
Tangram: Model-based integration and
testing of complex high-tech systems

A collaborative research project
on multidisciplinary

integration and testing of embedded systems

Editor:

Jan Tretmans, Embedded Systems Institute

Publisher:

Embedded Systems Institute, Eindhoven, The Netherlands

Publisher:
Embedded Systems Institute
TU/e Campus, Den Dolech 2
P.O. Box 513, 5600 MB Eindhoven
Eindhoven, The Netherlands

Keywords:
system engineering; modeling; integration; testing; embedded systems;
multidisciplinarity

ISBN: 978-90-78679-02-8

c© Embedded Systems Institute, Eindhoven, The Netherlands 2007
All rights reserved. Nothing from this book may be reproduced or transmitted in any form or by
any means (electronic, photocopying, recording or otherwise) without the prior written
permission of the publisher.

The Tangram project has been executed under the responsibility of the Embedded
Systems Institute, and is partially supported by the Netherlands Ministry of Economic
Affairs under the SenterNovem TS program (grant TSIT2026).

Foreword

With the ancient Chinese Tangram, creative people can make an unlimited number of
designs from just seven pieces of wood. In an era of increasingly advanced technology,
creativity is also what we need to put together ever-more sophisticated machines with
limited resources. In short, to tackle growing complexity, we need new ideas to save
time and money in integration and testing. These were the goals for the Tangram
Project.

Why integration and testing? A lithography system is an extremely complex semi-
conductor manufacturing machine that transfers nanometer circuit patterns onto silicon
wafers to make semiconductor chips. It comprises a multitude of subsystems, each of
which is already an integrated conglomerate of optics, mechanics, mechatronics, elec-
tronics and software. Integrating such a system is about molding numerous subsystems
into one coherent machine with extreme specifications. Put simply, integration and
testing is the phase when all of these handling-, measuring-, positioning- and imaging
subsystems first come together and should work together. It’s the time when newly in-
vented concepts first confront each other. It’s the point when a small mistake can have
big consequences. From a business viewpoint, it’s where costs per hour are at their
peak and long lead times hit the hardest.

Nearly seven years ago, ASML successfully introduced the first dual stage
TWINSCANTM lithography system. It has been a huge success. Yet, this system first
highlighted that new developments would require much more effort, have longer lead
times and higher costs than ever before. We would need major breakthroughs in inte-
gration and testing for the challenges we face now and in the future. These challenges
include:

• Growing complexity of new products - new technologies such as immersion
lithography and Extreme Ultra Violet (EUV) require an even more sophisticated
and smarter test approach

• Greater diversity of products for various nanotechnologies

• More modularity in designs and testing enabling:

– shorter lead times and easier interactions with third parties (outsourcing)

– further product diversification, customization and re-use offering more
added value for customers and ultimately consumers

– faster ramp-ups and fault diagnosis for customers

• More systems — integration and testing forms a substantial part of overall lead
times and our capital expenditure

• Greater machine accuracy — not only important in R&D but also crucial in man-
ufacturing

• Higher customer expectations — demanding shorter times-to-market and shorter
learning curves for new products to meet their final specifications.

The Tangram project is helping us offer a significant reduction in lead times and in cost
of integration and testing. It has helped us to achieve ‘faster, cheaper, better’ without
compromising product quality or reliability. By providing accurate models of system
components that are not yet physically realized, it truly reduces potential problems at
the earliest stage.

In wanting to take integration and testing to the next level, ASML realized that
this area of research would fit perfectly with the Embedded Systems Institute’s (ESI)
mission to apply academic results to an industrial environment. This gave birth to the
Tangram project in which universities, industrial partners, ESI and ASML undertook
research that can benefit the semiconductor and many other industries. After four and
a half years of work, the Tangram project contributors proudly present this book with
their research findings. For ASML, the Tangram project has delivered many improve-
ments to our approach to integration and testing, especially regarding strategies and se-
quences. The project proved that - supported by the proper infrastructure - model-based
approaches are the key to successful test automation, early integration and diagnosis.

But most importantly, we have seen once more that supporting cooperative re-
search, with partners having different yet relevant backgrounds, can really lead to
breakthroughs in achieving our goals. ASML is delighted to have been the ‘carrying
industrial partner’ in this project. On behalf of ASML, I look forward to seeing what
this project, and others like it, can bring to ourselves and to the industry as a whole.

Ir. Harry Borggreve
Senior Vice President of Development and
Engineering
ASML Netherlands B.V.
Veldhoven, The Netherlands
October 2007

Preface

This book is the second in a series of publications by the Embedded Systems Institute
that report on the results of ESI research projects carried out in collaboration with
its industrial and academic partners. This volume summarizes the key results of the
Tangram project, which was devoted to model-based integration and testing of complex
high-tech products and involves the collective work of researchers and engineers from
ASML, together with research groups at Eindhoven University of Technology, Delft
University of Technology, the University of Twente, Radboud University Nijmegen,
TNO, Science and Technology and ESI. The topic of integration and testing is of central
importance to the high-tech industry, and fits perfectly with the ESI Research Agenda.
Like almost all ESI-coordinated projects Tangram was organized as an industry-as-
laboratory project, in which real cases in an industrial setting provide the experimental
platform to develop and validate new methods, techniques and tools. This approach
proves very successful in producing substantial, industrially relevant results, whilst
maintaining high scientific standards.

It is clear that an effort like Tangram can only achieve such results with a very
strong commitment of all involved to contribute, not only in terms of one’s own area
of expertise, but also by taking responsibility for the success of the project as a whole.
We have been most fortunate to have ASML as the carrying industrial partner of this
project, giving the project access to the testing and integration problems of their lithog-
raphy machines, which are indisputably among the most sophisticated high-tech ma-
chines one can find. The consortium of researchers in Tangram have really seized
upon this opportunity to test and elaborate the viability and practicability of their ideas,
leading to impressive improvements in the test and integration process, as well as the
articulation of relevant new research questions.

I would like to thank all participants involved for their commitment and contribu-
tions that have secured the success of Tangram. The support of ASML and the Dutch
Ministry of Economic Affairs, which provided the financial basis for carrying out the
project, is gratefully acknowledged. The project now having brought substantial ben-
efits for all involved, we hope to share some of the results and insights with our wider
industrial and scientific environment through this book.

Prof. dr. Ed Brinksma
Scientific Director & Chair
Embedded Systems Institute
The Netherlands
August 2007

Contents

1 Tangram: an overview of the project and an introduction to the book 1

2 ASML: the carrying industrial partner 21

3 Integration and test planning patterns in different organizations 31

4 Integration and test planning 45

5 Test time reduction by optimal test sequencing 61

6 Optimal integration and test planning for lithographic systems 73

7 Model-based integration and testing in practice 85

8 Using models in the integration and testing process 101

9 Timed model-based testing 115

10 Model-based testing of hybrid systems 129

11 Test-based modeling 143

12 Model-based diagnosis 163

13 Costs and benefits of model-based diagnosis 179

14 A multidisciplinary integration and test infrastructure 187

15 The Tangram transfer projects: from research to practice 199

A Tangram publications 209

B List of authors 219

Chapter 1

Tangram: an overview of the
project and an introduction to
the book

Author: G.J. Tretmans

1.1 Introduction

Integration and testing of complex embedded systems, such as wafer scanners, med-
ical magnetic-resonance-imaging (MRI) scanners, electron microscopes, and copiers,
is expensive, time consuming, and often faults are found that could have been detected
much earlier in the development trajectory. The quest for ever faster introduction of
new products, preferably with less costs and with better quality, makes high demands
on the development process of such systems. Whereas traditionally a lot of atten-
tion and effort has been devoted to the design and implementation phases of system
development, we currently see an increasing awareness that the time-to-market pres-
sure makes also high, and perhaps even higher demands on the integration and testing
phases.

Consequently, it is of increasing importance to improve the integration and testing
process of embedded systems, and to make this process faster, cheaper, and better.
This is exactly the aim of the Tangram project: developing methods, techniques and
tools to reduce lead time, improve quality, and decrease costs of integration and testing
of high-tech embedded systems. Tangram is an applied research project, in which
different universities and companies, coordinated by the Embedded Systems Institute,
have collaborated on achieving these goals.

The goal of this book is to give an overview of the outcomes of the Tangram project.

1

2 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

The goal of this chapter is to introduce the project and the book, and to provide an
overview and summary of it.

First, the problem scope of Tangram, i.e., the challenges of integration and testing
of complex systems, is sketched in Section 1.2. Section 1.3 describes Tangram and
some of its characteristics: its way of working in anindustry-as-laboratorysetting, its
bias towards model-based approaches, and its true focus on integration and testing.

Section 1.4 introduces the five research areas:integration and test planning, model-
based integration, model-based testing, model-based diagnosis, and integration and
test infrastructure. The subsequent chapters are organized following these lines of
research, so this section also serves as a reading guide for the rest of the book. Each
research area is briefly introduced and positioned within the integration and testing
domain, the main outcomes are mentioned, and pointers refer the reader to the chapters
where the full details and results can be found.

Sections 1.5 and 1.6 address some non-technical issues, such as the transfer of
project results to the industrial partner in the project, and some particularities of or-
ganizing such a collaborative project of industry and academia. Lastly, Section 1.7
summarizes the achievements, open issues, and perspectives.

This book intends to give an accessible overview of the Tangram results for any-
body interested, and in particular for technical professionals working in the area of in-
tegration and testing, who may recognize the challenges that Tangram addresses. The
scientific orientation of the different chapters varies, but none of them has the inten-
tion to give a full scientific treatment of the topic covered; where necessary references
to other publications, such as journal and conference papers, are made. The different
chapters are independent, so that sequential reading is not necessary.

1.2 Integration and testing

Complex systems are designed following a divide and conquer strategy. In the de-
sign phase the requirements that the system must satisfy, and the tasks that the system
must perform, are decomposed and divided over different subsystems, modules, and
components. For each of these subsystems, modules, and components, in turn, the
requirements are determined, and further decomposed and divided over smaller sub-
systems and components, and so forth, until the components reach a level of detail so
that they can directly be implemented, constructed, or bought; see Figure 1.1.

After the decomposition there is composition: when all components are ready they
must be combined and integrated to form larger modules, which are again integrated,
until the complete system has been obtained from the integration of all subsystems.
Moreover, in between all these integration activities, the individual components, com-
bined components, integrated modules and subsystems, and the whole system will be
tested to check their quality and compliance with their requirements. This process con-
tinues until eventually the complete system has been integrated and tested. This inte-
gration and test process, which starts with the individual components and ends with the

INTEGRATION AND TESTING 3

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

system
realization
system

realization

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

component
design

subsystem
design

subsystem
design

subsystem
design

subsystem
design

subsystem
design

subsystem
design

system
design

system
design

Figure 1.1: Decomposition and composition.

completely integrated and tested system, constitutes the scope of the Tangram project;
see Figure 1.1.

Challenges

In the integration and test process, integrators and testers face different challenges.
First, there is the ever growing complexity of the individual components, and the
increase in the number of components. With the latter also the number of possible
interactions between components increases and, consequently, the number of poten-
tial integration problems – on average the number of possible interactions increases
quadratically with the number of components. Apart from designed and intended in-
teractions between components, there are unintended and undesired interactions which
often cause problems during integration, such as heat production or electromagnetic
interference.

A second challenge is the market demand for ever faster introduction of new prod-
ucts, with more features, with lower cost, and with higher quality. The integration and
testing phases, being closer to the new product’s delivery date, will even more sense
the time-to-market pressure than the specification and design phases. The latter phases,
however, are likely to introduce more faults in the system, because of the quest for more
new features, which again increases the pressure on testing.

Problems occurring during integration and testing can be process-oriented, as well
as product-oriented. Integration can be difficult, or impossible, because components do

4 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

not fit together. Many integration problems are caused by imprecisely or ambiguously
defined, or not correctly implemented interfaces. It may also occur that all components
together, although correctly implemented, do not deliver the requested performance,
functionality, or quality of service. A lot of these problems can actually be attributed
to the specification or design phase, and are only detected much later during the inte-
gration and testing phase. Consequently, these errors are expensive in terms of repair
and rework. Moreover, this late detection of such faults almost always leads to delays
in the integration and testing trajectory, and thus in the time-to-market of the product.

Also without any problems being detected, the lead time of the integration and test
trajectory is often an issue. With the classical way of integration, first the realizations
of the components need to be available before integration and testing can start. This
implies that there will be many dependencies and critical paths in such a process, with
many integration and test activities waiting for others to be ready. If there is a disrup-
tion somewhere in this process, e.g., because a component is delivered late, this will
immediately have big consequences for all subsequent activities in the process lead-
ing to an increase in the duration of the integration and test trajectory. Moreover, apart
from the extra costs of delay, interest costs may play an important role if very expensive
components have to be integrated early in this trajectory.

Another challenge is to specify and develop the test cases to test all components
and subsystems thoroughly. Tests are needed that sufficiently cover all component
functions and requirements. This should include criteria and methods to analyze the
test results. Moreover, a technical test environment and infrastructure should be made
available that facilitates easy and efficient execution of all these tests. As with integra-
tion, test effort tends to increase more than proportionally with the growing complexity
and size of systems: if the number of components doubles, the number of possible test
cases grows with the product of the sizes of their input spaces.

With an increasing number of components, timely diagnosis is also getting more
and more problematic. If a failure occurs it must be identified, and the root cause of
the failure must be localized for repair. Diagnosis is an issue during both development
testing and operational use by the customer.

Last, but not least, these integration and testing challenges aggravate dramatically,
if also external, third-party components are to be tested and integrated, and when the
components to be integrated emanate from different engineering disciplines, such as
mechanical, optical, mechatronic, electronic, and software engineering. And especially
in the area of complex embedded systems third-party components and multidisciplinar-
ity are very common.

All these challenges make that the integration and testing process is an interesting
and stimulating area for research and development. New methods, techniques, and
tools are demanded, so that integration and testing are able to keep pace with the in-
creasing complexity of embedded systems, and with the growing demands on time-to-
market, cost, and quality. During four years, Tangram has worked on these challenges.

THE TANGRAM PROJECT 5

1.3 The Tangram project

The Tangram project is an industrial-academic research and development project man-
aged by the Embedded Systems Institute. The goal of Tangram is to develop methods
and techniques to reduce lead time, improve quality, and decrease costs of integration
and testing of high-tech multidisciplinary systems, i.e., to contribute to solutions for
the integration and testing challenges described in Section 1.2.

In Tangram, researchers and engineers from ASML, TNO, and Science & Technol-
ogy, have worked closely together with researchers of Delft University of Technology,
Eindhoven University of Technology, the University of Twente, Radboud University
Nijmegen, and the Embedded Systems Institute. The project started in March 2003
and lasts until December 2007, and it is financially supported by the Netherlands Min-
istry of Economic Affairs.

In tackling the challenges of integration and testing, Tangram started from three
principles. First, to stimulate the applicability and transfer of results, the project has
worked in a setting which is referred to asindustry-as-laboratory. Second, the new
methods and techniques are based onmodel-basedapproaches. Third, the project shall
explicitly focus on the integration and testing phases of system development.

Industry-as-laboratory

The academic-industrial cooperation in Tangram took place in a setting referred to
as industry-as-laboratory[103]. This means that the actual industrial setting is used
as a laboratory, akin to a physical or chemical laboratory, where new theories, ideas,
and hypotheses, mostly coming from the academic partners in the project, are tested,
evaluated, and further developed. This setting provides a realistic environment for
experimenting with ideas and theories, but, of course, care should be taken that the
normal industrial processes are not disrupted. Moreover, the industry-as-laboratory
setting facilitates the transfer of knowledge from academia to industry, and it provides
direct feedback about the applicability and usefulness of newly developed academic
theories, which may again lead to new academic research questions.

For Tangram, the laboratory has been provided by ASML. ASML is the lead-
ing global company for lithography systems for the semiconductor industry. Its wafer
scanner machines involve highly complex configurations of embedded systems with
extreme requirements regarding performance and precision. During the development
of these machines, ASML experiences many of the integration and testing challenges
sketched in Section 1.2. Consequently, ASML provides an ideal, stimulating and de-
manding laboratory environment for Tangram. Chapter 2 elaborates on ASML and its
role in Tangram.

Models

The basic approach for tackling the integration and testing challenges is the use ofmod-
els. A model is an abstract view of reality, in which essential properties are recorded,

6 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

and other properties and details considered not important for the problem at hand, are
removed.

An every-day example of a model is a road map: a road map only contains lines
representing roads, and circles representing cities. The map abstracts from many other
details of reality, such as buildings, forests, railways, mountains, the width and the kind
of pavement of roads, et cetera. Such a map, i.e., a model, may very well help with
planning your trip by car from Eindhoven to Amsterdam, because all relevant details
for such a trip are there. For planning a railway trip, however, or for calculating the
altitude difference between Eindhoven and Amsterdam, such a road map is useless.
Another map, i.e., another model with other abstractions, is needed such as a railway
map, or a geographic map, respectively.

Models can be analyzed, they can be the basis for calculations, they can help in
understanding a problem, they can form the basis for constructing a system, for testing
it, and for diagnosing it, and when they are expressed in an executable language, they
can be simulated (simulation models). Models can be made of systems, subsystems,
or components, but also the development process, or part of it such as the integration
and test process, can be modeled. Models can be madea priori to guide and analyze
the design, ora posteriori to analyze, test, or diagnose an existing system. Different
models can be made of the same system, each focusing on a different kind of properties,
e.g., a functional model, a performance model, or a reliability model.

In Tangram different types of models are used to tackle different kinds of inte-
gration and testing challenges. Process models are used to analyze and optimize the
integration and testing process, fault models are used to model potential system faults
and their implications, and models of component behavior are used for simulation,
model-based integration, model-based testing, and model-based diagnosis.

Focus on integration and testing

Tangram deals with integration and testing, and only with integration and testing, that
is, with the right-hand side of Figure 1.1. As noted above in Section 1.2, many inte-
gration and test problems can be attributed to errors made during the specification or
design phase, but it is not an option for Tangram to propose, or work on improvements
or changes in the specification or design methodology. The new methods and tech-
niques should be able to cope with the current reality of imperfect specifications and
designs.

1.4 The research areas

Different research directions have been pursued in Tangram, addressing many of the
integration and testing challenges discussed in Section 1.2, and covering different parts
of the right-hand side of Figure 1.1. This section briefly introduces these research ar-
eas, it describes their main results, and it positions each area in the integration and
testing domain as depicted in Figure 1.2. This figure extends Figure 1.1 with explicit

THE RESEARCH AREAS 7

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

system
realization
system

realization

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

integrationintegration subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

system
test

system
test integrationintegration

integrationintegration

integrationintegration

Figure 1.2: Integration and testing activities.

integration and testing activities. The other chapters of this book are organized follow-
ing these lines of research, so this section also serves as an introduction and reading
guide for the rest of the book. For that purpose, this section contains ample references
to the other chapters. Tangram has the following research areas:

• Integration and test planninguses models to plan and schedule the different ac-
tivities in the integration and test process, and to optimize this process with re-
spect to time, cost, or quality – Chapters 3, 4, 5, and 6.

• Model-based integrationintroduces component models in parallel to, and as re-
placement for component realizations, so that many integration and test activities
can be performed on these models, e.g., through simulation, long before the real
realizations are available – Chapters 7 and 8.

• Model-based testingis concerned with comparing models with realizations using
automatically generated and executed test cases – Chapters 9, 10, and 11.

• Model-based diagnosislocalizes a faulty component in a (sub)system when a
failure has been detected – Chapters 12 and 13.

• Integration and test infrastructureprovides a generic infrastructure for the exe-
cution of tests, model-based integration, and model-based testing – Chapter 14.

8 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

Integration and test planning

The area of integration and test planning is a process-oriented line of research, aiming
at optimizing the planning of integration and test activities in the integration and test
trajectory. It may apply to the whole integration and testing phase when all integration
and testing activities are optimally scheduled, or to a single testing activity when an
optimized test sequence is determined for the test cases within such a test activity; see
Figure 1.3.

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

system
realization
system

realization

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

integrationintegration subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

system
test

system
test integrationintegration

integrationintegration

integrationintegration

optimal planning of all integration and test activities

optimal sequencing
of test cases within

a test activity

Figure 1.3: Integration and test planning.

Given a model of the planning problem consisting of the possible faults that a sys-
tem may have together with the probabilities of their occurrence, a set of tests together
with the probabilities with which they may detect these faults, possible integration
steps, the cost of tests and integration steps, and the impact of remaining non-detected
faults, an optimum test and/or integration sequence is calculated. Optimization can be
along different parameters, such as minimal cost, minimal remaining risk, or minimal
duration of integration and test time.

With such planning techniques it turns out to be possible to reduce the integration
and test time of ASML machines with 10-20% compared with the currently used man-
ual, expert-based planning approach. Moreover, these techniques are especially useful
when something changes during the process, e.g., when a component is delivered later
than expected. An updated planning is then easily generated by adapting some pa-

THE RESEARCH AREAS 9

rameters and recomputing the optimum integration and test sequence. The method and
techniques are effective during the integration and testing trajectory of the development
of a new machine or prototype, as well as during the integration and testing phase of
the manufacturing of a machine of an existing product line. In both cases, of course,
it is important that a reasonably complete list of possible faults is available, and that
valid estimations for the parameters in the model can be made, such as the cost of test
cases and the impact of faults. Moreover, the method does not say anything about how
to specify the test cases which should detect the possible faults.

Integration and test planning is described in four chapters. First, Chapter 3 investi-
gates the kinds and patterns of integration and test plans of different organizations with
differing business drivers, such as time, cost, and quality. The question is whether the
plan of a time-to-market driven company like ASML is structurally different from, e.g.,
a quality (safety) driven company in the aircraft industry. Then, Chapter 4 presents a
step-wise approach for making an integration and test plan. The steps in this approach
are modeling the system for integration and test planning, making an integration se-
quence, positioning of test phases in the integration sequence, planning the individual
test phases, and optimizing the integration and test plan. Chapter 5 gives more technical
details on the planning of an individual test phase, including the kind of models used
and two case studies performed at ASML showing the benefits of this test sequencing
method. Finally, Chapter 6 discusses the techniques for integration sequencing. Here,
test phases are positioned as soon as they can be performed. This chapter also presents
the results of two ASML cases to illustrate the benefits of the method.

Because of the successes in terms of reductions of integration and test time demon-
strated in the case studies, these methods and the corresponding tool, called LONETTE,
have been transferred in a special transfer project, and they are currently used within
ASML. Transfer projects are discussed in Chapter 15.

Model-based integration

Whereas the Tangram activity of integration and test planning is process-oriented, i.e.,
uses models for the integration and testprocess, all other Tangram activities are more
product-oriented, i.e., models are made of the behavior of the system under develop-
ment, its subsystems, and its components.

Model-based integration aims at reducing the critical path of integration and test-
ing by trying to detect as many faults as possible onmodels. Currently, most methods
require completed realizations of components to start integration and testing. By mak-
ing models of components, many properties can already be analyzed on these models,
without the need for waiting for realizations to become available. Models of single
components, and combinations of models can be analyzed, simulated, model-checked,
and tested. If the models are formal, i.e., is expressed in a formal language with math-
ematically and precisely defined semantics, then properties of the model can even be
proved with mathematical precision. As an example, a model-checker can formally
prove that the behavior of a model is deadlock-free. Chapter 7 gives examples of

10 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

model-checking for an ASML component.
Even more potential problems can be detected early when models are combined

with already available realizations of components; see Figure 1.4. (cf. hardware-in-the-
loop simulation and testing, or the use of stubs in software testing). This might lead
to an incremental integration and test approach starting with a system of component
models, where then gradually models are replaced by component realizations.

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

system
realization
system

realization

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

integrationintegration subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

system
test

system
test integrationintegration

integrationintegration

integrationintegration

component
model

component
model

component
model

component
model

checking interactions
with models

component
model

component
model using a model instead of a realization

for integration and testing

subsystem
model

subsystem
model

Figure 1.4: Model-based integration.

Chapter 7 describes the method, and its successful application to modeling, inte-
grating, and testing some interacting components of the ASML wafer scanner. Chap-
ter 8 embeds the method in an industrial integration and test process, where both soft-
ware and hardware components are upgraded and integrated.

The feasibility and usefulness of model-based integration and testing have been
shown in a number of case studies. The advantages are that a lot of potential problems
can be detected earlier, and thus cheaper, often before the realization of the compo-
nent has been built. In particular, interfaces, which are the source of many integration
problems, can be analyzed and model-checked before any interface is built, allowing
the early detection of interface design errors. Secondly, the method makes it possible
to increase the concurrency and to decrease the critical dependencies in the integration
and test process, since for many tests there is no need to wait for realizations. Thirdly,
many tests can be performed much faster in a simulation environment than in a real
environment. Finally, if models are used for testing, there is less need for expensive

THE RESEARCH AREAS 11

equipment, which holds for both test equipment and expensive parts of the system un-
der test.

These advantages, of course, should outweigh the extra effort of making models.
Not in all cases it is profitable to make this extra investment. In Chapter 8 it is shown
how the integration and test planning method of Chapter 6 can be easily extended to
plan the making of models. This is achieved by including a model as an extra, alter-
native component in the planning model, with the model’s development cost, devel-
opment time, and benefit expressed as possibly earlier detected faults. The planning
and optimization techniques can then be used to predict whether making a model of a
particular component can be expected to be advantageous or not.

Model-based testing

Model-based testing involves checking whether a system or component realization be-
haves in accordance with its model. This means that the model is taken as the compo-
nent specification to which the realization must conform. Checking this conformance
is done by means of testing. Tests are algorithmically generated from the model, exe-
cuted on the component under test, and the test results are automatically analyzed for
compliance with the model. Conformance of realizations to models is important to
guarantee that properties verified, simulated, or tested on models (e.g., during model-
based integration) also hold for the realizations.

Potential advantages of model-based testing are that large quantities of test cases
can be completely automatically generated from the model, while also test results can
be automatically checked with respect to the model. Moreover, if the model is valid
then all these tests can be proved to be valid, too. There is quite a lot of research and
development going on at the moment in the area of model-based testing, both indus-
trially and academically; see, e.g., [84] for an overview of the activities of Microsoft
Research in this area.

In Tangram, extensions of the state of the art in model-based testing, as well as ap-
plications of model-based testing were developed. The first extension involves testing
of real-time systems. Whereas the original model-based test theory is restricted to the
testing of ordered events without a notion of real-time, Chapter 9 presents a theory, an
algorithm, and a tool for testing systems where the time of occurrence of the events
does matter. The next extension takes real-time a bit further by considering hybrid
systems. These are systems in which not only discrete events must occur at specified
moments in time, but also continuous variables must change according to specified tra-
jectories, typically described by means of differential equations. Theoretical research,
as well as tool development and an initial case study were performed for testing of hy-
brid systems; these are described in Chapter 10. Finally, Tangram was partly involved
in extensions for symbolic testing, which considers the case when the tested events are
parameterized with complex data structures and values. These results were published
elsewhere [50, 51].

The principle of model-based testing has been successfully applied in the ASML

12 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

system
realization
system

realization

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

integrationintegration subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

system
test

system
test integrationintegration

integrationintegration

integrationintegration

component
model

component
model

testing a component realization
with respect to its model

subsystem
model

subsystem
model

testing a subsystem realization
with respect to its model

subsystem
realization

subsystem
realization

Figure 1.5: Model-based testing.

context. Some very small software components were modeled, tests were automatically
generated from these models and executed on the realizations of these components, and
some discrepancies between model and realization were detected. For larger-scale ap-
plications, however, models with sufficient detail must be available, or it must be pos-
sible to develop them from available documentation or from other information sources
such as expert interviews. This turned out to be difficult in the ASML context. It
looks like the effort necessary for developing models for systems with the complexity
and size of the ASML wafer scanners is currently still too large. Moreover, the con-
stant time-to-market pressure makes it difficult for engineers to spend much time on
developing, or supporting the development of such detailed models.

Unfortunately, the models which were used for analysis during model-based inte-
gration could not easily be reused for model-based testing. First, for analysis the level
of abstraction of the model is chosen by the modeler, who can abstract from difficult or
unimportant details. In particular, analysis can also be performed on behavior scenar-
ios while abstracting from alternative behaviors. For model-based testing, the level of
abstraction is dictated by the details of the component realization under test. All details
of behavior that the realization may exhibit, should be included in the model. This re-
quires more detailed models. Secondly, model-based testing mainly focuses on testing
of software, whereas the experiments done with model-based integration concentrated

THE RESEARCH AREAS 13

more on hardware and physical components, in particular, in the experiments where
models were combined with realizations of components.

The difficulty of obtaining models for model-based testing triggered new research
questions focusing on alternative ways of obtaining models. One new line of research
investigates the possibility of deriving a model from the observations made during
executions of an existing component realization, using a kind of reverse engineering
method. Such a model could then later be used, e.g., for model-based regression testing
of a new version of that component. This approach was baptizedtest-based modeling,
and is described in Chapter 11. This research looks promising, yet, is in a very initial
phase.

Model-based testing is an area of research where the original Tangram goals were
not achieved, but new research questions were triggered, which are now pursued. Con-
sequently, the book chapters about model-based testing, Chapters 9, 10, and 11, have
a more theoretical focus. It should be noted that model-based testing has successfully
been applied in other application domains, in particular, there where better specification
documents are available as a starting point for modeling, e.g., internationally standard-
ized specifications, and where the systems are smaller, e.g., smart-card applications
[122, 123].

Model-based diagnosis

Fault diagnosis is about the localization of faults. Given a system and a failure of
that system, i.e., an observation that shows that the system does not comply with its
requirements or expectations, fault diagnosis tries to point to the root cause of the
failure, i.e., the component or part that should be replaced or repaired; see Figure 1.6.
The failure may be observed during normal operation of the system, or it may concern
a failure detected during testing.

In model-based diagnosis the localization is done using a model of the system be-
havior expressed as a composition of subsystems or components. When failure be-
havior is observed, a kind of backward reasoning on the model is used to infer which
component(s) could have caused the failure. Probability annotations can be used to
infer a probability for each potentially failing component.

In Tangram, LYDIA , a diagnosis method, modeling language, and tool, has been ap-
plied to components of the ASML wafer scanner. It turned out to be very successful for
the diagnosis of electronic components during operational use when these components
may break. In these cases reductions of diagnosis time were achieved from a couple
of days with the currently used techniques, to only minutes when LYDIA is used. An
investment, of course, is needed for making a diagnostic model, but the reduced diag-
nosis times more than compensate for these investments. Moreover, models, which are
expressed in LYDIA as Boolean equation systems, can sometimes be partly automati-
cally generated from the VHDL descriptions of the electronic component designs. For
diagnosis of faults detected during development testing, and for diagnosis of software
components, the model-based LYDIA approach turned out to be less successful. Diag-

14 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

component
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

subsystem
realization

system
realization
system

realization

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

component
test

integrationintegration subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

subsystem
test

system
test

system
test integrationintegration

integrationintegration

integrationintegration

failure
determine the faulty component
from a failure and a (sub-)system model

diagnosisdiagnosis

subsystem
model

subsystem
model

Figure 1.6: Model-based diagnosis.

nosis of software requires other approaches, such asspectrum-based diagnosis. This is
investigated in the Trader project of the Embedded Systems Institute [40].

The principles of model-based diagnosis with LYDIA , and the extensions developed
during Tangram, are described in Chapter 12. Chapter 13 gives some case studies
performed at ASML, with emphasis on the modeling experiences, and, based on these,
summarizes the benefits and costs of model-based diagnosis. The successes of model-
based diagnosis have been transferred in a transfer project, and LYDIA is currently used
at ASML; see Chapter 15.

Integration and test infrastructure

For testing, whether model-based or not, a test environment, also called test infrastruc-
ture, is necessary. Such a test infrastructure should facilitate that tests can be executed
on the system under test, – components of the ASML wafer scanner –, that the inter-
faces of the system under test are easily and uniformly accessible, and that observations
of test results can be made. Moreover, if executable models of components are com-
bined with realizations during model-based integration, an infrastructure is needed that
allows easy connection of realizations with these models written in, e.g., Simulink,
Labview, or the process modeling languageχ (Chi).

INDUSTRIAL TRANSFER 15

An integration and test infrastructure for ASML wafer scanners was developed,
which acts as a generic and uniform way to control and observe the interfaces of the
wafer scanner components. It can concurrently support functions of traditional test
stubs and test drivers, it can be used for manual testing, model-based testing, and
model-based integration, and it exposes both physical hardware and software inter-
faces as much as possible in a uniform way. The infrastructure was implemented using
standardized technology based on middle-ware such as CORBA and DDS (Data Distri-
bution Service, i.e., publish-subscribe, or message-broker middle-ware). The integra-
tion and test infrastructure, with its requirements and some implementation choices, is
described in Chapter 14.

The integration and test infrastructure, often referred to in Dutch as the ‘tang’ be-
cause it surrounds the system under test as a pair of tongs, is partly ASML specific. It
is currently being transferred to ASML, see Chapter 15, where it is successfully used
as a test environment for manual testing.

1.5 Industrial transfer

An important goal of Tangram is to validate techniques, methods, and tools, developed
at academia, in the industrial ASML context. Moreover, in case of success, actions
should be initiated to transfer these to ASML. The different research topics within
Tangram have shown different results with respect to applicability and transfer. Some
methods have shown good results, feasibility, and applicability, but need further re-
search and development before they can be really deployed on a daily basis within a
company like ASML. Other techniques and methods turned out to be so mature and
useful that their advantages are evident, and can be quantified. For the latter areas spe-
cial transfer projects were initiated. These projects should transfer the methodology,
techniques, and tools to the industrial partner ASML, so that they can be consolidated
and institutionalized. In these transfer projects Tangram researchers have worked to-
gether with ASML engineers. The transfer projects were separately organized, and
Chapter 15 describes their rationale and organization.

Considering the successes of integration and test planning, model-based diagnosis,
and the integration and test infrastructure, transfer projects were organized for these
three areas. Model-based integration has shown its feasibility and advantages, but in
particular the support of the method is considered not sufficiently mature enough, yet,
to initiate industrial transfer. As explained above, model-based testing has had some
successful experiments, mainly on small systems, which show that the principles work
well, but its main result is the identification of the need for methods to obtain models for
systems of the complexity and size of the ASML wafer scanners. Test-based modeling
was identified as one of the candidates for this. This is an example where the industry-
as-laboratory approach has triggered new research questions.

16 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

1.6 Some organizational issues

Tangram is a cooperation between academia and industry. The way the project was
initiated and organized was different from other research projects. In this section we
briefly address some of these organizational, non-technical issues.

The beginning

Tangram is different. It is not an academic research project such as those sponsored
by the Netherlands Organization for Scientific Research (NWO) or the Netherlands
Technology Foundation (STW). It is larger, it is more application oriented with the
goal to show a realistic, industrial proof-of-concept of new technologies and methods,
and the participants come from more diverse organizations than in a traditional research
project. It is also not a typical industrial R&D project. The nature of the research is
more exploratory, and apart from business goals, the aim of the project is to deliver
theses and scientific publications.

Consequently, the project started with a lot of learning. The participants had to
learn about each other’s interests and aims, about the ways of working and commu-
nicating with each other, and about the problems of the industrial partner. The initial
problem description statement was rather abstract compared with those found in aca-
demic research proposals. It was more a collection of symptoms stated from an indus-
trial, even business perspective, and not a well-defined scientific problem statement.
This implied that the first task of the project was to clarify and concretize the problem
statement of the industrial partner. On the one hand, this statement should be recogniz-
able for the industrial partner and provide sufficient confidence for possible solutions.
On the other hand, it should allow the academic partners to transform it into concrete
research topics for the individual PhD. candidates linked up with their academic re-
search agendas. Preferably, such research topic descriptions are clear and concrete
from the beginning, i.e., before the PhD. candidates start, but this creates a dilemma:
in order to define the project problem statement, domain knowledge from the industrial
partner is required, and this domain knowledge can only be obtained with sufficient
depth and detail during the project. This is rather different from traditional academic
research projects where new problems and research areas build on existing results with
which the researchers are completely familiar. This period of learning, and of problem
extraction and definition, is, of course, very instructive in itself, but it does not immedi-
ately lead to publishable results, and it thus influences the lead time for the production
of dissertations.

Industrial–academic cooperation

Tangram has a goal, and academic and industrial people collaborate to achieve that
goal. But apart from this common goal, academia and industry have their own goals,
and also their own ways of working. For academia, originality and specialized knowl-
edge are important to distinguish themselves, and to survive in the world of academic

SUMMARY OF RESULTS, OPEN ISSUES, AND PERSPECTIVES 17

writing and publishing. For the industry it is not originality or intellectual challenge
that counts, but the benefits for their business and intellectual property, where most
of the problems have a multi-disciplinary nature, and the time horizon and cycles are
shorter than those of academia. This tension between academic depth and industrial
breadth must be carefully balanced, and the project participants should, of course, re-
spect each others goals. Yet, interesting results can be achieved, as Tangram shows,
with on the one hand a number of dissertations and scientific publications, and on the
other hand the successful transfer of some methods, techniques and tools to the daily
business of ASML. One of the working practices in Tangram was to work in short,
incremental cycles, but with long term goals, so that industry can assess the progress
of each increment, as well as academia can see, and focus on the global aims after four
years. It is natural that the resulting dissertations have their major value in making
theoretical results applicable, and not in the scientific depth of the results.

The industry-as-laboratory setting turned out to be fruitful, in the sense that there
was a better focus of research on industrial needs and on results with industrial feasibil-
ity, and it facilitated acquiring the necessary domain knowledge for doing the industrial
case studies. Moreover, it allowed the industrial participants to have a closer look at,
and to perform some trials with some academic methods and techniques, and it trig-
gered academics with new industrially relevant research directions.

Dissemination

Apart from the direct transfer to the industrial partner, various other ways of dissem-
ination of the Tangram results were organized. First, there are the scientific results,
including five dissertations to be defended at the partner universities, articles published
in international journals, and papers presented at conferences and workshops. Also
in professional journals, several publications appeared, and presentations were held
at professional conferences, symposiums, and seminars; see Appendix A for a list of
Tangram publications.

Several students participated in the project to do a trainee-ship or to perform their
BSc. or MSc. project. Three symposiums were organized by Tangram itself, and a
follow-up project at the Embedded Systems Institute is in the phase of being started.
Dissemination also takes place via a new course on integration and testing provided
by the Embedded Systems Institute, via internal courses at ASML, e.g., those in the
context of the transfer projects, and via the academic partners who use the acquired
knowledge in their lectures on testing techniques and system engineering. And, last
but not least, there is this book.

1.7 Summary of results, open issues, and perspectives

For four years, Tangram has worked on methods and techniques for reducing lead time,
improving quality, and decreasing costs of integration and testing, and on the applica-
tion of these methods and techniques to the ASML wafer scanners. In the different

18 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

research areas, several results have been obtained in this period:

• Methods forintegration and test planningwere developed, implemented, and
successfully transferred. These methods have shown that automatic planning of
the integration and test trajectory may reduce its lead time with 10-20%.

• With model-based diagnosisa reduction of diagnosis duration from days to sec-
onds was achieved for some specific diagnosis areas. Also this method and the
corresponding tool were transferred.

• An integration and test infrastructurewas developed and transferred. It showed
that standard middle-ware solutions can be used to provide a generic infrastruc-
ture for the execution of tests.

• Model-based integrationshowed the benefits of using models to replace realiza-
tions for early integration and testing. Many integration issues could be detected
several months before the realizations were available.

• With model-based testingit is possible to automatically generate test cases, but
the dynamic and complex ASML environment makes it difficult to obtain or de-
velop the necessary models. This resulted in new research questions addressing
alternative ways of deriving or developing models, such as test-based modeling.
Theoretical results and prototype academic tools were obtained for real-time,
data-intensive, and hybrid extensions of model-based testing.

Apart from these specific results in the research areas, there are more abstract, global
achievements. First, Tangram helped to increase the awareness of the growing impor-
tance of the integration and testing phases in system development, whereas tradition-
ally system design and construction get more attention. Secondly, it demonstrated that
improvements in the integration and testing process are possible by adopting struc-
tured, scientifically underpinned, and tool supported methods and techniques. Thirdly,
it stressed the role of models and model-based thinking in integration and testing. Fi-
nally, a lot of feedback about academic methods and techniques was generated, and new
research items and opportunities for future developments were triggered. We mention
some of these:

• An important question forintegration and test planningis how to obtain realistic
estimates for the data and parameters in the planning models, e.g., the proba-
bility that particular faults occur, or an estimate for the impact or risk of a not
detected fault. On the scientific side, there is the challenge of developing better
algorithms and heuristics for the calculation of optimal integration and test plans.
The complexity of these algorithms may hamper the scalability of the method.

• In the area ofmodel-based integrationmore work is needed to make the method
easily applicable in an industrial environment. On the one hand, this involves
a stronger link to scientific methods of modeling and model-checking. On the
other hand, the connection to industrially used simulation environments, e.g.,

SUMMARY OF RESULTS, OPEN ISSUES, AND PERSPECTIVES 19

Simulink, should be strengthened such that seamless integration of modeling,
model-checking, simulation, and testing in a common infrastructure will be pos-
sible.

• The important question formodel-based testingis how to obtain the models from
which the test cases can be generated. New lines of research focusing on model
generation have started, e.g., using model learning and test-based modeling, and
others are possible, e.g., code abstraction. Case studies for model-based testing
are currently better performed in an environment where stable and clear specifi-
cations, e.g., standardized specifications, are available, and not in the hectic and
time-driven ASML context. Moreover, the theoretical work on real-time, data-
intensive, and hybrid extensions should be continued, in particular, with more
application oriented investigations.

• Also in the area ofmodel-based diagnosisone of the major challenges is to cope
with the computational complexity of the diagnostic algorithms in order to deal
with scalability. On the practical side, a challenge is the further exploration of the
methodology for other disciplines than the ones where it was successful within
Tangram.

• The integration and test infrastructureshould be further developed to a generic
and standardized infrastructure for the ASML machines, so that not only during
testing but also during operation easy and uniform access is obtained to sys-
tem components for testing and monitoring. This involves the addition of extra
functionality, but also the improvement of other, non-functional quality attributes
such as reliability, configurability, maintainability, efficiency, and portability.

In addition to these area-specific issues, there is the question of integration of, and syn-
ergy between the areas. A strong point of Tangram is that it achieved a couple of inter-
esting results in different areas as listed above, but at the same time this is also a weak
point, in the sense that the different techniques are not strongly integrated and linked
up with each other in a coherent methodology, yet. Different modeling languages are
used in the different areas. Some of them are at least based on the same principle –
automata, or state machines, for model-based integration and for model-based testing
–, but model-based diagnosis uses a different paradigm of modeling, viz. propositional
logic. Also the level of abstraction of the different techniques differs. Industry cannot
be expected to adopt a model-based approach for integration and testing, if this requires
them to make different models for model-based integration, model-based testing, and
model-based diagnosis, and to use completely different tools for these activities. Ide-
ally, it should be possible to reuse models developed for model-based integration for
model-based testing, when the realization of such a model becomes available, and for
model-based diagnosis, when failures are observed during testing or operational use.
Future research and development into a more integrated and coherent methodology for
integration, model-checking, testing, and diagnosis is desirable. For integration and
test planning the situation is slightly different, because these models are more process-

20 TANGRAM: AN OVERVIEW OF THE PROJECT AND AN INTRODUCTION TO THE BOOK

oriented, whereas the other areas use product models. Here the connection consists
of using product models as items in a planning model, e.g., the development and the
analysis of a product model are activities that can be planned (see also Chapter 8), po-
tential faulty behavior in a diagnosis model can also constitute a possible fault in a test
planning model, and the execution of a test suite generated with model-based testing
can be optimally sequenced. The combined use of the same models for model-based
testing, model-based diagnosis, model-based monitoring, and model-learning will be
one of the topics of the follow-up project, which is initiated by the Embedded Systems
Institute.

A second point for a more integrated and coherent methodology concerns the sys-
tem specification, design, and construction phases. Tangram strongly focused on the
integration and testing trajectory, i.e., the right-hand side of Figure 1.1, see also Sec-
tion 1.3. As already explained in Section 1.2, many integration and testing problems
originate from specification, design, or construction faults. This means that sooner
or later these phases will have to be considered, too, when studying integration and
test problems. Moreover, also in these phases the development and analysis of models
may help to solve problems, as the Boderc project of the Embedded Systems Institute
demonstrated [58]. This implies that modeling does not start in the integration and
testing phase, but that models are developed throughout the system development cy-
cle. Consequently, also modeling during specification and design must be considered
when investigating an integrated and coherent, model-based development methodol-
ogy, such that, ideally, models made during system specification and design can be
reused for model-based integration, model-based testing, and model-based diagnosis.
(Actually, model-based diagnosis already reuses, to some extent, VHDL design mod-
els; see Chapter 12). This coherence should also apply to planning models, where all
development activities from requirements capturing until final system testing could be
planned.

Equally important when considering a coherent, model-based methodology is the
feedback from the integration and testing phases to specification, design, and construc-
tion. Errors detected during testing or operational use should be traced back so that
design and construction processes can be improved. Moreover, the system design and
architecture must take the integration and testing phases into account, and they shall fa-
cilitate easy integration and testing, i.e., integratability and testability are system prop-
erties which should be designed into the system. This would allow to fundamentally
improve the integration and testing process. This future of a coherent, model-based
methodology from initial requirements until final system acceptance and further to op-
erational diagnosis, while incorporating both process and product models, requires a
lot of further research and development, and some follow-up projects. Tangram has
worked on some of the issues related to this, and has made a couple of contributions in
this direction. You are invited to read about these contributions in the next chapters of
this book.

Chapter 2

ASML: the carrying industrial
partner

Author: L. Engels, T. Brugman

2.1 Introduction

The Tangram project aims at a significant reduction of lead time and cost in the integra-
tion and test phase of complex high-tech products while maintaining or even improv-
ing the product quality. Since ASML goes through intense integration and test phases
when bringing their products to the market, the company was happy to be the carrying
industrial partner in this ‘industry-as-laboratory’ project.

2.2 Industry-as-laboratory

Many academic methods and techniques never reach industrial application. The focus
of universities is to continuously take the research itself one step further. Professors and
Ph.D. students are stimulated for delivering new scientific results rather than preparing
their results for industrial application. As a consequence of striving to extend present
scientific frontiers, the academic results are often confined to an isolated, restricted
domain. Though this approach is legitimate for practicing science, it does not hold a
directed way for bringing academic results towards industrial application.

While the industry is capable of organizing the research required for doing their
core business, they often fail to do this for adjacent domains. Being confronted with
their day to day operations, they hardly find the time to even investigate which aca-
demic results – especially non core – might very well fit with their business. Though
this way of working might very well result in prosperous business results, it lacks the

21

22 ASML: THE CARRYING INDUSTRIAL PARTNER

guided route for incorporating academic methods and techniques in industrial applica-
tion.

The ‘industry-as-laboratory’ setting brings down these walls when academia and
industry cooperate in bringing scientific results to industrial maturity. The academic
partners find their challenge in maturing their methods and techniques for industrial
applicability while focusing on real life problems in real life industrial environments.
In Tangram this real life environment is delivered by ASML, the ‘carrying industrial
partner’ (CIP).

Figure 2.1: A wafer scanner of ASML.

2.3 About ASML

ASML is the world’s leading provider of lithography systems for the semiconductor
industry, manufacturing complex machines that are critical to the production of inte-
grated circuits or chips.

ASML technology transfers circuit patterns onto silicon wafers to make every kind
of chip used today, as well as those for tomorrow. The technology needed to make

ABOUT ASML 23

chips advances as digital products become more pervasive - such as mobile phones,
consumer electronics, PCs, communications, and information technology equipment.

With each new generation of chips, personal and business products become smaller,
lighter, faster, more powerful, more precise, more reliable, and easier to use. In parallel,
the global semiconductor industry is pursuing its long-term road-map for imaging ever-
finer circuit lines on silicon wafers.

Exposure Method

Reticle

Lens

Reticle

Wafer

Electronic

design

Figure 2.2: From circuit pattern to chips on the wafer.

Core business: lithography

The technology behind ASML’s business is known as lithography. ASML has always
been at the leading edge of the industry. ASML systems – called steppers and step-and-
scan tools – use a photographic process to image circuit patterns onto silicon wafers,
much like a camera prints an image on film (see Figure 2.1).

Light generated by a source, such as a laser, is transmitted through a pattern known
as a reticle and then through a lens (see Figure 2.2). This process projects an image of
the pattern onto the wafer, which has been coated with a light-sensitive material called
photo-resist. The wafer is then developed and one layer of the circuit pattern appears.
Other chip making steps follow as you can see in Figure 2.3. Repeated a number of
times, the process results in a wafer full of completed integrated circuits.

Eventually, these integrated circuits are packaged and used in all kinds of industries
to make the products that people use every day at home, at work and on the move.

Figure 2.4 depicts the main subsystems in the ASML system. The Reticle Handler
is the robot for loading and unloading reticles. The Wafer Handler takes care of the

24 ASML: THE CARRYING INDUSTRIAL PARTNER

Figure 2.3: From silicon to an integrated circuit: the steps of making a chip. Step
5 is the lithography step. Steps 4 to 8 are repeated several times to create overlays,
depending on the complexity of the chip up to 30 times.

loading and unloading of wafers. The Illuminator directs the light such that it passes
correctly through the reticle and through the lens onto the wafer. The Reticle Stage
controls the movement of the reticle during the expose step. The Wafer Stage controls
the movement of the wafer on the measurement chuck as well as the motion on the
expose chuck.

Commitment to technology leadership

ASML’s largest business focuses on lithography systems for 200 and 300 millimeter
diameter wafer manufacturing. The ASML TWINSCAN

TM
lithography system is the

industry’s only dual-stage system that allows exposure of one wafer while simultane-
ously measuring another wafer. Another example is their new immersion lithography
system. It replaces the air over the wafer with fluid to enhance focus and shrink circuit
dimensions.

ABOUT ASML 25

Figure 2.4: Main subsystems of a wafer scanner.

Commitment to customers

ASML researches, develops, designs, manufactures, markets, and services technology
systems used by the semiconductor industry to fabricate state-of-the-art chips.

Lithography, or imaging, is the critical technology that shrinks the width of circuit
lines, allowing chip makers to continuously design and produce more chips per wafer,
more powerful chips or both. Finer line widths (some less than 1,000 atoms across)
allow electricity to flow around the chip faster, boosting its performance and improving
its functionality. For chip makers, such technological advancements mean increased
manufacturing productivity and improved profitability.

ASML is committed to providing her customers with the right technology that is
production-ready at the right time. Doing so enables ASML’s customers and their
customers to sustain their competitive edge in the marketplace.

26 ASML: THE CARRYING INDUSTRIAL PARTNER

2.4 ASML’s problem statement for Tangram

As stated earlier, the Tangram project aims at a significant reduction of lead time and
cost in the integration and test phase of complex high-tech products while maintain-
ing or even improving the product quality. Since it is extremely important to ASML
to provide customers with the right technology that is production-ready at the right
time, integration and test activities already start during the development phase (see
Figure 2.5).

Lead time for shipment t1

It is important for ASML to reduce lead time to shipment t1. The earlier ASML cus-
tomers get to use the ASML system, the earlier these customers are able to do their part
of their process development, i.e., tuning the lithography step with other chip making
manufacturing equipment.

Development activities
 test
Development activities

time

test
Development activities
 Test

Shipment

Development

t
1
 t
2

effort

Development activities
 test
Development activities

time

test
Development activities
 Test

Shipment

Development

t
1
 t
2

effort

Figure 2.5: The two lead times t1 and t2.

For an ASML system this integration and test involves the confrontation of 10-15
handling-, measuring-, positioning- and imaging subsystems with each other, which
all incorporate their part of optics, mechanics, mechatronics, electronics and software.
Since ASML has to continuously introduce new - sometimes yet to be invented - con-
cepts (like dual stage or immersion) to meet Moore’s law, integration sometimes results
in concluding that the different subsystems do not behave as expected. The combina-
tion of integrating multi-subsystems and multi-disciplines in yet to be invented domains
makes predicting, not to mention reducing, lead time t1 extremely difficult.

Lead time after shipment t2

As soon as the ASML system has been shipped and ASML customers start doing their
part of process development, issues in terms of quality and performance will be re-
ported. Even though both customer and ASML perfectly understand that this is inherent
to working with state of the art equipment, the ASML customer wants a swift solution
to the problem. One could say that in this respect the integration and test phase, now

ASML’S PROBLEM STATEMENT FOR TANGRAM 27

at ASML customer’s site, still continues. The problem with reducing lead time t2 is,
compared to reducing lead time t1, more complicated now that the specifics of ASML’s
customer process have to be incorporated as well. Since ASML has to deal with a va-
riety of customers, predicting and reducing lead time t2 is a difficult multidimensional
problem.

Integration and test is at the right hand side of the V-model

ASML’s development is organized according to the V-model (see Figure 2.5). While
being convinced that there will always be improvements to be implemented on the
left hand side side of the V-model, there is an equally strong conviction that these
improvements at design- and implementation time never will have an impact such that
integration at the right hand side will be completely free of flaws. For that very reason
Tangram is to focus on identifying improvements on the right hand side of the V-model
only (and leave candidate improvements on the left hand side to others).

System

Requirements

System

Design

Sub
-
system

Design

Module

Design

Implementation

and test

Module

Test

Sub
-
system

Test

System

integration

System

Test

User

Test

User

Requirements

System

Requirements

System

Design

Sub
-
system

Design

Module

Design

Implementation

and test

Module

Test

Sub
-
system

Test

System

integration

System

Test

User

Test

User

Requirements

Figure 2.6: The V-model for system development and testing.

A dominant part of the challenge to identify improvements is that there is hardly
any formalism or mechanism to reason about integration and test. Where there has
hardly been any research on this topic, Tangram is to provide results in this area.

ASML problem statement

To summarize the Tangram problem statement: ASML integration and test must be
done faster, cheaper and better. This challenge is never more present than when sub-
systems from different projects, from different disciplines, and using state of the art

28 ASML: THE CARRYING INDUSTRIAL PARTNER

technology, have to be integrated and tested. Where semiconductor business dictates a
break-through in this respect, Tangram is to provide an answer for:

• controlling and improving product quality
– make it specific, measurable, attainable, realistic, timely (SMART)

both before and after shipment

• formalizing approaches to deliberate, predict and control lead time t1 and t2
– make the integration and test plan more predictable
– moving integration and test activities from the critical path as much as possible

• bringing down overall integration, test and diagnostic costs

2.5 Project results

As will be described in the remainder of this book, significant results have been achieved
from an ASML point of view. To summarize these results:

• Tangram demonstrated the capability to reduce lead times with 10-20% by ap-
plying model-based test and integration strategies.

• Model-based integration has demonstrated the ability to detect integration flaws
several months before real life subsystems come to place.

• Model-based diagnosis has proven the ability to reduce diagnosis time from days
to seconds.

• Model-based testing has demonstrated to be too immature to handle real-life,
industrial scale applications in the ASML environment. From this observation
the concept of Test-Based Modeling has originated; see Chapter 11.

• The test and integration infrastructure has proven to be that effective that ASML
applies this infrastructure already in integrating and testing her latest platform.

2.6 Lessons learned

For ASML, some measures have proven to be successful and others turned out to be
candidates for improvement.

Benefit in working with half year increments

Working with half year increments has for sure contributed to the Tangram success.
Rather than believing in very convincing reasoning and hoping for the best at the end
of the project, Tangram decided to focus on tangible results every six months. Es-
pecially the first half year increment where every individual partner presented their

LESSONS LEARNED 29

interpretation of the problem statement to fine tune their potential improvement, has
resulted in experiencing the full extent of the ASML problem and bridged the confu-
sion of tongues amongst the partners.

