on levee health monitoring [22,23]. Sensor networks were installed into several 

pilot sites in The Netherlands, Germany and in the United Kingdom. More details about these pilot 

sites can be found in [24]. 

Sensor data are processed by the Artificial Intelligence (AI) component—part of the UrbanFlood 

EWS platform. More information about the early warning system can be found in the official site of the 

project—www.urbanflood.eu. If there are anomalies in sensor measurements due to different triggers 

(e.g., sensor fault or real developing failure), the AI component triggers an alarm. The most important 

benefit of this approach is that it uses reference data related to normal behaviour of the monitored 

object. This is possible due to a one-side classification approach using Neural Clouds (NC) [25].  

Multidimensional sensor measurements can be grouped according to so-called physical redundancy 

(see Figure 2), whereby signals from neighbour sensors, sensors from the same cross-section or 

sensors measuring the same physical parameters can be analyzed by one classifier. Another way of 

grouping is evaluation of analytical redundancy between the sensors—sensors are grouped if a clear 

and stable relation between sensor values is detected. In this way the consistency of detected 

dependencies is monitored.  

Pre-processing is usually required due to different problems with the raw data. For example, 

multidimensional data is usually not synchronised in time due to serial polling of individual sensors. 

This means that alignment of measurements to the common time grid is required. This can be done by 

a simple linear interpolation or by application of more sophisticated but well known algorithms. In our 

work we applied Singular Spectrum Analysis (SSA); the details will be published in [26]. 

Time-frequency (Short-Time Fourier Transformation - STFT) and frequency methods (Fast Fourier 

Transformation - FFT) have been applied at the feature extraction stage for the Zeeland dike data 

analysis [27], time-frequency methods (wavelet transformation) have been used for Rhine levee data 

analysis [21]. Process models were used for the Boston levee data analysis [28]: feed-forward neural 

networks and autoregressive models with exogenous inputs (ARX) were constructed for sensor fault 
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detection. In this work we combine two approaches: feature extraction (wavelet transformation)  

and process models (analysis of the phase shift based on FFT). These metrics are described later in  

this Section. 

Figure 2. Anomaly detection workflow. 
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In the next subsections we describe the two most important steps of the workflow: feature 

extraction and classification. 

2.2. Time-Frequency Feature Extraction Methods 

2.2.1. Wavelet Analysis 

Leakage is the main issue for earthen and concrete dams [29]. Comprehensive analysis of various 

methods for leakage detection can be found in the [30]. Analysis of relationship between reservoir 

level and flow rate is one of the possible ways for the detection of a developing failure. Various dike 

failure scenarios due to leakage are described in [31]. 

We can represent leakage as two rapid changes in a spatial set of observations: much lower 

temperatures in the area of leakage [32]. There are different approaches to detect such rapid changes in 

time series, e.g., Student‘s T-test [33]. A detailed overview of more advanced detection methods is 

presented in [34]. Zhang [35] uses wavelets for abrupt fault detection. Percival [36] applied wavelets to 

analyse the water temperature measurements from the Wivenhoe Dam. Each signal was decomposed 

using wavelets into daily, sub-annual and annual (DSA) components. Each of the components was 

used for further analysis.  

We choose the Maximum Overlap Discrete Wavelet Transform (MODWT) [37] for feature 

selection. MODWT is a computationally efficient method for time-frequency representation of time 

series. The MODWT transform is similar to the discrete wavelet transform (DWT), but it does not 

produce a downsampling of wavelet coefficients [37], which allows it to overcome the lack of 

translation-invariance present in DWT and does not require the length of the signal to be a power of 

two. In contrast to CWT, MODWT calculates coefficients at scales 2
j
 (where j is a level of transform) 

without the loss of information. This property provides faster computation of MODWT coefficients 
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than CWT computation. The procedure of MODWT coefficient calculation can be described as an 

application of linear filters (wavelet and scaling filters) via a cascade algorithm (see Figure 3). 

