
Architectural Reasoning Explained

explore

specific details

submethods

framework

integration

via qualities

reasoning

story
 use

case
analyse

design

detailed

design
analyse

design

a priori solution know-how
market

vision

safety

performance

+ key drivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

and many more

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

method outline
 method visualization

throughput
 processing

library

diagnostic

quality

image

quality
 IQ spec

pixel

depth

CPU

budget

typical

case

common

console

memory

limit

BoM
 Moore's

law

purchase

price
CoO

render

engine

M'

S

M

B

U"

P'

T

U

U'
 P

profit margin

standard workstation

memory budget

Gerrit Muller
Buskerud University College

Frogs vei 41 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This document addresses the way an architect can do his work. It shows many
tools that belong to the architect toolkit: The CAFCR model, tools per 5 views
(Customer Objectives, Application, Functional, Conceptual and Realization),
Qualities, Story telling and Reasoning in multiple dimensions

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 3.4 status: preliminary draft July 24, 2014

Contents

Introduction ix

I Introduction 1

1 What is Systems Architecting in an Industrial Context? 2
1.1 Introduction . 2
1.2 Description of the Business Context 4
1.3 Internal Stakeholders . 4
1.4 Acknowledgements . 5

2 Overview of CAFCR and Threads of Reasoning 6
2.1 Introduction . 6
2.2 Architecting Method Overview 7
2.3 The CAFCR Model . 7

3 Introduction to Medical Imaging Case Study 11
3.1 Market and Application . 11
3.2 Technology . 13

II Theory of architectural reasoning 16

4 Basic Working Methods of a System Architect 17
4.1 Introduction . 17
4.2 Viewpoint hopping . 19
4.3 Decomposition and integration 23
4.4 Quantification . 24
4.5 Coping with uncertainty . 26
4.6 Modelling . 28
4.7 WWHWWW questions . 30
4.8 Decision Making Approach in Specification and Design 31

4.9 Acknowledgements . 33

5 The customer objectives view 34
5.1 Introduction . 34
5.2 Key drivers . 35
5.3 Value chain and business models 37
5.4 Suppliers . 38

6 The application view 40
6.1 Introduction . 40
6.2 Customer stakeholders and concerns 41
6.3 Context diagram . 42
6.4 Entity relationship model . 43
6.5 Dynamic models . 43

7 The functional view 46
7.1 Introduction . 46
7.2 Case descriptions . 47
7.3 Commercial, service and goods flow decomposition 49
7.4 Function and feature specifications 51
7.5 Performance . 53
7.6 Information Model . 54
7.7 Standards . 56
7.8 Summary . 58
7.9 Acknowledgements . 59

8 The conceptual view 60
8.1 Introduction . 60
8.2 Construction decomposition . 61
8.3 Functional decomposition . 63
8.4 Designing with multiple decompositions 64
8.5 Internal Information Model . 67
8.6 Execution architecture . 67
8.7 Performance . 70
8.8 Safety, Reliability and Security concepts 70
8.9 Start up and shutdown . 72
8.10 Work breakdown . 72
8.11 Acknowledgements . 76

9 The realization view 77
9.1 Budgets . 77
9.2 Logarithmic views . 79
9.3 Micro Benchmarking . 81

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: iii

9.4 Performance evaluation . 82
9.5 Assessment of added value . 83
9.6 Safety, Reliability and Security Analysis 87
9.7 Acknowledgements . 87

10 Qualities as Integrating Needles 88
10.1 Introduction . 88
10.2 Security as Example of a Quality Needle 88
10.3 Qualities Checklist . 91
10.4 Summary . 96

11 Story How To 97
11.1 Introduction . 97
11.2 How to Create a Story? . 98
11.3 How to Use a Story? . 99
11.4 Criteria . 99
11.5 Example Story . 101
11.6 Acknowledgements . 102

12 Use Case How To 104
12.1 Introduction . 104
12.2 Example Personal Video Recorder 104
12.3 The use case technique . 105
12.4 Example URF examination . 107
12.5 Summary . 108

13 Threads of Reasoning 110
13.1 Introduction . 110
13.2 Overview of Reasoning Approach 110
13.3 Reasoning . 115
13.4 Outline of the complete method 117
13.5 Summary . 117

III Medical Imaging Case description 118

14 Medical Imaging Workstation: CAF Views 119
14.1 Introduction . 119
14.2 Radiology Context . 119
14.3 Typical Case . 125
14.4 Key Driver Graph . 127
14.5 Functionality . 131
14.6 Interoperability via Information Model 132

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: iv

14.7 Conclusion . 133

15 Medical Imaging Workstation: CR Views 135
15.1 Introduction . 135
15.2 Image Quality and Presentation Pipeline 136
15.3 Software Specific Views . 138
15.4 Memory Management . 140
15.5 CPU Usage . 145
15.6 Measurement Tools . 146
15.7 Conclusion . 149

16 Story Telling in Medical Imaging 151
16.1 Introduction . 151
16.2 The Sales Story . 152
16.3 The Radiologist at Work . 153
16.4 Towards Design . 154
16.5 Conclusion . 156