Benefit in striving for ready-to-use solutions

ASML, being the carrying industrial partner for Tangram, has persisted in ready-to-use
solutions at the end of every half year period. ASML would not accept methods and
techniques that would fit on paper or would fit in the future; only the proof of concept
to a real life problem would satisfy. Even though this attitude has not always been
perceived as an easy going approach, it for sure helped in achieving the ultimate result:
applying academic results in industrial environments.

Benefit in working on site at ASML

After the first half year increment, Tangram decided to execute the project on the
ASML site. Considering that Tangram wanted to bring solutions to real industrial
problems, being amongst the industrial people, experiencing their real life problems
and getting their immediate feed back has contributed a great deal.

Concern in selecting partners

Tangram has demonstrated that it takes at least six months for all partners involved to
experience the full extent of the industrial problem. Having said this, the projects that
apply the ‘industry-as-laboratory’ approach are confronted with a bootstrap problem.
To select the partners that fit the problem statement, one should know the problem
statement. To get to know all dimensions of the CIP-problem, one should challenge
academic partners to present their credentials on the underlying issues. Furthermore
it turned out to be very challenging to select research partners that are both competent
in the problem domain and willing to invest their key resources to a research project.
There is a key role for Embedded Systems Institute to build the expertise required to
make the perfect match between industrial problem and both academic and industrial
partners.

Concern in recruiting Ph.D. students

Having only the rough contours of a problem statement and not knowing exactly where
the scientific contribution will be in solving these problems, it has proven to take a
long time to recruit Ph.D. students that match the required profile. It took Tangram 13
months before all Ph.D. students were on board.

Concern in transferring results

Tangram has demonstrated that delivering proof of concepts is, though academically
considered very valuable, too poor for providing a basis for roll out in an industrial

30 ASML: THE CARRYING INDUSTRIAL PARTNER

organization. After recognizing that the proof of concept – with all its benefits being
crystal clear – did not result in a self propelling initiative from ASML, so called transfer
projects were initiated (see Chapter 15). The transfer projects delivered ready to use
methods, techniques, tooling and training. And although these transfer projects lived
outside Tangram, they were an essential element in deploying Tangram results.

Chapter 3

Integration and test planning
patterns in different
organizations

Authors: I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, J.E. Rooda

3.1 Introduction

Planning an integration and test phase is often done by experts. These experts
have a thorough knowledge about the system, integration and testing, and the business
drivers of an organization. An integration and test plan developed for an airplane is
different from the integration and test plan for a wafer scanner. Safety (quality) is most
important for an airplane, while time-to-market is most important for a wafer scanner.
These important aspects are reflected in the integration and test plan. To investigate the
influence of the business drivers on the resulting integration and test plans a number of
companies has been visited.

An integration and test plan describes the tasks that have to be performed to inte-
grate individual components into a system. Test tasks are performed in between the
integration steps. Note that integration is sometimes called assembly. Integration and
testing is performed in early development phases and also in a manufacturing environ-
ment.

Business drivers describe what the most important drivers for an organization are.
Business drivers are defined in terms of time, cost or quality. The hypothesis is that the
order in which business drivers are perceived in an organization determine the way of
working and therefore also the integration and test plan.

31

32 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

The goal of the investigation into different integration and test plans at different
organizations is to determine what the common elements of such an integration and
test plan are. Next to that, the differences are investigated. A number of aspects of
an organization next to the business drivers are recorded, like: company size, product
volume, number of components in the system, technology used and the sub-contractor
model. Note that much of the data is obtained directly from the organization or from
publicly available resources. A best guess is made by the authors based on the visits to
fill in the gaps.

This chapter, which is based on [66] presented at the 2007 Conference on Systems
Engineering Research, is structured as follows. First, the elements of an integration
and test plan are introduced. Next, the business drivers and organizational aspects
which we consider to be of influence are discussed. Then, the different organizations,
business drivers, organizational aspects and integration and test plans are discussed in
detail followed by a summary and conclusions.

3.2 Integration and test plans

The integration and test phaseis the phase in product development or product manu-
facturing, where components are tested and integrated (assembled) into systems. Com-
ponents can be tested when component development or manufacturing is finished. Fur-
thermore, components can be tested after each integration phase. Anintegration and
test plandetermines the order of integration and where testing takes place, that is test
phases are positioned in between integration steps.

s
1

s
2

s
3

s
4 s

5

Figure 3.1: Example telephone system.

An integration and test plan is developed before the integration and test phase is
started and is often updated when the integration and test phase is executed.

An integration and test plan consists of a sequence of integration and test phases,
e.g., the order in which developed components are integrated (assembled) and tested.
A test strategy is chosen for each test phase in the integration sequence resulting in a
test plan (sequence of test cases) for each test phase.

INTEGRATION AND TEST PLANS 33

The elements in an integration and test plan are: DevelopDEV , AssembleASM ,
TestTST , DisassembleDASand CopyCPY . These elements, except Copy, are illus-
trated using an example system: the telephone system depicted in Figure 3.1.CPY is
illustrated in Section 3.5.8, when two typical software integration plans are discussed.
The three modules in the telephone system, horn (H), cable (C) and device (D), can be
integrated using the integration sequence depicted in Figure 3.2.

DEVH

DEVC

DEVD

ASM

ASM

Figure 3.2: Example integration sequence.

The required test phases can now be positioned in between the development (DEVH ,
DEVC , DEVD) and assembly (ASM) phases. In this quality driven strategy1, a test
phase is planned for each developed component and after each assembled component.
Figure 3.3 shows the resulting integration and test sequence. Note that a time-to-market
driven strategy2 may result in an integration and test sequence where some of the test
phases are skipped (not depicted in Figure 3.3).

DEVH

DEVC

DEVD

TST

ASM

ASMTST

TST

TST

TST

Figure 3.3: Example integration and test sequence.

A replacement of the horn can now be modeled by a disassembly of horn 1 (DASH1)
and an assembly of horn 2 (ASMH2). Figure 3.4 illustrates the disassembly of Horn 1,
followed by the assembly of Horn 2. For this, two horns are developed inDEVH1 and
DEVH2 .

1A quality driven strategy is a strategy that reduces the risk after every development or assembly step as
much as possible by performing test phases. The probability that the final quality is less than expected is
minimal by removing risk as early as possible.

2The goal of a time-to-market-driven strategy is to integrate and test the product as fast as possible with
as less quality loss as possible. Some testing is performed in between assembly steps, but not everything is
tested. Priority lies with the progress of integration.

34 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

DEVH1

DEVC

DEVD

TST

ASM

ASM

TST

TST

TST

TST

DASH1

ASMH2

DEVH2 TST

H1

Figure 3.4: Example integration and test sequence with disassembly and assembly of
the horn.

The test strategy for each of the test phases can now be chosen, resulting in a test plan
for each test phaseT . A single test strategy for all test phases could also be chosen.

A quality driven integration and test plan requires that all test phases are executed
with a quality driven strategy. The selected elements of the strategy are:

1. Test sequence: execute all test cases, fix the detected faults and re-execute the
test cases;

2. Stop criterion: all risks must be removed in each test phase;

3. Test process configuration: execute test cases first, followed by diagnosis and
fixing the detected faults.

Many different integration and test plans can be obtained for a single system by varying
integration sequences, test strategies and test phase positioning strategies. Different
organizations often use a specific integration and test planningmethodresulting in
similar integration and test plans for similar products.

3.3 Business drivers

Business drivers are the requirements that describe the goal of an organization. The
business driversTime, cost, andproduct qualityare known from manufacturing man-
agement [76, 97]. We will use these business drivers to characterize the investigated
organizations.

An organization with time as the key business driver is focused on delivering prod-
ucts as quickly as possible to the market. An organization with cost as key business
driver is focused on delivering products as cheaply as possible to the market. Finally,
an organization with product quality as key business driver is focused on delivering
products to the market which satisfy the customer as much as possible.

The order of importance determines the way of working in the organization. For
example, an organization with T-C-Q (Time first, cost second and quality least impor-
tant) as business drivers delivers products of different quality and production cost than
an organization operating with T-Q-C as business drivers. Both deliver products as

ORGANIZATIONAL ASPECTS 35

quickly as possible to the market. The first organization develops, manufactures and
services these products as cheaply as possible. Product quality is least important. The
focus of the second organization is on product quality (next to fast delivery). Cost is
least important.

3.4 Organizational aspects

The integration and test plans of very different organizations were investigated. Some-
times a specific department was visited. The observed integration and test plan was
probably only one of the forms in that organization, while the business drivers are
for the entire organization. Therefore, additional aspects of the organization are also
recorded to determine the possible effect of these aspects. A number of organizational
aspects that are recorded are:

1. The number of products shipped per year or number of end-users influences the
required product quality and maintenance cost.

2. More complex products result in more complex integration and test plans. Com-
plexity can be the result of many components, resulting in many integrations and
possible test phases. Complexity can also be the result of the use of complex
technology resulting in complex test cases.

3. Using many different sub-contractors for the development of components could
result in many additional test phases to qualify the delivered components. Next
to that, political aspects could result in additional test phases. For instance, sub-
contractor test cases could be repeated to accept the delivered products, resulting
in additional test phases. The other way around is also possible.

3.5 Investigated organizations

A number of different organizations have been visited to investigate the influence of
business drivers on integration and test plans.

A summary is given for each of the investigated organizations. The order of busi-
ness drivers indicates the relative importance of the business driver, i.e., T-Q-C means
that time-to-market is most important followed by quality and least important is cost. T-
Q/C means that quality and cost are equally important. The order of the business drivers
is determined by the authors after the visit or investigation. Next to that, relevant infor-
mation like company size, product volume, number of components, technology used
and the number of sub-contractors was recorded.

3.5.1 Semi-conductor (ASML and others)

A typical semi-conductor equipment integration and test sequence (Figure 3.5) consists
of development phases (DEV) executed at suppliers, followed by a supplier qualifica-

36 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

Company size Medium, 5000 employees

Product volume 200-300 systems/year

Business drivers T-Q-C

Number of components large / very large

Technology used New technology

Sub-contractors Many, cooperating

Table 3.1: Semi-conductor equipment manufacturer characteristics.

tion test and a system assembly phase (ASM). The assembly phase of each system
is followed by two test phases: the calibration testTSTC

3 and acceptance testTSTA
4.

Chuma [38] investigated the duration of the assembly phase (ASM) and the durations
of TSTC and TSTA for lithographic equipment manufactured at ASML, Canon and
Nikon5. The average duration of the assembly phase is 9.8 days while the average
duration of the calibration and acceptance tests in 2005 are 34.5 and 32.5 days, respec-
tively, according to the report.

DEV

DEV

DEV TST

TST

TST

ASM TSTC TSTA

Figure 3.5: Typical semi-conductor manufacturing integration and test plan.

ASML develops semi-conductor equipment using platforms. The integration and test
plan of a new system-type of a new platform is developed specifically for this system
(See product development later). Subsequent system types in a new platform are in-
tegrated and tested based on a previous system type. First, a previous system type is
manufactured as in Figure 3.5. New subsystems are developed. The old sub-systems
are replaced by the new versions. Figure 3.6 depicts this integration and test plan. The
previous system type is assembled after the first assembly step. Modules, likeM1, are
disassembled (and re-used) and a newly developed moduleM ′

1 is assembled. Module
M2 is replaced similarly byM ′

2.
A typical aspect in this time-to-market driven organization is that the newly developed
sub-systemsM ′

1 andM ′
2 are not tested thoroughly. Integration progress is more impor-

3A calibration test phase is a test phase where test cases and calibration tasks are interchanged. Test cases
are executed on the system to determine the performance of the system. If the system is ‘out of specification’,
calibrations are performed and testing continues.

4An acceptance test is the test executed to determine if the customer accepts the system.
5ASML, Canon and Nikon are the main suppliers of lithographic equipment to the semi-conductor mar-

ket.

INVESTIGATED ORGANIZATIONS 37

DEV

DEVM
′

1
DEVM

′

2

TSTS

DEV

DEV

TST

TST

TST

TST TST

TST TSTC TSTAASM ASM ASMDAS DAS

M1
M2

Figure 3.6: Semi-conductor development integration and test plan.

tant than the qualification of sub-systems. Remaining risk in the system is covered in
higher level (later) test phases. The final acceptance test is a combination of a thorough
system level design qualificationTSTS and the normal final calibration and acceptance
test phasesTSTC andTSTA. The test cases in the final test phasesTSTS , TSTC , and
TSTA are often mixed such that a faster test sequence is obtained.

3.5.2 Automotive

Company size large, 30000 employees

Product volume 100000 systems/year

Business drivers C-T/Q

Number of components Medium

Technology used Proven technology

Sub-contractors Many, cooperating

Table 3.2: Automotive manufacturer characteristics.

A typical assembly line (Figure 3.7) for cars consists of a number of assembly steps (A)
followed by a short final acceptance test phaseTA. Suppliers develop (manufacture)
and test the parts which are assembled into a car. Testing is standardized and focused
on quality (for instance measurement techniques for electrical systems are described in
IEC 61508 Part 7 [64]).

DEV

TST

ASM TSTAASM ASM ASM ASM ASM ASM ASM

TST TST TST TST TST TST TST

DEV DEV DEV DEV DEV DEV DEV

Figure 3.7: A typical ’assembly-line’ for cars.

38 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

3.5.3 Communication

Company size large, 30000 employees

Product volume 120000000 systems/year

Business drivers Q-C/T

Number of components Small

Technology used Proven technology and new software

Sub-contractor Few/none

Table 3.3: Communication equipment manufacturer characteristics.

A mobile phone communicates with other mobile phones via the (GSM/GPRS/3G)
network. An estimated 120000000 mobile phones have been shipped in the USA only
in the year 2005 [63]. The estimated number of shipped units in 2011 is 1.25 billion
worldwide. The communication protocol between a mobile phone and the infrastruc-
ture is standardized [43]. A single test phase of a few weeks qualifies if a mobile phone
operates according to the standard. The visited organization developed such a standard
test set, which is used by different mobile phone developers. This test phase is repeated
if problems are found and fixed until the phone operates according to the standard. A
specific example of this re-test phase with three test phases and two diagnose and fix
phases (DF) is depicted in Figure 3.8.

DEV TST DEV

Figure 3.8: Specific example of a mobile phone test phase.

3.5.4 Avionics/DoD

Company size large, 30000 employees

Product volume 300 systems/year

Business drivers Q-C-T

Number of components High

Technology used Proven technology

Sub-contractors Many, regulated

Table 3.4: Avionics/DoD manufacturer characteristics.

Airplanes and systems developed for the department of defense (DoD) are integrated
and tested using a strict process, like for example the integration and test process for the

INVESTIGATED ORGANIZATIONS 39

777 flight controls [35]. All sub-systems are tested in the supply chain to ensure a short
final test phase. To accommodate this, interfaces between sub-systems are thoroughly
described and do not introduce new problems. An integration and test plan for an
airplane or DoD system is similar to the plan depicted in Figure 3.5. Sub-systems are
tested completely before integration. The duration of the final calibration test phase
TC for an airplane, like an Airbus A320, is only a few days, including a test flight.
Assemblies are performed in between the final calibration test phase and acceptance
test phase. For instance, the engine of an airplane is assembled when all other parts
have been assembled and calibrated. The reason for this is safety and cost. Assembling
an engine is done in a special area and the engine is costly, so it is assembled as late as
possible.

3.5.5 Space (satellites)

Company size medium, 5000 employees

Product volume 10 systems/year

Business drivers Q-C-T

Number of components Medium

Technology used Proven technology

Sub-contractors Few, cooperating

Table 3.5: Space/satellite manufacturer characteristics.

Development of a satellite or another space vehicle results in a single system which
is delivered to the customer. Each system is unique. The integration and test plan is
very similar to an integration and test plan of a newly developed system. The assembly
phases are executed as concurrently as possible. Test phases are planned after each
development and each assembly phase such that the risk in the system is minimal at
all times. An overview of international verification and validation standards for space
vehicles, including the main differences between standards, is described in [52]. A
planning and scheduling method for space craft assembly, integration and verification
(AIV) is described in [3].

3.5.6 Machine builders

A number of machine building organizations has been visited. The developed systems
varied from manufacturing equipment to large office equipment. A variety of inte-
gration and test plans has been observed in the different organizations. Most of the
organizations use an integration plan which is similar to the plan used in the automo-
tive industry. Some use a fix-rate assembly, e.g., each assembly step is performed in a
fixed 20 minute time slot by a single operator. Some calibration tests are performed in
between assembly steps. Configuring the system for a customer is done just before the

40 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

Company size Medium, 5000 employees

Product volume 1000 systems/year

Business drivers C-Q-T

Number of components Medium

Technology used Proven technology

Sub-contractors Many, cooperating

Table 3.6: Machine manufacturer characteristics.

acceptance testTA. An example of a sequence with a customer specific configuration
in the last assembly step is depicted in Figure 3.9.

DEV DEV DEV DEV DEV DEV

TST TST TST TST TST TST

TSTC ASMASMASMTSTASMASMASM TSTA

Figure 3.9: Example manufacturing sequence for machine builders.

3.5.7 Drug industry

Company size large, 20000 employees

Product volume Millions of tablets/year

Business drivers Q-C-T

Number of components Small

Technology used New technology

Sub-contractors None

Table 3.7: Drug developing company characteristics.

The drug testing industry is discussed based on [105, 106]. The type of products in this
industry is different compared to the technical products as discussed before. Testing of
medical drugs is also quite different. Figure 3.10 depicts an integration and test plan
for medical drugs.

The development of a potential new drug is a combination of chemical design and
a structured search. The integration and test plan starts if a new chemical entity (NCE)
is discovered. A screening test (TSTS) is performed to test the potential of the new
chemical. The new chemical is then ‘integrated’ into tablets (DEVT) or dissolved in
liquid (not depicted). What follows next are four test phases in which the new drug is

INVESTIGATED ORGANIZATIONS 41

tested (TSTA, TSTI , TSTII, TSTIII). The average total duration of the entire plan is
14 years. Test phaseTST is performed on animals to test for toxicity and long term
safety. Test phaseTSTI is performed mainly on healthy volunteers to determine the
dose level, drug metabolism and bio-availability6. Test phaseTSTII is a test phase on
a few hundred patients to test the efficacy of the dose and the absence of side effects.
Test phaseTSTIII is performed to test efficacy and safety on thousands of patients.
Test phaseTSTIV is performed after the new drug has received a product license to
test for rare adverse events and to gain experience with untested groups of patients.

The conclusion of every test phase can be that testing will not be continued. The
new drug will not be further developed and released, in contrary to the (technical)
products of the other organizations which can be fixed.

DEV TSTs TSTI TSTII TSTIIIASM

DEVT

TSTA TSTIV

Figure 3.10: Integration and test plan for medical drugs.

3.5.8 Integration and testing of software baselines

A special case of an integration and test plan for product development is an integration
and test plan for software developments which are delivered into a single code base.
All code ends up in a configuration management system. Testing is done on the code
before delivery and on the ’release’, a specific baseline in the configuration manage-
ment system. Two example integration and test plans are discussed. These types of
integration and test plans have been encountered at several visited companies, includ-
ing ASML. Next to that, Cusumano describes a similar integration and test plan as used
by Microsoft [39]. The first example plan, depicted in Figure 3.11, contains a periodic
test phase. Integration continues when the test phase passes.

The second example plan, depicted in Figure 3.12, contains a periodic test in par-
allel with integrations of new code. A copy (CPY) of the software is made and used to
test the (copied) software.
The test phase in the periodic case is on the critical path, while the test phase in the
parallel case is not. On the other hand, problems found in the periodic case are solved
before new integrations are performed. Problem solving in the parallel case is more
complex, because two baselines are to be maintained at any point in time. This is
depicted in Figure 3.12 with an explicit ‘self-loop’ on the test process and an explicit
assembly of solutions into the baseline.

6How (and how fast) is the product entered in the body, bloodstream and excreted from the body.

42 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

TST TST TSTASM ASM ASM ASM ASM ASM

DEV DEV DEV DEV DEV DEV

Figure 3.11: Software integration with periodic test phases.

TST

TSTCPY ASM ASM ASM

DEV DEV

ASM

DEV

TST

CPY ASM ASM ASM

DEV DEV

Figure 3.12: Software integration with parallel test phases.

3.6 System complexity versus planning approach

An overview of the organizational types and their influence on an integration and test
plan is depicted in Figure 3.13. The organizational types can be found in Table 3.8.
Each circle indicates an organization which has been visited or otherwise investigated.
The size of the circle indicates the size of the organization (large circles correspond
with large organizations). The gray tone of the circle indicates the number of delivered
end-products. A darker circle indicates more shipments. Each circle contains the key
business drivers (in order) for the visited organization. The organizations are placed
in the graph in Figure 3.13 according to the integration and test planning approach
on the x-axis (regulated or flexible) and the system complexity on the y-axis. The
complexity is a combination of number of components and technology used. The type
of organization is described in the bottom half of the circle. In some cases, multiple
organizations of the same organizational type have been investigated. All investigated
organizations are depicted in Figure 3.13.

A distinction is made between a regulated approach and a flexible approach. The
strategy of aregulated approachis focused on removing all risk as soon as possible.
Consequently, test phases are planned after each development and assembly action.
The focus of each test phase is on removing all possible risk. Theflexible approach,
on the other hand, is focused on maximal integration progress. Test phases are planned
after some of the development and assembly actions. These test phases are partially
executed and the remaining risk is covered by a later test phase.

The flexible approach allows the optimization of test phases by moving test cases
from one phase to another phase. The regulated approach prescribes that specific test

CONCLUSIONS AND DISCUSSION 43

cases need to be performed in a specific test phase. Optimization of a test phase
can only be done within the test phase itself. The organizations which are visited
are grouped according to the complexity of the product and the use of a regulated or
flexible test approach.

Semi Semi-conductor equipment

Avionics Airplanes

Space Satellites

DoD Department of defense systems

Drugs Medical drugs

Comm Communication equipment

Machines Machine equipment

Table 3.8: Legend of organizational types.

3.7 Conclusions and discussion

Different organizations use different integration and test plans to develop or manufac-
ture their products. The elements of an integration and test plan are the same for all
investigated organizations. The key business drivers of an organization can be char-
acterized by Time, Cost and Quality. An integration and test plan is specific to an
organization, the product and the business drivers.

As a result, it can be concluded that a strategy to obtain an integration and test plan
for a specific organization cannot be copied to another organization just like that. The
business drivers of both organizations should match.

Two types of test approaches are distinguished: regulated and flexible plans. Flexi-
ble integration and test plans are used in time-to-market driven organizations, whereas
regulated integration and test plans are used for other organizations. The main differ-
ences between a regulated and flexible integration and test plan are 1) the positioning
of test phases and 2) the type of test strategy which is used for each of the test phases.

Optimizing an integration and test plan could be beneficial in terms of time, cost
and quality. A flexible integration and test plan allows many optimization opportu-
nities. Among these are the selection of an integration sequence, a test sequence, the
selection of a test positioning strategy, and the selection of a test strategy per test phase.

A regulated (fixed) integration and test plan consists of a regulated integration se-
quence. Selecting a different (better) sequence is difficult. The cost of changing the
regulations should be taken into account. This is also the case for the test positioning
strategy and the chosen strategies for specific test phases.

The benefit of a regulated integration and test plan is that these plans are easier to
plan and control. All parties involved know from the start what to expect and what to
do. The test content is known in advance for all test phases. The benefit of a flexible
integration and test plan is that the plan allows for more optimization techniques to

44 INTEGRATION AND TEST PLANNING PATTERNS IN DIFFERENT ORGANIZATIONS

H
ig

h
L
ow

S
y
st

em
co

m
p
ex

it
y

(#
of

co
m

p
on

en
ts

an
d

te
ch

n
ol

og
y
)

Integration and test planning approach

Regulated Flexible

Q-C-T Q-C-T

Q-C-T
Q-C-T

Q-C-T

Q-C-T

Q-C-T

C-Q-T

T-Q-C

T-Q-C

T-Q-C
T-Q-C

Comm

Avionics

Space

Machines

Drugs

Avionics

DoD

Space

Machines

Semi Semi

Semi

T-Q-C

Semi

Figure 3.13: Overview of the visited organizations by system complexity and test strat-
egy.

obtain a better plan. The cost of this flexibility is the organizational effort which is
involved in the optimization cycle.

A combination of a regulated integration and test plan with known ’control’ points
in the plan and flexibility in the intermediate phases could be a good solution for or-
ganizations that either try to increase the quality levels and maintain the short time-
to-market or organizations that try to reduce the time-to-market while maintaining the
product quality.

Chapter 4

Integration and test planning

Authors: I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, J.E. Rooda

4.1 Introduction

The integration and test phase of a newly developed system is often one of the most
hectic phases in system development. The initial integration and test plan changes on a
daily basis. Newly developed components are delivered late, problems are found dur-
ing testing and components in the system break down causing delays and additional
cost. The integration and test planning experts update and change the plans to ac-
commodate for these changes, such that the project target is met. The quality of the
integration and test plan is highly dependent on the capabilities and system knowledge
of the integration and test planning experts. Clear methods to develop an integration
and test plan are lacking. Moreover, the company visits, described in Chapter 3, in-
dicated that integration and test planning is performed differently at each organization
visited. Not only the knowledge of the integration and test planner is relevant, also the
type of organization and business drivers are of interest. Industrial efforts to overcome
integration and test problems often have a limited scope. Only a part of the integration
and test plan is improved. Theoretic approaches to solve integration and test problems
have an even more limited scope. The limited scope of the industrial and academic
approaches results in solutions with limited impact on the total integration and test du-
ration, cost and remaining risk. The remaining risk in the system is our measure for
product quality.

The work presented here describes an integration and test planning method. Three
strategies are used in this method to create an integration and test plan: the integration
strategy, the test positioning strategy and the test strategy. Several feedback loops are
added in this planning method that describe how an integration and test plan can be
improved if the required duration, cost or remaining risk is not reached. The method

45

46 INTEGRATION AND TEST PLANNING

presented is applicable for systems in several disciplines and also for multi-disciplinary
systems, since the method does not apply specific techniques from a single discipline
that are not applicable in another discipline. The presented integration and test plan-

System architecture

1. Modeling

2. Sequencing

3. Planning

4. Improvement

Stop

Figure 4.1: Overview of the integration and test planning method.

ning and improvement method, depicted in Figure 4.1, consists of the following four
elements: modeling the system architecture, sequencing, planning and improvement.
Modeling is described in Section 4.2. Section 4.3 describes techniques for the se-
quencing task. Section 4.4 describes techniques for test planning. And, improvement,
is described by Section 4.5. This chapter ends with conclusions.

The figures that describe the tasks in the integration and test planning method in-
dicate each task with a number, a period, and a number or character. The first number
indicates that the task is part of the higher level modeling, sequencing, planning or im-
provement step: 1 through 4, respectively. The number or character indicates a unique
task in the method. Numbers are used for sub-tasks and characters are used for inputs
and results. A box is drawn around the sub-tasks that are part of the step in the method
that is described in that section. The sub-tasks that are not part of the box are part of
another step and are described in another section. Feedback loops (improvement tasks)
are depicted with a dashed line. These improvement results are not mandatory to start
a task. A solid line indicates a mandatory input to start the task.

MODELING THE SYSTEM ARCHITECTURE 47

4.2 Modeling the system architecture

1.2 Derive test cases, fault states
coverage and properties

1.1 Model system architecture

1.A System architecture model

1.D Testcases, fault states,
coverage and properties

0.A System architecture0.B Objectives and constraints

2.1 Make integration
sequence

2.2 Make integration
and test sequence

Figure 4.2: Overview of the modeling step.

The first step in the integration and test planning method is the modeling step. In
this modeling step, thesystem architectureis modeled for integration and test plan-
ning. Inputs to this step are the system architecture (0.A) and the initial (or system
wide) objectives and constraints (0.B). Thesystem architecture model(1.A) consists
of componentsC, interfacesXF , a layering, L, thedelivery timingof the components
timing, and theobjectivesObj: A = (C, XF ,L, timing, Obj). The components are
connected with each other through their interfaces. A broad definition of interfaces is
considered. For example, physical interfaces and bolts and screws determine if two
components can be connected. The same holds for software interfaces over a Corba
[92] or a publish-subscribe [90, 13, 95] network. In general, all interfaces which possi-
bly influence the integration and test plan need to be taken into account. For instance,
a wafer scanner images a pattern of a part of an integrated circuit on a silicon wafer.
This is done by projecting laser light with a specific dose and a specific uniformity on
a wafer. The path that the light follows through the wafer scanner is considered an
interface between the laser source and the silicon wafer.

The layeringgroups components. The integration and test planning process is sim-

48 INTEGRATION AND TEST PLANNING

plified by this layering, because first the components within a layer are assembled and
then the layers are assembled. This reduces the number of integration plans that can be
made, since not every assembly task is possible anymore.

Thedelivery timingof each component and interface determines when integration
and testing can start. Theobjectivesof the integration and test plan are expressed in
terms of maximal duration, maximal cost and minimal product quality. These objec-
tives are needed for the evaluation of possible integration and test plans. The impact of
the objectives on an integration and test plan is illustrated in the Chapter 3.

Test cases, fault states and coverage

The goal ofintegration is to assemble a system from the required components and
interfaces. Anintegration plantherefore consists of a sequence of assembly tasks
that connect components using their interfaces. The remaining risk after integration
is the sum of the component risk and the interface risk, when no testing is performed
in between the assembly tasks. Executing test cases, diagnosing problems and fixing
faults reduces the risk in the system and by this the product risk is decreased. The
elements in the system architecture model, 1.A, are used to create an integration plan.
The reduction of risk (by testing) requires two additional models: thesystem test model
and a model that relates thesystem test modelwith thesystem architecture model. Both
models are introduced briefly.
The system test modeldescribes the set of available test cases,T , the possible faults
in the system and the coverage of the test case on these faults. The possible faults
in the system are modeled as a set offault states: S. The coverage of a test case on
a fault state, modeled asRts(t,s), describes either what the coverage is of test case
t on fault states, or the probability that fault states is discovered by test caset. It
depends on the application how the coverage is modeled. Thesystem test modelD is
defined as :D = (S,T,Rts). Additional properties per test case and fault state describe
for instance the duration of a test case or the failure probability and impact of a fault
state. The failure probability and impact are used to determine the risk of a fault state
and the risk covered by a test case. More details about the system test model can be
found in Chapter 6. The modeling process for a newly developed system starts with
a failure mode effect analysis (FMEA, FMECA) [25, 44] to determine the possible
failure modes in the system. This FMEA can be according to a strict FMEA-process
or a brief investigation of failure modes. These failure modes are the fault states in
the test model. The failure modes in an FMEA are normally followed up withcounter
measures. These counter measures are the test cases in the test model, if the counter
measure is a test1. The coverage of a test case on all fault states (components and
interfaces) is estimated as well as the properties of test cases and fault states.

A system test modelis used to describe the details of the components and interfaces
in the system. A component is seen as a set of fault states. This is also the case for

1Some counter measures in an FMEA analysis are design changes or organizational measures instead of
tests. Only test cases are relevant to the integration and test model.

MODELING THE SYSTEM ARCHITECTURE 49

an interface. The components and interfaces are related with the system test model by
two models:RDCandRD,XF

. This relation is used to determine which test cases can
be performed when a component becomes available and also to determine the risk of a
component or interface.

As an example, a test model is defined for a common telephone. The telephone
consists of a handset, a cable and a device. A graphical view of the telephone is given
in Figure 4.3.

s
1

s
2

s
3

s
4 s

5

Figure 4.3: Telephone system.

The example telephone system consists of the following fault statesS:

1. s1 the device can be unreliable

2. s2 the cable can be unreliable

3. s3 the handset can be unreliable

4. s4 the interface between the cable and the device can be unreliable

5. s5 the interface between the handset and the cable can be unreliable

The test set,T , consists of the following test cases:

1. t0 tests the complete phone system

2. t1 tests the device

3. t2 tests the cable

4. t3 tests the handset

5. t4 tests the device and the cable

6. t5 tests the handset and the cable

50 INTEGRATION AND TEST PLANNING

S/ T t0 t1 t2 t3 t4 t5 P
s1 0.01 0.02 0 0 0.015 0 0.6
s2 0.01 0 0.02 0 0.02 0.015 0.1
s3 0.01 0 0 0.03 0 0.02 0.2
s4 0.01 0 0 0 0.015 0 0.4
s5 0.01 0 0 0 0 0.015 0.3

CT 1 1 1 1 1 1

Table 4.1: A reliability test model for the telephone example.

A simple matrix representation of thesystem test model, including the properties
per fault state and test, is given in Table 4.1. The column indicated withP describes the
failure probability of the test case and the row indicatingCT describes the test duration.

A screen dump of the system test model of the telephone from the integration and
test planning and improvement tool set LONETTE is given in Figure 4.4.

Figure 4.4: Screendump of the telephone model.

Thesystem test modelcan be used to calculate the risk per test case, the risk after
assembly and the remaining risk after testing. The same system test model can be used
for the definition of test sequencing techniques and the comparison of test sequencing
techniques. Moreover, the system test model is used for improving the integration and
test plan in Section 4.5.

The model that describes the relations between the system test model and the sys-

INTEGRATION SEQUENCING 51

tem architecture model consists of two elements: a relation between components in
the system architecture model and the fault states in a system test model and a relation
between interfaces in the system architecture model and the fault states in a system test
model. The set of fault states can be obtained for each component and interface in the
system architecture model this way.

4.3 Integration sequencing

The goal of integration sequencing is to form a sequence of integration tasks, which
results in a complete system. Furthermore, test tasks are positioned in between the
integration tasks. The start moment and duration of these test tasks is determined by
the position in the integration sequence. The components which are integrated at a
certain moment in the sequence determine which faults can be present in the system.
The performance of the resulting integration sequence is measured in terms of time
(duration), cost and remaining risk.

2.A Integration strategy

2.2 Make integration
and test sequence

2.1 Make integration
sequence

2.C Integration sequence 2.B Test positioning strategy

2.D Integration and
test sequence

1.A System architecture model 1.B Testcases, fault states,
coverage and properties

3.3 Make integration
and test plan

3.1 Plan individual
test phases

4.2 Partition test phases

Figure 4.5: Overview of the sequencing step.

An overview of the sequencing step is given in Figure 4.5. An integration sequence
is created in 2.1 using the system architecture model 1.A. Then, test tasks are positioned

52 INTEGRATION AND TEST PLANNING

in this integration sequence in step 2.2. The integration strategy and test positioning
strategy are inputs for the integration and test sequencing step. Both are explained be-
low.
An integration strategy, 2.A, is a specific approach which is used to create an integra-
tion sequence. Common examples of an integration strategy are known asbottom-up
integration, top-down integrationandbig-bang integration. Other integration strate-
gies originate from concurrent engineering and baseline development. Concurrent en-
gineering and concurrent development results in an integration strategy (and plan) that
is executed as concurrently as possible. Baseline development integrates components
in a baseline system. A complete baseline system exists before integration of new
components can be started. An older version component is replaced with a newly de-
veloped component. A baseline development integration strategy is often seen in
software development, where the entire code base is available from a previous release
in a configuration management system and new code is integrated into it. This strategy
is also followed for the development of a new type of wafer scanner which is based on
a previous system type. The previous system type is built first. Then, new components
replace existing components in the system and parts of the performance test cases are
re-executed. This last strategy is a strategy enforced by a standard, framework2 or pol-
icy. An overview of this type of integration standards, frameworks and policies can be
found in [113].
A test positioning strategyis the second strategy used for integration sequencing and
positions test tasks in between development and assembly activities. This strategy de-
termines how risk is reduced by executing test cases. Test cases thatpassreduce the
failure probability of the covered fault states. Test cases thatfail require a diagnosis
and eventually a fix of the fault state causing the fail. Fixing a fault state also reduces
the failure probability. A reduction of the failure probability reduces the risk in the
system. Whereas the integration strategy determines how components are assembled
and, consequently, how risk is built up, the test positioning strategy determines when
risk is reduced. Four test positioning strategies are described below.

The ‘test all’ test positioning strategy

The ‘test all’ test positioning strategy places a test task after each develop, assembly
and copy task. The goal of each test task is to reduce the risk in the system at that
moment in the sequence as much as possible, if not completely.

The ‘minimal’ test positioning strategy

The ‘minimal’ test positioning strategy only places test tasks if time is available in
the integration plan. Time can be available if for instance two components need to be
integrated and component 1 is ready before component 2. Component 1 is tested in

2An integration and test strategy enforced by the department of defense framework results in an integra-
tion and test plan with a standardized form.

INTEGRATION SEQUENCING 53

this ‘minimal’ strategy, while component 2 is not tested. The duration of the test task
(start and stop moment) is derived from the integration plan.

The ‘FS once’ test positioning strategy

The ‘FS once’ test positioning strategy plans a test as soon as a fault state can no
more be introduced in the remainder of the integration plan, i.e., each fault state is
tested once. Knowledge about the introduction of fault states is required for this test
positioning strategy. This strategy only reduces the risk introduced by these fault states
when the fault state is not introduced anymore in the sequence. The disadvantage of
this method is that the overall risk in the system can increase rapidly when many re-
occurring fault states exist, because risk reduction is done late in the process.

The ‘risk-profile’ test positioning strategy

The ‘risk-profile’ test positioning strategy plans a test task if the risk in the system has
reached a certain risk upper limit. Risk is reduced, by testing, until a certain lower risk
limit is reached. A more advanced strategy uses a ‘risk-profile’ where the upper and
lower risk limits are a function of time. The upper risk limit in the beginning of the
integration plan is set to another (higher) level than the risk limit at the end of the plan.
The same approach is followed for the lower limits. An integration strategy and test
positioning strategy are used to create an integration and test sequence in steps 2.1 and
2.2. A case where test positioning is applied at an ASML software release is described
in Chapter 6

4.3.1 Integration sequencing

An integration sequence is created in this step, using an integration strategy (2.A) and
a system architecture model(1.A). Integration sequences can be created by hand or
using integration sequencing algorithms like the algorithm proposed in [24]. Chapter 6
describes the results of a case using these algorithms. Other cases have shown that
integration sequences that are created using a mathematical algorithm perform better
then manually created integration sequences [20]. The main reason for this is that the
number ofpossibleintegration sequences is so large for reasonably sized systems that
it is highly unlikely that the optimal integration sequence is chosen by hand. Next to
that, changes are bound to happen and result in small changes to the chosen sequence.
This causes that the integration sequence gradually becomes less optimal. An integra-
tion sequence is described by a graphGIT = (V, E), where the vertices describe the
integration tasks and the edges describe the relation between the tasks; see also Chap-
ter 3. The following tasks are used to describe an integration sequence: develop (dev),
assembly, (asm) disassembly (das) and copy (cpy). Thedev-task is used to describe
the development of a single component. The development of a component is described
by its development duration. Theasm-task combines two components and their inter-
face into a combined component. Thedas-task removes a component from a module.

54 INTEGRATION AND TEST PLANNING

With this task a replacement of a component by another component is modeled (disas-
sembly followed by assembly). Thecpy-task copies a component such that a second
component is created with the same fault states, test cases and properties.

4.3.2 Integration and test sequencing

The next task adds test tasks (tst) to the integration sequence, such that an integration
and test sequence is formed. A test positioning strategy, as discussed earlier, is used
to position the test tasks in the integration sequence. An example integration and test
sequence for the telephone example, introduced in Figure 4.3, can be found in Fig-
ures 3.2, 3.3, and 3.4 in Chapter 3. The resulting integration and test sequence is used
for integration and test planning.

4.4 Test planning

The previous sequencing step resulted in an integration and test sequence without tim-
ing information. The timing and duration of the development and assembly tasks is
known from the model or can be derived from the integration sequence. This way, the
start and stop moments of each test task can be derived from the integration and test
sequence.

A detailed test plan is created in this test planning step for each test task using atest
strategy. The duration, cost and remaining risk of the resulting test plan are analyzed.
Another test strategy is selected if the analysis results do not satisfy the constraints. An
overview of the planning step is given in Figure 4.6. A test plan for an individual test
task is created using a test strategy. A test strategy consists of atest sequence, a test
stop criterionand atest process configuration[70].

4.4.1 Test planning and analysis

A test plan is developed that should meet the objectives, in terms of start and stop
moment, maximal cost and target remaining risk. A test strategy is selected for this
purpose. This means that a test sequencing technique is chosen, as well as a test process
configuration and the test stop criteria follow from the objectives.

Two types oftest sequencing techniquesare currently defined:off-line test sequenc-
ing techniques andon-line, or adaptive, test sequencing techniques. The off-line test
sequencing techniques determine a test sequence before test execution is started, while
on-line test sequencing techniques define the next test case to be executed during test
execution and based on the results of the previous test cases.

Both the on-line and off-line method select the next test case in the sequence using
an objective function. The objective functions that are currently defined are: risk based,
risk/cost based, inverse risk based, information gain based, random, ordered and prob-
abilistic. A detailed definition of these objective functions using thesystem test model
can be found in [70], as well as a comparison of test strategies for three cases.

TEST PLANNING 55

3.5 Derive test plan

OK?

3.C Execution/simulation results

3.2 Analyze test phase

3.3 Make integration
and test plan

3.B Individual test plans

3.1 Plan individual
test phases

3.A Test strategy

3.4 Analyze integration
and test plans

3.E Execution/simulation results

3.D Integration and test plan

OK?

Stop

2.D Integration and
test sequence

4.1 Select improvement
technique

Y

N

Y N

Figure 4.6: Overview of the planning step.

A test process configurationdetermines how test execution, diagnosis and fixing
is performed. The number of test, diagnosis and fix resources is taken into account as
well as when diagnosis and fix tasks are performed after a failing test case. Diagnosis
and fixing can be started immediately after the test case has failed or after all test cases
have been performed. When diagnosis and fixing start immediately, test execution
can be postponed until the fixes become available, or testing can continue in parallel.
These three test process configurations in combination with the available resources can
influence the duration, cost and remaining risk of a test task and therefore should be
taken into account in the planning process [70].

56 INTEGRATION AND TEST PLANNING

Thetest stop criteriadetermine when testing needs to be stopped. Test stop criteria
can be defined in terms of a fixed duration, cost limit or remaining risk limit. The
trade-off between stopping early with much remaining risk in the system or stopping
when the remaining risk is low (or zero) and a very high test duration is reflected in
the test stop criterion. The effect of this trade-off and the results of test planning after
analysis need to be analyzed on the integration and test plan level in step (3.4), because
it depends on the remainder integration and test plan if spending more test time or
leaving more remaining risk then planned influences the duration, cost and remaining
risk of the overall integration and test plan.

A performance analysisof each test plan is performed in (3.2). It is checked if
the duration, cost and remaining risk of the test plan are according to the objective of
the test task. A process simulation based analysis technique [70] has been developed
for this purpose. The simulated execution of testing many faulty systems results in test
duration, cost and remaining risk distributions and their expected value. Based on these
simulation results, it can be decided to change the test strategy or to continue with the
next step in the process: integration and test planning.

4.4.2 Integration and test planning and analysis

The integration and test sequence (2.D) and the test planning information (3.C) are
combined into anintegration and test plan. The planning information (start, stop and
duration) is available for thedev, asm, das, andcpy tasks in the system architecture
model and the system test model. The estimated test duration, cost and remaining risk
of the individualtst tasks is added to this plan, resulting in an integration and test plan
(3.D). Note that it is possible that the timing of an individual test task does not have
to correspond with the original available time for this test task. The duration of a test
task could be shorter than the planned duration, because a more optimal test strategy
is chosen. The test duration of a test task could also be longer than planned, because
the test stop criterion could not be reached earlier. The difference in requested test task
objectives and the test task objectives after planning are analyzed on integration and
test planning level.

The performance of an integration and test plan is analyzed in (3.4) to determine if
the plan performs according to the constraints and objectives as modeled in the system
architecture model (1.A). A large number of systems needs to be integrated and tested
to determine the average duration, cost and remaining risk for such a plan. An integra-
tion and test plan is executed many times in a manufacturing environment, while the
execution of an integration and test plan for a newly developed system is only done
one or a few times. A simulation process has been developed which is able to simulate
the development, assembly and testing of large number of simulated systems. Devel-
oping a component results in a set of fault states, which is present in this component.
Assembling two components is the combination of two sets of fault states. The risk
in the system can be determined using the failure probabilities of the fault states in
the system and the impact of these fault states, since fault probability× impact = risk.

INTEGRATION AND TEST PLAN IMPROVEMENT 57

The risk as function of time, arisk-profile, is used for detailed analysis. High risk
peaks and flat risk areas indicate possible areas in an integration and test plan which
can be optimized. High risk peaks can be optimized by developing and assembling
components incrementally. The system architecture might need to change for this and
also the integration sequence. Flat risk areas can be optimized by planning additional
test cases in the flat risk areas to reduce additional risk. Newly developed test cases
with additional coverage could be needed for this. Executing test cases from later tasks
could also reduce risk. Simulated components must be available for the execution of
test cases from later tasks. This way, system level test cases can be executed earlier as
described in [28, 27] and in Chapters 7 and 8.

4.4.3 Derivation of integration and test plans

Analyzing existing test plans could be beneficial if these plans are executed many times
(manufacturing environment) or if it expected that the executed plan differs from the
planned plan. Techniques like business process modeling, can be used to derive the
integration and test sequence from logging gathered during the execution of a number
of integration and test plans. Test start en stop logging is used, together with addi-
tional information, to construct the integration and test plan. This constructed integra-
tion and test plan is then compared with the expected integration and test plan. Non-
conformances are identified and can be resolved. An experiment with business process
mining techniques in the ASML manufacturing department is described in [109].

4.5 Integration and test plan improvement

An overview of the improvement step of the method is given in Figure 4.7. The im-
provement step currently consists of four techniques: test partitioning, development of
new test cases, updating the constraints and objectives of the integration and test plan
and redesigning the system. More techniques could be beneficial. A selection task is
performed first in (4.1). Each of the techniques is briefly introduced below.

4.5.1 Partitioning test tasks

The main goal of partitioning a test task (4.2) is the reduction of the test duration by
executing the two resulting test tasks in parallel. The partitioned test tasks change the
integration sequence (2.D). The integration and test planning process is continued with
step (3.1), planning of individual test tasks.

An adapted hyper-graph partitioning algorithm is used to partition asystem test
modelinto two system test models that can be executed in parallel. This local search
algorithm is based on [37, 121] and adapted such that the test sequence, test process
configuration and test stop criteria are taken into account. This local search algorithm
is able to determine optimal solutions, by repeating the algorithm a number of times.
The result of a case performed with this improvement technique is a 30% reduction

58 INTEGRATION AND TEST PLANNING

4.A Selected optimization technique

4.1 Select improvement
technique

4.2 Partition test phases 4.3 Develop new testcases 4.4 Update constraints
 and objective

Selection techniques

4.5 Re-design system

0.A System architecture2.D Integration and
test sequence

3.1 Plan individual
test phases

3.E Execution/simulation results3.D Integration and test plan

1.A System architecture model1.B Testcases, fault states,
coverage and properties

Figure 4.7: Overview of the improvement step.

of the test duration with 30% additional test cost because of parallel execution. More
details on this method can be found in [67].

4.5.2 Developing new test cases

The coverage of the individual test cases in asystem test modeldetermines how many
risk can bereduced in a test task. The combination of the test cases that are executed
and the sequence of execution determineshow the risk is reduced. In practice, test
cases are added because new components were developed or problems were found, not
because a new test case that is a combination of test cases with a specific coverage re-
duces the test duration or cost. The next-best-test-case algorithm has another approach.
Thesystem test modelis analyzed and test cases are proposed with the highest infor-
mation gain for thatsystem test model. This means that a set of covered fault states (a
new test case) is proposed, taking into account the coverage of the current test set and
the failure probabilities of the fault states.

The next-best-test-case algorithm should determine the information gain for each
combinationof fault states and choose the combination of fault states with the highest
information gain. This is computationally intensive for models with|S| > 17. There-
fore an efficient clustering algorithm has been developed that first clusters fault states
until |S| < maxS ∧maxS < 17 and then determines the combination of fault states
with the highest information gain. This algorithm and the results of a case at ASML
have been described in [69].

CONCLUSIONS 59

4.5.3 Updating objectives or constraints and system redesign

Updating the objectives and constraints (4.4) is not really improving the integration and
test plan. Updating the objectives and constraints could be the last resort if no feasible
integration and test plan can be determined. Integration and test planning starts all
over with updated objectives and constraints, because this update could result in a new
integration sequence.

The last improvement technique discussed here is redesigning the system, such that
a better integration and test plan could be made. This improvement technique should
be selected if the current architecture of the system is not optimal for integration and
testing. Examples of an architecture that is not optimal for integration and testing are:

• architectures that contain components of very different granularity (very large
components in combination with small components, components with many in-
terfaces in combination with components with little interfaces, et cetera),

• architectures that contain many components that are connected with many other
components,

• architectures with alayering, groups of components, that have many interfaces
between these groups if components.

Redesigning, rearranging the components, or choosing a differentlayering in the
system could be beneficial in these cases. The effect of the number of components,
number of interfaces and the layering in the architecture is discussed in detail in [68].

4.6 Conclusions

This chapter presents an integration and test planning method, which utilizes three
types of strategies: an integration strategy, a test positioning strategy and a test strategy.
The combination of strategies and system models results in an integration and test plan.

A system architecture model, consisting of components, interfaces, a layering, ob-
jectives and timing, is used to create an integration sequence using an integration strat-
egy. Possible test tasks are positioned in between these integration steps according to
a test positioning strategy. The individual test tasks are planned in detail using a test
strategy and a system test model that describes the coverage of the available test cases
on the possible fault states in the system. Properties for test cases and fault states like
durations of test cases, diagnosis and fixing, failure probability and impact is used to
determine a test plan for the test task. The performance of the test tasks is analyzed
with respect to duration, cost and remaining risk using test process simulation.

The individual test tasks are combined into an integration sequence to form an
integration and test plan. The performance of this integration and test plan is analyzed
using the same process simulation that is used for the analysis of test phases. An
appropriate optimization technique is selected if the performance is not according to

60 INTEGRATION AND TEST PLANNING

the initial objectives and constraints. Parts of the process are repeated depending on
the selected optimization technique.

This general method describes the process which integration and test planners could
use to create and improve integration and test plans. This method can be applied in in-
dustry by applying best practices for each step in the method. The detailed sequencing
and improvement algorithms that have been developed can also be used in combination
with best practices. The algorithms use models to determine test and integration plans.
The LONETTE tool set has been developed to support the modeling of the system archi-
tecture and the test model. The algorithms that have been developed are also available
via this tool set. Furthermore, this method can be used to guide research into more
formal techniques, tools and methods that can be used within this framework.

Chapter 5

Test time reduction by optimal
test sequencing

Authors: R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, J.E. Rooda

5.1 Introduction

Testing complex manufacturing systems is expensive both in terms of time and money,
as shown by [39] and [41]. To reduce time-to-market of a new system or to reduce lead
time during the manufacturing of these systems, it is crucial to reduce the test time.
Reducing test time can be done by: 1) making testing faster, for example by automation
of test cases, 2) making testing easier, for example by changing the system and 3)
doing testing smarter, for example by choosing wisely which test cases to perform
and in what sequence. Much research has been done on the first two aspects, less
research is being done on the third aspect. In this chapter we show that test time
can be reduced by optimizing test sequences which allows testing to be performed
more efficiently. Deciding which tests are performed and which are not is important.
Not performing a test case may leave crucial faults in the system, while performing
a test case can lead to an increase of lead time or time-to-market. Deciding what to
test is especially important in the time-to-market driven semiconductor industry and
for companies providing manufacturing systems to this industry such as ASML. This
is caused by the time-to-market pressure of delivering such machines to customers
and the high costs associated with solving defects during system operation. For the
optimization of test sequences three parameters are of interest: the test time, the test
cost and the quality of the system after testing. In papers [23, 22], a test sequencing
method has been developed that optimizes the selection and sequencing of tests. The
main focus of these papers is on the mathematical models and algorithms. In this

61

62 TEST TIME REDUCTION BY OPTIMAL TEST SEQUENCING

chapter, we explain how the test sequencing method can be used to reduce test time.
Additionally, we describe two case studies in which test time has been reduced. The
first case study is related to the manufacturing test phase of a lithographic machine. The
second case study is related to the reliability test phase of a new lithographic system.

The structure of the chapter is as follows. Section 5.2 briefly explains the test
sequencing method. Sections 5.3 and 5.4 each describe a case study. The last section
gives the conclusions of our work. This chapter is based on the paper titled ‘Test time
reduction by optimal test sequencing’ [19] presented at the International Council of
Systems Engineering (INCOSE) 2006 Symposium.

5.2 Test sequencing method

The test sequencing method has originally been used to solve diagnosis problems as
described in [96] and [110]. In [23] the method has been adapted to solve system test
sequencing problems. The method consists of four steps: definition of the test model,
definition of the optimization objective and test stop criterion, calculation of the test
sequence and, finally, testing the system. In Figure 5.1, an overview of the steps that
comprise the test sequencing method is shown. In the sequel, we describe each step in
more detail.

Define test

model

Calculate test

sequence

Define

objective and

stop criterion

Test system

Figure 5.1: Test sequencing method.

Define the test model

To calculate an optimal test sequence for a certain test sequencing problem, the problem
needs to be defined in a mathematical way as a, so-called, test model. This test model
consists of:

• a setT of available tests,

• for each test, the test costC in cost units and in time units to perform that test,

TEST SEQUENCING METHOD 63

• a setS of possible fault states which are independent of each other,

• for each fault state, the probabilityP that a fault state may be present,

• for each fault state, the impactI in cost units or in time units if that fault remains
and causes a system failure during operation,

• for each test, the fault states that are covered by that test, which is represented by
a matrixA. A test covers a fault state completely if the test always fails when the
fault state is present; thenAij is 1. If Aij is between 0 and 1, then testi covers
fault state j with the probabilityAij , meaning that a test fails with probability
Aij if the fault state is present. IfAij = 0, then testi does not cover fault statej
and will pass when the fault state is present.

The set of available tests is often known for a certain problem. The cost of perform-
ing a test does not include the development cost of a test but only the execution cost.
A fault state can be of many failure types. During manufacturing a fault state is often
a failing component or an integration fault (e.g., loose cable). During development, a
fault state can be a performance criterion that is not reached or a specification that is
not met. The initial fault state set during manufacturing can be a list of components
and interfaces, while during development the initial list can be the result of an Failure
Mode and Effect Analysis (FMEA) or the list of system requirements. The probability
that a fault state is present can be derived from historical data for manufacturing prob-
lems. For development problems, this probability can be derived from the risk analysis
prediction within an FMEA analysis. If this data is not present even tentative assump-
tions (0%, 20%, 50%, 80%) on fault probabilities may lead to good test sequences, as
we have seen in practise. The impact of a fault state is the cost or time related to the
repair of the system and the cost of the caused damage if the system fails during oper-
ation because that fault state is present. The impact can be different for each industry
and system. In the Department of Defence (D.o.D), space and aviation industries, the
impact of a failing system can be extremely high since the cost of an airplane or shuttle
crash is huge. In the manufacturing machine and semiconductor industry, the impact
of a fault is much lower. A fault may result in a few hours machine downtime, but
does not destroy anything. Which tests cover certain fault states is often known by the
developers of the test cases or by test experts. The test coverage is more difficult to
identify. Normally, this test coverage is 1, but in some cases this coverage is lower than
1. For reliability testing the coverage of 1 hour testing to show for example 100 hours of
Mean-Time-Between-Failure (MTBF) can be approximated by 1hour/100hours= 0.01.
For some tests, historical data may indicate how often a certain fault state is identified
by a test.