Figure 3. MODWT cascade algorithm. X is the analysed signal, gi and hi are scaling  

(low-pass) and wavelet (high-pass) filters respectively, vi and wi are approximation and 

detail MODWT coefficients of the i-th level of decomposition respectively. 
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Frequency bands of MODWT levels are illustrated in Figure 4. 

Figure 4. Frequency domain representation of MODWT levels. fn—upper limit in the 

frequency range of the analysed signal. 
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It is easier to work with the equivalent MODWT filters, which are analogous to wavelet and scaling 

functions, since the MODWT filters calculate coefficients by convolution with a signal directly [37]: 

1
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(1)  

where X is an analyzed signal; j is a level of decomposition; Vj,t is a vector of approximation 

coefficients at level j; gj is a MODWT equivalent scaling filter; Lj is defined by Equation (3).  
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(2)  

where X is an analyzed signal; j is a level of decomposition; Wj,t is a vector of wavelet coefficients at 

level j; hj is a MODWT equivalent wavelet filter; Lj is defined by Equation (3).  

The length L of equivalent MODWT filters for the level j can be calculated using the  

following equation: 

  2 1 1 1j

jL L   
 (3)  
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MODWT and a one-side classifier (the Neural Clouds (NC) method is described later in this 

Section) can be combined in different ways (see Figure 5): each level of decomposition can be checked 

by individual NC (Figure 5a); or all levels can be grouped for analysis by only one NC (Figure 5b); or 

a combination of both (Figure 5c). We used the second approach in our work. 

Figure 5. Three options for Maximum Overlap Discrete Wavelet Transform (MODWT) 

combination with Neural Clouds (NC). (a) Each level of MODWT decomposition is 

analysed by the individual instance of NC. (b) All levels of MODWT decomposition are 

analysed by one instance of NC. (c) A combination of (a) and (b). 
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2.2.2. Phase Shift Approach 

Another time-frequency feature selected for levee behaviour monitoring is the phase difference 

between oscillating signals of different sensors. This feature can be extracted from any monitored 

system with some periodic behaviour, for instance from electrical signals, vibrations or more complex 

engineering, microeconomic and socio-dynamic systems. A sudden change in frequencies, amplitudes 

or phase shifts indicates a potential problem in the system.  

In case of levee health monitoring, tidal changes in water levels propagate through the soil inside 

the dike and cause periodic rises of water pressure at the sensors (see Figure 6). Since soil that fills the 

levee is a porous material with a relatively low permeability, water flow experiences resistance and 

reaches the sensors with some delay: the further from the sea the longer the time delay (called ―phase 

shift‖ in signal analysis).  

If the levee is stable (i.e., the structure is not damaged and soil layers are not eroded), then the 

"resistivity" of porous levee remains constant, and consequently the phase shift between the sensors 
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stays constant, too. A change in the phase difference will show that the levee integrity might be 

corrupted. Moreover, it will also point at the exact location of a problem—between the two sensors 

that revealed an anomalous phase shift.  

Similar to the water pressure dynamics, other sensors also respond to the dynamically changing 

hydraulic forces caused by the tides, therefore our methodology can be applied also to sensors 

measuring inclination, displacement, stress, strain, and other levee health parameters.  

A more detailed description of the phase shift approach and its applicability in early warning 

systems can be found in [38], where a finite element analysis and analytical solutions have been 

compared to the sensor data from the ―Livedike‖ levee located in Groningen (The Netherlands). 

Figure 6. Levee health monitoring based on pairwise phase shift monitoring.  

(a) A scheme of the monitored levee (filled with permeable soil) and sensor positions.  

(b) Illustration of the phase shift concept: pressure wave caused by the sea tides is reaching 

sensor #2 with a time delay compared to sensor #1 located close to the river. This time lag 

is called ―phase shift‖ or ―phase delay‖ in signal analysis. 
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We consider a phase shift between the Fourier transform components calculated for a selected 

frequency as the time delay metric.  