17 Medical Imaging in Chronological Order 157
17.1 Project Context . 157
17.2 Introduction . 158
17.3 Development of Easyvision RF 158
17.4 Performance Problem . 160
17.5 Safety . 163
17.6 Summary . 164

18 Threads of Reasoning in the Medical Imaging Case 165
18.1 Introduction . 165
18.2 Example Thread . 165
18.3 Exploration of Problems and Solutions 167
18.4 Conclusion . 174

IV Experiences with Teaching Architecural Reasoning 176

19 Decomposing the Architect; What are Critical Success Factors? 177
19.1 Introduction . 177
19.2 What is an Architect? . 178
19.3 Education . 181
19.4 Nature . 185
19.5 Experience . 188
19.6 Environment . 193
19.7 Discussion and Conclusions . 198

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: v

19.8 Acknowledgements . 199

Abbreviations 200

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: vi

List of Figures

1 Structure of “Architectural Reasoning Explained” x

1.1 Architecting = creating an architecture 3
1.2 The business context of architecting methods 4
1.3 Stakeholders of the product creation within a company itself . . . 4

2.1 An architecting method supports the architect in his process to go
from a vague notion of the problem and a vague notion of the po-
tential solutions to a well articulated and structured architecture
description . 7

2.2 The outline of the architecting method with the corresponding vi-
sualization that will be used in the later chapters. 8

2.3 The “CAFCR” model . 8
2.4 Iteration over the CAFCR views and the operational view. The task

of the architect is to integrate all these viewpoints, in order to get a
valuable, usable and feasible product. 9

3.1 Easyvision serving three URF examination rooms 12
3.2 X-ray rooms with Easyvision applied as printserver 12
3.3 Comparison screen copy versus optimized film 13
3.4 Challenges for product creation 13
3.5 Top-level decomposition . 14

4.1 Small subset of viewpoints . 19
4.2 Viewpoint Hopping . 19
4.3 The seemingly random exploration path 20
4.4 Two modes of scanning by an architect 21
4.5 Combined open perceptive scanning and goal-oriented scanning . 21
4.6 The final coverage of the problem and solution space by architect

and engineers . 22
4.7 Decomposition, interface management and integration 23
4.8 Successive quantification refined 24

4.9 Example of the evolution of quantification in time 25
4.10 Example of a quantified understanding of overlay in a wafer stepper 25
4.11 The architect focuses on important and critical issues, while moni-

toring the other issues . 26
4.12 Example worry list of an architect 27
4.13 Some examples of models . 28
4.14 Types of models . 29
4.15 The starting words for questions by the architect 30
4.16 Why broadens scope, How opens details 30
4.17 Flow from problem to solution 31
4.18 Multiple propositions . 32
4.19 Recursive and concurrent application of flow 33

5.1 Overview of Customer Objectives View methods 35
5.2 Example of the four key drivers in a motorway management system 36
5.3 Submethod to link key drivers to requirements, existing of the iter-

ation over four steps . 36
5.4 Recommendations for applying the key driver submethod 37
5.5 Example value chain . 38
5.6 Example of simple supplier map for a cable provider 39

6.1 Overview of methods and models that can be used in the applica-
tion view . 41

6.2 Stakeholders and concerns of an MRI scanner 42
6.3 Systems in the context of a motorway management system 42
6.4 Diagram with entities and relationship for a simple TV appliance . 43
6.5 Examples of dynamic models . 44
6.6 Productivity and cost models . 45
6.7 Dynamics of an URF examination room 45

7.1 Example personal video recorder use case contents for typical use
case and worst case or exceptional use case 47

7.2 Recommendations for working with use cases 48
7.3 Commercial tree as means to describe commercial available varia-

tions and packaging . 49
7.4 Logistic decompositions for a product 50
7.5 Mapping technical functions on products 51
7.6 Relation between user interface and functional specification 51
7.7 Example of performance modelling: throughput as function of user

controlled values . 53
7.8 Layering of information definitions 54
7.9 Example of a partial information model 54
7.10 Small part of a datamodel . 55

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: viii

7.11 The standards compliance in the functional view in a broader force
field. 56

7.12 Summary of functional view . 58

8.1 Example of a construction decomposition of a simple TV 61
8.2 Characterization of the construction decomposition 61
8.3 Example functional decomposition camera type device 63
8.4 Characterization of the functional decomposition 63
8.5 Question generator for multiple decompositions 64
8.6 Selection factors to improve the question generator 65
8.7 Addressing lines or planes at once in the multiple dimensions . . . 66
8.8 Example of a partial internal information model 67
8.9 Example process decomposition 68
8.10 Execution architecture . 68
8.11 Performance Model . 70
8.12 Simplified start up sequence . 72
8.13 Example work breakdown . 73
8.14 Core, Key or Base technology 73
8.15 Example integration plan, with 3 tiers of development models . . . 74

9.1 Budget based design flow . 78
9.2 Example of a memory budget . 78
9.3 Actual timing represented on a logarithmic scale 79
9.4 Typical micro benchmarks for timing aspects 81
9.5 The transfer time as function of block size 82
9.6 Example of performance analysis and evaluation 83
9.7 Performance Cost, input data . 84
9.8 Performance Cost, choice based on sales value 85
9.9 Performance Cost, effort consequences 85
9.10 But many many other considerations 86
9.11 Analysis methods for safety, reliability and security 87