We illustrate the modeling of a test problem with two small examples. The first
example is shown in Table 5.1. The model represents a manufacturing test phase of a
simple telephone, which consists of 3 modules: the receiver, the cable and the device.
Additionally, two interfaces are distinguished: between the device and the cable (D2C)
and between the receiver and the cable (R2C). We model this system with 5 fault states:

64 TEST TIME REDUCTION BY OPTIMAL TEST SEQUENCING

S \ Test 1 2 3 4 5 6 P I(hour) I(e)
Device 1 1 0 0 1 0 10 % 20 200
Cable 1 0 1 0 1 1 10 % 20 200
Receiver 1 0 0 1 0 1 10 % 20 200
D2C 1 0 0 0 1 0 10 % 20 200
R2C 1 0 0 0 0 1 10 % 20 200
C(hour) 3 1 1 1 2 1
C(e) 50 20 20 20 30 30

Table 5.1: Example manufacturing test model of a telephone.

S / T Test 1 P I(hour) I(e)
MTBF 1/10 100 % 50 10000
C(hour) 1
C(e) 500

Table 5.2: Example reliability test model of a system.

one for each module and one for each interface. Six tests are available to test this
system. A duration in hours and a cost ine is associated with each test. The impact
of each fault state is 20 hours ande200, and the probability of each fault state is 10%.
The second example shown in Table 5.2 is a model of a reliability test phase. The
system is required to run, on average, at least 10 hours before a failure occurs, which
means a MTBF of at least 10 hours. This requirement is modeled with one fault state
called MTBF. The impact of this fault state is 50 hours ande10000. We have one test
to show that this requirement is reached. Executing this test costs 1 hour ande500.
The coverage of this test is 1hour/10hours = 0.1.

Define the objective and stop criterion

To decide which solution is optimal, the optimization objective and the test stop cri-
terion need to be defined. What is considered optimal depends on what is important
for the industry. We introduce three parameters that can be used to define what is im-
portant: the test time, the test cost and the quality of the system after testing, cf. the
business drivers Time–Quality–Cost in Chapter 3. The time and cost of testing are de-
fined in the model. The quality of the system is represented by the risk, defined in time
and cost, present in the system. A high risk in the system means a low system quality.
The system risk is the sum of the risk per fault state, which is defined as the impact of
a fault state times the probability that the fault state is present, or:

TEST SEQUENCING METHOD 65

Rsystem =
∑
s∈S

I(s)P (s) (5.1)

Applying a test to a system has two effects: the total test cost and test time increase
and the risk in the system decreases either by tests that pass, or by repairing identified
faults. We now abstract from the repair cost and time of faults during the test phase.
These effects are also shown in Figure 5.2, where the increase of test cost or time and
the decrease of risk is shown for a fictitious illustration. In practice, the increase of
test cost may be nonlinear because of a difference in test costs. The third line in this
figure shows the total cost or time, which is the sum of the test and risk time or cost. A
test sequence can be optimized towards: A) minimal test time or B) minimal test cost.
The test stop criterion decides when to stop testing. There are at least three test stop
criteria: 1) stop when a certain system quality defined in risk is reached, 2) stop when
the maximal test time or cost is reached, or 3) stop when the total cost is the lowest.
Each test stop criterion is shown in Figure 5.2.

Figure 5.2: The effect of testing.

Calculate a test sequence

Now that we defined a model, an objective and a test stop criterion, the optimal solution
can be calculated with the algorithm described in [22]. The solution is represented in
a graph where the nodes are either test (circle), fix (square), diagnose (square) actions,
or stop (triangle) actions, as shown in Figure 5.3(a) and 5.3(b). The outgoing arrows
of a test denote the possible outcomes of a test: either pass or fail. Depending on
the outcomes of individual test cases, a path in the graph is taken, which results in

66 TEST TIME REDUCTION BY OPTIMAL TEST SEQUENCING

a test sequence. A fix action of a fault state denotes that the fault state is present
and is fixed. A diagnosis action of a set of fault states denotes that at least one of
these fault states is present, but no tests are available to distinguish the present fault
state. Therefore, these fault states are diagnosed and the present fault states are fixed.
The solution test graph of example 1 is shown in Figure 5.3(a). This test sequence is
optimized towards minimal test time, while testing stops when the remaining risk is 0
(the highest quality). The average test time and test cost are 5,24 hours ande82.40
while the maximal (=longest path in graph) test time and cost are 16 hours ande260.
The solution graph of example 2 is shown in Figure 5.3(b). This test sequence is also
optimized towards minimal test time, while testing stops when the total cost is the
lowest (stop criterion 3). The average test time and cost are 10,36 hours ande5181.
The maximal test time and cost are 17 hours ande8500. If all tests are executed
successfully, the remaining risk in time and cost is 8,33 hours ande1666, which is a
risk reduction of 83%.

Testing the system

Now that a solution is obtained for a test sequencing problem, the system can be tested.
The solution graph of example 1 can be automated, such that a next test is chosen
based on the test graph and the outcome of previous tests. The dynamic behavior of
the test graph (one does not know upfront which tests will be performed) results in an
unknown end time of the test process. The solution graph of example 2 states how
many hours of reliability testing are needed to satisfy the reliability requirement. This
can also be explained by analyzing Figure 5.4, showing how the time of testing, the
risk in [hours], and the total cost (sum of the testing time and risk) are changing with
the number of tests applied. Here it is shown that when performing 17 tests, the total
cost is the least. This corresponds to the optimal test sequence shown in Figure 5.3(b)
which also consists of 17 tests.

5.3 Manufacturing case study

In this section, we describe a case study that is related to a test phase during the man-
ufacturing of a lithographic machine. During the manufacturing of a lithographic ma-
chine, two large test phases are performed. Test phase 1 is performed at ASML. After
successful accomplishment of this phase, the system is disassembled, transported to
the customer, and reassembled again. After the system has been installed at the cus-
tomer’s site, test phase 2 is performed. The two test phases are almost identical, and
both include multiple job-steps. Each job-step consists of multiple tests executed in a
sequence. Currently, the sequence does not depend on the outcome of a test: if a test
fails, the problem is diagnosed until the cause of the failure has been found and re-
paired. In these job-steps, faults introduced during manufacturing, assembly and trans-
port must be discovered and system parameters need to be calibrated. The case study
is performed for three job-steps in both test phases. Test models have been made by

MANUFACTURING CASE STUDY 67

Test 3

Fix: [2]

D3.xls

Test 4

pass

Fix: [3]

fail

Test 6

pass

Fix: [5]

fail

Test 2

pass

Fix: [1]

D2.xls

Test 5

pass

Fix: [4]

fail

End

pass

(a) Solution of exam-
ple 1

Test 1

Fix: [1]

fail

Test 1

pass

End

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail

Test 1

pass

fail Test 1

pass

fail

End

pass

(b) Solution of example 2

Figure 5.3: Solutions for examples.

68 TEST TIME REDUCTION BY OPTIMAL TEST SEQUENCING

Figure 5.4: Time of testing for example 2.

ASML engineers and the test sequences have been optimized towards test time, while
testing stops when the risk is 0 hours (stop criterion 1). The parameters of the three
models related to three job-steps are shown in Table 5.3. Since the test problems in test
phase 1 and 2 are identical almost the same models can be used: only the probabilities
differ between the two test phases, as also shown in Table 5.3.

In general, the fault probabilities are lower in the second test phase, because the
system was already performing according to its specifications after the first test phase.
The faults found during the second test phase are merely transportation and assembly
faults. No data is available for job-step 3 in test phase 2. The results of this case study
are shown in Table 5.4, presenting the currently average test time (determined from

Job-
step

Number
of tests

Number
of fault
states

Average fault
probability
test phase 1

Average fault
probability
test phase 2

1 39 73 30 % 16%
2 15 15 86 % 71%
3 33 60 46 % No data

Table 5.3: Model properties of the manufacturing case study.

RELIABILITY CASE STUDY 69

Test phase 1 Test phase 2
Job-
step

Current
time
[hour]

New
time
[hour]

Reduction Current
time
[hour]

New
time
[hour]

Reduction

1 12.2 10.2 17% 12.2 8.3 32%
2 13.6 13.1 4% 13.6 11.5 16%
3 33.0 27.0 18% No data No data No data

Table 5.4: Results of the manufacturing case study.

S \ Test 1 2 3 4 5 6 P I(hour) I(e)
Module 1 1/50 6/50 3/50 2/50 2/50 0 90 % 100 10000
Module 2 1/50 0 10/50 0 4/50 0 80 % 100 10000
Module 3 1/50 0 3/50 0 2/50 0 80 % 100 10000
Module 4 1/50 0 0 2/50 4/50 4/50 80 % 100 10000
Module 5 1/50 0 0 1/50 4/50 10/50 90 % 100 10000
System 1/50 0 0 0 0 0 50 % 100 10000
C(hour) 1 1 1 1 1 1
C(e) 500 500 500 500 500 500

Table 5.5: Model of reliability case study.

historical data), the new average test time and the reduction in test time. Due to the
currently used fixed test sequence, the test times in both test phases are equal. However,
when using the presented method we notice that more test time can be reduced during
the second test phase than during the first test phase because fault probabilities are in
general lower. Due to these lower fault probabilities, we can start with test cases that
cover more fault states which, in most cases, reduces test time.

5.4 Reliability case study

In this section, we describe a case study that is related to a reliability test phase during
the development of a new type of lithographic machine. For a new type of a litho-
graphic machine, a test phase needs to be performed to show that the first of a kind
machine has a reliability of at least 50 hours MTBF. For the most critical modules (the
modules that have been changed) in the system, separate tests have been developed that
test a particular module faster than a total system test (normal production) would do.
For example, during normal production a robot accomplishes 1 cycle per minute; in a
specific test, the robot is tested such that it accomplishes 10 cycles per minute, without
testing the rest of the system. In the current situation, the specific module tests are not
used to show the total system reliability. Only the system test is used, because current
methods, for example SEMI standards, only consider this type of test when testing the

70 TEST TIME REDUCTION BY OPTIMAL TEST SEQUENCING

Test Hours
Test 1 26
Test 2 0
Test 3 7
Test 4 0
Test 5 37
Test 7 0
Total 70

Table 5.6: Results of the reliability case study.

system reliability. The model of this problem is shown in Table 5.5. There are five crit-
ical modules, and a fault state (s1-s5) is associated with each module. Additional fault
state (s6) is associated with the rest of the system. The normal production is the system
test (t1) that covers each fault state with a probability of 1/50. The other five tests (t2-
t6) provide higher coverage for certain modules, because these tests make more cycles
per hour for these modules than normal production would make.

The solution is optimized towards test time, while testing stops when the total cost
is minimal (stop criterion 3). The optimal solution has a maximal test time of 70 hours,
which is shown in Table 5.6. This means that 70 hours of testing is needed to show the
50 hours MTBF. During this test phase, none of these tests may fail. Otherwise, the
MTBF requirement is not fulfilled.

In Figure 5.5, the risk in the system denoted in time units is shown for two situa-
tions. The first situation (Test 1 only) shows the risk decrease when only Test 1 is used.
This situation is the current situation at ASML. Situation 2 (optimal sequence) shows
the risk decrease of the optimal test phase, calculated with the test selection method.
The optimal test stop moment for situation 1 is 111 hours of testing, and for situation
2 it is 70 hours of testing. From this figure we can conclude that it is profitable to use
the critical module tests to test the system reliability instead of using only Test 1. Also,
the remaining risk in the system is only 119 hours when using the critical module tests,
while the risk is 160 hours when using only Test 1.

5.5 Conclusions

Reducing time-to-market or lead time for complex systems is extremely important.
Test and integration time is almost always on the critical development path. Therefore,
reducing this time will definitely reduce time-to-market or lead time. There are several
approaches to reduce test time: testing can be made faster by automating test cases;
testing can be made easier, for example, by changing the system; or testing can be
done smarter, for example, by applying the method described in this chapter and in
[23, 22]. The benefit of our method is avoidance of additional investments: we still use

CONCLUSIONS 71

Figure 5.5: Risk decrease of the reliability case study.

the same tests on the same system. This method incorporates the possibility to define
different optimization criteria for different industries and systems. A test sequence can
be optimized towards time or costs. Testing stops when the maximal time or cost is
reached, or the system has reached a certain quality, denoted with risk, or when the
total cost is the lowest. Because the impact of a fault is different for each system, a
different solution will be optimal. For example, the impact of a fault in an airplane is
much higher and will therefore result in more testing than for a manufacturing machine.
Test time within the testing of complex manufacturing systems can be reduced by using
the presented methods. This is shown with two case studies in this chapter that apply to
the development and manufacturing phases of a lithographic machine. From these case
studies we learn that this method can reduce up to 20% in test time, compared with test
sequences made by hand by ASML engineers. The test model as presented here is a
very intuitive and easy way to write down a test sequencing problem. Furthermore, this
model can be used for many other analyses, for instance, for test strategy simulation
as described in [70], to decide which test needs to be developed next, or for a static
analysis of the test problem.

72 TEST TIME REDUCTION BY OPTIMAL TEST SEQUENCING

Chapter 6

Optimal integration and test
planning for lithographic
systems

Authors: R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, J.E. Rooda

6.1 Introduction

In today’s industry, time-to-market of systems is becoming increasingly important. The
integration and test phase of a complex system typically takes more than 45% of the
total development time [41]. Reducing this time shortens the time-to-market of a new
system.

In the integration and test phase of system development, components which were
concurrently developed are integrated into a subsystem. Subsequently, the subsystems
are integrated into a system. In between these integration actions, tests are applied to
check the system requirements. An integration plan describes the sequence of integra-
tion actions and tests that need to be performed. For new ASML lithographic systems,
integration and test plans are currently created manually.

An inefficient integration and test plan may result in finding faults late in the inte-
gration and test process, because tests are performed late in the process. The rework
caused by these faults increases the integration and test phase duration. Furthermore,
not keeping a plan up to date causes an inefficient way of working that increases the
duration of the complete phase. A good integration and test plan performs tests early
and in parallel, as much as possible, such that faults are found early in the process.
Furthermore, when a plan is kept up to date, it is easier to make the correct decisions
during the often chaotic integration and test phase. An optimal integration and test plan
generally does not increase or decrease the system quality but increases the efficiency

73

74 OPTIMAL INTEGRATION AND TEST PLANNING FOR LITHOGRAPHIC SYSTEMS

of working such that cost and/or time are minimized. Creating good or even optimal
integration and test plans is getting more and more difficult because of:

• The growing number of components in today’s systems. This results in numerous
possible integration and test plans.

• The parallelism in the plan. Subsystems or modules should be tested in paral-
lel as much as possible. Also, component models can be used to perform cer-
tain tests before actual components are delivered (see model-based integration in
Chapter 7).

Maintaining an integration and test plan is also getting more and more difficult
because of:

• The variability in delivery times of components. If a component arrives later
than planned, the plan should be updated.

• The variability in test phase duration. Failing tests initiate a diagnosis and repair
action and may increase the test phase duration.

• Varying number of components. During integration, it is possible that more com-
ponents are needed than originally planned, such as software patches that were
not included in the original system design.

Due to these difficulties, a method is needed that allows for automatic creation
of integration and test plans that are optimal for the time-to-market of a system. This
method should also minimize the effort needed to keep a plan up to date. In this chapter,
we introduce such a method. This method is called the integration and test planning
method and consists of the following steps. First, a model of the integration and test
problem is created that describes the problem mathematically. Second, an algorithm is
used to automatically calculate the optimal integration and test plan. Finally, the plan
is executed. A new plan can be calculated automatically after updating the model if a
plan update is needed during the execution of the original plan.

The chapter is structured as follows. Section 6.2 describes the integration and test
phases of lithographic machines. Section 6.3 describes the proposed integration and
test planning method. Section 6.4 describes two case studies where this method has
been applied to the integration and test phases of lithographic machines. The last sec-
tion gives conclusions. This chapter is based on the paper titled ‘Optimal integration
and test planning applied to lithographic systems’ [20] presented at the International
Council of Systems Engineering (INCOSE) 2007 Symposium.

6.2 Integration and testing of lithographic systems

To reduce time-to-market of a new type of lithographic system, often multiple proto-
types are created to perform tests in parallel. Normally, each of these prototypes is

INTEGRATION AND TEST PLANNING METHOD 75

used for a specific goal, for example, the first prototype is used to test all functional re-
quirements, whereas the second prototype is used to test all performance requirements.
Normally, for each of these prototypes an integration and test plan is manually created
by an integration engineer using Microsoft Project. The integration and test phase of
these systems is characterized by a large time-to-market pressure and a huge number of
multidisciplinary components (mechanical, electrical, optical, software) that are devel-
oped in parallel and should be integrated. During such an integration phase, first an old
type lithographic system is manufactured and qualified. This system is then upgraded
to the new type system by replacing specific modules with the new modules, upgrad-
ing the software and performing tests to check the system requirements. This approach
reduces the risk of possible faults because a complete working machine is taken as
starting point. Often, models or ’dummy’ components are used during the integration
phases to perform tests earlier in the integration phases, before the actual modules are
delivered. During the execution of an integration and test plan, the plan often needs to
be updated. If a module arrives later than planned, the duration of the module develop-
ment is updated in the plan. Microsoft Project then automatically delays all tasks that
depend on this development task. However, the sequence of tasks is not changed by
Microsoft Project, which may result in suboptimal plans. Therefore, the sequence of
tasks needs to be updated manually which increases the effort to update a plan.

6.3 Integration and test planning method

In this section, we introduce the integration and test planning method that allows to
automatically create an optimal integration and test plan. The method originates from
assembly sequencing methods as described by [83, 82] and object-oriented integration
strategies as described by [55]. In [24] the assembly sequencing method and the object-
oriented integration strategy method are combined into a method to solve integration
and test planning problems. The method consists of three steps as shown in Figure 6.1:
define the integration and test model, calculate the integration plan, and execute the
plan. During execution it is possible that the model needs to be adjusted (for example
because of delays in delivery times) and the plan needs to be updated. In the remainder
of this section, we describe each step in more detail.

To calculate an optimal plan for a certain problem, the problem is defined in a
mathematical way as an integration and test model. This model consists of:

• a setM of modules,

• for each module inM , the associated implementation duration of that module,

• a setI of interfaces that each connect exactly two modules with each other,

• for each interface inI, the associated construction duration of that interface,

• for each interface inI, the two modules ofM associated with it,

76 OPTIMAL INTEGRATION AND TEST PLANNING FOR LITHOGRAPHIC SYSTEMS

Define model

Calculate plan

Execute plan

Figure 6.1: Integration and test planning method.

• a setT of tests,

• for each test inT , the associated duration of performing that test,

• for each test inT , its essential sets of modules; that is the sets of modules from
M that must be integrated before the test can be performed.

This model needs to be defined by an engineer and contains all information needed
to create an integration and test plan. The setM of modules can be obtained by decom-
posing the system into subsystems or components that are implemented or developed
in parallel. Normally, this has already been done during the design phase. Further-
more, the set of modules may consist of the component models that can be used as
replacements for other modules, see for more information Chapter 7. The implemen-
tation duration of a module denotes the time between the start of the implementation
of the module and the end of the implementation of the module. The setI of inter-
faces between modules denotes how the modules can be integrated with each other.
Every interface is created between exactly two modules. If two modules have an in-
terface, they can be integrated with each other. Examples of interfaces are mechanical
interfaces such as bolts and screws, but also software interfaces. The construction of
an interface may take some time, for example a mechanical interface may take a few
hours to construct.

The setT consists of the tests that need to be performed to check system require-
ments. We assume that each test needs to be performed exactly once. The duration of
each test must be known in advance. The selection of tests that need to be performed is
not considered part of this method. In Chapter 5 a test selection and sequencing method
has been developed that can be used to determine this sequence of tests. For each test,
the essential sets of modules must be defined. An essential module set denotes the
minimal set of modules that need to be integrated before that test can be performed. If
component models are used to replace certain modules, two essential sets of modules
can be created to denote that either the real component or the component model should
be integrated before the test may be performed.

INTEGRATION AND TEST PLANNING METHOD 77

T Essential sets of modules Duration
T1-T6 Reticle handler 1
T7, T8 Reticle handler and stage 2
T9-T11 Wafer stage 1

T12, T13 Wafer handler and stage 2
T14-T17 Lens, laser, illuminator 3
T18-T20 Wafer and reticle stage, lens, laser, illuminator 3
T21-T25 -all modules- 5

Table 6.1: Illustration model.

The assumptions on the integration and test model are:

• All modules inM must be connected with each other, so there exists a path of
interfaces that connects every module inM with every other module inM . This
also holds for an assembly.

• For every test inT , there exists at least one module that is present in all essential
sets of modules belonging to this test, to make sure that each test is performed
exactly once.

• Each test is performed exactly once when one of the essential sets of modules of
this test has been integrated.

• The durations of the tests and the durations of constructing the interfaces are
independent of the current assembly of modules.

We define that an assembly consists of one or more modules that have been inte-
grated. An integration action is defined as creating all interfaces between exactly two
assemblies sequentially. A test phase consists of the set of tests that are performed on
an assembly.

We illustrate the integration and test model with a small example. In this example,
all subsystems of a simple lithographic machine, see Chapter 2, must be integrated
and tested. In Figure 6.2, the different modules, interfaces and their development and
creation durations (denoted as t) are shown. In Table 6.1, the essential sets of modules
per test and the test durations per test are shown.

After the model has been defined, the optimal plan can be calculated. The optimal
plan is the plan that integrates all modules into one system and performs each test
exactly once in the shortest possible integration and test time. Note that no tests are
removed or skipped and that the total test duration is therefore always the same. The
optimal plan is the most efficient plan because the tests and integration actions are
performed in parallel as much as possible.

The optimal plan can be calculated using the algorithm described in [24]. The basic
idea behind this algorithm is that the plan is constructed according to the ’assembly by

78 OPTIMAL INTEGRATION AND TEST PLANNING FOR LITHOGRAPHIC SYSTEMS

Laser

t=20

Illuminator

t=15

Reticle stage

t=15

Lens

t=25

Wafer stage

t=10

Reticle handler

t=10

Wafer handler

t=10

i1

t=1

i2

t=4

i3

t=1

i4

t=1

i5

t=1

i6

t=1

Figure 6.2: Illustration model.

disassembly’ approach using an AND/OR graph search, as was suggested by [83, 82]
to create assembly plans. This approach starts with the complete system and inves-
tigates all possible ways in which the system can be disassembled into two separate
assemblies, which can again be disassembled into two separate assemblies, and so on
until the single modules remain.

For the example model, the optimal solution is shown in Figure 6.3 as a tree. In this
tree, the development of a module is shown as a square node, the construction of a set
of interfaces is shown as a hexagonal node, the execution of a test phase is shown as an
oval node and the sequence of actions is denoted by the edges between the nodes. The
critical paths of this plan are the path of the lens and the path of the illuminator that
both take 73 time units. The cost of the total integration and test plan is therefore also
73 time units. Another representation of the solution is the Microsoft Project Gantt
chart in Figure 6.4. In this chart, the critical paths of the lens and illuminator modules
are depicted in light grey.

6.4 Case studies

This section shows the results of two case studies that were performed during the inte-
gration and test phase of the development of two new ASML systems. The first case
study shows the optimization of the integration and test plan of a new lithographic
prototype and shows a plan update that was performed when the deliveries of certain

CASE STUDIES 79

Test 18 through test 25

Finished

Create interface i5

Test 14 through test 17

Create interface i4

Create interface i2

Create interface i1

Develop laser Develop illuminator

Test 7 and test 8

Create interface i3

Develop reticle stage Test 1 through test 6

Develop reticle handler

Develop lens

Test 12 and test 13

Create interface i6

Test 9 through test 11

Develop wafer stage

Develop wafer handler

Figure 6.3: Illustration solution represented as a tree.

modules were delayed. The second case study shows the optimization of the integra-
tion and test plan of two prototypes of a completely new type of system where some
tests must be performed on one specific prototype and other tests may be performed on
either the first or the second prototype.

Case study 1

This new lithographic machine is constructed based on an old type system. Only the
upgrade of certain modules is considered and not the integration of the old type system.
Therefore, the old system is modeled as one assembly (M1) that is completely present
at the start of the project. There are 16 other modules (M2 through M17) that are
integrated in the old system to upgrade this system to the new system. Modules M10,

80 OPTIMAL INTEGRATION AND TEST PLANNING FOR LITHOGRAPHIC SYSTEMS

ID Task Name Duration

1 Develop reticle handler 10 hrs

2 Test 1 through test 6 6 hrs

3 Develop reticle stage 15 hrs

4 Create interface i3 1 hr

5 Test 7 and test 8 4 hrs

6 Develop illuminator 23 hrs

7 Develop laser 20 hrs

8 Create interface i1 1 hr

9 Create interface i2 1 hr

10 Develop lens 25 hrs

11 Create interface i4 1 hr

12 Test 14 through test 17 12 hrs

13 Develop wafer handler 10 hrs

14 Test 9 through test 11 3 hrs

15 Develop wafer stage 10 hrs

16 Create interface i6 1 hr

17 Test 12 and test 13 4 hrs

18 Create interface i5 1 hr

19 Test 18 through test 25 34 hrs

20 Finished 0 hrs

1 hr

3 hrs

3 hrs

3 hrs

20 hrs

6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10
Wed 27 Sep Thu 28 Sep Fri 29 Sep

Figure 6.4: Illustration solution represented as an MS project Gantt chart.

M11 and M12 are different laser system types. Some tests require one of these modules
to be integrated before they can be performed while other tests require one specific
laser to be integrated. The complete model of this system is shown in Figure 6.5 and
Table 6.2. All modules are connected to the old system (M1), while the three lasers
(M10, M11, M12) are also connected to M9.

The integration plan for this model is shown in Figure 6.6(a). The total duration
of the plan is 1469 hours. The critical path is the path that module M2 follows and is
shown in light grey.

At a certain point in time during the execution of this plan the delivery times of
some modules have been changed. In Table 6.3, the new development durations of
these modules are shown. Furthermore, module M15 is removed in the new plan.
After a simple update of the model, a new plan has been calculated automatically. This
new plan shown in Figure 6.6(b) shows the new critical path of module M14 in light
grey. The light grey vertical line in the figure shows the time at which the plan was
updated. For this case study we have not made a comparison with a manually created
plan.

CASE STUDIES 81

T Essential sets of mod-
ules

Time
[hour]

T Essential sets of modules Time
[hour]

T0 M1 96 T8 M1,M2,M3,M15 10
T1 M1,M2 165 T9 M1,M2,M3,M9 29
T2 M1,M3 68 T10 M1,M2,M3,M17 6.5
T3 M1,M2,M4 5 T11 M1,M2,M3,M16 12
T4 M1,M2,M3 278.5 T12 M1,M2,M3,M6, M9,M11 82
T5 M1,M2,M3,M9, M10 100 T13 M1,M2,M3,M5,M6,M8,

M9,(M10 or M11 or
M12),M13,M14,M15,M16

212

T6 M1,M2,M3,M13 10 T14 M1,M2,M3,M6,M9,M12 82
T7 M1,M2,M3,M14 10 T15 M1,M2,M3,M9,(M10 or

M11 or M12)
10

T8 M1,M2,M3,M15 10 T16 M1,M2,M3,M7 120

Table 6.2: Case study 1 model.

M Old development duration New development duration

M7 904 1288
M8 688 1048
M11 688 1216
M12 888 664
M14 536 1416
M15 552 Removed

Table 6.3: Changed development times for case study 1.

82 OPTIMAL INTEGRATION AND TEST PLANNING FOR LITHOGRAPHIC SYSTEMS

Figure 6.5: Case study 1 model.

Element Number Min and max times

Modules 94 0 to 880 hour
Interfaces 113 0 to 40 hour

Tests 66 4 to 80 hour

Table 6.4: Case study 2 model properties.

Case study 2

In this case study, two prototypes that have been developed in parallel are used to test
some specific requirements of a new type of system. These two prototypes have been
built from scratch, so no old system type is upgraded. An important detail of the prob-
lem is that 80% of the 66 tests are required to be performed on a specific system while
20% of the tests can be performed on either the first or the second prototype. There-
fore, the two prototypes cannot be considered separately but have to be considered as
one system. This means that both prototypes are defined in one model to create the op-
timal combined integration and test plan. Afterwards, the individual integration plans
for both prototypes can be retrieved from the combined plan. The properties of the
combined model are shown in Table 6.4.

The solution to this problem is unfortunately too large to be shown. The total
duration of this plan is 1346 hours. The plan that was created manually by an engineer
without using this method takes 1536 hours to perform. This is mainly due to the
fact that tests are scheduled less efficiently over the two prototypes compared to the
optimal plan. The optimal plan is therefore more than 10% shorter than the plan created
manually. Note that we compare two initial plans with each other and not the actually
executed plans. These initial plans do not contain the disturbances that may occur
during the integration and test phase (although new plans can be created automatically
as shown in the previous case study).

CASE STUDIES 83

ID Task Name Duration

1 Develop M1 0 hrs

2 Test T0 96 hrs

3 Develop M10 0 hrs

4 Integrate I1-10 25 hrs

5 Develop M2 184 hrs

6 Integrate I1-2 27 hrs

7 Test T1 165 hrs

8 Develop M3 208 hrs

9 Integrate I1-3 16 hrs

10 Test T2, T4 346.5 hrs

11 Develop M5 456 hrs

12 Integrate I1-5 4 hrs

13 Develop M8 608 hrs

14 Integrate I1-8 2 hrs

15 Develop M14 536 hrs

16 Integrate I1-14 2 hrs

17 Test T7 10 hrs

18 Develop M13 520 hrs

19 Integrate I1-13 2 hrs

20 Develop M9 672 hrs

21 Develop M16 608 hrs

22 Test T6 10 hrs

23 I9-16 0 hrs

24 Develop M6 688 hrs

25 Integrate I1-6 0 hrs

26 Integrate I1-16, I9-10, I1-9 7 hrs

27 Test T5, T9, T11 141 hrs

28 Develop M15 552 hrs

29 Integrate I1-15 2 hrs

30 Test T8, T13 222 hrs

31 Develop M7 904 hrs

32 Integrate I1-7 0 hrs

33 Test T16 120 hrs

34 Develop M11 688 hrs

35 Integrate I1-11, I9-11 20 hrs

36 Test T12 82 hrs

37 Develop M12 888 hrs

38 Integrate I1-12, I9-12 19 hrs

39 Test T14 82 hrs

40 Develop M17 632 hrs

41 Integrate I1-17 2 hrs

42 Test T10, T15 16.5 hrs

43 Develop M4 344 hrs

44 Integrate I1-4 2 hrs

45 Test T13 5 hrs

46 Finished 0 hrs

12-8

12-8

26-12

9-12

28-2

1-5

8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10 17 24
 '05 Sep '05 Oct '05 Nov '05 Dec '05 Jan '06 Feb '06 Mar '06 Apr '06 May '06 Jun '06 Jul '06

(a) Case study 1 solution represented as an MS project Gantt chart

ID Task Name Duration

1 Develop M1 0 hrs

2 Test T0 96 hrs

3 Develop M10 0 hrs

4 Integrate I1-10 25 hrs

5 Develop M2 184 hrs

6 Integrate I1-2 27 hrs

7 Test T1 165 hrs

8 Develop M3 208 hrs

9 Integrate I1-3 16 hrs

10 Replan point 0 hrs

11 Test T2, T4 352 hrs

12 Develop M13 520 hrs

13 Integrate I1-13 2 hrs

14 Test T6 10 hrs

15 Develop M5 456 hrs

16 Integrate I1-5 4 hrs

17 Develop M17 632 hrs

18 Integrate I1-17 2 hrs

19 Test T10 6.5 hrs

20 Develop M8 1048 hrs

21 Integrate I-8 2 hrs

22 Develop M7 1288 hrs

23 Integrate I1-7 0 hrs

24 Test T16 120 hrs

25 Develop M14 1416 hrs

26 Develop M6 1048 hrs

27 Integrate I-6 0 hrs

28 Integrate I1-14 2 hrs

29 Test T7 10 hrs

30 Develop M4 344 hrs

31 Integrate I1-4 2 hrs

32 Test T3 5 hrs

33 Develop M16 608 hrs

34 Integrate I1-16 7 hrs

35 Test T11 12 hrs

36 Develop M11 1216 hrs

37 Develop M9 672 hrs

38 Develop M12 664 hrs

39 Integrate I9-11 0 hrs

40 Integrate I9-12 0 hrs

41 Integrate I1-9, I1-12, I1-11, I9 39 hrs

42 Test T5, T9, T12, T13, T14, T 515 hrs

43 Finished 0 hrs

12-8

12-8

19-10

24-3

14-4

13-3

13-3

28-7

1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7
Aug '05 Sep '05 Oct '05 Nov '05 Dec '05 Jan '06 Feb '06 Mar '06 Apr '06 May '06 Jun '06 Jul '06 Aug '

(b) Case study 1 replan solution represented as an MS project Gantt chart

Figure 6.6: Case study 1 solutions.

84 OPTIMAL INTEGRATION AND TEST PLANNING FOR LITHOGRAPHIC SYSTEMS

6.5 Conclusions

In this chapter, we have introduced a method that allows to create optimal integration
and test plans for the integration and test phase during the development of a complex
system. This method consists of: 1) defining a model of the problem, 2) creating a plan
and 3) executing the plan. Two case studies within the development of new ASML
lithographic systems showed the benefits of the method, which are:

• The integration and test plans created with the proposed method are optimal and
may therefore be shorter than manually created plans. The second case study
shows that the optimal plan is more than 10% shorter than a manually generated
plan.

• Planning and re-planning effort can be reduced. The first case study shows that
it is very easy to re-plan when certain modules arrive later than planned. The
only step that has to be performed is updating the model with the new times. The
plan can then be updated automatically. Unfortunately, we cannot give any hard
numbers on the actual effort reduction because the method has not been used on
a large scale yet.

Another benefit of this method is the actual model. The model can be used as a
knowledge container and denotes how the integration and test problem is defined in
a very simple and precise way. This makes it easy to review the model with peer
engineers. The planning method does not influence the quality of the system because
the selection of tests is not taken into account. This is different from [21] where we
used the presented method in combination with a test selection method to determine
the optimal integration and test plan.

In this chapter, we have shown that the integration and test planning method can
be used to optimize an integration and test plan for the development of a new system.
However, this method is used to solve other problems, such as the optimization of
integration and test plans for (evolutionary) software releases and the optimization of
integration and test plans for the manufacturing of multiple systems. Of course, the
presented method can also be used to optimize integration and test plans of complex
systems other than lithographic systems. In the case studies we did not use lithographic
system specific properties. Although we did not perform actual studies with other types
of systems, the method may also be suitable for systems that have integration and test
phases where large numbers of components developed in parallel should be integrated
and where time to market is crucial.

Chapter 7

Model-based integration and
testing in practice

Authors: N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, H.A.J. Neerhof,
J.E. Rooda

7.1 Introduction

High-tech multidisciplinary systems like wafer scanners, electronic microscopes and
high-speed printers are becoming more complex every day. Growing system complex-
ity also increases the effort (in terms of lead time, cost, resources) needed for the,
so-called,integration and test phases. During these phases, the system is integrated
by combining component realizations and, subsequently, tested against the system re-
quirements. Existing industrial practice shows that the main effort of system develop-
ment is shifting from the design and implementation phases to the integration and test
phases [32], in which finding and fixing problems can be up to 100 times more expen-
sive than in the earlier requirements and design phases [14]. As a result, the negative
influence of the integration and test phases on the Time–Quality–Cost (T-Q-C) busi-
ness drivers of ASML (see Chapter 3) is continuously growing and this trend should
be countered.

Literature reports a wealth of research proposing amodel-basedway of working
to counter the increase of system development effort, like requirements modeling [34],
model-based design [78], model-based code generation [60], hardware-software co-
simulation [108], and model-based testing [33]; see also Chapters 9 and 10. In most
cases, however, these model-based techniques are investigated in isolation, and little
work is reported on combining these techniques into an overall method. Although
model-based systems engineering [89] and OMG’s model-driven architecture [72] (for
software only systems) are such overall model-based methods, these methods mainly
focus on the requirements, design, and implementation phases, rather than on the in-
tegration and test phases. Furthermore, literature barely mentions realistic industrial

85

86 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

applications of such methods, at least not for high-tech multidisciplinary systems.
Our research focuses on a method ofModel-Based Integration and Testing, MBI&T

for short. In this method, formal and executable models of system components (e.g.,
software, mechanics, electronics) that are not yet realized are integrated with available
realizations of other components, establishing amodel-based integrated system. Such
a model-based integrated system can be established much earlier compared to a real
integrated system, and it can effectively be used for early model-based system analysis
and system testing.

This chapter, which is based on [28, 30], illustrates the application of the MBI&T
method to the development of an ASML wafer scanner (see Chapter 2). The goal of
the case study and this chapter is twofold: (1) to show the feasibility and potential
of the proposed MBI&T method to reduce the integration and test effort of industrial
systems; (2) to investigate the applicability and usability of theχ (Chi) tool set [114]
as integrated tool support for all aspects of the MBI&T method.

The structure of the chapter is as follows. Section 7.2 gives a general description
of the MBI&T method. Section 7.3 introduces the industrial case study to which the
MBI&T method has been applied. The activities that have been performed in the case
study are described in Sections 7.4 (modeling inχ), 7.5 (simulation), 7.6 (translation
to and verification with UPPAAL), and 7.7 (integration and testing of models and real-
izations). Finally, the conclusions are drawn in Section 7.8.

7.2 Model-based integration and testing method

In current industrial practice, the system development process is subdivided into mul-
tiple concurrent component development processes. Subsequently, the resulting com-
ponents (e.g., mechanics, electronics, software) are integrated into the system; see also
Chapter 1.

The development process of a systemS that consists ofn componentsC1..n (in
this chapter, a set{A1, . . . , Ai, . . . , An} is denoted byA1..n) starts with the system
requirementsR and system designD. After that, each component is developed. The
development process of a componentCi ∈C1..n consists of three phases: requirements
definition, design, and realization. Each of these phases results in a different represen-
tation form of the component, namely the requirementsRi, the designDi, and the
realizationZi. The component realizationsZ1..n should interact and cooperate accord-
ing to system designD in order to fulfill the system requirementsR. The component
interaction as designed inD is realized by integrating components via an infrastruc-
tureI, e.g., using nuts and bolts (mechanical infrastructure), signal cables (electronic
infrastructure), or communication networks (software or model infrastructure). The
integration of realizationsZ1..n by means of infrastructureI, denoted by{Z1..n}I ,
results in the realization of systemS.

Figure 7.1 shows a graphical representation of the current development process of
systemS. The arrows depict the different development phases and the boxes depict
the different representation forms of the system and the components. The rounded

MODEL-BASED INTEGRATION AND TESTING METHOD 87

rectangle depicts the infrastructureI that connects the components. For simplicity, the
figure shows a ‘sequential’ development process, i.e., a phase starts when the previous
phase has been finished. In practice, however, different phases are executed in parallel
in order to meet the strict time-to-market constraints. Furthermore, the real system
development process usually has a more incremental and iterative nature, involving
multiple versions of the requirements, designs, and realizations, and feedback loops
between different phases, e.g., from the realization phase back to the design phase.

design
R
 D

R
1

R
n

define

define

design

design

D
1

D
n
 Z
n

realize

define

Z
1

realize

in
fr

as
tr

uc
tu

re

I

integrate

integrate

Figure 7.1: Current system development process.

In this chapter, we focus on analysis and testing on thesystem levelrather than on the
component level, since the behavior on the system level usually receives less attention
during the development phase and causes more problems during integration. In the
current way of working, only two system level analysis techniques can be applied. On
the one hand, the consistency between requirements and designs on the component
level and on the system level can be checked, i.e.,R1..n versusR andD1..n versusD.
This usually boils down to reviewing and comparing lots of documents, which can be a
tedious and difficult task. On the other hand, the integrated system realization{Z1..n}I

can be tested against the system requirementsR, which requires that all components
are realized and integrated. This requirement means that if problems occur and the
realizations, or even worse, the designs need to be fixed during the integration and
test phases, the effort invested in these phases increases and on-time shipment of the
system is directly threatened. If integration problems could be detected and prevented
at an earlier stage of development, the effort invested in the integration and test phases
would be reduced and distributed over a wider time frame and the final integration and
test phases would become less critical. As a result, the system could be shipped earlier,
i.e., an improvement of time-to-market T, or the saved test time could be used to further
increase the system quality Q.

We propose a model-based integration and testing (MBI&T) method to reduce in-
tegration and test effort and its negative influence on the Time–Quality–Cost business
drivers. This method takes the design documentationDi of the componentsCi as
a starting point and represents them by formal and executable modelsMi, depicted
by the circles in Figure 7.2. The requirements documentationR andRi is used to

88 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

formulate the properties of the system and components. An infrastructureI is used
that allows the integration of all possible combinations of modelsM1..n and realiza-
tionsZ1..n, such that they interact according to the system designD. As an example,
assume thatn = 2, i.e., the depicted componentsC1 andCn = C2 are the only compo-
nents of the system. Then Figure 7.2 shows, corresponding to the depicted integration
‘switches’, the model-based integrated system{M1, Z2}I . In the MBI&T method,
different representation forms of components (models and realizations) need to be con-
nected, which requires different forms of infrastructureI. In this chapter, however,
we abstract from these different forms of infrastructure and only consider the generic
infrastructureI. We refer to [30] for more details on the modeling, analysis and imple-
mentation of different forms of infrastructure in the MBI&T method.

integrate

design
R
 D

R
1

R
n

define

define

design

design

D
1

D
n

Z
n

model

realize

define

model

Z
1

integrate

realize

M
n

M
1

in
fr

as
tr

uc
tu

re

I

Figure 7.2: System development process in the MBI&T method.

The MBI&T method consists of the following steps, in which different model-based
techniques are used to analyze and test the system at an early stage. Although these
steps and Figure 7.2 show a sequential procedure for the MBI&T method for simplicity
reasons, there will be more parallelism, increments and iterations in reality.

Step 1: Modeling the system componentsM1..n and the infrastructure, based on de-
sign documentationD1..n andD, respectively.

Step 2: Model-based analysis of the integrated system model{M1..n}I , using tech-
niques like simulation (2a) and model checking (2b) to analyze particular sce-
narios and system properties derived fromR andD.

Step 3: As soon as the realization of a component becomes available:

a. Model-based component testing of the component’s realization with re-
spect to its model, i.e.,Zi with respect toMi, using automatic model-based
testing techniques and tools.

CASE STUDY: ASML EUV MACHINE 89

b. Replacement of the component’s modelMi by its realizationZi using an
infrastructureI that enables the integration ofZi with the models and real-
izations of all other components.

c. Model-based system testing of the integrated system obtained in step 3b,
by executing test cases derived fromR andD.

Step 4: After all models have been substituted by realizations: testing of the complete
system realization{Z1..n}I by executing test cases derived fromR andD. Note
that only this step is performed in the current system development process as
well.

In principle, the MBI&T method allows the use of different specification languages and
tools, as long as they are suitable for modeling, analysis, and testing of the considered
aspects of the considered components. In the presented case study, all components of
the system are modeled in the process algebraic languageχ [79, 4]. Theχ language is
intended for modeling, simulation, verification, and real-time control of discrete-event,
continuous or combined, so-called hybrid, systems. Theχ tool set [114] allows mod-
eling and simulation ofχ models, as well as their translation to different formalisms
to enable verification ofχ models using different model checking tools [16]. Theχ
language and simulator have been successfully applied to a large number of industrial
cases, such as integrated circuit manufacturing plants, process industry plants, and ma-
chine control systems [54, 6, 87]. In the case study, we use the translation scheme
from [17] to translate theχ model to UPPAAL timed automata [11], which is the same
class of models used in Chapter 9 for timed model-based testing. Subsequently, the
UPPAAL model checker [120] is used to verify system properties such as deadlock free-
ness, liveness, safety, and temporal properties. Although not presented in this chapter,
χ models can also be used for automatic component testing using the model-based
testing tool TORX [119], as reported in [29].

7.3 Case study: ASML EUV machine

To show proof of concept and to evaluate the MBI&T method, the method was applied
to a new type of wafer scanner being developed within ASML, in which extreme ultra
violet (EUV) light is used for exposing wafers. One of the most important technical
challenges in the development of this lithography system is the need for strict vacuum
conditions, since EUV light is is absorbed by nearly all materials, including air.

In the case study presented in this chapter, the focus is on the interaction between
the vacuum system componentCv that controls the vacuum conditions and the source
componentCs that generates the EUV light. These components need close coopera-
tion to provide correct vacuum conditions and correct EUV light properties at all times.
Since the internal states of these components are interdependent (e.g., the source may
only be active under certain vacuum conditions to avoid machine damage), some com-
binations of component states are not allowed and should be prevented.

90 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

Figure 7.3 shows the components and interfaces involved in the case study. To
exchange information about their internal states, the vacuum systemCv and the source
Cs are connected by an interface consisting of four latches1, three latches from vacuum
system to source and one latch from source to vacuum system:

• ‘vented’: when active, this latch indicates that the vacuum system is vented.

• ‘pre-vacuum’: when active, this latch indicates that the vacuum conditions are
sufficient to activate the source, however not sufficient for exposure.

• ‘exposure’: when active, this latch indicates that the vacuum conditions are right
for exposure.

• ‘active’: when active, this latch indicates that the source is active and that the
vacuum system is not allowed to go to the vented state (to avoid machine dam-
age).

Besides these latches to interact with the source, the vacuum system provides a function
goto_stateto the environment of the system, which is represented here as component
Ce. The environment, e.g., a control component or a vacuum system operator, can send
a request viagoto_state_reqto instruct the vacuum system to go to either the vacuum
or the vented state. After receiving a request from the environment, the vacuum system
immediately sends a reply ‘OK’ viagoto_state_rep. Note that, by design, this reply
does not indicate that the requested state is reached; it only indicates that the request
is successfully received and that the vacuum system will perform the actions necessary
to get to the requested state. The progress of these actions and the state of the vacuum
system can only be observed via the vacuum system user interface without explicit
notification that a certain state is reached, which was sufficient for the system design
considered in the case study.

C
v
 C
s

pre-vacuum

vented

active

goto_state_rep
C
e

environment
 vacuum system
 source

goto_state_req

exposure

Figure 7.3: Components and interfaces involved in the case study.

The behavior of the integrated system under nominal conditions is depicted in the mes-
sage sequence chart in Figure 7.4. This figure shows the different states of the com-
ponents and the communication between them for the vacuum sequence. In order to
go to the vacuum state, first the ‘vented’ latch is deactivated after which the vacuum

1Latch: electronic circuit based on sequential logic with inputs ‘set’ and ‘reset’ that is capable of storing
one bit of information, i.e., a continuous high or a low voltage.

CASE STUDY: ASML EUV MACHINE 91

pumps are started and some initial preparation actions are executed by the source. After
some pumping down, when the vacuum conditions are sufficient to activate the source,
the ‘pre-vacuum’ and subsequently the ‘active’ latch are activated, and the source goes
to the active state. Finally, when the vacuum conditions are right for exposure, the
‘exposure’ latch is activated and the source goes to the exposure state. For the other
way around, going from vacuum/exposure conditions to vented/inactive conditions, a
similar, reversed sequence has been specified.

pre-vacuum = 1

vacuum

system

source

request: go to vacuum

exposure = 1

p

u

m

p

d

o

w

n

vented = 0

p

r

e

p

a

c

t

i

v

a

t

e

e

x

p

active = 1

environment

reply: OK

state = vented
 state = inactive

state = vacuum

state = prepared

state = active

state = exposure

state = pre-vacuum

Figure 7.4: Nominal system behavior for the vacuum sequence.

The nominal sequence described above does not cover preemption. The environment
can interrupt the sequence at any time by a new request, and the vacuum system should
handle these interrupts. For instance, when the vacuum system operator decides to go
back to the vented state while the vacuum system is performing the vacuum sequence
(i.e., going from vented to vacuum as shown in Figure 7.4), the vacuum system should
immediately interrupt the vacuum sequence and start with the venting sequence to go to
the vented state. Finally, errors with different severity levels can be raised during oper-
ation, which lead to specified non-nominal behavior that is not covered in the message
sequence chart.

In the remainder of this chapter, we describe the application of all steps of the
MBI&T method, except steps 3a and 4. Step 3a, automatic model-based component
testing usingχ models, has been applied in a similar case study, as reported in [29]; see
also Chapters 9 and 10 for more details on model-based testing. Although the MBI&T
method contributed to real system testing in step 4 by detecting and preventing errors
at an earlier stage (potentially reducing the time needed for step 4), we did not actively
participate in this step of the case study.

92 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

7.4 Step 1: Modeling the components inχ

The informal design documentation was taken as a starting point for modeling the vac-
uum system and the source asχ processes. The system level design documentation
(corresponding toD) described the interfaces between the vacuum system and source
as shown in Figure 7.3. The design documentation for the source component,Ds, was
reasonably complete and contained a good overview of the behavior in the form of an
informal state diagram, which clearly showed the possible actions and communications
for each state of the source. However, the design documentation of the vacuum sys-
tem component,Dv, only described the internal actions for the vacuum and venting
sequences, and did not contain information about the communication with the source.
It became clear that the designers of the vacuum system were not yet fully aware of
the communication behavior between their component and the source component. In
general, the design documentation for both components described the nominal behav-
ior only and hardly mentioned the handling of exceptional behavior, and also the action
durations were not completely specified.

During our modeling activities, we obtained the missing information about the
component designs by combining knowledge of both components and by discussion
with the engineers involved. For example, the specifications of the communication
of the vacuum system that was missing inDv could be derived from the system and
source design documentsD andDs. The updated and more complete design speci-
fications were validated for their correctness by discussion with the designers of the
vacuum system and source.

We experienced that in most cases, the issues that arose during the modeling activi-
ties in fact indicated unknown or incomplete design issues like missing states, obsolete
states, or errors in the communication sequence. By incremental modeling, intermedi-
ate simulation, discussion, and design review, the system specification documentation
was further corrected and completed, which also helped the engineers to obtain a better
system overview.

There were some remaining modeling and design issues, for which no solution was
available or for which the corresponding behavior was not known at all, even by the
engineers involved. According to the engineers, the system behavior concerning these
remaining issues was not important because it would never occur in the real system.
Therefore, the behavior concerning these issues was abstracted in the model by putting
an explicit indication of ‘undefined behavior’. In step 2b of the case study, it will be
verified whether this undefined behavior indeed can never occur.

To give an impression of the resulting model, Figure 7.5 shows the process layout
of the system model and Figure 7.6 shows theχ code corresponding to a part of the
source modelMs. Earlier, in Figure 7.3, we depicted the system design with three
main components (the environment, the vacuum system and the source) and the com-
munication between them. Figure 7.5 shows how theχ processes of the system model
(depicted by rounded rectangles) and the communication between them (depicted by
arrows) are mapped onto this system design. The environment is modeled as a single

STEP 1: MODELING THE COMPONENTS INχ 93

pre-vacuum

vented

exposure

active

v2
 v1
 s3
M
e

vacuum system

s1
s4

s2

v3

source
environment

M
v
 M
s

goto_state_rep

goto_state_req

Figure 7.5: Process layout of theχ system model.

sequential processMe that can be configured to send requests and receive replies at
certain points in time, depending on the analysis technique. The vacuum systemMv is
modeled as a parallel composition of the processes (v1 ‖ v2 ‖ v3), in which the paral-
lel composition operator‖ synchronizes the processes on time and on communication
actions. Processv1 is the core process and describes the internal behavior of the vac-
uum system, while the processesv2 andv3 model the interaction with the environment
and the latch interaction with the source, respectively. The sourceMs is modeled as a
parallel composition of the processes (s1 ‖ s2 ‖ s3 ‖ s4), in which processs1 is the
core process that models the internal behavior and the processess2, s3, ands4 model
the latch interaction with the vacuum system. Finally, the bold lines between processes
of one component depict shared variables (two for the vacuum system and three for the
source), which are used to exchange data between processes of one component.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Ms =
(∗ (src_state = inactive → . . .

[] src_state = prepared → . . .
[] src_state = active → skip

; (error = 5 → skip; ∆60; manual := true
[] error = 4 → manual := true
[] error < 4 → skip

; newvalue → newvalue := false
; (vnt → error := 5

[] ¬vnt ∧ pre ∧ exp → src_state := 4
[] ¬vnt ∧ ¬pre ∧ exp → undefined := true
[] ¬vnt ∧ pre ∧ ¬exp → skip
[] ¬vnt ∧ ¬pre ∧ ¬exp → ∆60

; src_state := 2
; active !! false

)
)

[] src_state = exposure → . . .
)

‖ ∗ (vented ?? vnt; newvalue := true)
‖ ∗ (pre_vacuum ?? pre; newvalue := true)
‖ ∗ (expose ?? exp; newvalue := true)
)

Figure 7.6: Part of the source modelMs in χ.

Figure 7.6 shows a part of the source modelMs, in which processs1 is shown on
lines 2-19, and the processess2, s3, s4 are shown on lines 20, 21, and 22, respectively.

94 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

For simplicity, the model of the core processs1 only shows the behavior in the active
state and all omitted parts are denoted by three dots (. . .). When processs1 is in the
active state, the process checks if there is an error and, depending on the severity of
the error, it takes certain actions to prevent further problems. If there is no severe error
(error < 4), the source process checks if any of the latch values has changed, indicated
by the variablenewvalue. If the newvalue guard isfalse, the process waits until it
becomestrue (i.e., until a new value is received via one of the latches). Ifnewvalue
is true, it is reset tofalse without a delay and the process continues by checking the
current values of the three incoming latches, represented by the variablesvnt, pre,
andexp. Depending on the latch values, the source performs different actions, e.g.,
raising an error, going to another state, reaching a situation with undefined behavior,
performing an internal action, or changing the value of a latch. More details on theχ
system model can be found in [28].

7.5 Step 2a: Simulation of the integrated system model

In order to analyze the behavior of the integrated vacuum system-source model by
means of simulation, different scenarios are needed that focus on different aspects of
the system. A good source for possible scenarios is the intended system behavior spec-
ified in the system requirements and design documentation,R andD. Unfortunately,
in the case study only one scenario could directly be derived from the documentation.
This scenario corresponds to the nominal behavior of the system.

From ASML testing experience, it is known that analyzing only the nominal be-
havior is not sufficient. In most cases, it is the exceptional behavior which gives the
problems, since this behavior is less documented and thus less clear when compared
to the nominal behavior. Therefore, it is very important to analyze the exceptional
behavior as soon as possible. Unfortunately, no simulation scenarios for exceptional
behavior could be directly derived from the documentation. However, based on our
system overview obtained by modeling the components, and by discussion with the
involved engineers, four additional scenarios for exceptional behavior analysis were
derived. These scenarios cover the behavior of the system when the vacuum and vent-
ing sequences are interrupted at certain points in time.

Besides incomplete documentation, there is another problem with the analysis of
exceptional behavior in the current, non model-based, way of working. Since only
realizations can be used for system analysis, it may be difficult or expensive to create
the non-nominal circumstances that are necessary to analyze the exceptional behavior,
for example, a broken component. Since the MBI&T method uses models for system
analysis, creating these non-nominal circumstances is much easier and cheaper.

