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Foreword

The ancient Greeks already stated that the only constant is change, and this is still true
in today’s world. The world of embedded systems is of course no exception to this,
and in many ways it is even characterized by the rapid rate of innovation. Technol-
ogy changes at an increasing pace, customers and markets change, the environment
in which machines must operate changes. ASML, as the leading manufacturer of ad-
vanced technology systems for the semiconductor industry, is both an enabler of many
innovations and a continuous innovator of its own products. We introduce multiple new
products every year and we continuously update our existing products already installed
at customers with performance enhancements.

Not all innovations are big leaps ahead, grand re-designs or complete new concepts.
True, such disruptive changes are needed every now and then to remove bottlenecks
in a system or to replace a core technology that has reached its limits of innovation,
but these large changes always jeopardize the investments that have established the
system as efficient, reliable and robust. Many innovations are therefore on a smaller
scale, changing individual parts of a system to improve a part of its performance. The
combination of many small changes still leads to a valuable improvement of the overall
system performance in all areas, while each individual change is easier to control.

This is the reason why ASML, like any other producer of complex embedded sys-
tems, needs the ability to make changes to our systems in an efficient and controlled
manner. Evolvability is the quality of a system to be amenable to change, and this was
the focus of the Ideals project: to find new ways to reduce the cost and lead time of
changes in complex embedded systems, and to find innovative ways to introduce these
changes into existing systems.

The systems that we develop at ASML are extremely complex semiconductor man-
ufacturing machines that transfer nanometer circuit patterns onto silicon wafers to make
semiconductor chips. The software in such a system is key in operating a multitude of
subsystems, from material handling robots, highly accurate pattern/wafer positioning
devices, state of the art opto-mechanical projection lenses to production control & op-
timization systems.

The complexity of semiconductor machines is growing at an ever increasing rate.
Drivers for this increase are first and foremost the increasing product specifications:
ever smaller circuit dimensions, placed with tighter accuracies at higher processing
speeds, to satisfy the semiconductor roadmap for higher performance and higher ca-
pacity IC’s combined with lower costs and higher energy efficiency. Breakthroughs in
any of the core technologies need to be implemented into reliable production systems
as fast as possible. As an example, the recent introduction of immersion technology to
extend the performance of our systems at existing wavelengths, took only a few years
and has led to some of the fastest production ramp-ups of new machines in the history
of ASML. But also, as the cost price of an individual machine grows, so does the need
to be able to continuously specialize its operation to the operation of the owner.



This leads to higher built-in ability to adapt the system, meaning a greater complexity in
terms of ways the system can be operated. It also means a higher demand for upgrades
to the system during its life-time, to keep it up to date with the changes in its intended
usage.

So, we see two trends: growing system complexity and an increasing rate of in-
novation. These trends are conflicting: complexity makes changes more difficult to
design, implement and test; continuous change makes it difficult to create and maintain
a stable platform that can be used as a basis for reducing complexity. This effect can
be clearly felt in the growth of the effort, lead time and cost that needs to be spent on
each new product.

Four years ago ASML has formulated the clash of these two conflicting trends as
the basis of the Ideals research project. The project results are now helping us to reduce
the cost of changes to our software system, by allowing us to easily re-apply already
existing solutions to many common problems during changes. It has also provided us
valuable insights into the use of models to capture and analyze the impact of changes.

At the outset of the Ideals project, it was clear to ASML that we needed the help
of academic partners to research this topic. But driving academic research based on
an industrial problem, and ensuring that the results of the academic research are ac-
tually impacting the reality in industry, is not a trivial task. We have therefore sought
the cooperation of the Embedded Systems Institute (ESI) to ensure that the research
method of using industry-as-a-laboratory would be successful. Together with the aca-
demic partners, ESI has created a true spirit of collaboration between academics and
industry, and helped to make this project worthwhile for both industry and academics.
ASML is the first to be able to benefit from the fruits of this cooperation, but we are
confident that other industries can follow.

ASML is pleased by the results of this project by itself, but equally pleased with the
fact that it has proven again that a cooperative research setting where different partners
bring in unique expertise, combined with a strong focus on practical industrial rele-
vance, can create breakthrough innovations. We hope to see more of these innovations
in the future.

Ir. Harry Borggreve
Senior Vice President of Development and
Engineering
ASML Netherlands B.V.
Veldhoven, The Netherlands
November 2007



Preface

This book is already the third volume in a series started a year ago by the Embedded
Systems Institute to report on the results of ESI research projects. This particular issue
is devoted to the outcome of the Ideals project, which addresses the problem of evolv-
ability for industrial embedded control systems, and is carried out by ASML, Delft
University of Technology, Eindhoven University of Technology, University of Twente,
CWI and ESI. The project started in 2003 and will finish in the beginning of 2008.

Evolvability is one the most challenging problems of high-tech industry. Typically,
the time and effort required to modify and extend complex embedded systems is huge
and unpredictable, posing a severe threat to meeting the ever-tighter time-to-market
constraints. Consequently, it is of great importance to finds ways to improve system
evolvability. This is one of the central themes of the ESI Research Agenda. Follow-
ing the ESI approach to applied research, the Ideals project has been organized as an
industry-as-laboratory project, where industry provides the experimental platform to
develop and validate new methods, techniques and tools. ESI is unique in the applica-
tion of this research format to the problems of embedded systems engineering. It has
proven to be most successful in producing substantial results leading both to industrial
innovation and high-quality academic output.

Ideals is the second project for which we have been fortunate enough to have ASML
as the carrying industrial partner. As in the preceding Tangram project, access to the
fascinating and technologically sophisticated world of high-tech silicon lithography
provided a stimulating opportunity for the research consortium to develop and try out
new ideas and solutions. In this context the application of techniques such as aspect-
oriented programming and model-driven engineering have emerged as main tools to
overcome important problems, especially for handling the fragmentation problems of
software code for crosscutting concerns and for obtaining effective design abstractions.

The project participants have shown great commitment and their contributions have
led to the success of the Ideals projects, for which I would like to expressly thank
them. ASML and the Dutch Ministry of Economic Affairs, provided the financial basis
for carrying out the project, and their support is gratefully acknowledged. We hope
that with this book we can share the most important results and insights with a wider
industrial and scientific community.

Prof. dr. Ed Brinksma
Scientific Director & Chair
Embedded Systems Institute
The Netherlands
November 2007
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Chapter 1

Ideals: an introduction to the
project and the book

Authors: Remco van Engelen, Jeroen Voeten

1.1 Introduction

High-tech systems such as wafer scanners, medical MRI1 scanners, electron micro-
scopes, and copiers, are typically not developed from scratch. Instead, new generations
of such machines are based on older versions, where new features and capabilities are
added; high-tech systems evolve over time. This proces of evolution is often driven
by the required changes in the key performance parameters of such systems. As an
example, driven by Moore’s law, the key performance parameters of a wafer scanner
are tightened from one generation to the next. These parameters mainly concern the di-
mensions of patterns of electronic circuits that are mapped onto a wafer and the number
of wafers that are processed per hour. Even a small change in these key performance
parameters can have a huge impact on the design and implementation of the embedded
system that controls the wafer scanner. An important reason is that physical depen-
dencies and effects that could be ignored in the past have to be compensated for in the
next generation. This is done by mirroring them in the embedded system where they
appear as (new) interactions between (new) system components. Another consequence
is that the performance requirements of these components are tightened at the same
time, making even more adaptations necessary. Finally, life-cycle requirements may
result in a major overhaul of the existing components of the embedded system.

Evolvability poses one of the most difficult challenges the high-tech industry is
currently facing. The time and effort required to modify and extend a complex em-

1Magnetic Resonance Imaging.

1
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bedded system is typically huge and unpredictable, thereby severely threatening time-
to-market and time-to-quality constraints. It is therefore more and more important to
make embedded systems better evolvable. This is exactly the goal of the Ideals project:
developing methods, techniques and tools reducing the lead time and effort to maintain
complex embedded systems, where the focus is on embedded software. Ideals is an
applied industrial-academic research project. Coordinated by the Embedded Systems
Institute, ASML together with different research institutes in the Netherlands have col-
laborated on achieving the research goal.

This book gives an overview of the results of the Ideals project. This introduc-
tory chapter introduces the project (Section 1.2), analyzes the problem statement (Sec-
tion 1.3) and introduces the two main research directions in which solutions have been
developed: Aspect-oriented software design (Section 1.4) and Model-driven engineer-
ing (Section 1.5). These sections also introduce the corresponding book chapters in
which detailed project results are described. The concluding chapter of this book
(Chapter 10) describes the industrial impact of the project, the lessons learned, and
draws the final conclusions. This introductory chapter together with the concluding
chapter are self-contained and can be read without having to study the chapters de-
scribing the detailed results.

1.2 The Ideals project

The Ideals Project is an industrial-academic research and development project managed
by the Embedded Systems Institute. The goal of Ideals is to develop methods, tech-
niques and tools to make embedded software better evolvable. In Ideals, researchers
and engineers from ASML have worked closely together with researchers of Delft Uni-
versity of Technology, Eindhoven University of Technology, the University of Twente,
the Center for Mathematics and Computer Science, and the Embedded Systems In-
stitute. The project started in September 2003, lasted until February 2008, and was
financially supported by the Netherlands Ministry of Economic Affairs.

Industry-as-laboratory

The academic-industrial cooperation in Ideals took place in a setting calledindustry-
as-laboratory[85]. This means that the actual industrial setting is used as a laboratory,
akin to a physical or chemical laboratory, where new theories, ideas, and hypotheses,
mostly coming from the academic partners in the project, are tested, evaluated, and
further developed. This setting provides a realistic environment for experimenting with
ideas and theories. Moreover, the industry-as-laboratory setting facilitates the transfer
of knowledge from academia to industry, and it provides direct feedback about the
applicability and usefulness of newly developed academic theories, which may again
lead to new academic research questions. But, of course, in such a setting also care
should be taken that the normal industrial processes are not disrupted.
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ASML

For Ideals, the laboratory has been provided by ASML. ASML is the leading global
company for lithography systems for the semiconductor industry. Their wafer scanner
machines, which involve highly complex configurations of embedded systems with
extreme requirements regarding performance and precision, provided a demanding and
stimulating laboratory environment.

An example of the evolvability challenge that ASML faces can be found in one of
the most crucial lithography system components: the projection optics. This complex
system of lenses is used to project the original circuit pattern, with a size of roughly
10 by 10 centimeters and containing lines as small as 180 nanometer (1/300th of the
width of a human hair), onto a silicon wafer (a large disc with a radius of 200 or 300
millimeters), while reducing the image by a factor 4, producing images on the wafer
with line widths down to 45 nanometers. The quality of the projection determines the
performance of the resulting IC, and thereby its value. The projection optics is not
a static system: it contains a number of controls that allow tuning of the projection
result to compensate for e.g. distortion in the original circuit pattern or changes in
temperature or air pressure. The embedded system uses a set of sensors to sample all
factors influencing the lens performance, calculate the optimal settings for the lens and
drive the actuators to control the lens.

Over a period of 5 years, as the minimum exposed line width for leading edge
lithography machines shrunk from 95 to 40 nanometers, the number of controls in the
used projection optics subsystems grew from 5 to 60. This meant that more sensors had
to be introduced and needed to be sampled, more complex models needed to be used
to calculate optimal settings for the lens, and more actuators needed to be controlled.
This was not a single step, but in fact a gradual growth in complexity in 5 or 6 steps
during these 5 years. Every step resulted in a commercial product which targeted an
intermediate line width used by the IC industry to continuously improve chip capacity
and performance. Therefore, each step had to be delivered on time, work reliably and
be cost effective to implement and maintain. How to manage and design such gradual
changes that ultimately transform a subsystem without exploding implementation and
integration costs, is a challenge that ASML faces not only for the projection optics,
but in many more domains. It can be compared to the challenge posed to the Dutch
Rijkswaterstaat organization to perform complete upgrades of complex highway inter-
sections, while keeping them open for daily traffic with minimal disturbance, all at an
acceptable cost.

1.3 Evolvability - problem analysis and solution direc-
tions

The evolvability problem for ASML can be stated as:the effort and lead time to main-
tain and improve the embedded (software) system of a wafer scanner is too large. In the
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Ideals project we identified two major causes for this, both related to the decomposition
of complex embedded (software) systems.

For complex embedded systems, the gap between the system specification (describ-
ing the desired properties in terms of behavior and key performance drivers) and the
implementation (consisting of a huge number of interacting hardware and software
components) is very large. As a result, people are not able to understand or verify how
these interacting components together satisfy the system specification. Also, people
cannot construct an implementation of such a magnitude in a single step. To deal with
this complexity designers create intermediate entities (such as subsystems, modules
and components) and break up the large verification and synthesis step in a sequence
of manageable intermediate steps. We will call these intermediate entities artifacts.
Each artifact is characterized with its own specification and design, and may in itself
be further decomposed into smaller artifacts.

This process of decomposition is typically guided by a number ofconcerns2. Some
concerns are the requirements or use cases of the system: often specific artifacts are
created for each of them to have a clear assignment of responsibilities. Another group
of concerns are the interfaces of the system: often specific artifacts are created as ab-
stractions of external elements (hardware or other software components).

In principle, all these concerns could be treated equal. But when two concerns
are decomposed into independent artifacts, but they have some sort of relation and
hence a need for interaction, a choice must be made where to put the interaction in
the decomposition. As an example, if two requirements refer to each other, and both
are assigned to a separate artifact, who should be responsible for the shared part of the
requirements? Placing the shared part in either artifact leads to a decomposition where
one requirement is completely described in one artifact, but the other is described in two
artifacts. Placing the shared part in a new, separate artifact, leads to a decomposition
where both requirements are described in two artifacts. Usually the relation is put into
one of the two artifacts, and a choice is made for which concern locality is considered
more important. This leads to a phenomenon known asdominant decomposition, where
some concerns have a better locality in the decomposition than others, because they are
deemed more important.

As a consequence, concerns with a lot of relations but that are deemed less impor-
tant end up scattered over the large number of artifacts of more important concerns.
We call these scattered concernscrosscutting concerns, since they intersect the decom-
position of the dominant orcore concernsin a number of places. The first major cause
of the large effort and lead time to maintain the embedded control system of a wafer
scanner is in these crosscutting concerns, and the insufficient means and methods to
efficiently deal with them in the design and implementation phases.

The second major cause of the large effort and lead time to maintain complex em-
bedded systems is a lack of proper abstractions for the artifacts, such that the decom-
position is effective. With effective we mean that one can understand and reason about
each artifact without having to consider its further decomposition into constituents and

2A concern is a general term that refers to any particular piece of interest or focus in a system.
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that one is able to reason about the interaction and combined properties of all artifacts.
To be effective, the specifications (abstractions) of artifacts should describe (only) the
properties that are essential to understand the system as a whole, in a compact and
precise manner. Unfortunately, in practice, artifact specifications are typically of a
low abstraction level, inconsistent, ambiguous or imprecise, making it very difficult to
effectively use them as a basis for reasoning about system-level properties.

In Subsections 1.3.1 and 1.3.2 these major causes are explored in more detail. This
exploration is followed in Sections 1.4 and 1.5 by the main solution directions of the
Ideals project, i.e.Aspect-oriented software designandModel-driven engineering.

1.3.1 Crosscutting concerns

Crosscutting concerns (CCC’s), are those concerns (requirements, use cases, inter-
faces) in a system that have no clear locality in the chosen decomposition. These
concerns are not cleanly decomposed from the rest of the system in either the design or
the implementation and therefore recur in several artifacts. Typical examples of CCC’s
come from requirements and use cases related to the testing, integration and (field) sup-
port of systems3. While these concerns are usually not dominant in the decomposition,
they are crucial to the success of a complex system and have many relations to all other
concerns. Some concrete examples are:

• the ability to monitor the activity of a system during operation (tracing);

• correct and consistent handling of errors (exception handling and recovery);

• uniform access control to different capabilities of the system (licensing or user
privileges).

In case a piece of functionality has to be adapted or newly developed, these crosscutting
concerns have to be implemented as well. These additional concerns distract designers
from focusing on their key assignment (the core concerns). A common way to design
and implement a crosscutting concern is usingidioms, where the crosscutting concern
is described as a set of typical patterns to be applied in the design or implementation of
the core artifacts. The intention is that the application of these idioms is both easy to
do and easy to recognize in other artifacts; all instantiations of the idiom are largely the
same and only limited adaptation to the location where it is applied is required. In prac-
tice however, the wide-spread use of these idioms means that the crosscutting concern
is handled in a great many places (thescatteringeffect), while the interleaving of these
idioms with parts dealing with the core concerns means that identifying and working
with the core concern is more difficult (thetangling effect). Both these effects lead
to engineering inefficiencies when adapting both core concerns as well as crosscutting
concerns, see Figure 1.1. The problems are most manifest at the implementation level,
where the idioms are recognizable as code patterns or templates, and often less at the

3In a broader sense: all system life-cycle activities.



6 IDEALS: AN INTRODUCTION TO THE PROJECT AND THE BOOK

Idiom-based

solution for 

CCCs

Replication

effort

Reduced

quality 

No parallel

development 

Architectural

decay

Engineering

inefficiency 

Figure 1.1: Consequences of an idiom-based solution for crosscutting concerns
(CCC’s).

design level. At the design level concern interactions are often left implicit; they are
not described at all or in a very informal way (e.g., ‘the usual tracing must be applied’).
The reasons for engineering inefficiency, as depicted in Figure 1.1, are as follows:

• Replication effort Although the description of an idiom is usually well local-
ized, its instantiations are by nature replicated over many places. Thus, the im-
plementation, adaptation and testing of idiom instances is performed time and
again. This takes a lot of time and effort, sometimes because of the sheer num-
ber of instantiations, sometimes because of the complexity of an instantiation,
and sometimes because of both.

• Reduced qualityIdioms have to be instantiated by hand by a software engineer.
This is an error-prone activity, especially when idiom descriptions are informal
and ambiguous, or when many instantiations with slight variations have to be
made. This results in extra integration effort and duration to detect and cor-
rect these errors. Additionally, since typically examples of crosscutting concerns
come from life-cycle requirements such as product integration and testing re-
quirements, any remaining errors in the idiom instantiations negatively affect the
efficiency of the processes to create and support a product.

• No parallel developmentThe core functionality and the crosscutting concerns
cannot be developed in parallel, since they are integrated into the same artifact.
In addition it is difficult to out-source the development of a piece of functional-
ity or to use commercial off-the-shelf components, since the idioms used for the
crosscutting concerns should also be applied in the outsourced or bought soft-
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ware. Hence parallel development is complicated, having a negative impact on
effort and lead time.

• Architectural decay The possibility to modify the design or implementation of
a crosscutting concern itself is hindered by the sheer number of idiom instantia-
tions that already exist in a system. A change in an idiom either implies updating
all instantiations of the old idiom (costing a large amount of effort and time) or
accepting that multiple versions of the idiom exist in the system (hindering the
ease of recognition and consistent use of the crosscutting concern). Not changing
the idiom means that the crosscutting concern cannot be adapted to follow the
evolution in its requirements, leading to suboptimal solutions or workarounds in
the system. Both accepting multiple versions of an idiom or not changing an id-
iom at all leads to architectural decay of the whole system, making maintenance
as a whole gradually more expensive.

In the Ideals project aspect-oriented software design (AOSD) techniques were investi-
gated as a means to deal with these issues. The promise of AOSD is to allow a localized
treatment of crosscutting concerns at both the design and implementation level. The
research field of aspect-oriented software design together with the topics addressed in
the Ideals project are explained in Section 1.4.

1.3.2 Missing effective abstractions

The second major cause we identified for the large effort and lead time to maintain
complex embedded systems is the lack of effective abstractions of the decomposition
artifacts of a system. This means that even if a decomposition achieves a good lo-
cality with respect to all concerns involved, it is still cumbersome to reason about the
properties of an artifact, based on the descriptions of its constituents.

Each decomposition artifact has its own specification and design. The design de-
scribes the way the artifact is built from lower-level interacting artifacts. The specifi-
cation abstracts the essential properties that characterize these lower-level artifacts as a
whole. In this way one can understand and reason about the artifact without having to
consider its constituents and similarly one is able to reason about the interaction with
other artifacts. To be effective, a specification of an artifact should describe the prop-
erties that are essential to understand the system as a whole. For real-time embedded
systems this implies that next to structure one should also focus on behavior, tim-
ing, performance and accuracy properties. Furthermore, the specification of an artifact
should be compact and precise and its design should not be too complex (implying that
it contains a restricted number of artifacts and interactions). Finally, the specification
and design should be consistent in the sense that their relation is clear and precise.

The effective use of abstractions in the design process brings many benefits. Un-
fortunately, these benefits are typically not experienced by industrial practitioners. De-
sign documentation that is supposed to provide insight, is typically of a low abstraction
level, is inconsistent, ambiguous and imprecise. Hence the design documentation does
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Figure 1.2: Consequences of ineffective abstractions.

not provide the required effective abstractions, leading to engineering inefficiency as
shown in Figure 1.2.

• Need for reverse engineeringIn case a system has to be adapted (functionality
or interactions have to be added or the performance has to be improved) one
has to understand the ‘big picture’ of the design. This in order to determine
how the change should be incorporated in such a way that the system remains
structured and understandable. Typically only a few architects have this ‘big
picture’ in their mind, but it is not explicitly available in the documentation and is
not shared by the majority of designers. As a result designers spend a lot of time
and effort in trying to (re-)construct this ‘big picture’. Shedding light on this ‘big
picture’ is precisely what effective abstractions are meant for. Existence of such
abstractions would make reverse engineering less needed and more effective.

• Loss of structureAn important goal of effective abstractions is to keep a system
understandable by structuring it. Design artifacts are to be designed in such a
way that they have limited interactions with and dependencies on other artifacts.
This allows modifications to be carried out locally, e.g., within one or a few
artifacts. However, if abstractions are not explicitly available or not consistent,
the intended structure is very difficult to retrieve (see also the previous item). As
a result dependencies are introduced that cross the intended artifact boundaries,
a phenomenon sometimes referred to as architectural decay, and changes to one
artifact can cause an unpredictable chain of required changes to other artifacts.

• Unpredictable integration Typically a lot of design documentation is produced,
but this documentation is mainly in the form of text and structure diagrams,
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which does not allow system behavior to be verified properly. The reason is that
dynamic, concurrent, or real-time behavior is just too difficult to understand from
textual documents and structure diagrams. In addition undocumented (hidden)
dependencies between system modules may exist. As a result many design errors
only show up during system integration when the system is actually used and
the impact of the hidden dependencies becomes visible. System integration is
typically late because all implementations of all components have to be ready.
Early integration by mixing implementations and executable specifications is not
supported if specifications are informal or ambiguous. Many of these problems
can be avoided if adequate system abstractions are available.

• Suboptimal designDesign solutions typically have a ‘sweet spot’ in which their
performance/resource ratio is optimal. For instance, assigning a piece of func-
tionality to embedded software or digital hardware in a clumsy way, can yield a
complex solution that is expensive to build (both in terms of effort and material
costs). Without proper abstractions and optimization tools the odds are low of
designing a solution in or around this ‘sweet spot’. Once a suboptimal design is
obtained, it is very difficult to get rid of it by making a fundamentally different
design. Organizational conservatism is a very important reason for this, but also
the fact that such a major design step requires one to return to the original specifi-
cations (which are not explicitly present) and explore design alternatives (which
is not supported). As a result, designers (have to) push the design performance
while leaving the design architecture the same, thereby increasing complexity
and drifting even further away from the sweet spot.

• No design automationExplicitly capturing the design intent in the form of pre-
cise abstractions allows the application of automated tools. Tools exist to verify
whether a design behaves correctly, to predict performance and timing prop-
erties, to transform specifications into implementations and to explore design
alternatives. These tools can have a huge impact on design efficiency, simply
because they are fast and can produce reliable results in a reproducible way.
Without them, a lot of manual work has be carried out, which is error-prone and
time-consuming.

The major goal of model-driven engineering is to attack engineering inefficiency by
introducing models as first-class citizens in the design trajectory. These models serve
as explicit abstractions that are intended to complement traditional forms of design
documentation. The research field of model-driven engineering together with the topics
addressed in the Ideals project are explained in Section 1.5.

1.4 Aspect-oriented software design

Before we begin exploring the solution direction researched in the Ideals project, we
can already formulate the first research question in this area:
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Q-1 How relevant and real are the perceived problems with an idiom-based solution
for crosscutting concerns, as depicted in Figure 1.1? How can we identify and
quantify these problems?

A clear understanding of the problems caused by idiom-based solutions help in formu-
lating the requirements and constraints to alternatives. A quantification of the problems
helps to balance the cost of introducing an alternative to the benefits that can be gained.

1.4.1 AOSD in a nutshell

The goal of AOSD is to formally capture the interaction between the core concern
code (called thebase program) and the crosscutting concern code in anaspect: a mod-
ular implementation of the crosscutting concern. This interaction can be characterized
by answering two questions: what should the crosscutting functionality do and when
should it occur in a base program? The two answers form the two parts of an aspect: the
advicecaptures what-should-be-done, thepointcutcaptures when-it-should-be-done.

In order for the advice to be truly independent from the base program, which allows
it to be applied to many different base programs and thus solve the crosscuttingness
need, it needs to have a very clear and limited interface or abstraction of the base
program4. This interface is called thejoinpoint. A joinpoint typically contains some
generic abstractions that are available for every base program, by virtue of its chosen
programming language(s), run-time environment(s) or coding standards. A joinpoint
can also provide additional abstractions depending on the type or contents of the used
pointcut. Figure 1.3 gives an overview of an aspect and how it relates to base programs.
We will talk about the process of ‘applying’ an aspect in more detail in Section 1.4.3.
Given this sketch of what AOSD is, we can formulate the second research question on
this topic:

Q-2 (How) does AOSD contribute to a better handling of crosscutting concerns? How
much does it help and is it practically useful in an industrial context? What are
problems that may be introduced as a result of introducing AOSD?

1.4.2 Variability support in AOSD

An important part of research question Q-2 (Subsection 1.4.1) warrants extra attention:
practical usefulness. In order for AOSD to be a useful paradigm in practice, it must be
able to support a wide variety of crosscutting concerns and support variability within a
single crosscutting concern. In industrial contexts, with large embedded systems, there
will always be a need for slight adaptation of the implementation of a crosscutting
concern for a specific domain, platform, (sub-)application or product life cycle phase.
We will show how pointcuts and advices support this variation.

4If the advice would not need any interface to the base program, it is questionable whether the concern
is truly crosscutting, since there seems to be no relation between the two implementations. In such a case,
modularization can be achieved using more traditional decomposition techniques.
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Figure 1.3: Parts of an aspect and their relations.

Pointcuts are a formal means to specify when an advice should be applied. A basic
set of primitive properties is provided, together with a Boolean algebra to combine
the primitives into more complex expressions. The wealth of the primitive properties
determines the expressiveness of the pointcut formalism, and the amount of supported
variability in specifying when advices should be applied. Examples of categories of
primitives are:

• Static Also called syntactical or structural properties, this category contains
primitives that relate to the definition of the base program: the entities (func-
tions, variables, classes, et cetera) it consists of. Primitives can be used to select
entities based on e.g., name (exact or matching a regular expression), type, scope,
or any other static property. Primitives can also be used to query properties of
entities (type, existence, size, canonical name, ...) for more complex selection
criteria. In order to be broadly applicable, these primitives are based on the static
program model of the program environment used or coding conventions that ex-
ist (and are expected to be used consistently).

• Run-time Also called semantical or dynamic properties, this category contains
primitives that relate to the execution of the base program. Examples are prim-
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itives to select functions executing within the calling hierarchy of another func-
tion, properties of the process or thread, or current values of variables and argu-
ments. These primitives are usually based on the semantical model of the pro-
gram environment used. These properties require run-time support for evaluating
pointcuts to determine if a pointcut is applicable in the base program instance.

• Meta-data When a required concept has neither a consistent static represen-
tation nor a run-time identification, meta-data like annotations can be used to
identify an entity. An example is when a domain concept like ‘performance-
critical function’ cannot be directly linked to a language construct in the pro-
gram environment or a consistent naming convention, all functions in the do-
main concept could be annotated with a specific annotation that asserts that they
are performance-critical. Using the meta-data, an aspect can either be applied
or rather be refrained from being applied to performance critical functions in a
consistent and modular way.

An Advice expresses what the crosscutting functionality should do, i.e., it is a piece
of code to be executed5 in each joinpoint. An advice can be forced to use the same
program environment as the base program, or, if the AOSD tool set allows this, it
could also use a different program environment that is more suitable to the domain of
the crosscutting concern. The expressiveness of advices is determined by the program
environment used for the advice.

An advice should be as independent as possible from the base programs it will
be added to later. As an example, an advice is free to use modules (or libraries or
services) of the run-time system, independent from the ones used by the base program,
but it should introduce the interfaces of the modules it depends on itself: it should
not be dependent on the base program to provide these. Complete independence from
the base program is usually impossible to achieve. Typically some information from
the base program and the location where it is applied (like the name of a function
or module) is needed in the advice. This interface between an advice and the base
program is formalized in the joinpoint. There are three types of properties a joinpoint
can provide to an advice:

• Generic properties These properties are automatically available to all advice
code in every joinpoint. They are typically provided by the program environment
used by the base program (e.g., every entity has a name, or was declared in a
specific module or file), or by generic conventions (e.g., naming conventions
may link the publicly available names of entities to a module name).

• Pointcut-type specific propertiesThese properties are only available based on
the type of the pointcut. As an example, pointcuts may identify functions (for
which the arguments and return type is available) or identify variables (for which

5Strictly speaking an advice is not only executable code; it can also contain declarative code. However,
with declarative code there are usually other mechanisms for modularization which are just as good or better
to use, so it is questionable if aspects should be used for purely declarative advices.
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the type and value is available). An advice may rely on these properties if it spec-
ifies the types of pointcuts it can be applied on. The availability of the property
for all relevant pointcut types is again guaranteed by the program environment
or by generic conventions.

• Domain specific propertiesBoth types of properties so far rely on the program
environment or conventions to ensure that a specific property is available. How-
ever, sometimes an advice needs an interface to a concept that the program en-
vironment does not support, but is domain specific. As an example, if an advice
has the need to re-initialize the base program, it should require an initialization
function in the interface of the joinpoint. This function can not be identified
automatically, but must be identified explicitly by the pointcut6.

We see that we have a number of options in supporting variability in both pointcuts and
advices. The more categories we choose, the more complex the interaction between
pointcuts and advices can become (especially for domain specific properties in ad-
vices, which require a precise way for advices and pointcuts to establish whether they
are compatible), or between the base program and the aspect (especially for meta-data
properties in pointcuts, which requires an extension to the base program environment
to support annotations and the definition of these annotations). For each category we
choose, we can further choose the specific properties supported in that category. Pro-
viding more categories and properties therein gives more expressiveness, at the price
of greater complexity. We can formulate our third research question concerning AOSD
as finding the balance between expressiveness and complexity:

Q-3 What is the required level of variability in crosscutting concerns in practice?
What AOSD techniques for pointcut and advice expressiveness do we need to
support this variability? How can these techniques be used in practice?

1.4.3 Applying AOSD in practice

So far, we have not discussed how the behavior of an aspect is actually added to the
behavior of the base program. There are a number of alternatives for this:

• Weaving We can take the source code of the base program and add extra code
to it that implements the behavior of the aspect. The combined program is then
presented to the compiler to create an executable version of the base program
including the aspect behavior. Thissource levelcombination of base program
and aspect is called weaving, and it has a number of note-worthy characteristics:

6Another interesting example in this context is error handling. In a program environment with exception
support, the means to signal an error is a generic property provided by the program environment. In a
program environment without exception support, the means to signal an error becomes domain specific, for
instance by assigning an error code to a specific variable. Which variable to use must then be captured
by the pointcut and provided to the advice; advices that might want to report errors require a pointcut that
guarantees them an error variable to use for this purpose.
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– It requires that the program language of the advice can be easily translated
to the program language of the base program. Typically the program lan-
guage of the advice would be the same as that of the base program, with a
few extensions.

– It has only a crude support for run-time properties in pointcuts, since weav-
ing is done at compile time. It can support run-time properties by adding
advice code in all possible locations and guarding them with checks that
skip the advice code if the run-time requirements are not met, but this can
incur severe performance penalties.

– It can be easily compared to an idiom-based solution for a crosscutting
concern, since both are visible in the source code. This makes it more
easy to contrast the two approaches in terms of quality, effort, and run-time
impact, and to debug the process.

– It can easily support deployment to multiple target platforms using a single
aspect tool set, by using portable code for the aspect weaving and different
compilers after the weaving process.

• Binary augmentation We can also take the output from the compilation of the
base program (either to native machine code or some type of byte code targeting
a virtual machine) and add extra instructions to it that implement the behavior of
the aspect. Thisexecutable levelcombination is called binary augmentation. In
contrast to weaving, its characteristics are:

– Some concepts from the program environment that are used in e.g., point-
cuts may be difficult to extract reliably from the compiled base program
(e.g., scoping rules, variable names or types and annotations). This is es-
pecially the case for native compiled code (as opposed to code compiled
to target a virtual machine): instruction sets support less abstractions than
high level languages.

– The program language of the advice can be (very) different from the base
program, as long as the advice can be compiled to the target platform.

– It has the same difficulties with run-time properties as weaving.

– It is more difficult to examine the impact of the aspects without using spe-
cial tooling and target platform expertise. This may make debugging more
complex, and the run-time impact more difficult to understand.

– It can support aspects for different source languages using a single aspect
tool set, if all these languages are compiled to the same platform.

• Run-time interception The third option is to perform a standard instrumentation
of the base program (either through weaving or binary augmentation), indepen-
dent of the actual aspect(s) to be applied to the base program. Then, at run-time,
an aspect engine is used to intercept all interesting activities in the base program
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and to execute the relevant advices. This option is similar in characteristics to
binary augmentation, with the following exceptions:

– It has no problems with run-time properties.

– It is very flexible to add or change aspects, without changing anything to
the binary of the base program.

– It is very expensive in terms of run-time overhead, due to the extra layer of
the run-time aspect engine.

We consider source level weaving to be the best option for aspect-oriented software de-
velopment in complex embedded systems. This is because low performance overhead
and the possibility to understand and debug the impact of aspects at the programming
language abstraction level, are considered of paramount importance. In a situation
where a virtual machine is used and multiple source languages are used, binary aug-
mentation could be considered, as it reduces the cost of the aspect tool set (at a possibly
acceptable performance penalty).

As a result of the Ideals project, ASML started the design and implementation
of a weaver for the C language that can be used within the ASML software. Although
formally not part of the Ideals project, the project made use of the results of the research
project in the area of Aspect Oriented Software Design (especially into the contribution
and practical usability of AOSD), and was aimed at actually introducing an AOSD
methodology and tool set into a complex embedded system. By organizing this project
as a transfer project from research into the industry, thereby involving the research
partners, the research project could in return learn from the insights and questions
of the introduction project to trigger new research within the Ideals project. We will
therefore include some of the results of this transfer project in this book, to answer the
following research question:

Q-4 What are the important design constraints and quality attributes for an AOSD
tool set for use in complex embedded systems?

1.4.4 Migration to an AOSD solution

Knowing a solution to the problems caused by an idiom-based way of implementing
crosscutting concerns is immediately helpful for new developments that are not based
on existing designs. However, usually complex embedded systems change or grow
through evolution of existing designs (after all, this was the motivation for the Ide-
als project in the first place). It is therefore very important that any solution can be
introduced into legacy designs (and implementations) in a controlled, and preferably
automated, manner. This leads us to formulate the final research question in the area of
AOSD:

Q-5 How can we support the migration of an idiom-based solution for crosscutting
concerns to an AOSD based solution? Can we do this fully automatically?
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Figure 1.4: Migration path of an existing system to an AOSD based system.