10.1 The quality needles are generic integrating concepts through the 5
CAFCR views . 89

10.2 Example security through all views 90
10.3 Checklist of qualities . 92

11.1 From story to design . 98
11.2 Example story layout . 98
11.3 criteria for a good story . 100
11.4 Example of a story . 102
11.5 Value and Challenges in this story 103

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: ix

12.1 Example use case Time Shift recording 105
12.2 What if conflicting events happen during the pause interval? . . . 106
12.3 Content of a Use Case . 106
12.4 Example personal video recorder use case contents 107
12.5 Typical case URF examination 108
12.6 Timing of typical URF examination rooms 109
12.7 Recommendations for working with use cases 109

13.1 Overview of reasoning approach 111
13.2 Example of a starting point: a slow system response discussed from

the designer’s viewpoint . 112
13.3 Example of creating insight: to study the required performance a

response model of the system is made 112
13.4 Deepening the insight by articulating specific needs and gathering

specific facts by simulations, tests and simulations 113
13.5 Broadening the insight by repeating why, what and how questions 114
13.6 Example definition of the thread in terms of tension for a digital TV 114
13.7 Reasoning as a feedback loop that combines intuition and analysis 115
13.8 One thread of reasoning showing related issues. The line thickness

is an indication for the weight of the relation. 116
13.9 Example of the documentation and communication for a digital

TV. The thread is documented in a structured way, despite the
chaotic creation path. This structure emerges after several itera-
tions. 116

14.1 The clinical context of the radiology department, with its main
stakeholders . 120

14.2 The financial context of the radiology department 121
14.3 Application layering of IT systems 122
14.4 Reference model for health care automation 123
14.5 Clinical information flow . 124
14.6 URF market segmentation . 125
14.7 Typical case URF examination 126
14.8 Timing of typical URF examination rooms 126
14.9 Key drivers, application drivers and requirements 127
14.10Retrospective functionality roadmap 131
14.11Information model, standardization for interoperability 132
14.12Coverage of submethods of the CAF views 134

15.1 The user expectation is that an image at one work-spot looks the
same as at other work-spots. This is far from trivial, due to all data
paths and the many parties that can be involved 136

15.2 The standard presentation pipeline for X-ray images 137

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: x

15.3 Quadruple view-port screen layout 137
15.4 Rendered images at different destinations 138
15.5 Software processes or tasks running concurrently in Easyvision . . 139
15.6 Simplified layering of the software 140
15.7 Memory budget of Easyvision release 1 and release 2 141
15.8 Memory fragmentation increase. The difference between gross

used and nett used is the amount of unusable memory due to frag-
mentation . 141

15.9 Cache layers at the corresponding levels of Figure 15.6 142
15.10Memory allocators as used for bulk data memory management in

Easyvision RF . 143
15.11Intermediate processing results are cached in an application level

cache . 143
15.12Example of allocator and cache use. In this use case not all inter-

mediate images fit in the cache, due to a small shortage of blocks.
The performance of some image manipulations will be decreased,
because the intermediate images will be regenerated when needed. 144

15.13Print server is based on different memory strategy, using bands . . 145
15.14The CPU processing times are shown per step in the processing

pipeline. The processing times are mapped on a proportional time
line to visualize the viewing responsiveness 146

15.15Server CPU load. For a single examination room sufficient CPU
time is left for interactive viewing. Serving three examination
rooms fits in 90% of the available CPU time. 147

15.16Example output of OIT (Object Instantiation Tracing) tool 148
15.17Overview of benchmarks and other measurement tools 149
15.18Coverage of submethods of the CR views 150

16.1 The main sales feature is easy viewing 152
16.2 The simple remote control makes the viewing easy 152
16.3 Radiologist work-spots and activities 153
16.4 Diagnosis in tens of seconds . 154
16.5 The stories in relation to the CAFCR views and the derived re-

quirements and design choices 155

17.1 Chronological overview of the development of the first release of
the Easyvision . 158

17.2 The functionality present in the Basic Application shown in the
process decomposition. The light colored processes were added to
create the Easyvision . 159

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: xi

17.3 The functionality present in the Basic Application shown in the
construction decomposition. The light colored components were
added to create the Easyvision 160

17.4 Memory usage half way R1 . 161

17.5 Solution of memory performance problem 161

17.6 Visualization per process . 162

17.7 Causes of performance problems, other than memory use 162

17.8 Image quality and safety problem: discretization of pixel values
causes false contouring . 163

17.9 Safety problem caused by different text rendering mechanisms in
the original system and in Easyvision 164

18.1 The thread of reasoning about the tension between time efficiency
on the one hand and diagnostic quality, safety, and liability on the
other hand. In the design space this tension is reflected by many
possible design trade-offs. 166

18.2 Thread of reasoning; introvert phase. The starting point (S) is the
a priori design choice for a SW only solution based on Object Ori-
entation. The consequence for resource usage, especially mem-
ory (M) and the business (B), especially product margin are explored.168