In the case study, we used specific configurations of the environment modelMe

to analyze the integrated system behavior for the five scenarios mentioned above, one
with nominal and four with exceptional behavior. The simulation results were visu-
alized by means of animated automata, message sequence charts, and Gantt charts.
One situation with incorrect behavior was detected, which surprisingly also occurred

STEP 2B: VERIFICATION WITH UPPAAL 95

in the nominal behavior scenario. The incorrect behavior occurs during the venting se-
quence, in which the vacuum system first deactivates the ‘exposure’ and ‘pre-vacuum’
latches. According to its design, the source should first observe the deactivated ‘ex-
posure’ latch and perform some actions before observing the deactivated ‘pre-vacuum’
latch. However, the vacuum system was designed to deactivate both latches at the same
time, which means that the source can also receive the deactivated ‘pre-vacuum’ latch
during the actions it performs to reach the prepared state, or even before receiving the
deactivated ‘exposure’ latch. In both cases, the source raises an error and switches to
manual mode, which is certainly not acceptable for nominal behavior. Further diagno-
sis showed that this incorrect behavior indeed was an integration problem between the
vacuum system and the source, which could now be solved early in the design phase.

7.6 Step 2b: Verification with UPPAAL

During simulation (validation) some problems were discovered and solved, which in-
creased the confidence, but does not prove the correctness of the model. To check
whether the model behaves correctly in all possible scenarios and to gain more knowl-
edge about the system, it has to be verified. For the verification step, the environment
modelMe was configured such that any possible delay can occur between subsequent
vacuum system requests, which will exhaustively be analyzed by model checking tools
such as UPPAAL.

UPPAAL is a tool for modeling, simulation, and verification. A system, modeled as
a network of UPPAAL timed automata, can be simulated by the UPPAAL simulator and
verified by the UPPAAL model checker. To be able to verifyχ models in UPPAAL, a
translation scheme from the process algebraic languageχ to UPPAAL timed automata
has been formally defined and the proofs of its correctness have been given in [18]. The
translation scheme is defined for a subset ofχ that consists of allχ models specified
as parallel composition of one or more sequential processes. The translation scheme
from χ to UPPAAL has been implemented and integrated into theχ tool set.

Since the original model was created without considering its translation to UPPAAL,
it uses some constructs, for which no translation is defined. However, these modeling
constructs could easily be transformed to make the model suitable for automatic trans-
lation to UPPAAL automata. Figure 7.7 shows the generated UPPAAL automata for the
source component, which corresponds to the partialχ source modelMs of Figure 7.6.
The following properties, derived from system requirementsR and system designD,
were verified using the UPPAAL model checker. The properties are expressed in the
timed computation tree logic (TCTL) [11], in whichA[] informally means that, for all
traces, the statement behind it should holdalways, while A<> informally means that,
for all traces, the statement behind it should holdeventually(i.e., after some time).

(1) Deadlock freeness:A[] deadlock imply env.end, whereenv.enddenotes the lo-
cation of the environment automaton indicating successful termination, which is
the only location at which deadlock (no further steps possible) is allowed.

96 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

S8

cA0<=60

S10

true

S16

true

S28

true

S32

true

S36

cA0<=60

S38

true

S43

true

cA0==60

manual = 1

newvalue == 1
dummy!
newvalue = 0,
cA0 = 0

src_state = 2

active!
active0=0

vnt == 1
dummy!
error = 5

vnt == 0 && pre == 1 && exp == 1
dummy!

src_state = 4

vnt == 0 && pre == 0 && exp == 1
dummy!

undefined = 1

vnt == 0 && pre == 1 && exp == 0
dummy!

cA0==60

error == 5
dummy!
cA0 = 0

error == 4
dummy!
manual = 1

error < 4
dummy!

src_state == 1
dummy!

src_state == 2
dummy!

src_state == 3
dummy!

src_state == 4
dummy!

...

...

...

s1

S46

true

S47

true

vented?

vnt=vented0

newvalue = 1s2

S51

true

S52

true

pre_vacuum?

pre=pre_vacuum0

newvalue = 1s3

S56

true

S57

true

expose?

exp=expose0

newvalue = 1s4

Figure 7.7: Generated UPPAAL automata for the source.

(2) Live-lock freeness:A<> env.end. When all requests are processed and confir-
mation is received, the environment process terminates. Based on this we can
state that if the environment automaton eventually reaches its end stateenv.end
for all traces, there is no live-lock in the system.

(3) No undefined behavior:A[] undefined == 0. While modeling, we discovered
that in some particular situations the system behavior was unknown, for which
the engineers claimed that it would never occur. These situations were modeled
by assigning a non-zero value to the variableundefinedon line 11 in Figure 7.6.

(4) No errors:A[] error == 0 , whereerror is the variable indicating the error sever-
ity level of the source (error > 0), or the absence of an error (error == 0).

(5) The vacuum system may not be vented while the source is active to avoid ma-
chine damage:A[] not (vnt and act), where the variablesvnt andact indicate the
vented state of the vacuum system and the active state of the source, respectively.

(6) The duration of the vacuum and vacuum sequences is at most 6 hours and 1
hour, respectively:A[] vacuum imply clk≤ 21600andA[] venting imply clk
≤ 3600, where the variablesvacuumandventedindicate which sequence is be-
ing performed, andclk is a clock variable used to determine the duration of the
performed sequence (in seconds).

STEP 3: MODEL-BASED INTEGRATION AND SYSTEM TESTING 97

During the verification of the model in UPPAAL, the biggest number of states (20510)
was explored while verifying the first property. Our system model contains 8 automata
with 5 clocks and 29 variables, and the amount of memory used during model checking
was just under 1 MB.

During verification of properties 1 and 2, two design errors were found. Both er-
rors are causing deadlock and concern non-determinism in the interleaving of the main
processv1 and the interrupt handling processv2 of the vacuum system. The way to
handle this non-determinism in general was not specified in the design documentation,
and model verification has indicated this design incompleteness. After informing the
involved engineers, an alternative design for the interrupt handling process was pro-
posed and subsequently modeled, after which properties 1 and 2 were satisfied. Prop-
erty 3 is satisfied by the model, indicating that the engineers were correct when they
claimed that the situations with undefined behavior would never occur. Verification of
property 4 detected the same design error as found by simulation, i.e., incorrect be-
havior in the venting sequence, resulting in an error level larger than zero. Besides
that, no other errors were raised in any trace of the model. Two minor mistakes were
discovered by verification of properties 4 and 5. To verify the property 6, we deco-
rated the model with additional boolean variablesvacuumandventedto indicate which
sequence is being performed and a clockclk to determine the duration of a sequence,
without changing the behavior of the model. Both queries of property 6 are satisfied.

All design errors found with simulation and verification were discussed with the
ASML engineers, and subsequently fixes were applied to the design and, correspond-
ingly, to the model. The fixed model was verified again and now all properties as
described above are satisfied by the model. The verification results of the fixed model
give enough confidence that the model is a correct representation of the system design,
making it suitable for model-based integration and system testing.

7.7 Step 3: Model-based integration and system testing

In this step of the case study, the source modelMs was replaced by its realizationZs,
i.e., the real EUV light source. This implies that the interaction between the vacuum
system modelMv and the source realizationZs needs to be established. In reality, the
latch communication is established via a multi-pin cable, of which four pins relate to
the four latches. In order to integrateMv andZs, they must be able to communicate
with each other via this multi-pin cable.

Integration of the environment modelMe, the vacuum system modelMv, and the
source realizationZs is achieved by using a model-based integration infrastructure
based on publish-subscribe middle-ware [45], together with appropriate component
connectors and a real-timeχ simulator, as described in [30]. Using this integration
infrastructure, the components communicate by publishing messages of a certain topic
to the middle-ware, which are subsequently delivered to the components that are sub-
scribed to the same topic.

The function call interaction type betweenMe andMv is implemented in the in-

98 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

tegration infrastructure by defining the publish-subscribe topicsrequestandreply and
by configuring the published and subscribed messages inMe andMv accordingly. For
example,Me is a publisher of therequesttopic andMv is subscribed to therequest
topic. For the latch interaction type betweenMv andZs, a topic for each of the four
latches is defined. This results in the integration infrastructure configuration as shown
in Figure 7.8, in which the rounded rectangle of infrastructureI as in Figure 7.2 is
instantiated with the model-based integration infrastructure. In the figure, the vertical
double headed arrow depicts the publish-subscribe middle-ware, the rectangles depict
the component connectors, and the arrows depict the publish-subscribe communication
with the associated topics. Note that the arrows for the three SR-latches fromMv to
Zs (‘vented’, ‘pre-vacuum’, and ‘exposure’) are combined and denoted by3*latch.

m
od

el
-b

as
ed

i
nt

eg
ra

tio
n

in
fr

as
tr

uc
tu

re

I

m
id

dl
ew

ar
e

reply

request

3*latch

Z
s

M
e

M
v

3*latch

reply

active

request

active

Figure 7.8: Model-based integration infrastructure for the case study.

Using theχ tool set and a suitable publish-subscribe middle-ware [86], the middle-
ware configuration described above and the connectors for the models are automatically
generated from theχ system model. The realization connectors, however, are case
specific and should be separately developed, e.g., using the results from Chapter 14. In
the case study, the connector forZs should adapt between the real latch communication
via the multi-pin cable and the publish-subscribe communication used in the middle-
ware. To achieve this, a SW/HW adapter is used in the form of a remote I/O unit that
allows different forms of analog and digital input and output, e.g., from Opto 22 [93] or
National Instruments [88]. In the case study, we used a digital input module to receive
values of the ‘active’ latch and a digital output module to set values of the ‘vented’,
‘pre-vacuum’, and ‘exposure’ latches.

Using the model-based integration infrastructure as shown in Figure 7.8 and a real-
timeχ simulator, we were able to integrate and test the model-based integrated system
{Me, Mv, Zs}I significantly earlier (20 weeks before all realizations were available
and integrated) and cheaper (no critical clean room time was needed as for real system
testing). Similar to the simulation analysis in step 2a of the case study, the environ-

STEP 3: MODEL-BASED INTEGRATION AND SYSTEM TESTING 99

ment model was configured with specific scenarios to test the model-based integrated
system on different aspects, for both nominal and non-nominal behavior. Creating non-
nominal circumstances for testing was easy in a model environment, whereas this may
be quite difficult and time consuming when testing with realizations.

Besides showing the feasibility of this step of the MBI&T method, the profitabil-
ity also became clear because six integration problems were detected. The problems,
which appeared to be caused by implementation errors in the source, could potentially
lead to source damage (i.e., long down times) and unnecessary waiting in the source
(i.e., long test times) during the real integration and test phases in the clean room. Al-
though not automated as in Chapter 12, the models supported immediate diagnosis and
repairing of the detected errors, as well as immediate retesting of the repaired system.
This means that the model-based integration and test activities probably saved several
days of expensive clean room time during real integration and testing 20 weeks later (if
the errors would remain undetected until that time). In the period after the model-based
system tests (i.e., in step 4 of the case study, real system testing), no additional errors
in the source realization were found, at least not for the aspects that were analyzed and
tested using the MBI&T method. This means that no expensive fixing was necessary
during real system integration and testing thanks to the MBI&T method.

The total amount of time used for testing, diagnosis, repairing, and retesting of the
model-based integrated system was significantly lower than the estimated amount of
time that would be required to perform the same tests on the real system: one half
of a day against four days. Several reasons can be identified for this time reduction.
First, experience in real system testing shows that setting up the system for testing can
be very time consuming. In the case study, for example, a certain test may require
that the initial vacuum system state is vented while the end state of the previous test
was vacuum. This also holds for the re-execution of tests that change the system state
(e.g., a test that starts in the vented state and ends in the vacuum state). In model-
based system testing, less test setup time is required because setting up a model to
another initial state usually boils down to changing some variables (e.g., changing the
initial value of the vacuum system state variable). Second, testing with realizations
may also suffer from time lost on solving minor system problems that are unimportant
for the tests. In the case study, for example, the real vacuum system contains many
potential problem sources (e.g., a malfunctioning sensor or valve) that could result in a
system that is unable to initialize, thus prohibiting test execution. Model-based system
testing does not suffer from this issue, since the models only contain the behavior
that is important for the tests and abstract from the minor problems that potentially
prohibit test execution. Third, the use of models for testing reduces the time spent
on diagnosis of errors when compared to real system testing. On the one hand, the
number of problem sources that could potentially cause an error is reduced since the
models only contain the behavior important for the tests, i.e., abstracting from all other
components and aspects which form potential problem sources in real system testing.
On the other hand, the complete insight in and control over the models makes the
distinction between the potential problem sources more clear.

100 MODEL-BASED INTEGRATION AND TESTING IN PRACTICE

7.8 Conclusions
The goal of the case study and this chapter was twofold: (1) to show the feasibility and
potential of the proposed MBI&T method to reduce the integration and test effort of
industrial systems; (2) to investigate the applicability and usability of theχ tool set as
integrated tool support for all aspects of the MBI&T method.

Application of the MBI&T method proved to be feasible and successful for the
realistic industrial case study, showing relevant advantages for the system develop-
ment process. First, the modeling activities helped to clarify, correct, and complete
the design documentation. By simulation and verification, five design errors were de-
tected and fixed earlier and cheaper when compared to current system development.
Two design errors were discovered by verification only, which both concerned the non-
deterministic behavior of parallel processes. This is difficult, if not impossible, to un-
derstand and to analyze by simulation or by reviewing the design documentation. This
illustrates that verification should be used for designing real industrial systems, which
often involve both high-level parallelism and non-deterministic behavior. Finally, a
part of the model was integrated with a realized component to enable early, fast, and
cheap model-based system testing. Again, six integration problems were detected and
fixed, saving significant amounts of time and rework during the real integration and
test phases. After diagnosis, these integration problems appeared to be caused by im-
plementation errors in the source. The errors could potentially lead to source damage
and unnecessary waiting in the source during the real integration and test phases in
the clean room. This means that the MBI&T method potentially saved several days of
expensive clean room time that would be spent on diagnosis, fixing, and retesting. This
clearly shows the applicability and value of the MBI&T method to reduce the integra-
tion and test effort of industrial system development and its negative influence on the
Time–Quality–Cost business drivers.

Theχ tool set is suitable for practical application of all MBI&T activities: mod-
eling, simulation, verification, component testing, model-based integration and inte-
grated system testing. The aspects considered in the case study (supervisory machine
control in software, interrupt behavior, electronic communication) can easily be mod-
eled inχ. The rather small state space of the modeled system (20510 states) indicates
that similar sized or even more complex industrial systems can be handled.

Application of the MBI&T method is only beneficial when the potential effort re-
duction for integration and testing outweighs the required modeling effort. The diffi-
culties of creating the models, choosing the right modeling scope and level of abstrac-
tion, and performing the validation, verification and tests with the models should not
be underestimated and require certain skills and experience. Chapter 8 describes how
modeling effort can be taken into account when making decisions on when and where
it is most profitable to use models in the integration and test process.

Chapter 8

Using models in the integration
and testing process

Authors: N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, D.O. van der Ploeg,
J.E. Rooda

8.1 Introduction

This chapter, which is based on [31], describes how the Model-Based Integration and
Testing (MBI&T) method described in Chapter 7 can be used in an industrial integra-
tion and test process such as used at ASML. In particular, we focus on a scenario that
is common in the integration and test process of many high-tech embedded systems:
upgrading a system with new hardware and software to improve the system perfor-
mance, for example a new sensor with accompanying control software to improve the
measurement accuracy. In such a scenario, the goals of integration and testing are to
show the functionality and performance of the system upgrade as soon as possible, and
to show that the system upgrade does not negatively affect the functionality and per-
formance of the original system. We show how such a scenario is handled in both the
current integration and test process and the model-based integration and test process.

Although the use of models in the integration and test process can significantly re-
duce the integration and test effort, this reduction has to outweigh the additional effort
needed to enable model-based integration and testing. For example, the involved com-
ponents must be modeled, analyzed, and integrated with models or realizations of the
other components before the model-based integrated system can be tested. This means
that there is a trade-off between the investments and benefits of using models in the in-
tegration and test process. In this chapter, we show how such a trade-off analysis can be
performed using integration and test sequencing techniques as described in Chapter 6.

101

102 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

The structure of the chapter is as follows. First, Section 8.2 describes the current
integration and test process for the system upgrade scenario and introduces the nine test
categories that can be distinguished. In Section 8.3, the MBI&T method and techniques
are applied to the integration and test process, showing how each of the test categories
can be supported by models. Section 8.4 shows how integration and test sequencing
techniques can be used to compare the current and model-based integration and test
processes, and how this can be used to analyze the trade-off between modeling effort
and benefits. Finally, the conclusions are given in Section 8.5.

8.2 Current integration and test process

For the description of the current industrial integration and test process as used within
ASML, we consider an existing system that consists of several hardware and software
components. The system will be upgraded by implementing some new or improved
functionality, which is denoted by a delta sign (∆). To implement this∆-functionality,
certain components of the original system need to be upgraded, or new components
need to be developed and added to the system. Similar to Figure 7.1 in Chapter 7,
our view on the development process of this∆-functionality starts with the global re-
quirementsR∆ and designD∆, as shown on the left hand side of Figure 8.1. After
that, the software and hardware components for the∆-functionality, denoted by∆SW
and∆HW , respectively, are separately developed. The development process of these
components consists of three phases: requirements definition, design, and realization,
each resulting in a different representation form of the component, namely the require-
mentsR∆SW andR∆HW , the designsD∆SW andD∆HW , and finally the realizations
Z∆SW andZ∆HW .

R∆SW

R∆HW

D∆SW

D∆HW

Z∆SW

Z∆HW

ZSW

ZHW

D∆R∆
designdefine

define design

design

realize

realize integratedefine integrate

integrate integrate

in
fr

as
tr

uc
tu

re
 I

Figure 8.1: Current development and integration of a∆-functionality.

The right hand side of Figure 8.1 shows the integration of the∆ componentsZ∆SW

andZ∆HW with the other software and hardware components of the (original) system,
which we denote as one software componentZSW and one hardware componentZHW ,
respectively. The four components are integrated by means of some infrastructureI.
Similar to Chapter 7, we abstract from the different forms of infrastructure and only
consider the generic infrastructureI (see [30] for more details).

CURRENT INTEGRATION AND TEST PROCESS 103

Within the current integration and test process at ASML, nine different test cate-
gories can be distinguished, which focus on different aspects of the components or sys-
tem and require different combinations of realized and integrated components. These
nine test categories are listed in Table 8.1, where component integration by means of
infrastructureI is denoted by{. . .}I .

Nr Test category Required components Explanation

1 Software quali-
fication

{ZSW , ZHW }I and later
{Z∆SW , ZSW , ZHW }I

Periodic qualification of the so-called ‘quali-
fied baseline’ or QBL [59], a common software
repository that supports all machine types, by
testing it on a set of representative hardware sys-
temsZHW .

2 Software com-
ponent

Z∆SW Testing the new software component in isolation.

3 Software inte-
gration

{Z∆SW , ZSW }I Testing the new software component in combina-
tion with the original software systemZSW .

4 Software re-
gression

{Z∆SW , ZSW , ZHW }I Testing whether any of the original system func-
tions are negatively affected by the new software
component, performed on the original hardware
systemZHW .

5 Hardware com-
ponent

Z∆HW Testing the new hardware component in isola-
tion.

6 Hardware inte-
gration

{Z∆HW , ZHW }I Testing the new hardware component in combi-
nation with the original hardware systemZHW .

7 ∆-functionality
test bench

{Z∆SW ,ZSW ,Z∆HW }I Testing the new∆-functionality (also called pro-
gression testing) on a ‘test bench’, i.e., a par-
tial hardware system including the new hardware
componentZ∆HW , which is used for develop-
ment tests.

8 ∆-functionality
system

{Z∆SW , ZSW , Z∆HW ,
ZHW }

Testing the new∆-functionality on a complete
system, i.e.,ZHW upgraded withZ∆HW .

9 System {Z∆SW , ZSW , Z∆HW ,
ZHW }

Testing the functionality and performance of the
complete system with multiple∆-functionalities
before shipment.

Table 8.1: Test categories in the current integration and test process.

Figure 8.2 shows a typical integration and test process for the system upgrade sce-
nario. From left to right, the sequence of test activities, denoted by vertical lines, is
shown. The numbers correspond to the nine test categories mentioned above, and the
dots indicate which components are integrated and tested. The horizontal lines depict
the lifetime of a component: a dashed line means that the component is being devel-
oped; a flag symbol followed by a solid line means that the component realization is
available. Note that the figure only shows a sequence, and does not contain informa-
tion on the possible start times and durations of the activities. The flag symbols and
the letters indicate the following milestones: (a) QBLZSW passes qualification tests;
(b) development ofZ∆SW andZ∆HW is started, possibly based on the original sys-
tem (denoted by dashed upward arrows); (c)Z∆SW is available; (d)Z∆SW passes
software tests and is integrated in the QBLZSW (denoted by downward arrow); (e)
upgraded QBL{Z∆SW , ZSW }I passes qualification tests; (f)Z∆HW is available; (g)
Z∆SW andZ∆HW pass test bench tests; (h)Z∆HW passes hardware integration tests

104 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

and the hardware systemZHW is upgraded to{Z∆HW , ZHW }I (denoted by down-
ward arrow); (i) similar to the depicted∆-functionality, the other∆-functionalities are
integrated and tested; (j) complete system with all∆-functionalities passes tests and is
shipped to customer.

ZHW

Z∆SW

2. 3. 4.

1. e.

5.

7.

h.

d.

1. a.

b.

b.

c.

Z∆HW

ZSW

f. g. 6.

8. 9.

j.

g. j.

i.

i.

Figure 8.2: Typical integration and test process for system upgrade scenario.

The main disadvantage of the current integration and test process is that the test activ-
ities can only be performed when the realizations are available. Especially for testing
on system level (test categories 7, 8, and 9) this is problematic, because it means that
feedback on the system behavior and performance is obtained late in the process, where
fixing the problems is expensive. Several case studies, e.g., the one described in Chap-
ter 7, have shown that early integration and testing is possible by using models in the
integration and test process, which is discussed in more detail in the next section.

8.3 Model based integration and test process

Figure 8.3 shows the development and integration of a∆-functionality with the MBI&T
method from Chapter 7, with modelsM∆SW , M∆HW , andMHW of the∆ software
component, the∆ hardware component, and the original complete hardware system,
respectively. The reason for havingMHW but notMSW is explained in [31]. The
choice of integrating either the model or the realization of a component, or none of
them, is depicted by the integration ‘switches’.

The MBI&T activities can be applied to all nine current test categories of Table 8.1.
In contrast to the current test activities, in which only realizations are used, the model-
based test activities can be performed with models instead of realizations, which has
several advantages. First, model-based test activities can be performed earlier since,
in general, models are earlier available than realizations. Earlier testing means earlier
(and thus cheaper) detection and prevention of problems. Second, testing with models
is generally cheaper than testing with realizations. For example, testing with models
can be performed on a common computer system using modeling and analysis software

MODEL BASED INTEGRATION AND TEST PROCESS 105

R∆SW

R∆HW

D∆SW

D∆HW

Z∆HW

Z∆SW

R∆ D∆

ZSW

ZHW

M∆SW

M∆HW MHW

in
fr

as
tr

uc
tu

re
 I

Figure 8.3: Development and integration of∆-functionality in the MBI&T method.

tools. The test costs in such a desktop environment are much lower than the costs of
realization tests, especially when these tests require expensive machine time and clean
room facilities in the case of ASML. Finally, the models enable the use of power-
ful model analysis techniques and tools like simulation and formal verification, which
provide a better system overview.

Although the MBI&T techniques can be applied in all nine test categories of the
previous section, they can not fully replace testing with realizations, since models are
always an abstraction of reality. Sooner or later, when the component and system
realizations are available, they will also be tested. However, these tests with realizations
can probably be performed faster and cheaper, since the model-based tests already
prevented several problems. Furthermore, it may be difficult to perform certain tests
with models, such that only realizations can be used for these tests. For example, this
may be the case for tests involving components with complex physical interactions
(e.g., heat, air flow, vibrations) or tests covering multiple system aspects at once.

The following list identifies all possible test activities for each test category, includ-
ing both the current test activities from Table 8.1 and the model-based test activities of
the MBI&T method. For each of the nine test categories, the test activities with realiza-
tions only are marked with a ‘Z’, and the model-based test activities are marked with
an ‘M’, possibly followed by a letter in the case of multiple model-based test activities.
This chapter only describes the model-based test activities of test categories 1, 4 and 7
in more detail. We refer to [31] for a complete overview.

Software qualification testing:

1Za: {ZSW , ZHW }I

1Ma: {ZSW , MHW }I

1Zb: {Z∆SW , ZSW , ZHW }I

1Mb: {Z∆SW , ZSW , MHW }I

Software component testing:

2Z: Z∆SW

2Ma: M∆SW

2Mb: Z∆SW vs. M∆SW

106 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

Software integration testing:

3Z: {Z∆SW , ZSW }I

3M: {M∆SW , ZSW }I

Software regression testing:

4Z: {Z∆SW , ZSW , ZHW }I

4Ma: {M∆SW , ZSW , MHW }I

4Mb: {M∆SW , ZSW , ZHW }I

Hardware component testing:

5Z: Z∆HW

5Ma: M∆HW

5Mb: Z∆HW vs. M∆HW

Hardware integration testing:

6Z: {Z∆HW , ZHW }I

6M: {M∆HW , MHW }I

∆-functionality test bench testing:

7Z: {Z∆SW , ZSW , Z∆HW }I

7Ma: {M∆SW , M∆HW }I

7Mb: {M∆SW , ZSW , M∆HW }I

7Mc: {Z∆SW , ZSW , M∆HW }I

7Md: {M∆SW , ZSW , Z∆HW }I

∆-functionality system testing:

8Z: {Z∆SW , ZSW , Z∆HW , ZHW }I

8Ma: {M∆SW , ZSW , M∆HW , MHW }I

8Mb: {Z∆SW , ZSW , M∆HW , MHW }I

8Mc: {M∆SW , ZSW , Z∆HW , ZHW }I

System testing:

9Z: {Z∆SW , ZSW , Z∆HW , ZHW }I

9M: {Z∆SW , ZSW , M∆HW , MHW }I

In the current integration and test process of ASML, the software qualification tests
(test category 1) consume quite some machine time, approximately one full day of
testing each week. Besides that machine time is limited and expensive, experience
shows that also setting up the system for testing is time consuming. Moreover, much
time may be lost on solving minor machine problems that are unimportant for the tests.
Test time and costs may be reduced by using hardware models instead of hardware
realizations for certain parts of the qualification tests. For example, the qualification
of the system throughput in principle depends on the sequence and durations of all
hardware actions. When the durations of these hardware actions are modeled as time
delays in a modelMHW of the hardware systemZHW , and when the softwareZSW

executes the sequence of actions on the modelMHW , the system throughput can be
qualified without a hardware realizationZHW . In this way, the software qualification
tests can be performed in a cheap desktop environment with a hardware modelMHW .
Furthermore, models require less test setup time, and they do not suffer from the minor
problems that may occur in other hardware components, since the hardware model only
contains the behavior important for the tests and abstracts from these problems.

A model M∆SW of the ∆ software component can be used as replacement of
Z∆SW for software regression testing (test category 4), i.e.,{M∆SW , ZSW , ZHW }I

(4Mb) instead of{Z∆SW ,ZSW ,ZHW }I (4Z). By real-time simulation of the model in
combination with the other softwareZSW , tests can be performed on the original hard-
ware systemZHW to check whether any of the original system functions are negatively
affected by the new software component. Similar to model-based software qualifica-
tion testing in test activity 1Ma, the hardware realizationZHW could also be replaced
by its modelMHW , i.e.,{M∆SW , ZSW ,MHW }I (4Ma).

Testing the complete∆-functionality using a test bench (test category 7) can be
supported by four model-based test techniques. First, the∆-functionality can be tested
by using the integrated models of the∆ components, i.e.,{M∆SW , M∆HW }I , in
whichM∆HW is a model of test benchZ∆HW . Since only models are used, powerful

MODEL BASED INTEGRATION AND TEST PROCESS 107

model-based system analysis techniques like model checking can be used to exhaus-
tively analyze all possible scenarios, as shown in step 2b of the case study in Chap-
ter 7. Second, the modelM∆SW can be integrated with the other softwareZSW , and
tested on the test bench modelM∆HW . Third, the realization of the upgraded software
system, i.e.,{Z∆SW , ZSW }I , can be tested on the model of the test benchM∆HW .
Finally, in the case thatZ∆HW is available before the software realizationZ∆SW , the
modelM∆SW can be tested withZSW on the test bench realizationZ∆HW , as shown
in step 3 of the case study in Chapter 7.

Figure 8.4 shows all test activities of the MBI&T process, in a similar way as Fig-
ure 8.2. The flag symbols and the letters indicate different milestones, for example:
(d) M∆SW andM∆HW pass model tests; (g)Z∆SW passes software tests and is in-
tegrated in the QBLZSW (denoted by a downward arrow); (j)Z∆SW and Z∆HW

pass test bench tests; (k)Z∆HW passes hardware integration tests and bothZHW and
MHW are upgraded (denoted by downward arrows); (m) complete system with all
∆-functionalities passes tests and is shipped to customer.

As an example, the circles indicate test activities of test category 7,∆-functionality
test bench testing. Their positions in the process clearly illustrate how models enable
earlier testing on system level when compared to the current integration and test pro-
cess, in which only the realization test 7Z can be performed late in the process.

Z
SW

M

SW

Z
HW

2Ma.
 3M.

d.

1Za.

a.

b.

b.

1Ma.

M
HW

a.

5Ma.
 6M.

7Mb.
 4Ma.

2Z.

2Mb.

g.
3Z.

1Zb.

h.
1Mb.

7Mc.

8Mb.

5Z.

7Md.

7Z.

j.
 6Z.

8Z.
 l.
 9M.
 9Z.

5Mb.

7Ma.

M

HW

Z

SW

c.

c.

8Ma.
 4Mb.

d.

e.

e.

f.

4Z.

i.

Z

HW

k.

k.

8Mc.

m.

l.

l.

m.

Figure 8.4: Model-based integration and testing process.

Although Figure 8.4 shows more activities than Figure 8.2, the length of these figures
does not relate to the total duration of the integration and test process since the possible
start times and the durations of the activities are not accounted for. For example, in the
case that the hardware realization is available earlier than the software (i.e., milestone
i. before f.), model-based activities 7Md and 8Mc could be performed before 2Z.

108 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

8.4 Process comparison and trade-off analysis

Although all possible integration and test activities have been defined in the previous
section, there is still a problem that needs to be addressed before the MBI&T process
can be applied to a real integration and test problem. This problem, which also exists
in the current integration and test process, is called integration and test sequencing, see
also Chapter 6. Integration and test sequencing involves deciding which components to
integrate when, and which tests to perform in which order on which components. The
goal of integration and test sequencing is to determine a sequence of integration and
test activities according to certain optimization criteria like lead time, total test time,
test costs, and remaining risk in the system.

For the MBI&T process, there is not only the problem of determining the optimal
sequence of the integration and test activities, but there is also a choice of using models
for certain integration and test activities or not. This involves a trade-off between the
required modeling effort and the potential integration and test effort reduction. In some
cases, it might be better to use models, e.g., when the realization of a component is
available only late in the process or when testing with realizations is expensive. In
other cases, it is wise not to invest in models but to perform the tests with realizations
immediately, e.g., when the realization is already available, or when the realization is a
mature component, i.e., the probability of finding errors is low and probably not worth
the modeling effort.

In this section, we use a basic example to show how the integration and test se-
quencing method from Chapter 6 can be used for both the integration and test sequenc-
ing problem and for the trade-off between the effort and the potential profits of using
models. For this example, we defined a fictitious but representative integration and test
problem of the system upgrade scenario as used in the previous sections. The problem
is instantiated once with realizations only (as in the current integration and test pro-
cess), and once with the possibility to use models as well (as in the MBI&T process),
so that the determined integration and test processes can be compared.

The input for the integration and test sequencing method is anintegration model
that describes the integration and test problem. Note that this integration model is dif-
ferent from the modelsM used in the MBI&T method, which describe the behavior
of the components to be integrated (process vs. product model; see also Chapter 1).
Figure 8.5 and Table 8.2 show the information used for the integration models. Fig-
ures 8.5(a) and 8.5(b) depict the components (circles) and interfaces (lines) for the cur-
rent and for the model-based integration and test process, respectively. The numbers
at the top right of each circle denote the development or delivery times of the compo-
nent. This example uses typical development times for the system upgrade scenario,
in which the original hardware and software are available from the start (development
time is zero) and the∆ software component is available after 60 time units, which is 20
time units before the∆ hardware component. In the MBI&T process, the models of
the∆ components are available after 40 time units.

Table 8.2 shows the available tests in the integration model, including the compo-

PROCESS COMPARISON AND TRADE-OFF ANALYSIS 109

Z∆SW

ZSW

ZHWZ∆HW

60

0

080

(a) Current integration
and test process

Z∆SW

ZSW

ZHW MHWZ∆HW M∆HW

M∆SW

60

80 0

0

40

0 40

(b) MBI&T process

Figure 8.5: Components and interfaces.

nents that need to be available and that must have been integrated for each test, and
the test durations. The table contains all 28 test activities listed in the previous section,
i.e., including both the current and the model-based test activities. Tests for which only
realizations can be used (with a ‘Z’ in the identifier) have to be performed in both the
current and the model-based integration and test process. The model-based test activ-
ities (with an ‘M’ in the identifier) cannot be executed in the current integration and
test process since there are no models available. However, we assume that the aspects
covered by a model-based test activity can also be covered by an equivalent test activity
using realizations only. This choice of using models or realizations for a certain test
activity is denoted by the parentheses in the second column in Table 8.2. For the cur-
rent integration and test process, only the realization alternatives can be chosen, while
for the MBI&T process, both alternatives can be chosen. Taking test category 1 as
an example, we see that test activity 1Za requiresZSW andZHW to be available and
to have been integrated. Test activity 1Ma always requiresZSW , but gives a choice
between using the hardware system modelMHW or the realizationZHW . For the cur-
rent integration and test process, only the equivalent realization test withZHW can be
used for 1Ma, while in the MBI&T process, the modelMHW can also be used for Ma.
In this way, we can use a single set of tests to compare the current and model-based
approach. The test durations in the third column of Table 8.2 are fictitious but give
a representative distribution of test time over all test activities for an average system
upgrade scenario.

Based on an integration model, the integration sequencing algorithm determines all
feasible integration and test sequences and determines the best sequence according to
the optimization criteria used. In our trade-off analysis, we used the duration of the
complete integration and test process, the lead time, as the optimization criterion, since
time (in particular time-to-market) is the most important business driver for ASML as
explained in Chapter 3. The lead time is different from the total test time, which is

110 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

Test Required components Time
1Za {ZSW , ZHW }I 6
1Ma {ZSW , (MHW /ZHW)}I 2
1Zb {Z∆SW , ZSW , ZHW }I 6
1Mb {Z∆SW , ZSW , (MHW /ZHW)}I 2
2Z Z∆SW 1
2Ma (M∆SW /Z∆SW) 1
2Mb Z∆SW vs. M∆SW 1
3Z {Z∆SW , ZSW }I 2
3M {(M∆SW /Z∆SW), ZSW }I 1
4Z {Z∆SW , ZSW , ZHW }I 3
4Ma {(M∆SW /Z∆SW), ZSW , (MHW /ZHW)}I 1
4Mb {(M∆SW /Z∆SW), ZSW , ZHW }I 2
5Z Z∆HW 2
5Ma (M∆HW /Z∆HW) 1
5Mb Z∆HW vs. M∆HW 1
6Z {Z∆HW , ZHW }I 3
6M {(M∆HW /Z∆HW), (MHW /ZHW)}I 1
7Z {Z∆SW , ZSW , Z∆HW }I 4
7Ma {(M∆SW /Z∆SW), (M∆HW /Z∆HW)}I 2
7Mb {(M∆SW /Z∆SW), ZSW , (M∆HW /Z∆HW)}I 1
7Mc {Z∆SW , ZSW , (M∆HW /Z∆HW)}I 2
7Md {(M∆SW /Z∆SW), ZSW , Z∆HW }I 1
8Z {Z∆SW , ZSW , Z∆HW , ZHW }I 4
8Ma {(M∆SW /Z∆SW), ZSW , (M∆HW /Z∆HW), (MHW /ZHW)}I 2
8Mb {Z∆SW , ZSW , (M∆HW /Z∆HW), (MHW /ZHW)}I 2
8Mc {(M∆SW /Z∆SW), ZSW , Z∆HW , ZHW }I 2
9Z {Z∆SW , ZSW , Z∆HW , ZHW }I 60
9M {Z∆SW , ZSW , (M∆HW /Z∆HW), (MHW /ZHW)}I 20

Table 8.2: Available tests in the integration model.

the sum of the durations of all separate test activities. By performing the test activities
as much as possible in parallel, the total test time remains equal but the lead time is
reduced.

Figure 8.6 shows the determined optimal sequences for the current (top) and model-
based (bottom) integration and test processes, in the form of an MS Project Gantt Chart.
The figure shows all development activities (dashed bars), integrations (diamonds),
and test activities (solid bars) over time, and the precedences between the activities
(arrows). On the first lines of the integration and test sequences, the long white bar
with triangular ends indicates the lead time of the sequence.

Several conclusions can be drawn from these sequences. First, the lead time of the
total MBI&T sequence is shorter, 167 time units against 188 time units for the current
integration and test sequence, a reduction of 11%. Besides lead time, also the duration
of the final system test phase (the long solid bars at the right hand side of Figure 8.6) is
important for ASML, since this phase is on the critical path and has a major influence
on the time-to-market T. The final system test phase is 78 time units for the MBI&T
sequence, 25% less than the 104 time units for the current integration and test sequence.

PROCESS COMPARISON AND TRADE-OFF ANALYSIS 111

Task Name

C urrent I& T proc es s
T es t ['8Mb', '8Ma', '7Z', '7Md', '7Mc',
'7Mb', '9M', '8Z', '8Mc', '6Z', '7Ma',
Integrate ['Zs w-Zdhw', 'Zhw-Zdhw']
T es t ['2Z', '2Mb', '3M', '3Z', '2Ma']
Integrate ['Zs w-Zds w']
Develop 'Zs w'
Develop 'Zds w'
T es t ['4Mb', '4Ma', '1Zb', '4Z', '1Mb']
Integrate ['Zs w-Zds w']
T es t ['1Za', '1Ma']
Integrate ['Zs w-Zhw']
Develop 'Zhw'
Develop 'Zs w'
T es t ['5Mb', '5Z', '5Ma']
Develop 'Zdhw'

MB I& T proc es s
T es t ['4Z', '7Z', '2Mb', '8Z', '9Z', '1Zb']
Integrate ['Zs w-Zhw', 'Zs w-Zdhw',
'Zs w-Mdhw', 'Zs w-Mds w',
T es t ['6M']
Integrate ['Mhw-Mdhw']
T es t ['3M']
Integrate ['Zs w-Zds w']
T es t ['4Ma']
Integrate ['Zs w-Mhw', 'Zs w-Zds w']
T es t ['7Mb']
Integrate ['Zs w-Mdhw', 'Zs w-Zds w']
T es t ['3Z']
Integrate ['Zs w-Zds w']
T es t ['8Ma']
Integrate ['Zs w-Mhw', 'Zs w-Mdhw', 'Zs w-Zds w', 'Mhw-Mdhw']
T es t ['1Ma']
Integrate ['Zs w-Mhw']
T es t ['1Mb']
Integrate ['Zs w-Mhw', 'Zs w-Zds w']
T es t ['7Mc']
Integrate ['Zs w-Mdhw', 'Zs w-Zds w']
T es t ['2Z']
T es t ['7Ma']
Integrate ['Zs w-Mdhw', 'Zs w-Zds w']
T es t ['9M', '8Mb']
Integrate ['Zs w-Zds w', 'Zs w-Mhw', 'Mhw-Mdhw','Zs w-Mdhw']
Develop 'Mhw'
Develop 'Zds w'
T es t ['7Md', '6Z', '8Mc', '5Mb']
Integrate ['Zs w-Zdhw', 'Zhw-Zdhw']
T es t ['4Mb']
Integrate ['Zs w-Mds w', 'Mds w-Mdhw', 'Zs w-Mdhw']
T es t ['1Za']
Integrate ['Zs w-Zhw']
Develop 'Zhw'
Develop 'Zs w'
T es t ['5Z']
Develop 'Zdhw'
T es t ['2Ma']
Develop 'Mds w'
T es t ['5Ma']
Develop 'Mdhw'

5-11

2-11

26-10

2-11

26-10

26-10

26-10

6-11

30-10

2-11

2-11

2-11

2-11

2-11

26-10

2-11

2-11

2-11

2-11

26-10

5-11

30-10

26-10

26-10

26-10

21 24 27 30 2 5 8 11 14 17 20 23 26 29 2 5 8 11 14 17 20
November 2006 December 2006

lead time
reduction

Figure 8.6: Current (top) and model-based (bottom) integration and test sequences.

112 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

Besides lead time, also the total test time and related costs can be used to compare
both approaches. Looking at the total time spent on testing with realizations and models
in this example, we see that the current integration and test process uses 136 time units
of realization testing. The model-based integration and test process uses 92 time units
of realization testing and 44 time units of testing with models. At ASML, the costs per
time unit for realization testing are orders of magnitude higher than for testing software
or models in a desktop environment. In this example, the reduction of test costs clearly
outweighs the onetime investments needed in model development, which are 80 time
units of modeling in a (cheap) desktop environment.

Finally, the integration and test sequences show that the test activities in the MBI&T
process can be performed earlier and more in parallel by using models, see for example
the position of the circles in both sequences, indicating when the tests of test category 7
are performed. This means that design and integration problems can be detected and
prevented at an earlier and cheaper stage of development. Although this cannot directly
be expressed in terms of test time or costs, the advantages of earlier testing can be
explained in terms of quality and risk. By incorporating risk into the integration and
test model, this can be dealt with analogous to Chapters 5 and 6.

For simplicity, the trade-off analysis example in this chapter only used a basic in-
tegration model. However, the integration model can be extended in several ways to
perform a more detailed analysis. For example, by including test selection from Chap-
ter 5, the test time and cost differences between testing with models and realizations can
be incorporated in the model and in the decision making process, as well as test cover-
age and the risks of faults in the system. In this way, decisions like longer but cheaper
model testing or shorter but more expensive realization testing can automatically be
made by the sequencing algorithm. Also ‘what if’ scenarios can be investigated, for
example the effects of developing more detailed models, which means higher model
development times, but also a higher coverage of the model-based test activities and
less test activities that can only be performed with realizations. This provides a sys-
tematic and automatic method for improving the current integration and test process by
applying models at places where it is possible and profitable.

8.5 Conclusions

This chapter described an integration and test process for a system upgrade scenario
that is common in industry, including nine different test categories that cover different
system aspects. Since tests can only be performed with realizations, the test costs
are rather high and the tests can only be performed late in the process, where fixing
problems is expensive.

We applied the MBI&T method of Chapter 7 to the current integration and test
process, resulting in additional model-based test activities that allow earlier, cheaper,
and more parallel testing. The feasibility and potential of several of these techniques
have already been demonstrated in industrial case studies such as the one of Chapter 7.

By using the integration and test sequencing technique from Chapter 6, we showed

CONCLUSIONS 113

how optimal sequences of integration and test activities can be determined and how
the trade-off between the effort and potential benefits of using models for integration
and testing can be analyzed. The results of a basic system upgrade example show that
the lead time and costs of the current integration and test process can be reduced by
performing certain tests earlier with models. Several extensions can be applied in order
to perform automatic trade-off analysis for real integration and test problems.

114 USING MODELS IN THE INTEGRATION AND TESTING PROCESS

Chapter 9

Timed model-based testing

Authors: H. Bohnenkamp, A. Belinfante

9.1 Introduction

Testing is one of the most natural, intuitive and widely used methods to check the
quality of software. One of the emerging and promising techniques for test automation
is model-based testing. In model based testing, amodelof the desired behavior of the
implementation under test(IUT) is the starting point for test generation. In addition,
this model serves as the oracle for test result analysis. Large amounts of test cases can,
in principle, be algorithmically and automatically generated from the model.

Most model-based testing methods deal with black-box testing of functionality.
This implies that the kind of properties being tested concern the functionality of the
system. Functionality properties express whether the system correctly does what it
should do in terms of correct responses to given stimuli, as opposed to, e.g., perfor-
mance, usability, or reliability properties. In black-box testing, the specification is the
starting point for testing. The specification prescribes what the IUT should do, and
what it should not do, in terms of the behavior observable at its external interfaces.
The IUT is seen as a black box without internal detail, as opposed to white-box test-
ing, where the internal structure of the IUT, such as the program code, is the basis for
testing. In this chapter we will consider black-box software testing of functionality
properties.

Model-based testing should be based on formal methods: methods which allow
the precise, mathematical definition of the meaning of models, and of notions of cor-
rectness of implementations with respect to specification models. One of the formal
theories for model-based testing uses labeled transition systems (LTS) with inputs and
outputs as models, and a formal implementation relation calledioco for defining con-
formance between an IUT and a specification [117, 118]; see also Chapter 11. An

115

116 TIMED MODEL-BASED TESTING

important ingredient of this theory is the notion ofquiescence, i.e., the absence of out-
put, which is considered to be observable. Quiescence provides additional information
on the behavior of the IUT, and therefore allows to distinguish better between correct
and faulty behavior. Moreover, theioco theory defines how to derive sound test cases
from the specification. The set of allioco-test cases (which is usually of infinite size)
is exhaustive, i.e., in theory it is possible to distinguish all faulty from allioco-correct
implementations by executing all test cases. In practice,ioco-test cases can be used
to test software components and to find bugs. The testing tool TORX has been devel-
oped [10, 119] to deriveioco-test cases automatically from a specification, and to apply
them to an IUT. TORX doeson-the-fly testing, i.e., test case derivation and execution
is done simultaneously. TORX has been used successfully in several industry-relevant
case-studies [7, 9, 122]. Alternative approaches are, e.g., TGV [65], the AGEDIS TOOL

SET [57], and SPECEXPLORER [36, 84].
This chapter is about an extension of TORX to allow testing of real-time proper-

ties: real-time testing. Real-time testing means that the decisions whether an IUT has
passed or failed a test is not only based on which outputs are observed, given a certain
sequence of inputs, but also onwhenthe outputs occur, given a certain sequence of
inputsapplied at certain times. Our approach is influenced by, although independent
of, the tioco theory [26], an extension ofioco to real-time testing. Whereas thetioco
theory provides a formal framework for timed testing, we describe in this chapter an
algorithmic approach to real-time testing, inspired by the existing implementation of
TORX. We use as input models nondeterministicsafety timed automata, and describe
the algorithms developed to derive test cases for timed testing.

Related Work. Other approaches to timed testing, based on timed automata, exist,
described in particular in [74, 85]. The big difference is that we takequiescenceinto
account in our approach.

TORX itself has in fact already been used for timed testing [7]. Even though the
approach was an ad-hoc solution to test for some timing properties in a particular case
study, the approach has shown a lot of the problems that come with practical real-time
testing, and has provided solutions to many of them. This early case study has acceler-
ated the implementation work for our TORX extensions immensely.

Structure of the Chapter. In Section 9.2, we introduceioco, and describe the central
algorithms of TORX. In Section 9.3, we introduce the class of models we use to de-
scribe specifications for timed testing and the adaptations to make it usable with TORX.
In Section 9.4, we describe an algorithm for timed on-the-fly testing. In Section 9.5,
we address practical issues regarding timed testing. We conclude with Section 9.6.

Notational Convention. We will frequently define structures by means of tuples. If
we define a tupleT = (e1, e2, . . . , en), we often will use a kind ofrecord notation
known from programming languages in order to address the components of the tuple,
i.e., we will writeT.ei if we mean componentei for T , for i = 1, . . . , n.

PRELIMINARIES 117

9.2 Preliminaries

9.2.1 Theiocoway of testing

In this section we give a summary of theioco theory (ioco is an abbreviation for “Input-
Output-Conformance”). Details can be found in [117, 118].

The iocoTheory A labeled transition system(LTS) is a tuple(S, s0,Act ,→), where
S is a set of states,s0 ∈ S is the initial state,Act is a set of labels, and→ ⊆ S ×
Act ∪ {τ} × S is the transition relation. Transitions(s, a, s′) ∈ → are frequently
written ass

a→s′. τ is the invisibleaction. The set of all transition systems over label
setAct is denoted asL(Act). Assume a set of input labelsLI , and a set of output
labelsLU , LI ∩ LU = ∅, τ 6∈ LI ∪ LU . Elements fromLI are often suffixed with
a “?” and elements fromLU with an “!” to allow easier distinction. An LTSL ∈
L(LI ∪ LU) is called an Input/Output transition system (IOTS) ifL is input-enabled,

i.e.,∀s ∈ S, ∀i? ∈ LI : ∃s′ ∈ L.S : s
i?→s′. Input-enabledness ensures that IOTS can

never deadlock. However, it might be possible that from certain states no outputs can be
produced without prior input. This behavior is described by the notion ofquiescence:
let L ∈ L(LI ∪ LU), and s ∈ L.S. Then s is quiescent(denotedδ(s)), iff ∀a ∈
LU ∪{τ} : ¬∃s′ ∈ L.S : s a→s′. We introduce thequiescence label, δ 6∈ LI ∪LU ∪{τ},
and define theδ-closure∆(L) = (L.S,L.s0, LI ∪ LU ∪ {τ} ∪ {δ},→′), where→′ =
L.→∪ {(s, δ, s) | s ∈ L.S ∧ δ(s)}.

We introduce some more notation to deal with a transition systemL. Fora ∈Act ∪
{τ}, we writes

a→, iff ∃s′ ∈ L.S : s
a→s′. We writes

a1,...,an−−→ s′ iff ∃s1, s2, . . . , sn−1 ∈
L.S : s

a1→s1
a2→s2 · · · sn−1

an→s′. We write s =⇒ s′ iff s
τ,...,τ−−→ s′, and s

a=⇒ s′ iff
∃s′′, s′′′ ∈ L.S : s =⇒ s′′

a→s′′′ =⇒ s′. The extension tos
a1···an========⇒ s′ is de-

fined similarly as above.
For a states ∈∆(L).S, the set ofsuspension tracesfrom s, denoted byStraces(s),

are defined asStraces(s) = {σ ∈ (LI ∪ LU ∪ {δ})∗ | s σ=⇒}, where=⇒ is defined
on top of∆(L).→. We defineStraces(L) = Straces(∆(L).s0). For s ∈ ∆(L).S,
we defineout(s) = {o ∈ LU | s o→} ∪ {δ | δ(s)}, and, forS′ ⊆ ∆(L).S, out(S′) =⋃

s∈S′ out(s). Furthermore, fors ∈ ∆(L).S andσ ∈ (LI ∪ LU ∪ {δ})∗, s after σ =
{s′ ∈ ∆(L).S | s

σ=⇒ s′}, and forS ⊆ ∆(L).S, S after σ =
⋃

s∈S s after σ. We
defineL after σ = ∆(L).s0 after σ.

Let Spec, Impl ∈ L(LI ∪ LU) and letImpl be an IOTS. Then we define

Impl iocoSpec⇔ ∀σ ∈ Straces(Spec) : out(Impl after σ) ⊆ out(Specafter σ).

The last line basically says that an implementation is only correct with respect to
ioco if and only if all the outputs it produces, or quiescent phases, are predicted by, and
thus correct according to, the specification.

118 TIMED MODEL-BASED TESTING

Testing for iocoConformance: Test Case Derivation The most important property
of the ioco theory is that it is possible to derive test cases from specificationsauto-
matically. If an IUT fulfills certain assumptions (these assumptions are commonly
known astesting hypothesis) then theioco-test cases aresound: failing an ioco-test
case implies that the IUT is notioco-conformant with the specification. Test cases
are described as deterministic, finite, non-cyclic LTS with two special statespass
and fail , which are supposed to beterminating. Test cases are defined in a process-
algebraic notation, with the following syntax:T ::= pass| fail | a;T |

∑n
i=1 aiTi, for

a, a1, . . . , an ∈ LI ∪ LU ∪ {δ}. Assuming an LTSSpec∈ L(LI ∪ LU) as a specifi-
cation, test cases are defined recursively (with finite depth) according to the following
rules. Starting with the setS = {s | ∆(Spec).s0 =⇒ s },

(1) T := passis a test case;

(2) T := a; T ′ is a test case, wherea ∈ LI and, assuming thatS′ = S after a and
S′ 6= ∅, T ′ is a test case derived from setS′;

(3) Forout(S) = (LU ∪ {δ}) \ out(S),

T :=
∑

x∈out(S)

x; fail +
∑

x∈out(S)

x;Tx

is a test case, where theTx for x ∈ out(S) are test cases derived from the re-
spective setsSx = S after x.

With not too much phantasy it is possible to imagine an algorithm which is constructing
test cases according to the three rules given above.

9.2.2 On-the-flyioco testing: TORX

In Figure 9.1 we see the tool structure of TORX. We can distinguish four tool com-
ponents (not counting the IUT):EXPLORER, PRIMER, DRIVER and ADAPTER. The

Specification Explorer Driver IUTAdapterPrimer

Figure 9.1: The TORX tool architecture.

EXPLORER is the software component that takes a specification as input and provides
access to an LTS representation of this specification. ThePRIMER is the software com-
ponent that isioco-specific. It implements the test case derivation algorithm for the
ioco theory. In particular, thePRIMER interacts directly with theEXPLORER, i.e., the
representation of the specification, in order to compute so-calledmenus. Menus are sets

PRELIMINARIES 119

Algorithm Compute_Menu
1 input : Set of statesS
2 output: Sets of transitionsin, out
3 in := ∅
4 out := ∅
5 already_explored:= ∅
6 foreachs ∈ S
7 already_explored:= already_explored∪ {s}
8 S := S \ {s}
9 is_quiescent:= true
10 foreachs

a→q′ ∈ Spec.→
11 if a = τ
12 is_quiescent:= false
13 if q′ 6∈ already_explored: S := S ∪ {q′}
14 else:
15 if a ∈ LI : in := in ∪ {s a→q′}
16 else:
17 out := out ∪ {s a→q′}
18 is_quiescent:= false
19 end

20 if is_quiescent: out := out ∪ {s δ→s}
21 end
22 return (in,out)

Figure 9.2: Menu computation.

of transitions with input, output orδ labels, which according to the model are allowed
to be applied to the IUT or allowed to be observed.

ThePRIMER is triggered by theDRIVER. TheDRIVER is the only active component
and acts therefore as the motor of the TORX tool chain. It decides whether to apply a
stimulus to the IUT, or whether to wait for an observation from theADAPTER, and it
channels information betweenPRIMER andADAPTER.

The ADAPTER has several tasks: i) interface with the IUT; ii) translate abstract
actions to concrete actions and apply the latter to the IUT; iii) observe the IUT and
translate observations to abstract actions; iv) detect absence of an output over a certain
period of time and signal quiescence.

The recursive definition of test cases as described in Section 9.2.1 allows to derive
and execute test cases simultaneously,on-the-fly. The core algorithm is the compu-
tation of menusfrom a set of statesS. The output menu contains transitions labeled
with the actions from theout-setout(S). The input menu contains all inputs that are
allowed to be applied to the IUT, according to the specification. The reason to keep
transitions, rather than actions, in menus is that it is necessary to know the destination
states which can be reached after applying an input or observing an output. The com-
putation of a menu requires for each state inS the bounded exploration of a part of the

120 TIMED MODEL-BASED TESTING

Algorithm Driver_Control_Loop
1 input : —
2 output: Verdictpassor fail
3 (in, out) = Compute_Menu({s0})
4 while ¬stop:
5 if ADAPTER.has_output() ∨ wait:
6 o = ADAPTER.output()
7 M = out after o
8 if M = ∅: terminate(fail)
9 (in, out) = Compute_Menu(M)
10 else:
11 choosei? ∈ {a | q a→q′ ∈ in}
12 if ADAPTER.apply_input(i?) :
13 (in, out) = Compute_Menu(in after i?)
14 end
15 terminate(pass)

Figure 9.3: Driver Control Loop.

state space. Recursive descent into the state space is stopped when a state is seen that
has no outgoingτ transitions, or that was visited before.