Short-Time Fourier transform (STFT) is the right method that represents the signal in both time and 

frequency domains [39]. This property facilitates detection of anomalies by tracking the phase changes 

over time. 

Time-frequency representation by STFT is performed by a discrete Fast Fourier Transform (FFT) 

algorithm in a sliding window. Each new sliding window overlaps with a previous window in order to 

reduce the boundary effects. STFT coefficients have a time delay at each frequency. STFT for discrete 

time series is given by: 

     , j n

m

X n x m w n m e 






   (4)  

where x[m] is the analysed signal; w is the window function (e.g., Rectangular window, Hamming, 

Gaussian [39]); x[m]w[n‒m] is the short-time section of the signal x[m] at time n. 
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Phase  at timestamp n of frequency ω can be calculated as an argument of each STFT  

component [40]:  

    , arg ,n X n  
 (5)  

Phase delay  is then calculated as: 

 ,n


 



 

 
(6)  

The minus in the formula (6) is required for the positive presentation of the delay in time domain. 

Phase shift Δ (in radians) and time delay Δ(n, ω) in seconds between two selected sensors is 

calculated as: 

     1 2, , ,n n n       
 (7)  
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
  

 
(8)  

where 1( n, ω) is the phase of sensor #1; 2( n, ω) is the phase of sensor #2.  

A pairwise phase shift analysis can be extended to the analysis for sensor triplets (Figure 6a). Phase 

delay within the triangle should not change in time. Application of each individual sensor in phase 

shift analysis of several pairs guarantees redundancy. This means that detection as well as localization 

of the anomaly is possible. A phase delay is calculated from the time-frequency components related to 

two sensors, therefore we classify this feature as a ‗spatial time-frequency feature‘. 

A data analysis workflow is clarified in Figure 7. The fundamental (base) frequencies are selected 

(Figure 7a) after calculation of the spectrum [41] during the off-line stage. If two sensors have the 

same base frequencies, this pair is selected for further phase delay analysis. For example, three pairs 

are selected in Figure 7a. On-line monitoring (Figure 7b) presumes that one-side classifiers (marked as 

―NC‖ - Neural Clouds that are described later in this Section) are trained on FFT features that are 

extracted for the same base frequencies. 

Figure 7. (a) Selection of pairs of FFT components for phase delay analysis in off-line 

mode. (b) On-line procedure of condition monitoring based on phase delay analysis. 

sj(t1,…tn) are measurements of the j-th sensor for time interval [t1,tn],  i
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Figure 7. Cont. 
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Spectra are analysed by individual instances of one-side classifiers (―NC1‖, ―NC2‖). Calculated 

phase shifts (delays) for the selected on the off-line stage pairs of sensors are analysed by the separated 

instance of one-side classifier (―NC phase shift‖). In most monitored systems, including levees, sensors 

measuring the same physical parameter have similar spectra. In our case of the semi-diurnal sea tides, 

one fundamental frequency is observed in all levee measurements: approximately 12 h, thus we can 

use the same base components for phase shift analysis.  

2.3. Neural Clouds 

The Neural Clouds (NC) classification algorithm receives pre-processed data and a set of extracted 

features as an input. The core of the NC classification agent (a single classification algorithm) is a 

combination of an Advanced K-Means (AKM) clustering algorithm and an extended radial basis 

functions network approach [25]. 

The NC encapsulates in a hypersurface all previously known configurations of selected parameters 

for a given training period (Figure 8a). It provides a more accurate classification of multidimensional 

data in normal and abnormal conditions in comparison to a simple hypercube approach. Red points in 

Figure 8a are incorrectly classified by the hypercube approach as ‗normal‘ mode and are correctly 

classified by NC to reflect ‗abnormal‘ mode. After training, the NC calculates a confidence value for 

every new state of the dike. Figure 8b shows a 3D presentation of the NC: X-Y plane that contains 2D 

data shown in a, the Z-axis interprets behaviour of the monitored object: values close to 1 are related to 

normal behaviour, values close to 0 can be interpreted as anomalies.  