In Figure 1.4 we depict the migration process of a system originally designed using
an idiom-based solution (step 1), to one using an aspect-based solution and tool set
(step 3). The central direction of the research was to find out if the same approach
used to investigate the variability present in the existing system (to answer research
question Q-3 in Subsection 1.4.2) could also be used to support the migration of the
existing system, by splitting the existing code into the future base program and the
aspect definition (step 2). Such a migration has to be performed with minimal risk of
course, since testing complex embedded systems is very hard, especially when making
the many changes related to changing a crosscutting concern’s implementation. Using
source level weaving, we can strive to obtain textual equivalence of original source
code and the output of the weaver code, which would automatically prove the equiv-
alence of the two solutions. Any method with a less than 100% proven equivalence
would increase the (testing) cost of migration.

1.4.5 Research performed

The detailed results of the Ideals research into AOSD are described in the following
chapters:

• Chapter 2 describes a method for studying idiom-based implementations of cross-
cutting concerns. In particular, it analyses a seemingly simple concern, tracing,
and shows that it exhibits significant variability, despite the use of a prescribed
idiom. It further discusses the consequences of this variability in terms of how
AOSD could help prevent it, how it paralyzes (automated) migration efforts, and
which aspect language features are required in order to obtain precise and concise
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aspects. Hence, this chapter addresses research questions Q-3 and Q-5 (Pages 13
and 15).

• Chapter 3 addresses research question Q-1 (Page 10) by presenting an analysis of
the use of an idiom-based solution for exception handling. In particular it focuses
on evaluating the fault-proneness of this idiom: it presents a characterization of
the idiom, a fault model accompanied by an analysis tool, and empirical data.
The findings show that the idiom is indeed fault-prone, supporting the analysis
that an idiom-based solution for crosscutting concerns leads to reduced quality.

• Chapter 4 discusses the so-called aspect interference problem, one of the remain-
ing challenges of AOSD: aspects may interfere unexpectedly with the behavior
of the base code or other aspects. Especially interference among aspects is diffi-
cult to prevent, as this may be caused solely by the composition of aspects that
behave correctly in isolation. This chapter explains the problem of behavioral
conflicts among aspects at shared join points, and illustrates it with 2 aspects
found in the actual ASML software system. It presents an approach for the de-
tection of behavioral conflicts that is based on a novel abstraction model for
representing the behavior of an advice. Hence, this chapter addresses research
question Q-2 (Page 10).

• Chapter 5 relates to research questions Q-2, Q-3 and Q-4 (Pages 10, 13 and 15),
since it elaborates on the design of an industrial-strength AOSD system (a lan-
guage and a weaver) for complex embedded software. It gives an analysis on
the requirements of a general purpose AOSD language that can handle crosscut-
ting concerns in embedded software, and a strategy on working with aspects in
a large-scale software development process. It shows where established AOSD
techniques fail to meet some of these requirements, and proposes new techniques
to address them. In conclusion, it presents a short evaluation of the language and
weaver as applied in the software development process of ASML. This chapter is
the result of a joint project by the Ideals team and ASML to transfer knowledge
from the Ideals research project into industry.

• In Chapter 10 it is shown what the impact of the research described in the above
chapters is in practice, and how this impact was achieved. It thus addresses all
the research questions Q-1 through Q-5.

1.5 Model-driven engineering

As explained in the previous section, the focus of AOSD techniques is on (embedded)
software at the implementation level of abstraction. During the course of the Ideals
project we tried to broaden this perspective by considering model-driven engineering
(MDE) techniques. An important reason for this was the growing interest within ASML
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to apply these techniques to improve the efficiency of the engineering process (see also
Subsection 1.3.2).

In the engineering process, communication between engineers about various het-
erogeneous concerns takes place at various abstraction levels. The communication at
the higher levels of abstraction usually manifests itself in the form of documents and
drawings that vaguely relate to each other. At the lowest level, this communication
manifests in the form of well related physical deliveries like boards, computers and
byte code files. In the model-driven engineering vision, models will replace the higher
level communication artifacts, enabling the systematic derivation of the lowest level
artifacts. Hence MDE refers to the systematic use of models as primary engineering
artifacts throughout the engineering life cycle.

MDE is an open approach that embraces various technological domains in a uni-
form way. In this view, other model-oriented initiatives, such as model-driven Architec-
ture (MDA), domain-specific modeling (DSM), model-integrated Computing (MIC),
model-driven software development (MDSD) and model-driven development (MDD),
are concrete instances of MDE. To give an example, the Object Management Group’s
(OMG) MDA initiative [68] is a standardized MDE approach that specifies formaliza-
tion and automation of a pre-defined development process, which is structured based
on the PIM (Platform Independent Model) - PSM (Platform Specific Model) classi-
fication. Moreover, MDA relies on the OMG’s modeling technologies, most notably
the Meta Object Facility (MOF). The term MDE was first proposed and defined by
Kent [63] as a generalization of MDA that includes the notion of development process
and model space. According to Kent, a model space contains a particular set of models
providing chosen perspectives on the system to be constructed, as well as appropri-
ate mappings among these models. The model space and the development process are
closely related: The artifacts or models developed by a particular process are intrinsic
to the definition of that process and vice versa. In MDE, the notion of model space
is extended beyond the abstraction dimension of the PIM-PSM classification. A num-
ber of generic dimensions of this space can be identified in the literature: abstraction,
paradigm and concerns to name a few. The direct consequence of such a rich model
space is heterogeneity of models in MDE.

Model-driven engineering thus implies dealing with a model space, typically con-
sisting of a set of heterogeneous models. An example of how such a model space
could look like7 is shown in Figure 1.5. The squares depict the different models in the
space. Dependent on the engineering discipline, models address different concerns.
For instance, the software discipline focusses on the logic of an application, while
the hardware discipline addresses the execution platform on which this application is
deployed8. But even within one engineering discipline one may consider different con-
cerns. For instance, the application logic typically consists of a part dealing with the

7This is only a preliminary idea of what such a model space might be. Charting the (desired) model space
has only recently started at ASML.

8Model-driven engineering techniques typically make an explicit distinction between application logic
platform and execution platform so that the platform and the application logic can evolve relatively indepen-
dently [73].
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Figure 1.5: An impression of a model space.

flow of data through the system, while another part deals with the reactive control.
Next to the focus on different concerns, models are made for different purposes. For
instance, a model can be meant for design review, functional verification, timing and
performance analysis, design-space exploration, refinement, code generation or testing.

Models are expressed in modeling languages supporting a so-called model of com-
putation. Different models of computation focus on different concerns for different
purposes. For instance, the flow of data through a system is well captured by Kahn
process networks or synchronous data flow networks that allow the trade-offs between
different deployments on the execution platform to be analyzed and that support an
automatic mapping on this platform. On the other hand, (hierarchical) state-machine
models excel in expressing, analyzing and synthesizing reactive event-driven behavior.
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Models in a model space are related to each other. Relations, depicted as lines
between the squares in Figure 1.5, can take many forms. For instance, a model can
be an abstraction of another model by focusing on one specific concern. Vice versa, a
model can be refinement of another model or might be automatically generated from
another model. Also, models may be able to exchange information, for instance by
passing messages.

When applying MDE in a Large Scale Industrial context (such as ASML) it is
attractive to structure the model space in an hierarchical way. As shown in Figure 1.5
models are grouped into sub-spaces depicted as ovals. Sub-spaces have shared spaces
that are visible to other sub-spaces and internal spaces that are only visible within
the sub-space. Within one subspace, modeling languages are used that best suit the
nature of the system modeled in that sub-space. The shared spaces allow relations to
be defined between models in different sub-spaces. To make this feasible, formats and
semantics of such shared models must be standardized in some way. For instance, one
might require such models to conform to a standardized communication interface (an
approach that is adopted by Ptolemy [86] and which is treated more formally in [54]).
Another possibility is to apply only a set of standardized languages in the shared space,
and have language transformations to transform to the specific models as used in the
internal spaces (as described in [27]).

Clearly, model-driven engineering covers a vast research area with many challeng-
ing research questions:

Q-6 What models of computation (modeling languages and tools) are required to
support the design of high-tech systems. What models play a role at what levels
of abstraction? What languages should play in role in a shared space? Should
we target one set of standardized languages or should we target a standardized
communication interface?

Q-7 How to predict or analyze the properties of interest, especially when different
models of computation are involved?

Q-8 How to keep models that involve the same concern consistent? For instance, how
to keep models at different abstraction levels consistent?

Q-9 How to transform a model into a more refined one? How to weave models ad-
dressing different concerns together? How to do this in a predictable (property-
preserving) way?

In the Ideals project we have only started to explore this area. At the start of this explo-
ration, we did not have ‘the big picture’ of this field, nor could we articulate the proper
research questions. Based on a number of case studies, each touching upon differ-
ent concerns and purposes of model-driven engineering, the insight in the field grew.
An important result of this exploration is the overview of the field you are currently
reading. Detailed results are described in the following chapters:
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• Chapter 6 focuses on the modeling of a coordination concern in a concise and
formalized way. It is shown how such a model can be transformed automatically
into a model expressed in terms of the execution platform primitives. This latter
model can on its turn be transformed into executable code. Hence this chapter
addresses research topics Q-6 and Q-9 as described above.

• Chapter 7 focuses on the modeling of a light control concern of a wafer scanner.
Key issue is to capture the logic of this application and the underlying archi-
tecture in separate abstract executable models. By combining these models, a
model suitable for analyzing the timing properties of the system is obtained.
This model allows design trade-offs to be made in a systematic way. In addition
such an application model can be transformed automatically into a (prototype)
software implementation that runs on the target. The executable models are ex-
pressed in the POOSL language. To incorporate this language into a possible
future MDE model space, a UML counterpart is being developed together with a
UML to POOSL transformation. This transformation allows one to combine an
application model created in UML with a platform model created in POOSL and
analyze this combined model. Hence this chapter addresses research questions
Q-6, Q-7 and Q-9 described above.

• Chapter 8 deals with a sequencing concern. The chapter introduces a technique
to formally specify constraints on the possible sequences of function calls from
a given program together with tools to check the consistency between multiple
specifications and between a specification and an implementation. The focus of
this chapter is thus on research questions Q-6 and Q-8.

• Chapter 9 focuses on the migration of supervisory machine control architecture
towards an alternative approach based on task-resource models. This is done
by capturing the essential control architecture information in model and by re-
implementing this model based on the alternative approach. This chapter thus
addresses research questions Q-6 and Q-9.

• In Chapter 10 it is shown what the impact of the research described in the above
chapters is in practice, and how this impact was achieved. It thus addresses all
the research questions Q-6 through Q-9.
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Chapter 2

Simple crosscutting concerns
are not so simple1

Authors: Magiel Bruntink, Arie van Deursen, Maja D’Hondt, Tom Tourwé

Abstract This chapter describes a method for studying idiom-based implementations
of crosscutting concerns, and our experiences with it in the context of a real-world,
large-scale embedded software system. In particular, we analyze a seemingly simple
concern, tracing, and show that it exhibits significant variability, despite the use of
a prescribed idiom. We discuss the consequences of this variability in terms of how
aspect-oriented software development techniques could help prevent it, how it para-
lyzes (automated) migration efforts, and which aspect language features are required
in order to obtain precise and concise aspects. Additionally, we elaborate on the repre-
sentativeness of our results and on the usefulness of our proposed method.

2.1 Introduction

The lack of certain languages features, such as aspects or exception handling, can cause
developers to resort to the use of idioms2 for implementing crosscutting concerns.
Idioms (informally) describe an implementation of required functionality, and can often
be found in manuals, or reference code bodies. A well-known example is thereturn-
code idiomwe have studied in a realistic setting in [18]. It is used in languages such as
C to implement exception handling. It advocates the use of error codes that are returned
by functions when something irregular happens and caught whenever functions are

1This chapter is based on an article in the Proceedings of the 6th International Conference on Aspect-
Oriented Software Development (AOSD’07) [13].

2Synonyms are code templates, coding conventions, patterns, et cetera.

23



24 SIMPLE CROSSCUTTING CONCERNS ARE NOT SO SIMPLE

invoked. Idioms are also used purposefully as a means of design reuse, for instance in
the case of (design) patterns [19, 26].

Using idioms can result in various forms of code duplication [15]. Despite this
duplication, idiom-based implementations are not guaranteed to be consistent across
the software, however. Several factors may give rise to variability in the use of the
idiom. Some variability, which is essential, occurs if there is a deliberate deviation from
the idiom, for example in order to deal with specific needs of a subsystem, or to deal
with special cases not foreseen in the idiom description. In addition to this, variability
will occur accidentally due to the lack of automated enforcement (compilers, checking
tools), programmer preference or skills, changing requirements and idiom descriptions,
and implementation errors.

In this chapter, we are interested in the answer to the following question:

Is the idiom-based implementation of a crosscutting concern sufficiently
systematic such that it is suitable for an aspect-oriented solution (with
appropriate pointcuts and advice)?

While answering this question is an endeavor too ambitious for this chapter, we do take
an important step towards an answer by addressing the following sub questions: First,
can we analyze the variability of the idiom-based implementation of a crosscutting
concern? And secondly, can we determine the aspect language abstractions required
for designing aspects that succinctly express the common part and the variability of a
crosscutting concern?

We have encountered a number of examples of idiomatically implemented cross-
cutting concerns [15, 17, 18]. Several more are mentioned in the literature [25, 23].
The questions we ask in this chapter need to be answered in order to start migrating
these crosscutting concerns to aspect-oriented solutions.

We present a generally-applicable method for analyzing the occurrence of vari-
ability in the idiom-based implementation of crosscutting concerns, that will help us
answer these questions. We show the results of applying this method in order to an-
alyze thetracing idiom in four selected components (ranging from 5 to 31 KLOC)
of a 15 million Line C software system that is fully operational and under constant
maintenance. Tracing is one of the ubiquitous examples from aspect-oriented software
development (AOSD), and although it is a relatively simple idiom, we show that it
exhibits significant and unexpected variability.

The structure of this chapter is as follows. The next section briefly presents our
method for analyzing variability by describing each individual step. Sections 2.3–2.6
then describe how we applied each step on the selected components of our subject
system in order to analyze the tracing idiom’s variability. Section 2.7 then presents a
discussion of the repercussions of these results. Section 2.8 presents our conclusions.
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2.2 A method for analyzing idiom variability

This section proposes the general approach we use to acquire a deep understanding
of the variability in the idiom-based implementation of a crosscutting concern, and
explains how to use this understanding in subsequent aspect specification and design
phases.

2.2.1 Idiom definition

The aim of this step is to provide a definition that is as clear and unambiguous as
possible for the idiom that we want to study. The input for this (manual) step is typically
found in the documentation accompanying the software, by means of code inspections,
or by discussions with developers. In this respect, this step closely resembles theSkim
the Documentation, Read all the Code in One HourandChat with the Maintainers
patterns discussed in theFirst Contactcluster of [28].

While this step may seem simple, in our experience idiom descriptions in coding
standard manuals often leave room for interpretation. When presenting our results, it
happened more than once that developers started a heated debate on whether a particu-
lar use of the idiom was valid or not.

2.2.2 Idiom extraction

In this step, the code implementing the idiom is automatically extracted from the source
code. This requires that the idiom code is recognized, and hence the output of the pre-
vious step is used as input for this step. The result of this step is similar to a slice [101],
albeit that the extracted code does not necessarily need to be executable. Nevertheless,
the extracted code can be compiled and analyzed by standard tools, and it is much
smaller than the original code, allowing us to scale up to large systems.

Naturally, the complexity of this step is strongly dependent on the idiom: idioms
that are relatively independent of the code surrounding them are easy to extract using
simple program transformations, whereas idioms that are highly tangled with the other
code require much more work.

2.2.3 Variability modeling

In this step, we describe which properties of the idiom can vary and indicate which
variability we will target in our analysis. It is important to note that we do not require
a description of variabilities that actually occur in the source code. We only need to
know where we can expect variabilities, given the definition of the idiom. For example,
variability in the tracing idiom under investigation can occur in the specific macro that
is used to invoke the tracing functionality. In practice, it might turn out that the same
macro is used consistently throughout the source code, or it might not.
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Additionally, it is preferable to model different levels of variability separately in
order to understand them fully, and subsequently to consider combinations. For exam-
ple, in the tracing idiom there is the aforementioned variability in the way the tracing
functionality is invoked, but also variability in the way the function parameters are
converted to strings before being traced.

Finally, we do not require all possible variability to be modeled. As we discuss
later, we only study part of the variability of the tracing idiom, while other parts are
not considered. This is no problem if this is taken into account when discussing the
results of the analysis. In other words, these results can be seen as a lower bound of the
amount of variability that occurs.

2.2.4 Variability analysis

This step forms the core of our method, as it analyzes the variabilities actually present
in the source code. This is achieved by taking the extracted idiom code, and analyzing it
considering the variabilities that were modeled in the previous step. We are particularly
interested in finding out how properties that can vary are typically related. For example,
is it the case that tracing macrom is always invoked with either parameterc1 or c2, but
never withc3? Answering such questions can help us in designing the simplest aspect
that captures all combinations as occurring in practice.

To analyze such relations between variable properties we use formal concept anal-
ysis (FCA) [44]. FCA is a mathematical technique for analyzing data which takes as
input a so-calledcontext. This context is basically a matrix containing a set ofobjects
and a set ofattributesbelonging to these objects. The context specifies a binary relation
that signals whether or not a particular attribute belongs to a particular object. Based
on this relation, the technique finds maximal groups of objects and attributes — called
aconcept— such that

• each object of the concept shares the attributes of the concept;

• every attribute of the concept holds for all of the concept’s objects;

• no other object outside the concept has those same attributes, nor does any at-
tribute outside the concept hold for all objects in the concept.

Intuitively, a concept corresponds to a maximal ‘rectangle’ in the context, after permu-
tation of the relevant rows and columns.

The resulting concepts form a lattice and therefore we can use relations between
concepts, as well as characteristics of the concepts themselves, to get statistics and
interpret the results.

2.2.5 Aspect design

In this step, we determine the required abstractions in aspect languages, which can be
nearly directly distilled from the results of the variability analysis in the previous step.
This step is discussed in detail in [13].
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1 int f(chuck_id* a, scan_component b) {
2 int result = OK;
3 char* func_name = "f";
4 ...
5 trace(CC, TRACE_INT, func_name, "> (b = %s)",
6 SCAN_COMPONENT2STR(b));
7 ...
8 trace(CC, TRACE_INT, func_name, "< (a = %s) = %d",
9 CHUCK_ID_ENUM2STR(a), result);

10 return result;
11 }

Figure 2.1: Code fragment illustrating the tracing idiom at ASML.

2.3 Defining the tracing idiom

The idiom we study in the chapter is the ASML tracing idiom. Tracing is a seemingly
simple idiom, used at development-time to facilitate debugging or any other kind of
analysis. The base code is augmented with tracing code that logs interesting events
(such as function calls), such that a log file is generated at runtime. The simplicity of
the idiom is reflected in its simple definition: “Each function should trace the values of
its input parameters before executing its body, and should trace the values of its output
parameters before returning”

The ASML documentation describes the basic implementation version of the id-
iom, which looks as in Figure 2.1. Thetrace function is used to implement tracing
and is a variable-argument function. The first four arguments are mandatory, and spec-
ify the following information:

1. the component in which the function is defined;

2. whether the tracing is internal or external to that component;

3. the function for which the parameters are being traced;

4. aprintf-like format string that specifies the format in which parameters should
be traced.

The way in which each of these four parameters should be passed on to thetrace
function is described by the standard, but not enforced. For example, some compo-
nents follow the standard and use theCC constant, which always holds the component’s
name, to specify the name, while others actually hardcode the name with a string rep-
resenting the name (as in"CC3"). Similarly, thefunc_name variable should be used to
specify the name of the function whose parameters are being traced. Sincefunc_name
is a local variable, however, different functions might use different names for that vari-
able (f_name, for instance). The structure of the format string is also not fixed, and
developers are thus free to construct strings as they like.
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The optional arguments fortrace are the input or output parameters that need to be
traced. If these parameters are of a complex type (as opposed to a basic type likeint or
char), they need to be converted to a string representation first. Often, a dedicated func-
tion or macro is defined exactly for this purpose. In Figure 2.1,SCAN_COMPONENT2STR
andCHUCK_ID_ENUM2STR are two such examples. Developers can choose to trace in-
dividual fields of struct instead of using a converter function, however.

Although the idiom described above is the standard idiom, some development
teams define special-purpose tracing macro’s, as a wrap around the basic idiom. These
macro’s try to avoid code duplication by filling in the parameters totrace in the stan-
dard way beforehand. Typically, tracing implementations by means of such macro’s
thus require fewer parameters, although sometimes extra parameters are added as well,
for example to include the name of the file where tracing is happening.

It should be clear from this presentation that the tracing idiom precisely prescribes
what information should be traced, but that the way in which this information is pro-
vided is not specified. Hence, we can expect a lot of variability, as we will discuss in
Section 2.5.

2.4 Extracting the tracing idiom

Extraction of the tracing idiom out of the source code is achieved by using a combina-
tion of a code analysis tool, called CodeSurfer,3 and a code transformation tool, called
ASF+SDF [6]. The underlying idea is that the analysis tool is used to identify all idiom-
related code in the considered components and that this information is passed on to the
transformation tool that extracts the idiom code from the base code. The end result is
a combination of the base code without the idiom-related code, and a representation of
the idiom code by itself.

2.5 Modeling variability in the tracing idiom

Tracing is generally considered as a very simple example of a crosscutting concern that
can be captured in an aspect easily. This is confirmed by the fact that we can express the
requirements for tracing in one single sentence, and hence we could expect an aspect
to be simple as well. However, the tracing idiom we consider here is significantly more
complex than the simple example often mentioned and than the requirement would
reveal. Rather, it represents a good example of what such an at first sight simple idiom
looks like in a real-world setting.

The following characteristics of the tracing idiom distinguish it from a simple log-
ging concern:

• A simple logging aspect typically weaves in log calls at the beginning and end
of a function, and often only logs the fact that the function has been entered

3www.grammatech.com
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and has been exited. The tracing idiom described above also logs the values of
actual parameters and the module in which the function is defined. Moreover,
it differentiates between input and output parameters, which have to be traced
differently.

• Tracing the values of actual parameters passed to a C function is a quite complex
matter. Basic types such asint or bool can be printed easily, but more complex
types, such asstruct andenum, are a different story. These should be con-
verted to a string-based representation first, which differs for different instances
of struct andenum. Moreover, certain fields of a struct may be relevant in the
context of a particular function, but may not be relevant elsewhere. Hence, the
printed value depends on the context in which the type is used, and not only on
the type itself.

• The conversion of complex types to a string representation is quite different in
C than in Java, or any other modern programming language. C does not provide
a defaulttoString function, as do all Java classes, for example. Consequently,
a special-purpose converter method for complex types needs to be provided ex-
plicitly. Additionally, since C does not support overloading of function names,
each converter function needs to have a unique name.

These issues, together with the way tracing is invoked as explained in Section 2.3, show
that variability can occur at many different levels. In the remainder of this chapter,
however, we will focus onfunction-levelandparameter-levelvariability. The variabil-
ity present on those levels possibly has the biggest impact on the definition of aspects
for the tracing concern.

At the function-level, the variability occurs in the specific way the tracing func-
tionality is invoked. This depends on four different properties: the name of the trac-
ing function that is used (for exampletrace), the way the component name and the
function name are specified (by usingCC andfunc_name, for example), and whether
internal or external tracing is used. More properties are considered when a different
tracing idiom requires more parameters when it is called, for example the name of the
file in which the traced function is defined.

At the parameter-level, the variability involves the different ways in which a param-
eter of a particular kind is traced. This level of variability is discussed in detail in [13],
and not considered further in this chapter.

2.6 Analyzing the tracing idiom’s variability

As shown in Table 2.1, our experiments involve 4 different components, comprising
83,000 lines of non-white lines of C code. These components define 704 functions in
total. The table also lists the different number of ways in which tracing is invoked, i.e.,
the different tracing macros that are used, as well as the different component names and
function names that are specified. The numbers clearly show the variability present in
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CC1 CC2 CC3 CC4 global
LOC 29,339 17,848 31,165 4,98583,337
functions 328 134 174 68 704
tracing macro’s 1 1 2 1 2
component names 2 3 1 2 6
function names 3 1 1 1 3

Table 2.1: Basic statistics of the analyzed components.

the idiom at the function level, since globally 2 different tracing macro’s, 6 different
ways to specify the component name and 3 different ways for specifying the function
name are used.

The goal of our analysis is to identify, at the function level, which functions invoke
tracing in the same way. Analyzing this allows us to make headway into answering
our key question, since it shows us where the implementation is systematic and what is
variable. Since FCA, introduced in Section 2.2.4, is capable of identifying meaningful
groupings of elements, we use it in our variability analysis.

The FCA algorithm needs to be set up before it can be applied, i.e., we need to
define the objects and attributes of the input context. The next subsection explains how
this is achieved for our experiment. Subsequently we describe the results of running
FCA on each of the components separately, as well as on all components together.
This will allow us to discuss the variability within a single component, as well as the
between different components.

2.6.1 Setting up FCA for analyzing tracing

We first explain how objects and attributes are chosen for our experiment, and how we
run the FCA algorithm. Afterwards, we explain how we interpret the results.

Objects and attributes

For studying function-level variability, the objects and attributes are chosen such that
all functions that invoke tracing in the same way are grouped. Hence, the objects we
use in the FCA context are the names of all functions defined in the components we
consider. The attributes are different instantiations of the four properties used to invoke
tracing, as discussed in Section 2.3. A sample context is shown in Table 2.2.

Applying FCA

Once the context is set up, the algorithm can be applied. We use Lindig’s Concepts
tool to compute the actual concepts [74]. The context is specified in a file in a specific
format, which we generate using ASF+SDF and the extracted tracing representation
files. The tool can output the resulting concepts in a user-defined way, and we tune the
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trace CC_TRACE TRACE_INT TRACE_EXT CC func_name f_name
f

√
-

√
-

√ √
-

g -
√

- - -
√

-
h

√
- -

√ √
-

√

i -
√

- - -
√

-
j

√
-

√
-

√ √
-

Table 2.2: Example FCA context for function-level variability.

Figure 2.2: Function-level variability in the CC1 component.

results so that they can be read into a Scheme environment. This allows us to reason
about the results using Scheme scripts.

An alternative is to use the ConExp tool4, which requires a slightly different input
format, but that can visualize the concepts (and the resulting lattice) so that it can be
inspected easily. The graphical representations of lattices in this chapter are obtained
by this tool.

Interpreting the results

From running the FCA algorithm, we obtain a concept lattice that shows the different
concepts identified and the relation between them. An example lattice appears in Fig-
ure 2.2. Each dot in the lattice represents a concept, and the lines connecting the dots

4http://conexp.sf.net

http://conexp.sf.net
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represent concepts that are related because they share objects and/or attributes.
While traversing a lattice from top to bottom, following the edges that connect

concepts, attributes are gradually added to the concepts, and objects are removed from
them. The top concept contains all objects and all attributes shared by all objects (if
any), whereas the bottom concept contains all attributes and all objects shared by all
attributes (if any). At some point in the lattice, a concept contains objects that are not
contained within any of its sub-concepts. Those objects are the concept’sown objects.
The attributes associated with the own objects of a concept are always “complete”,
in the sense that in the input context passed to the FCA algorithm, the own objects
precisely are related to precisely those attributes.

A concept with own objects represents a single variant for invoking tracing, or a
single variant for converting a particular type. In the first case, for example, the own
objects are functions, all these functions share the same (complete) set of attributes, an
no other attribute is shared by these functions. In Figure 2.2, the concepts with own
objects are denoted by nodes whose bottom half is colored black and whose size is
proportional to the number of own objects they contain. They also have white labels
indicating the number of own objects and the percentage of own objects with respect
to the total number of objects of the concept. The largest concepts contains 190 own
object, which are functions in this case.

We observe that a particular kind of variability occurs when either input and output
tracing in the same function are invoked in a different way, or a single type is converted
using two different converter functions. Such situations, which are in most cases clearly
examples of accidental variability, immediately show up in the concept lattice. They are
embodied by concepts with own objects that have at least one parent concept with own
objects. Indeed, such concepts have more attributes than is necessary, hence some of
these attributes are different variations for the same property. As an example, consider
again Figure 2.2 and observe the two concepts in the lower left part that contain 1 and
2 own objects, respectively. From their positions in the lattice, it can be derived that the
leftmost concept uses both__FUNCTION__ andfunc_name for specifying the function
name when tracing, and the other concept"CC1" andCC for specifying the component
name.

2.6.2 Function-level variability

The upper half of Table 2.3 presents the results of analyzing the function-level variabil-
ity in the four components we consider. The first row of data contains the total number
of concepts that are found by the FCA algorithm. The second row lists the number
of different tracing invocations that are found (i.e., the total number of concepts con-
taining own objects). The third row then lists the number of functions that implement
the standard tracing idiom as described in ASML’s coding standards (i.e., the num-
ber of own objects found in the concept with attributestrace, CC, TRACE_INT or
TRACE_EXT andfunc_name), and the last row presents the percentage of those func-
tions with respect to the total number of functions in the component.
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CC1 CC2 CC3 CC4 total global
Function-level variability

#concepts 11 6 24 2 43 47
#tracing variants 6 4 19 2 31 29

#functions w. std. tracing 13 1 26 0 40 40
% of total functions 4 0.7 15 0 5.7

Table 2.3: Function-level variability results for 704 functions.

Figure 2.3: Function-level variability in the CC2 component.

The most striking observation revealed by these results is that only 5.7% (40 out of 704)
of all functions invoke tracing in the standard way, as described in Section 2.3. This
immediately raises the question why developers do not adhere to the standard. Maybe
a new standard for invoking tracing should be considered? Can we observe candidate
standards in our results?

Looking at the second row in the upper half of Table 2.3, we see that 29 different
tracing variants are used in the four components. If we consider each component sep-
arately, we find 31 variants in total. This difference can be explained by the fact that
3 components invoke tracing according to the standard idiom, and that the functions
of these components doing so are all grouped in one single concept when considering
the components together. This results in one concept replacing three other concepts,
hence the reduction with two concepts. Reversing this reasoning also means that there
is no other way of invoking tracing that is shared by different components, or in other
words, all components invoke tracing by using their own variant(s). Consequently, we
can not select one single variant that can be considered as the standard among these
29 variants, with the other variants being simple exceptions to the general rule. This is
confirmed by looking at the lattices.
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Figure 2.4: Function-level variability in the CC3 component.

Looking at Figures 2.2 and 2.3, it is clear that both components use a similar tracing
variant implemented by most functions (190 or 58% functions in the case of CC1, 123
functions or 92% in the case of CC2). Additionally, CC1 has yet another “big” variant
that uses the__FUNCTION__ preprocessor token instead of the variablefunc_name.
This variant is used in 121 functions (37%).

Figures 2.4 and 2.5 show significantly different results. The CC4 component imple-
ments only two tracing variants, implemented by 31 and 37 functions respectively. The
difference between the two variants is that one is an extension of the other: one variant
usesCC4_LINE to denote the component name, whereas the other uses bothCC4_LINE
andCC4_CC. The CC3 component implements 19 different variants, and none can be
selected as the most representative or resembles the variants of another component.
The variability in this case stems from the fact that the CC3 component defines its own
macro for invoking tracing, and that this macro requires one extra argument, namely
the name of the file in which is defined the function that is being traced. This is clearly
visible in the lattice: each concept corresponding to a specific tracing variant that cor-
responds to a specific file in the source code, contains an extra attribute that denotes the
constant used in the trace call corresponding with the file. Interestingly, although CC3
defines its own macro, it is also the component that uses the standard idiom the most.
Whether the mixing of the standard idiom with the dedicated macro is a deliberate
choice or not is an issue that remains to be discussed with the developers.

Summarizing, we can state that very few functions implement the standard tracing
variant, that no other standard variant can be identified that holds for all components,
but that within one single component a more common variant can sometimes be de-
tected.
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Figure 2.5: Function-level variability in the CC4 component.

The previous subsection discussed an example of accidental variability in the CC1
component. A similar situation occurs in the CC2 component, as can be seen in Fig-
ure 2.3, where one function usesCC and"CC2". The CC3 component contains one vari-
ant that is accidental, as confirmed by the ASML developers, consisting of a copy/paste
error when passing a constant representing the file name in invoking theCC3_trace
macro.

2.7 Discussion and evaluation

This section discusses the implications of variability caused by idiom-based develop-
ment from the perspective of the migration of legacy systems. Whereas the discussion
in the previous section concerned the essential variability, the discussion here is based
on the occurrence of accidental variability. First, however, we discuss the consequences
of taking into account additional variability that was not considered in our analysis.

2.7.1 Further variability

It is important to note that we have only considered function-level and parameter-level5

variability in our experiments, and in our discussion above. However, the tracing idiom
has other characteristics that we did not analyze in depth, and these characteristics make
the idiom richer. Hence, more features might be needed in an aspect language then the
ones we described above if we wish to express ASML’s tracing idiom in an aspect.

For example, ASML code distinguishes between input and output parameters. Our
analysis did not make that distinction and considered input and output tracing together.

5See [13] for the results of the parameter-level variability analysis.
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Although this allowed us to detect accidental variabilities that we would not have dis-
covered otherwise, it also prevented us from considering the impact on an aspect im-
plementation. An aspect needs to know which parameters are input and which are out-
put in order to construct the appropriate input and output trace statements. An aspect
weaver could extract such information from the source code using data-flow analysis,
and could make it available in the aspect language, for example.

Other characteristics that we did not consider but that are relevant for such a discus-
sion include the position of the input and output trace statements in the original code
(do they always occur right at the beginning and at the end of a function’s execution?),
the tracing of other variables besides parameters (such as local and/or global variables),
the order in which the parameters are traced, and the format string that is used, together
with the format types for parameters contained within that string.

Clearly, the results we obtained can thus be seen as a lower bound of the real amount
of variability present in the tracing idiom’s implementation. Since the variability we
found was considerable already, we arrive at our claim that simple crosscutting con-
cerns do not exist, at least not for software systems of industrial size.

2.7.2 Migration of idioms to aspects

Given that an aspect-oriented solution has benefits over an idiom-based solution, it is
relevant to study the risks involved in migrating the idiom-based implementation to an
aspect-oriented implementation.

In general, migrating code of an operational software system is a high-risk effort.
Although one of the biggest contributors to this risk is the scale of the software system,
in our case this can be dealt with by approaching the migration of tracing incremen-
tally [8], for instance on a component-per-component basis. However, other sources of
risk need to be accounted for: the migrated code is of course expected to be functionally
equivalent to the original code.

Our findings concerning variability of idiom-based concern implementations intro-
duce an additional risk dimension. In particular, accidental variability is a complicating
factor. Ignoring such variabilities by defining an aspect that only implements the es-
sential variability means we would be changing the functionality of the system. A
particular function that does not execute tracing as its first statement but only as its sec-
ond or third statement, might fail once an aspect changes that behavior, for example,
when originally a check on null pointers preceded the tracing of a pointer value. So this
risk is real even with functionality that is seemingly side-effect free, as is the tracing
concern, and will become higher when the functionality does involve side-effects.