The algorithm for the computation of menus is given in Figure 9.2. We assume LTS
Spec∈L(LI ∪LU). Input to the algorithm is a setS of states. Initially,S = {Spec.s0}.
After traceσ ∈ (LI ∪ LU ∪ {δ})∗ has been observed,S = Specafter σ. Note that
the transitions withδ labels are implicitly added to theout set when appropriate (line
20). Therefore, theEXPLORERdoes not have to compute theδ-closure of the LTS it
represents.

Given the computed menusin,out , theDRIVER component decides how to proceed
with the testing. The algorithm is given in Figure 9.3. In principle, theDRIVER has to
choose between the three different possibilities that have been given for theioco test
case algorithm in Section 9.2.1: i) termination, ii) applying an input in setin, or iii)
waiting for an output.

With the variableswait andstopwe denote a probabilistic choice: whenever they
are referenced, a dice is thrown and depending on the outcome eitherfalseor true is
returned. The driver control loop therefore terminates with probability one, because
eventuallystopwill return true. The choice between ii) and iii) is also done probabilis-
tically: if the ADAPTER has no observation to offer to theDRIVER, the variablewait
is consulted. To describe the algorithm of theDRIVER, we enhance the definition of
· after · to menus. IfM is a menu, then we defineM after a = {q′ | (q a→q′) ∈ M}.

Quiescence in Practice From the specification point-of-view, quiescence is a struc-
tural property of the LTS. In the real world, a non-quiescent implementation will pro-
duce an output after some finite amount time. If an implementation never produces an
output, it is quiescent. Therefore, from an implementation point-of-view, quiescence

TIMED TESTING WITH TIMED AUTOMATA 121

can be seen as a timing property, and one that can not be detected in finite time. In
theory, this makes quiescence detection impossible. However, in practice it is possible
to work with approximations to quiescence. A system that is supposed to work at a
fast pace, like in the order of milliseconds, can certainly be considered as being qui-
escent, if after two days of waiting no output has appeared. Even two hours, if not
two minutes of waiting might be sufficient to conclude that the system is quiescent. It
seems to be plausible to approximate quiescence by waiting for a properly chosen time
interval after the occurrence of the latest event. This is the approach chosen for TORX.
The responsibility to detect quiescence and to send a synthetic action, thequiescence
signal, lies with theADAPTER.

9.3 Timed testing with timed automata

In this section we describe timed automata, the formalism which we use to formulate
specifications for timed testing.

9.3.1 Timed automata

A timed automaton is similar to an LTS with some extra ingredients: apart from states,
actions and transitions, there areclocks, clock constraints, andclock resets. Timed
automata states are actually called locations, and transitionsedgesor switches.

Clocks are entities to measure time. They take nonnegative values from a time
domainTT (usually the nonnegative real numbers) and advance linearly as time pro-
gresses with the same rate. LetC be the set of clocks. Clock constraints are boolean
expressions of a restricted form: anatomic clock constraintis an inequality of the form
bl ≺ x− y ≺ bu or bl ≺ x≺ bu , for x, y ∈ C,≺∈ {<,≤}, andbl, bu ∈ TT with bl ≤ bu.
Clock constraints are conjunctions of atomic clock constraints. The set of all clock
constraints over clock setC is denoted byB(C). Clock constraints evaluate to either
true or false. Since they depend on clock valuations, which change over time, also
the evaluation of clock constraints changes generally over time. Clock constraints are
used in two places in a timed automata: asguardsand asinvariants. Every transition
has a guard, which describes the conditions (depending on the clock valuations) under
which the transition is enabled, i.e., can be executed. Locations, on the other hand, are
associated with an invariant. An invariant describes the conditions under which it is
allowed to be in its corresponding location. Invariants describe an urgency condition:
a location must be left before an invariant evaluates to false.

Clock resets are subsets ofC and are associated to transitions. If a transition is
executed, all clocks in the corresponding clock set are set to 0. As before, the action
set is divided into inputs and outputs.

In Figure 9.4 we see an example for a timed automaton. This timed automaton
has 7 locations, namedS0 to S6. There is only one clock,c. The switches are named
e0, . . . , e12 and are labeled with actions, ending on? or !, distinguishing inputs from
outputs. Transitions without action labels are considered to be internal, i.e., labeled

122 TIMED MODEL-BASED TESTING

S0

S1

c <= 2

S2

c <= 5

S5

c <= 5

S6

c <= 1

S3

c <= 5

S4

c <= 1 button?
c = 0

button?
c = 0 c = 0

c >= 1

espresso!
c >= 4

button?

c = 0

short_espresso!

espresso!

c = 0

c >= 4

espresso!
4 <= c

button?
c = 0

button?
c = 0

short_espresso!

button?

button?

e3

e0

e2
e8

e9

e10

e12

e11

e7

e5 e6

e4

e1

Figure 9.4: Timed Automaton.

with τ (e8 in the example). The timed automaton describes the behavior of a coffee
machine of which behavior depends on time. Starting location isS0. Pressing a button
(button?) brings us withe0 to locationS1. Clock c is reset. The invariant ofS1

makes sure that within 2 seconds the location must be left again. This happens either
by pressing the button again, which brings us withe1 to locationS2. Alternatively, the
internal transitione8 can be executed: the guard enables it after 1 second of idling in
S1. Reaching locationS2 means that we have asked for two espressos. Consequently,
going fromS2 to S0 (edgese3 ande7) gives us two outputsespresso!. If we are
in locationS5, we have pressed the button only once, and we can go with only one
outputespresso! back to locationS0. In locationsS2, S3 andS5 the invariants are
alwaysc ≤ 5, and the transitions labeled withespresso! have a guardc ≥ 4. This
means that, since all transitions except those leading intoS0 reset clockc, one shot
of espresso is produced within 4 and 5 seconds1. In locationsS2, S3 andS5 it is also
always possible to receive another button press. This press cuts the coffee production
short, i.e., via intermediate locationsS4 or S6, we reach locationS0. The output is
then, consequently, a short espresso (short_espresso!), which is obtained within 1
second.

A formal definition of a timed automaton follows.

Definition 1 (Timed Automaton) A timed automaton T is a tuple
(N, C, Act , l0, E, I), whereN is a finite set of locations,C is a set of clock vari-
ables,Act is a set of labels (partitioned intoLI andLU as before),l0 ∈N is the initial
location,E ⊆ N × (Act ∪ {τ}) × B(C) × 2C × N is the set of edges (or switches),

1Actually a good espresso needs a bit longer than that.

TIMED TESTING WITH TIMED AUTOMATA 123

andI : N → B(C) assigns invariants to locations. We defineA(Act) to be the set of
timed automata over the label setAct .

If e = (l, a, g, r, l′) ∈ E, we also writel a,g,r−−−→ l′, wherea is the action label,g is the
guard, andr the clock reset.

9.3.2 Quiescence

Using a timeout to approximate quiescence has immediate impact on an approach to
timed testing. Whereas in the un-timed case quiescence detection via time-out can
not be described in the theory itself, in timed testing it should and actually must be
described: a timeout is a timing property which influences therefore a timed test run.
Incorporating the quiescence timeout into the timed testing technique is, as it turns out,
a problem with a straightforward solution, which we will describe below. However,
there is one assumption that must be made on the behavior of implementations.

Definition 2 For an implementation Impl there is anM ∈ TT such that

• Impl produces an output withinM time units, counted from the last input or
output, or,

• if it does not, then Impl will never ever produce an output again (without prior
input).

Only if this assumption on a real implementation holds, our test approach will work.
This assumption is thus part of the above mentioned testing hypothesis.

A timed automaton to be used as a specification must be modified in order to ex-
press when quiescence is allowed to be accepted. To do that, it is necessary to know
whatM to assume. Then,

(1) an extra clockQC is added to the timed automaton;

(2) a self-loop labeled with special actionδ is added to each location. Its guard is
QC≥ M ;

(3) clock QC is added to the clock reset of every transition labeled with an input or
output;

(4) the guard of every output transition is extended withQC < M .

If A is a timed automaton, we denote this modified timed automaton as∆M (A).

9.3.3 From timed automata to zone LTS

TorX assumes that a specification is modeled in terms of labeled transition systems. In
order to use TorX for timed testing, it is thus necessary to derive an LTS representation
from a timed automaton. Such an LTS will be called azone LTS. The technical details
are not of interest here and can be found in [15]. Important to know, however, are the
following facts. We assume a timed automaton∆M (A) = (N, C,Act ∪ {δ}, l0, E, I).

124 TIMED MODEL-BASED TESTING

(1) Time is measured in absolute time counted from system start (i.e., from the time
when the initial state of the LTS was initially entered).

(2) States of the underlying LTS are of the form(l, z), wherel ∈ N , andz is a
so-called clock zone. The whole tuple is called a zone;z describes information
about time. In particular, it defines an intervalz↓ = [t1, t2] ⊆ TT which describes
that only for absolute timet ∈ [t1, t2] the state(l, z) might be entered.

(3) If we have a transition(l, z) a→ (l′, z′), we also write(l, z) a@[t1,t2]−−−−−−−→ (l′, z′),
if z′↓ = [t1, t2].

(4) For every transition(l, z) a→ (l′, z′) there is a corresponding edgee = l a,g,r−−−→
l′ ∈ E.

(5) Given state(l, z), the successor clock zone ofz for edgee = l a,g,r−−−→ l′ is denoted
z′ = Succ(z, e). The successor state of(l, z) for e is then consequently(l′, z′).
It can happen thatSucc(z, e)↓ = ∅, which indicates that the switche can not be
executed, i.e.,(l′, z′) is then not a successor state of(l, z).

(6) Zones can be instantiated. If(l, z) a@[t1,t2]−−−−−−−→ (l′, z′) (with corresponding edge
e ∈ E), and t ∈ [t1, t2], then we can derive a new successor state(l′, z′′) of
(l, z) such thatz′′↓ = [t, t]. We denote this instantiated successor clock zone as
z′′ = Succ(z, e, t).

The first transition of the zone LTS of Figure 9.4 corresponds to switche0 and has the

form (S0,z
0) button?@[0,∞]−−−−−−−−−−−−→ (S1,z

1) for intial clock zonez0 andz1 =Succ(z0,e0).
Sincee0 has no guard, the button can be pressed any time, i.e., between absolute time
0 and∞. If button? is pressed at timet, then we derivez1

t = Succ(z0, e0, t). Then

we can derive from edgee1 the transition(S1, z
1
t) button?@[t+0,t+2]−−−−−−−−−−−−−−−−−−→ (S2, z

2)
with z2 =Succ(z1

t ,e1). Frome8, we can derive a transition(S1,z
1
t) τ@[t+1,t+2]−−−−−−−−−−−−→

(S5, z
5), and withe10 also(S5, z

5) espresso!@[t+5,t+7]−−−−−−−−−−−−−−−−−−−→ (S0, z
6), wherez5 =

Succ(z1
t , e8) andz6 = Succ(z5, e10). This derivation shows that if the button is pressed

once at, say, time10, then without further interference we can expect an espresso be-
tween time 15 and 17.

9.4 Timed automata testing with TORX

In the following we describe the algorithms implemented in TORX for timed test-
ing. We assume a timed automatonSpec∈ A(LI ∪ LU) and consider itsδ-closure
∆M (Spec) for an appropriately chosen valueM . Similarly to the un-timed case, TORX
computes input- and output-menus, and chooses between applying an admissible input
and waiting for an output.

TIMED AUTOMATA TESTING WITH TORX 125

Algorithm Compute_Menu_TA
1 input : Set of zonesS
2 output: Set of zone automata transitionsin, out
3 in := ∅
4 out := ∅
5 already_explored:= ∅
6 foreach (l, z) ∈ S
7 already_explored:= already_explored∪ {(l, z)}
8 S := S \ {(l, z)}
9 foreache ∈ {e′ ∈ E | e′.l = l}
10 if z′ = Succ(z, e) ∧ z′↓ 6= ∅ :
11 if e.a = τ : S := S ∪ {(e.l′, z′)}
12 else:
13 if e.a ∈ LI : in := in ∪ {(l, z) a→ (e.l′, z′)}
14 else: out := out ∪ {(l, z) a→ (e.l′, z′)}
15 end
16 end
17 return (in,out)

Table 9.1: Computation of menus from timed automata.

9.4.1 Menu computation

Based on the zone-LTS described above, TORX computes menus. The algorithm is
similar to the one in Figure 9.2, but is specialized to account for the admitted time
intervals of a zone. This algorithmCompute_Menu_TAis given in Table 9.1. The
input of the algorithm is a set of zonesS (line 1). The output comprises two sets, thein
menu and theout menu. (lines 3, 4, 17). The setalready_exploredis used to keep track
of zones already explored (line 5). We have an outer loop over all states (i.e., zones
(l, z)) in the setS (lines 6–16). The contents ofS varies during the computation. All
states considered inside the loop are added toalready_exploredand removed fromS
(lines 7, 8). The inner loop (line 9 – 15) considers every switche with source location
l. First, the successor clock zonez′ of z according to switche is computed (line 10). If
z′↓ is not empty, transitions of the zone LTS are added to the setsin or out , depending
on the labels of switche (lines 11–14). Note that transitions with labelδ are added to
theout menu, i.e., theδ action is not treated any different from an output. In case of aτ
label, the resulting zone is added to setS (line 11). In essence, the menu computation
is a bounded state space exploration of the zone LTS with sorting of the generated
transitions according to their labels.

126 TIMED MODEL-BASED TESTING

Algorithm Driver_Control_Loop_TA
1 input : —
2 output: Verdictpassor fail
3 (in, out) = Compute_Menu_TA({(l0, {x = 0 | x ∈ C})})
4 while ¬ stop:
5 if ADAPTER.has_output() ∨ wait:
6 o@t := ADAPTER.output()
7 if out aftert o@t = ∅: terminate(fail)
8 (in, out) := Compute_Menu_TA(out aftert o@t, t)
9 else:
10 choosei@t ∈ {a@t′ | (l, z) a→ (l, z′) ∈ in ∧ t′ ∈ z′↓}
11 if ADAPTER.apply_input(i@t):
12 (in, out) = Compute_Menu_TA(in aftert i@t, t)
13 end
14 terminate(pass)

Table 9.2:DRIVER control loop for timed systems.

9.4.2 Driver control loop

We define the following operator· aftert ·, which maps menus on sets of zones.

Definition 3 (· aftert ·) Let∆M (A) = (N,C,Act ∪{δ}, l0,E, I) be a timed automa-
ton, and letM be a menu. Then, fora ∈ Act andt ∈ TT,

M aftert a@t = {(l′, z′′) | (l, z) a→ (l′, z′) ∈ M

andz′′ = Succ(z, e, t) with z′′↓ 6= ∅}, (9.1)

wheree is the respective switch corresponding to the(l, z) a→ (l′, z′) transition.

If the setM is a menu computed byCompute_Menu_TA, each transition(l, z) a→
(l′, z′) contains the interval of all times at whicha is allowed to happen: the interval
z′↓. The setM aftert a@t then computes a set of successor zones fromM which can
be reached by executinga at exactly timet.

In Table 9.2, we see the algorithm for theDRIVER control loop of TORX, enhanced
to deal with time. Menus are computed withCompute_Menu_TA, and the successor
states are computed with· aftert ·. When an input is applied, not only an inputi?
is chosen, but also a time instancet ∈ z′↓ (line 10), at which time to apply the in-
put. The variableswait andstophave the same meaning as in theioco algorithm (cf.
Section 9.2.2).

TIMED TESTING IN PRACTICE 127

9.5 Timed testing in practice

9.5.1 Notes on the testing hypothesis

Thetesting hypothesisis an important ingredient in the testing theory of Tretmans [117].
The hypothesis is that the IUT can be modeled by means of the model class which
forms the basis of the testing theory. In case ofioco the assumption is that the IUT can
be modeled as an input-enabled IOTS. Under this assumption, the results on soundness
and completeness ofioco-testing do apply to the practical testing approach. In this
chapter, we have not defined a formalism that we consider as model for an implemen-
tation, so we can not really speak of atesting hypothesis. Still, it is important to give
some hints on what properties a real IUT should have in order to make timed testing
feasible. We mention four points.

First, we require input enabledness, as for the un-timed case. That means, whenever
it is decided to apply an input to the IUT, it is accepted, regardless of whether this input
really does cause a non-trivial state change of the IUT or not.

Second, it is plausible to postulate that all time measurements are done relative to
the same clock that the IUT refers to. In practice this means that the TORX ADAPTER

should run on the same host as the IUT and reference the same hardware clock. If
measurements would be done by different clocks, measurement errors caused by clock
skew and drifts might spoil the measurement, and thus the test run.

Third, as has been pointed out in Section 9.3.2, it is assumed that the implementa-
tion behaves such that quiescence can be detected according to Section 9.3.2, Defini-
tion 2. This an assumption, part of the test hypothesis, which the system designer may
have to ensure.

Fourth, up to now we left open which time domainTT to choose for our approach.
The standard time domain used for timed automata are real numbers, however, in prac-
tice only floating point numbers, rather than real numbers can be used. Early exper-
iments have shown that floats and doubles quite quickly cause numerical problems.
Comparisons of time stamps turn out to be to inexact due to rounding and truncation
errors. In the TORX implementation we use thus fixed precision numbers, i.e., 64 bit
integers, counting micro-seconds. This happens to be the time representation used for
the UNIX operating system family.

9.5.2 Limitations of timed testing

Even though the timed testing approach described in this chapter seems to be easy
enough, timed testing is not easy at all. Time is a complicated natural phenomenon.
It can not be stopped. It can not be created artificially in a lab environment. Time
runs forward, it runs everywhere, and, leaving Einstein aside, everywhere at the same
pace. For timed testing this means that there is no time to waste. The testing apparatus,
TORX, in this case, must not influence the outcome of the testing approach. However,
the execution of TORX does consume time, and the question is when the execution
time of TORX does influence the testing.

128 TIMED MODEL-BASED TESTING

• Assume that inputi? is allowed to be applied at time0 ≤ t ≤ b. Assume that the
testing tool needsb/2 to prepare to apply the input. Then the input can never be
applied between time 0 andb/2. If there is an error hiding in this time interval,
it will not be detected.

• Assume that the tester is too slow to applyi? beforeb. Then this input can not
be applied, and some behavior of the IUT might never be exercised.

This basically means that the speed of the testing tool and the speed of communication
between tester and IUT determine the maximal speed of the IUT that can be reliably
tested.

Springintveld et al. [112] define an algorithm to derive test cases for testing timed
automata. They prove that their approach to test timed automata is possible and even
complete, but in practice infeasible, due to the enormous number of test cases to be
run. This is likely also the case for our approach and thus limits the extend to which
timed testing can be useful. Automatic selection of meaningful test cases might be an
important ingredient in future extensions of our approach. For the time being, our goal
is to find out how far we can get with timed testingas isin practice. This will be subject
of our further research.

9.6 Conclusions

In this chapter we have presented Timed TORX, a tool for on-the-fly real-time test-
ing. We use nondeterministic safety timed automata as input formalism to describe
system specifications, and we demonstrate how to use standard algorithms for zone
computations in order to make our approach work. It turns out that the existing TORX
algorithms, especially in thePRIMER andDRIVER can in principle be reused in order
to deal with time.

The TORX implementation is still in a prototype stage. Yet, small systems of the
size of the coffee machine in Figure 9.4 can be tested.

Our approach is strongly related to thetioco testing theory [26]. In fact, it has been
shown (although not published yet) that the testing technique described here is in fact
a sound and exhaustive instance of thetioco theory.

Chapter 10

Model-based testing of hybrid
systems

Author: M.P.W.J. van Osch

10.1 Introduction

The goal of test automation is to reduce the test effort and to increase the quality of a
system. With test automation tests can be performed faster and they can be endlessly
repeated without much additional effort. The test engineer can focus on testing the
parts of the system for which tests are not automated.

In model-based conformance testing, tests are automatically generated from a spec-
ification and executed on the system under test (SUT). The output behavior of the SUT
is observed. If the observed output was allowed according to the specification testing
may continue or stop with the verdict pass. If the observed output was not allowed
according to the specification the test stops with the verdict fail. The advantages of
model-based testing are that models can be reused to test every product in exactly the
same way. Therefore, more tests can be generated and performed. Also, tests can be
generated (e.g., by generating random tests) that a test engineer did not think of.

The first input output-conformance (ioco) theory for discrete event systems was
developed by Tretmans [117]; see also Chapters 9 and 11. There are several academic
tools that implement the ioco theory such as TorX [119, 8] and TGV [49]. With this
theory and these tools it is possible to test whether a certain discrete output event takes
place, given a certain input event, e.g., it is possible to test a laser controller by stim-
ulating it with a "GO TO EXPOSE"-message and then observing whether it produces
the correct sequence of messages for the laser to start exposure. In recent years, time
has been added to model-based conformance testing [15, 74, 26, 75] as explained in

129

130 MODEL-BASED TESTING OF HYBRID SYSTEMS

Chapter 9. This made it possible to formally test whether certain discrete events occur
in time.

A hybrid system is a system that exhibits both discrete-event and continuous be-
havior. For example, a thermostat that observes a chamber temperature and turns on a
heater based on the observed temperature (change) is a system with continuous input
and discrete output. A robot arm that moves is a system with discrete input (e.g., a
message "go left") and continuous output (e.g., the movement of the arm with a certain
speed).

In the Tangram project we have developed a theory [94] and a proof of concept tool
for model-based conformance testing of hybrid systems. Some of the issues involved
were how to select the input from the specification for the test, how to connect the test
tool to the SUT, and how to sample.

We have tried out our theory and tool in two toy example case studies and a case
study in industry. The first toy example is a thermostat simulator that turns a heater on
or off and observes the temperature of a tank through a sensor. The second toy example
is a robot arm simulator that can accelerate or brake by increasing or decreasing its
speed. For both cases we tested four different simulated implementations against one
specification model. In each case one of the simulated implementations was correct,
and three others were erroneous mutants. In both case studies we were able to detect
the mistakes in the mutants. The industrial case concerned a vacuum control system.
We were able to connect our test tool to this controller. The test tool applies in real-time
(sampled) continuous input to the controller, and the tool automatically observes and
validates output actions. The results are promising but we were not yet able to test the
system extensively and find errors. We continue working on this case study.

The only hybrid model-based test tool available at the moment, to our knowledge,
is the Charon tester [116, 115]. This is a prototype tool implemented in the Charon
framework [1] with no underlying formal test theory. The Charon tester takes a differ-
ent approach than our tool or the other test tools mentioned above. Charon is a tool set
for hybrid simulation and verification that is capable of doing runtime verification. In
runtime verification a program is generated from a property that is executed together
with the implementation. If the property is violated, this is reported. With the Charon
tester, besides properties, also an environment (of the implementation) is modeled. A
test generator has been implemented that is also executed together with the implemen-
tation and that selects input for the implementation from the environment model. If a
property is violated, then the test fails. The advantage of this approach is that inaccu-
racy in observations is not an issue, e.g., there is no clock skew because both test and
implementation run on the same platform. The disadvantage of this approach compared
to ours is that it is not flexible. For every different environment, different test genera-
tor, and different execution platform, new code needs to be written and generated, and
embedded in the system under test.

In this chapter we give an overview how we dealt with the issues involved in auto-
mated model-based testing of hybrid systems, and our achievements so far. For further
details of our hybrid input-output conformance theory we refer to [94]. In Section 10.4

TESTING HYBRID SYSTEMS 131

we informally describe how a hybrid system is tested. In Section 10.3 we give an
overview of our proof of concept test tool implementation and its current shortcom-
ings. In Section 10.4 we present the results of our case studies. In Section 10.5 we
discuss the possibilities for future work in this area.

10.2 Testing hybrid systems

In this section we first give an overview of model-based testing in general, then we
present how tests are generated for hybrid systems in our approach, and finally we give
an example of how a thermostat with continuous input and discrete output actions is
tested in our approach.

Figure 10.1 illustrates the process of model-based testing. The specification is a
model of the SUT containing input to be applied to the SUT, and output that can be
observed from the SUT. The SUT is considered to be a black box. We do not know the
internal behavior of the system. We assume that the SUT is input complete, that is, we
assume that we can apply any input to an implementation and we can always observe
something, namely output or the absence of output (during a certain time interval).

Figure 10.1: Conformance Testing.

Tests are generated from a (formal) specification that models the behavior of the SUT.
It can restrict the input we want to use in our test. The specification does not need to
be input complete, i.e., the specification does not need to specify every possible input.
This allows us to guide the test with respect to the input applied to the SUT. If a certain
input is not specified, the SUT is not tested for this particular input, for instance, we
can test only the good weather behavior or only the bad weather behavior of the SUT.

For every potential output the generated test describes if observing this output
means that the test should continue, lead to the verdict pass, or lead to the verdict
fail. Because in general an SUT can non-deterministically produce a number of out-
puts, a test should be thought of as a tree. For every possible output in a certain state
of the SUT, the test describes the next possible input or output. This means that a test
can get very large. Therefore, in practice, test generation and execution take place in
anon-the-flymanner. On the fly test generation means that a test is generated one step
at the time. After a step (apply an input action or observe output) has been generated,

132 MODEL-BASED TESTING OF HYBRID SYSTEMS

it is executed on the SUT. Depending on the output observed, the next step is generated
and performed. The advantage of on-the-fly test generation is that for only one output
the next step is generated. The disadvantage of on-the-fly test generation is that it takes
additional computation time during test execution, which makes testing of real time
systems harder.

For hybrid systems the specification consists of both continuous behavior (e.g.,
described by differential equations on variables) and discrete actions. This specification
can, e.g., be fully made in a hybrid modeling language, or consist of a combination of
a discrete model and a continuous model. The continuous behavior can also be derived
from, e.g., the sensor logs from an already operational system.

An on-the-fly test for a hybrid system consists of steps of the following types:

• select and apply one discrete-event input from the set of possible input events
according to the specification;

• observe an output event from the SUT, and if the observed output event was not
allowed according to the specification, then the test stops with a verdict fail; if an
output event should have been observed but it was not observed, then the verdict
fail is concluded as well; or

• select and apply continuous input for a specific duration and because the contin-
uous output takes place simultaneously, observe continuous output until the end
of the selected continuous input is reached or an output event is observed, and if
the observed (discrete-event and continuous) output was not allowed according
to the specification, then the test stops with a verdict fail.

If the verdict fail is not concluded, the test continues with another step or stops with a
verdict pass.

Figure 10.2 shows a specification of a thermostat. The behavior of the thermostat is
as follows. In this specification it is assumed thatMinT < MinON < MinOFF <
MaxT . Initially the chamber temperatureT is MinT ≤ T ≤ MaxT and the ther-
mostat is in theNot Heating mode. The thermostat observes the temperatureT of a
chamber (continuous input) and switches a heater on or off (by an output action). The
thermostat can turn a heater on if the temperature is below the specified temperature
MinON . The thermostat in this case switches to theHeater ON mode in which it
observes the chamber (environment) being heated with a rate between0 oC/min and
1 oC/min. After the temperatureMinOFF is reached the thermostat returns to the
Not Heating mode with the message !HeaterOFF and the temperature in the chamber
starts to decrease (e.g., because the chamber is not perfectly isolated and placed in a
colder environment). If the temperatureT of the chamber increases too fast (with more
than1 oC/min) the thermostat switches to theOver Heating mode. Before the maxi-
mum temperatureMaxT is reached the heater thermostat switches theOFF mode and
produces a message !Error. After an error the thermostat can only be reset by a discrete
input action ?Reset (e.g., a button being pressed by an operator).

TESTING HYBRID SYSTEMS 133

Note that this specification is not input complete because if it reachesOver Heating
mode the temperature will always rise with more than1 oC/min until it switches to
theOFF mode. Therefore, tests generated from this specification will not contain the
behavior that the temperature increases with more than1 oC/min for a while and then
(again) increases with less than1 oC/min. If we want to test whether an SUT behaves
correctly in this case, we first need to adapt the specification.

Figure 10.2: Thermostat Example.

Let for instanceMinT = 5 oC, let MinOn = 10 oC, let MinOff = 15 oC, and let
MaxT = 20 oC. Let the initial temperature beT = MinOn. Then, the following
sequence of steps describes a scenario to generate and execute a test on-the-fly for the
thermostat.

step 1: Decrease the temperature with0.5 oC/min for one minute. If a !heaterON
output or no output is observed, then continue testing with step 2, otherwise (if,
e.g., a !heaterOFF output or an error output is observed which is not allowed
according to the specification), stop testing and conclude with verdict fail.

The SUT can either have produced no output, the !heaterON output, the !heaterOFF
output, or the !Error output. Suppose that the SUT produced the !heaterON output after
30 seconds, then immediately after the output is observed and validated a new step can
be generated.

step 2: Select a temperature increase withT ′ = 0.1∗T oC/min for two minutes. Note
that in this differential equationT ′ depends onT . If T increasesT ′ increases as
well.

134 MODEL-BASED TESTING OF HYBRID SYSTEMS

At the start of step 3 the temperature is9.75 oC. Therefore, at the start of the step
T ′ < 1 oC/min. However, as soon asT = 10 oC the thermostat goes toOver Heating
mode. The test can continue as follows.

step 3: Select a temperature increaseT ′ > 1 oC/min until 20 oC is reached.If the
output action Error is observed the test can continue with a new step or stop with
the verdict pass, otherwise (if no output !error is observed, or an output action
!HeaterON or !HeaterOFF is observed) stop testing with the verdict fail.

Suppose that the output !Error was observed from the SUT. Then it is possible to
continue the test by applying a decreasing temperature at most until the temperature
reaches5 oC and applying an input action ?Reset. It is also possible to stop testing at
this point with verdict pass, because in this case the test did not fail.

This example does not illustrate all kinds of hybrid systems that can be tested ac-
cording to our theory and with our tool. There are more kinds of hybrid systems that
can be tested. The thermostat only has continuous input, input actions and output ac-
tions. It is also possible to test hybrid systems with continuous output. In this case we
compare also the continuous output of an SUT with the specified continuous output.
An example of such system is a robot arm which moves according to a certain speed.
It is also possible to test SUTs with both continuous input and continuous output, and
with discrete input and discrete output. An example of such system is a brake control
system of a car that brakes (which is continuous output) in accordance with the pres-
sure applied on the brake pedals (which is continuous input), and that brakes if it gets a
message from the cruise control (which is an input action) and turns on a warning light
(which is an output action). It is also possible to test systems with multiple continuous
input flows and continuous output flows. An example of such system is a vacuum con-
troller which besides the pressure in a chamber also takes into account the temperature
of the chamber for its output.

Our test theory and tool do not provide the means of testing the kind of hybrid
systems in which the continuous input instantaneously depends on its own continuous
output. It is more complicated to test this kind of systems because in this case tests
need to be generated that are continuously adapted to the continuous output observed
from the SUT.

10.3 Test tool implementation

In this section we describe the main issues involved in implementing a test tool based
on the theory described in the previous section.

We preferred not to build our test tool from scratch but reuse (libraries of) already
existing hybrid simulation tools or verification tools. We chose the hybrid language
χ (Chi) [5] for our specification language and we reused the libraries of theχ simula-
tor [114] to build a prototype test tool. The tool has been implemented in Python [104].

The architecture of our test tool (see Figure 10.3) is the same basic architecture as
the (timed) test tools TorX [8], TTG [73], and TRON [120].

TEST TOOL IMPLEMENTATION 135

Figure 10.3: Test Architecture.

The test engine generates tests. It implements the on-the-fly test generation and
execution procedure, with sampled continuous behavior. It steps through the specifica-
tion and computes the sets of possible input (actions and sampled continuous flow) and
observable output (actions and sampled continuous flow). It selects input, it validates
the observed output and gives a verdict. The adapter transforms input to a format that
is suitable to be sent over the communication medium to the SUT and it transforms
output received over the communication medium from the SUT so that it can be com-
pared with the specified output. The medium can be for instance a computer network
or electronic wires.

10.3.1 The test engine

The test engine of our prototype tool performs a number of tasks. These tasks are:

• compute the input to be applied to the SUT and the output expected to be ob-
served from the SUT

• select input;

• sample continuous behavior;

• compare the observed output with the specified output;

• decide when to stop testing; and

• return an error trace if the test failed.

In this section we discuss these tasks.
In theχ tool set a send or receive action in a channel communication consists of

a channel, and a value or variable. A trajectory consists of a set of variables with
their flow specified as ordinary differential equations (ODEs) and a duration. Theχ
tool set implements methods to compute the set of allowed transitions from a state,
and given a state and a transition, to compute the state of the specification after taking
this transition. With these methods we compute (given a set of states) the sets of input
actions, output actions, and trajectories, and we compute the set of reachable states after
these (input or output) actions, trajectories, or internal actions. Because in an SUT
operating in a real environment time cannot stop, the specification does not contain

136 MODEL-BASED TESTING OF HYBRID SYSTEMS

infinite sequences of actions or loops of actions (otherwise time can stop according to
the semantics ofχ). Because of this and because the continuous behavior is specified
by ODEs, the set of trajectories is also finite.

Input can be selected either manually (by the user) or automatically by the test tool.
For hybrid input-output conformance testing, manual input selection is only possible if
the SUT does not run in real-time. In this case a user can select which continuous input
or discrete input action to apply to the SUT. If an input action is selected, the user can
select an input value. If continuous input is selected (e.g., specified by a differential
equation for every input variable), the user can select the duration of the trajectory.

Automatic input selection has to be done according to some selection criteria. Cur-
rently, we have only implemented random input selection with some restrictions on the
input domain. An input action and an input value are selected, or a trajectory and a
duration are selected, at random. For input actions, in principle the selection domain
is the type of the action (for instance boolean values, e.g., heater on is true or false).
This domain can be infinite, and generate many tests that are not of interest to the user.
Therefore, we made it possible to specify a set of values, from which the test tool se-
lects the input. Some test selection mechanisms we are considering to implement in the
future are test selection in which the user specifies some order in the input (e.g., after
an "ON" signal, always an "OFF" signal is applied) and more intelligent test selection
mechanisms (e.g., by using coverage criteria or test purposes).

With the proper interface to the SUT we potentially can apply and observe con-
tinuous input and output in the form of electronic signals. It is also possible to apply
samples of continuous input and observe samples of continuous output from the SUT
instead of real continuous behavior. This still has advantages over discrete event testing
(in which samples of continuous behavior are modelled) because the sample rate can
easily be adjusted without changing the model and already existing continuous models
can be reused.

In our prototype implementation we apply and observe samples of continuous be-
havior instead of real continuous behavior (e.g., signals). In this way it is still possible
to test for instance a vacuum controller on the software level. A (software) controller
that is tested on the application level of the system architecture already observes sam-
ples of continuous input or samples the observations. In this way we keep away from
the electronic/hardware domain and the need for, e.g., designated hardware.

The sample rate is chosen by the user of the test tool. It has to be chosen such
that there is still enough time to compute new input and evaluate output between sam-
ples and such that the sample rate of the controller is maintained. In our prototype
implementation, Maple [80] is used to solve the differential equations and compute the
valuation of input variables and output variables at each sample point.

There are three problems with using samples of continuous behavior. The first
problem is inaccuracy in applying and observing samples due to latency in the com-
munication between the test tool and the SUT. A possible solution is to send the input
before it has to be applied together with the time it has to be applied and implement a
test environment around the SUT that applies the input on time. For output observa-

TEST TOOL IMPLEMENTATION 137

tions time stamps could be added in the test environment on the SUT side. However,
this creates a problem if after sending the next input, but before applying it, a delayed
output is observed. The second problem is inaccuracy in applying and observing sam-
ples due to clock skew. It can be the case that the system clock of the SUT runs slightly
faster or slower then the system clock of the execution platform of the test tool. This
creates the problem that an observed output is timed correctly according to the system
clock of the test tool, but was incorrectly with respect to the system clock of the SUT or
vice versa. The third problem is inaccuracy in applying and observing samples due to
rounding off. It can happen that an output is incorrect according to the specification but
because of rounding off by the test tool is validated as being correct. For now the only
way to handle these inaccuracies is by making specifications which take these potential
inaccuracies into account. However, a more constructive solution for these problems is
desirable.

After an input sample for each input variable has been sent to the adapter, the test
engine waits for the output samples to be received and compares the observed output
with the output allowed according to the specification. The observed output actions and
samples are received together with a time stamp. If the observed output is contained in
the set of possible output actions and valuations, the test continues, otherwise the test
stops with the verdict fail.

As long as the verdict fail is not given, the test can end with a verdict pass. After
that, it is possible to generate a new test that tests other behavior of the system and
may lead to the verdict fail. A test ends with verdict pass when some stop criterion is
met. The stop criterion could, e.g., be the user of the tool pressing a "stop" button, a
time limit, a limit to the number of inputs (actions or trajectories) applied and outputs
observed, or a coverage criterion on the specification. Our prototype tool currently
implements the first two stop criteria.

Together with a verdict a test tool also returns a trace consisting of actions and
trajectories performed by the specification and observed from the implementation. Be-
cause in practice only samples of input are applied and observed, in our current proto-
type a trace of samples and actions is returned instead of specified trajectories.

10.3.2 The adapter

The adapter transforms input specified in theχ model to a format suitable for the SUT
and it transforms output from the SUT to the format used in theχ model. The adapter
deals with converting variable names, channel names, and data to interfaces specific to
the SUT and the other way around, e.g., a discrete message specified as an "ON" or
"OFF" signal may be a boolean variable in the SUT.

The adapter also implements the interface with the communication medium, for
instance, when the medium is a TCP/IP network the adapter implements the communi-
cation protocol for that medium. For our prototype we assume that our communication
medium is reliable. No messages or samples may get delayed or lost between the
adapter and the SUT. If the communication medium is not reliable we need a way to

138 MODEL-BASED TESTING OF HYBRID SYSTEMS

make it reliable through some communication protocol, or take this the unreliability
into account when validating the received output.

Furthermore, the adapter deals with timing of input (actions and samples). In our
current prototype implementation we assume the medium is part of the SUT. That is,
input samples or input actions are sent over the medium at the specified time, and
output samples or actions are considered to have occurred at the time they are received
by the adapter.

10.4 Case studies

With our prototype test tool we did some case studies. First we tested a simulator of
a temperature controller and a simulator of a moving robot arm. The behavior of the
thermostat was similar to the thermostat described in section The goal of the these case
studies was to validate our prototype implementation. The simulators did not run in
real-time. That is, they waited for a sample of input or an input event. After they
received an input they could produce an output event or sample. Then they waited for
a new sample of input or an input event again. This significantly simplified connecting
the test-tool to the simulators.

Secondly, we tried to test the real-time vacuum control system of an ASML wafer
stepper. The goal of this case study was to see whether hybrid model based testing can
be used in industry.

10.4.1 Testing a thermostat and a robot arm

The thermostat simulator was a discrete eventχ model that received samples of tem-
perature as input. It produced a heater-on event if a minimum temperatureMinT was
reached. It produced a heater-off event if a maximum temperatureMaxT was reached.
The robot arm simulator was a discreteχ model that received clock ticks and acceler-
ate, stop, or brake messages as input. It produced change in speed as output. Initially
the robot arm was not moving.

For both simulators a correct (equivalent) hybridχ specification was made. Be-
sides specifying the discrete actions of both simulators, the thermostat specification
contained a differential equation for temperature change. The robot arm contained a
differential equation for time (T ′ = 1) and a differential equation for the expected speed
changes if accelerating, braking, and in standstill.

Then, for both simulators three mutants were created. For the thermostat these
mutants were:

mutant 1: the output action”ON” was changed to”OFF”,

mutant 2: the minimum temperatureMinT on which the thermostat was supposed to
switch on the heater was raised, and

mutant 3: the minimum temperatureMinT was lowered.

CASE STUDIES 139

For the robot these mutants were:

mutant 1: the simulated speed behavior was changed,

mutant 2: initially the robot arm starts moving, and

mutant 3: after receiving a brake message, the robot arm continues moving.

Testing a correct SUT of the temperature controller against the hybrid specification
of the temperature controller did not lead to finding any mistake. In mutant 1 of the
temperature controller the incorrect output action was detected. The test tool received
the output”ON” event when it expected the output”OFF” event. In mutant 2 an
unexpected output action was detected. The test tool received the output”ON” on
a temperature that was higher then the specifiedMinT and no output action was ex-
pected yet. In mutant 3 an output action was expected at temperatureMinT but it was
not observed.

Testing a correct SUT of the robot arm against the hybrid specification of the robot
arm did not lead to finding any mistake. Testing the mutants led to finding the following
mistakes. In mutant 1 of the robot acceleration went faster than expected. The test tool
observed a speed of5.5 m/sec when it expected a speed of3.6 m/sec after 2 time
units. In mutant 2 the robot accelerated unexpectedly. The test tool observed a speed
of 1.9m/sec after two time units when it expected a speed of0m/sec. In mutant 3
the robot accelerated when braking was expected. The test tool observed that after first
accelerating correctly to the speed of10m/sec and applying a”BRK” input action,
that the SUT accelerated again.

These case studies have shown that we were able to generate tests from a hybrid
specification and apply and observe input and output samples from an SUT. Testing the
mutant SUTs showed that the tests generated by our tool lead to a verdict pass when
we expected them to pass, and lead to a verdict fail when we expected them to fail.
Besides a verdict the test tool also gave us the correct reason of failure, e.g., it returns
that it observed an”OFF” message when it expected an”ON” message. This also
gives insight in where the mistake in the SUT was made.

10.4.2 The vacuum system case study

At the time of writing we are using the test tool to test the controller of a vacuum system
(Figure 10.4). This vacuum system is used in a wafer stepper machine of ASML. The
Vacuum Controller observes the pressure within the Vacuum Chamber through a set of
sensors. Each sensor is capable of measuring the pressure for a specific pressure range.
The software controls a network of Valves, Gauges and Pumps. Depending on the
desired pressure within the machine, valves are opened or closed (to vent air into the
chamber) and pumps are turned on or turned off (to pump air out of the chamber). The
controller needs to perform a specific sequence of discrete actions in order to increase
the pressure in the chamber (by venting) or to decrease the pressure in the chamber (by
pumping).

140 MODEL-BASED TESTING OF HYBRID SYSTEMS

Figure 10.4: The Vacuum Controller.

In order to test the vacuum control software we have made a hybridχ specification
containing the discrete event pump down sequences and venting sequences. These
are the observable output actions of the controller. The vacuum controller normally
observes pressure flow from the chamber. This pressure flow is now also part of the
specification. The specification contains the pressure flow that is the continuous input
of the test.

The vacuum control software has been implemented in Labview. Inside the ma-
chine this control software is connected via a hardware module to the sensors. In order
to connect our tool with the controller we had to implement an adapter. We have made
a connection with the Labview software via TCP/IP. We have also made a mapping
of the modeled pressure variables to the variables in the controller used for storing
the sensor input. The specified output actions for controlling the pumps, valves, and
gauges are mapped to the corresponding events of the controller.

We were able to stimulate the controller with pressure samples that were generated
from the specification in real time. Input application was done in real time, with respect
to the sample rate. We were able to start pump down and venting sequences. We were
able to observe messages to turn pumps on or turn them off, and we were able to
observe messages to open valves or to close valves. For these output messages we
were able to give a verdict with respect to the behavior defined by our specification.

We observed small inaccuracies (in the order of milliseconds) in the application of
input samples. The output messages were validated with respect to time stamps that
we added to the output message at the moment the output occurred.

CONCLUSIONS AND FUTURE WORK 141

We are currently refining the specification in order to generate complicated tests
for the vacuum controller and possibly find mistakes and unexpected behavior of the
controller.

10.5 Conclusions and future work

We have developed a prototype test tool for hybrid systems based on our hybrid input
output conformance theory. The test tool uses the languageχ as specification language.
Tests are generated on-the-fly, during test execution. With an adapter we are able to
connect our test tool to a system under test (SUT). A part of this adapter can be reused
for other SUTs. This is the part that implements the connection between the test-engine
and SUT. Another part of this adapter needs to be implemented every time a different
SUT is tested. This part of the adapter takes care of transforming the specified input to
applicable input and transforming observed output to specified output. The latter needs
to be done in order to validate the observed output. The tool applies both discrete input
and continuous input, and it observes both discrete output and continuous output. In
our tool, it is the case that continuous behavior is applied and observed as samples. We
still consider this a form of hybrid testing because we are still testing a hybrid system
against a hybrid specification.

We were able to test our example temperature controller and robot, and found the
mistakes that we introduced ourselves in mutant implementations. We were also able
to stimulate (in real time) an industrial vacuum control system with (sampled) pressure
flow, generated from a hybridχ model, and we were able to observe and evaluate the
discrete output behavior of the controller. Unfortunately, due to performance issues
we have not yet been able to do extensive test runs. We will continue developing our
prototype tester and we will continue with our case studies.

Theχ language does not allow to differentiate between input variables and output
variables. The solution we chose for this problem is to specify this distinction sepa-
rately. Another solution is to extend the languageχ so that this distinction can be made
in the specification.

The next step is to define two variations on our hybrid theory that better fit with
how hybrid testing is implemented in practice. In our original theory we assumed that
the SUT has real continuous behavior. In practice, the test tool applies samples and ob-
serves samples of continuous trajectories. We want to define a new hybrid conformance
relation that defines whether a sampled SUT is conforming to a hybrid specification.
In our theory we consider an SUT conforming to a specification when the output of
the SUT was also allowed according to the specification. However, observing exactly
that behavior is impossible because of the rounding off of valuations, delays, and clock
skew. This problem can be solved by introducing a margin of inaccuracy. We also
want to define a new hybrid conformance relation that allows small deviations from the
specified trajectories.

142 MODEL-BASED TESTING OF HYBRID SYSTEMS

Chapter 11

Test-based modeling

Author: T.A.C. Willemse

11.1 Introduction

Today’s systems engineering is predominantly evolutionary in nature: the bulk of
newly developed systems consist of minor and major modifications of existing sys-
tems. Apart from the addition of new features, these modifications should lead to
improvements of the stability and the quality of the system. An important method that
helps to assure that this is indeed the case isregression testing.

Regression testing aims at determining whether modifications that have been made
to a system have no adverse effect on those parts of the systems that should not have
been affected by the changes. Currently, testing is mostly a manual and labor intensive
process, often deprived of effective automation, leading to high costs and sometimes
mediocre product quality. Insights indicate that the testing effort typically consumes
up to 50% of the total budget that is spent on developing a system [14], with regression
testing consuming a large amount [56, 77] of the total budget.

Model-based testing (MBT) is a mathematically sound analysis technique that is
used to assess the level of quality of a system. The key idea is to use mathematical
models of a system to automatically generate and execute tests; see Chapters 9 and 10.
Proponents of such techniques are quick to point out the benefits of this approach:
the models are easier to understand and maintain, amenable to verification techniques
such assimulationandmodel-checking, cf. Chapter 7, and are less prone to complex
changes, while the automation that is potentially achieved goes well beyond the mere
automatic execution of manually crafted test cases.

While model-based testing has been shown to work well on real-life systems, it
comes with its own set of limitations. For instance, a major obstacle in applying MBT
is rooted in the necessity to have mathematical models of a system to start with. In

143

144 TEST-BASED MODELING

practice, these required models are often unavailable. Obtaining the modelsa posteri-
ori from informal documentation and by conducting interviews, et cetera, is either too
time consuming, or even impossible (e.g., for third-party systems or legacy systems).
As a result, model-based testing is left without its engine.

The techniques we outline in this chapter (collectively calledtest-based modeling
techniques) are a step in the direction of applying model-based testing tools, and indeed
also other formal tools such as simulations, to systems for which it is currently hard
to obtain models. Our approach leans on the ideas from machine learning, such as
initiated by Angluin [2], but, instead of computing anexactmodel representing the
running system (i.e., actual implementations and their behaviors as observed from their
external interfaces), it relies on experiments to obtainpartial models from a running
system. The partiality of our method turns out to be a powerful tool in making machine
learning techniques tractable in practice. Note that while the models that have been
obtained by learning are useless for testing the same system again (when the learning
is done properly, all tests should result in the verdictpass), they are valuable for other
purposes, such as for regression testing or for testing different configurations of the
same system.

This chapter describes an approximation-based basic algorithm for constructing a
model of a system. For this, it relies on counter-examples that are found byioco-
based model-based testing using the model that is under construction. Together with
the algorithm, we discuss heuristics that guide the learning effort and reduce the run-
time complexity of the basic algorithm. Underlying the algorithm is a representation
of the constructed model using a subclass ofsuspension automata[117], calledvalid
suspension automata [124], which provides a canonical, deterministic representation
of a specification. Moreover, we have tested the hypothesis that a constructed model
can effectively be used for regression testing and for testing of different configurations
of the same system. This is demonstrated by running a prototype implementation of
our algorithm on theconference protocol. The conference protocol is a well-known,
mutant-based, bench-marking problem for testing (see e.g., [10]). The overall effec-
tiveness of our approach is attested by the fact that 85% of all mutants of the correct
system can be detected. Although the idea of using models that have been extracted
from an implementation for regression testing purposes is not new (see e.g., [62]), to
our knowledge, ours is the first study that actually quantifies the effectiveness of such
an approach by means of mutant testing.

This chapter is organized as follows. In Section 11.2, the testing theoryioco is
outlined; see also Chapter 9. In Section 11.3, we introduce ourtest-based modeling
algorithm. Section 11.4 describes three heuristics to make the algorithm of Section 11.3
tractable in practice. Section 11.5 demonstrates the techniques using a case study. We
conclude our contribution in Section 11.6.

Related work Berget al [12] are among the few to have studied the effectiveness and
applicability of Angluin’s learning algorithm, and an optimization thereof. The studied
systems are generally small (up to 100 states). The authors conclude that the per-

FORMAL TESTING THEORY 145

formance of Angluin’s algorithm on prefix-closed automata comes close to its worst-
case complexity, which they find disappointing, since reactive systems can usually be
modeled using prefix-closed automata. Performance-wise, they remark that Angluin’s
algorithm has long execution times and a huge memory consumption. In [12], the
information that is needed as input for Angluin’s algorithm is extracted from formal
models; this contrasts our experiments, which are conducted on real implementations
from which we learn on-the-fly. Note that this also explains our long run-times when
compared to [12].

Hungaret al [61, 62] and Margariaet al [81] also build their work around An-
gluin’s learning algorithm. Several domain-specific optimizations over this basic al-
gorithm are discussed. The optimizations are fueled by expert (human) knowledge.
Such knowledge involves information concerning the symmetry of components and
the independence of actions, and techniques to reduce the number of redundant mem-
bership queries that are generated by Angluin’s algorithm. While these techniques are
developed within the framework of testing of Finite-State Machines (FSM), they seem
complementary to the techniques we describe in this chapter, and it is very likely that
these can be combined in some form. A follow-up study on our methods is needed to
substantiate this.

Peledet al [98] advocate a different approach, combining model checking, test-
ing and automata learning. Logical properties, given by domain experts, are checked
against a model. Counter-examples are subsequently checked against the actual sys-
tem and may lead to improvements of the model or to documented faults. FSM-based
conformance testing is used when no counter-examples are found; the test outcome
can again lead to a modified model. The downside of this approach is that it relies
on FSM-based conformance testing theory, which makes very strict assumptions and
poses requirements on the implementation and specification which are difficult to meet
in practice. Related to this approach is the tool VeriSoft [53] by Godefroid, which can
be used to verifyconcurrent systems. VeriSoft usually requires that all components of
the concurrent system that is verified are deterministic. For the verification, it relies on
bounded model-checking techniques, rather than testing techniques.

As noted, most methods use an FSM-based testing theory. This testing theory relies
on the assumption that the implementation behaves deterministically and has a finite
number of states; our assumptions with respect to the system are more liberal, i.e.,
our techniques can also deal with non-deterministic systems with infinite state spaces.
Furthermore, our techniques do not require human intellect to drive the exploration
technique, in contrast to the approaches using model checking techniques, which re-
quire interesting properties to be given by a human user.

11.2 Formal testing theory

The testing theory used in this chapter is based onrefusal testingfor Labeled Transi-
tion Systems, which is also used in Chapters 9 and 10. We briefly introduce the basic
ingredients and the conformance relationioco [117]; most terminology and notation is

146 TEST-BASED MODELING

taken from [117]. The amount of formalization is kept at a bare minimum for under-
standing and presenting the test-based modeling concepts. Inioco-based testing, the
fundamental notion is that of a transition system, which is akin to a non-deterministic
state diagram, in which there is always exactly one label (an action representing an
event or activity) on the edges connecting states.

Definition 11.2.1. A labeled transition system (LTS) is a four-tuple〈S, s0, Act,→〉,
whereS is a nonempty set of states,s0 ∈ S is the initial state, and, Act is a finite set
of observable actions. The relation→⊆ S × Act× S is the transition relation, and for
elements of the transition relation we writes

a−→ s′ rather than(s, a, s′) ∈→. We use
the name of the LTS and its initial state interchangeably.

We do not considerunobservableevents, the reasons being brevity and the fact that
such events are not vital for understanding the main concepts explained in this chapter;
in general, the penalty for including such events is poor readability.

The set of all LTSs over actions Act is henceforth denotedL(Act). In practice,
there is a distinction between actions that areinputsto a system, and actions that are
outputsof a system. We denote the set of all LTSs with inputs ActI and outputs ActU
byL(ActI , ActU). When referring to both inputs and outputs collectively, we still use
the set Act, which in this case stands for the set ActI ∪ActU . Note that we assume that
the sets of inputs and outputs are disjoint.

For the remainder of this section, letL = 〈S, s0, Act,→〉 ∈ L(ActI , ActU) be an
arbitrary LTS with inputs ActI and outputs ActU . A system, modeled by an LTS with
inputs and outputs typically models a reactive system; such a system can interact with
an environment. The typical, smallest observables of such a system are the actions.
Moreover, apart from input and output actions, we also assume that a user can observe
the absenceof output. Those states in the LTS that admit an observation of absence
of output — henceforth referred to asquiescentstates — are augmented with extra
δ-labeled self-loops; the observation itself is referred to asquiescence. Formally, we

haves
δ−→ s iff for all outputs a ∈ ActU , s 6 a−→. Note that the labelδ is assumed not

to be part of the set of actions of any LTS; as a shorthand, we write Actδ rather than
Act ∪ {δ}. The behaviorsof an LTS are then sequences consisting of actions and
quiescence, i.e., elements from the set Act∗

δ , the set of finite words over the alphabet
Actδ; the transition relation→ of an LTS then automatically induces a new relation⇒
between states and behaviors, which is defined as the least relation that is obtained by
following the following rules:

(1) For all statess ∈ S, the empty behaviorε does not change state:s
ε=⇒ s,

(2) If by a behaviorσ, we can move from states to states′ (i.e., s
σ=⇒ s′ for some

σ ∈ Act∗δ), and via an actiona ∈ Actδ, we can move from states′ to states′′

(i.e.,s′
a−→ s′′), then by behaviorσ a, we can move directly from states to state

s′′, (i.e.,s
σ a=⇒ s′′).