Each one-side classification instance can use either raw data or the features extracted from data, 

e.g., mean value of the signal calculated within a sliding window. Time-frequency methods for data 

pre-processing were previously studied in the UrbanFlood project in work [27], where Short Time 

Fourier Transform was used for pre-processing the Zeeland (in The Netherlands) levee data.  
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Figure 8. (a) Example of the Neural Clouds application to 2-D data. (b) 3-D presentation 

of the confidence values: value close to 1 is related to a normal behaviour, values close 0 

can be interpreted as anomalies. 
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2.4. Implementation 

The proposed anomaly detection approach is implemented within the AI component [42] of  

the UrbanFlood early warning system. This component architecture utilizes a cloud computing 

infrastructure of the EWS. Each AI component instance is a separate Virtual Machine (VM) working 

on a virtualization host. Any required number of AI components can be started and configured. More 

details can be found in [22].  

3. Description of the Sensor Technologies Used in the UrbanFlood Project 

3.1. AlertSolutions 

In 2008 Alert Solutions introduced its sensor network GeoBeads for levee and slope stability 

monitoring. GeoBeads was developed to provide all essential dynamic parameters for the determination 

of soil stability (Figure 9a). GeoBeads consist of fully digital sensor modules (nodes) based on robust 

semiconductor technology that can scale to a wide area network of measurement locations. Each small 

sized node in the network can simultaneously house various measurement devices. The set per node 

commonly includes a piezometer, an inclinometer and thermal sensors [43,44]. Local contractors 

execute the installation with regular drilling or push-rig equipment (Figure 9b). Data is immediately 

available and is distributed via the internet. 
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Figure 9. (a) GeoBeads sensor string with integrated bentonite shells for hydraulic 

isolation between measurement depths. (b) Installation of a GeoBeads string using a light 

weight direct push-in rig with sonic drilling head. (c) Schematic overview of a GeoBeads 

sensor string installed vertically for multilevel measurements as applied in levees, 

mountain slopes and construction activities. 

a) b) c)
 

3.2. GTC Kappelmeyer 

GTC Kappelmeyer uses the technology of distributed fibre optic temperature sensing that offers the 

possibility to measure the ambient temperature along fibre optical cables with high accuracy. This 

measuring method is based on the fact that the optical properties of the fibre depend on the ambient 

temperature. Fibre optical cables suitable for applications in hydraulic engineering usually consist of a 

core with at least two fibres and of a mechanical strength member covered by an outer jacket  

(Figure 10). 

Figure 10. Cable structure and measuring principle. Schematic display of different cable types. 

Fibers Stranded steel wires 

Coating  

Distributed fibre optical temperature measurements are because of their high information density 

most suitable for levee seepage detection [45]. There are basically two measurement methods [46]: 

gradient method and heat-pulse method. 
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The first method requires temperature difference between the reservoir water and the dam material 

for successful leakage detection. The leakage is detected by a significant drop of the temperature 

gradient between the water and the ground temperature. 

GTC Kappelmeyer uses a heat-pulse method [47] that provides robust leakage detection also in 

autumn and spring when ground (TG) and water (TW) temperatures are nearly equal (Figure 11). Area 

of leakage is presented with an arrow in the central area of central and right pictures in Figure 11. The 

fibre optic cable is heated up (central picture in Figure 11) by sending an electrical current through the 

metallic cable coating (e.g., rodent protection, shielding). The temperature increase in the immediate 

surroundings of the cable depends on the heat capacity and heat conductivity of the outcrop. While 

having seepage flow the poorly conductive heat transport is superimposed by the much more effective 

advective heat transport. Therefore, clearly visible temperature anomalies arise in these areas during 

the process of heating (difference of temperatures is shown with red figures in the right hand picture in 

Figure 11): temperature in area of seepage is lower in comparison to dry soil. 