On the other hand, migrating the idiom including its accidental variability is un-
desirable as well: aspect-oriented languages are not well-equipped for expressing ac-
cidental variability and the resulting aspect-oriented solution quickly converges to a
one-aspect-per-functionsolution. So the issue boils down to a trade-off between mini-
mizing the risk on the one hand, and on the other hand reducing the variability in favor
of uniformity, in order to reach a reasonable aspect-oriented solution.
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At the moment, we do not have an answer to the question how to migrate idioms
of legacy systems with a high degree of accidental variability — at this point we do
not even know what ahigh degreeof accidental variability is, nor do we know whether
automated migration towards aspects is feasible at all in practice, if a simple aspect
such as tracing already exposes difficult problems. This discussion only serves to point
out that the risk is present and that there are currently no processes or tools available
for minimizing the risks. Nevertheless, we can say that in the particular context of
ASML, the initial proposal for dealing with the migration risk is to (1) confirm or refute
the detected accidental variability, (2) eliminate the confirmed accidental variability
in the idiom-based implementation of the legacy system incrementally and test if the
resulting implementation is behavior-preserving by comparing the compiled code, (3)
remove the remaining idiom-based implementation of the crosscutting concern, and (4)
represent the idiom and its essential variability as aspects.

2.8 Concluding remarks

In this chapter, we have studied “tracing in the wild” using idiom-based development. It
turns out that for systems of industrial size, tracing is not as simple as one might think:
in the code we analyzed, the idiom used for implementing the tracing concern exhibits
remarkable variability. Part of this variability is accidental and due to typing errors
or improper use of idioms, which could be seen as a plea for using aspect-oriented
techniques. A significant part of the variability, however, turns out to be essential:
aspects must be able to express this variability in pointcuts or advice. Even with our
partial analysis of the variability of the so-called “trivial” tracing concern, we discover
the need for quite general language abstractions that probably no aspect language today
can provide entirely, and certainly not in the context of an industrial system. This
will only worsen when more variability is considered or more complex concerns are
investigated.

In summary, this chapter makes the following contributions:

1. We proposed a method to assess the variability in idiom-based implementation
of (crosscutting) concerns.

2. We have shown how existing tools for source code analysis and transformation,
and for formal concept analysis can be combined and refined to support the vari-
ability analysis process.

3. We presented the results of applying the method on selected components of a
large-scale software system, showing that significant variability is present.

4. We discussed the implications of the accidental variability caused by idiom-
based development in the context of crosscutting concerns from the perspective
of legacy system migration.
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Chapter 3

Discovering faults in idiom-
based exception handling1

Authors: Magiel Bruntink, Arie van Deursen, Tom Tourwé

Abstract In this chapter, we analyse the exception handling mechanism of a state-
of-the-art industrial embedded software system. Like many systems implemented in
classic programming languages, our system uses the popular return-code idiom for
dealing with exceptions. Our goal is to evaluate the fault-proneness of this idiom, and
we therefore present a characterization of the idiom, a fault model accompanied by
an analysis tool, and empirical data. Our findings show that the idiom is indeed fault
prone, but that a simple solution can lead to significant improvements.

3.1 Introduction

A key component of any reliable software system is its exception handling. This al-
lows the system to detect errors, and react to them correspondingly, for example by
recovering the error or by signalling an appropriate error message. As such, exception
handling is not an optional add-on, but a sine qua non: a system without proper ex-
ception handling is likely to crash continuously, which renders it useless for practical
purposes.

Despite its importance, several studies have shown that exception handling is often
the least well understood, documented and tested part of a system. For example, [97]
states that more than 50% of all system failures in a telephone switching application

1This chapter is based on an article in the Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006) [18].
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are due to faults in exception handling algorithms, and [75] explains that the Ariane 5
launch vehicle was lost due to an un-handled exception.

Various explanations for this phenomenon have been given.
First of all, since exception handling is not the primaryconcernto be implemented,

it does not receive as much attention in requirements, design and testing. [91] explains
that exception handling design degrades (in part) because less attention is paid to it,
while [21] explains that testing is often most thorough for the ordinary application
functionality, and least thorough for the exception handling functionality. Granted,
exception handling behavior is hard to test, as the root causes that invoke the exception
handling mechanism are often difficult to generate, and a combinatorial explosion of
test cases is to be expected. Moreover, it is very hard to prepare a system for all possible
errors that might occur at runtime. The environment in which the system will run is
often unpredictable, and errors may thus occur for which a system was not prepared.

Second, exception handling functionality is crosscutting in the meanest sense of
the word. [76] shows that even the simplest exception handling strategy takes up 11%
of an application’s implementation, that it is scattered over many different files and
functions and that it is tangled with the application’s main functionality. This has a
severe impact on understandability and maintainability of the code in general and the
exception handling code in particular, and makes it hard to ensure correctness and
consistency of the latter code.

Last, older programming languages, such as C or Cobol, that do not explicitly sup-
port exception handling, are still widely used to develop new software systems, or to
maintain existing ones. Such explicit support makes exception handling design eas-
ier, by providing language constructs and accompanying static compiler checks. In
the absence of such support, systems typically resort to systematic coding idioms for
implementing exception handling, as advocated by the well-knownreturn codetech-
nique, used in many C programs and operating systems. Idioms are also referred to
as ‘boilerplate code’, ‘template’, ‘pattern’, or ‘recipe’ in programming jargon. On the
one hand, they are fragments of code that occur frequently and are repetitive, hence
tedious, to reproduce. For example, even for the most simple C program that produces
any output one has to explicitly include the standard input/output library. On the other
hand, they represent common, well-tested and scrutinized solutions to frequently oc-
curring programming problems. Design patterns [43] are examples of the latter case.
At both extremes, the use of idioms is a manual implementation technique, and hence
can be considered to be a fault-prone and effort intensive practice compared to auto-
matic code generation. As shown in [17], such idioms are not scalable and compromise
correctness.

In this chapter, we focus on the exception handling mechanism of a wafer scanner
The system consists of approximately 15 million lines of C code, and is developed and
maintained using a state-of-the-art development process. It applies (a variant of) the
return code idiom consistently throughout the implementation. The central question we
seek to address is the following: ‘how can we reduce the number of implementation
faults related to exception handling implemented by means of the return code idiom?’.
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In order to answer this general question, a number of more specific questions needs to
be answered:

1. What kinds of faults can occur? Answering this question requires an in-depth
analysis of the return code idiom, and a fault model that covers the possible
faults to which the idiom can lead. A fault model is a model that is used in
software testing to specify which faults can occur in a program. A fault model
describes how faults can lead to failures.

2. Which of these faults do actually occur in the code? A fault model only predicts
which faults can occur, but does not say which faults actually occur in the code.
By carefully analyzing (automatically) the subject system, an estimate of the
probability of a particular fault can be given.

3. What are the primary causes of these faults? The fault model explainswhen
a fault occurs, but does not explicitly statewhy it occurs. Because we need to
analyse the source code in detail for detecting faults, we can also study the causes
of these faults, as we will see.

4. Can we eliminate these causes, and if so, how? Once we know why these faults
occur and how often, we can come up with alternative solutions for implementing
exception handling that help developers in avoiding such faults. An alternative
solution is only a first step, (automated) migration can then follow.

We believe that answers to these questions are of interest to a broader audience than
the original developers of our subject system. Any software system that is developed
in a language without exception handling support will suffer the same problems, and
guidelines for avoiding such problems are more than welcome. In this chapter we offer
experience, an analysis approach, tool support, empirical data, and alternative solutions
to such projects.

This chapter first discusses the return code idiom and obtains a precise characteri-
zation of the idiom in Section 3.2. Section 3.3 further formalizes this characterization
into a fault model. Next, Section 3.4 presents SMELL, a source code analysis tool that
is capable of detecting the faults defined in the fault model. We applied SMELL to
several ASML components and report on the results in Section 3.5. A discussion of the
results follows in Section 2.7. Finally, Section 3.7 concludes the chapter.

3.2 Characterizing the return code idiom

The central question we seek to answer is how we can reduce the number of faults
related to exception handling implemented by means of the return code idiom. To
arrive at the answer, we first of all need a clear description of the workings of (the
particular variant of) the return code idiom at ASML. We use an existing model for
exception handling mechanisms (EHM) [69] to distinguish the different components
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1 int f(int a, int * b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if ((r == OK) && ((a < 0) || (a > 10))) {
7 r = PARAM_ERROR;
8 LOG(r,OK);
9 }

10 if (r == OK) {
11 r = g(a);
12 if (r != OK) {
13 LOG(LINKED_ERROR,r);
14 r = LINKED_ERROR;
15 }
16 }
17 if (r == OK)
18 r = h(b);
19 if ((r != OK) && allocated)
20 mem_free(b);
21 return r;
22 }

Figure 3.1: Exception handling idiom.

of the idiom. This allows us to identify and focus on the most error-prone components
in the next sections. Furthermore, expressing our problem in terms of this general EHM
model makes it easier to apply our results to other systems using similar approaches.

An exception at ASML is ‘any abnormal situation found by the equipment that
hampers or could hamper the production’. Exceptions are logged in anevent log, that
provides information on the machine history to different stakeholders (such as service
engineers, quality assurance department, et cetera).

The EHM itself is based on two requirements:

1. a function that detects an error should log that error in the event log, and recover
it or pass it on to its caller.

2. a function that receives an error from a called function must provide useful con-
text information (if possible) bylinking an error to the received error, and recover
the error or pass it on to the calling function.

An error that is detected by a function is called aroot error, while an error that is linked
to an error received from a function is called alinkederror.

If correctly implemented, the EHM produces a tree of related consecutive errors in
the event log. This tree is referred to as theerror link tree, and resembles a exception
chain produced by the Java virtual machine.

Because the C programming language is used, and C does not have explicit support
for exception handling, each function in the source code follows thereturn codeidiom.
Figure 3.1 shows an example of such a function. We will now discuss this approach in
more detail.
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An exception representationdefines what an exception is and how it is represented.
A singular representation is used, in the form of anerror variableof typeint. Line
2 in Figure 3.1 shows a typical example of such an error variable, that is initialized to
theOK constant. This variable is used throughout the function to hold anerror value,
i.e., eitherOK or any other constant to signal an error. The variable can be assigned a
constant, as in Lines 7 and 14, or can be assigned the result of a function call, as in
Lines 4, 11 and 18. If the function does not recover from an error itself, the value of
the error should be propagated through the caller by thereturn statement (Line 21).

Exception raising isthe notification of an exception occurrence. Different mech-
anisms exist, of theexplicit control-flow transfervariant is used: if a root error is
encountered, the error variable is assigned a constant (see Lines 6− 9), the function
logs the error, stops executing its normal behavior, and notifies its caller of the error.

Logging occurs by means of theLOG function (Line 8), where the first argument is
the new error encountered, which is linked to the second argument, that represents the
previous error value. The function treats root errors as a special case of linked errors,
and therefore the root error detected at Line 8 is linked to the previous error value,OK
in this case.

Explicit guards are used to skip the normal behavior of the function, as in Lines 10
and 17. These guards check if the error variable still contains theOK value, and if so,
execute the behavior, otherwise skip it. Note that such guards are also needed in loops
containing function calls.

If the error variable contains an error value, this value propagates to thereturn
statement, which notifies the callers of the function.

3.3 A fault model for exception handling

Based on the characterization presented in the previous section, we establish a fault
model for exception handling by means of the return code idiom in this section. The
fault model defines when a fault occurs, and includes failure scenarios which explain
what happens when a fault occurs.

The return code idiom relies on the fact that when an error is received, the corre-
sponding error value should be logged and should propagate to thereturn statement.
The programming language constructs that are used to implement this behavior are
function calls, return statements and log calls.

We define three categories of faults:

Category 1: A function raises a new error but fails to perform appropriate logging.

Category 2: A function properly links a new error valuey to the received error value
x, but then fails to return the new error valuey (returnz instead).

Category 3: A function receives an error valuex and does not link a new error value
to x in the log, but does return an error valuey that is different fromx.

For a detailed description of the fault model we refer to [18].
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3.4 SMELL: Statically detecting exception handling
faults

Based on the fault model we developed SMELL, theState Machine for Error Linking
and Logging, which is capable of statically detecting violations to the return code idiom
in the source code, and is implemented as a CodeSurfer2 plug-in. We want to detect
faults statically, instead of through testing as is usual for fault models, because early
detection and prevention of faults is less costly [5, 20], and because testing exception
handling is inherently difficult.

3.4.1 Implementation

SMELL statically analyses executions of a function in order to prove the truth of any
one of the logic formulas of our fault model. The analysis is static in the sense that no
assumptions are made about the inputs of a function. Inputs consist of formal or global
variables, or values returned by called functions.

We represent an execution of a function by a finite path through its control-flow
graph. Possibly infinite paths due to recursion or iteration statements are dealt with
as follows. First, SMELL performs intra-procedural analysis, i.e., the analysis stays
within a function and does not consider functions it may call. Therefore recursion is
not a problem during analysis. Intra-procedural analysis does not impact SMELL’s
usefulness, as it closely resembles the way developers work with the code: they should
not make specific assumptions about possible return values, but should instead write
appropriate checks after the call. Second, loops created by iteration statements are dealt
with by caching analysis results at each node of the control-flow graph. We discuss this
mechanism later.

The analysis performed by SMELL is based on the evaluation of a deterministic (fi-
nite) state machine (SM) during the traversal of a path through the control-flow graph.
The SM inspects the properties of each node it reaches, and then changes state accord-
ingly. A fault is detected if the SM reaches therejectstate. Conversely, a path is free
of faults if the SM reaches theacceptstate.

The error variable is a central notion in the current implementation of SMELL. An
error variable, such as ther variable in Figure 3.1, is used by a programmer to keep
track of previously raised errors. SMELL attempts to identify such variables automat-
ically based on a number of properties. Unfortunately, the idiom used for exception
handling does not specify a naming convention for error variables. Hence, each pro-
grammer picks his or her favorite variable name, ruling out a simple lexical identifi-
cation of these variables. Instead, a variable qualifies as an error variable in case it
satisfies the following properties:

• it is a local variable of typeint,

• it is assigned only constant (integer) values or function call results,

2www.grammatech.com
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• it is not passed to a function as an actual parameter, unless in a log call,

• no arithmetic is performed using the variable.

Note that this characterization does not include the fact that an error variable should
be returned or that it should be logged. We deliberately do not want the error variable
identification to depend on the correct use of the idiom, as this would create a circular
dependency: in order to verify adherence to the idiom, the error variable needs to be
identified, which would need strict adherence to the idiom to start with.

Most functions in the source base use at most one error variable, but in case multiple
are used, SMELL considers each control-flow path separately for each error variable.
Functions for which no error variable can be identified are not considered for further
analysis. We discuss the limitations of this approach at the end of this section.

The definition of the SM was established manually, by translating the informal
rules in the manuals to appropriate states and transitions. Describing the complete SM
would require too much space. Therefore we limit our description to the states defined
in the SM, and show a subset of the transitions by means of example runs.

The following states are defined in the SM:

AcceptandRejectrepresent the absence and presence of a fault on the current control-
flow path, respectively.

Entry is the start state, i.e., the state of the SM before the evaluation of the first node.
A transition from this state only occurs when an initialization of the considered
error variable is encountered.

OK reflects that the current value of the error variable is the OK constant. Conceptu-
ally this state represents the absence of an exceptional condition.

Not-OK is the converse, i.e., the error variable is known to be anything but OK,
though the exact value is not known. This state can be reached when a path has
taken the true branch of a guard likeif(r != OK).

Unknown is the state reached if the result of a function call is assigned to the error
variable. Due to our limitation to intra-procedural analysis, we conservatively
assume function call results to be unknown.

Constant is a parametrised state that contains the constant value assigned to the error
variable. This state can be reached after the assignment of a literal constant value
to the error variable.

All states also track the error value that was last written to the log file. This informa-
tion is needed to detect faults in the logging of errors. Since we only perform intra-
procedural analysis, we set the last logged value tounknownin the case of an Unknown
state (i.e. when a function was called). We thus assume that the called function adheres
to the idiom, which allows us to verify each function in isolation. Faults in these called
functions will still be detected when they are being checked.
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While traversing paths of the control-flow graph of a function, the analysis caches
results in order to prevent infinite traversals of loops and to improve efficiency by elim-
inating redundant computations. In particular, the state (including associated values of
parameters) in which the SM reaches each node is stored. The analysis then makes
sure that each node is visited at most once given a particular state. The same technique
is used by Engleret al. in [39].

3.4.2 Example faults

The following three examples show how the SM detects faults from each of the cate-
gories in the fault model. States reached by the SM are included in the examples as
comments, and where appropriate the last logged error value is mentioned in parenthe-
ses. First, consider the code snippet in Figure 3.2.

1 int calibrate(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if (a == 1)
5 LOG(RANGE_ERROR, OK); // Reject
6 ...
7 }

Figure 3.2: Example of fault category 1.

A fault of category 1 possibly occurs on the path that takes the true branch of theif
statement on Line 4. If the function call at Line 3 returns with an error value, say
INIT_ERROR. The call to the LOG function on Line 5 logs RANGE_ERROR to the OK
value, and since OK is different fromINIT_ERROR, erroneous logging has been done,
and a fault of category 1 occurs.

SMELL detects this fault as follows, starting in the Entry state on Line 1. The
initialization ofr, which has been identified as an error variable, causes a transition to
the OK state on Line 2. The assignment tor of the function call result on Line 3 results
in the Unknown state. On the true branch of theif statement on Line 4, a (new) root
error is raised. The cause of the fault lies here. SMELL reaches the Reject state at Line
5 because if an error value (INIT_ERROR) would have been returned from the call to
theinitialise function, it is required to link theRANGE_ERROR to theINIT_ERROR,
instead of linking to OK.

The function in Figure 3.3 exhibits a fault of category 2 on the path that takes
the true branch of theif statement. Again, suppose an INIT_ERROR comes out of
the function call at Line 3, then the function correctly performs LOG(ALIGN_ERROR,
INIT_ERROR). The fault consists of the function not returningALIGN_ERROR, but
INIT_ERROR, because after linking to the received error, the new error value is not
assigned to the error variable.

Again SMELL starts in the Entry state, and subsequently reaches the OK state after
the initialization of the error variabler. Theinitialize function is called at Line



SMELL: STATICALLY DETECTING EXCEPTION HANDLING FAULTS 47

1 int align() { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if (r != OK) // Not - OK
5 LOG(ALIGN_ERROR, r); // Not - OK ( ALIGN_ERROR)
6 return r; // Reject
7 }

Figure 3.3: Example of fault category 2.

3, and causes SMELL to enter the Unknown state. Taking the true branch at Line
4 implies that the value ofr must be different fromOK, and SMELL records this by
changing to the Not-OK state. At Line 5 anALIGN_ERROR is linked to the error value
currently stored in ther variable. SMELL then reaches the return statement, which
causes the error value to be returned that was returned from theinitialize function
call at Line 3. Since the returned value differs from the logged value at this point,
SMELL transits to the Reject state.

1 int process(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if (a == 2) {
5 r = PROCESS_ERROR; // Reject
6 }
7 ...
8 return r;
9 }

Figure 3.4: Example of fault category 3.

Category 3 faults are similar to category 2, but without any logging taking place.
Suppose that an INIT_ERROR comes out of the function call at Line 3 in Figure 3.4.
For the path taking the true branch of theif statement a value different from
INIT_ERROR will be returned, i.e.,PROCESS_ERROR.

Until the assignment at Line 5 the SM traverses through the same sequence of
states as for the previous examples. However, the assignment at Line 5 puts SMELL
in the Reject state, because the previously received error value has been overwritten. A
category 3 fault is therefore manifest.

3.4.3 Fault reporting

SMELL reports the presence of faults using a more fine-grained view of the source
code than the fault model. While the fault model takes a black box perspective, i.e.,
regarding behavior only at the interface level, SMELL reports detected faults using a
white box perspective, i.e., considering the implementation level details of a function.
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The white box perspective is considered to be more useful when interpreting actual
fault reports, which developers may have to process.

In the following we present a list of ‘low-level faults’, or programmer mistakes,
that SMELL reports to its users. For each programmer mistake we mention here the
associated fault categories from the fault model. SMELL itself does not report these
categories to the user. To help users interpreting the reported faults, SMELL prints the
control-flow path leading up to the fault, and the associated state transitions of the SM.

function does not return occurs when a function declares and uses an error variable
(i.e., assigns a value to it), but does not return its value. If present, SMELL
detects this fault at the return statement of the function under consideration. This
can cause category 2 or 3 faults.

wrong error variable returned occurs when a function declares and uses an error
variable but returns another variable, or when it defines multiple error variables,
but only returns one of them and does not link the others to the returned one in
the appropriate way. This can cause category 2 or 3 faults.

assigned and logged value mismatchoccurs when the error value that is returned by
a function is not equal to the value last logged by that function. This can cause
category 2 faults.

not linked to previous value occurs when aLOG call is used to link an error value to a
previous value, but this latter value was not the one that was previously logged.
If present, SMELL detects this fault at the call site of the log function. This
causes category 1 faults.

unsafe assignmentoccurs when an assignment to an error variable overwrites a previ-
ously received error value, while the previous error value has not yet been logged.
Clearly, if present SMELL detects this fault at the assignment that overwrites the
previous error value. These faults can be category 1, 2 or 3.

3.4.4 Limitations

Our approach is both formally unsound and incomplete, which is to say that our ana-
lysis proves neither the absence nor the presence of ‘true’ faults. In other words, both
false negatives (missed faults) or false positives (false alarms) are possible. False nega-
tives for example occur when SMELL detects a fault on a particular control-flow path,
and stops traversing that path. Consequently, faults occurring later in the path will go
unnoticed. The unsoundness property and incompleteness properties do not necessar-
ily harm the usefulness of our tool, given that the tool still allows us to detect a large
number of faults that may cause much machine down-time, and that the number of
false positives remains manageable. The experimental results (see Section 3.5) show
that we are currently within acceptable margins.
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reported false positives limitations validated

CC1 (3 kLoC) 32 2 4 26 (13)
CC2 (19 kLoC) 72 20 22 30
CC3 (15 kLoC) 16 0 3 13
CC4 (14.5 kLoC) 107 14 13 80
CC5 (15 kLoC) 9 1 3 5
total (66.5 kLoC) 236 37 45 154 (141)

Table 3.1: Reported number of faults by SMELL for five components.

3.5 Experimental results

3.5.1 General remarks

Table 3.1 presents the results of applying SMELL on 5 relatively small components.
The first column lists the component that was considered together with its size, column
2 lists the number of faults reported by SMELL, column 3 contains the number of false
positives we manually identified among the reported faults, column 4 shows the number
of SMELL limitations (as discussed in the previous section) that are encountered and
automatically recognized, and finally column 5 contains the number of validated faults,
or ‘true’ faults.

Four of the five components are approximately of the same size, but there is a
striking difference between the numbers ofreportedfaults. The number of reported
faults for the CC3 and CC5 components is much smaller than those reported for the
CC2 and CC4 components. When comparing the number ofvalidatedfaults, the CC4
component clearly stands out, whereas the number for the other three components is
approximately within the same range.

Although the CC1 component is the smallest one, its number of validated faults is
large compared to the larger components. This is due to the fact that a heavily-used
macro in the CC1 component contains a fault. Since SMELL is run after macro expan-
sion, a fault in a single macro is reported at every location where that macro is used. In
this case, only 13 faults need to be corrected (as indicated between parenthesis), since
the macro with the fault is used in 14 places.

The number of validated faults reported for the CC5 component is also interest-
ingly low. This component is developed by the same people responsible for the EHM
implementation. As it turns out, even these people violate the idiom from time to time,
which shows that the idiom approach is difficult to adhere to. However, it is clear that
the CC5 code is of better quality than the other code.

Overall, we get 236 reported faults, of which 45 (19 %) are reported by SMELL as
a limitation. The remaining 191 faults were inspected manually, and we identified 37
false positives (16 % of reported faults). Of the remaining 154 faults, 141 are unique,
and so in other words, we found 2.1 true faults per thousand lines of code.
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3.5.2 Fault distribution

A closer look at the 141 validated faults shows that 13 faults are due to a function
not returning, 28 due to the wrong error variable being returned, 54 due to unsafe
assignments, 10 due to incorrect logging, and 36 due to an assigned and logged value
mismatch.

Theunsafe assignmentfault occurs when the error variable contains an error value
that is subsequently overwritten. This kind of fault is by far the one that occurs the
most (54 out of 141 = 38%), followed by theassigned and logged value mismatch(36
out of 141 = 26%). If we want to minimize the exception handling faults, we should
develop an alternative solution that deals with these two kinds of faults.

Accidental overwriting of the error value typically occurs because the control flow
transfer when the exception is raised is not implemented correctly. This is mostly due
to a forgotten guard that involves the error variable ensuring that normal operation only
continues when no exception has been reported previously. An example of such a fault
is found in Figure 3.4.

The second kind of fault occurs in two different situations. First, as exemplified in
Figure 3.3, when a function is called and an exception is received, a developer might
link an exception to the received one, but forgets to assign the linked exception to
the error variable. Second, when a root error is detected and a developer assigns the
appropriate error value to the error variable, he might forget to log that value.

3.5.3 False positives

The number of false positives is sufficiently low to make SMELL useful in practice. A
detailed look at these false positives reveals the reasons why they occur and allows us
to identify where we can improve SMELL.

Of the 37 false positives identified, 23 are due to an incorrect identification of the
error variable, 7 are due to SMELL getting confused when multiple error variables are
used, 4 occur because an infeasible path has been followed, and 3 false positives occur
due to some other (mostly domain-specific) reason.

These numbers indicate that the largest gain can be obtained by improving the error
variable identification algorithm, for example by trying to distinguish error variables
from ‘ordinary’ error variables. Additionally, they show that the issue of infeasible
paths is not really a large problem in practice.

3.6 Discussion

In our examples, we found 2.1 deviations from the return code idiom per 1000 lines
of code. In this section, we discuss some of the implications of this figure, looking at
questions such as the following: How does the figure relate to reported defect densities
in other systems? What, if anything, does the figure imply for system reliability? What
does the figure teach us on idiom and coding standard design?
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Representativeness A first question to be asked is to what extent our findings are
representative for other systems.

The software under study has the following characteristics:

• It is part of an embedded system in which proper exception handling is essential.

• Exception handling is implemented using the return code idiom, which is com-
mon for C applications.

• Before release, the software components in question are subjected to a thorough
code review.

• The software is subjected to rigorous unit, integration, and system tests.

In other words, we believe our findings hold for software that is the result of a state-of-
the-art development process and that uses an exception handling mechanism similar to
the one we considered.

The reason so many exception handling faults occur is that current ways of working
are not effective in finding such faults: tool support is inadequate, regular reviews tend
to be focused on ‘good weather behavior’ — and even if they are aimed at exception
handling faults these are too hard to find, and testing exception handling is notoriously
hard.

Defect density What meaning should we assign to the value of 2.1 exception han-
dling faults per 1000 lines of code (kLoC) we detected?

It is tempting to compare the figure to reported defect densities. For example, an
often cited paper reports a defect density between 5 and 10 per kLoC for software de-
veloped in the USA and Europe [36]. More recently, in his ICSE 2005 state-of-the-art
report, Littlewood states that studies show around 30 faults per kLoC for commercial
systems [77].

There are, however, several reasons why making such comparisons is questionable,
as argued, for example, by [41]. First, there is neither consensus on what constitutes
a defect, nor on the best way to measure software size in a consistent and comparable
way. In addition to that, defect density is a product measure that is derived from the
process of finding defects. Thus, ‘defect density may tell us more about the quality of
the defect finding and reporting process than about the quality of the product itself’ [41,
p.346]. This particularly applies to our setting, in which we have adopted a new way
to search for faults.

The consequence of this is that no conclusive statement on the relative defect den-
sity of the system under study can be made. We cannot even say that our system is of
poorer quality than another with a lower reported density, as long as we do not know
whether the search for defects included a hunt for idiom errors similar to our approach.

What we can say, however, is that a serious attempt to determine defect densities
should include an analysis of the faults that may arise from idioms used for dealing
with crosscutting concerns.
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Reliability We presently do not know what the likelihood is that an exception han-
dling fault actually leads to a failure, such as an unnecessary halt, an erroneously logged
error value, or the activation of the wrong exception handler. As already observed by
Adams in 1984, more faults need not lead to more failures [1]. We are presently inves-
tigating historical system data to clarify the relation between exception handling faults
and their corresponding failures. This, however, is a time consuming analysis requiring
substantial domain knowledge in order to understand a problem report, the fault identi-
fied for it (which may have to be derived from the fix applied) and to see their relation
to the exception handling idiom.

Idiom design The research we are presenting is part of a larger, ongoing effort
in which we are investigating the impact of crosscutting concerns on embedded C
code [14, 17]. The traditional way of dealing with such concerns is by devising an
appropriate coding idiom. What implications do our findings have on the way we ac-
tually design such coding idioms?

One finding is that an idiom making it too easy to make small mistakes can lead to
many faults spread all over the system. For that reason, idiom design should include
the step of constructing an explicit fault model, describing what can go wrong when
using the idiom. This will not only help in avoiding such errors, but may also lead to a
revised design in which the likelihood of certain types of errors is reduced.

A second lesson to be drawn is that the possibility to check idiom usage auto-
matically should be taken into account: static checking should be designed into the
idiom. As we have seen, this may otherwise require complex analysis. Our analysis re-
quires computationally expensive program dependence graphs, while it would be much
preferable to suffice with relatively simple abstract syntax trees.

3.7 Concluding remarks

Our contributions are summarized as follows. First, we provided empirical data about
the use of an exception handling mechanism based on the return code idiom in an
industrial setting. This data shows that the idiom is particularly error prone, due to the
fact that it is omnipresent as well as highly tangled, and requires focused and well-
thought programming. Second, we defined a series of steps to regain control over this
situation, and answer the specific questions we raised in the introduction. These steps
consist of the characterization of the return code idiom in terms of an existing model
for exception handling mechanisms, the construction of a fault model which explains
when a fault occurs in the most error prone components of the characterization, the
implementation of a static checker tool which detects faults as predicted by the fault
model, and the introduction of an alternative solution, based on experimental findings,
which is believed to remove the faults most occurring.

We feel these contributions are not only a first step toward a reliability check com-
ponent for the return code idiom, but also provide a good basis for (re)considering
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exception handling approaches when working with programming languages without
proper exception handling support. We showed that when designing such idiom-based
solutions, a corresponding fault model is a necessity to assess the fault-proneness, and
the possibility of static checking should be seriously considered.
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Chapter 4

Detecting behavioral conflicts
among crosscutting concerns

Authors: Pascal Dürr, Lodewijk Bergmans, Mehmet Akşit

Abstract Aspects have been successfully promoted as a means to improve the mod-
ularization of software in the presence of crosscutting concerns. Within the Ideals
project, aspects have been shown to be valuable for improving the modularization of
idioms (see also Chapter 1). The so-calledaspect interference problemis considered
to be one of the remaining challenges of aspect-oriented software development: as-
pects may interfere with the behavior of the base code or other aspects. Especially
interference among aspects is difficult to prevent, as this may be caused solely by the
composition of aspects that behave correctly in isolation. A typical situation where this
may occur is when multiple advices are applied at the same, orshared, join point. In
this chapter we explain the problem of behavioral conflicts among aspects at shared
join points, illustrated by aspects that represent idioms:Parameter checkingandEr-
ror propagation. We present an approach for the detection of behavioral conflicts that
is based on a novel abstraction model for representing the behavior of advice. The
approach employs a set of conflict detection rules which can be used to detect both
generic conflicts as well as domain or application specific conflicts. One of the bene-
fits of the approach is that it neither requires the application programmers to deal with
the conflict models, nor does it require a background in formal methods for the aspect
programmers.

55
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4.1 Introduction

Aspect-Oriented Programming (AOP) aims at improving the modularity of software
in the presence of crosscutting concerns. AOP languages allow independently pro-
grammed aspects tosuperimposebehavior (so-calledadvice) on a base program. Un-
fortunately, the increased composition possibilities may also cause undesired emerging
behavior. This is not necessarily due to a wrong implementation of the individual
aspects; the composition of independently programmed aspects may cause emerging
conflicts. These conflicts are caused by unexpected behavioral interactions. The most
common situation where this occurs is when multiple advices are superimposed at the
same join point; we call this ashared join point. Note that interference between aspects
may also occur in other places without shared join points, but here we concentrate on
this case. We define abehavioral conflictas emerging behavior that conflicts with the
originally intended behavior (cf. requirements) of one or more of the involved modules.

Conventional techniques for guarding consistency are not equally applicable to as-
pects. This is mainly because aspect composition isimplicit: each aspect is defined
independently of the others, potentially at different times and by different people. The
composition of advices can happen ‘by coincidence’, certainly the programmers of
the individual aspects cannot always be aware that this will happen. Also, tracing a
possible conflict back to an aspect specification, can become hard using conventional
techniques. Recently, reasoning about the correctness of a system after superimpos-
ing multiple aspects at the same orshared join point[80], has been considered as an
important problem to address [71, 72, 53].

In this chapter we explain and motivate the problem of behavioral conflicts with
an example from idioms used by ASML, represented by aspects (Section 4.2). The
chapter presents an approach to the detection of behavioral conflicts that is applicable
for most, if not all, AOP languages (Section 4.3). We also discuss the application of this
method to the Composition Filters [3] approach whose declarative approach to aspect
definitions improves automatic detection of behavioral conflicts (Section 4.4).

4.2 Motivation

There are numerous examples of behavioral conflicts between aspects, see for exam-
ple [32]. In this section we present an example that is based on the idioms applied
within ASML’s wafer scanner software.

We present here two aspects1 that we have identified, namelyParameter Checking
andError Propagation. Currently,Parameter Checkinghas indeed been implemented
–in part of the system– as an aspect usingWeaveC. This is not (yet) the case forError
Propagation.

1Please note that the example aspects presented here are slightly altered for reasons of confidentiality.
However, this does not affect the essence of the examples.
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4.2.1 Parameter checking

Parameter Checking verifies pre- and post-conditions on parameters of C functions.
Parameters can be one of three types; input, output and in- and output. This distinction
depends on whether a parameter is read, written or both. Two checks are employed to
verify the validity of the parameters. First, function input and in- and output pointer
parameters, should not be empty (i.e., notnull) at the start of a function. If the input
parameter pointer isnull, it could yield a fatal error whenever this parameter is ac-
cessed. Second, every output pointer parameter, must benull at the start of a function.
An output parameter is a pointer to a memory location that is written in the function
body. If such a parameter points to a memory location that is already in use, this might
accidentally override data, which is undesired. An example of the parameter checking
concern, implemented as idiom, applied to the functioncompare_data()is shown in
Listing 4.1.

1 static int compare_data(
2 const DATA_struct* p1,
3 const DATA_struct* p2,
4 bool* changed_ptr)
5 {
6 int result = OK;
7 / * Check preconditions * /
8 if (result == OK && p1 == NULL)
9 { result = INVALID_INPUT_PARAMETER_ERROR; }

10 if (result == OK && p2 == NULL)
11 { result = INVALID_INPUT_PARAMETER_ERROR; }
12 if (result == OK && changed_ptr != NULL)
13 { result = INVALID_OUTPUT_PARAMETER_ERROR; }
14 // code that compares the structures and sets the changed_ptr boolean

accordingly
15 return result;
16 }

Listing 4.1:Example of Parameter Checking code.

This function compares the two input parametersp1 andp2, and sets the boolean
output parameterchanged_ptraccordingly. At Lines 8 to 13, the checks for the input
and output parameters are shown. Typically, the parameter checking concern accounts
for around 7% of the number of statements in the code, although the exact percentage
varies among components.