18.3 Thread of reasoning; memory needs. Create insight by zooming
in on memory management (M’). Requirements for the memory
management design are needed, resulting in an exploration of the
typical URF examination (U). 169

18.4 Thread of reasoning; uncovering gaps. The insight is deepened by
further exploration of the URF examination (U) and the underly-
ing objectives (U’) of the radiologist. The auto-print functionality
is specified as response for the radiologist needs. The technical
consequences of the auto-print are explored, in this case the need
for printing concepts and realization (P). 170

18.5 Thread of reasoning; phase 4. The insight is broadened. Start-
ing at the objective to perform diagnosis efficient in time (U”), the
application is further explored: type of examination and type of
images. The specification of the imaging needs (contrast, dynamic
range, resolution) is improved. The consequences for rendering
and film layout on a large set of realization aspects (P’) is elab-
orated. The rendering implementation has impact on CPU usage
and the throughput (T) of the typical case. 172

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: xii

18.6 Thread of reasoning; cost revisited. The entire scope of the thread
of reasoning is now visible. Sufficient insight is obtained to return
to the original business concern of margin and cost (C). In the mean
time additional assumptions have surfaced: a common console and
standard workstation to reduce costs. From this starting point all
other viewpoints are revisited: via time efficient diagnosis to image
quality to rendering and processing and back to the memory design. 173

18.7 All steps superimposed in one diagram. The iterative nature of
the reasoning is visible: the same aspects are explored multiple
times, coming from different directions. It also shows that jumps
are made during the reasoning. 174

19.1 Decomposing Contributing Factors 178
19.2 Typical Development of a System Architect 178
19.3 Growth in technical breadth, intermediate functions from specialist

to system architect . 179
19.4 Different Architecting Scopes 180
19.5 Proposed Curriculum for System Architects 181
19.6 The outline of a CAFCR based architecting method 181
19.7 Connecting System Design to Detailed Design 182
19.8 Organizational Problem: Disconnect 183
19.9 Architect: Connecting Problem and Technical Solution 183
19.10Major Bottleneck: Mental Dynamic Range 184
19.11Profile of an ”Ideal” System Architect 185
19.12For Comparison: Profile of a Project Leader 185
19.13Project Leader versus System Architect 186
19.14Most Discriminating Characteristics 186
19.15Example: Trapezoid Pattern . 188
19.16From SW input to physical Effect 189
19.17Discretization effects . 189
19.18Example of Discretization Problem 190
19.19Example of Generic Smoothing Consideration 191
19.20Architects Collect a Rich Set of Patterns 192
19.21Simplified decomposition of the Business 193
19.22Line Organization Stovepipe . 194
19.23Business Organization Stovepipe 195
19.24Different Concerns . 195
19.25Positioning System Architecting 196
19.26What Can We Do to Improve the Environment? 196
19.27Conclusion . 198

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: xiii

Introduction

This book integrates the “CAFCR” model, design via qualities, story telling and
architectural reasoning into an open-ended architecting method. The background,
goal, context and case are introduced in part I. The theoretical framework is described
in part II. Part III describes the case: medical imaging workstation.

Figure 1 shows the (preliminary) planned structure of the book.
The purpose of the “CAFCR” chapters is to illustrate the means and methods

for the different views. Many more methods are available. It is not feasible to cover
all these methods with significant depth, every method in itself can be expanded
into a book. I hope to bootstrap designers and potential architects by showing a
reasonable set of methods, enabling them to choose, change and expand their tool
set.

At this moment the book is in its infancy. As a consequence some chapter
references are not yet correct. Most articles are updated based on feedback from
readers and students. The most up to date version of the articles can always be
found at [11]. The same information can be found here in presentation format.

Chapters can be read as autonomous units. The sequence choosen here is more
or less top down, hopping from one viewpoint to the next.

Recommended literature and other resources:

• “The Art of Systems Architecting”, Rechtin [19]

• “Systems Engineering Guidebook”, Martin [10]

• “Resources for Software Architects”, Bredemeyer [1]

• “Role of the Software Architect”, Bredemeyer [2]

part 1 Introduction

+ what is architecting?

+ short "CAFCR" introduction

+ introduction of the Medical Imaging case

part 2 Theory of architectural reasoning

+ research question, objectives, hypothesis

 and criterions for architecting methods

+ basic working methods

+ overview complete method

+ sub methods per CAFCR view

+ qualities as integrating needles

+ stories

+ threads of reasoning

+ use cases

+ scenarios

part 3 Medical imaging case description

+ CAF views

+ CR views

+ stories

+ chronological overview

+ threads of reasoning

part 4 Experiences with teaching

 Architectural Reasoning

+ Decomposing the Architect; What are

Critical Success Factors?

Figure 1: Structure of “Architectural Reasoning Explained”

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: xv

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 3.4

Buskerud University College

page: xvi

Part I

Introduction

Chapter 1

What is Systems Architecting in
an Industrial Context?

preceding
architecture
 architecting
 architecture

PCP team

architect,
project leader,

engineers,

product manager

problem knowledge

solution knowledge

business context

technology context

human context

legend

stakeholders

expectations, needs,

concerns, constraints

1.1 Introduction

This thesis discusses the systems architecting of software and technology intensive
products. Typical examples of software and technology intensive products are
televisions, DVD-players, MRI scanners, and printers. The creation of these products
is a multi-disciplinary effort by hundreds of engineers. The time between first
product ideas and introduction into the market is in the order of a few months to a
few years.