Figure 11. Heat-pulse method of leakage detection [48].  

Tw

sealing system

TG →Tw

Tw

leakage

Tw

leakage

T

LASER 0

fibre

≠0Electr. 
voltage

TG →Tw
 

4. Results of Anomaly Detection in Three Operational Levees 

4.1. Rhine Levee Data Analysis 

4.1.1. Rhine Levee Sensor Installation 

There are two types of sensors installed in the Rhine river levee: Alert Solutions (GeoBeads) in 2 

cross-sections and a GTC Kappelmeyer fibre optic cable (250 m) placed across the levee (Figure 12). 

One of the two Alert Solutions cross-sections is presented in Figure 12.  

Placement of the GTC Kappelmeyer fibre optic is marked in Figure 12 in orange. The fibre optics 

provide spatio-temporal temperature measurements across the levee. Pore pressure measurements 

gathered from Alert Solutions sensors are converted to water level values (Figure 13). Each colour 

corresponds to a specific sensor (for example: the ―E2‖ sensor is marked with red in Figures 12 and 13). 

There are two lines per sensor: a straight horizontal line indicates the depth of the sensor installation, 

curve lines show the water head above this sensor depth level. If the water level is above a straight 

line, then this sensor is ―covered‖ with water. 
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Figure 12. Alert Solutions sensors (marked with green balloons—left part of the picture, 

marked with blue circles—right part of the picture) and GTC Kappelmeyer fibre optic 

cable (marked with orange line) installed into the Rhine levee—second cross-section, left 

slope—waterside slope of the levee, right—landside slope.  
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Figure 13. Alert Solutions pore pressure measurements converted to water level [m] in 

relation to Normaal Amsterdams Peil (NAP) or Amsterdam Ordnance Datum (normal 

water level in the Netherlands)—Y axis. X axis: number of timestamps, rate—1 h (period: 

November 2011–February 2012). Positions of sensors plotted in Figure 12. 
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The two green dotted boxes in Figure 13a indicate the dates when the water level was higher than 

the ground water level (G1 sensor): 1st box—9th of January 2012, 2nd box—25th of January 2012. 

These peaks correspond to peaks in the Rhine water level of 820 cm and 710 cm [47]. According to the 

reported data the levee was wet, but ―strong seepage flow (>10
−4

 m/s) can be excluded.‖ Summarizing 

all the aspects mentioned above, Alert Solutions sensors are useful for levee behaviour classifications 
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(dry/wet). If piping starts close to the GeoBeads sensors, it will be easily detected. GTC Kappelmeyer 

fibre optic sensor should be applied for leakage testing between cross-sections.  

4.1.2. Analysis of Sensor Data and Anomaly Detection 

In this section we describe the collected GTC Kappelmeyer temperature measurements and the 

associated analysis. The process of a fibre optic heat-up is presented in Figure 14. As previously 

mentioned [47], there was no piping detected, so the levee‘s condition is normal. The only phenomena 

in collected temperature measurements that could be interpreted as anomaly is about 15 m wide area 

(Figure 14—dotted box) of non-saturated soil. This means that soil contains holes that contain air. Air 

has high insulation quality (thermal conductivity ~0.4 W/m/K), which leads to measured high 

temperatures: the temperature across the whole cable is more or less the same during the heat-up 

process, about 28–30 degrees, but for the range of 209–221 meter (fibre cable optic length) the 

temperature is much higher.  