4.2.2 Error propagation

The C programming language does not offer a native exception handling mechanism.
The typical way to implement exception handling in C is to use the return value of
a function. The function returnsOK in case of success and an error number in case
of failure. This means that the caller of the function should always inspect the return
value and verify that it isOK. If not, it should either handle the error or return the error
to its caller.

Error Propagationincludes: (a) passing the error state through a so-callederror
variableand as the return value of the function, (b) ensuring that no other actions are
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performed in an error state, and (c) logging error states. Listing 4.2 shows an example
of such an exception handling scheme.

1 static int compare_data(
2 const DATA_struct* p1,
3 const DATA_struct* p2,
4 bool* changed_ptr)
5 {
6 int result = OK;
7 if (result == OK)
8 {
9 result = example_action1(...);

10 if (result != OK)
11 { LogError(result); }
12 }
13 return result;
14 }

Listing 4.2:Example of Error Propagation code.

The code in Listing 4.2, first (Line 6) initializes the error variable,result, to hold the
current error state. To determine whether to continue with normal execution, a check
is placed which guards the execution (Line 7). In this case this might seem useless as
the error variable already contains OK, however these are coding guideline templates,
and as the code evolves such a check might be required if another statement is inserted
before Line 7. Next, a call to a regular function (example_action1(...)) is performed
(Line 9). If an error is detected (Lines 10-11), this error is logged. Finally theerror
variable is returned at Line 13.

It is out of the scope of this chapter to elaborate on the alternatives for exception
handling. It is however obvious to see that this exception handling idiom contributes
substantially to the amount of code. Depending upon the component, this may even be
up to 25% of the number of lines of code. The error handling domain can be divided
into three main elements: detection, propagation and handling. We will focus here on
propagation. Detection and handling of errors is highly context dependent, and thus re-
factoring this into an aspect is hard, and perhaps not even desirable. Error propagation
on the other hand follows a more common pattern which can be re-factored into an
aspect more easily.

4.2.3 An aspect-based design

We will now discuss how to refactor the concerns above into an AOP solution. As-
pectParameterCheckingshould check the input and output pointer parameters of each
function to ensure the contract of the function. We implement this functionality as an
advice, calledcheck. AspectErrorPropagation implements the following elements:
check whether we are not in erroneous state and if so execute the original call. If this
call yields an error state, it must be logged. Similar to the checking concern, we also
implement the functionality of propagation as an advice, calledpropagate. Figure 4.1
illustrates the application of both aspects to a (base) system.

At the top of the picture the two aspects and their advices are shown, namely,check
andpropagate. The figure also shows our example C function,compare_data(. . . )as
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ErrorPropagation
propagate : Advice

ParameterChecking
check : Advice

Base Program

...

...

compare_data

...

Figure 4.1: Parameter checking and error propagation aspects on a base program.

one of the functions that form the base system. The arrows show where each advice is
applied. In this case, both advices are superimposed on the same join point, the function
compare_data(). However, as the aspects implement coding conventions, there are
many such shared join points. This is indicated by the gray arrows and rectangles. Now
assume we would executepropagatebeforecheck; in this case, the errors detected by
checkare never propagated to the caller.

If we examine this conflict more carefully we see that it is caused by an interaction
between the two advices. Thepropagateadvice reads theerror variable to determine
the current error state and can subsequently write theerror variableand log if an error
is detected. Advicecheckverifies that the arguments are valid, and possibly sets the
error variable. In this case the presence of the conflict depends on a specific ordering
of advices, but there are conflicts where the ordering does not matter.

Now let us elaborate more on the concerns and the conflict between them. Indi-
vidually, both aspects are consistent with their requirements and therefore they can be
considered sound. From the language compiler point of view, the program with either
orderings of advices can be considered as a valid program with no errors, there are no
syntactical or structural problems. However, once these aspects are applied at the same
join point, new behavior emerges. Such new behavior may be undesired behavior, in
which case we call it a composition (-caused) conflict.

It is therefore necessary to develop techniques and tools that can statically (at com-
pile time) reason about the (potential) behavioral conflicts between aspects, to avoid
unexpected behavior during the execution of the system. However, there are aspects
which rely on dynamic information. Statically checking such aspects may not be suf-
ficient, and a runtime extension is required to detect these dynamic conflicts. In [35],
we present such an extension, but this is out of the scope of this chapter.

In the remainder of this chapter we present an approach to detect behavioral con-



60 DETECTING BEHAVIORAL CONFLICTS AMONG CROSSCUTTING CONCERNS

flicts that is generally applicable for most, if not all, AOP languages. This has been
worked out for both composition filters (as implemented in the Compose* language
and tools) and AspectJ. The approach is also independent of the base language, and
applies equally well to Java or C# as it does to C.

4.3 Methodology
To reason about the behavior of advices and detect behavioral conflicts between them,
we need to introduce a formalization that enables us to express behavior, and conflict
detection rules over that behavior. A formalization of the complete behavior of advices
in general would be too complicated to achieve and to reason with. Therefore, we
propose an abstraction that can represent the essential behavior of advices, but without
too many details, such that it can be used to detect behavioral conflicts between advices.

Our approach is based on aresource-operationmodel to represent the relevant se-
mantics of advice. This is a simple abstraction model that can represent both concrete,
low-level, behavior as well as abstract high-level behavior. This resembles the idea
of Abstract Data Types [62]: representing an abstraction through its operations. Our
approach to conflict detection resembles the Bernstein conditions [4] for stating con-
currency requirements. A similar approach is also used for detecting and resolving
(concurrency) conflicts in transaction systems, such as databases [78]. However, our
approach generalizes these domain-specific approaches.

A conflict among advices can only occur if there is an interaction between them;
we model this interaction as operations on one or more shared resources. A conflict
can then be modeled as the occurrence of a certain pattern of operations on a shared
resource. In the remainder of this chapter we will explain the model intuitively, based
on the previously presented example. [29] offers a formal description of the resource
model.

Figure 4.2 presents the semantic analysis process and the relationships to the base
system and advice. We use this image as a guideline through Sections 4.3.1 to 4.3.3.

4.3.1 Pointcut designator analysis
At the top of Figure 4.2, one can see a set of aspects. These aspects contain ad-
vices and pointcut designators. There is also a base program with a set of classes
(ClassA. . .ClassZ). The aspects and base system specifications are inputs of thePoint-
cut Designator Analysis(PDCA) phase. During this phase all pointcut designators are
evaluated with respect to the base program. This results in a set of join points with a
mapping to all superimposed advice(s). For conflict analysis, we only need to consider
join points with more than one super-imposed advice.

4.3.2 Abstraction
The result of phase PCDA is a sequence of advices per shared join point2. This se-
quence is used in the next phase:Advice Behavior Abstraction. The other input for

2In the case that the ordering is not, or only partially, known, we can select one specific ordering (e.g.,
the one that the aspect compiler would choose), or iterate over all valid orderings.
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Figure 4.2:An overview of the approach.

this phase is the resource-operation specification. During the abstraction phase, the
sequence of advices is transformed into a sequence of resource-operation tuples per
shared join point. Next we will discuss the notion ofResourcesandOperationsand
show instantiations of these notions for the example that we explained in Section 4.2.

Resources

A resource can represent either a concrete property of the system, such as afield or the
argumentsof a method, or an abstract property which may, or may not have a one to
one mapping to elements in the system. Such elements can be domain specific or even
application specific. One such resource is theerror variable in the example. Advice
checkverifies the arguments and alters theerror variable, if it detects a bad input or
output parameter. Advicepropagatemust ensure that if an error is set, it is logged and
should be propagated to the caller. There is thus a clear dependency between these
advices w.r.t. theerror variable.
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Operations

As explained previously, bothcheckandpropagate, access theerrorvariable. Advice
Check readstheargumentsand theerrorvariableand possibly writes theerrorvariable.
Advicepropagate reads(Line 7 of Listing 4.2),writes(Line 9 of Listing 4.2) andreads
(Lines 10 and 11 of Listing 4.2) theerrorvariable, to determine whether an error has
occurred. We model these asreadandwrite operations on theerrorvariableresource.

Although the most primitive actions on shared resources arereadandwrite opera-
tions, if desired by the programmer, we allow such actions to be modeled at a higher
level of abstraction. These more abstract operations can be derived from a specific
domain, e.g., the ‘P’ and ‘V’ operations on a semaphore. Operations can even be ap-
plication specific.

4.3.3 Conflict detection
The Conflict Detectionphase expects two inputs. The first input is the sequence of
operations, per resource and per shared join point. The second input is the set of conflict
detection rules. This phase determines for each shared join point, and for each sequence
of operations upon a (shared) resource, whether this sequence yields a conflict.

Conflict detection rules

A conflict detection rule is a pattern matching expression on the possible (combination
of) operations on a resource, which is specified as a matching expression on a trace of
the operations per resource. This rule can be expressed either as anassertion pattern;
a combination of operations thatmustoccur on a resource, or as aconflict pattern; a
combination of operations that are not allowed.

In the example, the occurrence of a conflict is specified as: ‘if the sequence of
operations on resourceerrorvariable ends with awrite or contains at least two suc-
ceedingwrites’. The conflict detection rules can be expressed in any suitable matching
language, such as temporal logic, (extended) regular expressions or a predicate based
language. For instance, we can formulate these two conflict patterns as the following
extended regular expression:(write$)|(write;write).

Conflict analysis

For each shared join point, there is a sequence of operations per shared resource. In the
example, this is theerrorvariableresource. Now assume that operation sequenceread,
write andread(which are caused by concernError Propagation) are carried out on the
errorvariable resource at a shared join point. And that subsequently aread andwrite
operation (caused by the parameter checking concern) is carried out onerrorvariable
resource. The resulting sequence then is:read write read read read writeThis would
match the conflict detection rule: ((write$)|(write;write)), in which case the verdict of
the conflict detection process is: ‘conflict’. In case of detecting an error, several actions
can be carried out, such as reporting the conflict to the programmer.
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4.4 Application within the Composition Filters model
The Composition Filters execution model

The Composition Filters model is an enhancement of (mostly) object-based languages,
which offers improved modularity for (crosscutting) concerns. Compose* is a specific
language that adopts the composition filters model. It adopts a declarative language
and well defined (compositional) semantics to compose an application. It is beyond
the scope of this chapter to discuss all features and elements of Compose* and the
composition filters model. For a more detailed explanation we refer to [3] and [92].
It suffices to state thatfilter modulesandfilters are composed sequentially (optionally
with the use of partial ordering specifications), and added (superimposed) at various
places within a program. A filter encapsulates a specific behavior, and is best compared
to advice.

A Compose* implementation of the example
We explain the Composition Filters model using the example of concernParame-
terCheckingpresented earlier in this chapter. Listing 4.3 shows the implementation
of concernParameterCheckingin Compose*. In Compose*, the basic abstraction is
a concern. This is a generalization of both (object-oriented) classes and aspects. In
this example, the concernParameterCheckingcorresponds to an aspect that imple-
ments a crosscutting concern, i.e., contract enforcement of the function parameters. In
the context of the composition filters model,superimpositiondenotes the—potentially
crosscutting—composition of ‘aspect’ program units with ‘base’ program units3.

1 concern ParameterChecking
2 {
3 filtermodule check
4 {
5 internals
6 checker : ParameterChecker;
7 conditions
8 inputwrong : checker.inputParametersAreInvalid();
9 outputwrong : checker.outputParametersAreInvalid();

10 inputfilters
11 paramcheckfilter : ParameterChecking = {
12 inputwrong || outputwrong

=> [*.compare_data]
*.* }

13 }
14

15 superimposition
16 {
17 selectors
18 sel = {Class | isClassWithName (Class, ’CC.CX.FS’)};
19 filtermodules
20 sel <- check;
21 }
22 }

Listing 4.3:Source of the ParameterChecking concern.

3Note that we use the terms aspect and base only as relative roles of program units, not fixed, since we
assume a symmetrical model of AOP.
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In Listing 4.3, filter moduleCheck is defined (Lines 3-13). A filter module is the
unit of superimposition, best compared to advice (or a group of advice and related
declarations). A filter module can containinternals(instantiated for each join point)
andexternals(instances shared among all join points where this filter module is su-
perimposed) variable declarations, condition declarations (these are boolean functions
defined in the base code), and declarations ofinput filtersandoutput filters. Filters
observe and manipulate incoming, resp. outgoing messages, and are discussed in a
bit more detail below). This filter module is superimposed on classCC.CX.FS(Lines
15-21). Filter moduleCheckhas an internal variable,checkerwhich is an instance of
utility classParameterChecker(Line 6). Filter modulecheckalso declares two condi-
tions,inputwrongandoutputwrong(Lines 8 and 9).

Filter moduleCheckhas a single input filter,paramcheckfilter. A filter declaration
consists of the filter identifier (paramcheckfilter), a filter type (ParameterChecking),
and an initialization expression (between curly brackets). A filter type is best compared
to a library aspect that encapsulate the actions to take when accepting respectively re-
jecting the initialization expression. This filter is evaluated as follows. First conditions
inputwrongand outputwrongand evaluated. If any of these conditions yield a true
value, the message is tried to match to the matching part (on the right side of the ‘=>’),
in this case[∗.compare_data]4. If the current message matches, filterparamcheckfilter
is said toaccept, and will execute the corresponding action of the filter type. In this
case this will set the appropriate error state. In all other cases the filter will reject, the
corresponding reject action of the filter type does not take any action (and would result
in the message continuing to the next filter, if any).

As a second aspect, we show how the error propagation concern can be constructed.
This is shown in Listing 4.4. The concernErrorPropagationdefines one filter module
propagate, which consists of an input filter namederrorpropagationfilterof typeError-
Propagation. The filter, defined on Line 6, matches all messages, and thus will always
execute the accept action of the filter. The accept action ofErrorPropagationensures
that all calls only continue if there is no error, and that if an error is detected, it will be
logged and properly propagated.

1 concern ErrorPropagationConcern
2 {
3 filtermodule propagate
4 {
5 inputfilters
6 errorpropagationfilter : ErrorPropagation = { [*] }
7 }
8

9 superimposition
10 {
11 selectors
12 sel = {Class | isClass (Class)};
13 filtermodules
14 sel <- propagate;
15 }

4Here we only select one specific message for demonstration purposes. AsParameter Checkingimple-
ments an idiom, a more general selection is used in the actual implementation.
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16 }

Listing 4.4:Source of the ErrorPropagation concern.

Filter modulepropagateis to be superimposed on all classes in the system, as
defined in Lines 12 and 14.

Automatically deriving a behavioral specification
In Composition Filters the behavioral specification is split into two parts. The first part
is filter type specific, encapsulating the behavior of the accept and reject actions. The
second part is filter instance specific, depending on the condition, matching and substi-
tutions elements of each filter. The latter part can be automatically derived by inspect-
ing the declarative language of the filters. We consider the evaluation of a condition
to be areadoperation on the resource representing this condition. We also inspect the
matching and substitution parts to determine whether thetarget resp. theselectoris
reador written.

Inspecting the filter type to determine its behavior specification is not trivial. Fil-
ter types and the corresponding filter actions are implemented in a regular (Turing-
complete) base language. These languages suffer from the general problems with anal-
ysis. However, as the filter types are defined as first class and are highly reusable we
only have to express the behavioral specification while writing the filter type. It is
important to realize that the behavior specification is attached to a specific filter ac-
tion. Each filter which executes this action, either when accepting or rejecting, thus in-
cludes this specification. Such a behavioral specification will usually be written while
developing these filter actions. This specification can subsequently be used for each
instantiation of the filter type.

Detecting conflicts
We now show how the two concerns described in Listings 4.3 and 4.4 are used to detect
the example conflict between these concerns. After resolving the superimposition of
both concerns we can identify shared join points. In this case there is just one: the
classCC.CX.FS. At this join point, two filter modules are superimposed:Propagate
andCheck. These filter modules have to be composed in some order. Any order can be
chosen, but here we consider the following order exposing the conflict we are interested
in: propagateandcheck. After composing these filter modules, we obtain the following
sequence of filters:

1 errorpropagationfilter : ErrorPropagation = { [*] }
2 paramcheckfilter : ParameterChecking = { inputwrong || outputwrong =>
3 [*.compare_data] *.* }

Listing 4.5:Example filter order.

Filter errorpropagationfilterwill always accept, and thus we have two possible
paths: either filterparamcheckfilteraccepts and filter actioncheckis executed, or the
filter rejects, in which case it will execute filter actioncontinue. The two possible traces
for this example are as follows:

1. errorpropagation f ilter
propagate−→ paramcheck f ilter

check−→
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2. errorpropagation f ilter
propagate−→ paramcheck f ilter

continue−→
For each of these traces we generate a new set of resource usage tables. After all filter
actions have been translated to operations on resources, we obtain, for each trace, a
sequence of operations per resource. Table 1 shows the result of trace 1. We can see
that a conflicting situation arises for resourceerrorvariable, since the lastwrite is not
followed by aread operation. This matches the first part of the regular expression:
(write$)|(write;write).

action selector arguments inputwrong outputwrong errorvariable

errorpropagationfilter: read
propagate write

read
read

paramcheckfilter:check read read read read read
write

Table 4.1:Filter actions mapped to operation traces for trace 1.

Using the Composition Filters approach we showed that a declarative language
enables automatic reasoning about behavioral conflicts among aspects. This approach
has been implemented as theSECRETmodule in the Compose* toolset.

4.5 Conclusion

This chapter presents a novel approach for detecting behavioral conflicts between as-
pects. Our approach defines the behavior of advice in terms of operations on an (ab-
stract) resource model. We first analyze this behavior and represent the behavior at
each (shared) join point, according to our conflict detection model. Next we verify
this representation against a set of conflict and assertion rules. The resource-operation
model allows us to express knowledge about the behavior of advice at both concrete
and abstract levels.

We showed an actual behavioral conflict caused by crosscutting concerns that have
been identified in the ASML context. We foresee a need for tooling that checks for
consistency and detects conflicts between aspects, before AOSD technology can be
successfully applied in an industrial context. As aspect technology is incorporated in
large and complex systems (and is used to implement not only systemic crosscutting
concerns) but also to implement more component specific concerns, there will be an
even stronger need to have verification tools for avoiding conflicts between aspects,
such as presented in this chapter. In this chapter we presented a generic model for be-
havioral conflict detection and a way to tailor this model to detect domain or application
specific conflicts as well.

The presented approach is generic and can be applied to most, if not all, AOP
languages. We briefly discussed the application of the approach to the Compose* lan-
guage. In Compose* it is possible to exploit its declarative advice specifications so that
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the programmer normally does not need to annotate the program.
We believe the approach presented in this chapter offers a powerful and practical

means of establishing behavioral conflict detection with a minimal amount of explicit
behavior specifications from the programmer. The approach has been implemented
and tested within the Compose* and CAPE tool sets. TheCommon Aspect Proofing
Environment(CAPE)is an initiative of the European Network of Excellence.
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Chapter 5

An overview of Mirjam and
WeaveC

Authors: István Nagy, Remco van Engelen, Durk van der Ploeg

Abstract In this chapter, we elaborate on the design of an industrial-strength aspect-
oriented programming language and weaver for large-scale software development. First,
we present an analysis on the requirements of a general purpose aspect-oriented lan-
guage that can handle crosscutting concerns in ASML software. We also outline a
strategy on working with aspects in large-scale software development processes. In our
design, we both re-use existing aspect-oriented language abstractions and propose new
ones to address the issues that we identified in our analysis. The quality of the code en-
sured by the realized language and weaver has a positive impact both on maintenance
effort and lead-time in the first line software development process. As evidence, we
present a short evaluation of the language and weaver as applied today in the software
development process of ASML.

5.1 Introduction

One of the primary goals of the Ideals project is to develop methods and tools to im-
prove the handling of crosscutting concerns, such as tracing and profiling. As a so-
lution, a proof-of-concept aspect-oriented [38] language for the C language [64] and
weaver (called WeaveC1) have been proposed and developed by Durr et al. [33]. Subse-
quently, a case study has been carried out on a representative component of the ASML
software to asses the usability of WeaveC for four particular crosscutting concerns.
The outcome of the case-study has shown that these four crosscutting concerns are

1Here, the name WeaveC refers both to the AOP language and weaver.
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manifested in a significant amount of code (20-40%) besides the code representing the
original concerns of the component. By using the CoCoMo model [5], the case-study
estimated 5-10% effort reduction and 2-3% lead-time reduction for the code developed
with WeaveC, as compared to a non aspect-oriented solution in the C programming
language. Although these numbers may seem to be small, it is important to note that
all software development (approximately 500 software developers) is affected by the
above mentioned and other crosscutting concerns.

Briefly, the case-study demonstrated the industrial maturity of aspect-oriented pro-
gramming by means of a successful proof-of-concept. As a consequent step, a transfer
project was initiated by the industrial partner with the following goals:

• Develop a general purpose aspect-oriented language2 for the C language that is
capable of modularizing crosscutting concerns within ASML software.

• Implement a robust, industrial strength weaver for the proposed aspect-oriented
language.

• Develop a way of working (i.e. micro-process) that describes the necessary
developer roles, activities and artifacts to deal with crosscutting concerns (by
means of the above described programming language and weaver).

The remainder of the chapter is organized as follows: Section 5.2 presents an analysis
to identify the requirements of a general purpose AOP language. We also outline a
strategy on working with aspects in large-scale software development processes. Sec-
tion 5.3 discusses the concepts of the proposed aspect-oriented language, weaver and
micro-process. Section 5.4 presents the results of an evaluation on the proposed lan-
guage and weaver. Finally, Section 5.5 draws conclusions.

5.2 Problem analysis

In this section, we present an analysis to identify the requirements towards a general
purpose aspect-oriented language to handle crosscutting concerns in the ASML con-
text. The term ‘ASML context’ covers two important design considerations: (a) the
existing solution designs (i.e., idioms, see Section 2.2.1) in Chapter 2 of crosscutting
concerns and (b) the way of working of software developers within ASML. In the fol-
lowing subsections, we elaborate further on these considerations.

5.2.1 Boundaries of modularization

An important concern of the analysis is to explore the boundaries of modularization
of the current solution design of crosscutting concerns. The aim of this step is to
determine the set of necessary AOP language abstractions and variation points required

2The proof-of-concept AOP language had only a limited set of language abstractions that were necessary
for the execution of the case-study.
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for the proper modularization. Our objective is not to come up with new language
abstractions; in contrast, our objective is to re-use the existing language concepts of
aspect-oriented languages as much as possible. For this purpose, we iterate over the
essential concepts of a reference model of AOP languages [79, 7]:

1) static ZDSPTI_module_handle ti_handle ; //(2)
2) ...
3) int ZDAPSF_startup ( int sim_mode, boolean caching)
4) {
5) int result = 0 ;
6)
7) THXAtrace("KI", (1), "ZDAPSF_startup", "> (" //(1)
8) "sim_mode = %i, caching = %b" //(1)
9) ")" //(1)

10) , mode, caching //(1)
11) ); //(1)
12) ...
13) ZDSPTI_timing_handle timing_hdl = NULL ; //(3)
14) if ( result == OK ) //(2)
15) result = ZDSPTI_register_module("ZDAPSF", &ti_handle); //(2)
16) ...
17) ZDSPTI_timing_in(ZDSPTI_func_timing_hdl, ti_handle, //(3)

"ZDAPSF_startup", &timing_hdl); //(3)
18) ...
19) if ( result == 0 )
20) {... }
21) }

Listing 5.1. Illustration of three particular concern instances - Tracing, Setup
of Timing and Start of Timing - as they maya appear in a particular C
function in ASML software. Respectively, these concerns are represented by
the lines marked (1), (2) and (3).

aThe concern instances presented here are slightly altered for reasons of confidentiality. How-
ever, this does not affect the essence of the examples.

Base Language Aspect-oriented languages are considered to be extensions of generic
programming languages. The fact that ASML software is a legacy system written in
the C programming language, restricts the base language to C. Note that the choice of
base language will restrict further the design space of other aspect-oriented language
abstractions (e.g,. types of join points).

Join points In AOP, (behavioral) join point corresponds to events in the control flow
of a program. The example of Listing 5.1 shows that the concern instances typically
appear at the beginning of the execution of a function. In other words, the example
concern instances need to be executed before (and also after) the occurrence of the
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event ‘execution of a function’. Considering the current idioms that realize the cross-
cutting concerns, we identified two necessary types of join point:call andexecutionof
a function.

Context of Join points Listing 5.1 shows that various types of context information
are required for the modularization of a crosscutting concern. For instance, the concern
instance of Tracing refers to thenameof the function in Line 7, andformal parameters
of the function in Line 10. The concern instance of Setup of Timing refers to alocal
variableof the function (‘result’) in Line 14. The same concern instance refers to the
name of the moduleof the function (‘ZDASP’) in Line 15. Besides these types of
context information, we identified that the following types of context information are
required: global parametersof a function,types of parameters and local variables,
return type of functionsand the fact whether a parameter or local variable behaves as
an input and/or output parameterin the function (derived information from data-flow
analysis).

Context and join points related to pointcuts AOP languages generally make use of
the above described context information, not only in the parametrization of crosscutting
behavior but also in the designation process of join points (i.e. in pointcut or query
languages of AOP languages). Obviously, we will also use these in the designation
process of join points.

Context Originated from Build Process In our investigation, we recognized that
information derived from the build process is also used in the idioms that realize cross-
cutting concerns in software. For instance, the concern instance Tracing refers to the
component code ("KI") in Line 7; this information is determined from the target of the
build process. In a broader view, when crosscutting concerns are woven into different
products of a product line, product (and platform) specific information also needs to be
addressed in the modularization. Hence, information about product and platform can
serve as variation points; these are typically originated from the configuration of the
build processes.

Advices and Variation Points in Advices Advices are the units of AOP languages
to formulate the crosscutting behavior in terms of the instructions of generic program-
ming languages. All the earlier described types of context information — i.e., the join
point, the properties and relationships of a join point, and the platform and product
specific information from the build process — can serve as variation points in the for-
mulation of an advice. Normally, these variation points can bedirectly used/referred
to through pseudo variables (e.g.thisJoinPoint in [65]) and/or through parameters
that are extracted from pointcuts and passed to advice bodies (e.g. context exposure in
AspectJ).
Besides the direct references and usage, we recognizedindirect usages of the above
listed types of context information. For instance, the string literal ‘mode = %i,
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caching = %b’ in Line 8 contains the name of formal parameters and format specifier
characters based on the type of the formal parameters. That is, the formal parameters
(as join point context) are not explicitly referred to as variations points (unlike in Line
10) but their properties need to be used tocomputea variation point (cf. the string
literal in Line 8) in the notation of the advice-concept.

The fact that we need to deal with a legacy system may have further constraints
on the design space of the advice-concept: the crosscutting behavior should be formu-
lated in terms of instructions that can express calls to existing software libraries. For
instance, the callsTHXAtrace() in Lines 7-10 andZDSPTI_timing_in () in Line 17
are such ‘legacy’ calls to libraries that realize tracing and timing.

A consequence of this constraint is that the concept of variable-length argument
list - denoted by ‘...’ in C - needs to be treated as variation points in the notation of
an advice. For instance, in Listing 5.1, the concern instance of tracing is represented
by the callTHXAtrace("KI" , (1) , "ZDAPSF_startup" , "> (" "sim_mode =
%i, caching = %b" ")", sim_mode, caching) with 7 arguments, in Lines 7-10.
The arguments of this call statement depends the formal parametersmode andcaching
of the functionint ZDAPSF_startup ( int sim_mode, boolean caching) This
means that the concern instance of tracing in a different function context will be rep-
resented by a call statement with different format string and different number of ar-
guments. For instance, the functionZDAPSF_shutdown() without any parameter will
have the tracing callTHXAtrace("KI" , (1) , "ZDAPSF_startup" , "> (" ")")
with only 5 arguments. To address this problem, the notation of the advice concept
needs to able to deal with the concept variable-length argument list as a variation point.
This variable-length argument list can always be derived from the actual join point and
its context (cf. the base function to be woven and it formal parameters).

Note that re-implementing the tracing library with a suitable interface is not an op-
tion either, as it would introduce other maintenance problems related to legacy systems.

Aspectual States/Aspect Instances In Listing 5.1, both the concern instances of
Setup of Timing and Start of Timing use the variableti_handle that represents the
module handler of Timing. The concern instance of Timing uses another variable,
calledtiming_hdl in Line 17. The difference between these two variables is apparent
from the example already:ti_handle is declared as a global static variable in Line
1. This means thatti_handle can (and will) be used in every function of the mod-
ule; thus, it can besharedamong different concern instances that appear in different
functions. In contrast, the variabletiming_hdl is declared as a local variable of the
function in Line 13; hence it islocal only to those concern instances that appear only
within the same functions. In terms of aspect-oriented programming, we identified the
need of two types of aspectual states: one which is shared only among those advices
that are woven at the same join point (per join point) and one which is globally shared
among every advice (i.e.,per aspect).

Note that there are many other fundamental concepts, e.g. ordering of advices,
context exposure, et cetera, in the design space of aspect-oriented languages. Naturally,
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we consider these concepts as parts of our design space; however, the discussion on the
motivation for each particular language concept is beyond the scope of this chapter.

5.2.2 Quality aspects of concrete syntax for large-scale develop-
ment

In the previous section, we discussed the boundaries of modularization that determines
the necessary expressiveness of the language - i.e., abstract-syntax of a language, in
terminology of Domain Specific Languages [42]. However, besides necessary expres-
siveness, there are various quality aspects on the concrete syntax that are significant
from the point of view of large-scale software development. In this section, we discuss
these.

Predictability (in design phase) Predictability ensures developers that certain prop-
erties are held during the development of software. This is crucial in large-scale devel-
opment to prevent mistakes and errors already in the design phase as soon as possible.
Besides, when introducing new technology into a large organization, ensuring pre-
dictability in the design phase is well-motivated for the following two reasons: (1) it
can lessen the risk of improper use (and its undesired side effect) of the new technol-
ogy; (2) it can reduce the fear of using a new technology among the developers (e.g.,
by providing well-controlled means for the new technology).

To this aim, we are going to use well-known language mechanisms, such as type-
checking, enforcement of declarative completeness, and an extensive set of syntactic
and semantic rules in the design of the aspect-oriented language3.

Evolvability Evolvability is an important software quality factor that indicates the
ability of developing programs incrementally. In general, evolvability facilitates ex-
tending an application towards new requirements mostly by reusing previously written
modules with minimal or no modification. By ensuring evolvable specification, we
expect to reduce the complexity of the code caused by the frequent appearance of the
phenomenon called ‘deviations from standard functionality’ in a large-scale develop-
ment.

To this aim, we are going to provide language abstractions that (1) can be re-used
in different specifications and (2) can support the re-use of existing specifications.

Extendibility In principle, language constructs that provide means of parametriza-
tion can positively contribute to the extendibility of a language. Providing ease of
extendibility for a language is beneficial in large-scale development for two reasons.
First, due to time-to-market pressure the language (and also the weaver) needs to be
incrementally delivered. Secondly, rolling out a new version of a language and weaver
is not a trivial task as it affects many ongoing software development activities; hence, a

3These language mechanisms obviously require adequate compiler and/or run-time support.
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large number of development modules maintain dependencies to aspect specifications.
This means that change requests towards the language should result in changes in the
notation asminimalandisolatedas possible.

Comprehensibility We define comprehensibility as the ability to understand the mean-
ing of a program by just looking at its source code. Comprehensibility can be influ-
enced by the programming style and the notation of the abstractions of the adopted
language, such as how the program units are modularized, where the references in the
units are specified, and the style of notation that reflect the underlying computational
paradigm. Although this quality aspect had less significance compared to the previous
ones in our list, we needed to take into account the fact that developers at ASML have a
stronger background on procedural and object-oriented languages (with strong typing)
compared to logic or functional languages.

5.2.3 Expected way of working

In the previous two sections, we discussed the requirements towards an aspect specifi-
cation language used in large-scale software development. However, when introducing
aspect-oriented programming (or any other new technology) into a large organization,
a clear and sound strategy on the expected way of working is also necessary, besides
the required means and artifacts. In this section, we discuss our strategy on how aspects
are intended to be used in the software development process of ASML.

To make sure that developers can benefit from the advantages4 of aspect-oriented
programming, the objective is thateverydeveloper should be able touseaspects easily
with a minimal learning curve. On the other hand, to minimize the possible danger of
the improper use5 of AOP, onlya fewof the developers are allowed towrite andrelease
news aspects. To this aim, our objective is to provide generic aspects with highly and
easily customizable interfaces:

• Developers are expected to use aspects in a standard way (seamlessly, by en-
abling them in the build process).

• Most users will use aspects with their standard functionality.

• Some users will want to deviate from the standard functionality. In other words,
they want to customize the functionality of generic aspects according to their
special needs. For instance, some users will want to ‘switch off’ the tracing of
certain time-critical functions.

• This customization should be minimal and rely on design information added to
the source code, as most users are not allowed to modify aspects or write their
own one.

4 E.g., locality of changes, consistency and clarity of code, et cetera.
5 E.g., undesired side-effects in the control-flow, ‘patching by aspects’, et cetera.
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5.3 Mirjam, an aspect-oriented language extension for C

In this section, we outline the important constructs and characteristic properties of the
realized aspect-oriented language, called Mirjam. Due to a lack of space, we cannot
iterate over the full design space of Mirjam. The interested readers can find a more
detailed introduction and description of the language in [9].

5.3.1 Aspect

The main unit of modularization is the aspect specification file. An aspect specification
may contain two language constructs (see Listing 5.2):context declaration closureand
aspect declaration.

1) context{
2) #include "THXAtrace.h"
3) #define FALSE 0
4)
5) typedef int boolean;
6) }
7)
8) aspect SimpleAspect
9) {

10) advice someAdvice() before (FunctionJP JP)
11) {
12) boolean tracing_flag = FALSE;
13) THXAtrace(JP.module.name, JP.name, tracing_flag, "> ");
14) }
15) ...
16) }

Listing 5.2. Illustration of the context declaration closure and aspect
declaration in an aspect specification file.

The context declaration closure is a placeholder for a standard C declaration. We will
use the declarations in C in the context closure to ensuredeclarative completenessin
the notation of advices. The context closure in the listing above has two preprocessor
directives in Lines 2 and 3, and a typedef declaration in Line 5. To resolve the prepro-
cessor directives, the aspect specification is first preprocessed by a standard C prepro-
cessor. The declarations in the context closure are used later in the specification of the
crosscutting behavior (i.e., advice in term of Mirjam) in Lines 11 and 12. Note that the
function call ‘THXAtrace’ (in Line 13) is declared in the included THXAtrace.h file.

The aspect declaration part is a container type of program element: it works as a
name space. The contained language abstractions (query, advice- and binding-declara-
tions) can be referred to through this name space.
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5.3.2 Queries as pointcuts

The language concept of pointcut is realized by the language abstractionqueryin Mir-
jam. A query in Mirjam returns a set of join points. A join point is atuplethat contains
an arbitrary number of (but at least one) tuple elements. A tuple element can be of two
types:join point locationandjoin point context. As the names suggest, the type of join
point location describes the place where we want to weave in crosscutting behavior
(e.g., execution of a function), while the type of join point context describes the con-
text of the weaving. We can use the context information for (1) either refining of the
weaving location or (2) customizing the crosscutting behavior to be woven to certain
weave contexts.

1) int a;
2) int f(int b, int c) {
3) ...;
4) }
5) int g(double d) {
6)
7) }

Listing 5.3. An example of base code that we will use in the rest of the
discussion to illustrate how the query language of Mirjam works.