We write s
σ=⇒ when there is a states′ that can be reached upon execution of the

behaviorσ. Thesizeof a behaviorσ, denoted|σ| is defined as thelengthof σ. For

FORMAL TESTING THEORY 147

brevity, we use the following shorthands throughout this chapter:

(1) The set of behaviors starting in a states is denoteds-traces(s), where:

s-traces(s) def= {σ ∈ Act∗δ | s
σ=⇒ },

(2) The set containing all behaviors of size less thann that start in a states is denoted
s-tracesn(s), where:

s-tracesn(s) def= { σ ∈ s-traces(s) | |σ| < n},

(3) The set of behaviors consisting of actions only is denotedtraces(s), where:

traces(s) def= Act∗ ∩ s-traces(s),

(4) The set of outputs (or quiescence) that can be observed from a set of statesS′ is
denotedout(S′), where:

out(S′) def=
⋃

s∈S′
{x ∈ ActU ∪ {δ} | s x−→}

(5) The set of states reachable from a states is denotedder(s), where:

der(s) def= {s′ | ∃σ ∈ Act∗. s
σ=⇒ s′},

(6) Given a set of statesS′, then the set of states that are reachable from one or more
states inS′, after performing a behaviorσ is given byS′ afterσ, where:

S′ afterσ
def= {s′ | ∃s ∈ S′. s

σ=⇒ s′}.
WhenS′ consists of a single states only, we writes afterσ rather than{s} afterσ.

A crucial feature of Labeled Transition Systems is the possibility to specifynon-
deterministicsystems, i.e., systems for which the effect of executing an action in a
state is not pre-determined. This means that after executing some behaviorσ in a state
s, the system can be in any of the reachable statess after σ. In contrast, a system is
deterministicif none of its behaviors can reach more than one state.

Conformance testing. Conformance testingis the act of assessing whether an im-
plementation of a system does what is prescribed by a specification of the system. We
focus on a conformance relation for dynamic behaviors, calledioco. The conformance
relation formalizes the relation between implementations and specifications. Instead
of real implementations (which are black-box, non-formal objects), it assumes there
is somelabeled transition system that exactly describes its behaviors; theioco con-
formance relation is therefore a relation between amodel of an implementationand a
specification. Only a subset of LTSs is assumed to represent real implementations, viz.
input-enabledLTSs. An LTSL is input-enabledwhen it acceptsall inputs inall states
it can reach. If the LTSL ∈ L(ActI , ActU) is input-enabled, we callL an input/output
transition system(IOTS), and the set of all IOTSs over inputs ActI and outputs ActU
is denotedIO(ActI , ActU).

148 TEST-BASED MODELING

The main idea behind the conformance relationioco is as follows. Given an arbi-
trary behaviorσ of the specification, and suppose the implementation somehow is able
to mimic this behavior. In order for the implementation toconform tothe specifica-
tion it may subsequently produce only outputs that are predicted by the specification.
Note that we do not demand that all predicted outputsare (at some time) produced.
Formalising this intuition, we obtain the following definition:

Definition 11.2.2. Let L ∈ L(ActI ,ActU) be a specification, andI ∈ IO(ActI ,ActU)
an implementation.I is a ioco-correct implementation ofL, denotedI iocoL, when:

∀σ ∈ s-traces(L). out(I afterσ) ⊆ out(L afterσ) (11.1)

Example 11.2.3. As an example of theioco-implementation relation, we consider
the two input-output transition systemsL1, L2 ∈ IO({m?}, {c!, t!}), depicted in Fig-
ure 11.1. Both model a coffee-vending machine, wherem? represents the insertion of
money,c! represents coffee andt! represents tea. We find thatL1 iocoL2 (i.e., an im-
plementation may be more selective in its output, so, even after the behaviorm? δ m?,
the implementation is allowed to produce onlyc!, whereas the specification permits
outputt! as well).L2 iocoL1, on the other hand, does not hold (i.e., an implementation
may not produce unpredictable outputs: the outputt! is possible inL2 after executing
behaviorm? δ m? t!, but it is not possible inL1 after executing the same behavior).
Note that by removing transitiont! from L1, L1 ioco L2 no longer holds, because we
then introduce a possibility to observe quiescence inL1, which is not allowed byL2:
the sequencem? m? would give rise to quiescence inL1, butL2 would give rise to the
outputst! or c!.

f
ff

f f

f
ff

f f

�
�

�

@
@

@

�
�

�

@
@

@

m? m?

m?t!

m?

m?

m?
c!

L1

m? m?

m?t!

m?

t!

c!
m?

m?

L2

Figure 11.1: Two input-output transitions systems.

Since the model for the implementationI is not necessarily known, proving thatI iocoL
holds is usually not feasible, which is whytestsare often derived fromL that can be
executed on the running implementationI to obtain confidence thatI iocoL holds (or
not). Tretmans [117] provides a detailed study ofioco, and also gives a sound and com-
plete test case derivation algorithm for testing forioco conformance. This algorithm
underlies the tool TorX [10]. Note that the completeness result says that a test can be

TEST-BASED MODELING 149

derived to detect any non-conformance. It does not state that by running such a test
once, the non-conformancewill be detected.

Testing for ioco-correctness is in practice not exhaustive, since e.g., infinite be-
haviors of a system (if present) are never tested, due to the finite nature of the testing
activity. We weaken generalioco to n-boundedioco which makes the finiteness in
depth explicit.

Definition 11.2.4. LetL∈L(ActI ,ActU) be a specification and letI∈IO(ActI ,ActU)
be an implementation. Letn ∈ N be an arbitrary natural number. We say thatI is an
n-boundedioco-correct implementation, denotedI n-iocoL, when:

∀σ ∈ s-tracesn(L). out(I afterσ) ⊆ out(L afterσ) (11.2)

n-Boundedioco-correctness guarantees that all behaviors of the implementation which
are of length smaller thann are followed by an observation that is permitted by the
specification. Behaviors of lengthn or larger are therefore ignored.

11.3 Test-based modeling

In practice, most systems (e.g., legacy systems and third party components), do not
come with an adequate formal specification, which means that model-based testing
techniques cannot be applied out-of-the-box. Theoretically, this problem could be
solved by employingautomata learningtechniques, such as Angluin’s learning al-
gorithm [2], to obtain these models. However, to be industrially applicable as a tech-
nique, a practical learning algorithm should be able to deal with systems that have very
large state spaces, usually even infinite ones (which prohibits the use ofFinite State
Machine-based techniques); Angluin’s algorithm currently seems to be unfit for such
systems [12].

Most research focuses on optimizing Angluin’s algorithm. We take a different ap-
proach, one that is orthogonal to the representation problem that is solved by Angluin’s
algorithm. In this section, we outline our test-based modeling algorithm, which can
be used to obtain apartial (in depth) modelfrom a system. The algorithm relies on
ioco-based test techniques. In Section 11.4, we discuss three heuristics that make the
algorithm described in this section applicable for industrially sized systems, and that
give rise to partiality in the ‘width’ of the model.

Representing models: valid suspension automataThe non-deterministic behavior
of a system is a major source of complexity when learning its model by experiment-
ing. A straightforward determinization of the learnt model is in general impossible
without compromisingiococonformance. We therefore recall the definition ofsuspen-
sion automata(SA) [117]. Suspension automata are deterministic LTSs with explicit
inputs, outputs and a quiescence labelδ, which is considered to be an output, and
no internal actions. We denote the set of all SAs over inputs ActI and outputs ActU

150 TEST-BASED MODELING

by Lδ(ActI , ActU). Tretmans [117] describes a transformation∆:L(ActI , ActU) →
Lδ(ActI , ActU) that converts an arbitrary LTS with inputs and outputs to a suspension
automaton. It satisfies the following property:

Theorem 11.3.1(Tretmans [117]). Let L ∈ L(ActI , ActU) be a specification, and let
∆(L) be its SA, with initial statesδ. Then, for all implementationsI:

I iocoL iff ∀σ ∈ traces(sδ). out(I afterσ) ⊆ out(sδ afterσ) (11.3)

The implications are that we can use the suspension automaton obtained from a speci-
fication when testing forioco-conformance instead of the specification itself. We write
I ioco M for a suspension automatonM whenI is ioco-conform to a specification
represented byM . There is, however, a large class of suspension automata that do not
correspond to specifications given by LTSs, as illustrated below. This means that care
should be taken that any test-based modeling algorithm or heuristic stays within the
fragment of SAs for which an LTS specification exists.

Example 11.3.2. Consider suspension automatonM1 from Figure 11.2.M1 models
an ‘anomalous’ system: it can produce an outputafter an observation of quiescence
(in statep1), and, it has a state (viz. statep0) in which the system is neither quiescent,
nor does it produce output. Next, consider suspension automatonM2 (Figure 11.3).

e
ex! a?

δ

p1

p0

Figure 11.2: SAM1.

e e
e e

e
a? b?

δ
δ δ

δ δ

q0 q1 q2

q3 q4

Figure 11.3: SAM2.

e e
e

e
e

δ δ

b? b?

δ δ

δ
a?

s0 s1
δs2

δ

b?e
e

Figure 11.4: SAM3.

The traceδb? is a valid trace inM2, the traceb? is not. Hence, here the observation
of quiescenceaddsnew possibilities, which is impossible in SAs derived from LTSs.
Further,M2 is ‘instable’ after the observation of quiescence:M2 allows for ab? after
one observation ofδ, but not after two observations ofδ. M3 on the other hand, does
represent the behavior of an SA that could have been the result from transforming
an LTS to an SA. An LTS that would correspond (ioco-wise) toM3 requires a silent
transition to move from the initial state (in which botha? andb? are possible) to a state
in which onlyb? is possible (see also [124] for a transformation from a subclass of SAs
to LTSs). �

In [124], it is shown that when an SAM = 〈S, sδ,Actδ,→〉 satisfies the following four
requirements (it is then calledvalid), it exactly corresponds to an LTS specification for
ioco:

(1) M should benon-blocking, i.e., for any reachable state inM , there is at least one
enabled output (this can also bequiescence),

TEST-BASED MODELING 151

(2) M should bequiescent reducible, i.e., any behaviorσ that can follow an obser-
vationδ, should also immediately be possible, i.e., without first observingδ,

(3) M should beanomaly-free, i.e., in none of the behaviors ofM , a non-quiescent
output (i.e., an actionx ∈ ActU different from δ) may immediately follow a
quiescent output (i.e.,δ)

(4) M should bestable, i.e., the behaviorsafterobserving quiescence are not changed

by observing quiescence repeatedly. For instance: ifs
δ−→ s′

δ−→ s′′, then it must
be true thattraces(s′) = traces(s′′).

The transformation function∆ of [117] always yieldsvalid SAs (see [124]). This
means that validity is a requirement that is respected by all suspension automata that
can be derived by translating LTSs.

Learning hypothesis and oracles ioco-Based testing is rooted in several assump-
tions, collectively known as thetesting hypothesis, the most important assumption be-
ing that implementations can be modeled using input/output transition systems. These
assumptions make testing practically applicable. We strengthen the testing hypothesis
with the following assumption, leading to thelearning hypothesis:

all output actions (and quiescence) that can follow an experiment (sequence of
inputs and outputs or quiescence) can, and will be observed by conducting the
same experiment a finite (a priori known) number of times.

Note that the learning hypothesis quantifies the fairness of the resolution of a non-
deterministic choice in a system, without attaching real values to this resolution. The
learning hypothesis provides us with a powerful oracle: the system-under-test itself.

Algorithm Let I be an (unknown model of an) implementation of a system. Algo-
rithm 1 (hereafter referred to as the TBM-algorithm) automatically constructs a sus-
pension automatonH, such thatI N -iocoH holds upon termination of the algorithm.
By ‘closing’ it using the technique described in [124], it even becomes avalid SA such
that I iocoH holds. This closing, however, has no real practical significance, but is
only there to guarantee general correctness for theioco theory and demonstrates that
validity can be achieved; practical implementations of the TBM algorithm can safely
omit this step, which is why it is omitted in the current exposition.

The TBM-algorithm computes a tree-like hypothesis (withδ-loops) that is such
that I is at leastN -boundedioco correct w.r.t.H. The learning phase(lines 3–8) is
the most crucial part of the algorithm. In this iteration, the hypothesisH is tested for
n+1-boundedioco-correctness, and, possibly modified to cope with counterexamples
(lines5-6). These counterexamples (line4) are obtained by means of standard model-
based testing techniques; in particular, we use theioco-theory and test derivation to
test the hypothesisH against the real implementation. The testing can be done in e.g.,
an on-the-fly manner which is implemented in [10]. Theextension phase(line 9),

152 TEST-BASED MODELING

Algorithm 1 Basic TBM-algorithm.
Pre: ImplementationI with inputs ActI and outputs ActU and depthN ∈ N
Post: Suspension AutomatonH = 〈S, sε, Actδ, T 〉, where:

- S = {sσ | σ ∈ Σ}, with Σ = Act∗δ \ Act∗δ δδ Act∗δ
- T is computed by the algorithm.

1: n, T := 0, ∅;
2: while n 6= N do
3: while ¬(I (n+1)-iocosε) do
4: choosecounterexampleσ x ∈ Σ for ‘I (n+1)-iocosε’ with |σ| = n;

5: if x = δ then add transitionssσ
δ−→ sσδ andsσδ

δ−→ sσδ to T ;
6: elseadd transitionsσ

x−→ sσx to T ;
7: end if
8: end while
9: for all a ∈ ActI , sρ ∈ der(sε) with |ρ| = n, addsρ

a−→ sρa to T ;
10: n := n + 1;
11: end while

extends then+1-boundedioco-correct hypothesis at each node at depthn with new
input transitions.

The size of the state-space of the hypothesis that is learnt by the TBM-algorithm
is bound from below by|Actδ \ ActU |N and from above by|Actδ|N . The number of
experiments (tests) that are needed is also bound from below byM · |Actδ \ ActU |N .
Note thatM is the maximal number of times an experiment must be repeated to ob-
serve all outputs that might follow, which, by virtue of the learning hypothesis, exists.
A complicating factor in practice is that conducting a single experiment of lengthJ ,
consisting ofU outputs (U ≤ J), is only guaranteed to succeed inMJ tries, due to the
non-determinism of the implementation. Statistics may be used to find out the expected
number of experiments, based on the actual observed frequencies of outputs following
an experiment, but we leave this as a topic for future research.

Example 11.3.3. Applying the TBM-algorithm withN ≥ 2 on IOTS L2 of Fig-
ure 11.1, we obtain the hypothesis of Figure 11.5 after variablen of the algorithm
has been incremented to2 (line 10). The depicted hypothesis is constructed as fol-
lows: initially, the hypothesis consists of the statesε only, and the only experiment
preventingI 1-iocosε is an observation of quiescence; the hypothesis is extended with
a δ-transition and aδ-loop to statesδ. The transitionm? to statesm? is subsequently
added in line9. In the next iteration, the two experiments violatingI 2-ioco sε are
m?t! andm?δ, so the hypothesis is extended accordingly, et cetera. �

HEURISTICS 153

gsε

gsδ
gsm?

g sm? δ
g sm? m?

g sm? t!
gsδ m?

!!!!!!!!

aaaaaaaa
!!!!!!!!

aaaaaaaa

δ m?

δ

δ

δ
m? t!m?

Figure 11.5: Hypothesis for IOLTSL2 whenn is incremented to2.

11.4 Heuristics

As a consequence of the large number of required experiments, the TBM-algorithm
has little practical significance. Our hypothesis is that the extension phase of the TBM-
algorithm is a root cause in the exponential blow-up of the state-space, since the num-
ber of different outputs that can follow an experiment is for most sensible systems
severely limited. Reducing the number of newly introduced inputs therefore leads to
a large reduction in the state-space that is built. Consequently, the number of experi-
ments needed to build and validate the hypothesis is also reduced. Not all inputs can
be removed without compromising the correctness of the TBM-algorithm, only some
can. On the one hand, valid suspension automata always remain non-blocking and
anomaly-free by removing input transitions [124]. On the other hand, a valid sus-
pension automaton may turn into a non-quiescent reducible or unstable suspension
automaton by removal of a randomly chosen input transition. This is demonstrated in
Example 11.4.1.

Example 11.4.1. Let M3 be given by the suspension automaton of Figure 11.4
(page 150). Clearly,M3 is a valid suspension automaton. Removing the transition

s0
b?−→ will make M3 non-quiescent reducible, since in that case,δ b? is a valid be-

havior starting ins0, but b? no longer is. Removing transitions2
b?−→ will make M3

unstable, as the behaviors in statess1 ands2 are different, while both states can be
reached by one and twoδ transitions, respectively. �

In the remainder of this section we study three heuristics that allow us to safely prune
the state-space of the hypothesis dynamically, i.e., the heuristicspreserve the validity
of the computed suspension automaton, while, at the same time, the heuristics try to
weed out branches in the hypothesis that are uninteresting from some particular point of
view. The heuristics achieve this by preventing the addition of inputs that are somehow
not rewarding. All heuristics are defined for the hypothesisH, in the context of the
TBM-algorithm.

154 TEST-BASED MODELING

Input causality The first heuristic that we study utilizes the logs of the interactions of
a system with its environment, which are often available for diagnostic purposes. Such
a log can be represented by a non-empty set oftracesof an implementationI (i.e.,
subsets oftraces(I)), and we refer to such a collection of traces as ausage profile. The
added value of a usage profile lies in the fact that it implicitly defines a causal relation
between possible stimuli. It is such acausality relationthat is at the basis of our first
heuristic: we only wish to add a specific input action to the computed hypothesis when
that input action is preceded by an input action that also preceded the new input action
in a trace in the usage profile.

Definition 11.4.2. Let I be an implementation, and letU be a usage profile ofI. Input
causalityis defined as a relation< ⊆ (ActI ∪ {⊥})2, where⊥ is a reserved constant,
and:  ⊥ < b iff ∃σ ∈ Act∗U , σ′ ∈ Act∗. σbσ′ ∈ U

a < b iff ∃σ, σ′′ ∈ Act∗, σ′ ∈ Act∗U . σaσ′bσ′′ ∈ U
⊥ < ⊥ iff not ∃σ, σ′ ∈ Act∗, b ∈ ActI . σbσ′ ∈ U

(11.4)

Intuitively, ⊥ < ⊥ holds if no input action appears in a usage profile;⊥ < b holds if
there is a trace in the usage profile for whichb is the first input action that appears in
this trace;a < b holds whenever there is a trace in which inputa is (after some possi-
bly empty sequence of outputs) followed by inputb. Note that input causality does not
depend on a usage profileper se: it can also be derived from available partial specifica-
tions or manually constructed via interviews. It involves high-level information, which
often does not need deep knowledge about the system. Modifying the input causality
relation by hand can be used to select and isolate behaviors that have to (should) be
avoided in learning the system.

Example 11.4.3.SupposeU = {a? x! x! a?, a? b? y! a?, y! b? b? d?} is a given usage
profile. The causality relation that can be obtained from the usage profile is:⊥ < a,
⊥ < b, a < a, a < b, b < a andb < d. �

Note that in general, it is possible to obtain a causality relation in which there are inputs
a that are never followed by another input, i.e.,∀b ∈ ActI . a 6< b. One way to deal with
such inputs is to explicitly ‘close’ the causality relation, i.e., we add the causalitya < c
for all inputsc that occurred first in the usage profile. The closed causality relation is
denoted<c.

Example 11.4.4. Take again the usage profile of Example 11.4.3. Inputd? is, for all
traces ofU , never eventually followed by another input action. This also follows from
the causality relation< that is constructed on the basis ofU : neitherd < a, nord < b,
nor d < d. If we wish to use input causality as a means to select which inputs will
be considered next when extending a hypothesis, we would be stuck after inputd. To
prevent this from happening, we act as if the system has not had an input before at such
a point. This is formalised by the closed causality relation which for this example adds
d <c a andd <c b to < (only these, since we have⊥ < a and⊥ < b). �

HEURISTICS 155

The closed causality relation is used to selectively add new inputs to the hypothesis
in the TBM-algorithm. We define the following set of transitions in the context of the
TBM-algorithm:

Tcw
def= {(sσ, a, sσa) ∈ S × ActI × S | |σ| = n ∧ sσ ∈ der(sε) ∧ trailing(σ) <c a }

By trailing(σ), we mean the last input action inσ, if it exists, and⊥ otherwise.Tcw

contains the set of input transitions that extend statessσ at depthn with an inputa if and
only if the inputtrailing(σ) that was last found on the pathσ to a statesσ was causally
beforethe input actiona. Then heuristic 1 is obtained by replacing the assignment to
T in line 9 in the TBM-algorithm with the following assignment:T := T ∪ Tcw.

Penalty functions The selection of interesting inputs can also be based on infor-
mation derived from the hypothesis model itself. From a learner’s (or tester’s) point
of view, the outputs a system generates are valued higher than the inputs the learner
provides: the outputs are in some sense new to the learner (tester). Based on this view-
point, we aim at quantifying the amount of valuable information a particular behavior
(i.e., a trace) adds to the hypothesis. We start with the basic observation that the length
of the largest interval of inputs (after removing observations of quiescence, since qui-
escence means the system remains in a stable but non-verbose state) in a behavior is a
good indicator for the amount of its information. Letλ:Act∗δ → N be the function that
returns the length of the largest subsequence of input actions (not counting possible
observations of quiescence) in a behavior:

λ(σ) = max{n | ∃a1, . . . , an ∈ ActI . ∃σ′, σ′′ ∈ Act∗δ . σ = σ′a1δ
∗ . . . anδ∗σ′′}

Whenλ(σ) > t for some thresholdt ∈N, it is reasonable to consider the information in
behaviorσ too low to invest in further investigating this behavior. This is because the
interval of input actions of lengthλ(σ) has not led to new observations in the meantime;
in the extreme case, the system might even ‘hang’ at such a point, which means that
adding any number of inputs will not give rise to a visible output.

Example 11.4.5. Take two tracesσ1 = a? b? x! andσ2 = a? δ b? c? x!. We have
λ(σ1) = 2 andλ(σ2) = 3. �

Let Tpf be a set of transitions, defined in the context of the TBM-algorithm, now
extended with thresholdt as an additional input parameter, as follows:

Tpf
def= {(sσ, a, sσa) ∈ S × ActI × S | |σ| = n ∧ sσ ∈ der(sε) ∧ λ(σ) ≤ t}

Tpf contains the set of input transitions that extend statessσ at depthn with an inputa
if and only if the largest interval of input actions that occurs in the pathσ is at most size
t. Note that adding an input may lead to an experiment with an input interval of size
t + 1; such an experiment will subsequently not be extended further. Alternatively, one
could prevent such experiments to be created in the first place by requiringλ(σ a) ≤ t.
Heuristic 2 is then obtained by replacing the assignment toT in line 9 in the TBM-
algorithm with the following assignment:T := T ∪ Tpf .

156 TEST-BASED MODELING

Example 11.4.6. Consider Figure 11.5. Takingt = 0 as a penalty, we only add an
additional input to experiments that do not yet contain inputs. Using heuristic 2 to
decide which states will be extended with another input would not have introduced the

transitionsm?
m?−−→ sm? m? in Figure 11.5, while all other transitions would remain

unaffected. Of course, in practice one wishes to havet > 0. �

One can envision several extensions and modifications to this basic heuristic, all of
which are in a similar vein. For instance, instead of using a constantt to compare
with in the setTpf , one could use a function that depends on, e.g., the length of the
experimentσ.

Non-repetitive quiescence Repetitive quiescence is a powerful tool in the test-based
modeling as it enables one to find out which behaviors lead to outputs, which never do,
and which lead to non-deterministic behavior when both quiescence and actual outputs
are valid observations. The observation of quiescence is also quite costly: in practice,
it takes time to conclude that no output will come. While the reasons for doing so
may sound rather technical, disabling the notion of repetitive quiescence speeds up the
execution of the TBM algorithm. Theoretically, it turns the TBM-algorithm into an
algorithm for test-based modeling with respect to a slightly weaker testing relation,
known asioconf [117]. Let Tq be a set of transitions defined in the context of the
TBM-algorithm as follows:

Tq
def= {(sσ, a, sσa) ∈ S × ActI × S | |σ| = n ∧ sσ∈der(sε) ∧ σ ∈ Act∗}

Tq contains the set of input transitions that extend statessσ at depthn with an inputa
if and only if the experimentσ did not end with aδ observation. Heuristic 3 is obtained
by replacing the assignment toT in line 9 with the assignment:T := T ∪ Tq.

Example 11.4.7. Again, consider Figure 11.5. Using heuristic 3 to decide which
states will be extended with another input would not have introduced the transition

sδ
m?−−→ sδ m? in Figure 11.5, while all other transitions would remain unaffected.�

Combining heuristics All of the heuristics proposed in the previous sections are
complementary, which means that all heuristics can be combined. LetX be a non-
empty subset of{cw, pf, q}. A combination of heuristics is achieved by replacing
line 9 of the TBM-algorithm with the assignmentT := T ∪ (

⋂
x∈X

Tx).

Example 11.4.8. Consider Figure 11.5. Combining heuristics 2 (witht = 0) and 3
would have reduced its state space at depth 2 by two states: statessδ m? andsm? m?, in-
cluding the transitions that lead to these states would not have been part of Figure 11.5,
while all other transitions would remain unaffected. This is a reduction of nearly 30%
of the original state space. At greater depth, the influence is even larger. �

CASE STUDY: THE CONFERENCE PROTOCOL 157

11.5 Case study: the conference protocol

The conference protocol provides a rudimentarychat-box serviceto users participating
in a conference. A conference is formed by a collection of users that can exchange
messages with all conference partners in that conference. The unbounded number of
messages that can be exchanged makes the system effectively infinite-state. The part-
ners in a conference can change dynamically usingjoin andleaveprimitives. Different
conferences can exist at the same time, but a user can only participate in at most one
conference at a time. The conference protocol relies on the service provided by UDP,
i.e., data packets may get lost or duplicated or be delivered out of sequence but are
never corrupted or mis-delivered.

We have used our approach for learning and testing a running ANSI-C implemen-
tation of theconference protocol. This setup was previously used to benchmark testing
theories [10] usingmutant testing1. The mutants are ANSI-C implementations of the
conference protocol that have been derived from the correct implementation by delib-
erately injecting a single error. These erroneous implementations are categorized in
three different groups:no outputs, no internal checksandno internal updates. The
first group contains implementations that sometimes fail to send output when they are
required to do so. The second group contains implementations that do not correctly
check whether they are allowed to participate in a conference, and the third group con-
tains implementations that do not correctly administrate the set of conference partners.
Given the large set of documented mutants, the conference protocol makes for an ideal
setup for measuring the efficacy of the approach for regression testing and for the test-
ing of different configurations, since one can use the documentation to validate the
results found by the TBM methodology.

Experimental setup Table 11.1 highlights which combination of heuristics was used
for a specific hypothesis. All hypotheses were derived from running the –what is be-
lieved to be– correct implementation of the conference protocol, connected to a pro-
totype implementation of our TBM-algorithm. Two different usage profiles were used
in our experiments, and these were also used to determine the size of the input inter-
face (the set ActI) when the input causality was used. The first usage profile (I) has
|ActI | = 19 and is chiefly a run of the conference protocol in which all parties be-
have nominally. The second usage profile (II) has|ActI | = 31 and consists of three
runs which combine aspects of nominal behavior with ‘bad weather’ behavior. Each
hypothesis represents the best hypothesis that can be guaranteed by ‘learning’ the im-
plementation for 48 hours. For the operationalization of the observation of quiescence
we adopted the standard approach in testing by setting a time-out on the observation
of output (i.e., we observe quiescence when the system did not produce output for two
seconds when asked for output). The learning hypothesis was operationalized by con-
ducting each derivable (test) experiment 15 times. Note that since longer experiments

1The conference protocol implementation and its mutants, together with a more detailed description, are
available viahttp://fmt.cs.utwente.nl/ConfCase/

158 TEST-BASED MODELING

Heuristic↓ / Hypothesis→ A B C D E F G

cw x x x x x x
pf 1 1 2 2
q x x x

Table 11.1: Characteristics of the computed hypotheses (identified by the letters A
through G). A number for heuristicpf indicates the heuristic was used in combination
with the named number as threshold. The ‘x’ for heuristiccw andq indicates that these
heuristics were used.

partly rerun shorter experiments, the confidence in the outcomes of shorter experiments
is generally much higher.

Figure 11.6 (page 159) shows the growth characteristics in terms of number of
states for a given depth for each computed hypothesis (the I and II preceding the num-
ber indicate the used usage profile for obtaining the particular hypothesis). The growth
characteristic is an important indicator as it can be used to estimate the overall run-time
that is required to guarantee a certain depth-of-correctness. For instance, hypothesis I-
E is more likely to reach depth-of-correctness 15 than, e.g., I-D. Additional learning
time can therefore best be put into I-E.

Test results The computed hypotheses were subsequently used to test the 27 mutants
of the system. For this, we used standard model-based testing techniques. We used
a test suite consisting of tests that aimed at covering each output transition (including
quiescence) of a used hypothesis. The test results are listed in Table 11.2. In some
cases, it was not immediately clear whether the test-failure was due to an incorrect
hypothesis (recall that each experiment was conducted 15 times, which may have been
too conservative for some experiments) or the mutant. These cases were resolved by
hand using the informal documentation and a formalization thereof.

Profile↓ / Hypothesis→ A B C D E F G

I 1 7 13 10 15 9 10
II 1 10 13 14 20 12 13

Table 11.2: Test results obtained by testing mutants of the conference protocol against
the derived hypotheses. The figure indicates the total number of correctly identified
mutants.

Analysis The derived hypotheses are remarkably effective at singling out the mu-
tants, although some hypotheses perform significantly better than others. For instance,
the combined detection power of hypotheses I-E and II-E (there is a large overlap in
the mutants that were detected) turns out to be 85% of all mutants.

CASE STUDY: THE CONFERENCE PROTOCOL 159

I−A

I−EI−C

I−G

I−F

I−D

I−B

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14

I−A I−D

I−C

I−E

I−G

I−F

I−B

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14

Figure 11.6: Growth characteristics for the hypotheses with inputs determined by usage
profile I and II. The horizontal axis denotes the depth of a particular hypothesis; the
vertical axis depicts the number of states of a particular hypothesis.

160 TEST-BASED MODELING

Analyzing the influence of depth-of-correctness on the defect detection capability,
we find that usage profile I and usage profile II give slightly different results. For usage
profile I, defect detection at a given depth-of-correctness is smaller than defect detec-
tion at the same depth for usage profile II. Since usage profile II includes ‘bad weather’
behavior, this may suggest that most robustness issues can be found at relatively small
depths. This may be explained from the fact that programming for robustness is gen-
erally trickier than programming for nominal behavior. Issues with nominal behavior
generally show at greater depth. An explanation for this may be the increase in intrinsic
complexity in nominal behaviors with depth.

It is also clear from the test results that there is no single combination of heuris-
tics that should be used, even though the combination of heuristics that was used for
hypothesis E turned out to be quite effective in our setting. Experiences with other
combinations of heuristics and different usage profiles (not reported here) show that
the usage profiles appear to be a minimum requirement. A combination of several
heuristics using more than one usage profile to compute different hypotheses appears
to be most effective. The effect of the heuristics is clearly illustrated by the great dif-
ference in detection power of the computed models without heuristics (only I-A and
II-A), and with heuristics (all other hypotheses).

11.6 Summary and perspectives

In this chapter, we described a pragmatic approach to obtaining models of a system
using black-box testing techniques, with the goal of using these models for regression
testing. The approach has been demonstrated using a well-known case study and the
effectiveness of the approach has been illustrated using mutant-testing. The results of
the case study, viz. the detection of 85% of all mutants illustrate that the approach is
feasible, and, moreover, effective for regression-testing and for the testing of different
configurations.

From a practical point of view, the results are encouraging. Still, there is also
some room for improvement, which is demonstrated by the fact that in our case study,
approximately 15% of the mutants elude detection. Concerning issues for future re-
search, we feel that it is important to develop additional heuristics and use techniques
from statistics. It is important to ascertain that the new heuristics respect validity of
the computed hypothesis if one wishes to stay within the realm ofioco-based testing.
However, the issue of cleverer ways to represent a hypothesis becomes more important
with the increase of the state-space, but also with the availability to somehow observe
the system’s state. While our experiments show that for now, representation is not
yet an issue, it will become problematic when experiments are run for weeks rather
than days. At that point, representation techniques such as employed and developed by
Angluin [2] become important. Reconciling Angluin’sL∗ algorithm with ioco-based
testing may, however, be quite tricky, if not impossible, as (1) all transformations have
to respect the validity of suspension automata, and (2) the basic starting assumptions
are different (e.g.,ioco-based testing does not require the implementation to have a

SUMMARY AND PERSPECTIVES 161

finite number of states).
Applying the TBM methodology in an industrial setting is expected to require little

effort, whereas the potentials are immense, as indicated by our case study. The effort
that is required is certainly less than the effort that is required to apply MBT techniques,
as a major time-consuming factor in MBT is the manual construction of a suitable
model. There is, however, a large overlap in the techniques and tools that are required
to get the TBM methodology and MBT techniques up and running and interact with
the actual system; in fact, the TBM methodology may be a first step in introducing
MBT techniques in an industrial environment. There are some practical issues to be
overcome. For one, the learning hypothesis implies that the outcomes of an experiment
are only reliable when the experiment was conducted a number of times. However, this
requires a hard or soft reset of the system to ensure that the system is again in its initial
state. In large systems, such a reset may consume a significant amount of time, and,
therefore has a negative impact on the performance of the TBM algorithm. In some
cases, a reset may be avoided, e.g., if one can (partially) observe the current state of the
system. The theoretical implications of partial observability of state information have
not been studied in this context, and they may give rise to more efficient algorithms.

162 TEST-BASED MODELING

Chapter 12

Model-based diagnosis

Author: J. Pietersma, A.J.C. van Gemund

12.1 Introduction

Fault diagnosis is the process of finding the root causes of non-nominal system behav-
ior. In the last decades it has become more challenging as technology development
shows a trend of ever increasing system complexity driven by innovation, as reflected
by Moore’s Law, and by demand from society. Software which for many systems has
a crucial role of integrating system functionality, creates even more complexity. Fur-
thermore, diagnosis is a combinatorial problem with respect to the number of system
components. Due to the increasing complexity and the inherent combinatorial nature,
fault diagnosis is a challenging engineering problem.

During the integration and testing phase difficulties with diagnosis can increase a
system’s time-to-market. During operational life, diagnosis also affects the dependabil-
ity of systems. Inefficient diagnosis may lead to long down-times and reduced system
availability. For systems that have limited or no possibility for inspection and repair,
e.g., satellites, self diagnosis is the very first step in system autonomy. This requires a
built-in diagnosis function, usually implemented in software, which further increases
the complexity of the system and its development.

From the field of artificial intelligence, Model-Based Diagnosis (MBD) has been
put forward as a solution for this problem. MBD is a method of automated model-
based reasoning that automatically infers a diagnosis from a compositional, behavioral
system model and real-world observations. MBD is faster and less error-prone than
human reasoning. In contrast to methods that directly map symptoms to causes, MBD
captures correct system functionality and therefore isolates all faults that cause devi-
ating system behavior, including those that were not anticipated. MBD also adapts

163

164 MODEL-BASED DIAGNOSIS

better to evolving system design because models are derivable from this design, as they
capture system functionality that closely resembles it.

To be applicable in an industrial setting, MBD should efficiently yield diagnostic
results with a certain level of quality. This has a number of consequences.

(1) MBD should use an implementation of a sound and efficient, i.e., fast, fault
finding algorithm.

(2) Models should be amenable to fast fault finding. This puts a limit on model
complexity.

(3) The diagnostic quality should be predictable and quantifiable.

(4) The benefits of MBD should outweigh the costs that are invested in modeling.

In the past, academia have given most attention to the first point. The last three points
are typical issues that surface in an industrial environment, such as ASML. These three
issues, model complexity, diagnostic quality, modeling costs, and their underlying re-
lations are the subjects of our research as performed in the Tangram project.

In this chapter we discuss the obtained research results. We begin by explain-
ing the principles behind MBD. We discuss the modeling issues that most strongly
affect model complexity, diagnostic quality, and modeling costs. These issues are:
model composition, the use of behavioral modes, modeling of sensors, modeling time-
dependent behavior, and model derivation. Furthermore, we discuss how to measure
diagnostic quality and present a summary of all research results. In Chapter 13 we
present the actual case studies as performed in the Tangram project and discuss the
costs and benefits of MBD as applied at ASML.

12.2 Methodology

Fault diagnosis finds the root causes of differences between expected and actually ob-
served system behavior. Based on first principles, this expected behavior is composi-
tionally modeled with logical constraints which are conditional upon the system health.

Figure 12.1 shows the relation between reality and models. For simulation a model
is used to predict the output based on the known input and health state. This is also
used for model-based testing in which a test outcome is based on the comparison be-
tween real and simulated outputs, see Chapters 9 and 10. For diagnosis the unknown
health state is inferred from the known, i.e., observed inputs and outputs. The inference
requires the algorithm to automatically reason in terms of the model and observed vari-
ables. The automatic reasoning traces back the causes of observed behavior to faulty
components. This type of reasoning requires a declarative rather than an imperative
model. The latter are more commonly used for simulation, such as used, e.g., with
Matlab.

METHODOLOGY 165

Figure 12.1: Relation between reality and models for simulation and diagnosis.

MBD was first proposed in [107] and [71] and implemented in the General Diag-
nostic Engine (GDE). Since then a lot of effort has been put in making MBD com-
putationally more efficient. Different strategies have been pursued such as conflict
detection [125], hierarchical approach [48], and using different knowledge representa-
tions [47]. At Delft University of Technology, MBD is implemented with a modeling
language called LYDIA . The core of the language is propositional logic, enhanced with
syntactic sugar for easier modeling. Currently a number of different diagnostic engines
and a simulator are available1. An example of another implementation of logic based
MBD is the Livingstone II software tool2. The latter has been used successfully in an
autonomous, fault-tolerant control experiment onboard NASA’s the Deep Space One
probe.

We use the following notations and theory for MBD. First, we present some basic
terminology.

Definition 12.2.1. [Diagnosis Problem] A diagnosis problem∆ is the ordered triple
∆ = 〈M, C,O〉, whereM is the model that represents the system behavior in terms
of propositions over a set of variablesV , C is the set of components contained in the
system, andO ⊂ V is a set of observable variables inM .

Let n represent the component index number andN = |C| the total number of compo-
nents. For each componentcn ∈ C there is a corresponding variablehn representing
its health mode that determines component behavior. We will call these variableshn

health variablesandh = (h1, . . . , hn, . . . , hN) the systemhealth vector.
We assume thatO can be divided in an input vectorx and output vectory such that

O = x ∪ y. For a stateless system the model is represented with a functionfM that

1http://fdir.org/lydia
2http://www.nasa.gov/centers/ames/research/technology-onepagers/

livingstone2-modelbased.html

http://fdir.org/lydia
http://www.nasa.gov/centers/ames/research/technology-onepagers/livingstone2-modelbased.html
http://www.nasa.gov/centers/ames/research/technology-onepagers/livingstone2-modelbased.html

166 MODEL-BASED DIAGNOSIS

maps the health and input vector to an output vector,

y = fM (x, h)

Practically, it is never possible to modelfM for all possible health modes as many
failure modes are not anticipated. More fundamentally, the inverse offM , which would
trivially yield a diagnosis, is hard to derive. In most cases the inverse does not exist as
there are many possible explanations for a particular observation in which case there is
no behavioral mapping toh.

Because of this irreversible mapping we resort to describingM in terms of be-
havioral constraints expressed as propositional sentences. This leads to the following
definition for a diagnosis.

Definition 12.2.2.[Diagnosis] Adiagnosisfor the system∆ = 〈M, C,O〉 and obser-
vationsx0 andy

0
is a setD of diagnosis candidatesdk such thatM ∧ (x = x0 ∧ y =

y
0
) ∧

[∧
dk∈D dk = h

]
6|=⊥.

From Definition 12.2.1 and 12.2.2 it is visible that a diagnosis algorithm should use
an entailment mechanism that finds the setD that is consistent withM ∧ O. The
system modelM describes the system behavior in terms of relations between variables
in the Boolean domain. The relations are expressed with standard Boolean connectives
¬,⇔,⇒,∧,∨.

To illustrate MBD we use the following example system. We abstractly model a
valve as a component with an incoming and outgoing flow, denotedfi andfo respec-
tively. For a healthy valve, the valve control variablec determines the outgoing flow. A
true control variable implies an open valve for which the outgoing flow is equal to the
incoming, and a false control variable implies a closed valve for which the outgoing
flow is zero, i.e., false. The propositions are,

c ⇒ (fo = fi)
¬c ⇒ ¬fo

In our modeling language LYDIA this corresponds to the following code,

i f (c o n t r o l) { f lowOut = f l ow In ; }
e l s e { not f lowOut ; }

wherecontrol corresponds toc, flowOut to fo, andflowIn to fi.
For a diagnosis that is not trivial, the number of observable variables is typically

limited. For this component we assume that only the control variable and the outgoing
flow are observable. The first half of Listing 12.1 shows the complete LYDIA model in
which the valve behavior is dependent on the health variableh.

In LYDIA , the keywordsystem indicates the definition of a component. Health
variables, which are solved by the LYDIA diagnostic engine, are declared by setting
the attributehealth to true. The attributeprobability declares an a priori probability
distribution for the health variableh. This is used as a search heuristic for the diagnostic

METHODOLOGY 167

system Valve (
bool h , f lowIn , f lowOut , c o n t r o l)

{
/ / v a r i a b l e a t t r i b u t e s
a t t r i b u t e hea l t h (h) = t rue ;
a t t r i b u t e p r o b a b i l i t y (h) = h ? 0 .99 : 0 . 0 1 ;
a t t r i b u t e observab le (f lowOut) = t rue ;
a t t r i b u t e observab le (c o n t r o l) = t rue ;

/ / v a l v e model : c o n t r o l= t r u e i m p l i e s open v a l v e
i f (h) {

i f (c o n t r o l) { f lowOut = f l ow In ; }
e l s e { f lowOut = f a l s e ; }

}
}

system twoValves (
bool h [1 : 2] , f lowIn , f lowOut [1 : 2] , c o n t r o l [1 : 2])

{
system Valve v a l v e [1 : 2] ;

f o r a l l (i i n 1 . . 2) {
v a l v e [i] (h [i] , f lowIn , f lowOut [i] , c o n t r o l [i]) ;

}
}

Listing 12.1: LYDIA valve model.

inference. It is also used for the ranking of the inferred diagnoses, since observations
usually admit multiple diagnoses, as shown in the sequel. The attributeobservable
marks those variables that are observable.

AsflowIn is not observable the only exclusive fault that can be detected is that of a
leaky valve. The observations for this fault arecontrol = false andflowOut = true
which is only consistent forh = false. For all other observationsh = false and
h = true are both consistent, which illustrates that limited observability typically leads
to limited diagnosability, i.e., multiple or ambiguous diagnoses.

As in many systems, components share connections which can be sensed for better
diagnostic reasoning. Consider a system of two identical, parallel valves A and B as
depicted in Figure 12.2. The LYDIA model is shown in the second half of Listing 12.1.
Again, each valve has a control variable that, for a healthy valve, determines if the
valve is open or closed, and a variable for the outgoing flow. Both valves are fed with
the same ingoing flow.

If we observe that both valves are commanded open (controlA = controlB =
true) while only valve B has outflow (flowOutA = false, flowOutB = true) we
obtain the diagnoses and accompanying a priori probabilities listed in Table 12.1. Di-
agnosis 1 and 2 are single faults candidates that are equally probable, while diagnosis
3 is a double fault that is less probable.

The second diagnosis, however, does not represent expected physical behavior as

168 MODEL-BASED DIAGNOSIS

Figure 12.2: Two valves system.

hA hB Pr
1. false true 0.0990
2. true false 0.0990
3. false false 0.0001

Table 12.1: Initial diagnosis for two valves, withcontrolA = controlB = true and
flowOutA = false, flowOutB = true.

hA = true impliesflowIn = flowOutA = false which implies that the second valve
would have a failure that spontaneously generates flow. To exclude this non-physical
behavior from the model we need to extend it with the following constraint,

i f (not f l ow In) { not f lowOut ; }

Now the diagnosis reduces to either a single failure of valve 1 or a double failure of
both valves, corresponding to the expected physical behavior of the (failed) system.

12.3 Model composition

In this section we discuss the first steps in modeling a system for fault diagnosis. These
steps are to choose, relevant to diagnosis, the system boundaries and within those
boundaries the level of detail. These choices affect the complexity and usefulness of
the diagnosis. The required level of detail dictates the composition of the model. The
health of each component that is identified in the model is modeled with one health
variable. A principal assumption in the theory of MBD is that health variables are con-
sidered to be independent of each other. This means that in a proper diagnosis model,
components need to be modeled such that this is indeed the case. As mentioned in
Section 12.2, component behavior is modeled conditional on this health variable.

The system boundary and model composition determine the number of health vari-
ables in the model. This number determines the complexity of the model and, in the
worst case, the diagnosis time increases exponentially with it. It also determines the

BEHAVIORAL MODES 169

Figure 12.3: System boundaries for design and diagnosis, withy1 observable.

practical usefulness of a diagnosis. Hence a proper decision on boundary and compo-
sition has important consequences for the complexity and usefulness of the diagnosis.

Selection of the system boundary for diagnosis need not necessarily be in agree-
ment with the boundaries as designed. Consider a simple system topology as depicted
in Figure 12.3. On first sight this system seems to consist of three components that
all share one variabley1. However ify1 is known (i.e., an observable variable), then a
solution for the diagnosis of all three components can be found independently of each
other. Thus, for the purpose of diagnosis, we can consider the three components to
be three independentsystems. Generally speaking, we can find system boundaries by
identifying the set of components that are connected to all other components by ob-
servable variables only. The diagnosis for this isolated set can be found independently
from the others.

To determine the level of detail in the model we need to decide on what level of
detail we require our diagnosis to be. For a digital circuit, e.g., the smallest unit of
interest may be a gate, while for a wafer scanner the subsystem level may be sufficient.
As a general rule of thumb we look at which level system repair and planning actions,
in response to diagnosis, take place. Components that are replaced as a whole by the
system operator should be the smallest unit represented in the model. These compo-
nents are also known as Line Replaceable Units (LRU’s). For autonomous systems,
redundant components are the smallest unit represented in the model.

12.4 Behavioral modes

Fundamental for MBD is that the models describenominal system behavior. This
makes it possible to have a model that lies closely to the system design and diagnose
faults that are not anticipated as opposed to models based on anticipated system fail-
ures, such as models that directly map symptoms to root causes. In this context, faults
are any deviance from nominal behavior. For example, we model an inverter gate as

170 MODEL-BASED DIAGNOSIS

follows,

h => (y=not (x)) ;

leaving the faulty behavior implicit. This type of models is calledweakbecause it is
completely unconstrained for faulty behavior.

For some components however, the failure mode may actually be known and this
knowledge may be used to improve the diagnostic quality, i.e., the diagnosis not only
explains which component is the root cause but alsohow it has caused the observed
behavior. For example, if an inverter has a stuck-at-zero fault mode, we may extend
the earlier inverter model to,

h => (y=not (x)) ;
not (h) => not (y) ;

Such a model is called strong. While improving a diagnosis by providing information
on how the component has failed, this model also poses a problem if a component has
no unique failure mode. Consider the observationx = True, y = True, which can
not be explained by the strong model. This inconsistency results in an empty diagnosis
without any use (zero quality).

From these examples it is clear that we need a combination of both modeling meth-
ods that exploits known failure modes but will never lead to an inconsistency between
model and observations. For this purpose we introduce more failure modes each with
its own type of faulty behavior. The theory of MBD as presented in 12.2 can be ex-
tended to include variables in a finite integer domain. This extension and its effect on
complexity is discussed in [46].

In LYDIA , finite integer domains are implemented with the enumerations type
enum. Using this type and theswitch statement, the inverter model becomes,

type Hea l th = enum { nominal , s tuck0 , s tuck1 , unknown } ;
Hea l th h ;
sw i tch (h) {

Hea l th . nomina l−> {y= not (x) ; }
Hea l th . s t u c k 0−> { not (y) ; }
Hea l th . s t u c k 1−> {y ; }
Hea l th . unknown−> {} / / u n d e f i n e d

}

It is recommended to always leave one mode undefined, in this case the unknown mode.
This insures that, for any observation, there is always at least one implicit explanation.

Another approach to prevent inconsistencies is to have a complete coverage of pos-
sible combinations of inputs and outputs. For the inverter model with a Boolean health,
a failure simply negates the nominal behavior. This can be modeled as,

h = (y=not (x)) ;

There are two disadvantages to this otherwise powerful approach. First, the model can
no longer be used for sequential diagnosis, i.e., diagnosing multiple, sequential obser-
vations with one model to improve the quality of a diagnosis. With a weak model it
is possible to diagnose any sequence, while with a complete model only one sequence

SENSORS AND THE REAL WORLD 171

system Sensor (bool pos , pos_meas)
{

bool h ;

h => (pos_meas=pos) ;

a t t r i b u t e hea l t h (h) = t rue ;
a t t r i b u t e p r o b a b i l i t y (h) = h ? 0 .99 : 0 . 0 1 ;

}

system main (bool pos_meas1 , pos_meas2)
{

bool pos ;

system Sensor sensor1 , s e n s o r 2 ;

s e n s o r 1 (pos , pos_meas1) ;
s e n s o r 2 (pos , pos_meas2) ;

a t t r i b u t e observab le (pos_meas1 , pos_meas2) =t rue ;
}

Listing 12.2: Model of two position sensors.

belonging to a single behavioral mode can be diagnosed. Sequential diagnosis is dis-
cussed in more detail in Section 12.6 in relation to the modeling of time-dependent
systems. Second, current algorithms are optimized for weak fault models.

12.5 Sensors and the real world

A very useful source of diagnostic knowledge is the consistency between different
components and their representation of the physical state of the system and its environ-
ment. It is important to realize that in many cases observations are in fact data collected
by sensors, which should also be modeled as components with behavior that is condi-
tional on their health modes. The nominal behavior of a sensor is correct measurement
of physical parameters in the real world. An underlying model of the physical behavior
of the system and its environment can thus be exploited for diagnostic purposes.

This is illustrated with an example model of two location sensors shown in List-
ing 12.2. If we observe contradicting values for pos_meas1 and pos_meas2 we get a
diagnosis that at least one of the sensors has failed. If we would add a third sensor to
this model, a single deviating sensor would always be unambiguously diagnosed. Such
a model would in fact implement majority voting for diagnostic purposes.

The above can be extended by also including actuators that respond to and act on
real world variables. An example of this is shown in Listing 12.3. This is a model of
a system with two position sensors and two safety pins (with sensors) that must go up

172 MODEL-BASED DIAGNOSIS

Measured positions Best ranked diagnosis Scenario
pos1 pos2 pin1 pin2 sensor1 sensor2 pin1 pin2
false false false false true true true true nominal
true true false false true true true true nominal
true false true true false true true true out of sync,

true false true true but pins up
false true true true false true true true out of sync,

true false true true but pins up
true false false true false true false true out of sync,

true false false true but pin1 is up
true false true false false true true false out of sync,

true false true false but pin2 is up
true false false false false true false false out of sync,

true false false false but pins not up

Table 12.2: Diagnosis scenarios for synchronized pin model.

in case the position sensors are no longer synchronous. Here we have added another
physical constraint that says that the real (physical) positions should always be in sync.
This can be thought of as two sensors connected very robustly to a mechanical frame. If
necessary, the structural health of the frame can also be made conditional on its health.
Table 12.2 shows the best ranked diagnosis results for some scenarios. Note that we
cannot discern between two position sensors failing (interchangeable) but that we can
discern between pin failures.

12.6 Time-dependent systems

Up to this point, we have discussed purely combinatoric systems. In practice, however,
we encounter systems with time-dependent behavior such as intermittency, propaga-
tion time delays, and state. Consider again the single valve model from Section 12.2
(weak model) and suppose that we have a timed sequence of observations where each
observationx becomes a function of time (i.e.,x(t)). If at time t1 the observations are
c(t1) = false (closed valve) ando(t1) = true (flow out) then the diagnosis becomes
h(t1) = false (leaky valve). Let the second set of observations bec(t2) = false and
o(t2) = false, indicating that the leak has stopped. If we assumeh(t1) = h(t2) = h,
i.e., health that is not time-dependent, we use the following model,

system s t a t i c _ v a l v e (bool h , i [1 : 2] , c [1 : 2] , o [1 : 2]) {
system Valve v a l v e [1 : 2] ;

v a l v e [1] (h , i [1] , c [1] , o [1]) ;
v a l v e [2] (h , i [1] , c [1] , o [2]) ;

}

The diagnosis then becomesh = false, as this also explains the second set of obser-
vations due to the weak model. Note that this sequence of observations does not yield

TIME-DEPENDENT SYSTEMS 173

system Sensor (
bool pos , / / t h e r e a l (p h y s i c a l) p o s i t i o n , i n p u t
bool pos_measured) / / t h e measured p o s i t i o n , o u t p u t

{
bool h ; / / h e a l t h

a t t r i b u t e p r o b a b i l i t y (h) = h ? 0 .99 : 0 . 0 1 ;
a t t r i b u t e hea l t h (h) = t rue ;

h => (pos_measured=pos) ;
}

system main (
/ / measured p o s i t i o n o f chuck 1 and 2
bool pos1_measured , pos2_measured ,
/ / measured p o s i t i o n o f p in 1 and 2
bool pin1_measured , p in2_measured

)
{

bool pos1 , pos2 ; / / r e a l p h y s i c a l p o s i t i o n s o f chuck 1 and 2;
bool pin1 , p in2 ; / / r e a l p h y s i c a l p o s i t i o n o f p in1 and p in2 ;
/ / s y n c h r o n s i a t i o n c o n d i t i o n and measured one
bool sync , sync_measured ;

system Sensor sensor1 , sensor2 , pin1 , p in2 ;

s e n s o r 1 (pos1 , pos1_measured) ;
s e n s o r 2 (pos2 , pos2_measured) ;

p in1 (pin1 , p in1_measured) ;
p in2 (pin2 , p in2_measured) ;

/ / s y n c h r o n i s a t i o n c o n d i t i o n
sync = (pos1 = pos2) ;
/ / s y n c h r o n i s a t i o n c o n d i t i o n measured
sync_measured = (pos1_measured = pos2_measured) ;

/ / i f we measure ou t o f sync t h e p i n s go up
not (sync_measured) => (p in1and p in2) ;

/ / s y n c h r o n i s a t i o n , l i k e a p h y s i c s law , e . g . , g r a v i t y ,
/ / t h i s can a l s o be imp lemented as t h e
/ / s y n c h r o n i s a t i o n h e a l t h o f e . g . , t h e s o f t w a r e
sync = t rue ;

a t t r i b u t e observab le (pos1_measured , pos2_measured ,
p in1_measured , p in2_measured)=t rue ;

}

Listing 12.3: Model of two synchronized sensors and reactive pins.

174 MODEL-BASED DIAGNOSIS

a diagnosis for the ‘complete’ valve model discussed in Section 12.4. For this model,
h can explain only one type of behavior and is therefore unable to explain the temporal
variations. The same is true for strong models.