The concept architecture is borrowed from the building discipline. Architecture
in building has a long history, with well known names as Vetruvius, Gaudí , Lloyd
Wright, Koolhaas, and many many more. System architecture can be compared
with building architecture. The architecture of a building is for a large part the
experience that people get when they interact with the building, ranging from “how
does it fit in the environment?”, “what impression does it make?”, “is it nice to be
there?”, to “is it useful?”. In other words, the less tangible aspects of the perception
of the building and the experience with the building are important aspects of the
architecture. The technical aspects of the structure and the construction of the
building are also part of the architecture. The feasibility of an architectural vision is
enhanced or constrained by these technical aspects. The architecture is a dynamic
entity that evolves during the life-cycle of the building. Every phase has its own

particular needs. Early-on the constructibility is important; later the usability and
adaptability, and finally the disposability, become the points of attention.

In this book the system architecture is a close metaphor of the building archi-
tecture. The system architecture covers both the external aspects, often intangible
such as perception and experience, and the internal aspects, often more tangible
such as structure and construction. Note that this definition of architecture is
rather broad, much broader for instance than usual in the software architecture
community, see the Software Engineering Institute (SEI) inventory [8] for a much
wider variation of definitions for architecture. Essential in this definition is the
inclusion of the user context in architecture.

preceding
architecture
 architecting
 architecture

PCP team

architect,
project leader,

engineers,

product manager

problem knowledge

solution knowledge

business context

technology context

human context

legend

stakeholders

expectations, needs,

concerns, constraints

Figure 1.1: Architecting = creating an architecture

The activity of creating an architecture is called architecting, see Figure 1.1.
The process of creating a new product is called Product Creation Process (PCP). A
multi-disciplinary team, the PCP team, creates the product. The input to the PCP
comes from all stakeholders, with their needs, concerns, expectations, et cetera.
The architect is responsible for the quality of the architecture: a system that meets
the stakeholder’s expectations, that provides the stakeholders with an attractive and
useful experience, and that can be realized by the PCP team.

The architecting activity transforms problem and solution know how into a new
architecture. In most cases the architecting is done by adapting preceding archi-
tectures. The preceding architecture is an input for the architecting effort. Green
field architectures (problems without existing architecture, or where the existing
architecture can be completely ignored) are extremely rare.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 3

1.2 Description of the Business Context

Architecting methods are positioned in the business context by means of a variant
of the “BAPO”-model [16]. The business objectives of the company are the main
inputs for architecting: generating market share, profit, ratio between sales and
investments, et cetera. The specific business objectives depend strongly on the
domain: the type of product, customers, competition, application and market.

product creation

Business
 Architecting

method

People

Process

Organisation

sets targets

supports

supports

fits in

enables

perform

Figure 1.2: The business context of architecting methods

The business context is shown in Figure 1.2. The business will set targets
for the architecting methods, the architecting methods will support the business.
The product creation uses an architecting method to develop new products. The
architecting method must fit in the processes and the organization. People do the
real work, the method should help people to architect the desired system.

1.3 Internal Stakeholders

Many stakeholders in the business context are involved in the creation, production,
sales and service of the products. All these operational stakeholders have their own
concerns. These concerns translate into needs that influence the product specifi-
cation. Figure 1.3 shows the internal stakeholders as annotation to figure 1.2.

product creation

Business
 Architecting

method

People

Process

Organisation

sets targets

supports

supports

fits in

enables

perform

policy and planning

business, marketing,

operational managers

product creation

project leader, product

manager, engineers,

suppliers

customer-oriented

sales, service,

production, logistics

people, process,

and technology

capability managers,

technology suppliers

Figure 1.3: Stakeholders of the product creation within a company itself

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 4

The policy and planning process sets the strategy and anticipates on the longer
term future. The scope of this process is at portfolio level. The policy and planning
process has the overview and strategic insight to allow decisions about product
synergy and optimizations across products and product families. Also decisions
about involving partners and the degree of outsourcing are taken here. These
internal strategic considerations also translate into operational requirements.

The customer-oriented process covers the entire order realization process as
well as the sales and life-cycle support (service) processes. Manufacturability,
serviceability, and many more requirements are determined by these stakeholders.

All specification and design work is done in the product creation process.
Many contacts with internal and external suppliers take place during product creation.
The operational needs of this process, such as work breakdown, test models, et
cetera, also result in operational requirements.

The people, process, and technology management is concerned with processes,
methods, tools, skills of people, intellectual property, and technology development.
These concerns will sometimes result in operational requirements. Care should be
taken that the justification of these requirements is clear. From a business point of
view these issues are means that must serve the business goals, not the other way
around.