We will use a number of examples of queries to present the characteristic features of
the query language of Mirjam:

1) query Q1() provides (FunctionJP JP)
2) {
3) JP: true;
4) }
5)
6) query Q2() provides (FunctionJP JP)
7) {
8) JP: JP.name =~ "f.*";
9) }
10)
11) query Q3() provides (FunctionJP JP, Variable@JP V)
12} {
13) JP: true;
14) V : true;
15) }
16)
17) query Q4() provides (FunctionJP JP, Variable@JP int V)
18) {
19) JP: tuple(JP) in Q1() && |JP.formalParameters()| >= 1;
20) V : V in JP.formalParameters();
21) }
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22)
23) query Q5() provides (FunctionJP JP, Variable@JP[] V)
24) {
25) JP: tuple(JP) in Q1() && |JP.formalParameters()| >= 1;
26) V : V == JP.formalParameters() ;
27) }

Listing 5.4. Examples of query-declarations in Mirjam.

As an example of a query, consider the query declared between Lines 1 and 4 in Listing
5.4. The query declaration starts with the keywordquery followed by an identifier
(‘Q1’) and a list of possible formal parameters. After the formal parameters we define
a set of tuple variables preceded by the keywordprovides. The list of tuple variables
describes the elements and type of tuples that the given query provides. In Lines 1-4,
the query Q1 provides tuples with one tuple element, the type of this tuple element is
FunctionJP. The type FunctionJP represents the type of the join point location of the
execution of a function. Inside the query, a tuple condition needs to be defined for each
tuple variable. In Line 3, the tuple condition ‘true’ means that every particular function
execution will satisfy this query; i.e., there is no further restriction on the tuple variable
JP. The resulting set of tuples of query Q1 executed on the base code of Listing 5.3
is {(f),(g)} 6. In Lines 6-9, the query Q2 is similar to Q1 except that it has a more
restrictive tuple condition in Line 8: the name of the executing function shall start with
the prefix ‘f’ (defined by the regular expression‘f.*’). Similar to the notation of
object-oriented programs, the dot operator can be used to access instance variables and
execute methods of certain types in Mirjam. The result set of Q2 on the given base
code is (f), as there is only one function that can satisfy this condition.

In Lines 11-15, the query Q3 will provide set of tuples with two tuple elements.
The first tuple variable is of type ‘function execution’. The second, new tuple variable
is of type Variable, which is a type of join point context. More precisely, the type
Variable can represent global variables, formal parameters and local variables of an
executing function. In Line 11, the declaration Variable@JP means that we expect
the variables in the scope of the function execution of JP; that is, there is direct link
between a particular function and variable in the result set of the query. Note that a
second tuple condition ‘true’ has been declared for the second tuple variable in Line
14. When a query is evaluated, the query engine iterates over the possible values of
both tuple variable types. During the iteration, if there is a combination of particular
values of tuple variables that can satisfy both tuple conditions (based on the available
base code), a tuple is created and added to the result set of query. In short, the query
Q3 returns an ordered set of tuples (i.e. the Descartes-product) of all functions and
variables related with those functions: {(f,a), (f,b), (f,c), (g,a),(g,d)} based on the code
of Listing 5.3.

In Lines 17-21, the query Q4 illustrates a bit more complex use of queries. The
tuple variable V in Line 17 is declared with a type restriction: the C type of the variable

6For the sake of simplicity, the letters f and g represent the execution of functions f and g.
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is restricted to int. In Line 19, we show a possible re-use of a previously declared
query: the tuple variable JP is converted to a tuple by the conversion operator ‘tuple’.
The membership relation ‘in’ specifies that JP (as converted to a tuple of one element)
should be in the result set of the query Q1. The membership relation (‘in’) is not the
only way to re-use queries; the equivalence relations can also be used with query calls.
Queries can be called with formal parameters to perform selection or projection (in
terms of tuple relational calculus [24])7 on previously defined queries. In Line 19, the
second part of the tuple condition specifies that the executing function needs to have at
least one formal parameter. The second tuple condition in Line 20 specifies that V is a
formal parameter of JP. The execution of Q4 on the provided base code of Listing 5.3
results in the following set of tuples: {(f,b), (f,c)}.

In Lines 23-27, the query Q5 is slightly modified version of the query Q4. Q5
differs from Q4 in two places. First, the type of the tuple variable V is an array type
denoted by the symbols ‘[ ]’ in Line 23. Note that this tuple variable has no C type spec-
ification either. Secondly, the tuple condition uses the equivalence relationship (‘==’)
instead of the membership relationship (‘in’). This means that Q5 will provide tuples
with two elements: a tuple element of a function-execution and a tuple element of an
array of variables. The equivalence relationship indicates that the array of variables
must be the array of formal parameters of the corresponding function. This means the
result set of Q5 is { (f, {b,c}), (g,{d}) } based on the code of Listing 5.3.

5.3.3 Advices

Similar to other AOP languages, the program unit that specifies the crosscutting be-
havior is calledadvice in Mirjam. The crosscutting behavior is defined in terms of
instructions of the C programming language.

1) advice printIntParam(Variable@JP int V) before (FunctionJP JP)
2) {
3) printf("In module %s, function %s executes with argument %s=%d",
4) JP.module.name, JP.name, V.name, V);
5) }

Listing 5.5. An example of advice-declaration.

As an example of an advice, consider the advice declared in Listing 5.5. The declara-
tion starts with the keyword ‘advice’ and is followed by an identifier and a (possibly
empty) list of formal parameters. A formal parameter has to have a type specifier in
Mirjam and may have a type specifier in C. The formal parameters are followed by the
type of the advice that specifies whether the advice is to be executed before or after
the execution of a join point. Finally, the last element in the signature of the advice is
the actual join point variable in the form of a formal parameter (FunctionJP JP). In the

7Defining the formal semantics of queries is beyond the scope of this chapter.
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body of the advice, we refer to the properties of the join point through this variable in
Line 4. In the same line, we also use the parameter V as a formal parameter similar to
the formal parameters used in C.

Note that the correct use of the format specifier (e.g., %d in Line 3) cannot be
checked just like in normal C code. For instance, we could use %f that would have
resulted in an incorrect execution. This piece of advice exemplifies another possible
problem as well: if we coupled it with the query Q4 (of Listing 5.4) the advice would
be woven two times on the functionf, as Q4 returns {(f,b), (f,c)}. This means that the
execution of the program would have two output messages, see Listing 5.6.

6) In module ZZ, function f executes with argument b=5
7) In module ZZ, function f executes with argument c=11

Listing 5.6. Illustration of output messages from advice executions.

This execution is correct because Q4 exposes only formal parameters of type int. How-
ever, if the query is not restrictive enough, formal parameters with other types than int
(e.g. double, pointer-type, et cetera) can be queried too. This would result in incorrect
output messages, since the advice expects a parameter of type int8. In addition, having
the same message two times, with only a small difference at the end, is not considered
a neat solution: a single printf statement could handle a variable number of arguments.
So the question is how to specify the statement printf with variable number of argu-
ments of different types that depend on the weaving context? Note that we discussed
the same problem in Section 5.2.1 at ‘Variation Points in Advices’.

5.3.4 Advice generators

To handle the category of problems described above, we introduced the language con-
structadvice generator. These are special built-in constructions that can be used in the
body of an advice and are recognizable by the form@type<...>@. The first element
of a generator is usually an iterator of the form[iterator: expression]. The it-
erator contains the name of an array variable and the (local) name for each element,
and returns a list of expressions. Theexpression will be evaluated for each element.
Finally, thetype says how the expressions are combined and what the outcome of the
advice generator is9.

8To prevent this sort of errors, we do type checking between the type of the actual tuple values and the
type of the advice-parameter.

9In other (typically, functional) languages one can achieve the same functionality by using the list ma-
nipulator functionsmapandjoin on lists.
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1) advice printParams(Variable@JP[] Args) before (FunctionJP JP)
2) {
3) printf("Function %s executes with argument(s) "
4) @StringConstant<
5) [arg in Args:
6) strConcat(arg.name, "=",formatString(arg))],
7) "; " //semicolon as separator
8) >@
9) ,JP.name
10) ,@VarargExpression<[arg in Args: formatExpression(arg)]>@
11) );
12) }

Listing 5.7. An example application of two advice generators.

For an example application of advice generators, consider Listing 5.7. In Lines 4-8, the
advice generator@StringConstant will generate a format string for an array of vari-
ables passed to the advice (Args)10. In Line 6, the built-in functionstrConcat creates
a piece of string from the name of a variable (cf. formal parameter of a function), from
the equation sign (‘=’) and from the result of the functionformatString returning the
format specifier of the C type of the variable. In Line 5, this concatenation function is
applied on each variable in the array of the variables (‘arg in Args’). This will result in
a list of a piece of format string for each formal parameter. The resulting list of format
strings per parameter will be combined into a final string literal by the StringConstant
generator, using the semicolon as a separator. Similarly, a variable-length argument list
will be created by the advice generator@VarargExpression in Line 10. If we couple
this advice (Listing 5.7) with the query Q5 (in Listing 5.4) the advice is woven once on
the functions f and g, as Q5 returns (f, {b,c}), (g,{d}). This means that the execution
of the program would have two output messages, see Listing 5.8.

1) Function f executes with argument(s) b=5; c=11
2) Function g executes with argument(s) d=3.1415

Listing 5.8. Illustration of output messages from advice executions with
advice generators.

5.3.5 Bindings

The third language construct that can be declared within an aspect is thebinding clo-
sure. The binding closure contains typically one or morebinding definitionsintroduced

10This list of parameters is derived from the context of join point: they are e.g., representing formal
parameters of a function. In the following section, we will show both the query that realizes this derivation
and the binding-definition that couples the advice printParams with that query.
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by the keywordforeach. One binding definition can couple a query with one or more
binding entities. Different types of binding entities exist in Mirjam: for example, the
binding entityapply binds advices to queries, and passes the result of the queries to
the advices using a parameter-passing mechanism. When more than one advices are
to be applied to the same join point, one can specify the order of their application by
the binding entityorder per join point. The binding entityerror andwarn can raise
errors, when certain situations occur in the base code. Finally, the binding closure
and binding entities may also contain variable declarations, called binding variables,
to share states between advices. In the following subsections, we will show the use of
each of these language constructs.

1) aspect VerySimpleTracing
2) {
3) query Q5() provides (FunctionJP JP, Variable@JP[] V)
4) {...}
5)
6) advice printParams(Variable@JP[] Args)before(FunctionJP JP)
7) {...}
8)
9) binding

10) {
11) foreach (thisFunc, vars) in Q5
12) {
13) apply on thisFunc {
14) printParams(vars);
15) }
16) }
17) }
18) }

Listing 5.9. An example of binding and an illustration of passing context
information to advices.

For an example of a binding-declaration, consider Listing 5.9. In Line 3, the query Q5
provides a set of tuples of a join point variable (FunctionJP JP) and a context variable
(Variable@JP V). In Line 11, the binding definition iterates over the result set of Q5:
thisFunc andvars will represent the two variables of each tuple. For each iteration
step, these variables hold the values of the actual tuple elements. In Lines 13 and 14,
the actual values ofthisFunc andvars are passed as parameters to the advice in the
advice-call. Finally, in Line 6, the variables are ‘received’ and they are used in the
body of the advice. This type of parameter passing works in a similar way to the macro
substitution mechanism of the C preprocessor.
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5.3.6 Bindings variables

As we mentioned in the previous section, the binding closure and binding entities may
also contain variable declarations, calledbinding variables, to share states between the
executions of advices.

1) binding {
2) static int ti_handle;
3)
4) foreach (startup) in startupFunction()
5) {
6) apply on startup {
7) moduleRegistration(ti_handle);
8) }
9) }
10)
11) foreach (f) in timedExecution()
12) {
13) apply on f {
14) int timer;
15)
16) functionTimingStart(ti_handle, timer);
17) functionTimingStop(timer);
18) }
19) }
20) }

Listing 5.10. Illustration of the use of binding variables.

Consider the variablesstatic int ti_handle andint timer in the Lines 2 and 14
of Listing 5.10. One can use binding variablesper aspect(like ti_handle in Line
2) andper join point (like timer in Line 13). ‘Per aspect’ binding variables, e.g.,
ti_handle, are shared between all advices within a binding. This means that if one ad-
vice changesti_handle, the change can be observed in all other advices of the aspect.
‘Per join point’ binding variables, e.g.timer, are shared only among those advices
that are called from the binding entity where the variable is declared. For example,
timer is shared only between the execution of the advicesfunctionTimingStart
andfunctionTimingStop in each function where they are applied together.

5.3.7 Annotations

Annotationsin WeaveC are used to attach semantic meaning to syntactical constructs
in a program written in the programming language C. The annotation mechanism is
designed such that the following objectives are met:
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Easy of useAn application of an annotation to a program should have minimal over-
head, both in terms of the effort spent by a developer and of the impact on the
program listing. The syntax should be unobtrusive (not disturb the natural flow
of the program listing) and similar to the syntax of similar C concepts (type
modifiers like storage class, const et cetera).

Flexible for different usage The application of annotations is only limited by the scope
of tools that can process them, so the mechanism should place few restrictions
and allow for varied use.

Allow checking of the correct application of annotations This means that it must be
detectable by a tool if an annotation is applied at the wrong location (i.e., to a
function while it makes no sense for a function), with the wrong arguments (i.e.,
with a value for a specific field while the annotation has no such field) or multiple
times (when it makes no sense to do so for the annotation). It does not need to be
possible to check for unexpected absence of annotations (i.e., a function has no
annotation while one is always expected) or illegal combinations of annotations
or values of fields of annotations (i.e. a function can not have both annotations
‘a’ and ‘not_a’). These checks, if desired, must be performed by the tools that
make use of the annotations.

Easy to hide from a program This should be the case for instance if the program is
to be read by tools that are unaware of this annotation mechanism. Such hiding
should be possible by a standard-compliant C pre-processor or a standard text
processing facility.

Robust Common typing errors in the declaration or application of an annotation should
not lead to undesirable parsing of the actual program code.

5.3.8 An example of using annotations

In this section, we outline of how the annotation mechanism of WeaveC can be used.

1) // --- an annotation-declaration in .c files ---
2) /*$
3) annotation{
4) boolean value;
5) } trace[module,function,parameter,variable,type] = {
6) value = TRUE
7) };
8) $*/
9)

10) // --- an annotation-application in .c files ---
11) int critical_function()
12) /*$trace(FALSE)$*/
13) {...}



EVALUATION 85

14)
15) // --- a query referring to an annotation-application ---
16) query allTraceableFuncs() provides (FunctionJP JP)
17) {
18) JP: (JP.name != "main") &&
19) (!( (JP.$trace?)&&(JP.$trace.value == false) ))
20) }

Listing 5.11. Illustration of the declaration, application and use of
annotations.

The declaration and application of annotations are denoted by the tokens/*$ and$*/,
in the style of Splint [40]. In Listing 5.11, the annotationtrace is declared between
Lines 2-8. The annotation declaration has one boolean field calledvalue (in Line 4)
and it can be applied on modules, functions, formal parameters, variable declarations
and type declarations, as indicated in Line 5. In Line 6, we specify that the default
value for the fieldvalue is TRUE11. An application of the annotationtrace is illus-
trated in Line 12: the application is part of the signature of the function declaration
int critical_function(). Finally, the queryallFunctions() shows a use of an-
notations for determining join points in Mirjam, in Lines 18-19. Only those function
executions will be designated that do not have the name "main" and do not have the
application of the annotation ‘trace’ with the value FALSE.

5.4 Evaluation

Dürr et al. [34] carried out an experiment on quantifying the benefits of using aspect-
oriented programming by means of the above defined language and weaver. The setup
of the complete experiment and all statistical data about the results can be found in [34].
In this section, we provide only a summary about the setup and the results of the ex-
periment.

The goal of the experiment was to determine whether using AOP speeds up the
development and maintenance of the ASML codebase. The experiment consisted of
five change scenarios in two sets related to use of the concern Tracing. Twenty software
developers participated in the experiment12; the participants were split into two groups.
The most important reason to do the splitting was to verify that the two sets of change
scenarios were equivalent.

Although it is hard to extract significant results from the experiment due to small
number of participants, the following conclusions can be definitely supported from the
results of the experiment:

• Adding tracing to a function takes considerably less time with AOP than without.

11This is a standard predefined macro. The weaver has a built-in C preprocessor to resolve macro substi-
tutions within annotation declarations and applications.

12The experiment was actually combined with training on the use of aspects and WeaveC.



86 AN OVERVIEW OF MIRJAM AND WEAVEC

• Removing tracing from a function takes more time with AOP than without. This
is probably caused by the (first) usage of annotations.

• Selectively tracing parameters in a function, takes less time with AOP than with-
out.

• Adding tracing to a function manually introduces significantly more errors than
with AOP.

• Changing the signature of a function manually introduces significantly more er-
rors than with AOP.

Besides this experiment, we are continuously working on the evaluation of the language
and weaver by different means. At the moment of writing, software developers and
engineers (approximately 70-80 participants) - who are currently using the language
and weaver - are participating in a survey to evaluate the tool in the view of usability
and other quality concerns. We consider the feedback both from the experiment and
survey crucial in driving our design on the upcoming features of both the language and
the weaver.

5.5 Conclusions

Currently, WeaveC is part of the standard build process of the ASML software. WeaveC
is used in 42 components today; in these components 298 targets are generated based
on 1007 woven source files. Software developers do not need to write tracing and
timing code anymore. The aspect files that realize these crosscutting concerns are
part of the external interface of a standard software component. The weaving of these
aspects is enabled by make-files [95] in the build process. Besides, developers can
add annotations to their base code to customize the standard tracing functionality when
needed.

Mirjam and WeaveC can fulfill the promises of the proof-of-concept weaver. The
quality of the code ensured by Mirjam and WeaveC has positive impacts both on the
maintenance effort and lead-time in the first line software development process. The
increased quality of the code also improves lead-time and reduces errors in terms of
the analysis of problems/machine performance, especially during integration and field
problems. As a result, the forth line software development can also be done faster
and better, which therefore reduces integration time and improves the response to field
problems.



Chapter 6

Modeling the coordination
idiom

Authors: Teade Punter, Marc Hamilton, Tanja Gurzhiy, Louis van Gool

Abstract This chapter reports about a case study on modeling and model transfor-
mation of a specific ASML idiom, called coordination. The study showed that it is
possible to define generic transformation rules that can be applied for simple and com-
plex instances of this particular idiom. We think that the approach presented in this
chapter is applicable to other idioms as well. However, this requires clear criteria to
identify the idioms. Furthermore, the approach requires specific personal skills to en-
able the modeling and transformation approach.

6.1 Introduction

This chapter reports about a case study on modeling and model transformation of a
specific ASML idiom, called coordination.

In general, modeling and transformation are advocated to achieve a high level of
abstraction in complex system design. This provides an organization, its system ar-
chitects and engineers a better overview on their system, meanwhile focusing on the
most relevant system elements. This argument was also the driver for our case study.
Defining the idiom on a higher level of abstraction would enable ASML to maintain its
design of coordination concerns in a better way.

Abstraction is a way to hide the implementation details of particular functionality.
A well-known example of abstraction levels - that deals with communication in com-
puter and network protocols - is the ISO OSI model that consists of seven layers [104].
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In systems and software engineering such layering is common, though only few meth-
ods make this explicit [103]. We are aware of OMG’s MDA initiative that distinguishes
platform-independent models (PIMs) and platform-specific models (PSMs), which is
quoted in many papers of academic researchers. However, we found that this distinc-
tion is not implemented yet in industrial practice. We use in this paper a terminology
that distinguishes abstract and concrete level, without providing an exact definition.
Figure 6.1 provides an intuitive overview of abstraction levels we found at ASML. The
figure points out that we take a relatively stable abstract design model which focuses
on the required functional semantics using the coordination idiom, which we transform
to a concrete design level, where platform issues are addressed. The idiom thus reflects
the implementation-dependent concepts.

The main purpose of models in system development in the high-tech industry, is to
help engineers understand the interesting aspects of a future system. Models are there-
fore widespread used by engineers in a variety of disciplines. For example, hardware
engineering applies models in notations/languages like VHDL. The expected benefits
of modeling and transformations are: a) the reduction of development effort (generate
a large part of the implementation) and b) the ability to manage system complexity
(work at higher abstraction levels).

 

Machine layering 
Levels of reasoning in development 
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Coordination layer 

code 
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Requirements 

Figure 6.1: The abstraction levels in the ASML design flow (right) for a subsystem in
the machine.

If we position the work of this chapter in the model space as shown in Figure 1.5 of
Section 1.5 we act within a subspace concerning so-calledlogical actioncomponents
on models of different abstraction levels. The goal of our work is to examine the
feasibility to model the coordination concern on an abstract level and to transform this
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abstract model into a more concrete one, see also Figure 6.2. This chapter is further
organized as follows. In Section 6.2 we present the coordination idiom that we applied
in our modeling and transformation case study. Section 6.3 introduces our approach
and its considerations to model and transform the idiom. Section 6.4 provides the case
study findings, and Section 6.5 summarizes these findings into conclusions.

 

  Abstract model 

Concrete model 

Code 

Figure 6.2: Relating this work to the general model space in Chapter 1.

6.2 Coordination idiom

The coordination idiom deals with the definition of services which are algorithmic
combinations of machine actions that a wafer scanner can perform. Such services are
calledlogical actions. A subsystem in the coordination layer defines services in terms
of machine actions, calledphysical actionsand thesubsystemsthat can perform these
actions.

The invocation of a logical action results in alogical behavior, which consists
of algorithmically combined invocations ofphysical actionswhich result inphysical
behaviorsof parallel executingsubsystems. A group of physical behaviors that is ex-
ecuted simultaneously in parallel as part of a logical behavior is called abehavior set.
Behavior sets are independent and may execute concurrently. However, a series of be-
havior sets for a single logical behavior is guaranteed to execute without interruption
of physical behaviors of other logical behaviors. This enables engineers to think about
the behavior of logical actions in isolation.

A logical behavior is not as straightforward as a simple sequence of physical ac-
tions, but can contain loops and decisions that are based on intermediate results. An
important aspect of coordination is that logical behaviors are not executed in isolation,
but may execute concurrently if they do not need a certain subsystem at the same mo-
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ment. Sometimes one wants to prevent that a subsystem is affected by another logical
behavior, although one does not need the subsystem to perform any physical behavior
but only remain in its current state. This can be guaranteed by performing so-called
passive behavior on that resource in some behavior set. This ensures that during the
execution of the behavior set, the passive subsystem will not execute any other physical
behavior. Together with the definition of the coordination idiom that assumes that logi-
cal behaviors do not interfere, a tetris-like execution of physical behaviors results [45].

The coordination platform implementation manages the asynchronous invocation
and the parametrization of the subsystem functions that correspond to the physical ac-
tions and keeps track of the data flow to allow for combining the results into a logical
action result. In this platform, a logical behavior has to be programmed as a flat se-
quence of (invocations of) subsystem functions. During execution, these functions are
queued at the corresponding subsystems until a result is needed from some previously
queued function or until all functions are queued. Furthermore, the platform allows
during execution to skip queuing of functions until a certain one in the sequence. The
latter enables the realization of conditional execution.

In the abstract definition of logical behavior, physical actions can be combined
algorithmically and parallelism and loops can be explicitly defined as such. To allow
for a generic approach in mapping this to the coordination platform implementation,
we define in the concrete level two kinds of actions: functional actions and control
actions. A functional action corresponds to a call of a function corresponding to a
physical action. It determines which function is executed and (as part of the behavior
set) which subsystems have to be passive during its execution. Control actions are
used to implement the flow of queuing of functions. These control actions are used to
assign values to variables, evaluate guards, mark some point in the sequence and skip
the sequence until such a mark.

Currently, a subsystem in the coordination layer is implemented in C-code using
a generic coordination platform code framework, while its higher level specification
is written down in Word documents without using specific modeling techniques. The
interfaces between a coordination subsystem and the general coordination framework
result in logical action related code scattered over multiple C modules. Although at a
high level of abstraction, the required functionality can be defined in a clear and easy
to understand way, the realization of the coordination subsystems is labor-intensive,
time-consuming and error-prone. For this reason, we want to consider a model-based
generative approach, starting from models at a high level of abstraction and ultimately
reaching the code level.

Overall, such a generative approach results in a ‘model-to-text’ transformation.
Looking in more detail, such a transformation consists of two major parts:

1. The transformation of abstract level concepts (physical action, passive action,
conditional execution, loops, behavior sets) to concrete level concepts (func-
tional actions, control actions).

2. The transformation of concrete level concepts into corresponding code represen-
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tation (C-language: functions, defines et cetera).

In general, one separates these concerns when developing generators in an MDE con-
text. In our opinion, transformations of concepts can best be realized as model-to-
model transformations, and the generation of a particular representation as a much
more straightforward model-to-text transformation. Our work has primarily focused
on the high level steps in the generative approach, which we expected to be the most
challenging parts of the generation process. It includes:

• The representation of abstract level concepts in a model.

• The representation of concrete level concepts in a model.

• The transformation of abstract level concepts into concrete level concepts.

6.3 Case study

The goal of our case study was to investigate the feasibility of model transformation by
considering the coordination concern. The work in our case study can be distinguished
in two separate, but related, activities, namely: modeling and transformation.

6.3.1 Modeling

The modeling activity aimed at defining models at abstract and concrete levels. At both
levels the models related to structure as well as to behavioral issues. Structure was
modeled by using UML’s class diagrams. The dynamic behavior of the coordination
idiom was shown by using activity diagrams. In this chapter we focus on behavior
mainly because this was the most challenging part with respect to transformation.

The models at abstract level were derived from documentation on global software
functionality and design as well as about component functionality and application in-
terfaces. Because we wanted to transform models of an abstract level into models on a
concrete level, we also needed models of the latter level. The activity and class mod-
els of the concrete level were derived from documentation on component functionality
and application interface component design as well as from an existing framework.
This framework is software that allows synchronized execution of physical scans in a
distributed system.

Consider a system which behavior is shown in Figure 6.3. In this system, the logi-
cal actions are executed in a concurrent way. This concurrency is demonstrated by two
subsystems –NetworkConnection andDisplayIcon. DisplayIcon is responsible
to indicate the status of the connection; either on or off. The test starts with a call
of CHECK_CONNECTION on theDisplayIcon. The sub-systemNetworkConnection
is in the ‘passive’ phase. In general, the sub-systems can be in passive and in active
phases, indicated by stereotypes ‘passive’ and ‘active’ respectively. If a physical action
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is called, a ‘passive’ phase of the sub-system makes sure that no other physical ac-
tions can use theNetworkConnection during this call. The result of the call is stored
in variableCNT. After that we check if the variableCNT is equal toDISCONNECTED.
If expression %CNT%=DISCONNECTED is true, variable ENC is set toCONNECT and is
used as an input for theESTABLISH_CONNECTION on theNetworkConnection sub-
system. After that, the system tests again if theDisplayIcon gets the connection. If
the DisplayIcon resultCNT is equal toCONNECTED, the test is terminated by return
valueOK (default). If it is not the case, we are sure that the indicator is out of order
and we terminate by return valueOUT_OF_ORDER [52]. The concrete activity diagrams

Figure 6.3: Example of an abstract level model. Taken from: [52].



CASE STUDY 93

of the NetworkConnection test describes the queuing of the physical actions. The
control actions are also part of the diagram – they are depicted on the left (e.g., IF1,
ASSIGN2, et cetera) and physical actions are depicted on the right. This concrete
model is meant to be the target model that we expect to have after we apply the model
transformation to the abstract model.

Figure 6.4: Example of a concrete level model. Taken from: [52].

The modeling of the logical and the concrete model was supported by using a pro-
file. This UML mechanism extends meta-models by means of stereotypes, tagged
values and constraints. We applied profiling, as opposed to meta-modeling because
of the expectation that (re)using standardized languages as much as possible improves
communication within the organization. Furthermore, tools specifically designed for
a standardized language like UML can already offer advanced support for a domain
specific language (DSL) that is based on this language.

6.3.2 Transformation

A model transformation takes as input a (source) model and produces as output a (tar-
get) model. Both models may be restricted by the requirement that they conform to a
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source or target meta-model. Amodel transformationcan be carried out to refine the
model into a model of a lower abstraction level or from a lower abstraction level to
a higher one, e.g. reverse engineering. In addition, the abstraction level may remain
the same during the transformation, in case the model is re-factored. A transformation
takes a source model as input and transforms it into a target model or other artifact,
which often means that source and target are different. However, in case of a model
redesign the source and target model are the same. (Software) synthesis is a particular
form of model transformation during which a model is transformed into an implemen-
tation, e.g., in the form of code.

We have chosen the Query View Transformation (QVT) as a set of rules to define
the transformation. QVT was chosen because it is an upcoming standard [83], advo-
cated by the Object Management Group (OMG), as well as that we wanted to have
confirmation about the usefulness of this standard.

A queryis a well-defined expression of a query language (e.g., OCL) that is evalu-
ated over a model. It is used to identify and select the required elements from the input
model when one wants to map elements from input model to output model.Viewsare
the models which are obtained from other models. Atransformationtakes an input
model and generates an output model. A transformation of a platform independent
model to a platform specific model is an example of transformation.

The QVT specification proposes a hybrid approach, which combines declarative
(Relations) and imperative (Operational) languages. A declarative approach to trans-
formation describes the goal in terms of relations between the source and target patterns
and contrasts with an imperative approach, which defines explicit intermediate steps to
reach the goal. During the analysis phase of our case study we found that the Relations
language, and with that the declarative part of QVT, is only theoretically applicable to
models. It is not yet implemented in state-of-the-art tooling for QVT, e.g., BorlandR©

TogetherR© Architect 2006 [52].
We found that the imperative part of QVT is partly implemented in BorlandR©

TogetherR© Architect 2006. Therefore, we applied this imperative part in our transfor-
mation. We also looked at the compliance of BorlandR© TogetherR© Architect 2006to
OMG standards.

An imperative language has some side-effects and forces the programmer to be
explicit about the sequence of steps to be taken when it is executed. The structure
(class) models could be relatively easily transformed from source to target models by
using OMG’s Query View Transformation (QVT) standard. It was more difficult to
transform the behavioral (activity) diagrams. Besides the fact that unconstrained use of
activity diagrams can easily lead to incomprehensible models, their transformation to a
specific target platform is not feasible in general. It would require the target platform to
support the behavior of arbitrary complex activity diagrams, which cannot and should
not be expected from a dedicated platform. Arbitrary concepts have to be detailed to a
level that can unambiguously be interpreted by the platform.

This is the reason why we defined language constructs that helped us to decompose
behavioral descriptions of source into target models. This is addressed as Composi-
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Abstract level Concrete level
Class diagrams 2 6
Activity diagrams 2 17

Table 6.1: Number of diagrams produced during the case study.

tional language [45]. This language is compositional subset of UML 2.0 activity dia-
grams and consists of any activity that can be built with patterns that we calledproc,
seq,assign, guard, if andcall. For practical implementation we defined additional
features in the Together tool to enable the right sequencing in practice [52].

6.4 Findings and interpretation

The model transformation exercise started with specifying the high-level design of co-
ordination as a set of UML2.0 Activity diagrams and Class diagrams. Next step was
to specify the system at the concrete level of abstraction as a set of UML2.0 Activ-
ity diagrams and Class diagrams too, see Section 6.3.1. The number of diagrams that
was constructed is presented in Table 6.1. With respect to our complete transformation
approach we have the following findings:

Understandability The use of a language that is compositional helps in the construc-
tion of specifications that are easy to understand. This principle holds under the
assumption that the language’s constructs are (semantically) rich enough for a
designer to express his or her thoughts in a clear and concise way. The models
were evaluated by two ASML designers to examine their understandability. The
designers considered the abstract model to be complete enough to describe the
cases in an existing system and to be used for the model transformation. As ex-
pected, the concrete model was perceived as complex and only understandable
for a platform specialist. This is caused by the low abstraction level of the model.
Although those comments were made, it was concluded that the models are un-
derstandable. They can be used as input and as expected output for the transfor-
mation. The structure (class) models could be transformed relatively easy from
higher level of abstraction to an implementation by using OMG’s Query View
Transformation (QVT) standard. However it was more difficult to transform the
behavioral (activity) diagrams as stated already in Section 6.3.2.

Effort The modeling and transformation definition activities took nine months. Two
academic researchers were working during this time period and needed in total
15 person months of work. One defined the transformation language, the other
drew the models and implemented the transformation rules in Borland Together.
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Reuse of transformationTransformations from models of an abstract level to a con-
crete level require transformation rules. Therefore, we reconstructed a simple
as well as a complex instance of the coordination idiom. We found out that our
transformation rules could be applied to the simple as well as to a very complex
instance: both instances could be transformed from abstract to concrete models.

Tool/standard complianceThe modeling and QVT-transformation was implemented
by a state-of-the-art tool: BorlandR© TogetherR© Architect 2006. Incompatibili-
ties between the BorlandR© TogetherR© Architect 2006standard implementation
and the MDA standard exist and they concern the UML2.0 specification as well
as the QVT specification. Most of the problems could be overcome using the
extensibility capabilities of the tool set. However, the lack of UML2 compliance
has resulted in alternatives for modeling at abstract level (e.g. loops).

6.5 Conclusions

This chapter reports about a case study on the feasibility of modeling and model trans-
formation of a specific idiom, called coordination. We conclude that this modeling and
transformation is possible. Based on these case study experiences, ASML has already
built a prototype that generates production quality code.

However, applying this kind of model-based approach in practice requires special
attention on the following issues:

Specific skillsDeveloping a coherent high level language for a certain domain and
defining transformations for such a language to other languages requires skills
that are not generally available in a software engineering population.

CorrectnessIn our case study, the combination of experience and testing was suffi-
cient to come to a meaningful setup. A formal proof of correctness would require
formalization of the semantics on all levels of abstraction involved. In practice,
such a level of rigor will not be present and the confidence in the transformations
will have to be based on application and experience.

Immaturity of tools The tools used in this project were not fully compliant with the
UML and QVT standards. In general, most tools have only limited compliance
with the relatively new standards in this area. Given the current state of maturity,
the evolution of modeling tools will require regular reconsideration of modeling
and transformation solutions created.

We end this chapter with the advantages of our approach and with future challenges:

AdvantagesThe high level models make it easy to understand the design of a system
in contrast to reading the code. The generative approach guarantees that the code
indeed corresponds to the high level description. The high level model, captur-
ing the essential semantics, thus becomes a primary artifact in the development
process.
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ChallengesThe case study showed that we could define generic transformation rules
that could be applied for simple and complex instances of this particular idiom.
We think that the approach presented in this chapter is applicable to other idioms
as well. However, the identification of such idioms requires clear criteria, which
are not available yet. It is also not clear what problems can be expected with both
modeling and transformations when integrating idioms at a high abstract level.
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Chapter 7

Embedded systems modeling,
analysis and synthesis

Authors: Mark van den Brand, Luc Engelen, Marc Hamilton, Andriy Levytskyy,
Jeroen Voeten

Abstract Model-driven engineering (MDE) refers to the systematic use of models as
primary engineering artifacts throughout the engineering life cycle. In this chapter we
will show how executable models can be used to aid the design process of a light con-
trol subsystem of a wafer scanner. We make an explicit distinction between the model
of the application logic and the platform on which it is deployed. It will be shown how
the performance of this subsystem can be predicted in an early phase of the design pro-
cess, before the system is implemented in terms of hardware and software components.
The executable model in addition allows a prototype software implementation to be de-
rived from it automatically in a predictable way. The executable model is expressed in
POOSL, a special-purpose modeling language targeting real-time embedded systems.
To allow an embedding in a future MDE environment, an experiment is performed to
express a similar model in the general-purpose modeling language UML from which
the executable models can be derived through model transformations. These transfor-
mations further allow one to combine an application model created in UML with a
platform model created in POOSL and analyze this combined model.