Figure 14. Rhine levee GTC Kappelmeyer fibre optic cable heat-up in time: X axis—length 

of the cable (m), Y axis—temperature (Celsius). The colours indicate different timestamps.  
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This effect can be interpreted as an anomaly and task of anomaly detection can be formulated as 

task of non-saturated soil detection. The Maximum Overlap Discrete Wavelet Transform (MODWT) 

was used for Rhine levee data analysis. Eight levels of decomposition (―la8‖: least asymmetric wavelet 

with 8 levels of decomposition) are presented in Figure 15. As we can see from Figure 15 coefficients 

corresponding to the third and fourth levels of decomposition show the most protruding features. 

Therefore we apply them after post-processing as input for the one-side classifier. Measurements 

related to the cold fibre and several first minutes of heat-up were used for the NC training.  
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Figure 15. Results of MODWT application: X axis is the length of the cable (m), Y axis  

is temperature (Celsius). Dotted box shows position of the non-saturated part of the  

Rhine levee.  
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Figure 16. Non-saturated part of the Rhine levee detection: 10th minute of heat-up.  

(a) Input time series. (b) The calculated confidence values: values close to 1 are related to 

normal behaviour, close to 0 indicates anomaly. (c) The 3rd (X axis) and 4th (Y axis) 

levels of decomposition after post-processing: blue—training set, black—test set related to 

normal behaviour, red—test set related to anomaly. 
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Values in the spatial time series after 10 min of heat-up (Figure 16a) are presented as normal or 

abnormal points in Figure 16b: values close to 1 correspond to normal behaviour; close to 0 is 

interpreted as anomalies. Figure 16a is classified in Figure 16c by a 2D view of the constructed Neural 

Clouds. A cluster with normal data related to the training set is presented in Figure 16c with blue 

points, the test set is presented with black points and the detected outliers are marked in red.  

MODWT does not have ‗perfect‘ localization properties according to the Gibbs phenomenon [37], 

that is why some points are not correctly classified as abnormal behaviour: lower points in  

Figure 16c correspond to normal temperatures in Figure 16a. This example is a proof of principle of 

the functionality of the developed anomaly detection method. Application of this method to real 

leakage detection is presented in the next section. 

4.2. Retaining Dam Data Analysis 

GTC Kappelmeyer provided for further testing of the developed anomaly detection method a real 

example of dam leakage, registered in measurements collected at an earth filled dam with bitumen 

sealing (total length more than 2 km). It contained a leakage of a bitumen sealing made of  

asphalt-coated gravel and bitumen binder of the dam. This anomaly is presented in spatial time series 

as a temperature drop in the range of 74–163 m (Figure 17).  

MODWT has been applied for spatio-temporal time series pre-processing (―la8‖, eight levels of 

decomposition). The calculated wavelet coefficients are presented in Figure 18. Coefficients 

corresponding to the second and third levels of decomposition after post-processing were used as an 

input for the one-side classifier.  

Figure 17. Retaining dam GTC Kappelmeyer fibre optic cable heat-up in time:  

X axis—length of the cable (m), Y axis—temperature (Celsius). The colours indicate 

different timestamps.  

0 200 400 600 800 1000
10

15

20

25

30

35

Distance along the dam (m)

Temperature (C)

4 iterations (20 minutes) of “cold” cableAfter the 1st iteration of 

heat-up (25 min)

After the 2nd iteration of 

heat-up (30 min)

Leakage 74-163 m

 



Sensors 2014, 14 5164 

 

 

Figure 18. Results of MODWT application: X axis—length of the cable (m),  

Y axis—temperature (Celsius). 
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Figure 19. Retaining dam leakage detection: 6th iteration of heat-up. (a) The calculated 

confidence values: values close to 1 are related to normal behaviour, close to 0 mean 

anomaly. (b) 3D view of the constructed Neural Clouds.  
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Calculated confidence intervals (Figure 19a) show that the part of the cable between 150 m and 

160m is classified as abnormal: confidence values are close to 0. A 3D presentation of the constructed 

NC is provided in Figure 19b. As we see the accuracy of the method is acceptable. 
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4.3. Boston Levee Data Analysis 

4.3.1. Boston Levee Sensor Installation 

The Boston dike (Figure 20) is one of the pilot sites of the UrbanFlood project. Detailed description 

of sensor networks installed into this dike can be found in [49]. The Boston location was of interest 

because there is a significant tidal forcing (up to six metres on spring tides). To monitor this dike 

successfully it is therefore important to monitor pore pressure, deformations, and ground water flow 

near the toe. Inclination measurements from the GeoBeads should provide an early clear sign of 

deformations, whilst differences in temperature measurement curves should be a strong indicator of 

water leakage [24].  