1.4 Acknowledgements

Richard George attended me on the correct spelling of Lloyd Wright.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 5

Chapter 2

Overview of CAFCR and
Threads of Reasoning

explore

specific details

submethods

framework

integration

via qualities

reasoning

story
 use

case
analyse

design

detailed

design
analyse

design

a priori solution know-how
market

vision

safety

performance

+ key drivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

and many more

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

method outline
 method visualization

throughput
 processing

library

diagnostic

quality

image

quality
 IQ spec

pixel

depth

CPU

budget

typical

case

common

console

memory

limit

BoM
 Moore's

law

purchase

price
CoO

render

engine

M'

S

M

B

U"

P'

T

U

U'
 P

profit margin

standard workstation

memory budget

2.1 Introduction

At the beginning of the creation of a new product the problem is often ill-defined
and only some ideas exist about potential solutions. The architecting effort must
change this situation in the course of the project into a well articulated and struc-
tured understanding of both the problem and its potential solutions. Figure 2.1
shows that basic methods and an architecting method enable this architecting effort.

The basic methods are methods that are found in a wide range of disciplines, for
example to analyze, to communicate, and to solve problems. These basic methods
are discussed in Chapter ??.

An overview of the architecting method is given in Section 2.2. The archi-
tecting method contains multiple elements: a framework, briefly introduced in
Section 2.3, and submethods and integrating methods, which are described in
part II.

architecture description:

• articulated

• structured

problem
and
solution

know-how
architecting

vague notion

of the
 problem

vague notion

of
potential solutions

basic

methods

architecting method:

• framework

• submethods

• integration methods

Spec

D
es

ig
n

R
ep

or
t

Figure 2.1: An architecting method supports the architect in his process to go from
a vague notion of the problem and a vague notion of the potential solutions to a
well articulated and structured architecture description

2.2 Architecting Method Overview

Figure 19.6 shows the overall outline of the architecting method. The right hand
side shows the visualization as it will be used in the later chapters. The framework
is a decomposition into five views, the “CAFCR” model, see Section 2.3.

Per view in the decomposition a collection of submethods is given. The collec-
tions of submethods are open-ended. The collection is filled by borrowing relevant
methods from many disciplines.

A decomposition in itself is not useful without the complementing integration.
Qualities are used as integrating elements. The decomposition into qualities is
orthogonal to the “CAFCR” model.

The decomposition into CAFCR views and into qualities both tend to be rather
abstract, high level or generic. Therefore, a complementary approach is added to
explore specific details: story telling. Story telling is the starting point for specific
case analysis and design studies.

These approaches are combined into a thread of reasoning: valuable insights
in the different views in relation to each other. The basic working methods of the
architect and the decompositions should help the architect to maintain the overview
and to prevent drowning in the tremendous amount of data and relationships. The
stories and detailed case and design studies should help to keep the insights factual.

2.3 The CAFCR Model

The “CAFCR” model is a decomposition of an architecture description into five
views, as shown in Figure 2.3. The customer objectives view (what does the

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 7

explore

specific details

submethods

framework

integration

via qualities

reasoning

story
 use

case
analyse

design

detailed

design
analyse

design

a priori solution know-how
market

vision

safety

performance

+ key drivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

and many more

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

method outline
 method visualization

throughput
 processing

library

diagnostic

quality

image

quality
 IQ spec

pixel

depth

CPU

budget

typical

case

common

console

memory

limit

BoM
 Moore's

law

purchase

price
CoO

render

engine

M'

S

M

B

U"

P'

T

U

U'
 P

profit margin

standard workstation

memory budget

Figure 2.2: The outline of the architecting method with the corresponding visual-
ization that will be used in the later chapters.

customer want to achieve) and the application view (how does the customer realize
his goals) capture the needs of the customer. The needs of the customer (what and
how) provide the justification (why) for the specification and the design.

Customer

What

Customer

How

Product

What

Product

How

What
does Customer need

 in Product and
 Why
?

drives, justifies, needs

enables, supports

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

Figure 2.3: The “CAFCR” model

The functional view describes the what of the product, which includes (despite
its name) the non-functional requirements.

The how of the product is described in the conceptual and realization views.
The how of the product is split into two separate views for reasons of stability:
the conceptual view is maintained over a longer time period than the fast changing

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 8

realization (Moore’s law!).

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

intention

constraint

awareness

objective

driven

context

understanding

oppor-

tunities

know how

based

Customer

What

Customer

How

Product

What

Product

How

What
does Customer need

 in Product and
 Why
?

Figure 2.4: Iteration over the CAFCR views and the operational view. The task of
the architect is to integrate all these viewpoints, in order to get a valuable, usable
and feasible product.

The job of the architect is to integrate these views in a consistent and balanced
way, in order to get a valuable, usable and feasible product. Architects do this job
by continuously iterating over many different viewpoints, sampling the problem
and solution space in order to build up an understanding of the business. This
is a top-down approach (objective driven, based on intention and context under-
standing) in combination with a bottom-up approach (constraint aware, identifying
opportunities, know-how based), see Figure 2.4.

The CAFCR model in Figure 2.4 is focused on the relation between the customer
world and the product. Another dimension that plays a role in specification and
design is the operational view. The operational view describes the internal require-
ments of the company: what is needed for the operation of the company? The
CAFCR model is focused on the customer world: what determines value and
usability of a product? The business feasibility of a product is largely determined
by the operation of the company: satisfactory margins, service levels, potential for
the future. Strategic requirements of the company, which are important for the long
term operation, are also part of the operational view.