7.1 Introduction

One benefit of using models as a primary artifact in the development process is the
ability to evaluate certain aspects of the system in an early stage. In embedded sys-
tems in particular, a re-occurring problem is the balance between hard- and software.
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Figure 7.1: Positioning of the chapter in a model space.

This problem motivated the construction of a high-level performance analysis model
that clearly separates the hardware architecture from the application logic, using the
executable modeling language POOSL. However, the results of such a model analysis
are only of limited use if the corresponding realization does not match the assumptions
made in the model. Clearly there is a need to synthesize a model into a realization while
preserving the essential properties of the model. This has driven the development of
an executable model from which an implementation can be generated in a property-
preserving way. A large portion of such executable models are based on information
that was generally available in design documentation or in the heads of the engineers
involved. In fact, the POOSL models are merely a formal representation of available
information. It is attractive to capture such information at one shared place in a model
space. Other models share this information by retrieving it from this single source.
Based on this idea, we started to investigate how this can work in a model space as
shown in Section 1.5. The idea is to capture the essential properties of a system in
UML, abstracting from the specifics of the POOSL formalism. The first step to cover
in this investigation is then to derive the POOSL performance analysis model from
the UML model using model transformations. The resulting transformations then also
allow one to combine an application model created in UML with a platform model
created in POOSL and to analyze this combined model. The cases described in this
chapter are retrieved from a sub-space that concentrates on the light control system in
the ASML wafer scanner, depicted in Figure 7.1. The different cases are indicated by
the dotted ovals.
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This chapter is organized as follows. The performance modeling exercise is ex-
plained in Section 7.2. Section 7.3 gives a brief overview of the modeling language
POOSL and how it was used to model the light control subsystem. Section 7.4 fo-
cus on the predictable generation of code from executable models. Embedding these
executable models in an MDE environment based on UML is subject of Section 7.5.
Conclusions and are drawn in Section 7.6 and direction for future work are sketched.

7.2 Performance modeling of the light control subsys-
tem

The goal of the performance modeling exercise was to investigate design alternatives
together with their impact on the timing performance of the light control subsystem of
a wafer scanner. The goal of this subsystem is to generate a sequence of light pulses
such that a pattern of an electronic circuit is projected on a silicon wafer. The timing
performance and especially the duration between two consecutive light pulses must
be controlled very accurately. Major difficulty is that concurrently to the hard real-
time processes of emitting these light pulses, soft real-time processes are running that
take care of communication and negotiation with other subsystems. Deploying these
processes on the hardware platform in such a way that all timing requirements are met
was a major design challenge.

To be able to investigate alternative deployment strategies we constructed both a
POOSL model of the light control application logic and a separate POOSL model of the
hardware platform, following the Y-chart approach [67, 102] as depicted in Figure 7.2.

An application, modeled as a set of communicating application processes, and the
platform on which the application runs are modeled separately. A mapping assigns
the different processes to appropriate processing units of the platform and communica-
tions between the processes on corresponding communication resources. Together the
application model, the platform model and the mapping form a system model which
performance properties can be analyzed, either analytically or by simulation. For the
light control subsystem, these performance properties concern the (maximal) latency
between two light pulses and the utilization of the platform resources such as busses
and processors. Based on these analysis results, one can decide to adapt the application,
the architecture or the mapping. This can even be computer-supported, for instance by
utilizing automated design-space exploration techniques [82]. Once analysis results
are satisfactory, the application can be mapped on the architecture, preferable in an
automated way.

The performance modeling exercise was very very valuable. The model provided
insight in overall subsystem behavior. Design documentation provided many details,
but did not shed light on the big picture. The design documentation specified a num-
ber of separate message sequence charts, but the (timed) behavior emerging from their
collaborations was unclear, also because the design documents were informal and not
executable. The executable model in POOSL combined the separate pieces into one
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Application Platform

Mapping

Performance

Analysis

Figure 7.2: The Y-chart approach.

unified whole. The immediate feedback obtained from the model eased communica-
tion with the design team. It allowed us to understand and verify the light control sub-
system before it was implemented in terms of hardware and software components. The
mapping of the application onto the platform was investigated resulting in a concrete
task priority scheme. Also, a timing problem concerning the forwarding of application
data to an FPGA was found. Although designers new that the realization behaved in-
correctly once and a while, the root course for this problem was not know. This root
course was discover in the executable model which also provided inspiration for a ro-
bust solution and possibilities for verification. Last, but not least, an expected timing
bottleneck in an on-board communication switch turned out to be a non-issue. On the
other hand, cache misses turned out to cause a major timing problem. Based on this
identification, strategies to minimize cache misses were developed.

7.3 The POOSL language

POOSL is a formal modeling language for complex real-time embedded systems. The
language form the core of the SHE (Software/Hardware Engineering) methodology [89,
96]. The language combines a data part with a process part. The data part is based upon
the concepts of traditional sequential object-oriented programming languages such as
C++ and Smalltalk. The process part is based on a probabilistic and timed extension of
the CCS process algebra. A specification in POOSL consists of a collection of asyn-
chronous concurrent processes that communicate synchronously by passing messages
over channels. Processes can contain, operate on and exchange data objects. A key
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start()()

prio1Busy:=false; 

par
prio1()()

and
prio2()()

rap.

prio1()() | cycles: Integer |

prio1?compute(cycles){prio1Busy:=true}; 

delay (cycles / clockSpeed);    

prio1!ready{prio1Busy:=false};

prio1()().

prio2()() | cycles: Real |

prio2?compute(cycles){prio2Busy:=true}; 

[prio1Busy not] delay (cycles / clockSpeed);    

prio2!ready{prio2Busy:=false};

prio2()().

ProcessorWithScheduler

prio1 prio2

Figure 7.3: A platform model with a processor and scheduler.

feature of POOSL is its expressivity. By offering a set of blending orthogonal language
constructs (such as parallel composition, guards, recursion, aborts, interrupts and de-
lays), intricate dynamic behavior can be described in a compact way. Once POOSL
models have been constructed, they can be executed and interesting design properties
can be determined. The execution of POOSL models is defined by a formal seman-
tics, which allows the model to be verified with respect to correctness and performance
properties. The interactive model editing and simulation tool called SHESim supports
the SHE methodology and the POOSL language. The tool is used to incrementally
specify and modify classes of data and processes in a graphical way. It further allows
models to be simulated, several types of model viewers to be opened and message-
sequence charts to be generated automatically. In addition the execution engine Rota-
lumis allows very large model to be executed and analyzed and forms the basis for an
automatic correctness-preserving mapping on the target implementation platform [57].

We used the POOSL language to make a concrete model following the Y-chart
approach explained in the previous section. Both application processes and platform
resources were modeled as POOSL processes. The mapping of application processes
onto these resources was modeled by means of the synchronous message passing mech-
anism of POOSL. Different deployments could thus simply be explored by modifying
channels between application-level and platform-level processes.

An example of a platform model consisting of a processor with a real-time operat-
ing system is depicted in Figure 7.3.

The rectangle denotedProcessorWithScheduleris a process that has two ports
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namedprio1 andprio2. Its models a processor on which a pre-emptive real-time oper-
ating system runs that has two priorities. The highest priority corresponds to portprio1
and the lowest to portprio2. Application processes (not depicted in the figure) connect
to one of these ports, depending on the priority on which they should run. The behavior
of theProcessorWithScheduleris also shown in Figure 7.3. The process starts by exe-
cuting a method (a sort of function) calledstart()(). In this method a variableprio1Busy
(global to the process) is initialized to false. This variable indicates whether any task
is running at the corresponding priority. The two methodsprio1()() andprio2()() are
started in parallel. Methodprio1()() deals with requests from an application process
to perform a computation at priority 1 taking a certain number of clock cycles. Block-
ing statementprio1?compute(cycles)receives messagecomputefrom portprio1 with
Integerparametercycles. Upon reception of such a message theprio1Busyvariable
is set to true and a time delay is performed in accordance with the requested number
of cycles. After having performed the delay, the requesting processes is sent aready
message and theprio1Busyvariable is set to false. Notice that only one request on port
prio1 can be serviced at the same time (a task of a certain priority cannot pre-empt a
task of the same priority). Methodprio2()() deals with requests on portprio2 and is
almost similar to methodprio1()(). The difference is in the guarded delay[prio1Busy
not]delay(cycles/clockSpeed)indicating that the delay may only be performed in case
no task with a higher priority is running. If the guard is closed when a part of the de-
lay has already been performed, carrying out the remainder of the delay is temporarily
stopped until the guard opens up again (because the higher priority task is finished).
This models the fact that higher-priority tasks are allowed to pre-empt lower-priority
tasks. Notice that the combination of the language constructs allow quite a complex
piece of behavior to be expressed in a very compact way, thereby increasing the speed
of modeling. We will come back to this issue of expressivity in Section 7.5 where the
embedding in UML is discussed.

7.4 Predictable code generation

The main purpose of executable model explained in Section 7.2 is performance analy-
sis. In the MDE vision however, it should also be possible to derive implementations
from models in a mechanized way. Therefore we investigated whether automatic code
generation from light control models is feasible.

In general, performance models cannot be directly used to generate code. The main
reason is that their purpose is analysis and not synthesis. This means that these models
are made in such a way that the properties of interest can effectively and efficiently be
derived from them. To do so, all non-interesting details are left out of these models.
The application processes in the light control performance model do not contain details
of a feed-back control algorithmic, for example. Instead such an algorithm is modeled
by sending acomputemessage to the platform model (as depicted in Figure 7.3) and
by waiting for thereadyreply. When used for code generation, such a model must be
refined by incorporating the algorithmic details.
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pwait

reply_signal ptimer
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Charstring wout=“wrong” ;
Charstring cout=“correct” ;
Timer ptimer()

set(ptimer, now+3)
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Timer qtimer()

reply_signal
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qtimer

qstart

syn_signal

qstart

Process Q

set(qtimer, now+2.99)

Figure 7.4: Unpredictable code generation in TAU G2.

As explained in Section 1.3.2, models are used to predict properties of a future
realization. With respect to code generation this means that properties of the model
should be respected by the code generator. If this is not the case, the implementation
may show unexpected behaviors, which is of course not desirable. Especially for real-
time systems predictable code generation is a major challenge [57]. To illustrate this,
consider an example of a model of two communication parallel processesP and Q
shown in Figure 7.4.

ProcessP starts by sending a synchronization signal to processQ after it set a
timer to expire after exactly 3 seconds. It then waits for a reply signal from process
Q to arrive. In case this happens, it outputs acorrect message and otherwise, if the
timer has expired, it output awrongmessage. Upon reception of the synchronization
signal, processQ returns the reply signal after precisely 2.99 seconds. We created this
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model using the TAU G2 tool released by Telelogic [94]. Model simulation revealed
that the reply signal isalwaysreceived by processP before its timer expires, which
is correct. Hence processP just produces a sequence ofcorrect messages. In the
automatically generated implementation this property is not satisfied however, as can
be seen in Figure 7.4. Major issue is that the virtual notion of time in the model is
simply replaced by a physical notion of time in the implementation (the timer in the
example is simply implemented by an operating system timer). As a result, not only
the timing of the implementation differs from that of the model, but even the ordering
of events can be disturbed by the code generator [58]! To address this issue we applied
a predictable implementation approach [57]. The crux of this approach is that the
virtual time in the model is not replaced by, butsynchronized tothe physical time of
the platform. As a consequence the ordering of events is preserved and the timing
properties are preserved up to a small deviation.

A student carried out the code-generation experiment as part of an ASML intern-
ship. Starting point was the executable performance model. This model allowed the
student to quickly understand the light control subsystem and refine and extend it to
a level of detail from which code could be produced. The experiment was success-
ful in the sense that the resulting code executed correctly on the ASML development
platform. Since the code is based on a real-time variant of the Rotalumis simulator,
the code efficiency (timing and footprint) should be improved. Also distributed im-
plementations on multi-processor systems is not possible yet. In any case, both the
performance modeling and code generation experiments showed that engineering with
executable models is very well possible and promising.

7.5 UML embedding

Different models of computation are required to capture different concerns for differ-
ent purposes, as we also explained in Section 1.5. To be able to construct a realization
or to be able to predict properties thereof, it is important to be able to combine these
models together in a consistent way. In the performance modeling exercise (see Sec-
tion 7.2) we achieved this by composing a model of the application logic with a model
of the implementation platform. These models, however, are both expressed in the
formal modeling language POOSL. To study the combination of different modeling
languages, we tested the idea to capture the application model in UML instead, and
to develop automatic transformations to the (original) formal model. Another impor-
tant rational behind this idea is to avoid capturing the same information at different
locations in the model space; shared information should be captured at one single lo-
cation. This shared information should form the root from which models for dedicated
purposes (e.g. design review, verification or performance analysis) can be derived. As
an additional advantage, such a transformation potentially minimizes the number of
different languages designers have to be acquainted with.

To test these ideas, the POOSL performance model of the light control subsystem,
as explained in Section 7.2, was used as a case study. A mapping from POOSL to
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the UML was made to get acquainted with the constructs offered by the UML for the
modeling of behavior and to explore the gap between the UML and POOSL. After this
initial exploratory phase, data and processes were investigated separately. The main
focus in both investigations is on modeling behavior using only the standard language
constructs offered by the UML.

In the remainder of this section, instances of meta classes of the UML meta model,
constructs of the POOSL language, and names mentioned in examples that identify
processes, ports or other objects are italicized.

Data classes

First, modeling the behavior of data classes was investigated. We considered four ways
of modeling this behavior offered by the UML.

• Incorporating the original POOSL code usingOpaqueBehaviour.

• Declarational specification using OCL.

• Operational specification usingActivitydiagrams.

• Operational specification using a textual representation ofActivities.

Incorporating the original POOSL code in a UML model usingOpaqueBehaviourwas
not an acceptable option, since knowledge of POOSL would be required to create and
maintain the model.

The declarational specification of behavior using OCL uses contracts specifying
preconditions and post-conditions for each method of a data class. Although these
contracts give a precise and detailed description of the behavior of the methods, an
automated transformation to POOSL is not feasible.

The biggest advantage of the operational specification usingActivity diagrams is
the fact thatActionsin the UML correspond with expressions in POOSL. This makes
a straightforward automated transformation within reach. The downside of the opera-
tional specification is the size of the diagrams. Even the diagrams describing simple
behavior can grow very large.

This downside of the operational specification of behavior can be tackled by using
a textual counterpart of the graphicalActivity diagrams. Such a textual representation
is called a surface language.

The graphicalActivity diagrams have been chosen as a starting point of the trans-
formation instead of a textual alternative. A suitable textual alternative is not available
and creating one was not possible given the resources.

Process classes

The mapping from POOSL to the UML was used to create two UML models that
specify the behavior of the processes of the POOSL performance model. In the first
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version, all behavior is modeled usingActivities. The second version divides behavior
into two categories. State-independent behavior is modeled usingActivities, whereas
state-dependent behavior is modeled usingStateMachines.

The first version of the model has two important properties. The transformation
to POOSL is straightforward, because of the correspondence betweenActionsin the
UML and statements in POOSL. However, because of the similarities, the added value
of the graphical approach is questionable.

Figure 7.5 shows threeActivitiesthat model the behavior of a process calledPro-
cessQueue, as is done in the first version of the model. This process simultaneously
receives objects from a port calledin and sends them via a port calledout. The fact that
objects are sent and received concurrently is modeled by theActivitynamedstart. The
Activity namedreceivespecifies that after receiving an object, the process stores it in
a datastructure calledDataQueue. As long as thisDataQueuecontains objects, these
objects are retrieved from theDataQueueone by one and sent to another process via
the port calledout, as is modeled by theActivitynamedsend.

The most important property of the second version of the model is the separa-
tion between state-independent behavior and state-dependent behavior. This separa-
tion makes a clear distinction between process behavior that can occur at any time and
that is always triggered by another process, and process behavior which occurrence
depends on previous actions.

Figure 7.6 and Figure 7.7 show the state-dependent behavior and the state-indepen-
dent behavior of the process calledProcessQueue, respectively. These figures illustrate
the approach taken for the second version of the model. They describe the same behav-
ior as theActivitiesin Figure 7.5. Figure 7.6 consists of aStateMachineand anActivity.
TheActivity describes theEffectof the rightmostTransitionin theStateMachine. The
figure shows that the process sends objects via portout, as long as theDataQueueis
not empty. TheActivity in Figure 7.7 can be called at any time during the life cycle
of processProcessQueue. Processes that call thisActivity pass an object as argument.
This object is then stored in theDataQueueof the processProcessQueue.

Mismatches between the languages

When modeling the behavior of the processes of the performance model of the light
control subsystem, it turned out that some constructs offered by POOSL have no coun-
terpart in the UML. Theguarded delayused in the example of Section 7.3 is an example
of such a construct. We found no suitable counterpart and chose to model the process
ProcessorWithScheduleron a lower level of abstraction.

Figure 7.8 shows theStateMachinethat models the behavior of this adapted version
of the process. To save space, textual alternatives are used to describe theEffectsof the
Transitions, instead of the usual graphical representations. The adapted version of the
process uses an instance of the data classPriorityQueue, calledPQ, to store the amount
of time that has to be spent on the computation associated with each priority. When the
process receives a message namedcomputefrom the portprio1, it stores the integer
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Figure 7.5: Behavior of the classProcessQueuemodeled usingActivities.

argument passed with the message in thePriorityQueueat the slot associated with
the first priority. The behavior concerning the portprio2 is analogue to the behavior
described for portprio1. When thePriorityQueueis not empty, the process delays
for a fixed number of milliseconds, given by the integer constant calledgrain, and then
decreases the value associated with the highest priority. When the value associated with
a priority is decreased to zero, a message namedready is sent via the corresponding
port.

Formal semantics

A transformation from a subset of the UML to POOSL provides a way to tie the formal
semantics of POOSL to this subset and give it a formal foundation. As an alternative,
the work of Hooman and Van der Zwaag [55] could be studied as a starting point for
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Figure 7.6: State-dependent behavior of the classProcessQueuemodeled using an
Activityand aStateMachine.

Figure 7.7: State-independent behavior of the classProcessQueuemodeled using an
Activity.

a formal description of the semantics of the subset of the UML used in the second
version of the UML model of light control. Having independent descriptions of both
the semantics of POOSL and the semantics of this subset paves the way for proving
that the transformation preserves semantics.

7.6 Conclusions and future work

Although not all research has concluded yet and many new questions rise, conclusions
can be drawn based on the results thus far.

• We experienced that both graphical and textual concrete syntaxes have their pros
and cons. Since making models as concise as possible is an important issue, it is
desirable to provide the best means of interacting with the model. Therefore it is
desirable to combine textual syntax with graphical syntax.
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Figure 7.8:StateMachinedescribing the behavior of the processProcessorWithSched-
uler.

• The separation between state-dependent behavior and state-independent behav-
ior seems to result in more concise models. It appears that the use of the most
appropriate paradigms prevails above the use of a single paradigm, as long as the
relations among them are well-defined.

• There are several semantic constructs that can be expressed easily using the
domain specific language POOSL but result in awkward constructions in the
general purpose UML language. A similar result was found when evaluating
the POOSL code for a calibration function against its more concise description
in Matlab. Clearly, the expressive power of DSL’s is an important aspect in
the trade-off between using domain specific languages and general purpose lan-
guages.

• The model-based performance predictions turned out to match closely with the
properties of the actual system that resulted from the traditional engineering pro-
cess. This demonstrates that even without code generation, validation and veri-
fication at a high level are very useful.

• The semantics of the language(s) used, especially for shared models, must be
well-defined. UML in its current state suffers from many unclear semantic is-
sues, either by erroneous or incomplete specifications or by explicitly delegating
semantics to the application domain.

• Property-preserving code generation as applied in this chapter is feasible, but in
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its current form still has a number of limitations. Generated implementations
are not resource-efficient enough for the embedded systems domain. In addition,
distributed and mixed hard and soft real-time systems cannot be dealt with yet.

In general, MDE in a large industrial context raises many questions that give rise to
additional research. Until this stage, the research has mostly been explorative simply
because the area of MDE is still immature. With respect to future work we therefore
address only those issues that follow from the results described in this chapter.

• The use of surface languages seems to lie in their possibility to combine graph-
ical and textual languages. The exploration of this topic was stopped during our
research. However, understanding the possible role of surface language in an
MDE context is an interesting topic for future research.

• The property-preserving code-generation method for the POOSL language must
be improved. Increasing resource efficiency and dealing with distributed and
mixed hard and soft real-time applications are challenging directions for future
research.

• One goal of the work on embedding a formal language in UML is to capture
shared modeling information at one single location in the space of models. An-
other goal is to combine different concerns expressed in different languages to-
gether in a semantically sound way. Although an automatic transformation from
UML to POOSL has not been developed yet, we are confident that this is very
well possible. However, to verify the feasibility of a shared information model, a
transformation to at least one other formalism (targeting e.g. formal verification)
should be developed.

• The semantics of the shared models at ASML that will be expressed in UML
must be made precise. The work in [55] is an attractive starting point for this.

• It is important to find the appropriate models of computation that are relevant
to the engineering process of ASML. The challenge of further research is to
identify the appropriate models of computation and to understand their semantic
relations.

• It should be investigated what information is shared among the engineering ac-
tivities at ASML. The results can be used to define a unifying modeling language
that can be used for shared models.
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Designing and documenting the
behavior of software
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Abstract The development and maintenance of today’s software systems is an in-
creasingly effort-consuming and error-prone task. A major cause of this problem is
the lack of formaland human-readable documentation of software design. In prac-
tice, software design is often informally documented (e.g. texts in a natural language,
‘boxes-and-arrows’ diagrams without well-defined syntax and semantics, et cetera), or
not documented at all. Therefore, the design cannot be properly communicated be-
tween software engineers, it cannot be formally analyzed, and the conformance of an
implementation to the design cannot be formally verified.

In this chapter, we address this problem for the design and documentation of the
behavior implemented in procedural programs. We introduce a solution that consists of
three components: The first component is a graphical language called VisuaL, which
enables engineers to specify constraints on the possible sequences of function calls
from a given program. Since the specifications may be inconsistent with each other,
the second component of our solution is a tool called CheckDesign, which automat-
ically verifies the consistency between multiple specifications written in VisuaL. The
third component is a tool called CheckSource, which automatically verifies that a given
implementation conforms to the corresponding specifications written in VisuaL.

This solution has been evaluated empirically through controlled experiments with
71 participants: 23 professional developers of ASML, and 49 Computer Science M.Sc.
students. These experiments showed that, with statistical significance of 0.01, the so-
lution reduced the effort of typical maintenance tasks by 75% and prevented one error
per 140 lines of source code. Further details about these results can be found in Sec-
tion 10.5.

113
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8.1 Introduction

VisuaL and the associated tools are outcome of our close collaboration with ASML.
Our collaboration with ASML was divided in four phases: In the first phase, we identi-
fied a number of effort-consuming and error-prone tasks in software development and
maintenance processes. In the second phase, we developed VisuaL and the tools to
automate these tasks. In the third phase, we conducted formal experiments to evaluate
CheckSource. In the fourth and the final phase, ASML initiated a half-year project
to embed VisuaL and the tools into their software development and maintenance pro-
cesses. This project was ongoing at the time of writing this chapter.

The remainder of this chapter is structured as follows: In Section 8.2, we present
some common problems of today’s software engineering practice. In Section 8.3, we
explain our approach for improving the software engineering practice. In Section 8.4,
we introduce VisuaL, and illustrate it with seven use cases. In Sections 8.5, and 8.6, we
respectively introduce CheckDesign and CheckSource. We conclude with Section 8.7.

8.2 Obstacles in the development of embedded software

In the first phase of the Ideals project, we investigated the software engineering process
of ASML, and identified a number of general problems. In this section, we explain
these problems.

8.2.1 Informal documentation of software design

Natural languages are frequently used in the industrial practice, for documenting the
design of software. For instance, we have seen several design documents containing
substantial text in English, written in a ‘story-telling’ style. Although the unlimited ex-
pressive power is an advantage of using a natural language, this freedom unfortunately
allows for ambiguities and imprecision in the design documents.

In addition to the texts in a natural language, design documents frequently contain
figures that illustrate various facets of software design, such as the structure of data,
flow of control, decomposition into (sub)modules, et cetera. These figures provide
valuable intuition about the structure of software. However, typically such figures can-
not be used as precise specifications of the actual software, since they are abstractions
with no well-defined mapping to the final implementation in source code.

As we discuss in Sections 8.2.2 and 8.2.3, ambiguous and informal software de-
sign documents are a major cause of excessive manual effort and human errors during
software development and maintenance.

8.2.2 Obstacles in the software development process

In Figure 8.1, we illustrate a part of the software development process of ASML, show-
ing four steps:
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Figure 8.1: This figure shows part of the software development process at ASML.

In the first step, a software developer writes detailed design documents about the
new feature that she will implement. The detailed design documents are depicted as a
cloud to indicate that they are informal and potentially ambiguous.

In the second step, a software architect reviews the documents. If the architect
concludes that the design of the new feature ‘fits’ the architecture of software, then she
approves the design documents.

In the third step, a system engineer reviews the design documents. If the system en-
gineer concludes that the new feature ‘fits’ the electro-mechanical parts of the system,
and fulfills the requirements, then she approves the design documents.

In the fourth step, the developer implements the feature by writing source code.
The source code is depicted as a regular geometric shape (i.e. rectangle in this case) to
indicate that the source code is written in a formal language.

After the feature is implemented, it is not possible to conclude with a large cer-
tainty that the source code is consistent with the design documents, because the design
documents are informal and potentially ambiguous. Therefore, the following problems
may arise:
• The structure of the source code may be inconsistent with the structure approved

by the software architect, because the architect may have interpreted the design
differently than the software developer.

• The implemented feature may not ‘fit’ the electro-mechanical parts of the system,
because the system engineer may have interpreted the design differently than the
software developer. In such a case, the source code is defective.

8.2.3 Obstacles in the software maintenance process

In Figure 8.2, we illustrate a part of the software maintenance process of ASML, show-
ing five steps: In the first step, a developer receives a change request (or a problem
report) related to the implementation of an existing feature. If the developer concludes
that the change request has an impact on the detailed design, then she accordingly
modifies the detailed design documents, in the second step. If the design documents
are modified, then a software architect and a system engineer review and approve the
modified design documents, in the third and the fourth steps. In the fifth step, the
developer implements the change by modifying the existing source code.
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Figure 8.2: This figure shows part of the software maintenance process at ASML.

In practice, engineers can follow shortcuts in the maintenance process explained
above, because they are often urged to decrease the time-to-market of a product. They
can skip the second, third, or fourth steps, because the design documents are not a
part of the product that is shipped to customers. This shortcut leads to the following
problems:
• The source code ‘drifts away’ from the design documents. More precisely, the

design that is implemented in the source code becomes substantially different
than the design that is written in the documents. In such a case, the design docu-
ments become useless, because the source code is the only artifact that ‘works’,
and the design documents do no longer provide any useful information about the
source code.

• Since the design documents become useless, a developer has to directly read and
understand the source code, whenever she needs to modify software. Conse-
quently, maintenance becomes more effort-consuming and error-prone, because
the developer is constantly exposed to the whole complexity and the lowest level
details of software.

• Since the design documents become useless, the software architect and the sys-
tem engineer cannot effectively control the quality of software during evolution,
which results in the same problems listed in Section 8.2.2.

• Since the design documents become useless, the initial effort spent by the devel-
oper to write the design documents, and the effort spent by the software architect
and the system engineer to review them, are no longer utilized.

The problems explained so far in Section 8.2 are more broadly explained in Sec-
tion 1.3.2.

8.2.4 The scope in this chapter

The scope of the problems that we explained so far is too broad to be effectively ad-
dressed by a single solution. Therefore, we communicated with the engineers of ASML
to determine a sub-scope that is narrow enough to be effectively addressed, general
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enough to be academically interesting, and important enough to have industrial rele-
vance. As a result, we chose to restrict our scope to the design and documentation of
the control flow within C functions. In the remainder of this section, we explain the
reason for this choice.

Abstractly speaking, the manufacturing machines produced by ASML perform cer-
tain operations on some input material. These operations must be performed in a se-
quence that satisfies certain temporal constraints, otherwise the machines cannot fulfill
one or more of their requirements. For example, a machine must clean the input ma-
terial beforeprocessing it, otherwise the required level of mechanical precision cannot
be achieved during processing; loss of precision results in defective output material.

In software, the input material is modeled as a data structure, and each operation is
typically implemented as a function that can read or write instances of the data struc-
ture. The possible sequences of operations are determined by the control flow structure
of a separate function that calls the functions corresponding to the operations.

During software maintenance, the engineers of ASML frequently change the con-
trol flow structure of functions, and unintentionally violate the temporal constraints.
These violations result in software defects. Finding and repairing these defects is effort-
consuming and error-prone, because (a) the constraints are either not documented at all,
or poorly documented, as explained in Section 8.2.1, and (b) there are no explicit means
for the engineers to tell them if and where the constraints are violated.

Based on these observations, we decided to find a better way to document the tem-
poral constraints, and to develop tools that can help engineers in finding and repairing
the defects. As a result, we developed a solution that consists of a graphical language
VisuaL, a tool for verifying internal consistency of the designCheckDesign, and a tool
for verifying the consistency between the design and the source code,CheckSource.

VisuaL is a graphical language for expressing temporal constraints on operations
in a system, in particular on the operations within a specified function body. It aims at
being both intuitive (through a UML-style visual notation), precise (a VisuaL diagram
can be mapped to a formal representation of automata), and evolution-proof (through
the use of wildcards, one can specify only necessary ordering constraints).

8.3 Solution approach

In this section, we explain how our solution (i.e. VisuaL, CheckDesign, and Check-
Source) can be used during software development and maintenance. The details of the
solution are presented throughout Sections 8.4-8.7.

8.3.1 Adapting the software development process

We present the software development process in which our solution is used, in two
steps: (1) the software design process, and (2) the software implementation process.
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The Software Design Process

In Figure 8.3, we illustrate the software design process, in which VisuaL and Check-
Design are used. This process consists of four steps:

Figure 8.3: This figure shows the design process with VisuaL and CheckDesign.

In the first step, a software developer writes detailed design documents about the
feature that she will implement. She uses VisuaL for writing the documents. Therefore,
the resulting documents are formal and unambiguous.

In the second step, CheckDesign automatically verifies the consistency between
those documents that apply to the same function. If the documents are not consis-
tent, CheckDesign outputs an error message that contains information for locating and
resolving the inconsistency. Note that in the original development process (see Sec-
tion 8.2.2), design level verification was not possible due to the informal and potentially
ambiguous documentation.

If CheckDesign outputs a success message, a software architect and a system engi-
neer review and approve the design documents, in the third and fourth steps. Thus, an
important requirement is that ‘The design documents should be easily read and under-
stood by humans’.

The software implementation process

Figure 8.4 shows the software implementation process in which the formal design doc-
uments and CheckSource are used. This process consists of two steps:

In the first step, a software developer implements the feature by writing source
code.

In the second step, CheckSource verifies the consistency between the source code
and the design documents. If the source code is inconsistent with the documents,
CheckSource outputs an error message that contains information for locating and re-
solving the inconsistency.

An inconsistency can be resolved through one of the following scenarios:
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Figure 8.4: This figure shows the implementation process with formal design docu-
ments and CheckSource.

• The developer decides that the inconsistency is due to a defect in the source code,
so she repairs (i.e. modifies) the source code, and then reruns CheckSource.

• The developer decides that the inconsistency is due to a defect in design docu-
ments, so she repairs the design documents and then performs the second, third,
and the fourth steps of the design process (see Figure 8.3). After these steps, she
reruns CheckSource.

• The developer decides that the inconsistency is due to the defects in both the
design documents and the source code. So she repairs the design documents and
then performs the second, third, and the fourth steps of the design process (see
Figure 8.3). After these steps, she repairs the source code and reruns Check-
Source.

The design and implementation processes presented above address the problems listed
in Section 8.2.2.

8.3.2 Improving the software maintenance process

Whenever a developer receives a change request (or a problem report) about the im-
plementation of an existing feature, she decides whether the change request has an
impact on the detailed design. If the developer decides that there is no such impact,
then she directly implements the request by following the implementation process de-
picted in Figure 8.4. If the developer decides that the change request has an impact on
the detailed design, then she realizes the change request by following the design pro-
cess depicted in Figure 8.3. Subsequently, she implements the change by following the
implementation process depicted in Figure 8.4. The maintenance process explained in
this section addresses the problems listed in Section 8.2.3. In Sections 8.4, 8.5, and 8.6,
we respectively present VisuaL, CheckDesign, and CheckSource.
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8.4 VisuaL

VisuaL is a graphical language for specifying constraints on the possible sequences of
function calls from a given C function. In this section, we explain VisuaL by presenting
the specification of seven example constraints, each demonstrating a distinct ‘primitive’
usage of the language.

8.4.1 Example 1: ‘At least one’

Figure 8.5 shows a specification of the following constraint:
C1: In each possible sequence of function calls from the functionf, there must be

at least onecall to the functiong.

Figure 8.5: An example specification demonstrating the usage of ‘At least one’.

The outer rectangle (i.e. the rectangle with the stereotype<<f>>) defines –a view
on– the control-flow behavior as implemented by (the body of) functionf. The labelS1

is the name (i.e. identifier) of the specification. The arrows represent the function calls
from f, and the inner rectangles (e.g., the rectangle that is labeled withq0) represent
locations within the control flow off.

Inside the outer rectangle, there is a structure consisting of the arrows and the inner
rectangles. We call such a structure apattern.

The stereotype<<f>> means ‘each possible sequence of function calls from the
functionf must bematched by the pattern1, otherwise the constraint that is represented
by the specification is not satisfied’.

The rectangleq0 represents the beginning of a given sequence of function calls,
because it has the stereotype<<initial>>. We call this theinitial rectangle. There
must be exactly one initial rectangle in each VisuaL specification.

The $-labelled arrow originating fromq0 matches each function call from the be-
ginning of a sequence, until a call tog is reached. This ‘until’ condition is due to the
existence of theg-labelled arrow originating from the same rectangle (i.e.q0).

In general, a$-labelled arrow matches a function call, if and only if this call cannot
be matched by the other arrowsoriginating from the same rectangle. In VisuaL, no two
arrows originating from the same rectangle can have the same label.

1We precisely define this later in this section.
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Note the difference between the$-labelled arrow pointing toq0 and the$-labeled
arrow pointing toq1: the former arrow can match a call to any function exceptg,
whereas the latter arrow can match a call to any function (i.e. includingg), sinceq1 has
no other outgoing arrow.

During the matching of a given sequence of function calls, if the first call tog is
reached, then this call is matched by the arrow labeled withg. If there are no more
calls in the sequence, then the sequenceterminates at q1, because the last call of the
sequence is matched by an arrow that points toq1.

If there are additional calls after the first call tog, then each of these calls is matched
by the$-labelled arrow pointing toq1, hence the sequence eventually terminates2 atq1.

A given sequence of function calls ismatched by a pattern, if and only if the
sequence terminates at a rectangle with the stereotype<<final>>. We call such a
rectanglefinal rectangle. There can be zero or more final rectangles in a VisuaL
specification.

8.4.2 Example 2: ‘Immediately followed by’

Figure 8.6 shows a specification of the following constraint:
C2: In each possible sequence of function calls fromf, the first call tog, if it exists,

must beimmediately followed bya call toh.