The instrumentation and control building for the Grand Sluice [24] provided an ideal location for 

situating the computer equipment. Cross-section of this dike is shown in Figure 20a. The process of 

sensors installation is presented in Figure 20b.  

Figure 20. (a) One of two cross-section of the Boston levee, circles with numbers show 

installed pore pressure sensors. (b) A photo of the Boston levee.  

501

506

536

526

531

546

541

a) b)  

4.3.2. Analysis of Sensor Data and Anomaly Detection 

We analysed all sensors, two (#506 and #546—see Figure 20a) were selected for presentation of 

phase delay analysis. Measurements of these sensors are presented in Figure 21. 

Figure 22a presents measurements of both sensors after the mean value subtraction that is required 

for FFT application in order not to analyze the zero frequency. FFT spectra of both sensors are shown 

in Figure 22b. One can see that the set of base frequencies for both sensors is the same. The zoomed in 

part of the Figure 22b (area of blue dotted rectangular) is presented in Figure 23. 

The phase shift and time delay between both signals were analyzed for the same base frequency  

(12 h) extracted from the FFT spectra. In Figure 24b one can see the phases of #506 (blue line), #546 

(red line) and difference between two phases (black line) calculated with a sliding window  

(1,024 timestamps, shift for 32 timestamps). Presentation of the time delay can be found in  
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Figure 24c. It can be concluded that the time delay between sensors is stable (approximately 1 h and  

40 min). For high/low tide cycles with frequency of 12 h the #546 sensor shows similar behaviour in 

comparison to #506 sensor with a delay of 1 h and 40 min. Preliminary results show that stability of 

phase shift between sensors can be used for the whole dike stability evaluation.  

Figure 21. Pore pressure sensor data (a) #506, (b) #546. 

16/07 26/07 05/08 15/08 25/08 04/09 14/09 24/09 04/10 14/10
1250

1300

1350

1400

1450

1500

date

m
b

a
r

Wave Overtopping, sensor id: 506

16/07 26/07 05/08 15/08 25/08 04/09 14/09 24/09 04/10 14/10
1350

1400

1450

1500

1550

date

m
b

a
r

Wave Overtopping, sensor id: 546

a)

b)

Pore pressure (mbar)

Pore pressure (mbar)

 

Figure 22. (a) Pore pressure data #506 (red line) and #546 (blue line) measurements after 

normalization (mean value was subtracted). (b) FFT spectra of #506 (red line) and #546 

(blue line).  
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Figure 23. FFT spectra of #506 (red line) and #546 (blue line): zoomed in part of the 

Figure 22b. 
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Figure 24. (a) Phase shift between two sensors for selected base frequency (12 h)  

(in radian): red line—phase of AS2 (id 506), blue line—phase of AC4 (id 546), black 

line—difference between phases. (b) Time delay between two sensors for selected base 

frequency (12 h) (in seconds). 

 

Identification of a sensor fault is presented in Figure 25. Two sensors were considered: #526 and 

#546. The first one started to show abnormal behaviour since end of December 2011.  