The customer views and operational view are asymmetric. The customer world
is outside the scope of control of the company. Customers have a free will, but
act in a complex environment with legislation, culture, competition, and their
own customers, who determine their freedom of choices. The operational way of
working of a company is inside the scope of control of the company. The company
is also constrained by many external factors. Within these constraints, however,
the company decides itself how and where to manufacture, to sell, and to provide

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 9

service. The operation of the company is organized in such a way that it supports
its customers. The asymmetry is that a company will never tell its customers to
organize in a way that eases the operation of the company1. The operational view
is subject to the customer views.

The CAFCR views and the operational view must be used concurrently, not
top down as in the waterfall model. However, at the end of the architecting job a
consistent description must be available, see [17]. The justification and the needs
are expressed in the Customer Objectives View, the Application View, and the
operational view. The technical solution as expressed in the Conceptual View and
the Realization View supports the customer to achieve his objectives and support
the company in the operation. The Functional View is the interface between problem
and solution world.

The CAFCR model will be used in this thesis as a framework for a next level
of submethods. Although the five views are presented here as sharp disjunct views,
many subsequent models and methods don’t fit entirely into one single view. This
in itself is not a problem; the model is a means to build up understanding, it is not
a goal in itself.

The “CAFCR” model can be used recursively: many customers are part of a
longer value chain and deliver products to customers themselves. Understanding
of the customer’s customer improves the understanding of the requirements.

The notion of the customer is misleading. Many products have an extensive set
of stakeholders in the customer domain. One category of customer stakeholders are
decision makers such as: CEO (Chief Executive Officer), CFO (Chief Financial
Officer), CIO (Chief Information Officer), CMO (Chief Marketing Officer) and
CTO (Chief Technology Officer). Another category are people actually operating
the system, such as users, operators, and maintainers. A last category mentioned
here are the more remotely involved stakeholders, such as department chiefs and
purchasers.

1In practice it is less black and white. A company interacts with its customers to find a mutual
beneficial way of working. Nevertheless, the provider-customer relationship is asymmetric. If
the provider dictates the way of working of the customer then something unhealthy is happening.
Examples of unhealthy relations can be found in companies with a monopoly position.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 10

Chapter 3

Introduction to Medical Imaging
Case Study

EasyVision:
 Medical Imaging Workstation
URF-systems

typical clinical

image (intestines)

3.1 Market and Application

The Easyvision is a medical imaging workstation that provides additional printing
functionality to URF X-ray systems, see Figure 3.1. In a radiology department
three URF examination rooms can be connected to a single Easyvision workstation.
The Easyvision can process and print the images of all three URF systems on
transparent film. The radiologist is viewing the film on a light box to perform
the diagnosis.

URF systems are used in gastrointestinal examinations. The patient has to
consume barium meal to enhance the contrast. Multiple exposures are made at
different locations in the intestines, while the barium meal progresses. The radiol-
ogist applies wedges to expose the area of interest and to minimize the X-ray dose
for the rest of the body.

Around 1990 the normal production of transparent film was performed by
means of a multi-format camera that makes screen copies of the CRT-monitor.
The operator selects every image and sends it to the camera. A typical radiology
department layout is shown in Figure 3.2.

The introduction of the Easyvision made it possible to connect three exami-
nation rooms via an Easyvision to a digital laserprinter. Figure 3.2 shows that the

EasyVision:
 Medical Imaging Workstation
URF-systems

typical clinical

image (intestines)

Figure 3.1: Easyvision serving three URF examination rooms

Examination

Room

Control

Room

Reading

Room

Corridor

or closet

Examination

Room

Control

Room

printer

light box

detector

X ray

source
 console

Figure 3.2: X-ray rooms with Easyvision applied as printserver

Easyvision can be positioned as a server in some cabinet, in which case the system
is used remotely, without any direct operator interaction. The Easyvision can also
be placed in one of the control rooms, thereby enabling manual processing of the
images and manual formatting of the film.

The introduction of an Easyvision can immediately be justified by reduced film
costs. Figure 3.3 shows a comparison of the conventional way of working, where
images are screen copies of the CRT-monitor, and the films obtained by means
of software formatting, where the film layout can be optimized to maximize the
number of images.

The conventional way of working results in many duplicates of the textual
information around the image itself, because for each image the complete screen
is copied. This is a waste of film space. On top of that all the textual information
is high contrast information, which is distracting while viewing for the diagnosis.
The digital availability of images opens all kinds of possibilities. The simplest

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 12

old: screen copy
 new: SW formatting

20 to 50% less

film needed

Figure 3.3: Comparison screen copy versus optimized film

is the separation of duplicate text information and images, which makes a much
higher packing of images possible. Secondary possibilities are automatic shutter
detection and zoom-to-shutter.