Figure 8.6: An example specification demonstrating the usage of ‘Immediately fol-
lowed by’.

In Figure 8.6, the stereotype<<initial-final>> means thatq0 has both<<initial>>

and<<final>> stereotypes.

8.4.3 Example 3: ‘Each’

Figure 8.7 shows a specification of the following constraint:
C3: In each possible sequence of function calls fromf, eachcall to g must be

immediately followed by a call toh.

2Infinite sequences of function calls are out of the scope of this chapter, because VisuaL isnota language
for specifying constraints on the execution of possibly non-terminating programs. This topic is already
studied in [22].
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Figure 8.7: An example specification demonstrating the usage of ‘each’.

8.4.4 Example 4: ‘Until’

Figure 8.8 shows a specification of the following constraint:
C4: In each possible sequence of function calls fromf, each function call must be

a call tog, until a call toh is reached.

Figure 8.8: An example specification demonstrating the usage of ‘until’.

8.4.5 Example 5: ‘Not’

Figure 8.9 shows a specification of the following constraint:
C5: In each possible sequence of function calls fromf, a call tog mustnot exist.

Figure 8.9: An example specification demonstrating the usage of ‘not’.

Note thatq1 does not have the stereotype<<final>>, and no arrow originates from
q1. We call such a rectangletrap rectangle. For a given sequenceseqof function calls,
if a call c in seqis matched by an arrow pointing to a trap rectangletr, then either of
the following scenarios occurs:
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• c is the last call inseq. Sincetr does not have the stereotype<<final>>, seqis
not matched by the pattern.

• c is not the last call inseq. In this case, for each remaining call inseq, there is
no matching arrow in the pattern. Therefore,seqis not matched by the pattern.

To sum up, if a sequence ‘visits’ a trap rectangle, then the sequence cannot be matched
by the pattern.

8.4.6 Example 6: ‘Or’

Figure 8.10 shows the specification of the following constraint:
C6: In each possible sequence of function calls fromf, the first function call, if

exists, must be a call tog or h.

Figure 8.10: An example specification demonstrating the usage of ‘or’.

8.4.7 Example 7: ‘And’

Figure 8.11 shows the specification of the following constraint:
C7: In each possible sequence of function calls fromf, there must be at least one

call tog, and the first call tog must be immediately followed by a call toh.

Figure 8.11: An example specification demonstrating the usage of ‘and’.
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8.5 CheckDesign

Using VisuaL, one can create multiple specifications each representing a different con-
straint on the same function. For example, each of the seven specifications in Sec-
tion 8.4 represents a different constraint on the same function:f.

When creating multiple VisuaL specifications to express different constraints on
the same function, it must be ensured that the specifications areconsistent: There
is at least one possible implementation of the function, such that the implementation
satisfies each of the constraints. If there is no possible implementation of the function
that satisfies all specified constraints, then the VisuaL specifications areinconsistent.

For example, the specifications S1 (Figure 8.5) and S5 (Figure 8.9) areinconsistent:
If an implementation of the functionf satisfies the constraint C1 (Section 8.4.1), then
this implementation cannot satisfy the constraint C5 (Section 8.4.5). Conversely, if an
implementation of the functionf satisfies C5, then this implementation cannot satisfy
C1. Hence, it is impossible to implementf, such that the implementation satisfies both
C1 and C5.

Manually finding and resolving an inconsistency among multiple VisuaL specifica-
tions is an effort-consuming and error-prone task. CheckDesign can reduce the effort
and prevent the errors. CheckDesign takes a finite set of VisuaL specifications, and
automatically finds out whether the specifications are consistent or not. If the spec-
ifications are not consistent, CheckDesign outputs an error message that can help in
understanding and resolving the inconsistency.

8.6 CheckSource

After creating consistent VisuaL specifications, a developer typically writes source
code to implement the specifications. For example, after creating the specification
S2 (Figure 8.6), a developer may implement the functionf as shown in Listing 8.1.

1 void f(int i)
2 {
3 g();
4 if(i)
5 {
6 h();
7 }
8 }

Listing 8.1: An example implementation of the function f in C.

A function and a corresponding specification may be inconsistent with each other.
For example, the function shown in Listing 8.1 is inconsistent with the specification
S2 (Figure 8.6): There are two possible sequences of function calls fromf, and these
sequences areseq1 =<g, h> andseq2 =<g>. Althoughseq1 is matched by the pat-
tern of S2,seq2 cannot be matched by this pattern. Therefore, this implementation
(Listing 8.1) is inconsistent with S2, which indicates that the implementation does not
satisfy the constraint C2.
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Manually finding and resolving inconsistencies between a function and its specifi-
cation is an effort-consuming and error-prone task. CheckSource can reduce the effort
and prevent errors. CheckSource takes a function and a corresponding VisuaL spec-
ification as the input, and finds out whether they are consistent or not. If they are
consistent, then CheckSource outputs a success message, else an error message that is
useful for understanding and resolving the inconsistency.

8.7 Conclusions

To conclude, we summarize the possible use cases of VisuaL, CheckDesign, and Check-
Source:

• A software engineer can use VisuaL for designing the control flow of a new
function to be implemented. After the engineer creates the VisuaL specifications,
she can use CheckDesign for verifying that the specifications are consistent with
each other.

• A software engineer can use CheckSource to automatically verify that a given
function is consistent with the corresponding specifications. Whenever a speci-
fication or the function evolves, the verification can be automatically repeated.

• A software engineer can also use VisuaL for designing an additional feature of
an existing function. The additional feature can be designed either within the
existing specifications, or as a separate specification besides the existing ones.
In either case, CheckDesign can be used for ensuring the consistency between
the specifications, and CheckSource can be used for ensuring the consistency
between the specifications and the implementation.

• Whenever a function evolves, a software engineer can use CheckSource for auto-
matically detecting inconsistencies between the function and the specifications.
Such an inconsistency indicates either a bug in the source code, or an outdated
specification.

• A software engineer can use VisuaL to distinguish anticipated bugs from fea-
tures. She can specify the ‘illegal’ sequences of function calls together with the
‘legal’ sequences of function calls. For example, any sequence that visitsq3 of
S7 (Figure 8.11) is illegal, and any sequence that terminates atq2 of S7 is legal.

• If VisuaL specifications are kept consistent both with each other and with the
source code, then these specifications can be used during code inspections. If
engineers suspect a bug in the function call sequences, then they can abstract
away from details such as data flow, and focus on the function call sequence, by
inspecting only the VisuaL specifications.
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Chapter 9

Model-driven migration of
supervisory machine control
architectures1

Authors: Bas Graaf, Sven Weber, Arie van Deursen

Abstract Supervisory machine control is the high-level control in advanced manu-
facturing machines that is responsible for the coordination of manufacturing activities.
Traditionally, the design of such control systems is based on finite state machines. An
alternative, more flexible and maintainable approach is based on task-resource models.
This chapter describes an approach for the migration of supervisory machine control
architectures towards this alternative approach. We propose a generic migration ap-
proach based on model transformations that includes normalization of legacy architec-
tures before their actual transformation.

9.1 Introduction

In this chapter we consider the migration of supervisory machine control (SMC) archi-
tectures towards a product-line approach that, amongst others, supports model-driven
development and code generation. In practice, adopting such techniques requires ar-
chitectural changes. When migrating towards a product line, such a migration needs to
be applied repeatedly to migrate different product versions into product-line members.
Therefore, ideally, one would like to make such a migration reproducible by automat-
ically transforming one architecture into another. In this chapter we investigate how

1This chapter is based on an article in the Journal of Systems and Software [50].
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this can be done using model transformation technology.
This chapter was motivated by the prototype migration of the SMC architecture

of a wafer scanner. We use this wafer scanner as a running example to illustrate the
migration of a legacy architecture, based on finite state machines (FSMs), to a new
architecture that is based on task-resource systems (TRSs). This migration is spurred
by the fact that a TRS-based SMC architecture, as opposed to an FSM-based one, is
declarative, separates concerns, and supports run-time dependent decisions [81]. As a
result, the maintainability and flexibility of the migrated software systems is improved.

We consider the start and end point of the migration as different architectural
views [60]. We refer to these views as the source and target view respectively. In our
migration approach we use the models underlying these views to consolidate and reuse
as much existing design knowledge as possible. As such, we consider migration to con-
stitute a series of model transformations, which we implemented using Model Driven
Architecture2(MDA). It should be noted that we only consider the actual migration ap-
proach; the paradigms for the migration start point and end point are prescribed by our
industrial case.

In order to define a reproducible mapping and perform the migration, we define
practical transformation rules in terms of patterns associated with the source and target
meta models. These transformation rules are practical in the sense that they are based
on an actual migration as performed manually by an expert. Based on this migration,
we have formulated generic, concern-based transformation rules. These rules are de-
fined using a model transformation language making our approach automated. Due to
practical reasons, which are mainly associated with the informal use of modeling lan-
guages in industry [47, 70], we first normalize the legacy models before applying our
model transformations.

Although we focus on the migration of the SMC architecture of a particular man-
ufacturing system, a wafer scanner, the contributions of this chapter are applicable to
similar (paradigm) migrations of supervisory control components in general. The pre-
sented industrial results serve as a proof a concept, additional migrations have to be
performed before the results can be properly quantified. The experiences as outlined in
this chapter are, to a lesser extent, relevant for all software architecture migrations that
can be seen as model transformation problems. Note that this chapter merely gives an
overview of the work done. See Graaf et al. [50] for additional details.

9.2 Migration context

The machine control context is clarified in Figure 9.1. From a supervisory perspec-
tive, (sub)frames, transducers and associated regulative controllers formmechatronic

subsystems that executemanufacturing activities to add value to products. The recipe- and
customer-dependent routing of multi-product flows, with varying optimization criteria,
constitutes one of the key (supervisory) control issues. Moreover, advanced manu-

2 http://www.omg.org/mda (June 2007).

http://www.omg.org/mda
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Figure 9.1: Machine control context.

facturing machines must respond correctly and reproducibly tomanufacturing requests,
run-timeevents and results. Consequently, to interpret manufacturing requests and to
ensure feasible machine behavior, asupervisory machine control component is required
to coordinate the execution of manufacturing activities [90, 93, 81].

In practice, a high-level manufacturing request is translated into valid low-level
machine behavior using multiple, consecutive control-layers. This is supported by re-
cursive application of the control context from Figure 9.1: manufacturing activities
of one level become manufacturing requests for the next level until the level of the
mechatronic subsystems.

In this chapter we consider a wafer scanner as a representative example of an ad-
vanced manufacturing machine. Wafer scanners are used in the semiconductor industry
and perform the most critical step in the manufacturing process of integrated circuits.
We use a request that can be handled by one of the ASML wafer scanner SMC compo-
nents as a running example. Execution of the ‘unload wafer’ request results in a wafer
to be removed from one of the wafer stages by the (un)load robot.

In advanced manufacturing machines, multiple manufacturing activities - and se-
quences hereof - may fulfil a particular request and, in turn, multiple mechatronic sub-
systems may be available to perform a particular activity. That is, multiple alternatives
exist that require the selection of a specific subset of both manufacturing activities and
mechatronic subsystems to fulfil a given manufacturing request. As a result the follow-
ing concerns play an import role in the design of the SMC system of a wafer scanner:

Setups The execution of a manufacturing activity may leave a subsystem in a state
that is not compatible with a subsequent activity. Then, an additional subsystem
state transition, a setup, has to be performed.

Resource UsageFor some manufacturing activities subsystems have to be claimed
exclusively. Afterwards, they have to be released again.

Concurrent Execution Independent activities have to be performed in parallel to im-
prove performance.
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Figure 9.2: Generic two-phased migration approach.

Synchronous ExecutionSynchronization is required between subsequent (dependent)
activities. Additionally, subsystem state transitions may require synchronization
as well (e.g., to prevent collisions of physically moving subsystems).

Conditional Execution Depending on certain machine conditions different execution
paths might need to be activated.

During migration, sequence-dependent setups, subsystem usage, concurrent execution,
synchronous execution and conditional execution are concerns that need to be ad-
dressed. To this end, we defined concern-based transformation rules that map these
concerns from the legacy to the new architecture.

9.3 Model-driven migration
We propose the migration approach as shown in Figure 9.2. It uses a two-step process
that includes a normalization and transformation step.

Because of tool limitations and the generally informal use of modeling paradigms
and languages in industry [47, 70] a multitude of models becomes conceivable that all
have the same intended meaning. This makes directly translating a source model into
a target model inherently difficult. As such, we introduce an intermediate normaliza-
tion step that uses a set of normalization rules to obtain a normalized source model.
The normalization rules are defined as mappings from the source meta model to the
normalized source meta model. Next, a set of transformation rules can be applied to
transform a normalized source model into the target model. These transformation rules
are defined as mappings from the normalized source meta model to the target meta
model.

Although the approach is generic, our industrial case imposes some practical re-
strictions on the enabling technologies. Spurred by the fact that the existing archi-
tecture documentation contained source models (partly) in Unified Modeling Lan-
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guage3(UML) state charts, we decided to implement the different steps of our migration
approach using MDA technologies.

9.4 Migration source
We consider FSMs as the given starting point for the migration. Using FSMs, the set
of possible machine behaviors is considered to form a language. A discrete supervi-
sory FSM is synthesized that restricts this language by disabling a subset of events to
enforce valid machine behavior. This requires the behavior in all possible states for
all requests to be specified explicitly using (conditional) state transitions with asso-
ciated triggers (events), and effects or state actions (manufacturing activities). When
using this paradigm, concurrent execution is the result of independent parts of con-
currently executing state machines that can optionally share events to synchronize.
Consequently, multiple FSMs are used per controller (typically one for each type of
request).

Our source models are specified using UML state chart diagrams, for which the
UML specification provides a meta model and a set of well-formed-ness rules, spec-
ified in Object Constraint Language4(OCL). Using this meta model, UML state ma-
chines can be constructed that model behavior as a traversal of a graph of state nodes
interconnected by transition arcs. For a detailed description of the semantics of the
various elements in this meta model we refer the reader to the UML specification [84].

As an example of how this meta model is used in practice, consider the state ma-
chine in Figure 9.3, which correspond to the unload wafer request. Such state ma-
chines are the source models for the migration. Figure 9.3 illustrates the use of two
distinct resource usage patterns for WS (wafer stage) and UR (unload robot) in the un-
load wafer request: for WS only an available Event (WS available) and release Action
(release WS) are specified, for UR also a claim Action (claim UR) has been specified.
Furthermore, observe that after the actual transfer of the wafer (TRANSFER_FINISHED) the
alternative completion sequences of subsequent activities, which are associated with
theUR_moved andWS_moved events, are specified exhaustively.

Even from our example request it becomes clear that, in practice, concerns are
addressed using a multitude of idioms and constructs. This is the main reason for the
introduction of our normalization step.

9.5 Normalization rules
Normalized source models have to comply to a set of well-formed-ness rules. Most
importantly, concerns have to be specified in a uniform way. We have defined stan-
dardized idioms for the concerns identified in Section 9.2. We introduce these idioms
by the example of Figure 9.4. Normalization involves modifying source models to re-
move any violation of these well-formed-ness rules. Note that, due to the diversity of

3 http://www.uml.org (June 2007).
4 http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007).

http://www.uml.org


132 MODEL-DRIVEN ARCHITECTURE MIGRATION

 

 

FINISHED

exit / report done

FINISH_UR_WS_MOVED

entry / check RCB comm.

WAIT_UR_MOVED

exit / release UR

WAIT_WS_MOVED

exit / release WS

WAIT_FOR_UR_OR_WS_MOVED

entry / UR move to rotate, WS finish exchange

TRANSFER_FINISHED

START_TRANSFER

entry / start transfer W2U

CLAIM_UR

entry / claim UR

READY_TO_CLAIM_UR START_TO_CLAIM_UR

CHECK_RCB

entry / check RCB comm.

IDLE

sm: unload_wafer

do_unload

WS available

[UR ready]

transfer_finished

[else]

UR_moved WS_moved

[combined_load ]

[RCB ok]

[UR not ready ]

WS_moved UR_moved

Figure 9.3: Unload wafer request.

the idioms used in the source models, normalization is performed manually in our case
study.

Table 9.1 lists the stereotypes that we define as part of the SMC profile. Next to
stereotypes, the profile also defines a number of constraints. Listing 9.1 lists one of
these constraints, specified in OCL as an invariant over the UML meta model (C1).

-- C1: state entry actions are actions that execute manufacturing
activities ($\text{i.e.}$, without stereotype)

context State inv :
entry.stereotype->isEmpty

Listing 9.1: Well-formedness rule of the SMC profile, in OCL.
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Stereotype baseClass description
�wait� State wait for resource state
�claim� Action claim resource action
�release� Action release resources action
�available� Guard resource available guard
�available� Event resource becomes available event

Table 9.1: SMC profile stereotypes.

Intuitively, the normalization is context dependent and requires (some) domain knowl-
edge. Moreover, the normalization rules not only depend on the specific source para-
digm but also on the modeling conventions as encountered in the specific (industrial)
migration context. Therefore, we illustrate the normalization step by defining the used
context-specific normalization rules for our case study.

Subsystem setups In the source model, subsystem state consistency is ensured by
specifying setup transitions for every possible subsystem state at design-time. In prac-
tice, this is not done exhaustively. Instead, domain-knowledge is used to limit the
number of setup related alternative transitions. Although subsystem setups can be per-
formed automatically using the TRS paradigm and, thus, do not need to be specified
explicitly, we do preserve them during the normalization step. This in fact ensures that
the migrated control system mimics the behavior of the legacy control system exactly.
When reconsidering Figure 9.3 and 9.4, themove to rotate Action is in fact a resource
setup.

Subsystem usage The pattern to address the ‘subsystem usage’ concern is best un-
derstood from one of the orthogonal regions in the composite state in Figure 9.4. Before
a manufacturing activity (e.g.,finish exchange) that requires a certain subsystem (WS) is
executed, a choice pseudo-state is entered. Then, if the required resource is available
([WS available]), it is claimed (claim WS) by the transition towards the state in which the
manufacturing activity is executed (FINISH). Otherwise, a state (WAIT_FOR_WS) is entered
that is only left when an event occurs indicating the resource has become available (WS

available). The resource is claimed (claim WS) on the transition triggered by that event.
Once the manufacturing activity is performed, claimed resources are released again by
a release action that is executed when exiting the state (release). This pattern can easily
be generalized.

We use the stereotypes defined by the SMC profile (Table 9.1) to distinguish be-
tween Actions, Guards, Events, and States related to the use of subsystems and those re-
lated to the execution of manufacturing activities (to which no stereotypes are applied).
normalization introduces stereotypes for specific model elements that are related to
the subsystem usage concern. Furthermore, from Figure 9.3, and its normalized coun-
terpart in Figure 9.4, it can be seen that additional model elements are introduced to
complete the pattern described above.
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Synchronous execution Synchronization between subsequent manufacturing activi-
ties in the source models is simply achieved by their order in the state machine. Fur-
thermore, synchronization between subsystem state transitions is not modeled at this
level. As such, no specific idiom is used to specify this concern.

Concurrent execution In the original source models, concurrency was often mod-
elled using States, including Actions thatstart two or more manufacturing activities
and separate transition paths for all possible completion sequences, which are en-
abled by completion Events. As an example, consider stateWAIT_FOR_UR_OR_WS_MOVED

in Figure 9.3 in which two manufacturing activities are started. The possible comple-
tion sequences are specified exhaustively by replication of the associated completion
events (UR_MOVED andWS_MOVED). Because those events can only be associated with their
corresponding manufacturing activities using naming conventions, such an approach
complicates the determination of the scope of concurrent execution. Therefore, we
require that concurrency is modeled using a concurrent CompositeState containing (or-
thogonal) regions. This implies that during normalization, manufacturing activities are
mapped to CompositeStates when they are started in a single State node and alterna-
tive completion sequences are specified exhaustively. Figure 9.4 shows the normalized
version of this concurrency idiom, where the two resource usage patterns are executed
in parallel.

Conditional execution The idiom for conditional execution is more complicated.
First, we require it to be specified using a choice Pseudostate with two outgoing Tran-
sitions. One specifies some condition as a Guard; the other specifies[else] as a Guard.
Furthermore, we require ‘proper’ nesting of conditional activation paths in a state ma-
chine. This means that we require pairs of corresponding, alternative paths through the
state machine to be merged one at a time (using junction Pseudostates), and in reverse
order.

Without this requirement for proper nesting, finding the set of States, and thus
Actions, which are enabled when some Guard evaluates to true would become rather
complicated.

9.6 Target meta model

We consider TRS as the given paradigm for the end-point of the migration. This end-
point is based on a research prototype [81]. Using the TRS paradigm, a manufacturing
request is translated into valid machine behavior in two phases. First, upon arrival of
a manufacturing request, a scheduling problem in the context of that request is instan-
tiated during a planning phase. For this, the request is interpreted through rules that
operate on capabilities (resource types) and behaviors (task types). Here, a manufac-
turing activity corresponds to a task and a mechatronic subsystem to a resource. The
first phase results in an hierarchical digraph that consists of tasks and their (precedence)
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Figure 9.4: Normalized unload wafer request.

relations. Nodes in this graph can be composite to either denote a set of tasks that all
need to be executed or to denote a set of tasks of which only one will be executed based
on some condition. Second, a scheduling phase constructively assigns tasks in this di-
graph to specific resources over time [99, 81]. This results in a fully timed, coordinated
TRS that can be dispatched for execution.

The end-point for our migration is a product-line architecture, in which the deci-
sional responsibilities are assigned to three generic and reusable components: Planner,
Scheduler, and Dispatcher. This product-line architecture offers variability with respect
to tasks and resources and can be instantiated for a specific controller by implement-
ing two application specific modules that define the specific system under control and
implement the interfacing with lower-level components.
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In order to define our target models, we introduce a governing target meta model
as depicted in Figure 9.5. There,SystemDefinition serves as a root element. This system
definition consists of a static and dynamic part. The static part defines the availableBe-

haviours, Resources andCapabilities of the system under control. These are used to model
types of manufacturing activities, subsystems, and types of subsystems. In addition,
to address the subsystem usage concern, it defines which capabilities are required by
which behavior. Furthermore, the correspondingbeginState andendState are specified
in CapabilityUsage. These states are, for instance, used to determine sequence dependent
setups.

Behaviour

+ name :EString

CapabilityUsage

+ beginState :EInt
+ endState :EInt

requires+ *

Capability

+ name :EString

capability+

Resource

+ name :EString

fulfils+

SystemDefinition

behaviours+

1..*

capabilities+

*

resources+

*

Task

+ id :EString

Static Dynamic

OrTask

+ condition :EString
AndTask

Request

+ name :EString
requests+

1..*

SimpleTask
behaviour+

tasks+
1..*

predecessors+

*

tasks+
* iftrue+

iffalse+

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 9.5: Target meta model.

The dynamic part of Figure 9.5 represents the rules for uniquely mapping a manufactur-
ing Request to SimpleTasks, which are of a specific Behaviour, and assigning Resources
thatfulfil a required Capability. Every Task includes a set of (direct)predecessors, that is,
other Tasks that need to be executed before it can be dispatched. This relation is used to
(dis)allow concurrency and imply synchronization; in principle all tasks are executed
in parallel, unless prevented by the predecessor relation. Conditional execution can be
specified usingOrTasks, that contain twoTasks (iftrue and iffalse) that may be compos-
ite. The evaluation of itscondition determines which one will be dispatched. Finally, to
cluster Tasks thatall need to be performed, anAndTask can be used.



TRANSFORMATION 137

9.7 Transformation

The transformation rules are defined as mappings from a normalized source meta model
(i.e., our UML profile) to a TRS meta model. For their definition we used the follow-
ing strategy. First, we indicate how elements in the normalized source meta model
are related to the primary elements of the target meta model. Second, for each of the
identified SMC concerns we define and tailor transformation rules to relate the corre-
sponding patterns in the normalized source model and the target model. These rules
are described reasoning backwards, meaning that for each of the elements of the target
meta model we explain for what source model patterns they will be created.

We defined all transformations in the Atlas Transformation Language [61](ATL).
Its transformation engine can be used in combination with MetaObject Facility5(MOF)-
based models and meta models serialized with XML Metadata Interchange6. As our
source meta model we used the MOF-UML meta model available from the Object
Management Group7(OMG) [84]. To create source models, we can simply use a UML
modeling tool that supports XMI export. For the target meta model we used Eclipse
Modeling Framework8 (EMF).

9.7.1 Basic Target Model Elements

SimpleTask and Behaviour SimpleTasks correspond to manufacturing activities,
and Behaviours correspond totypesof manufacturing activities in SMC systems. There-
fore, to create SimpleTasks and Behaviours in the target model we need to identify
Actions corresponding to manufacturing activities in the source model.

Our UML SMC profile specifies that an Action that corresponds to a manufacturing
activity has no stereotype and is executed as a State entry Action (seeC1 in Listing 9.1).
For every such Action, a SimpleTask needs to be created in the target model.

Resource and Capability To create Resources and Capabilities we need to identify
mechatronic subsystems in the source models. However, in the FSM paradigm, mecha-
tronic subsystems are not modeled explicitly. Hence, the source model does not contain
elements that directly correspond to Resources and Capabilities. We can, however, take
advantage of the fact that in the FSM paradigm, subsystems are explicitly claimed. We
create Resources in the target model based on Actions that claim a specific subsystem,
that is, Actions to which the�claim� stereotype has been applied. Furthermore, for
every resource we simply create a separate Capability (Resource type).

SystemDefinition and Request The SystemDefinition root element in a target model
contains all required elements that define the domain specific part of an SMC controller.

5 http://www.omg.org/mof (June 2007).
6http://www.omg.org/mda/specs.htm#XMI (June 2007).
7 http://www.omg.org (June 2007).
8 http://www.eclipse.org/emf (June 2007).

http://www.omg.org/mof
http://www.omg.org
http://www.eclipse.org/emf
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As such, this element corresponds to a complete source model.
A Request encompasses rules that determine how that particular manufacturing

request, such as our unload wafer from Figure 9.3, is planned. Planning rules involve
a set of Tasks and corresponding predecessor relations. Additionally, a Task can be
an AndTask or an OrTask. In the source model, a complete state machine is used to
specify how a manufacturing request is to be executed. So, we create a Request element
in the target model for every StateMachine in the source model.

9.7.2 Concern-Based Transformation Rules

Resource usage To address the resource usage concern we need to relate Behaviours
to the Resources and Capabilities (resource types) they require. In the target meta
model, CapabilityUsage elements are used to this end. However, we cannot derive the
CapabilityUsage elements in the target model directly, since our source models only
contain dynamic information. Consequently, we will have to derive them indirectly
instead.

For each subsystem usage pattern, as described in Section 9.5 we conclude that
the subsystems claimed at that point are required for the corresponding manufacturing
activity. These are all the subsystems that are claimed after the previous release action.
In the target model, CapabilityUsage elements are then defined connecting the corre-
sponding Behaviour and Capabilities. For our unload wafer request, for instance, this
results in the definition of a CapabilityUsage element relating thetransfer W2U behavior
to theWS capability.

Resource setups In the target model, setups are automatically inserted by the generic
(solving) part of the product-line architecture. This is done at run-time, based on mis-
matching beginState and endState attributes of the CapabilityUsage element. To some
extent, these could be derived from the explicitly specified setups in the source model.

Synchronous execution The target model defines precedence relations between those
Tasks that require synchronization (within the same Request). In principle, these re-
lations follow from the execution order of the manufacturing activities and the corre-
sponding Actions within a normalized state machine. In addition, (virtual) resources
can be used for external synchronization.

For synchronization within a Request, predecessor relations are created for every
task by searching for its set of (direct) predecessor tasks.

Concurrent execution The normalized pattern for concurrency, as discussed in Sec-
tion 9.5, is a CompositeState with orthogonal regions. To address the concurrent exe-
cution concern we need to identify instances of such patterns in the source model.

We defined a transformation rule that creates an AndTask for every concurrent
CompositeState in the source model except for the top CompositeState of the StateMa-
chine. Basically, the predecessors relation is the mechanism used in the target model
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to (dis)allow concurrency: if two tasks are not related by the transitive closure of the
predecessors relation, they can execute concurrently. Now, these potentially concur-
rent tasks are executed as soon as execution of their predecessors has finished and the
required resources are available. In turn, this also implies that a task can have multiple
(concurrent) predecessors.

Conditional Execution As discussed in Section 9.5, the normalized source model
uses a state with two outgoing guarded transitions to specify conditional execution.
Every two alternative conditional branches in a source model are mapped to an OrTask
in the target model. This OrTask contains two subtasks (iftrue and iffalse), which
may be composite and represent the two conditionally executed branches following a
State with two outgoing guarded Transitions. Subsequently, for the creation of those
subtasks, we need to find all model elements that map to a task in each of the branches.

9.7.3 Transformation Results

In total, we needed approximately 300 lines of ATL code to implement all the necessary
transformation rules and helpers for the transformation step of our migration approach.
Once the source model, source meta model, target meta model, and transformation
module are defined and located, the ATL transformation engine generates the target
model (e.g., a system definition) in its serialized form. We used a UML activity diagram
to visualize the dynamic part of the target model in Figure 9.6.

Note that, we merely use UML notation torepresentpart of the task resource model.
As such, the semantics are not identical to that of UML activity graphs, but only sim-
ilar. We represent Tasks as Activities stereotyped with the resource they require. The
transition represent predecessor relationships (in reverse direction). For AndTasks we
use fork Pseudostates (represented by the horizontal black bar). A complete AndTask is
thus represented by the subgraph that starts with a fork and ends when the two concur-
rent paths are joined. OrTasks are represented using choice Pseudostates (represented
by a diamond with two outgoing arrows). Similar to the AndTask a complete OrTask is
thus represented by the subgraph that starts with a choice Pseudostate and ends when
the two conditional paths are joined. For convenience we did not explicitly represented
the join of the two concurrent paths (i.e., using another horizontal bar); they are joined
in the same node (the diamond with three incoming arrows) as the conditional paths.

9.8 Evaluation

Scalability With respect to the scalability of our approach we can safely state that our
experiments are of the same order of magnitude as full-fledged component migrations
for real-world wafer scanner applications. More concretely, the two requests that were
migrated as a proof of concept account for approximately 10-20% of the source code
for our SMC components. The application of our transformation rules to the two repre-
sentative examples presented in this chapter requires less than 10 seconds to complete
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<<UR>>
move UR to rotate

check RCB comm.

report done

check RCB comm.

<<UR ,WS>>
transfer W2U

<<WS>>
finish exchange

[not(combined_load)]

[combined_load]

Figure 9.6: Results for unload wafer request.

on a 1.7 GHz notebook. Furthermore, we expect the execution time to be linear with
respect to the number of requests. More important for the execution time is the nesting
depth of conditional paths. For our industrial case we have not encountered requests
with deeper nesting than our example requests.

Effectiveness Our model-driven approach requires that implicit design decisions and
design knowledge is consolidated and made explicit for the definition of meta models
and transformation rules. As such, the application of our approach to the SMC com-
ponents of our case study increased the general understanding of concerns and the as-
sociated implications (and difficulties) surrounding the architecture migration of SMC
systems. Moreover, the need for experts on both the domain and the target paradigm
was confined to the definition of the normalization and transformation rules.

The effectiveness of both the MDA approach and our model-driven migration ap-
proach depends partially on the ability of modeling, transformation and code gener-
ation tools to cooperate. As such, standards involved with the MDA, such as MOF,
UML, and particularly XMI, play an important role. In practice, the availability of
different versions of these specifications made it difficult to setup an appropriate tool
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chain. For instance, we could not use the latest version of our UML modeling tool (i.e.,
‘Poseidon for UML’) because the UML meta model it uses, was incompatible with
the ATL transformation engine. Although we took the liberty of selecting tools that
were able to cooperate, we still needed to implement some additional transformations
using Extensible Stylesheet Language Transformations9(XSLT) to overcome some in-
compatibilities between the various tools. In industry it will not always be possible to
select a specific set of tools for the migration given practical considerations such as
licensing, support, and training costs.

Apart from tool support, the required human intervention during the normalization
step also determines the effectiveness of our migration approach. The complexity of
the normalization step depends on the number of constraints that the restricted source
meta model adds to the legacy source meta model (if present). Here, a trade-off ap-
plies: fewer constraints make the transformation, which is typically automated, more
complex because more specification alternatives have to be covered. For instance, if
we would allow Actions corresponding to manufacturing activities to occur as Actions
on Transitions, searching for predecessors would become much more complicated. On
the other hand, the normalization step requires less effort in that case.

Extensibility Currently, our transformation rules do not handle synchronization a-
cross different requests. This could prove to be a limitation for the large scale appli-
cation of our transformation rules. To this end, we would have to (at least) extend our
profile to include a special type of Event to denote external events for such inter-request
dependencies.

The overall extensibility of our migration approach is demonstrated by using source
models with two distinct origins for our experiments. In the case of the unload wafer
request we used the available architecture documentation of the involved SMC com-
ponent. This documentation contained UML state chart diagrams for the component’s
requests, including our example request.

The ‘back-end’ of our approach can be extended as well by steps that further pro-
cess the result of our model transformations. We already mentioned the generation of
documentation. Another possible extension is the generation of source code to actually
generate the System Definition module of the product-line architecture. Both can be
specified using model transformations.

Note that we did not yet consider the domain specific interface modules of the
product-line architecture. However, this only constitutes a minor hurdle since we can
simply encapsulate the existing source code bodies for each behavior (preserving inter-
face functionality and behavior).

9 http://www.w3.org/TR/xslt (June 2007).

http://www.w3.org/TR/xslt
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9.9 Conclusions

In this chapter we formulated the migration of supervisory machine control (SMC)
systems as a model transformation problem. The starting point is an SMC architecture
based on finite state machines (FSMs); the end point is a product-line SMC architecture
based on task-resource systems (TRSs). Our approach supports the generic migration
of the product-line members.

We demonstrated that the development framework for the Model Driven Architec-
ture10(MDA) can be successfully applied in a migration context as well: migration
can be seen as a series of model transformations. We proposed a generic two-phased,
model-driven migration approach that uses distinct normalization and transformation
steps to derive the modules required to instantiate the TRS product-line architecture for
a particular (sub)system. The normalization step is crucial in overcoming semi-formal,
incomplete and ambiguous specifications as well as tool and language limitations. This
normalization step requires domain knowledge and manual effort, but makes our ap-
proach suited for industrial application.

The industrial case that motivated this chapter imposes not only the source and
target paradigms but places practical constraints on the enabling technologies as well.
Starting from Unified Modeling Language11(UML), we selected technologies compat-
ible with the MDA to setup a convenient tool-chain that supports the definition and
manipulation of models. Using this tool chain, several requests from different SMC
components have been migrated as a proof of concept. The experiences we gained
from this exercise indicate that the application of model transformations not only in-
creases the understandability of such a migration, but also reduces the need for domain
experts.

10 http://www.omg.org/mda (June 2007).
11 http://www.uml.org (June 2007).

http://www.omg.org/mda
http://www.uml.org


Chapter 10

Industrial impact, lessons
learned and conclusions

Authors: The Ideals research team

10.1 Introduction

The Ideals project is an applied research project that is carried out in an industry-
as-laboratory setting, with ASML as the carrying industrial partner. The industry-as-
laboratory setting provides a realistic industrial environment in which research ideas
and theories can be validated and tested. Methods and techniques that are developed
in the Ideals project have been described in the previous chapters and an overview of
the results is found in Chapter 1. Their development has resulted in several papers and
articles in scientific proceedings and journals, Ph.D. theses, presentations at scientific
workshop and conferences and tutorials. A list of the scientific papers and articles
is found in Appendix A. This concluding chapter focuses on the industrial relevance
of the research results. The industrial relevance of new methods and techniques is
demonstrated by a proof-of-concept showing that the principles work, and could be
used by industry. Several transfer projects were initiated for those research areas that
demonstrated their industrial maturity by means of a successful proof-of-concept.