For periods of #526 abnormal behaviour phase delay showed high deviation from phase delay 

calculated for ―normal‖ behaviour of both sensors. This means that this feature can be used as input for 

further one-side classification for object‘s behaviour evaluation. 
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Figure 25. Application of the phase delay method to pore pressure sensors analysis: AC5 

(id 526) with periods of abnormal behaviour and ―normal‖ AC4 (id 546) from Boston dike 

(UK). Phase delay was calculated for one of the base frequencies—12 h, width of window 

for STFT calculation—512 samples, rate of measurements—15 min. 
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5. Conclusions 

Anomalies can be a sign of a developing failure of a monitored object, so identification of an 

anomaly is an important step in structural health monitoring (SHM). In this paper we consider flood 

defence structures (earthen and concrete dams) as the object of monitoring. A combination of signal 

processing methods is presented for anomaly detection in measurements gathered from sensor 

networks installed into UrbanFlood earthen dams (a Rhine levee in Germany and the Boston levee in 

the UK) and in a retaining dam (in Germany). 

There are two types of sensor networks installed into the levees that were considered in this paper: 

Alert Solutions and GTC Kappelmeyer. Alert Solutions sensors (GeoBeads) installed in the Rhine and 

Boston levees measure pore pressure, inclination and temperature in one point simultaneously. The 

GTC Kappelmeyer fibre optic cable installed in the Rhine levee and retaining dam measures 

temperature following the so-called active principle where the cable is heated [50].  

Two types of anomalies were considered in this work. The first is a faulty abnormal behaviour.  

It was presented as a non-saturated soil in fibre optic measurements at the Rhine levee and as ―strange‖ 

behaviour of some pore pressure sensors at the Boston levee. Both levees are not affected by leakage 
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and no other anomalies were found. The third data set contains a pattern of real leakage (second type 

of anomalies) at the retaining dam.  

All data sets were analyzed using an anomaly detection approach developed within the UrbanFlood 

project. A one-side classification approach (Neural Clouds [25]) in combination with a feature 

selection stage provides robust detection of anomalies. Neural Clouds do not require anomalies in a 

training set. Time-frequency methods were selected at the feature selection stage since they combine 

presentation of the input signal in both time and frequency domains: frequency analysis of the signal 

permits application of the anomaly detection approach to objects with different nature: slow processes 

(tides in case of earthen levees) and fast processes (vibrations in case of concrete structures); time 

presentation is often required for comparison of values with thresholds.  

The anomalies in GTC Kappelmeyer measurements have been detected as a change in the spatial 

time series (values for some regions were much higher or lower in comparison to other sections of the 

cable). Maximum Overlap Discrete Wavelet Transform (MODWT) was selected as a feature selection 

procedure. This method is useful for detection of a change in the observed time series.  

Analysis of phase delay between two sensors based on Fast Fourier Transform (FFT) applied in 

time provides robust identification of the sensor fault occurred at the Boston levee. This method 

analyses stability of dependencies between two sensors in the frequency domain.  

There are some limitations of the phase delay approach. It only works when applied to periodic 

processes. In other case application of time-domain data-driven methods for transfer function modelling 

is more preferable, e.g., artificial neural networks and autoregressive model with exogenous inputs as 

previously reported in [28]. 

The developed anomaly detection approach can be applied for monitoring of various objects within 

SHM domain: it can be used for artificial (e.g., bridge, concrete dam, building) or natural (e.g., levee) 

constructions monitoring. The only requirements are installation of sensors providing the comprehensive 

information about important objects parameters; and availability of the on-line stream of data for  

on-line analysis. 

Our anomaly detection approach is implemented within an Artificial Intelligence (AI) component 

that can be integrated in any existing decision support system. Condition monitoring using the 

UrbanFlood Early Warning System (EWS) provides a scalable solution: the required number of 

Virtual Machines (VM) containing the AI component can be initiated in the cloud computing 

infrastructure of the EWS on demand. 

Automatic procedure for relevant feature selection is to be considered as one of the tasks for further 

research. Combining the proposed data driven approach in parallel with physical modelling, for 

instance the ―Virtual Dike‖ ([11,22]) increases the robustness of the signal interpretation. Some 

preliminary studies along these lines were presented in [42]. 
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