If we want better time resolution and we want to know where in the sequence, i.e.,
at what time, the valve has leaked, we need to modelh as time-dependent variable,
similar toc ando. This leads to the following model,

system dynamic_va lve (bool h [1 : 2] , i [1 : 2] , c [1 : 2] , o [1 : 2]) {
system Valve v a l v e [1 : 2] ;

v a l v e [1] (h [1] , i [1] , c [1] , o [1]) ;
v a l v e [2] (h [2] , i [] , c [2] , o [2]) ;

}

Now the diagnosis becomesh[1] = false, h[2] = true.
We can extend this approach to modeling temporal relations, e.g., two serial buffers

with a propagation delay of 1 time unit,

system B u f f e r (bool i , o) {
h => (o= i) ;

}

system s e r i a l _ b u f f e r s (bool i [0 : 2] , o_a [0 : 2] , o_b [0 : 2]) {
system B u f f e r b u f f e r _ a [0 : 2] , b u f f e r _ b [0 : 2] ;

b u f f e r _ a [1] (i [0] , o_a [1]) ;
b u f f e r _ b [1] (o_a [0] , o_b [1]) ;

b u f f e r _ a [2] (i [1] , o_a [2]) ;
b u f f e r _ b [2] (o_a [1] , o_b [2]) ;

}

This models temporal constraints as the output of each buffer is dependent on prior
input. Note that LYDIA provides a shorthand for array expansion with theforall state-
ment.

This temporal modeling technique also allows recurrent systems and introduces
state behavior in models. Consider a Set/Reset (SR) latch as shown in Figure 12.4.
When set,s is true, the outputsq andq are latchedtrue andfalse respectively, after

Figure 12.4: SR latch diagram.

some propagation delay. For resetr, the outputs are opposite. This latching is imple-

DIAGNOSTIC QUALITY 175

mented with recurrent relations that express state behavior forq andq. The model is as
follows

f o r a l l (k i n 1 . . 2) {
h1 [k] => (q [k] = (r [k−1] nor _q [k−1])) ;
h2 [k] => (_q [k] = (s [k−1] nor q [k−1])) ;

}

wherek models time in terms of discrete steps.
We have generalized the above concepts by introducing the concept of (real-valued)

delays, which allow for more convenient modeling without the need to introduce sep-
arate model instances for each discrete time step. In [101], we have shown that by
symbolically converting real-valued propagation delay models to combinatoric ones,
we are able to efficiently diagnose time-dependent systems.

12.7 Diagnostic quality

Due to limited observability and implicit fault models, a diagnosis typically yields
many solutions. The number of solutions is indicative of the diagnostic quality of a
model. In the following we discuss how to measure the residual uncertainty of a di-
agnosis after making an observation and how to reduce this uncertainty. We measure
the uncertainty as the amount of information contained in the set of diagnosis candi-
datesD. We use Shannon entropy [111] to quantify this amount of information and
denote it withH. Shannon entropy is a logarithmic formula that expresses the amount
of information for stochastic variables and, when used with base 2, expresses it in bits.

We illustrate these concepts using a Boolean model of a digital circuit, consisting
of the three inverters depicted in Figure 12.5. The behavior of a single inverter with
healthhc, inputxc, and outputyc is defined by the proposition,

hc ⇒ (yc = ¬xc)

which is equivalent to the model in Section 12.4. Let1 and0 representTrue and
False values, respectively. Thus the set of variablesV is {x, z, y1, y2, h1, h2, h3} and
their domain denoted byS is {0, 1}.

x h1

h2

h3

z

y1

y2

Figure 12.5: Three-inverters example.

176 MODEL-BASED DIAGNOSIS

Without any observations, there are no constraints forh. Hence, any value fordk

is consistent with this model andD is the enumeration of all these values. In this case,
H is equal toH0, the entropy ofN independent stochastic variables,

H0 = −N

|C|∑
c=1

Pr(¬hc) log2 Pr(¬hc) + Pr(hc) log2 Pr(hc)

For this model with a priori probabilitiesPr(hc = 0) = 0.01 andPr(hc = 1) = 0.99,
H0 = 0.24 bits.

Suppose the observed system variables are(x,y1, y2) and the observationO = (x =
1) ∧ (y1 = 0) ∧ (y2 = 1) is made. The observationy1 = 0 indicates a system health
problem. Table 12.3 listsD for this case and shows the typical effect of weak fault
models, i.e., many solutions. Althoughd1 = (1, 0, 1) is the most probable candidate,
the actual diagnosis might, e.g., also bed2 = (0, 1, 0), i.e., inverter 2, is healthy but
inverters 1 and 3 are broken. To prioritize the inference ofdk with the most probable
faults, an a priori probability distribution forhc is defined. Based on this probability
distribution we compute the expected entropy after making the observationsO. With
the entropy,

H = −
∑
D

Pr(dk) log2 Pr(dk|O)

the expected entropy becomes,

E[H|O] =
∑
Ω

Pr(O)H

whereΩ is the set of all possible values for the set of observable variablesO. Com-
putation of the expected entropy, leads to E[H|O] = 0.13 bits. As intuitively might be
expected, observation ofO reduces the expected uncertainty.

dk Pr(dk|O)
1 (1, 0, 1) 0.970492
2 (0, 0, 1) 0.009803
3 (1, 0, 0) 0.009803
4 (0, 1, 0) 0.009803
5 (0, 0, 0) 0.000099

Table 12.3: Diagnosis setD, for three-inverters example, with0 = false and1 = true.

The expected entropy is an important parameter for diagnostic quality. The effec-
tiveness of methods to increase diagnostic quality can be measured with this parameter.
Methods that may decrease the expected entropy and improve the quality are adding
behavioral modes to the model as discussed in Section 12.4, and increasing the observ-
ability of a model by either increasing the number of observed variables (in the real
world this also increases the number of health variables), and measuring for a longer
duration while assuming a constant health.

AUTOMATIC MODEL DERIVATION 177

12.8 Automatic model derivation

Despite the run-time savings in diagnosis time, MBD still requires an investment in
modeling time. This investment may still prohibit MBD to be accepted in an indus-
trial setting. A possible solution to reduce the time investment in manual modeling
is automatic model derivation from design. As part of the Tangram project we have
investigated three possible model sources.

Initially we have chosen the model topology in the EPIN case study, as discussed
in Chapter 13. In this particular case, part of the system structure, the connections be-
tween components (sensors, actuators, wiring, and logic) was available in Netlist for-
mat. This format provides a source for the component connections that are represented
in the model topology. For this purpose the Netlist source was scanned for connections
between components. These connections are instantiated as simple buffers connect-
ing the different components. The components are instantiated as skeleton models for
which the behavior can be added manually.

In the WS case study, also discussed in Chapter 13, we investigated the possibility
to derive model behavior from VHDL3 implementations. In practice, it is not possible
to convert a model from the (partially) imperative VHDL language to a declarative LY-
DIA model. However, in a number of limited cases it is possible to derive a behaviorial
description from the original VHDL code. This is true for simple Boolean expressions.
We have also demonstrated that we are able to deal with state behavior following the
approach as mentioned in Section 12.6.

In addition, for some systems it may already be known what conditions are un-
wanted. These conditions are expressions of non-nominal behavior. Healthy behavior
can then be partially modeled as the negated unwanted behavior. For ASML this was
true for the safety monitoring and emergency logic in the WS case study. The purpose
of the logic is to monitor the state of the system and react with an emergency signal,
followed by a full system stop in case of an emergency. The logic for the system was
implemented in VHDL and used as the basis for the diagnosis model which was later
on extended with more expert knowledge on nominal behavior.

12.9 Summarized results

In summary, the results of our research are as follows. We have investigated model
complexity and its effect on diagnosis speed for different knowledge representations.
Specifically we have investigated the effect of modeling in the finite integer domain and
the effect of Boolean and direct encodings [46]. Furthermore, we have studied how
to model systems with time-dependent behavior and proposed a method of limiting
model complexity, thereby speeding up diagnosis [101]. Our approach makes use of
delay calculus and delayed signals to get all time dependant behavior outside the health
conditional equations. This allows the problem to be solved with a static model. This

3VHSIC Hardware Description Language, VHSIC stands for Very-High-Speed Integrated Circuit

178 MODEL-BASED DIAGNOSIS

approach is significantly more efficient than a discrete time approach were for each
time step a model is instantiated and constraints are dependent on previous time steps.

Borrowing from Information Theory, we have used the existing entropy heuristic
that was used in earlier work for measurement selection as a general quantifier for
diagnostic quality. This was done by establishing a empirical relation between entropy
and diagnostic accuracy [99]. Also the relations between observability and this entropy
have been established [100], thereby making entropy an important feedback parameter
in the model development process. The observability includes the quantity, quality,
and duration of observations. As a result, it is now possible to express the diagnostic
quality of a model in one entropy number. We have also extended the use of entropy
as a heuristic for test selection and sequencing. We have shown that we can frame the
test selection and sequencing problem by modeling the system together with the test
setup [102]. Optimal tests and sequences are found by applying the entropy heuristic.
Efficient approximations of entropy calculations have also been investigated.

Finally, in a of number case studies, we have demonstrated that MBD can be ap-
plied in an industrial environment, also by non-MBD experts. We have shown that
modeling costs can be reduced by partly automatic model derivation from existing im-
plementations expressed in Netlists and VHDL and by making practical abstractions.
Also the earlier mentioned test selection and sequencing yields additional benefits of
modeling for diagnosis.

12.10 Conclusions

We have discussed a number of issues related to MBD and the ‘art’ of modeling for
fault diagnosis. We have discussed the importance of proper boundary and composi-
tion selection, the use of behaviorial modes, and the effect on system complexity. We
have shown the importance of modeling interactions with the real world and its role
in the diagnostic process and time-dependent behavior. Finally we have shown how to
reduce investment in modeling time by deriving models from implementation and how
to measure the diagnostic quality of models.

All-in-all, our research provides valuable lessons for practical modeling issues as
encountered in the Tangram project. The actual application of MBD by ASML, result-
ing in the initiation of a transfer project (see Chapter 15), shows that we dealt success-
fully with these issues, and this provides a positive lookout for the further development
of MBD.

Chapter 13

Costs and benefits of
model-based diagnosis

Author: J. Pietersma, A.J.C. van Gemund

13.1 Introduction

In this chapter we discuss the costs and benefits of Model-based diagnosis (MBD)
as applied within ASML, based on the results of the case studies performed in the
Tangram project. At ASML, the effort and time consumed by fault diagnosis are mostly
noticeable during integration and testing, and during operational life. Hence we discuss
these two life cycle phases in detail. We will also briefly address the other life cycle
phases. First, we illustrate the current way of working with two real-life examples that
occurred during operational life, and give our general view on the way of working.
Second, we present the results of the case studies. Next, we present how MBD can
improve the current situation, i.e., diagnose faster and with less effort by investing time
in building models beforehand.

13.2 Current way of working

Our first example of the current way of working is that of a failed initialization of
the software that controls the wafer scanner air mounts. These air mounts support the
metrology frame and protect it against vibrations. Lorentz motors provide these air
mounts with force damping. Initially a first line service engineer dealt with this issue
but was unable to solve it. Troubleshooting continued in telephonic contact with a
second line engineer with more experience. Inspection of the motor temperature sensor
values indicated that one was abnormally high,±100◦ C compared to the expected

179

180 COSTS AND BENEFITS OF MODEL-BASED DIAGNOSIS

±20◦ C. From cautious manual inspection it was suspected that this reading was wrong.
This was corroborated by the fact that no power was consumed by this particular motor.
Replacement of air mounts sensor board did not resolve this high temperature reading.
A resistance measurement of the temperature sensor indicated an open contact of the
relevant thermo couple. A spare part was ordered and installed after the weekend. This
resolved the high reading and the initialization problem.

Our second example involves the wafer centering process. Before a wafer is mea-
sured and exposed, its position on the chuck has to be centered with sub millimeter
precision. This precise placement is done by repeatedly spinning the wafer, measuring
the discrepancy and replacing the wafer to decrease the discrepancy. In normal opera-
tions the discrepancy would converge in a number of steps to an acceptable low level.
If this takes more than a specified number of steps the machine halts operations. After
long uptime, one machine showed exactly this problem. Components that contribute
to this problem are the actuator, sensors, the spinning table, cables, and sensor boards.
One by one these components were replaced without resolving the problem. A third
line service engineer was flown in. At a certain moment it was accidentally discovered
that the actuator showed movement when the cables were moved. Apparently this was
caused by bad wiring and the problem was solved by replacing the cable harness. This
whole case took five days to solve. Note that in this case down-time impact was min-
imized by replacing the whole unit with one from an unused system, and testing the
faulty unit on a system not critical for production. This partly mitigated the effects of
the lengthy diagnosis process on system availability.

From these examples and our general experience with diagnosis at ASML we ar-
gue that the current fault diagnosis process at ASML is largely a manual task based on
human knowledge mostly gained from experience. It is onlycomplementedby (elec-
tronic) documentation, data analysis software, and results of earlier cases. We discern
two types of knowledge derived from two types of experience:

(1) Engineering knowledge which captures the way the system works. This type of
experience is usually obtained during development and augmented by training.
During integration and testing, engineering knowledge of this type is close at
hand because systems are initially put together at the development location.

(2) Symptomatic knowledge which represents the way the system usually fails and
how to solve it. This type of experience is usually obtained in the operational
phase and shared among peers.

Fault diagnosis that is based on both types of human knowledge and experience,
encounters the following problems. First, the knowledge is volatile which means that
when people leave, the knowledge disappears from the organization and has to be re-
learned or trained to other employees. Second, the knowledge does not cover unfore-
seen or never encountered faults. Besides these two general problems, engineering
knowledge (type 1) is also scarce during the operational phase as most people with
this type knowledge move on to the development of the next generation of systems.

CASE STUDIES 181

The specific problem with symptomatic knowledge (type 2) is that it can lead to tun-
nel vision. We explain this mechanism with the following example. Assume that it is
known from experience that error X is solved by replacing board A. This will be the
reflexive reaction if error X occurs. However, in combination with error Y it is actually
board B that is the root cause. In practice, this leads to a lot of unnecessary and costly
component replacements.

For completeness we also identify the following issues in fault diagnosis which are
not specific for the current approach:

• The system as such produces an enormous amount of information (e.g., real-time
data dumps, event and error logs), only part of this is useful for fault diagnosis.
From this information overload, service engineers have to select and process the
appropriate data.

• The customer support organization needs to provide sufficient training, com-
munication possibilities, and needs to allocate resources according to problem
priority set by the customer.

• Relations with the customer are crucial. The customer is the first to be confronted
with problem symptoms and also decides what information is accessible and
what actions may be performed on the machine.

• The physical accessibility of the machine itself is limited due to space constraints
imposed by the high costs of clean room space.

We also point out that, as with any engineering activity, troubleshooting and diagnosis
are also affected by cultural aspects. This covers factors such as the proper ‘tinkering’
mentality and the ability and willingness to question decisions made by superiors.

13.3 Case studies

As part of the Tangram project five ASML subsystems have been modeled for diagno-
sis. For more information about the principles behind MBD, our implementation with
the LYDIA language, and the different aspects of modeling for fault diagnosis, we refer
to Chapter 12. Table 13.1 lists the following characteristics of these cases: engineering
discipline, whether or not it involved dynamic system functionality, the LYDIA model
size, the time spent on the modeling, and the (estimated) improvement in diagnosis
time. We briefly describe these case studies.

The laser and dose control subsystem (LASER) provides light with an exact energy
dose for exposure. The objective of the case study was to demonstrate the applicability
of MBD for real-world ASML systems that show time-dependent (dynamic) behavior.
In this case the diagnosis was performed on a simulation model of the real system.
From this simulation model a diagnosis model was derived which was successfully
tested with injected faults. This case showed how to use simulation models to validate

182 COSTS AND BENEFITS OF MODEL-BASED DIAGNOSIS

system engineering LYDIA modeling diagnosis time
discipline model size time order of magnitude

[LoC] [days] current with MBD
LASER E, M, S, O, D 806 20 days ms
EPIN E, M 37 7 days ms
POB E, M, O 500 12 hours s
ILS E 82 8 minutes ms
WS E, M, S, H, D 2151 15 days s

Table 13.1: Overview of modeling cases. E = electric, M = mechanic, S = software,
O = optical, H = hydraulic, and D = dynamic.

diagnosis models and how these models can be used during design to analyze diag-
nostic quality. Furthermore it showed that the current LYDIA tooling which does not
explicitly handle time can be used to model dynamic systems with work-arounds based
on delayed signals and time conjunction as explained in Section 12.6.

EPIN is an electromechanical mechanism to lift wafers off the chuck. A system
emergency occurs if certain safety constraints are violated. The case is a good example
of how a relatively simple system consisting of three sensors, an actuator, and some
safety monitoring logic, can still disrupt a diagnosis based on human reasoning. In one
particular case it took two days to finally correctly identify the faulty sensor because
of an initial mistake in the diagnostic reasoning. The objective of this case study was
to demonstrate that LYDIA could work with real ASML board dump data and perform
correct diagnoses. Besides meeting this objective, the case was extended to incorporate
automatic model derivation from electronic layouts which are defined as Netlists. This
automatic modeling step reduces modeling effort and decreases model maintenance as
part of the model can be kept up-to-date to design automatically.

The Projection Optics Box (POB) is a system of adjustable mirrors. Common faults
during integration and testing are wrongly connected mirror actuators and sign mis-
takes in the control software. The objective of the POB case study was to demonstrate
the specific use of MBD during the integration phase and the combination of diagnosis
models with existing (Matlab) models which greatly reduced the required modeling
effort.

Scanners are equipped with an Interlock System (ILS) that detects whether the
cover plates are in place to prevent humans from exposure to hazardous laser light. The
objective of the ILS study was to demonstrate that it is possible to easily generate fault
search trees from diagnosis models that guide engineers with fault finding in a system
test. The derived trees are optimized by applying Information Theory and result in
lower test costs in comparison to manually created test trees.

The wafer stage (WS) is used to move the wafer with nanometric precision during
measurement and exposure. Similar to the EPIN mechanism safety logic monitors
situations that may violate machine safety. The objective of the ongoing WS study is
to demonstrate that MBD is useful for ASML on subsystem scale. To greatly reduce

EVALUATION 183

modeling effort, part of the model is derived from VHDL implementations.
Note that in Table 13.1, model size includes comment lines and modeling time in-

cludes the time spent on case familiarization. The EPIN and ILS studies have relatively
low model size and long modeling time. For the EPIN case this is explained by the fact
that the systems around the actual EPIN system had to be modeled on a high abstrac-
tion level. This abstraction level was required by the limited scope of this study and the
high level of realism. The ILS study required additional research on and comparison
with the original fault trees used for this system. So far the WS study has produced
the largest model (2151 LoC) with relatively short modeling time (15 days). This is
explained by a large degree of similarity between the different components.

In half of the cases the diagnosis time had to be estimated based on earlier cases and
simulation experiments. Based on these estimates and actual diagnosis times we find
that the investment in modeling time yields significant speed-ups in diagnosis time.

13.4 Evaluation

From our understanding of the current way of working and the results of our cases stud-
ies we conclude the following. Augmenting or replacing experience-based diagnosis
with MBD offers the following advantages:

• Volatility is resolved. Once models have been developed they can be used for-
ever. Maintenance of the models still requires expertise.

• Unforeseen or unknown faults are covered because models capture nominal be-
havior andanydeviating behavior is diagnosed as faulty. This improves the diag-
nostic quality, while known fault modes can be explicitly added to the model. It
is recommended modeling practice to always incorporate an undefined (implicit)
failure mode that coversanyobserved symptoms.

• The MBD characteristics that resolve volatility also resolve scarcity. Once a
model has been created the expertise it captures can be made available through-
out the organization.

• Depending on the model quality tunnel vision is no longer a problem. In the case
of wrong diagnosis, i.e., the symptom is not explained correctly by the model,
the model needs to be adapted. A proper implementation of MBD needs to allow
models to be maintained and to evolve throughout the product life cycle.

• MBD does not suffer from data overload. In this respect it can be seen as an
extremely advanced filter which distills root causes from symptoms fully auto-
matically.

The other non-specific problems listed in Section 13.2 are not solved by MBD. It
may improve on the overall diagnosis situation and lessen the effect of organizational,
customer-related, cultural, and maintenance problems. For example, MBD may lead to

184 COSTS AND BENEFITS OF MODEL-BASED DIAGNOSIS

Life cycle phase Effect on diagnostic
quality

Diagnosis problems MBD

Concept
Analysis of current
and future customer
demands.

System availability
requirements lead to
diagnostic quality
requirements.

NA Abstract models pre-
dict diagnostic qual-
ity and the effect of
failure modes.

Detailed design
The design needs to
fulfill the (driving)
requirements.

Detailed design de-
termines system di-
agnostic quality.

Diagnostic quality
leads to conflicts
with other design
budgets.

Detailed models
allow for analysis
of diagnostic quality
and testability

Prototype
Demonstrate that
the system ful-
fills the (driving)
requirements.

First results on the
actual diagnostic
quality are obtained.
Minor design im-
provements are
possible.

Many problems need
to be solved but
expertise is readily
available.

Feedback may be
used for model
evolution.

Production (T&I)
Manufacture ma-
chines that satisfy
customer require-
ments.

More feedback on
testability and diag-
nostic quality.

Available diagnosis
time and available
expertise decrease.

See bullets in Sec-
tion 13.4.

Operation
Machines should
operate accord-
ing to customer
requirements.

Major feedback on
diagnostic quality.

Long down-times,
high man-to-machine
ratio, and scarce ex-
pertise.

See bullets in Sec-
tion 13.4.

Refurbishment
Fulfill new require-
ments and special
needs.

Opportunity for im-
provements

Expertise may no
longer be available.

Models contain sys-
tem expertise, may
require extension.

Table 13.2: Diagnosis and the impact of MBD during all product life cycle phases.

less ambiguous diagnoses leading to reduced workload (man-to-machine ratio) on the
organization, improving customer trust, lead to unambiguous action plans, and overall
require less unnecessary component replacements.

13.5 Diagnosis in the development phases

The scope of the Tangram project is limited to the integration and testing phase and
realization phase of the development process. Diagnosis, however, affects all devel-
opment phases. Hence, MBD has a much broader impact beyond the integration and
testing phase and the operational phase, as discussed in the previous. Table 13.2 lists
all life cycle phases together with their priorities, effects on diagnostic quality, diagno-
sis problems, and the benefits of MBD. From this table and the benefits discussion it is
clear that modeling is key to the success of MBD. To ensure that MBD is deployed in
each life cycle phase and to gain maximum benefit of the investment in modeling, it is
important to start modeling early on in the system life cycle. This also prevents costly

CONCLUSIONS 185

reverse engineering of models from existing implementations.

13.6 Conclusions

We have discussed the benefits and costs of MBD in general terms and in the case of
our industrial research partner ASML in particular. This was done by an analysis of the
effects of MBD on diagnosis as it is currently performed and by discussing the results
of specific case studies. MBD provides an efficient automated method of diagnosis that
is well suited for rapidly evolving technology. In the Tangram project team the benefits
are widely accepted. However, it is also understood that modeling cost and effort may
pose a possible bottleneck.

We have made initial progress in reducing modeling costs by automatic model gen-
eration and modeling by engineers that are not experts at MBD. These preliminary
results look promising; see also the MBD transfer project in Chapter 15. On a higher
level, we see MBD as part of a paradigm shift to model-based systems engineering
which may very well prove vital for the commercial success of highly innovative indus-
tries such as ASML. Part of the ongoing effort is also aimed at education and training
for this model-based approach.

186 COSTS AND BENEFITS OF MODEL-BASED DIAGNOSIS

Chapter 14

A multidisciplinary integration
and test infrastructure

Author: W.J.A. Denissen

14.1 Introduction

This chapter will discuss some use cases, the requirements, the design and the imple-
mentation of an integration and test infrastructure. The integration and test infrastruc-
ture is intended to support the Tangram project in its research on model-based inte-
gration (Chapters 7 and 8), model-based testing (Chapters 9 and 10), and test-based
modeling (Chapter 11). It shall also support ASML engineers in executing their man-
ually created tests.

The integration and test infrastructure surrounds a system under test by intercepting
data and control flow over its interfaces to and from its environment. These interfaces
can be of a very different nature depending on the discipline from which they origi-
nate. For software engineering these can be software interfaces like functions and their
parameters and their interaction to the system (e.g., blocking or nonblocking calls,
callback, or events). For electrical engineering the interface can be a set of control and
status registers on some printed circuit board, or an optical link.

The integration and test infrastructure must provide to its users full control over the
stimuli to and observations from the system under test over all these interfaces. The
user can specify for each stimulus its order with respect to other stimuli and observa-
tions, the data that flows with it, and its trigger moment. For observations, the data and
time of observation are captured. The integration and test infrastructure must allow
programs, third party simulators or rapid prototype implementations, to be plugged-in.
Each program can observe one or several interfaces and generate stimuli over one or

187

188 A MULTIDISCIPLINARY INTEGRATION AND TEST INFRASTRUCTURE

more possibly different interfaces to allow early integration tests. These interfaces can
exist among plug-ins, or between plug-ins and the system under test.

The system under test (SUT) within Tangram is the ASML Twinscan machine or
parts of it as shown in Figure 2.1 and described in Chapter 2. To obtain an impression
of the complexity of the system under test we present some figures. It contains roughly
10 subsystems, 50 processors, 400 sensors, 500 actuators, 12.5M lines of code written
in either C, Java, Python, or Matlab.

The remaining sections of this chapter are organized as follows. Two use cases for
the integration and test infrastructure are presented in Sections 14.2 and 14.3. Sec-
tion 14.4 presents the requirements and their rationale for the integration and test in-
frastructure. Sections 14.5 and 14.6 elaborate on the design and implementation of the
integration and test infrastructure, respectively. The last Section 14.7 presents some
conclusions and future work.

14.2 Use case: early integration

Early integration is a methodology to detect interface problems early to make test and
integration less costly. Model-based early integration is elaborated in Chapters 7 and 8.
Here, we discuss it from the point of view of the requirements it puts on the integration
and test infrastructure.

In figure 14.1 the principles of early model-based integration are shown. It shows
how a system model (depicted as a sheet of paper) is decomposed into two subsystem
models, how each subsystem gets designed and realized in several versions, and finally
how the subsystem realizations (depicted as cube shaped objects) get composed into
the final system.

During decomposition the interfaces will be identified and named. When errors are
made early, either in its design or in its realization on either side of an interface, then
these errors will only be discovered after the composition of the subsystem realizations
into the system realization. As a result, repairs become very costly or may result in
workarounds that will then make maintenance very costly.

Within a single engineering discipline a lot of tools will help you to guard the inter-
operability over these interfaces. But what will happen when interfaces cross different
disciplines? There is currently no single tool that guards the interoperability over these
interdisciplinary interfaces. There is not even a single way to express, or specify, the
interoperability crossing a interdisciplinary interface. So the question is how we can
check the interoperability over an interdisciplinary interface when the system is evolv-
ing. Suppose that for both disciplines the versions of models or realizations are growing
moderately over time. The combination of them can grow dramatically. To check all
these combinations tool support is needed.

There are also non-technical issues during development and integration. The brick
wall in Figure 14.1 symbolizes the behavior that starts to arise when responsibilities
are distributed over several projects and/or different disciplines. Either side of the wall
might feel that he is the owner of the interface and starts to define one. The other party

USE CASE: EARLY INTEGRATION 189

Figure 14.1: Early integration.

is hardly involved because they have not yet reached the point where they need to work
with the interface. As a consequence they get much later confronted with an interface,
which is defined from only one perspective. It might get even worse; both define an
interface in the beginning, expressed in their own development environments and start
to deviate from each other during development. Nobody guarantees that both interface
descriptions are consistent. The brick wall can be used as the perfect excuse for neither
project for feeling responsible for the interface. As a result the inter-disciplinary/inter-
project interfaces between these subsystems become poorly managed. To tackle this,
the integration and test infrastructure must support a new role: the interface manager.
It must provide the interface manager with a means to define and guard the interfaces
during the development process. Interfaces cannot be changed unilaterally or unno-
ticed.

When following the time line in Figure 14.1 different phases can be distinguished.
Due to the fact that models and realizations reach completion at different moments in
time there is no clear point when we cross to the design and realization phase. We
therefore distinguish three integration phases, separated by vertical dotted lines.

In themodel integration phasethe integration and test infrastructure must provide a
simulation environment, i.e., an execution platform in which several commercial of the

190 A MULTIDISCIPLINARY INTEGRATION AND TEST INFRASTRUCTURE

shelf and academic simulators can run executable models from different engineering
disciplines in parallel and exchange information between each other. The data flow is
typically small and of a simple type. Time can progress as simulated time and can be
faster or slower than real-time.

In themixed integration phasethe integration and test infrastructure must provide a
test environment, i.e., an execution platform in which simulators and prototypes can run
in parallel with realizations. Realizations typically have much more dataflow, which is
of a more complex type, and they have strict rules on the representation and availability
in time. The integration and test infrastructure must be capable of converting informa-
tion flowing from models to realizations and vice versa. When some of the dataflow has
timing requirements, time must progress as real-time, and as a result a simulator must
progress simulation time as fast as real-time. As a consequence, models can not be
very detailed. When this is not sufficient aprototype implementationcan be used that
does communicate with the same dataflow as the realization does. In that case, more
complex behavior can be expressed, because no dataflow conversions are needed. It,
however, does come at the expense of a more detailed and elaborated prototype im-
plementation. Because in this phase a complete system under test is not available, a
prototype environmentis needed to implement the missing parts of the system under
test.

In therealization integration phaseonly realizations exist. The execution platform
is called areal-time environment, and it must manage the interactions between realiza-
tions in real-time. It forms the environment in which the system under test runs, and
the integration and test infrastructure must be able to interface with it.

14.3 Use case: test opportunities

In this section we consider the different phases in a V-model development process
and we identify the opportunities for testing. These are depicted schematically in Fig-
ure 14.2 as two pointed arrows. Testing in this context is defined as detecting inconsis-
tencies.

At each development level (system, sub-system, unit) a designer is involved that
needs to come up with a design that fulfills the requirements for that level. He will
typically use a design tool to build up a mental model of the structure and behavior
of his design. By using a tool he is forced to express his design in a formal model.
The mental model of the developer is kept aligned, synchronized, and consistent with
this formal model. We will call these activitiesmental↔ formal model testing. This
kind of testing is well supported by commercial tools, at least for disciplines other
than software (more on this in Section 14.7), and is therefore not within the scope of
Tangram.

When going down on the left side of the V-model a whole model is decomposed
into part models. This is common practice within a single engineering discipline, and is
the basic pattern to handle complexity. For instance, a system engineer can decompose
his system budgets into subsystem budgets. A software engineer can decompose his

USE CASE: TEST OPPORTUNITIES 191

Figure 14.2: Test opportunities per level and phase.

software program into a set of subprograms. An electrical engineer can decompose his
electrical model into a set of sub-models. The testing activity inwhole↔ part model
testingconsists of checking that the developer who will come up with the part models
does not violate the requirements imposed on the whole model and vice versa. Once an
inconsistency is detected either the whole or the part model needs to be modified such
that they together are consistent again.

Part↔ whole realization testingoccurs the moment the different part realizations
are assembled together. The kind of problems are typically related to resource con-
flicts or unknown interactions, for example, a memory footprint in software engineer-
ing, volume budgets in mechanical engineering, or the fan-in and fan-out of the active
electrical parts in electrical engineering. Resources might be shared by different dis-
ciplines. For instance, a certain mechanical component might be blocking an optical
light path, or the mechanical materials might outgas such that the optical lenses get pol-
luted. Structural inconsistencies are typically detected while assembling. Behavioral
inconsistencies are typically detected when executed the whole realization according
to its use cases. Normally, most of the interactions are known by experience or from
previous similar systems; these interactions are then also modeled in the design phase.
Unforseen interactions are typically detected in this testing activity.

Model↔ realization testingis normally known as conformance testing. Several

192 A MULTIDISCIPLINARY INTEGRATION AND TEST INFRASTRUCTURE

models can describe different aspects of a single realization. For each model the re-
alization must conform to the model in their interfaces and their kind (software, elec-
tronics, physical) to their environment. Both the models and the realization interact
with their environment over these interfaces. Typical usage of the system under test is
modeled as a set of use cases, and can be seen as a ’good weather’ test suite. A realiza-
tion conforms to its model when the observations of the model and the realization are
the same when the same set of use cases are applied to them. Testing a given aspect
of a realization is typically done in an indirect way as depicted in the upper right part
of Figure 14.2. Given a model of the system under test, an environment model, in the
form of a test suite, is constructed against which the SUT is tested.

In manualmodel↔ realization testing the test designer manually derives the test
suite from a model of the system under test. Inmodel-basedmodel↔ realization
testing however, the test cases are automatically derived from the system under test
model. A model-based test generator interprets the model of the system under test and
derives on the fly test cases from it; see Chapters 9 and 10. The integration and test
infrastructure executes the test suite, controls the system under test and observes its
reactions. The integration and test infrastructure can judge, based on the observations,
whether the system under test is reacting correctly or not.

14.4 Requirements and rationale

Now that we have described the use cases of the integration and test infrastructure, we
can present the requirements and their rationale. For the integration and test infrastruc-
ture the following requirements apply.

• The same integration and test infrastructure must be used in each development
phase and level, open for future extensions or unforeseen interactions between
environments.

• The Tangram project is positioned at the right side of the V-model of ASML’s
development process as shown in Figure 14.2. This implies that all interfaces
of the system under test have already been determined. For software interfaces,
they are numerous (1000) and very volatile, they might change over night.

• For economical reasons there is only room to develop new test models with little
detail and certainly no test models that contain almost as much (an order less)
detail as the implementation. The models to test the system with, will therefore
be as much as possible the existing models that where produced during the design
phase of the development process.

• All realizations need to be accessed without any modification, to avoid pollution
of the realization with test functionality, and interference with the development
process.

REQUIREMENTS AND RATIONALE 193

• All newly designed parts of the integration and test infrastructure must be based
on open standards, common-ware and commercial of the shelf tools, to reduce
risks (proven technology, continuity) and development costs.

• The integration and test infrastructure must be applicable for other manufacturers
of complex systems. Therefore, the ASML specific parts will be isolated as much
as possible from the rest of the integration and test infrastructure.

Thesimulation environmentmust allow co-simulation of several models from different
disciplines at the same time. The following aspects must be taken into consideration
when designing the simulation environment.

• In Mental↔ Formal model testing, each discipline uses its own commercial of
the shelf simulator, which has proven its usability within that discipline. The de-
velopers are familiar with these simulators and have invested considerable effort
in building specific models. The simulation environment must therefore fully
integrate and support these simulators. As a consequence these simulators must
be open for extensions.

• In Whole↔ Part model testing, the whole model might run on a different sim-
ulator and/or platform than the part models. The simulation environment must
therefore support a distributed simulation.

• The information describing the interfaces needs to be centralized and owned by
an interface manager.

• To allow a modeler to stay within his own discipline, all interactions with the
outside world go through a so called model connector. This can be a graphical/-
textual representation that can be imported from a model library.

• Models containing simulation time need to be synchronized according to their
semantics.

• The simulation environment must support addition of model animations that
show, for instance, the state of the SUT at the proper design level.

Theprototype environmentmust allow testing of a partly realized SUT. The following
aspects must be taken into consideration when designing the prototype environment.

• The prototype environment must allow substitution of prototypes with realiza-
tions. For early integration, the developer must be capable to build prototypes
in the most suitable (rapid prototype) programming language (e.g., C, Python,
Java, and Matlab)

• The prototype environment must support different operating systems (e.g., So-
laris, VxWorks, Linux, and Windows), and hardware platforms (e.g., Sun work-
station, Powercore, PC).

194 A MULTIDISCIPLINARY INTEGRATION AND TEST INFRASTRUCTURE

The test environmentallows a test designer to specify a test suite (a set of tests) that
can be executed against a system under test. Each test can either pass or fail. The test
environment must fulfill the following additional requirements:

• The test environment must allow automatic execution of tests.

• The test environment must have a notion of time to allow timed testing. There-
fore the test environment must be able to control the actual moment of stimuli to
the SUT and must also have access to time-stamped observations of the SUT’s
reactions. To test or diagnose the SUT in its real-time environment the test envi-
ronment needs full control and observability over its interfaces.

• The test environment must be connected to the simulation environment to allow
a partly simulated environment for the system under test while testing.

• The test environment must be connected to the prototype environment to allow a
partly implemented system under test to be tested.

• The test environment must handle synchronous and asynchronous bi-directional
interactions with the simulation environment, prototype environment and the
system under test.

Figure 14.3: Integration and test infrastructure.

DESIGN 195

14.5 Design

Based on the previously described requirements a design of the integration and test
infrastructure can be presented. Figure 14.3 shows the integration and test infrastruc-
ture. Four different environments can be identified: simulation, prototype, test, and
real-time. For scalability reasons, the integration and test infrastructure is based on a
bus topology. An open and standardized bus avoids vendor lock and assures interoper-
ability between the participants. The prototype, test, and real-time environments are all
concentrated around a standardcontrolbus. This control bus is based on CORBA [92].
The rationale for selecting CORBA is:

• CORBA is based on decades of experience in driving reactive systems, is de-
signed for and by software developers, and is an open OMG standard.

• CORBA hides all transport specific details, is based on the proxy pattern (i.e.,
allows uniform calling of services over different programming languages, oper-
ating systems, and communication hardware).

• Several tool vendors provide CORBA and its services. CORBA has a demanding
user community: Defense, Aerospace, and Manufacturing companies.

Moreover, the simulation, test, and real-time environments use a standarddata bus.
This data bus is based on the CORBA data distribution service (DDS) [91]. The ratio-
nale for selecting DDS is:

• DDS is based on decades of experience in driving real-time reactive systems, is
designed for and by software developers, and is an OMG standard.

• DDS is based on the publish/subscribe pattern and provides a simple API with
lots of quality of service configurations and hides all transport specific details.

• Several tool vendors provide DDS tools and a vast demanding user community
exists around DDS: Defense and Aerospace companies.

• The numerous ‘quality of service’ settings of DDS allow, amongst others, easy
implementation of multicasting, super- or sub-sampling, and time stamping of
value streams.

For thesimulation environmentat least two commercial of the shelf simulators need to
be supported to start with: Matlab/Simulink and Labview The rationale for selecting
these simulators is:

• Simulink is widely used within ASML to simulate physical behavior of (parts
of) the system under test or its environment.

• Labview has been selected to demonstrate that two different simulators can be
combined to co-simulate over a DDS data bus.

196 A MULTIDISCIPLINARY INTEGRATION AND TEST INFRASTRUCTURE

For theprototype environmenta rapid prototyping language Python [104] has been
selected to start with. Other CORBA supported languages like C, C++, or Java could
also have been selected. The selection is based on the following rationale:

• Python is a extremely flexible (less type checking), object oriented, small, clean
and easy to learn programming language.

• Python has powerful build-in container types like: lists, tuples and dictionaries.

• Python is modular, supports reflection, and can be embedded within C/C++ or
embed C/C++ library functionality directly.

• Python is accompanied with a vast array of modules.

• The development of Python as a language and its tools is an open source project.
A vast and enthusiastic user community exists that can provide feedback and
bug-fixes quickly and easily.

• Serious companies are relying on the functionality and flexibility of python, like
Google for instance.

For thetest environmentthe standard test language TTCN3 (Test and Test Control No-
tation [42]) has been selected for the test designer to write his test suite. The selection
is based on the following rationale:

• TTCN3 is based on decades of experience in testing reactive systems, is designed
for and by test developers, and is an open ETSI standard.

• TTCN3 abstracts away all SUT specific details.

• TTCN3 allows uniform testing over different real interfaces.

• Robust and mature IDEs exist that help the test engineer in writing, debugging
and managing his/her test specifications.

• Several Tool vendors provide TTCN3 tools and a vast user community exists
around TTCN3: Automotive, Telecom companies.

For thebridgesat least a software control bridge and an electronic control bridge need
to be prototyped to demonstrate interdisciplinary testing. The selection for the bridges
is based on the following rationale:

• For bridging ASML proprietary software interfaces, code generation techniques
are used that will produce glue code. It will convert proprietary interface descrip-
tions into standard interface descriptions. Control and data flow are redirected
by generating redirectors in the form of shared object libraries with an equivalent
software interface.

IMPLEMENTATION, PILOT PROJECTS, AND TRANSFER 197

• For bridging astandardelectronic interface, the commercial of the shelf tool
Labview has been selected because of its vast library of supported electronic
interfaces.

• For bridging aproprietary electronic interface, an optical link communication
protocol that is widely used within ASML subsystems (High Speed Serial Link,
or HSSL) has been selected, and has been implemented as a classical operating
system device driver. That way the device driver can be easily used and com-
bined with other data links. It allows the test engineer to redirect electronic/op-
tical information between sub-systems to a test environment, thereby allowing
testing of subsystems in isolation, without having to fall back on the expensive
and heavily claimed prototype machines.

14.6 Implementation, pilot projects, and transfer

Based on the design as described in the previous section, we have implemented the
following parts of the integration and test infrastructure as shown in Figure 14.3: Soft-
ware control bridge, Electronic data bridge, TTCN to CORBA bridge, TTCN to DDS
bridge, Simulink to DDS bridge/connector, and Labview to DDS bridge/connector.
This simple set of bridges provides already great flexibility to combine existing tools
to test the system under test, or to combine models with models. Concrete ASML pilot
projects helped us assessing the applicability, usability, flexibility, and robustness of
our integration and test infrastructure. Due to the restricted resources the pilot projects
could not cover all testing opportunities, for each development phase and level, as we
would like to do. Within the HSSL pilot project we investigated how to bring electronic
simulations close to the system under test when the timing requirements vary from non
real-time to soft real-time to hard real-time. In another pilot project we provided a proof
of concept for testing the hardware software interface, where the interface is described
as memory mapped I/O.

ASML has hosted the Tangram researchers to allow short communication lines to
the problem owners. This not only resulted in a clear understanding of the problem
but also a clear understanding of the challenges we might face when introducing our
proof of concept tools to the users in the field. A proof of concept is fine to convince
some early adapters, but the introduction of a new tool that needs to be used by several
hundreds of people working within stringent delivery deadlines is something differ-
ent. They demand full support, documentation, product quality tools, training, smooth
migration and so on.

To fulfill these user expectations a separate ASML Tangram tranfer project (see
Chapter 15) was defined. The software control bridge and the electronic data bridge
where selected to be leveraged to product quality tools. Within six months a complete
redesign of the software control bridge took place to minimize future maintenance,
missing features where implemented, and a complete test suite and test system were
built to test the quality of the delivered tools. Performance measurements of the soft-

198 A MULTIDISCIPLINARY INTEGRATION AND TEST INFRASTRUCTURE

ware control bridge product indicated an even better performance than the system un-
der test’s communication infrastructure. The software control bridge might therefore
be used to smoothly migrate from a proprietary communication infrastructure to an
open and standardized communication infrastructure.

14.7 Conclusions and future work

The test methodology as implemented in the prototype integration and test infrastruc-
ture has proven to be usable within ASML. It does not interfere with ASML’s tightly
scheduled system development as the system under test does not need to be modified to
get it tested. The integration and test infrastructure opens up new opportunities to test
the system under test. For instance, intercepting required software interfaces allows
testing against ’bad weather’ conditions or using a partly build system under test. The
ability to plugin separate software prototypes and simulators allows ASML to reuse
them for other products in the same product family. The fact that standard busses are
used allows ASML to remotely test their machines, either in their prototype or produc-
tion buildings, but also at the customer’s site if needed. Discussions on how to integrate
this testing methodology in ASML’s current way of working have just started, and this
demonstrates their confidence in the methodology. The Tangram transfer project has
shown that prototypes can be turned into a product that meets ASML’s quality require-
ments.

Future work therefore includes extending the current integration and test infrastruc-
ture by adding more simulators (SystemC, Visual Elite), design management tools (in-
terfaces, requirements, and versions), diagnostic tools (like model animators and code
instrumentation), and test tools (test case generators and extensions for timed testing).

Two parts of the integration and test infrastructure that really need more attention,
and therefore have higher priority, are is mental↔ formal model testing, and whole↔
part testing, especially for software. Although they were out of scope for the current
project (see Section 14.3), they carry most of the currently perceived problems when
developing and testing systems, like structured and controlled evolution, proper ver-
sioning, and low maintenance. Proper tool support for both of the above mentioned
kinds of testing will also greatly reduce the above problems.

Chapter 15

The Tangram transfer projects:
from research to practice

Authors: A.P.G.C. van Dongen, G.J. Tretmans

15.1 Introduction

The research projects that are coordinated by the Embedded Systems Institute, such as
Tangram, are characterized as applied research and development. They are carried out
in anindustry-as-laboratorysetting; see Chapters 1 and 2. For Tangram, this laboratory
setting is provided by the main industrial partner ASML. The industry-as-laboratory
setting provides the realistic industrial environment in which new research ideas and
theories, mostly coming from the academic partners, can be validated and tested. The
industrial relevance of new methods and techniques is demonstrated by aproof-of-
conceptshowing that the principles work, and could be deployed in industry. The
actual transfer of knowledge, including training, industrial strength tools, scaling to
industrially sized problems, embedding in the industrial process, et cetera, are not part
of the research project. Separate transfer projects were initiated for those research
areas that demonstrated their industrial maturity by means of a successful proof-of-
concept. This chapter discusses transfer projects in general, and those within Tangram
in particular. The emphasis is on the managerial aspects of the transfer projects.

15.2 Phases of industrial evidence

Different levels of proof-of-concept, and different phases in demonstrating evidence
and transferring knowledge can be recognized. The Embedded Systems Institute dis-
tinguishes between six phases, which range from pure academic research to full oper-

199

200 THE TANGRAM TRANSFER PROJECTS: FROM RESEARCH TO PRACTICE

ational use in industry. In the successive phases, the scale and level of reality of the
proof-of-concept case studies increases, while the involvement of the industrial partner
grows from none to complete involvement in the operational phase; see Figure 15.1.

Process
0. Academic
 research

1a. Academic
 evidence

1b. Industrial
 evidence
 (non critical)

1c. Industrial
 evidence
 (critical)

2a. Precompeti-
 tive develop-
 ment

2b. CIP operatio-
 nal use

Research
project ���� ���� ����

CIP ���� ���� ���� ���� ����

Activity Demonstration proof-of-concept
 coaching
 dissemenation

Contract Dissemination contractProject contract

Scaling (1) Scaling (2) Results (3)

Figure 15.1: The transfer process.

Phase 0: Academic research.Universities and research institutes perform research in
a more or less autonomous setting. This research may be triggered by industrial
problems, but more often it is just curiosity driven academic research. Industry-
as-laboratory projects of the Embedded Systems Institute are not directly in-
volved here, nor are transfer projects. This research may lead to future industrial
relevance. Related to Tangram, such research may involve the definition of new
modeling languages and their formal semantics, or general complexity issues of
planning algorithms.

Phase 1a: Academic evidence.Academic evidence refers to a proof-of-concept of
newly developed methods, techniques and tools in an academic environment.
Emphasis in this phase is on making the theory work, and showing that it may
potentially solve an industrial problem. The methods and tools are applied to
an artificial academic problem, or to a simplified industrial problem, in a well-
defined and controlled environment. Aspects like scalability of the method, or
usability of the tools do not play a role, yet. Typically, some evidence of this

PHASES OF INDUSTRIAL EVIDENCE 201

kind is a starting point for an industry-as-laboratory project like Tangram. An
example is the Tangram area of model-based testing, where experiments were
performed in the university laboratory on testing relatively simple smart-card
applications.

Phase 1b: Industrial evidence, non-critical.A realistic problem of the industrial part-
ner with limited size and complexity is the starting point for showing industrial
evidence. Project members and researchers are involved; the industrial partner
may actively cooperate but his main task is to state the problem, provide a case
for this problem, and provide the necessary domain knowledge so that the project
members get a clear view on the problem and the solution area. The case study
should show the proof-of-concept, and demonstrate the feasibility and benefits,
when possible but not necessarily quantitatively, of the newly developed tech-
niques and tools in a real industrial case. This case should be non-critical, in the
sense that the daily business of the industrial partner may in no way depend on
it. In this phase the case may concern an old problem for which a solution has
already been developed with other means, e.g., applying new testing techniques
to an already tested and released product to investigate the benefits of the new
technique.

Phase 1c. Industrial evidence, critical.The newly developed techniques and tools
are used in pilot projects in the real industrial context, where the outcome does
matter. The focus is on scalability, embedding in, and impact on existing pro-
cesses, and demonstrating quantitative evidence of their usefulness. Issues and
aspects that do not directly relate to the main functionality of the new techniques
and tools, such as usability, performance, reliability, availability of documenta-
tion and manuals, help desk, and training, are getting more important. Also the
importance of knowledge consolidation and transfer increases. Since many of
these issues are important for, and in addition specific to the industrial partner,
whereas they are less interesting from a research perspective, the involvement of
the industrial partner increases.

To organize the aspects mentioned above, atransfer projectis initiated for each
successful research area, which has clearly shown industrial evidence of benefits.
The aim of a transfer project is, as the name suggests, to transfer knowledge,
methodology, and tools from the research project to the industrial partner. Since
this goes beyond the proof-of-concept goal of the research project, and since the
major part of the manpower for this activity is provided by the industrial partner,
transfer projects are decoupled from the research project.

Phase 2: Pre-competitive development.The main target of this phase is to prepare
the methodology, techniques and tools so that they can be institutionalized within
the industrial partner. This involves a seamless continuation of the activities
of the transfer project, but with much less involvement of the research-project
members; they may give support for specific requests, but they are generally not

202 THE TANGRAM TRANSFER PROJECTS: FROM RESEARCH TO PRACTICE

involved anymore. The pilot projects are gradually taken over by real users,
adapting and deploying the methodology and supporting tools in their daily
development activities. The activities during this phase include refactoring of
tools, documentation, user training, and configuration management, making the
methodology and supporting tooling ready to be rolled out in the whole organi-
zation.

Phase 3: Operational use.The full roll out of the methodology, techniques and tool-
ing into the organization of the industrial partner takes place in this phase. Par-
allel to the daily usage of the techniques and tools, the support aspects like train-
ing, knowledge consolidation, tool maintenance and support, and configuration
management are institutionalized within the industrial partner. For the research
project there is no role anymore in this phase.

Typically, and ideally, a research topic passes through these six phases from academic
research to operational use in industry. But, of course, there are several feedback loops.
The results in any phase can trigger new research questions, and also new problems
may trigger new research subjects. And yet, many research ideas never make it to
operational use.

15.3 The Tangram transfer projects

A transfer project is initiated to transfer the knowledge, methodology, and tools from
the research project, i.c. Tangram, to the industrial partner, i.c. ASML. The activities
of a transfer project focus on those aspects that go beyond the original project goal
of showing proof-of-concept, such as industrial tool development, tool configuration
management, training, embedding in the industrial organization, et cetera. A transfer
project is only started for research areas that successfully showed evidence of industrial
applicability. The outcomes of a transfer project are methods, techniques, and support-
ing tools, which are ready for institutionalization within the industrial organization.

The work in Tangram was structured into five research areas, see Section 1.4: inte-
gration and test planning, model-based integration, model-based testing, model-based
diagnosis, and integration and test infrastructure. Three of these areas delivered a suf-
ficiently mature proof-of-concept to start a transfer project:

• integration and test planning,

• model-based diagnosis, and

• integration and test infrastructure.

Moreover, the industrial partner ASML did recognize the value and benefits of these
methodologies, and was willing to make investments in these areas.

TRANSFER PROJECT ACTIVITIES 203

15.4 Transfer project activities

Within the Tangram transfer projects the main activities were transfer of knowledge
about the methodology, techniques and supporting tools to ASML, and the transfer of
the tools themselves.

Since the research project Tangram aimed at a proof-of-concept, the main focus for
tool development was on the technical and functional aspects of these tools to support
the methodologies. Other aspects, such as scalability, usability, performance, reliabil-
ity, documentation, and manuals, sometimes referred to as non-functional properties,
were not really taken into account. Because these non-functional requirements are
important for successful industrial usage, the transfer of tools included implementa-
tion activities aimed at adaptations and extensions to cope with these non-functional
aspects. Below we elaborate on how these tool adaptations and extensions were orga-
nized.

The first activity of transfer of knowledge was mainly accomplished by means of
training, workshops, and coaching. Moreover, pilot projects using the methodology
and tools were started to have immediate feedback from the users to the transfer project
team.

The transfer project teams were mainly staffed by ASML (80%), and supported by
the Tangram team (20%). The transfer projects lasted between 8 months and 1 year.

Transfer of tools: incremental delivery

An important aspect of the transfer projects was to adapt and extend the prototype
Tangram tools in order to make them applicable in an industrial context, and to embed
them in the ASML environment. In contrast to the rather ad-hoc, research driven tool
development in Tangram, these tool adaptations and extensions were strictly managed.

An incremental development approach with intermediate deliveries to the pilot
projects using the tools was selected for this purpose. The objective of the incremental
deliveries was to obtain immediate feedback, to deal with the lack of detailed require-
ments, and to cope with the limited initial knowledge about how the tools should be
embedded within the ASML processes. In this way, the methodology and supporting
tools are gradually adapted to the ASML context, so that consolidation is easier and
more robust. For this approach the selection of appropriate pilots is essential. The
application of the new methodology and tools should really have an impact on these
pilots, and the pilots should be able to provide immediate and useful feedback.

Transfer of tools: requirements management

The incremental development and delivery approach imposed the need for strict, yet
flexible requirements management. An initial requirements inventory was made, and
based on the feedback from the pilot projects requirements were added, changed, or
removed. A release plan, documenting which requirements would be implemented for
which delivery, was continuously adapted and updated. This release plan was strongly

204 THE TANGRAM TRANSFER PROJECTS: FROM RESEARCH TO PRACTICE

coupled to the needs of the pilot projects. For this purpose the requirements were
classified into four classes according to their expected cost/benefit ratio: (1) high or
low importance for the customer (the pilot project), and (2) high or low effort for the
implementation (the transfer project team); see Figure 15.2.

High Low

Do
Discuss

High Don't

Low

E
ffo

rt
 fo

r
de

ve
lo

pm
en

t

Importance for customer

1 2

3 4

Figure 15.2: Requirements: importance and effort.

According to this classification the release planning was made. Requirements with
high importance and low effort are, of course, immediately implemented, while low
importance and high effort requirements are not considered at all. High importance
and high effort requires detailed discussion and, when deemed necessary, planning, and
low importance and low effort requirements are implemented when the implementers
have some spare time left.

This requirements capturing, classification, and planning is repeated for every in-
cremental delivery taking into account the experiences and feedback from the pilot
projects.

15.5 Transfer project challenges

The transfer projects encountered a couple of challenges. Compared with the re-
search phase of Tangram, there were more non-technical and management issues. And
whereas technical challenges can usually be solved by clever engineers, sometimes
supported by Tangram project members, the non-technical problems in general have
less clear solutions. Since these non-technical problems are mostly of a generic nature,
independent of the topic of Tangram being transferred, we briefly discuss some of them
here.

Selection of appropriate pilot projects The selection of pilot projects is an activ-
ity that must be done with utmost care. On the one hand, the application of the new
methodologies and tools in the pilot projects should be feasible and doable. On the

TRANSFER PROJECT CHALLENGES 205

other hand, the pilots should be chosen such that they lead to observable and quantifi-
able results and benefits, not only at the end of the transfer project, but continuously at
all intermediate steps in order to create continuous interest, support, and commitment
at all levels of the ASML organization.

Prototype tool quality The technical baseline for the transfer of a tool is the pro-
totype tool developed for the proof-of-concept. As explained above in Section 15.4,
adaptations and extensions, mainly concerning non-functional aspects, are necessary
to make such a tool applicable in an industrial environment. To obtain a realistic plan-
ning for these adaptations and extensions a precise evaluation of the current quality of
the tool must be made first. This includes the status of the technical documentation
and manuals. Realistic planning is important to keep commitment and support for the
transfer project. The right adaptations and extensions should be incrementally deliv-
ered on the right moment to be of added value for the pilot projects. Commitment may
be jeopardized by negative experiences with, or feelings about the tools. Such negative
sentiments should as much as possible be kept under control by timely and consistent
support solving the issues involved.