This Chapter is organized as follows. In Section 10.2 we give an overview of the
maturity phases of an industry-as-laboratory project. Based on these phases we discuss
the industrial impact of the methods and techniques that were developed in the project
in Sections 10.3–10.6. Some general lessons learned when guiding researchers through
the phases of industrial evidence are given in Section 10.7. Final conclusions are given
in Section 10.8.

143
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10.2 Phases of industrial evidence

Different levels of proof-of-concept, and different phases in demonstrating evidence
and transferring knowledge can be recognized. The Embedded Systems Institute dis-
tinguishes between six phases, which range from pure academic research to full oper-
ational use in industry. In the successive phases, the scale and level of reality of the
proof-of-concept case studies increases, while the involvement of the industrial partner
grows from none to complete involvement in the operational phase; see Figure 10.1.

0. Academic 
    research

1a. Academic
       evidence

1b. Industrial
       evidence
      (non critical)

1c. Industrial
       evidence
      (critical)

2. Precompetitive
     development

3. Operational
    use

Scaling (1) Scaling (2) Results (3)

Figure 10.1: The transfer process.

Phase 0: Academic researchUniversities and research institutes perform research in
a more or less autonomous setting. This research may be triggered by industrial
problems, but more often it is just curiosity driven academic research. Industry-
as-laboratory projects of the Embedded Systems Institute are not directly in-
volved here, nor are transfer projects. This research may lead to future industrial
relevance.

Phase 1a: Academic evidenceAcademic evidence refers to a proof-of-concept of
newly developed methods, techniques and tools in an academic environment.
Emphasis in this phase is on making the theory work, and showing that it may
potentially solve an industrial problem. The methods and tools are applied to
an artificial academic problem, or to a simplified industrial problem, in a well-
defined and controlled environment. Aspects like scalability of the method, or
usability of the tools, do not play a role yet. Typically, some evidence of this
kind is a starting point for an industry-as-laboratory project like Ideals.

Phase 1b: Industrial evidence, non criticalA realistic problem of the industrial part-
ner with limited size and complexity is the starting point for showing industrial
evidence. Project members and researchers are involved; the industrial partner
may actively cooperate but his main task is to state the problem, provide a case
for this problem, and provide the necessary domain knowledge so that the project
members get a clear view on the problem and the solution area. The case study
should show the proof-of-concept, and demonstrate the feasibility and benefits,
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when possible but not necessarily quantitatively, of the newly developed tech-
niques and tools in a real industrial case. This case should be non-critical, in the
sense that the daily business of the industrial partner may in no way depend on
it. In this phase the case may concern an old problem for which a solution has
already been developed with other means.

Phase 1c: Industrial evidence, criticalThe newly developed techniques and tools are
used in pilot projects in the real industrial context, where the outcome does mat-
ter. The focus is on scalability, embedding in, and impact on existing processes,
and demonstrating quantitative evidence of their usefulness. Issues and aspects
that do not directly relate to the main functionality of the new techniques and
tools, such as usability, performance, reliability, availability of documentation
and manuals, help desk, and training, are getting more important. Also the im-
portance of knowledge consolidation and transfer increases. Since many of these
issues are important for, and in addition specific to the industrial partner, whereas
they are less interesting from a research perspective, the involvement of the in-
dustrial partner increases.

To organize the aspects mentioned above, atransfer projectis initiated for each
successful research area, which has clearly shown industrial evidence of benefits.
The aim of a transfer project is, as the name suggests, to transfer knowledge,
methodology, and tools from the research project to the industrial partner. Since
this goes beyond the proof-of-concept goal of the research project, and since the
major part of the manpower for this activity is provided by the industrial partner,
transfer projects are decoupled from the research project.

Phase 2: Precompetitive developmentThe main target of this phase is to prepare the
methodology, techniques and tools so that they can be institutionalized within
the industrial partner. This involves a seamless continuation of the activities
of the transfer project, but with much less involvement of the research-project
members; they may give support for specific requests, but they are generally
not involved anymore. The pilot projects are gradually taken over by real users,
adapting and deploying the methodology and supporting tools in their daily de-
velopment activities. The activities during this phase include re-factoring of
tools, documentation, user training, and configuration management, making the
methodology and supporting tooling ready to be rolled out in the whole organi-
zation.

Phase 3: Operational useThe full roll out of the methodology, techniques and tool-
ing into the organization of the industrial partner takes place in this phase. Par-
allel to the daily usage of the techniques and tools, the support aspects like train-
ing, knowledge consolidation, tool maintenance and support, and configuration
management are institutionalized within the industrial partner. For the research
project there is no role anymore in this phase.
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Ideally, a research topic passes through these six phases from academic research to op-
erational use in industry. But typically, there are several feedback loops. The results in
any phase can trigger new research questions, and also new problems may trigger new
research subjects. Of all these new research ideas, many never make it to operational
use.

10.3 Industrial impact - TRAPPEL

The goal of TRAPPEL, the Transfer Project for Error Linking, is to leverage results
of research on the improvement of ASML error linking — results that were discussed
in Chapter 3 of this book. Faults in the error linking implementation have a negative
impact on system availability. This project will consist of the development of BELL
(Better Error Linking and Logging), a tool that is capable of detecting error linking
faults in source code. Furthermore, TRAPPEL will introduce BELL in a pilot develop-
ment project, and provide the necessary training. The intended use of BELL is similar
and complementary to the use of the QA/C tool. Code that is synchronized with the
code repository is checked by BELL, and error reports are generated that have to be
processed by developers.

Motivation

Error linking (as defined in Chapter 14 of ASML’s Software Architecture User Manual)
is currently being implemented by hand, and without automatic checking. This practice
has resulted in a relatively high number of faults in the error linking implementation.
Research in the Ideals project has shown an average fault rate of 2.1 faults per 1 KLOC
(229 KLOC examined). Table 10.1 gives an overview of those results, which were also
discussed in detail in Chapter 3.

Faults in the error linking implementation have a negative impact on system avail-
ability. A typical error linking fault breaks the chain of errors that starts at a root error
and is propagated upwards through the system. Diagnosing system failure becomes
more time consuming because of these broken links, since they prevent the identifica-
tion of a root error.

Faults in the error linking implementation can be detected by an automatic tool.
Introducing such a tool in the build process (similar and complementary to the QA/C
tool) will alert developers of the presence of error linking faults. By requiring that the
detected faults are fixed by developers the fault rate for error linking can be reduced.

We have therefore proposed that an automatic checking tool for error linking is
included in the ASML build process. This tool can be based on a prototype checking
tool for error linking that has already been developed by the Ideals project (the SMELL
tool also discussed in Chapter 3).
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Scope

TRAPPEL will consist of the development by ASML of an automatic tool, called
BELL, for the detection of faults in the implementation of error linking. The tool
will process C sources as they are checked into the source repository by a developer.
Each error linking fault will result in a report that the developer can read and use to fix
the fault.

The tool will be introduced in a pilot project that is developing (new) software. This
pilot project will use BELL during development to find and repair error linking faults
that BELL discovers. Members of the pilot project provide feedback to the TRAPPEL
tool developers.

Specifically out of scope for TRAPPEL is the adoption of BELL outside of the
pilot project and the complete integration into the ASML development process. This
will be part of a follow-up project, for which a plan will need to be developed by ASML
in case such further adoption is desired. It was however advised that ASML already
considers these issues, in parallel to the TRAPPEL project, so that appropriate action
can be taken once TRAPPEL is delivered.

Status

TRAPPEL has passed phase 1b (non-critical industrial evidence) of maturity, and is
currently being moved into phase 1c (critical industrial evidence).

The State Machine for Error Linking and Logging (SMELL) tool has been devel-
oped by researchers from CWI, Delft University of Technology, and Eindhoven Uni-
versity of Technology within the context of the Ideals project. It is a proof-of-concept
tool capable of detecting various faults in the implementation of the error linking idiom
as used by ASML today. The tool has been applied to various ASML components, and
the results obtained confirm that building such a tool is both feasible and useful for
ASML. As SMELL is only a proof-of-concept tool, it currently has a number of limi-
tations, i.e. situations in which it does not know what to do precisely. These limitations
are however not inherent to the techniques used, but are primarily technical in nature
and can be attacked by the new tool developed by this project.

Table 10.1 presents the results of applying SMELL to five relatively small ASML
components. The first column lists the component that was considered together with its
size, Column 2 lists the number of faults reported by SMELL, Column 3 contains the
number of false positives we manually identified among the reported faults, Column 4
shows the number of SMELL limitations that are encountered and automatically rec-
ognized, and finally Column 5 contains the number of validated faults, or ‘true’ faults.
The validation of faults was performed jointly by researchers and ASML developers.

Overall, we get 236 reported faults, of which 45 (19 %) are reported by SMELL
as a limitation. The remaining 191 faults were inspected manually by both researchers
and ASML developers, and we identified 37 false positives (16 % of reported faults).
Of the remaining 154 faults, 141 are unique, and so in other words, we found 2.1 true
faults per thousand lines of code.
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reported false positives limitations validated

CC1 (3 kLoC) 32 2 4 26 (13)
CC2 (19 kLoC) 72 20 22 30
CC3 (15 kLoC) 16 0 3 13
CC4 (14.5 kLoC) 107 14 13 80
CC5 (15 kLoC) 9 1 3 5
total (66.5 kLoC) 236 37 45 154 (141)

Table 10.1: Reported number of faults by SMELL for five ASML components.

Outlook

The infrastructure developed in the context of the TRAPPEL project is not only use-
ful within this project only, but can be useful for follow-up projects and new research
activities as well. First, BELL can be extended in order to check many more coding
conventions and idioms, such as tracing, parameter checking, memory handling and
state updates. Second, the detailed code analysis performed by BELL is particularly
useful for idiom migration, where the current way of working is improved by introduc-
ing aspect-oriented solutions for the idioms mentioned above.

10.4 Industrial impact - WeaveC

The problem of crosscutting concerns in software development has been recognized
for a long time, and made explicit in e.g. [66, 100]. Also, the approach to provide
explicit support in programming languages, as well as other development methods and
artifacts has been explored in research [37]. In other words, the AOSD community
had already passed through most of the maturity phases of the industry-as-laboratory
approach. However, one of the phases that is still under-developed is the evidence of
industrial application in critical projects (phase 1c). Another thing lacking in state-
of-the-art AOP technology -at least at the start of the ideals project- were industrial
quality AOP tools for the C programming language. This situation is illustrated by
Figure 10.2, in the row with label ‘general AOP technology’. This figure shows the
phases of maturity of research results in an industrial context.

At the start of the Ideals project, the notion of crosscutting concerns in ASML
source code had already been identified, and it was known that aspect-oriented tech-
nology could potentially address this. Hence one of the first activities was to investigate
whether AOP technology was useful in a context of complex embedded systems, typi-
cally based on the C programming language. This required going through most phases
of the maturity model again, but this time focused on the particular issues in such an
environment:

Phase 0:Investigate whether AOP techniques are applicable in a C context, and
if so, how to deal with the specifics of C (and other procedural languages).
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Phase 1a:Illustrate how AOP for C could work, based on a number of represen-
tative examples (which were derived from the identified crosscutting concerns
within the ASML source code).

Phase 1b:Construction of a prototype weaver and implementation of aspects, to
demonstrate that the technology is realizable, and show that it solves the actual
crosscutting concerns, on a representative amount of source code. It was shown
that for a particular component, with three aspects the number of statements was
reduced by 26%.

Phase 1c:This phase consisted of a case study, which investigated a set of is-
sues to be solved to enable critical industrial application of this technology [31].
These issues were: migration to AOP, availability of mature tooling, ability to
switch off aspects, understandability, run-time performance, compile-time per-
formance, and the ability to debug. For each issue it was demonstrated how it
was solved or could be solved. The results of the case study convinced ASML to
start the development of their own industrial quality weaver.

Phase 2:ASML and —to a lesser extent— the University of Twente embarked
on a so-called transfer project, reported in Chapter 5, to apply AOP technology
in production software, in the setting of large-scale embedded C programs.

Phase 3:ASML has started to apply the AOP technology in production software
(also briefly reported upon in Chapter 5). As soon as the technology became
available, software engineers needed to be trained in the concepts and usage of
WeaveC. As a part of this training, we developed two practical sessions that
were in fact controlled experiments to assess the distinction in effort and errors
made between the conventional idiom and a solution based on AOP, for a set of
typical maintenance tasks. Brief results of this experiment have been described
in Chapter 5; for more elaborate results of the experiments we refer to [34].

A spin-off transfer project was initiated by the University of Twente and ASML, based
on the results achieved during phases 1 and 2 of the maturity model of WeaveC. ASML
was developing a new system using the .NET framework. The University of Twente had
developed an AOP solution, based on the Composition Filters model, with a prototype
implementation for the .NET framework. This prototype and the experiences with
WeaveC enabled us to quickly advance to phase 1b of the maturity model. The issues
that were voiced by the stakeholders of the .NET-based project where similar to those
for the C language (mentioned above). However, since all of the code in the .NET-
based project was newly created, a migration path was not necessary. In the spin-off
project, partially funded by ASML, we advanced to phase 1c. At the time of writing it
is still unsure whether ASML will adopt the tooling and move to phase 2.

Meanwhile, the actualresearchquestions within Ideals with respect to AOP, fo-
cused on problems related to large-scale application of AOP technology; as such, these
questions did not directly come from the state-of-practice (since large-scale applica-
tion of AOP technology, especially in embedded systems is still rare). On the other
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Figure 10.2: An overview of the maturity of AOP research.

hand, they come from one of the first objections raised by software engineers when
encountering AOP technology: ‘How can I be sure that a certain aspect does not acci-
dently conflict with my program?’. We focused on a situation that is particularly hard
to detect, and thus had the highest priority to address. This situation occurs when the
combination of two or more aspects is conflicting. This is a research question that in
fact applies to general AOP technology. We demonstrated that the detection of con-
flicts is also applicable for two common (ASML) idioms: error handling and contract
enforcement. This research is reported in Chapter 4.

The maturity process of this research developed as follows. First, in a purely aca-
demic setting, a solution to achieve the detection of behavioral conflicts between as-
pects was created. That solution was tested on a number of small examples. It was im-
plemented and tested in the mostly academic Compose* platform [3], covering phases
0 and 1a of the maturity model. Secondly, we tested the solution for realistic aspects
based on real-world idiom (i.e. phase 1b). At the time of writing this chapter, we are in
progress to allow the tooling that performs the conflict detection to work in a C-based
environment. Once this is the case, we can run the conflict detection on industrial case
studies of substantial size (i.e. phase 1c). Only after this has been achieved, will we
have acquired sufficient evidence to convince a company such as ASML to include
such checks in their production software (moving to phases 2 and 3).

10.5 Industrial impact - Angel

The development and maintenance of today’s software systems is an increasingly effort-
consuming and error-prone task. A major cause of this problem is the lack of formal
and human-readable documentation of software design. In practice, software design
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is often informally documented, or not documented at all. Therefore, the design can-
not be properly communicated between software engineers, it cannot be systematically
analyzed, and the conformance of an implementation to the design cannot be verified.
In Chapter 8, we addressed this problem for the design and documentation of the be-
havior implemented in procedural programs. We introduced a solution that consists
of three components: (1) A graphical language called VisuaL, which enables engi-
neers to specify constraints on the possible sequences of function calls from a given
program; (2) a tool called CheckDesign, which automatically verifies the consistency
between multiple specifications written in VisuaL; and (3) a tool called CheckSource,
which automatically verifies that a given implementation conforms to the correspond-
ing specifications written in VisuaL.

After we developed VisuaL, our purpose was to find out whether VisuaL is expres-
sive enough to specify design constraints in real-life, and whether a software engineer
can use VisuaL efficiently. To find preliminary answers to these questions, we trained
a software engineer of ASML, who has 15 years of professional experience. After a
1-hour training, the engineer created three VisuaL specifications in approximately 2.5
hours. In terms of size, each of these specifications corresponds to two A4 pages of
regular design documentation.

The first specification created by the engineer contains 11 nodes and 19 edges. To
create this specification, and to draw it using Borland Together, the engineer spent 80
minutes in total. In Table 10.2, the data for each of the three specifications is listed.

Specifications # Rectangles # Arrows Effort in minutes
Spec1 11 19 80
Spec2 11 23 47
Spec3 10 20 28

Table 10.2: Data of the VisuaL Specifications.

Using the data presented in Table 10.2, one can calculate that the engineer spent
on the average 160, 83, and 56 seconds per rectangle or arrow while creating Spec1,
Spec2, and Spec3, respectively. This calculation indicates that the engineer quickly
gained speed in creating specifications.

To create the specifications, the engineer had to rigorously analyze the relationship
between the implementation, the detailed design, the architecture, and the requirements
of the software component. This rigorous analysis enabled him to find one defect,
which had to be repaired in the next release, four design anomalies that required re-
structuring and maintenance, and one undocumented feature. Two weeks earlier, the
component in which the engineer found these problems had been maintained by him-
self, and reviewed by two of his colleagues.

This initial experience indicates that VisuaL can be expressive enough to be useful,
at least to some extent, in an industrial context.

To evaluate CheckSource, we conducted a controlled experiment with 21 M.Sc.
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computer science students, and repeated this experiment with 23 professional software
developers of ASML.

During both experiments, the participants worked with (a) three C functions that
were selected from the source code of ASML by the software engineer mentioned
above, and (b) the VisuaL specifications that were created by the software engineer.

We injected an inconsistency between each function and the corresponding
VisuaL specification, and then we requested the participants to restore the consistency
by modifying the functions, such that each function would conform to the correspond-
ing specification.

We formulated the following hypotheses:

• H0
1: CheckSource does not have any effect on the amount of effort spent by the

participants.

• H0
2: CheckSource does not have any effect on the number of errors made by the

participants.

Based on the data we collected and the statistical tests we performed, we successfully
rejected bothH0

1 andH0
2, in both the student and developer experiments, at the sig-

nificance level 0,01.
In the student experiment, CheckSource reduced the effort spent by an average

student by 50%. In addition, CheckSource prevented approximately one error per 100
lines of source code.

In the developer experiment, CheckSource reduced the effort spent by an average
developer by 75%. In addition, CheckSource prevented approximately one error per
140 lines of source code.

Based on the positive results of the experiments and the positive subjective opinions
of the ASML developers who participated in the experiment, ASML decided to invest
in a transfer project, which is called Angel.

10.6 Industrial impact - Model-driven engineering

The most important result of the model-driven engineering research within Ideals (but
also within Tangram [98]) is that it put model-driven engineering on the ASML road-
map for system and software development. By carrying out these projects and through
many intensive discussions, the vision on model-driven engineering was sharpened and
the challenges to apply MDE techniques in large scale industrial contexts became clear.
A broad awareness was created on how model-driven engineering techniques will im-
prove future engineering efficiency. A large follow-up research program to stimulate
a company-wide introduction of model-driven engineering techniques is currently be-
ing developed. The exploration we performed in the area of model-driven engineering,
delivered a number of concrete results, next to the Angel transfer project described in
Section 10.5:
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• The performance modeling case study for the light control subsystem as de-
scribed in Chapter 7 was very successful. The model provided insight in the
overall subsystem behavior. Traditional design documentation provided many
details, but did not shed light on the big picture. The design documentation
specified a number of separate message sequence charts, but the (timed) behav-
ior emerging from their collaborations was unclear, also because the design doc-
uments were informal and not executable. The executable model combined the
separate pieces into one unified whole. The immediate feedback obtained from
the model eased communication with the design team. It allowed us to under-
stand and verify the light control subsystem before it was implemented in terms
of hardware and software components. The mapping of the application onto the
hardware platform was investigated in one unifying model resulting in a concrete
task priority scheme. Also, a timing problem concerning the forwarding of ap-
plication data to a hardware device was found. Although designers new that the
realization behaved incorrectly once and a while, the root course for this prob-
lem was not know. This root course was discover in the executable model which
also provided inspiration for a robust solution and possibilities for verification.
Last, but not least, an expected timing bottleneck in an on-board communica-
tion switch turned out to be non issue. On the other hand, cache misses turned
out to cause a major timing problem. Based on this identification, strategies
to minimize cache misses was developed. In summary, the modeling exercise
demonstrated the feasibility to accurately predict system behavior and the im-
pact of design decisions in an early phase of the design process. In this sense
this work has passed phase 1b (non-critical evidence) of industrial evidence.

• The feasibility to generate code from models in a property-preserving way has
been demonstrated (see Chapter 7). In their current form, the applied techniques
still have their limitations however. Generated implementations are not resource-
efficient enough for the embedded systems domain and distributed and mixed
hard and soft real-time systems cannot be dealt with yet. As such this part of
the research is still in phase 1a (academic evidence) of maturity. However, the
results achieved were promising enough to motivate ASML in continuing along
the same research lines by defining a number of Master’s projects.

• Even in the relatively small research exercises, the diversity of models has be-
come apparent. To be able to construct a realization or to be able to predict
properties thereof, it is important to be able to combine these models in a consis-
tent way. Inspired by the available experience with programming in a large scale
industrial context, we strive to an approach that avoids copying information (sin-
gle point of definition) and that minimizes the number of different languages
designers have to be acquainted with. One implication is the ability to allow
for different models of computation to interact with each other. As an example
we studied the retrieval of information for a performance analysis model from
a broader, general purpose UML model. Although an automated transformation
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has not been developed yet, we are confident that this is well possible. How-
ever, to verify the feasibility of a shared information model, a transformation
to at least one other formalism (targeting e.g. formal verification) should be de-
veloped, thereby re-using the same information. In this sense this part of the
research is only in the early phase of academic evidence. Already as an impor-
tant result, the search and identification of the relevant models of computation
has become a key issue in the ASML road-map for model-driven engineering
and in newly defined research proposals.

• The work on modeling the coordination concern and transforming this model
into an implementation (see Chapter 6) has passed phase 1b (industrial evidence,
non critical) of maturity and has shown the practical feasibility of the developed
techniques. Due to these results, ASML has invested in carrying this research
further. A prototype tool has been developed from which a software compo-
nent can be derived automatically, starting from an abstract model of this con-
cern. This prototype is already used in the software development process within
ASML, although some improvements can still be made. Hence this work is cur-
rently in phase 2 (pre-competitive development) of industrial evidence. The goal
is to further develop this prototype into a ‘shared technology item’ that is rolled
out in the organization, bringing the results in the final phase (operational use)
of maturity.

• In Chapter 9 we describe an approach to (partly) automate the migration of SMC
systems in a wafer scanner. This approach is based on model-driven software
development technologies. We developed a meta model for the target of the mi-
gration and specified model transformations to automate the migration of legacy
models to a new control architecture. The use of such an approach has the ad-
vantage that the design knowledge incorporated in legacy designs is not lost. In
this particular case this was especially useful, because to reduce risk one goal
of the migration was to preserve the behavior of the legacy SMC components;
optimizations that are made possible by the new architecture are only applied
later.

We applied our approach to two manufacturing requests (of two different SMC
components). The source models for our migration approach were obtained from
the documentation of the legacy SMC components. Here, we took into account
the informal use of modeling in industry. For instance, different model patterns
were used to model the same concern in different models. This makes these type
of models not directly suited for the application of (automated) model transfor-
mations. Therefore, we introduced a normalization step to obtain source models
in which standardized idioms are applied for various concerns. To this end, we
identified important SMC concerns and provided a normalized idiom for each
of them. After application of a normalization step, which is carried out man-
ually, normalized models serve as source models for our model transformation
and target models for the new SMC architecture are automatically generated.
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We applied our approach to real SMC components and used the actual design
documentation of these components to obtain the source models for our ap-
proach. Furthermore, we collaborated with some of the engineers involved in
the migration of these components. As such, this part of our research can be
classified as having passed maturity phase 1b (industrial evidence, non-critical).

10.7 Lessons learned on industrial impact

During the Ideals project various concepts and methods were developed. As explained
in the previous sections, some of them were implemented by ASML, while others did
not reach this level of maturity.

The phases of industrial evidence helped both the researchers and the ASML rep-
resentatives to express and reason about the status of the research, the expectations and
the follow-up steps. The phases of industrial evidence, however, do not explain why
certain research topics reached the level of operational use and others did not.

In order to create a better insight in the elements that influence the growth towards
industrial application of an idea, an evaluation of the various experiments and transfer
projects was carried out. The so-called PPSF (Power, Persuasiveness, Support, Feasi-
bility) model [2] was very useful for this purpose.

This paragraph addresses the lessons learned based on a combination of the various
phases of industrial evidence and the PPSF model. The PPSF model shows the rela-
tionship between the key elements that are crucial for the development of an idea, see
Figure 10.3. Besides the core elements ofideaandidea-owner, the following elements
can be distinguished:

Power (of the idea-owner). The power or standing of the idea-owner is crucial
and can be based on admiration, actions, motives or trust. The role and position
of the idea owner are dominant factors.

Persuasiveness(of the idea). Besides the perceptible added value, issues like
style, persuasion, appeal and fit for use, are possible indicators for the potential
of an idea. Facts, arguments, reasoning and statements emphasize the persua-
siveness of the idea.

Support. The support for an idea is directly related to the position and role of the
idea-owner and is dictated by stakeholders. The degree to which stakeholders can
identify themselves with the intentions of the idea-owner and the degree to which
the idea meets their needs, intentions and concerns determines their support.

Feasibility. Feasibility is the most concrete element and is often examined in an
early phase. Making an inventory and an analysis based on facts are activities to
prove the feasibility of an idea.

Based on the elements of the PPSF model we are able to clarify the lessons when
evolving through the different stages of industrial maturity:



156 INDUSTRIAL IMPACT, LESSONS LEARNED AND CONCLUSIONS

Idea

Power

Persuasiveness Feasibility

Support

Ability Strength  
Idea-owner

Fit       

Acceptance

a
c
to

rs
fa

c
to

rs

intrinsic extrinsic

Figure 10.3: Power, Persuasiveness, Support, Feasibility (PPSF) model.

Power. Universities and Ph.D.-students in particular, play an important role in
the industry-as-laboratory approach. From an industrial point of view, Ph.D.-
students are relatively unknown. The ‘power’ of a Ph.D.-student, especially at
the beginning of the project, is therefore rather limited. To compensate for this
lack of power, it is important that others with sufficient industrial standing take
part in the development and introduction of the idea. Research fellows from
the Embedded Systems Institute together with respected industrial architects and
group leaders, who are committed to the project, can fulfill this role.

Persuasiveness(of the idea). For academics, writing and publishing papers in a
dedicated technical community is common practice. The publications are often
theoretical, conceptual and focused on a specific topic. In an industrial environ-
ment it is hard to understand what the impact of a new conceptual idea will be.
Just presenting the concept itself is therefore not enough. The industrial context
in which the idea is going to be used must be part of the presentation. Further-
more it is important to present the idea in a way that the industrial stakeholders
on higher and middle management understand the message.

Support. Understanding the problem is half the solution. Various stakeholders,
on different levels and positions in the organization, must understand how the
idea contributes to the problems they are facing. Higher management and middle
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management must be able to position the potential solution in a broader long-
term context. In the phases of academic evidence and industrial evidence (non-
critical and critical), dedicated road-maps on company or department level are
needed to prevent that solutions will be perceived as isolated and as a technology-
push.

Additional to the road-maps, support is needed from middle management to ini-
tiate and execute experiments. In this, group leaders, project leaders, process
owners and architects on a middle management level, are all stakeholders. They
must be aware of the support that is needed, how results affect their own work
and what the possible next steps will be.

Last but certainly not least, support is needed from engineers who are involved
in the experiments. They apply the new concepts, methods and tools and can
reflect on the operational added value compared to the current way of working.
Positive reactions to the experiments encourage future support on all levels.

Feasibility. The feasibility of the idea is directly coupled to the phases of indus-
trial evidence. At the end of each phase an explicit go / no-go moment should be
created so that project management can decide whether and how to continue.

In the phase of academic evidence a lot of emphasis is on the concept itself and
on a qualitative and quantitative analysis of the problem domain. Their combi-
nation gives insight in the possible added value of the solution.

In the next (non-critical industrial evidence) phase, simple and isolated industrial
cases with sufficient relevance are selected to carry out the experiments. Focus
is on the functionality of the solution and not on industrial constraints such as
usability, scalability et cetera.

In the final (critical industrial evidence) phase of the research project, the indus-
trial cases become more complex and also the industrial constraints are taken into
account. In this phase a lot of emphasis is on concrete and quantitative results.

The PPSF model was used at the end of the Ideals project to create insight in the ele-
ments that influence the development of an idea during the various phases of maturity.
Suggestion for future industry-as-laboratory research projects is that the model is used,
in a more explicit way, at the end of each phase of industrial evidence. This in order to
get a better insight in, and control on, the factors that influence the development of the
idea in the next phase of creating industrial evidence.

10.8 Conclusions

The goal of the Ideals project was to provide practically useful innovations that reduce
the effort and lead time to maintain and improve complex embedded systems in gen-
eral, and ASML’s lithography system in particular. The results, as presented in the
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previous chapters and reviewed for their practical impact in this chapter, are a number
of methods, techniques and tools with different maturity levels.

From an ASML point of view, we can conclude that significant results have been
achieved:

• The Ideals project has effectively demonstrated that traditional idiom-based ap-
proaches clearly limit the development efficiency, both in terms of effort and
quality. It has also demonstrated that for a subset of crosscutting concerns, an
aspect-oriented programming solution can provide a modular implementation
with much better development efficiency characteristics. This was exactly the
motivation for ASML to invest in the WeaveC transfer project, to create an AOP
methodology and tool set for embedded systems using the C language.

• The WeaveC transfer project introduced an AOP methodology, tool set and train-
ing to ASML developers. Developers who use WeaveC have indicated in a sur-
vey that they clearly experience the benefits in terms of reduction of workload
and errors. This succes can be demonstrated by the fact that the WeaveC tool
is now used in a significant, and continuously growing, portion of the ASML
software1, on multiple target platforms and in multiple application domains. A
clear benefit was the pilot-style introduction: while the methodology and tool
set were still under construction, it was supplied to a limited set of customers
with dedicated support who gave valuable feedback in its use. The next step
in the introduction will be a broad rollout of a much more mature version of
the methodology and tool set, allowing ASML to reap the benefits on an even
larger scale. At this moment the aspects in use address variations of a logging
concern (function parameter tracing). Potential application for other aspects is
being investigated.

• Even if an aspect-oriented programming solution is not (yet) feasible for all
crosscutting concerns, the research into measuring the reduced quality impact
of using idioms has demonstrated methods for detecting two typical classes of
faults in ASML’s software: error linking faults and activity sequencing faults.
These methods have clear potential as they can be used to increase the efficiency
of code reviews and improve system quality.

• In multiple case studies the Ideals project has demonstrated how software de-
signs can be made much more useful by basing them on effective modeling ab-
stractions: these designs form the basis of analysis and synthesis, to provide
insight into key performance parameters and to enable transformations to actual
implementations or to allow automated validation of implementations. These
demonstrations were performed in real-life domains, and the analysis and syn-
thesis possibilities were verified with industrial end-users to be relevant, accurate
and time-saving.

1At the time of writing of this Chapter, the WeaveC tool is applied to more than 1,000 source files and
this number grows by approximately 250 source files per month.
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Not all of the ambitions from the start of the Ideals project could be realized. The in-
tention was to explore the similarity between aspect-oriented programming (merging
base programs with different aspects to form a complete program) and model-driven
architecture (merging different models to form a detailed model). However, the prac-
tical differences in concepts, implementations and maturity, limited the synergy that
could be gained from researching these two areas in a single research project. Other
concrete areas that are still open at the end of the Ideals project are:

• There are still several crosscutting concerns for which no modular implementa-
tion strategy could be developed. The most obvious example is exception han-
dling, which seems to defy a modular implementation because of its very detailed
interaction with the control flow of the base program.

• Migration of existing idiom-based code to an aspect-based solution proved to
be much more difficult than expected. A workable solution has yet to be de-
vised. Part of the problem is the large number of faults that is usually present
in idiom implementations: should these faults be fixed or migrated? But even
with no faults remaining, idioms typically still have a large amount of (harmless)
variations that must all be supported and mapped to a single/canonical version.

• Model-driven engineering is a very heterogeneous domain, with a broad range of
definitions, opinions and visions. The ‘big picture’ of model-driven engineering
in large-scale industrial systems still has to be defined. It requires the identifi-
cation of the required modeling paradigms as well as the establishment of their
relations. Furthermore, it should become clear what the prerequisites are for suc-
cessful application of the diverse activities that are associated with model-driven
engineering. Hence a lot of future research is still necessary before model-driven
engineering techniques will dominate the engineering process within ASML.

The industry-as-laboratory style of research adopted in the Ideals project has resulted
in succes, both by academic standards (publications and Ph.D. dissertations) and indus-
trial standards (accepted and introduced innovations that bring value). There are some
key factors for making this research style work effectively:

• It is very important for the academic researchers to be located on the site of
the industrial partner for a significant part of their time. Continuous interaction
with a large variety of people is crucial for proper understanding of the industrial
problems and selection of viable solution areas. Understanding the problem must
not be limited to the technical problem itself, but must also involve the context
in which it occurs, the possible reactions of stakeholders to different solution
directions, the constraints that are placed on solutions, et cetera. Only during the
research it becomes clear which people are relevant for this understanding and
for defining these constraints, so it is crucial that these people can be approached
and involved in an effective and efficient way: a researcher that is on-site on a
regular basis is able to have quick interactions with these people, and has better
chances of producing a practically accepted solution.
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• Transfer of research results to industry not only requires a clear solution with a
proven result, but also someone who positions himself as the problem owner for
the adoption of the solution. This problem owner should be convinced about the
merits of the proposed solution, and must provide enough focus to the continual
balance between the required activities and the available resources. For a subject
like crosscutting concerns, this has turned out to be difficult, but not impossible
as everybody feels a little bit of the problem. It especially demonstrates to be
difficult for a subject like MDE, where many people feel the need, but where the
solution is not very crisp yet and prone to priority-debates.

• Clear phases of research (as described in Section 10.2) help in keeping every-
body focussed on the progression of research to practical results. Initially they
help academic partners to provide the relative quiet in which to fully understand
and explore the problem, and the ability to generate solution directions without
a lot of immediate detailed discussions about advantages and disadvantages. But
they also provide a means to step up the involvement from the industrial party,
first through qualitative assessments, later through fact-based pilots and finally
in real-life implementations. Although the transition at the end is sometimes
difficult to manage, since it concerns the handover of project responsibility from
research project to industrial partner, it is very worthwhile to maintain everyone’s
involvement till the end. The industrial partner benefits from the researcher part-
ners’ experiences with solution alternatives and prototype implementations. The
research partners benefit from the larger scale on which a technology is applied,
allowing for better setup of experiments to validate theories, and which often
brings up interesting and unexpected new research questions.

Some research results are firmly embedded in the ASML environment, ready for wider
adoption in the embedded software industry. Some research results are finished from
a research point of view, and are ready for adoption by ASML. Some research results
primarily provide more questions and future research topics, not a practically applica-
ble methodology or technology yet. We hope that the network of partners that joined
the project will also play a role in the further dissemination and growth of all the Ideals
research results.
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[3] Bergmans L. and Akşit M. Principles and Design Rationale of Composition Fil-
ters. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors,Aspect-Oriented
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