People Having appropriate staffing of the transfer projects, both in number and in
expertise, is important. Because the methodology and tools emanate from a research
environment, the transfer project members should be able to communicate effectively
with the research team to cope with this situation. The support from the Tangram
research team members is available but limited, because of the ongoing research ac-
tivities, and because transfer activities that go beyond the proof-of-concept are not in
the scope of the research project. With respect to the number of people in the trans-
fer projects, there will be a constant competition for scarce resources, e.g., when there
is pressure because of critical deliveries elsewhere in the organization. These are not
under control of the transfer project. To compete with such projects, it is even more
important to have managerial commitment.

Commitment Creating and maintaining commitment for a transfer project within all
levels of the ASML organization is one of the most important issues. Initial commit-
ment is created by results of the proof-of-concept cases. During the execution of the
transfer project, the commitment should be extended and increased, mainly by contin-
uous and observable progress and benefits in the pilots. These pilot projects let people
directly experience the advantages in their daily working activities, thus creating en-
thusiasm and bottom up commitment.

Early involvement of managers in the project communication and outcome evalu-
ation is important to create top down commitment. This includes realistic expectation
management. Commitment is also very important for the later consolidation and insti-
tutionalization of the methodology and tools within ASML.

206 THE TANGRAM TRANSFER PROJECTS: FROM RESEARCH TO PRACTICE

Tool support for the pilot projects The tool support for the pilot projects is per-
formed by the transfer project team itself. This is a perfect way to keep in touch with
the practical use of the tool, and have continuous feedback for detecting and fixing
problems and upgrading with new features. It is important to keep the balance between
direct support for the pilots, and working on the planned tool adaptations and exten-
sions, in particular when the number of pilots grows. This risk is mitigated by creating
a so-called ‘buddy’ system in which the more experienced pilot users guide the novice
users with initial training and first line support. This approach also facilitates the grad-
ual institutionalization of the methodology and tools.

15.6 The Tangram transfer project results

Transfer projects were initiated for three research areas of Tangram, see Section 15.3:
integration and test planning, model-based diagnosis, and integration and test infras-
tructure. We briefly describe their outcomes.

During the transfer project, the tool for automatic integration and test planning
LONETTEwas updated with features supporting its efficient and effective use, with em-
phasis on usability aspects. By having ASML developers perform this task, also knowl-
edge about the internal implementation of LONETTEwas indirectly transferred. An ex-
tensive training program including a workshop was developed and held for ASML en-
gineers so that they have sufficient knowledge to use the method and its tool LONETTE.
Currently, the method and LONETTE are used in planning the weekly software valida-
tion test, which is executed every week to check the changes made to the software
baseline.

For model-based diagnosis, a training module was developed, including knowledge
and experience about model-based diagnosis in general, and about the LYDIA system
and language in particular. Workshops based on this training module were held, in
which ASML engineers were taught how to develop diagnosis models in LYDIA , and
how to use the tool for fast diagnosis. As part of the transfer project, a VHDL to LYDIA

translator was developed, which enables automatic conversion of a VHDL description
of safety logic into a LYDIA model. Moreover, the LYDIA system was extended with
several features that increased its performance and usability. A pilot project where
LYDIA was used for diagnosis at a customer site showed very good results.

The know-how about the integration and test infrastructure has been transferred by
having ASML engineers doing a re-factoring of the proof-of-concept tool, supported
by a Tangram member. Emphasis in this re-factoring was on increasing the robustness
of the tools. Next to that, a user training was developed enabling ASML developers to
effectively use the integration and test infrastructure in their daily working activities.
Currently, it is mainly used as a test execution environment for manually developed
tests.

For all three transfer projects, ASML has taken over the methodologies, tools, and
accompanying training materials. Further consolidation and institutionalization is now

CONCLUDING REMARKS 207

the responsibility of ASML, and is, among others, done by placing it on the respective
road maps for future developments.

15.7 Concluding remarks

The goal of Tangram was to develop methods and techniques to reduce lead time,
improve quality, and decrease costs of integration and testing of high-tech multidis-
ciplinary systems; see Chapter 1. The outcomes are a couple of methods, techniques
and tools at different levels of maturity. These outcomes are delivered as a proof-of-
concept: a demonstration that the developed solution works and solves a problem of the
industrial partner, i.c. ASML. Transfer of the proposed solution to the industry, includ-
ing aspects like training, embedding in the organization, long term support, et cetera,
are explicitly not considered within such a research project. Starting with the results of
Tangram, three transfer projects were initiated to transform the proof-of-concept results
into industrially applicable results, and to transfer them to ASML.

This chapter showed the different phases of proof-of-concept and industrial ev-
idence of research project results, and why a transfer project is necessary, even if
Tangram is called an ‘applied’ research project. The activities in such a transfer project
were discussed, with emphasis on tool adaptations and extensions, and the necessity to
organize these with incremental delivery of tool functionality and strict requirements
management. Also a couple of issues and challenges for the organization of such trans-
fer projects were discussed, of which creating and maintaining commitment within the
organization is considered the most important one.

The three Tangram transfer projects finished successfully. ASML has adopted their
results, and will now have to work on further consolidation, institutionalization, and
roll-out in the organization. Another challenge is the further proliferation of these re-
sults outside ASML, and the question to what extent these results can be copied to
other organizations. Moreover, it can be expected that, one day, the use of the Tangram
methodologies and tools will lead to new problems and to new research questions in
integration and testing, which then again will trigger new research projects. With re-
spect to both, the further proliferation of Tangram results, and the identification of new
research questions and the initiation of new projects, there is an important role for the
Embedded Systems Institute.

208 THE TANGRAM TRANSFER PROJECTS: FROM RESEARCH TO PRACTICE

Appendix A

Tangram publications

Scientific publications and Ph.D. theses

1. J.C.M. Baeten, D.A. van Beek, P.J.L. Cuijpers, M.A. Reniers, J.E. Rooda, R.R.H.
Schiffelers, and R.J.M. Theunissen.Model-Based Engineering of Embedded
Systems Using the Hybrid Process Algebraχ.
In LIX Colloquium on Emerging Trends in Concurrency Theory, Paris, France,
November 2006. To appear in Electronic Notes in Theoretical Computer Sci-
ence.

2. J.C.M. Baeten, D.A. van Beek, and J.E. Rooda.Process Algebra for Dynamic
System Modeling.
In P.A. Fishwick, editor, CRC Handbook of Dynamic System Modeling. Taylor
and Francis Group LLC, 2007. To appear.

3. H. Bohnenkamp and A. Belinfante.Timed Testing withTORX.
In J. Fitzgerald, I.J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods:
Int. Symposium of Formal Methods Europe, number 3582 in Lecture Notes in
Computer Science, pages 173–188. Springer-Verlag, 2005.

4. H. Bohnenkamp and A. Belinfante.Timed Testing withTORX.
In W. Dulz, editor, ITG FA 6.2 Workshop on Model-Based Testing. VDE-Verlag,
2006.Reworked version of publication no. 3.

5. R. Boumen.Integration and Test Plans for Complex Manufacturing Systems.
PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
2007.

6. R. Boumen, I.S.M. de Jong, J.M.G. Mestrom, J.M. van de Mortel-Fronczak, and
J.E. Rooda.Integration Sequencing in Complex Manufacturing Systems.
SE Report 2006-02, Eindhoven University of Technology, Eindhoven, The Nether-

209

210 TANGRAM PUBLICATIONS

lands, 2006.

7. R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, and J.E. Rooda.Test
Time Reduction by Optimal Test Sequencing.
In Proceedings of INCOSE 2006 –16th Int. Symposium on Systems Engineer-
ing, Orlando, FL, USA, July 9-13 2006.

8. R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, and J.E. Rooda.Op-
timal Integration and Test Planning Applied to Lithographic Systems.
In Proceedings of INCOSE 2007 –17th Int. Symposium on Systems Engineer-
ing, San Diego, CA, USA, June 24-28 2007.

9. R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, and J.E. Rooda.Op-
timal Integration and Test Plans for Software Releases of Lithographic Systems.
In Proceedings of the5th Annual Conference on Systems Engineering Research
— CSER, 2007, Hoboken, NJ, USA, March 14-16 2007. Stevens Institute of
Technology.

10. R. Boumen, I.S.M. de Jong, J.W.H. Vermunt, J.M. van de Mortel-Fronczak, and
J.E. Rooda.Test Sequencing in Complex Manufacturing Systems.
IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems and
Humans, 2006. Accepted for publication.

11. N.C.W.M. Braspenning, E.M. Bortnik, J.M. van de Mortel-Fronczak, and J.E.
Rooda. Model-Based System Analysis using Chi and Uppaal: An Industrial
Case Study.
Computers in Industry, 2007. Accepted for publication.

12. N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda.A Model-
Based Integration and Testing Method to Reduce System Development Effort.
In Proceedings of the Second Workshop on Model Based Testing – MBT 2006,
volume 164/4 of Electronic Notes in Theoretical Computer Science – ENTCS,
pages 13–28. Elsevier, 2006.

13. N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda.Analysis
and Implementation of Infrastructure for Model-Based Integration and Testing.
In Proceedings of the5th Annual Conference on Systems Engineering Research
– CSER 2007, Hoboken, NJ, USA, March 14-16 2007. Stevens Institute of Tech-
nology.

14. N.C.W.M. Braspenning, D. Kostić, J.M. van de Mortel-Fronczak, and J.E. Rooda.
Model-Based Support for Integration and Testing of an Industrial System.
In Proceedings of the European Systems Engineering Conference – EuSEC 2006,
Edinburgh, UK, September 18-20 2006.

15. N.C.W.M. Braspenning, D.O. van der Ploeg, J.M. van de Mortel-Fronczak, and

211

J.E. Rooda.Model-Based Techniques for Intelligent Integration and Testing in
Industry.
In Proceedings of INCOSE 2007 –17th Int. Symposium on Systems Engineer-
ing, San Diego, CA, USA, June 24-28 2007.

16. W.J.A. Denissen.A Multidisciplinary Model-Based Test and Integration Infras-
tructure.
In Proceedings of the 2006 IEEE Int. Symposium on Intelligent Control, pages
1916–1921. IEEE, October 2006.

17. A. Feldman, J. Pietersma, and A. van Gemund.A Multi-Valued SAT-Based Al-
gorithm for Faster Model-Based Diagnosis.
In C. Alonso Gonzáles, T. Escobert, and B. Pulido, editors, Seventeenth Int.
Workshop on Principles of Diagnosis – DX-06, pages 93–100, Peñaranda de
Duero, Burgos, Spain, June 2006.

18. A. Feldman, J. Pietersma, and A. van Gemund.All Roads Lead to Fault Diag-
nosis: Model-Based Reasoning withLYDIA .
In P.-Y. Schobbens, W. Vanhoof, and G. Schwanen, editors, Proceedings of the
Eighteenth Belgium-Netherlands Conference on Artificial Intelligence – BNAIC-
06, pages 123–131, Namur, Belgium, October 2006.

19. L. Frantzen and J. Tretmans.Model-Based Testing of Environmental Confor-
mance of Components.
In F.S de Boer and M. Bosangue, editors, Formal Methods of Components and
Objects – FMCO 2006, volume 4709 of Lecture Notes in Computer Science.
Springer-Verlag, 2007.

20. L. Frantzen, J. Tretmans, and T. Willemse.Test Generation Based on Symbolic
Specifications.
In J. Grabowski and B. Nielsen, editors, Formal Approaches to Software Testing
– FATES 2004, volume 3395 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2005.

21. L. Frantzen, J. Tretmans, and T.A.C. Willemse.A Symbolic Framework for
Model-Based Testing.
In K. Havelund, M. Núñez, G. Roşu, and B. Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification – FATES/RV’06, volume 4262 of
Lecture Notes in Computer Science, pages 40–54. Springer-Verlag, 2006.

22. M. Gromov and T.A.C. Willemse.Testing and Model-Checking Techniques for
Diagnosis.
In A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp, editors, Testing of
Software and Communicating Systems –19th IFIP TC 6/WG 6.1 Int. Confer-
ence, TestCom 2007,7th Int. Workshop, FATES 2007, volume 4581 of Lecture
Notes in Computer Science. Springer-Verlag, 2007.

212 TANGRAM PUBLICATIONS

23. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda.Inte-
gration and Test Strategies for Semiconductor Manufacturing Equipment.
In Proceedings of INCOSE 2006 –16th Int. Symposium on Systems Engineer-
ing, Orlando, FL, USA, July 9-13 2006.

24. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda.An
Overview of Integration and Test Plans in Organizations with Different Business
Drivers.
In Proceedings of the5th Annual Conference on Systems Engineering Research
– CSER 2007, Hoboken, NJ, USA, March 14-16 2007. Stevens Institute of Tech-
nology.

25. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda.Soft-
ware Reliability Qualification for Semi-Conductor Manufacturing Systems.
In the18th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Con-
ference – ASMC 2007, Stresa, Italy, June 11-12 2007. Semiconductor Equip-
ment and Materials International – SEMI, San Jose, CA, USA.

26. M. van Osch. Automated Model-Based Testing ofχ Simulation Models with
TORX.
In R. Reussner, J. Mayer, J.A. Stafford, S. Overhage, S. Becker, and P.J. Schroeder,
editors, Quality of Software Architectures and Software Quality, number 3712
in Lecture Notes in Computer Science, pages 227–241. Springer-Verlag, 2005.

27. M. van Osch.Hybrid Input-Output Conformance and Test Generation.
In K. Havelund, M. Núñez, G. Roşu, and B. Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification – FATES/RV’06, volume 4262 of
Lecture Notes in Computer Science, pages 70–84. Springer-Verlag, 2006.

28. J. Pietersma, A. Feldman, and A.J.C. van Gemund.Modeling and Compilation
Aspects of Fault Diagnosis Complexity.
In AUTOTESTCON 2006 – Proceedings IEEE Systems Readiness Technology
Conference, pages 502–508, Anaheim, California, USA, September 2006. IEEE.

29. J. Pietersma and A.J.C. van Gemund.Diagnostic Accuracy of Models.
In H.Y. Zhang, editor,6th IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes – SAFEPROCESS 2006, pages 913–918, Beijing,
China, August 2006. International Federation of Automatic Control – IFAC.

30. J. Pietersma and A.J.C. van Gemund.Temporal versus Spatial Observability in
Model-Based Diagnosis.
In Proceedings of IEEE Int. Conf. on Systems, Man, and Cybernetics – SMC
2006, Taipei, Taiwan, October 2006. IEEE.

31. J. Pietersma and A.J.C. van Gemund.Benefits and Costs of Model-Based Fault
Diagnosis for Semiconductor Manufacturing Equipment.

213

In Proceedings of INCOSE 2007 –17th Int. Symposium on Systems Engineer-
ing, San Diego, CA, USA, June 24-28 2007.

32. J. Pietersma and A.J.C. van Gemund.Symbolic Factorization of Propagation
Delays out of Diagnostic System Models.
In G. Biswas, X. Koutsoukos, and S. Abdelwahed, editors,18th Int. Workshop
on Principles of Diagnosis – DX’07, pages 170–177, Nashville, USA, 2007.

33. J. Pietersma, A.J.C. van Gemund, and A. Bos.A Model-Based Approach to Fault
Diagnosis of Embedded System.
In J.J. van Wijk, J.W.J. Heijnsdijk, K.G. Langendoen, and R. Veltkamp, editors,
Proceedings of the10th Annual Conference of the Advanced School for Com-
puting and Imaging – ASCI 2004 – Port Zélande, Ouddorp, The Netherlands,
pages 189–196, Delft University of Technology, The Netherlands, June 2004.
Advanced School for Computing and Imaging (ASCI).

34. J. Pietersma, A.J.C. van Gemund, and A. Bos.A Model-Based Approach to
Sequential Fault Diagnosis.
In AUTOTESTCON 2005 – Proceedings IEEE Systems Readiness Technology
Conference, pages 621–627, Orlando, Florida, USA, September 2005. IEEE.

35. M. Prins.Testing Industrial Embedded Systems - An Overview.
In Proceedings of INCOSE 2004 –14th Int. Symposium on Systems Engineer-
ing, Toulouse, France, June 20-24 2004.

36. J. Tretmans.Model Based Testing with Labelled Transition Systems.
In R. Hierons, editor, Testing with Formal Methods, Springer-Verlag, 2007.
To appear.

37. T.A.C. Willemse.Heuristics for ioco-Based Test-Based Modelling.
In L. Brim, B. Haverkort, M. Leucker, and J. v.d. Pol, editors, Formal Meth-
ods Applications and Technology:11th Int. Workshop on Formal Methods for
Industrial Critical Systems – FMICS 2006, and5th Int. Workshop on Parallel
and Distributed Methods in Verification – PDMC 2006, volume 4346 of Lecture
Notes in Computer Science, pages 123–147. Springer-Verlag, 2007.

Technical reports

1. A. Bos. A Model-Based Fault Detection and Diagnosis System for the EUV-
Projection Optics Box.
Technical Report ASML-TAN-TN-0001, ASML N.V., Veldhoven, The Nether-
lands.

2. R. Boumen, I.S.M. de Jong, J.W.H. Vermunt, J.M. van de Mortel-Fronczak, and

214 TANGRAM PUBLICATIONS

J.E. Rooda.A Risk-Based Stopping Criterion for Test Sequencing.
SE Report 420460, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2006.

3. R. Boumen, I.S.M. de Jong, J.M.G. Mestrom, J.M. van de Mortel-Fronczak, and
J.E. Rooda.Integration and Test Sequencing for Complex Systems.
SE Report 2007-07, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2007.

4. N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda.Model-
ing, Analysis and Implementation of Infrastructure for Model-Based Integration
and Testing.
SE Report 2007-08, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2007.

5. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, J.E. Rooda.Test strat-
egy analysis for manufacturing systems.
SE Report 2007-10, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2007.

6. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, J.E. Rooda.Paral-
lelizing test phases using graph partitioning algorithms.
SE Report 2007-11, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2007.

7. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, J.E. Rooda.Test set
improvement using a next-best-test-case algorithm.
SE Report 2007-12, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2007.

8. I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, J.E. Rooda.Selecting
a suitable system architecture for integration and testing.
SE Report 2007-13, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2007.

Master theses, bachelor theses, and internship reports

1. J. Anggono.Verification and Model-Based Testing of the ASML Laser Subsys-
tem.
SAI/2yr Thesis, SAI-IPPS, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2004.

2. A. Barve.Model-Based Diagnosis – An ASML Case Study.

215

Master thesis, Delft University of Technology, EEMCS, Delft, The Netherlands.
2005.

3. E.L.G. Bertens.Translation ofχ Models for Verification withUPPAAL.
Bachelor thesis. Report SE 420463, Eindhoven University of Technology, Dept.
of Mechanical Engineering, Eindhoven, The Netherlands, 2006.

4. G. van Bokhoven.Model-Based Integration of Manufacturing Machines: Con-
cepts and Applications.
Master thesis, report SE 420448, Eindhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2005.

5. G. van Bokhoven.Model-Based Testing: A State-of-the-Art Overview.
Short Internship, report SE 420381, Eindhoven University of Technology, Dept.
of Mechanical Engineering, Eindhoven, The Netherlands, 2004.

6. M. van Campenhout. LONETTE.
Bachelor thesis, Fontys Hogeschool, Eindhoven, The Netherlands, 2007.

7. M.J.M. Dohmen. Integration and Test Sequencing Applied to ASML Software
Releases.
Traineeship report, Eindhoven University of Technology, Dept. of Mechanical
Engineering, Eindhoven, The Netherlands, 2006.

8. J. Ekelmans.Test Phase Partitioning for Lithographic Machines.
Master thesis, report SE 420502, Einhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2007.

9. A.G.C.L. Geubbels.Model-Based Integration and Testing of High-Tech Multi-
Disciplinary Systems.
Master thesis, report SE 420476, Eindhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2006.

10. M. van der Heijden. LONETTE 1.0: A Tool for Test and Integration Strategies.
Bachelor thesis, Fontys Hogeschool, Eindhoven, The Netherlands, 2006.

11. R.M.P.J. Hendrikx.Model-Based Testing of Complex Manufacturing Systems: A
Case Study.
Master thesis, report SE 420386, Eindhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2004.

12. J.H.M. van Lierop and F.A.G. van der Sterren. TWINSCAN Hardware Simulator,
Efficient Integreren.
Bachelor thesis, Fontys Hogeschool, Eindhoven, The Netherlands, 2006.

13. J.M.G. Mestrom.Integration and Test Sequencing for Complex Manufacturing
Systems.

216 TANGRAM PUBLICATIONS

Master thesis, report SE 420484, Eindhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2006.

14. V. Niculescu-Dinca.Infrastructure for Early Integration, Connecting Multidis-
ciplinary Simulators in a Distributed Environment.
TWAIO thesis, Stan Ackermans Instituut, Eindhoven, The Netherlands, 2005.

15. L. Oosterhof.High Speed Serial Link (HSSL) Test Device.
Bachelor thesis, Fontys Hogeschool, Eindhoven, The Netherlands, 2006.

16. K.M. Peplowska. Models of theTWINSCAN Laser Subsystem for Model-
Based Testing.
SAI/2yr Thesis, SAI-IPPS, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2004.

17. D. van de Pol.Data Distribution Service (DDS) Connectors for LabView and
TTCN.
Bachelor thesis, Fontys Hogeschool, Eindhoven, The Netherlands, 2006.

18. M.H. Schonenberg.Timed Modelling & Verification of the DO/DG Component
– A Case Study in the Tangram project.
Internship assignment, University of Twente, EWI Faculty, Enschede, The Nether-
lands, 2005.

19. F. Stappers.Simulation, Verification, and Model Based Integration for a Hybrid
System in an ASML Case Study.
Master thesis, Einhoven University of Technology, Eindhoven, The Netherlands,
2007.

20. R. Theunissen.The Test and Integration Simulation Model.
Traineeship report SE 420477, Eindhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2005.

21. P. Verduin. LONETTE: A Tool and Infrastructure for LoA1.
Bachelor thesis, Avans Hogeschool, Breda, ‘s-Hertogenbosch, Tilburg, The Nether-
lands, 2005.

22. J.W.H. Vermunt.Test Sequencing of Complex Manufacturing Systems.
Master thesis, report SE 420435, Eindhoven University of Technology, Dept. of
Mechanical Engineering, Eindhoven, The Netherlands, 2005.

Professional articles

1. R. Boumen and I.S.M. de Jong.Doorlooptijd Verkorting door het Gebruik van

217

Optimale Test Volgordes.
In Dutch; Translated title: Reduction of lead times by using optimal test se-
quences.
Bits & Chips, August 2005.

2. R. Boumen and I.S.M. de Jong.Wiskundige Teststrategie Belooft Weken Winst in
Doorloop.
In Dutch; translated title: Mathematical test strategy promises a lead time gain
of weeks.
Bits & Chips, 7(14):16–19, 2005.

3. R. Boumen, I.S.M. de Jong, J.W.H. Vermunt, J.M. van de Mortel-Fronczak, and
J.E. Rooda.Test Sequencing in a Complex Manufacturing System.
XOOTIC Magazine, 11(2):9–16, December 2005.

4. R. Boumen, N.C.W.M. Braspenning, I.S.M. de Jong, J.M. van de Mortel-Fron-
czak, and J.E. Rooda.Methods and Algorithms for Model-Based Integration and
Testing.
SPIder Koerier, 2007(1):4–10, April 2007.

5. N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda.Model-
Based Testing with Chi and TorX.
XOOTIC Magazine, 11(2):17–23, December 2005.

6. W.J.A. Denissen.A Multidisciplinary Model-Based Test and Integration Infras-
tructure.
XOOTIC Magazine, 11(2):35–46, December 2005.

7. L. Engels, I.S.M. de Jong, and J. Tretmans.Tangram met Modellen naar Snellere
Integratie en Test.
Bits & Chips, 9(11):32–35, 2007.

8. M. van Osch.An Introduction to Tangram.
XOOTIC Magazine, 11(2):5–8, December 2005.

9. J. Pietersma, A.J.C. van Gemund, and A. Bos.A Model-Based Approach to
Sequential Fault Diagnosis.
IEEE Instrumentation and Measurement Magazine, 10(2):46–52, 2007.

10. J. Pietersma, A.J.C. van Gemund, and A. Bos.A Model-Based Approach to Fault
Diagnosis of Embedded System.
XOOTIC Magazine, 11(2):25–33, December 2005.

218 TANGRAM PUBLICATIONS

Appendix B

List of authors

Ir. A. Belinfante
University of Twente
Axel.Belinfante@cs.utwente.nl

Dr. rer. nat. H. Bohnenkamp
Rheinisch-Westfälische Technische
Hochschule Aachen
henrik@cs.rwth-aachen.de

Dr. ir. R. Boumen
ASML
Eindhoven University of Technology
r.boumen@tue.nl

Ir. N.C.W.M. Braspenning
Eindhoven University of Technology
n.c.w.m.braspenning@tue.nl

Ir. T. Brugman
ASML
Tom.Brugman@asml.com

Dr. ir. W.J.A Denissen
TNO Science and Industry
Will.Denissen@tno.nl

Ing. A.P.G.C. van Dongen
ICT Embedded B.V.
ad.van.dongen@esi.nl

Ir. L. Engels
ASML
Luud.Engels@asml.com

Prof. dr. ir. A.J.C. van Gemund
Delft University of Technology
a.j.c.vangemund@tudelft.nl

Ing. I.S.M. de Jong
ASML
Eindhoven University of Technology
ivo.de.jong@asml.com

Dr. ir. J.M. van de Mortel-Fronczak
Eindhoven University of Technology
j.m.v.d.mortel@tue.nl

Ir. H.A.J. Neerhof
ASML
johan.neerhof@asml.com

219

220 LIST OF AUTHORS

Ir. M.P.W.J. van Osch
Eindhoven University of Technology
M.P.W.J.van.Osch@tue.nl

Ir. J. Pietersma
Delft University of Technology
j.pietersma@tudelft.nl

Ir. D.O. van der Ploeg
ASML
durk.van.der.ploeg@asml.com

Prof. dr. ir. J.E. Rooda
Eindhoven University of Technology
j.e.rooda@tue.nl

Dr. ir. G.J. Tretmans
Embedded Systems Institute
Radboud University Nijmegen
jan.tretmans@esi.nl

Dr. ir. T.A.C. Willemse
Eindhoven University of Technology
t.a.c.willemse@tue.nl

Tangram partners (institutions and companies):

ASML Veldhoven, The Netherlands
Science and Technology Delft, The Netherlands

TNO Science and Industry Delft, The Netherlands
Delft University of Technology Delft, The Netherlands

Eindhoven University of Technology Eindhoven, The Netherlands
Radboud University Nijmegen Nijmegen, The Netherlands

University of Twente Enschede, The Netherlands
Embedded Systems Institute Eindhoven, The Netherlands

For more information: office@esi.nl

Bibliography

[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical Hybrid Modeling of Em-
bedded Systems. InProceedings of the 1st International Workshop on Embedded
Software – EMSOFT-01, Tahoe City, CA, USA, volume 2211 ofLecture Notes in
Computer Science, pages 14–31. Springer-Verlag, 2001.

[2] D. Angluin. Learning regular sets from queries and counterexamples.Informa-
tion and Computation, 2(75):87–106, 1987.

[3] M.M. Arenthoft, J.J. Fuchs, Y. Parrod, A. Gasquet, J. Stader, and I. Stokes.
OPTIMUM-AIV: A Planning and scheduling system for spacecraft AIV.Future
generation Computer Systems, 7:403–412, 1991.

[4] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers.
Syntax and Semantics of timed Chi. Computer Science report 05–09, Eindhoven
University of Technology, 2005.

[5] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers.
Syntax and Consistent Equation Semantics of Hybrid Chi.Journal of Logic and
Algebraic Programming, special issue on hybrid systems, 68(1 - 2):129 – 210,
2006.

[6] D.A. van Beek, A. van der Ham, and J.E. Rooda. Modelling and Control of
Process Industry Batch Production Systems. InProceedings of the 15th Tri-
ennial World Congress of the International Federation of Automatic Control –
IFAC-02, Barcelona, Spain, 2002.

[7] A. Belinfante. Timed Testing with TorX: The Oosterschelde Storm Surge Bar-
rier. In M. Gijsen, editor,Handout 8e Nederlandse Testdag, Rotterdam, 2002.
CMG.

[8] A. Belinfante. Torx test tool information.http://fmt.cs.utwente.nl/
tools/torx , 2007.

221

http://fmt.cs.utwente.nl/tools/torx
http://fmt.cs.utwente.nl/tools/torx

222 BIBLIOGRAPHY

[9] A. Belinfante, J. Feenstra, L. Heerink, and R.G. de Vries. Specification Based
Formal Testing: The EasyLink Case Study. In2nd Workshop on Embedded
Systems – PROGRESS-01, pages 73–82. STW, Utrecht, The Netherlands., 2001.

[10] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal Test Automation: A Simple Experiment.
In G. Csopaki, S. Dibuz, and K. Tarnay, editors,12th Int. Workshop on Testing
of Communicating Systems, pages 179–196. Kluwer, 1999.

[11] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools.
In W. Reisig and G. Rozenberg, editors,Lecture Notes on Concurrency and
Petri Nets, volume 3098 ofLecture Notes in Computer Science, pages 87–124.
Springer-Verlag, 2004.

[12] T. Berg, B. Jonsson, M. Leucker, and M. Saksena. Insights to Angluin’s Learn-
ing. In S. Etalle, S. Mukhopadhyay, and A. Roychoudhury, editors,Proceedings
of SVV 2003, volume 118 ofElectronic Notes in Theoretical Computer Science,
pages 3–18. Elsevier, 2005.

[13] M. Boasson. Control systems software.IEEE Transactions on Automatic Con-
trol, 38(7):1094–1106, 1993.

[14] B.W. Boehm and V.R. Basili. Software Defect Reduction Top 10 List.IEEE
Computer, 34(1):135–137, 2001.

[15] H. Bohnenkamp and A. Belinfante. Timed Testing with TorX. InFormal Meth-
ods Europe 2005, volume 3582 ofLecture Notes in Computer Science, pages
173 – 188. Springer-Verlag, 2005.

[16] E.M. Bortnik, N. Třcka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing aχ model of a
turntable system using SPIN, CADP and UPPAAL. Journal of Logic and Al-
gebraic Programming, 65(2):51–104, 2005.

[17] E.M. Bortnik, D.A. van Beek, J.M. van de Mortel-Fronczak, and J.E. Rooda.
Verification of timed Chi models using UPPAAL. In Proceedings of the 2nd
International conference on Informatics in Control, Automation and Robotics –
ICINCO-05, Barcelona, Spain, pages 486–492. INSTICC Press, 2005.

[18] E.M. Bortnik, J.M. van de Mortel-Fronczak, and J.E. Rooda. Verifying Chi
models in UPPAAL. Systems Engineering report 2007–06, Eindhoven University
of Technology, 2007.

[19] R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, and J.E. Rooda. Test
time reduction by optimal test sequencing.Proceedings of the 2006 INCOSE
International Symposium, 2006.

BIBLIOGRAPHY 223

[20] R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, and J.E. Rooda. Op-
timal integration and test planning applied to lithographic systems.Proceedings
of the 2007 INCOSE International Symposium, 2007.

[21] R. Boumen, I.S.M. de Jong, J.M. van de Mortel-Fronczak, and J.E. Rooda. Opti-
mal integration and test strategies for software releases of lithographic systems.
Proceedings of the 5th Annual conference on Systems Engineering Research –
CSER, 2007.

[22] R. Boumen, I.S.M. de Jong, J.W.H. Vermunt, J.M. van de Mortel-Fronczak,
and J.E. Rooda. A Risk-Based Stopping Criterion for Test Sequencing. SE Re-
port 420460, Eindhoven University of Technology, Eindhoven, The Netherlands,
2006.

[23] R. Boumen, I.S.M. de Jong, J.W.H. Vermunt, J.M. van de Mortel-Fronczak,
and J.E. Rooda. Test sequencing in complex manufacturing systems.IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
2006. Accepted for publication.

[24] R. Boumen, I.S.M. de Jong, J.M.G. Mestrom, J.M. van de Mortel-Fronczak,
and J.E. Rooda. Integration sequencing in complex manufacturing systems.
SE Report 2006-02, Eindhoven University of Technology, Systems Engineering
Group, Department of Mechanical Engineering, Eindhoven, The Netherlands,
2006.

[25] J.B. Bowles. The new SAE FMECA standard. InProceedings of the Annual
Reliability and Maintainability Symposium, pages 48 – 53, 1998.

[26] L. Brandán Briones and Ed Brinksma. A test generation framework for quiescent
real-time systems. In J. Grabowski and B. Nielsen, editors,FATES04. Formal
Approaches to Testing of Software (4th International Workshop), volume 3395
of Lecture Notes in Computer Science, pages 64–78. Springer-Verlag, 2004.

[27] N.C.W.M. Braspenning, E. Bortnik, J.M. van de Mortel-Fronczak, and J.E.
Rooda. Analysis and implementation of infrastructure for model-based inte-
gration and testing. InProceedings of the 5th Annual Conference on Systems
Engineering Research – CSER, 2007.

[28] N.C.W.M. Braspenning, E.M. Bortnik, J.M. van de Mortel-Fronczak, and J.E.
Rooda. Model-based system analysis using Chi and Uppaal: an industrial case
study.Computers in Industry, 2007. Accepted for publication.

[29] N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda. A
model-based integration and testing method to reduce system development ef-
fort. Electronic Notes in Theoretical Computer Science – Proceedings of the 2nd
workshop on Model-Based Testing – MBT-06, 164(4):13–28, 2006.

224 BIBLIOGRAPHY

[30] N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda. Mod-
eling, analysis, and implementation of infrastructure for model-based integra-
tion and testing. Systems Engineering report 2007–08, Eindhoven University of
Technology, 2007.

[31] N.C.W.M. Braspenning, D.O. van der Ploeg, J.M. van de Mortel-Fronczak, and
J.E. Rooda. Model-based techniques for intelligent integration and testing in
industry. InProceedings of the 17th International Symposium of INCOSE –
INCOSE-07, USA, 2007.

[32] L.G. Bratthall, P. Runeson, K. Ädelsward, and W. Eriksson. A Survey of Lead-
time Challenges in the Development and Evolution of Distributed Real-time
Systems.Information and Software Technology, 42(13):947–958, 2000.

[33] E. Brinksma and J. Tretmans. Testing Transition Systems: An Annotated Bib-
liography. InRevised tutorial lectures of the 4th Summer School on Modelling
and Verification of Parallel Processes – MOVEP-00, Nantes, France, volume
2067 ofLecture Notes in Computer Science, pages 187–195. Springer-Verlag,
2001.

[34] M. Broy and O. Slotosch. From Requirements to Validated Embedded Sys-
tems. InProceedings of the 1st International Workshop on Embedded Software
– EMSOFT-01, Tahoe City, CA, USA, volume 2211 ofLecture Notes in Com-
puter Science, pages 51–65. Springer-Verlag, 2001.

[35] H. Buus, R. McLees, M. Orgun, E. Pasztor, and L. Schultz. 777 Flight Controls
Validation Process.IEEE Transactions on Aerospace and electronic systems,
33(2):656–666, April 1997.

[36] C. Campbell, Grieskamp W., L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Testing Concurrent Object-Oriented Systems with SPECEXPLORER

– Extended Abstract. In J.S. Fitzgerald, I.J. Hayes, and A Tarlecki, editors,FM
2005: Int. Symposium of Formal Methods Europe, volume 3582 ofLecture Notes
in Computer Science, pages 542–547. Springer-Verlag, 2005.

[37] Ü.V. Çatalyürek and C. Aykanat. Patoh: Partitioning tools for hypergraphs.
Technical report, Bilkent University, 2002.

[38] H. Chuma. Increasing complexity and limits of organization in the microlithog-
raphy industry: implications for science-based industries.Research Policy,
35(3):394–411, April 2006.

[39] M.A. Cusumano and R.W. Selby. How Microsoft Builds Software.Communi-
cations of the ACM, 40(6):53–61, June 1997.

[40] Embedded Systems Institute. The Trader project.http://www.esi.nl/
trader .

http://www.esi.nl/trader
http://www.esi.nl/trader

BIBLIOGRAPHY 225

[41] A. Engel, I. Bogomolni, S. Shacher, and A. Grinman. Gathering historical life-
cycle quality costs to support optimizing the VVT process.Proceedings of the
14th Annual International Symposium of INCOSE, 2004.

[42] ETSI. Testing and Test Control Notation: TTCN-3.http://www.etsi.
org/WebSite/Technologies/ttcn3.aspx .

[43] ETSI. Testing standards for GSM/GPRS/3G telecommunication devices and
infrastructure.http://www.etsi.org , 1999-2007.

[44] C.F. Eubanks, S. Kmenta, and K. Ishii. System Behavior Modeling as a Basis
for Advanced Failure Modes and Effects Analysis. InProceedings of the 1996
ASME Design Engineering Technical conferences and Computers in Engineer-
ing conference, August 1996.

[45] P.Th. Eugster, P.A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe.ACM Computing Surveys, 35(2):114–131, 2003.

[46] A. Feldman, J. Pietersma, and A.J.C. van Gemund. A Multi-Valued SAT-Based
Algorithm for Faster Model-Based Diagnosis. InProc. 17th International Work-
shop on Principles of Diagnosis – DX-06, June 2006.

[47] A. Feldman, J. Pietersma, and A.J.C. van Gemund. All roads lead to fault diag-
nosis: Model-based reasoning with LYDIA . In P.Y. Schobbens, W. Vanhoof, and
G. Schwanen, editors,Proceedings of the Eighteenth Belgium-Netherlands con-
ference on Artificial Intelligence (BNAIC-06) Namur, Belgium, pages 123–131,
October 2006.

[48] A. Feldman, A.J.C. van Gemund, and A. Bos. A Hybrid Approach to Hierar-
chical Fault Diagnosis. InProc. 16th International Workshop on Principles of
Diagnosis – DX-05, pages 101–106, 2005.

[49] J.C. Fernandez, C. Jard, T. Jeron, and C. Viho. An Experiment in Automatic
Generation of Test Suites for Protocols with Verification Technology. In J.F.
Groote and M. Rem, editors,Special Issue of Industrially Relevant Applications
fo Formal Analysis Techniques. Elsevier, 1996.

[50] L. Frantzen, J. Tretmans, and T. Willemse. Test Generation Based on Symbolic
Specifications. In J. Grabowski and B. Nielsen, editors,Formal Approaches to
Software Testing – FATES 2004, volume 3395 ofLecture Notes in Computer
Science, pages 1–15. Springer-Verlag, 2005.

[51] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework for
Model-Based Testing. In K. Havelund, M. Núñez, G. Roşu, and B. Wolff,
editors, Formal Approaches to Software Testing and Runtime Verification –
FATES/RV-06, volume 4262 ofLecture Notes in Computer Science, pages 40–
54. Springer-Verlag, 2006.

http://www.etsi.org/WebSite/Technologies/ttcn3.aspx
http://www.etsi.org/WebSite/Technologies/ttcn3.aspx
http://www.etsi.org

226 BIBLIOGRAPHY

[52] P. Giordano and P. Messidoro. European and international verification and test-
ing standards. InProceedings 4th International Symposium on Environmental
Testing for Space Programmes, Liege, Belgium. ESA, ESA SP-467, 2001.

[53] P. Godefroid. VeriSoft: A Tool for the Automatic Analysis of Concurrent Re-
active Software. InProceedings of CAV’97, volume 1254 ofLecture Notes in
Computer Science, pages 476–479. Springer-Verlag, 1997.

[54] P.A.M. Haagh, A.U. Wilkens, H.J.A. Rulkens, E.J.J. van Campen, and J.E.
Rooda. Application of a layout design method to the dielectric decomposition
area in a 300 mm wafer fab. InProceedings of the 7th International Symposium
on Semiconductor Manufacturing – ISSM-98, Tokyo, Japan, pages 69–72. Ultra
Clean Society, 1998.

[55] V.L. Hanh, K. Akif, Y.L. Traon, and J.M. Jézéquel. Selecting an efficient OO
integration testing strategy: An experimental comparison of actual strategies.
ECOOP, pages 381–401, 2001.

[56] M.J. Harrold. Testing: A Roadmap. In A. Finkelstein, editor,ICSE - Future of
SE Track, pages 61–72. ACM, 2000.

[57] A. Hartman and K. Nagin. The AGEDIS Tools for Model Based Testing. In
Int. Symposium on Software Testing and Analysis – ISSTA 2004, pages 129–132,
New York, USA, 2004. ACM Press.

[58] M. Heemels and G. Muller.Boderc: Model-Based Design of High-Tech Systems.
Embedded Systems Institute, Eindhoven, The Netherlands, 2006.

[59] J.W. Horch. Practical guide to software quality management. Artech House,
2nd edition, 2003.

[60] J. Huang, J. Voeten, and H. Corporaal. Correctness-preserving synthesis for
real-time control software. InProceedings of the 6th International Conference
on Quality Software – QSIC-06, Beijing, China, pages 65–73. IEEE Computer
Society Press, 2006.

[61] H. Hungar, T. Margaria, and B. Steffen. Domain-specific optimization in au-
tomata learning. In W.A. Hunt Jr. and F. Somenzi, editors,Proceedings of
CAV’03, volume 2725 ofLecture Notes in Computer Science, pages 315–327.
Springer-Verlag, 2003.

[62] H. Hungar, T. Margaria, and B. Steffen. Test-based model generation for legacy
systems. InIEEE international test conference – ITC, pages 971–980, 2003.

[63] Informa Telecoms and Media.Future Mobile Handsets. Informa Telecoms and
Media, 2006.

BIBLIOGRAPHY 227

[64] International Electrotechnical Commission. IEC 61508: Functional safety of
electronical/electronic/programmable electronic safety-related systems. Part 7:
Overview of techniques and measures. IEC Standard, 2005.

[65] C. Jard and T. Jéron. TGV: Theory, Principles and Algorithms: A Tool for the
Automatic Synthesis of Conformance Test Cases for Non-Deterministic Reac-
tive Systems.Software Tools for Technology Transfer, 7(4):297–315, 2005.

[66] I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda. An
overview of integration and test plans in organizations with different business
drivers. In B. Sauser and G.M. Muller, editors,Proceedings of the 5th Annual
conference on Systems Engineering Research – CSER, volume 1. Stevens Insti-
tute of Technology, March 2007.

[67] I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda. Par-
allelizing test phases using graph partitioning algorithms. SE Report 2007-11,
Eindhoven University of Technology, Systems Engineering Group, Department
of Mechanical Engineering, Eindhoven, The Netherlands, 2007.

[68] I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda. Se-
lecting a suitable system architecture for integration and testing. SE Report
2007-13, Eindhoven university of technology, Systems Engineering Group, De-
partment of Mechanical Engineering, Eindhoven, The Netherlands, 2007.

[69] I.S.M. de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda. Test
set improvement using a next-best-test-case algorithm. SE Report 2007-12,
Eindhoven University of Technology, Systems Engineering Group, Department
of Mechanical Engineering, Eindhoven, The Netherlands, 2007.

[70] I.S.M de Jong, R. Boumen, J.M. van de Mortel-Fronczak, and J.E. Rooda. Test
strategy analysis for semi-conductor manufacturing systems. SE report 2007-10,
Eindhoven University of Technology, 2007.

[71] J. de Kleer and B.C. Williams. Diagnosing multiple faults. In Matthew L.
Ginsberg, editor,Readings in Nonmonotonic Reasoning, pages 372–388, Los
Altos, California, 1987. Morgan Kaufmann.

[72] A. Kleppe, W. Bast, and J. Warmer.MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Professional, 1st edition,
2003.

[73] M. Krichen. The Timed Test Generator tool.http://www-verimag.
imag.fr/~krichen/ttg/index.html , 2007.

[74] M. Krichen and S. Tripakis. Black-Box Conformance Testing for Real-Time
Systems. In S. Graf and L. Mounier, editors,Proc. 11th Int. SPIN Workshop
– SPIN-2004, volume 2989 ofLecture Notes in Computer Science, pages 109–
126. Springer-Verlag, 2004.

http://www-verimag.imag.fr/~krichen/ttg/index.html
http://www-verimag.imag.fr/~krichen/ttg/index.html

228 BIBLIOGRAPHY

[75] K. G. Larsen, M Mikucionis, B. Nielsen, and A Skou. Testing Real-Time Em-
bedded Software using UPPAAL-TRON. InThe 5th ACM International con-
ference on Embedded Software, 2006.

[76] B.T. Laugen, N. Acur, H. Boer, and J. Frick. Best manufacturing practices -
What do the best-performing companies do?International Journal of Opera-
tions and Production Management, 25(2):131–150, 2005.

[77] H.K.N. Leung and L.J. White. Insights Into Regression Testing.Journal of
Software Maintenance: Research and Practice, 2:209–222, 1990.

[78] X. Liu, J. Liu, J. Eker, and E.A. Lee. Heterogeneous Modeling and Design
of Control Systems. InSoftware-Enabled Control: Information Technology for
Dynamical Systems, pages 105–122. Wiley-IEEE Press, 2003.

[79] K.L. Man and R.R.H. Schiffelers.Formal Specification and Analysis of Hybrid
Systems. PhD thesis, Eindhoven University of Technology, 2006.

[80] Maplesoft. Maple.http://www.maplesoft.com , 2007.

[81] T. Margaria, H. Raffelt, and B. Steffen. Knowledge-based relevance filtering for
efficient system-level test-based model generation.Innovations in Systems and
Software Engineering – A Nasa Journal, 1(2):147–156, 2005.

[82] L.S.H. de Mello and A.C. Sanderson. A correct and complete algorithm for the
generation of mechanical assembly sequences.IEEE Transactions on Robotics
and Automation, 7(2):228–240, 1991.

[83] L.S.H. de Mello and A.C. Sanderson. Representations of mechanical assem-
bly sequences.IEEE Transactions on Robotics and Automation, 7(2):211–227,
1991.

[84] Microsoft Research. Spec Explorer.http://research.microsoft.
com/specexplorer .

[85] M. Mikucionis, B. Nielsen, and K. G. Larsen. Real-time System Testing On-the-
Fly. In K. Sere and M. Waldén, editors,15th Nordic Workshop on Programming
Theory, pages 36–38. Abo Akademi, Department of Computer Science, Finland,
2003.

[86] P. Millard, P. Saint-Andre, and R. Meijer. XEP–0060: Publish-Subscribe.
http://www.xmpp.org/extensions/xep-0060.html , 2006. Jab-
ber Software Foundation.

[87] J.M. van de Mortel-Fronczak, J. Vervoort, and J.E. Rooda. Simulation-based
design of machine control systems. InProceedings of the 15th European Simu-
lation Multiconference, Prague, Czech Republic, 2001.

http://www.maplesoft.com
http://research.microsoft.com/specexplorer
http://research.microsoft.com/specexplorer
http://www.xmpp.org/extensions/xep-0060.html

BIBLIOGRAPHY 229

[88] National Instruments. Compact Fieldpoint product information.http://
www.ni.com/compactfieldpoint , 2007.

[89] I. Ogren. On Principles for Model-Based Systems Engineering.Systems Engi-
neering, 3(1):38–49, 2000.

[90] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus: an ar-
chitecture for extensible distributed systems. InSOSP ’93: Proceedings of the
fourteenth ACM symposium on Operating systems principles, pages 58–68, New
York, NY, USA, 1993. ACM Press.

[91] OMG. Data Distribution Service for Real-time Systems. http:
//www.omg.org/technology/documents/formal/data_
distribution.htm .

[92] OMG. Common Object Request Broker Architecture – Corba.http://www.
corba.org , 2007.

[93] Opto 22. SNAP product information.http://www.opto22.com/ad/
pac.aspx , 2007.

[94] M. van Osch. Hybrid Input-output Conformance and Test Generation. In
K. Havelund, M. Nunez, G. Rosu, and B. Wolff, editors,Proceedings of
FATES/RV-2006, volume 4262 ofLecture Notes in Computer Science, pages
70 – 84. Springer Verlag, 2006.

[95] G. Pardo-Castellote. OMG Data-Distribution Service: Architectural Overview.
In Proceedings of the 23 rd International conference on Distributed Computing
Systems Workshops – ICDCSW03, pages 200–206. IEEE Computer organiza-
tion, IEEE, May 2003.

[96] K.R. Pattipati and M.G. Alexandridis. Application of heuristic search and infor-
mation theory to sequential diagnosis.IEEE Trans. Syst. Man, Cybern., 20:872–
887, 1990.

[97] K.S. Pawar, U. Menon, and J.C.K.H. Riedel. Time to Market.Integrated manu-
facturing systems, 5(1):14–22, 1994.

[98] D. Peled, M.Y. Vardi, and M. Yannakakis. Black Box Checking.Journal of
Automata, Languages, and Combinatorics, 7(2):225–246, 2002.

[99] J. Pietersma and A.J.C. van Gemund. Diagnostic Accuracy of Models. In H.Y.
Zhang, editor,6th IFAC Symposium on Fault Detection, Supervision and Safety
of Technical Processes – SAFEPROCESS-2006, Beijing, China, pages 913–918,
August 2006.

[100] J. Pietersma and A.J.C. van Gemund. Temporal versus Spatial Observability in
Model-Based Diagnosis. InProceedings of IEEE Int. Conf. on Systems, Man,
and Cybernetics – SMC, Taipei, Taiwan. 2006, October 2006.

http://www.ni.com/compactfieldpoint
http://www.ni.com/compactfieldpoint
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.corba.org
http://www.corba.org
http://www.opto22.com/ad/pac.aspx
http://www.opto22.com/ad/pac.aspx

230 BIBLIOGRAPHY

[101] J. Pietersma and A.J.C. van Gemund. Symbolic factorization of propagation
delays out of diagnostic system models. InProc. 18th International Workshop
on Principles of Diagnosis – DX-07, May 2007.

[102] J. Pietersma, A.J.C. van Gemund, and A. Bos. A model-based approach to
sequential fault diagnosis.Proc. of IEEE AUTOTESTCON 2005, Orlando,
Florida, USA, pages 621–627, September 2005.

[103] C. Potts. Software-Engineering Research Revisited.IEEE Software, 10(5):19–
28, September/October 1993.

[104] Python.org. Python.http://www.python.org , 2007.

[105] A. Raven.Consider it Pure Joy... An introduction to clinical trials. Cambridge
Healthcare Research Ltd., 1997.

[106] A. Raven.Beyond What is Written. A researchers guide to good clinical practice.
Cambridge Healthcare research Ltd., 1998.

[107] R. Reiter. A Theory of Diagnosis from First Principles. In Matthew. L. Gins-
berg, editor,Readings in Nonmonotonic Reasoning, pages 352–371, Los Altos,
California, 1987. Kaufmann.

[108] J.A. Rowson. Hardware/software co-simulation. InProceedings of the 31st
Design Automation conference – DAC-94, San Diego, CA, USA, pages 439–440.
ACM Press, 1994.

[109] A. Rozinat, I.S.M. de Jong, C.W. Günther, and W.M.P. van der Aalst. Process
Mining of Test Processes: A Case Study. BETA Working Paper Series WP 220,
Eindhoven University of Technology, Eindhoven, 2007.

[110] M. Shakeri, V. Raghavan, K.R. Pattipati, and A. Patterson-Hine. Sequential
testing algorithms for multiple fault diagnosis.IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 30(1):1–14, 2000.

[111] C.E. Shannon. A mathematical theory of communication.Bell Sys. Tech. Jour-
nal, 27:379–623, 1948.

[112] J.G. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Testing timed au-
tomata.Theoretical Computer Science, 254(1–2):225–257, 2001.

[113] V. Stavridou. Integration Standards for Critical Software Intensive Systems. In
ISESS ’97: Proceedings of the 3rd International Software Engineering Stan-
dards Symposium – ISESS-97, page 99, Washington, DC, USA, 1997. IEEE
Computer Society.

[114] Systems Engineering Group, Mechanical Engineering Department, Eindhoven
University of Technology. Chi language and tools.http://se.wtb.tue.
nl/sewiki/chi , 2007.

http://www.python.org
http://se.wtb.tue.nl/sewiki/chi
http://se.wtb.tue.nl/sewiki/chi

BIBLIOGRAPHY 231

[115] L. Tan. CharonTester. http://www.cis.upenn.edu/%7Etanli/
tools/charontester.html , 2007.

[116] L. Tan, J. Kim, I. Lee, and O. Sokolsky. Model-based Testing and Monitoring
for Hybrid Embedded Systems. InProceedings of IEEE Internation conference
on Information Reuse and Integration – IRI-03. IEEE Society, 2003.

[117] J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

[118] J. Tretmans. Model Based Testing with Labelled Transition Systems. In R. Hi-
erons, editor,Testing with Formal Methods. Springer-Verlag, 2007. To appear.

[119] J. Tretmans and E. Brinksma. TORX: Automated model based testing. In
A. Hartman and K. Dussa-Ziegler, editors,Proceedings of the 1st European con-
ference on Model-Driven Software Engineering, Nürnberg, Germany, 2003.

[120] UPPAAL. http://www.uppaal.com , 2007.

[121] B. Vastenhouw and R.H. Bisseling. A Two-Dimensional Data Distribution
Method For Parallel Sparse Matrix-Vector Multiplication.SIAM Review,
47(1):67–95, 2005.

[122] R.G. de Vries, A. Belinfante, and J. Feenstra. Automated Testing in Practice:
The Highway Tolling System. In I. Schieferdecker, H. König, and A. Wolisz,
editors,Testing of Communicating Systems XIV, pages 219–234. Kluwer Aca-
demic Publishers, 2002.

[123] A. van Weelden, M. Oostdijk, L. Frantzen, P. Koopman, and J. Tretmans.
On-the-Fly Formal Testing of a Smart Card Applet. In R. Sasaki, S. Qing,
E. Okamoto, and H. Yoshiura, editors,Security and Privacy in the Age of Ubiq-
uitous Computing – Procs. of the20th IFIP TC11 Int. Information Security Con-
ference, volume 181 ofIFIP Series, pages 565–576. Springer-Verlag, 2005.

[124] T.A.C. Willemse. Heuristics forioco-Based Test-Based Modelling (extended
abstract). In L. Brim, B. Haverkort, M. Leucker, and J. van de Pol, editors,Pro-
ceedings of FMICS and PDMC 2006, volume 4346 ofLecture Notes in Com-
puter Science, pages 123–147. Springer-Verlag, 2007.

[125] B.C. Williams and R. Ragno. Conflict-directedA∗ and its role in model-based
embedded systems.Journal of Discrete Applied Mathematics, 2004.

http://www.cis.upenn.edu/%7Etanli/tools/charontester.html
http://www.cis.upenn.edu/%7Etanli/tools/charontester.html
http://www.uppaal.com

	Tangram: an overview of the project and an introduction to the book
	ASML: the carrying industrial partner
	Integration and test planning patterns in different organizations
	Integration and test planning
	Test time reduction by optimal test sequencing
	Optimal integration and test planning for lithographic systems
	Model-based integration and testing in practice
	Using models in the integration and testing process
	Timed model-based testing
	Model-based testing of hybrid systems
	Test-based modeling
	Model-based diagnosis
	Costs and benefits of model-based diagnosis
	A multidisciplinary integration and test infrastructure
	The Tangram transfer projects: from research to practice
	Tangram publications
	List of authors