3.2 Technology

product policy:

standard HW

SW "only"

40 MHz CPU

64 MByte memory

10 MBit/s ethernet

1 GByte disk

image quality
 image processing

print

throughput

view

response time

ca 1 film / minute

film = 4k*5k pixels

subsecond retrieve

screen = 1k*1k

tension

Figure 3.4: Challenges for product creation

The vision of the original designers of the product was that the technological
innovation in computer hardware is so fast that proprietary hardware development
would hamper future product innovation. A product policy was chosen to create
products with the value in the software, using standard off-the-shelf hardware. This
policy is potentially in conflict with the performance and image quality require-
ments. This challenge is shown and annotated in Figure 3.4.

Two types of performance are important in this product: throughput (the amount
of film sheets printed per hour) and response time (the user interface response
time should be subsecond for image retrieval). This performance must be achieved
with a minimal guarantee in image quality. For instance, pixel replication for still
images on screen is not acceptable, while bi-cubic interpolation is required for the
high resolution of the film images. These requirements must be realized with the
workstation in the 5 to 10 k$ range of that time, which corresponds with a 40 MHz

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 13

SW

HW
desk, cabinet

laser printer
laser printer

workstation
optical disc

laser printer

operating system

application
 application

framework, libraries

remote control

make

buy

network

legend

to
ols

Figure 3.5: Top-level decomposition

CPU and a maximum amount of memory of 64 MByte. The examination rooms are
connected to the system via 10 Mbit ethernet, which was state of the art in 1990.

Figure 3.5 shows the top-level decomposition of the system. Most hardware
is off-the-shelf. A custom remote control was added to obtain a very direct and
intuitive user interface. In order to fit the system in the hospital environment, the
packaging of the system was also customized. The packaging part of the system
was decoupled from the hardware innovation rate by a box in a box concept: the
off-the-shelf computer box was mounted in a larger deskside-cabinet.

The software is based on a standard operating system (Unix), but the libraries,
framework and applications are tailor-made. The framework and libraries contain
a lot of clinical added value, but the end user value is in the applications.

The designers of Easyvision introduced many technological innovations in a
relatively conservative product creation environment. The following list shows the
technological innovations introduced in the Easyvision:

• standard UNIX-based workstation

• full SW implementation, more flexible

• object-oriented design and implementation (Objective-C)

• graphical User Interface, with windows, mouse et cetera

• call back scheduling, fine-grained notification

• data base engine: fast, reliable and robust

• extensive set of toolboxes

• property-based configuration

• multiple coordinate spaces

The introduction of these innovations enabled the later successful expansion into

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 14

a family of products, with many application innovations. In Part III we will show
some of these innovations in more detail and in relation to the product value.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 15

Part II

Theory of architectural reasoning

Chapter 4

Basic Working Methods of a
System Architect

t
processing
= t
overhead
+
n
rows
* t
row
+
n
row
* n
col
* t
pixel

formal analytical model

Req

Ack

Strobe

synchronization model

position

control

actual

position

required

position

(time)

feedback frequency:

4 kHz (0.25
 msec)

feedback model

model of

coordinate system

semiconductor

supplier

box-maker

consumer

retailer
 service

provider

content

provider

value chain model

x

y

z

R
z

R
x

R
y

6 degrees

of freedom

mockup

wooden model

4.1 Introduction

The basic working methods of the architects are covered by a limited set of very
generic patterns:

• Viewpoint hopping, looking at the problem and (potential) solutions from
many points of view, see section 4.2.

• Decomposition, breaking up a large problem in smaller problems, intro-
ducing interfaces and the need for integration, see section 4.3.

• Quantification, building up understanding by quantification, from order of
magnitude numbers to specifications with acceptable confidence level, see
section 4.4.

• Decision making when lots of data is missing, see section 4.5.

• Modelling, as means of communication, documentation, analysis, simulation,
decision making and verification, see section 4.6.

• Asking Why, What, How, Who, When, Where questions, see section 4.7.

• Problem solving approach, see section 4.8.

Besides these methods the architect needs lots of “soft” skills, to be effective
with the large amount of different people involved in creating the system. See [19], [13]
and [14] for additional descriptions of the work and skills of the architect.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 18

4.2 Viewpoint hopping

manufac-

turing

SW

engineer

RF

engineer

project

leader

sales

manager

operator

problem

security

ease of

use

power

tools

differen-

tiation

street

price

space

adjust-

ments

timing

fte's

data

model

functions

architect

financial

manager

cost of

ownership

balance

integration

stake-

holder

concern

Figure 4.1: Small subset of viewpoints

The architect is looking towards problems and (potential) solutions from many
different viewpoints. A small subset of viewpoints is visualized in figure 4.1, where
the viewpoints are shown as stakeholders with their concerns.

security

ease of

use

power

tools

differen-

tiation

street

price

space

adjust-

ments

timing

fte's

data

model

functions

cost of

ownership

balance

integration

cost of

ownership

manufac-

turing

SW

engineer

RF

engineer

project

leader

operator

architect
manufac-

turing

financial

manager

sales

manager

SW

engineer

RF

engineer

project

leader

sales

manager

operator

architect
financial

manager

Figure 4.2: Viewpoint Hopping

The architect is interested in an overall view on the problem, where all these
viewpoints are present simultaneously. The limitations of the human brains force
the architect to create an overall view by quickly alternating the individual viewpoints.
The order in which the viewpoints are alternated is chaotic: problems or oppor-
tunities in one viewpoint trigger the switch to a related viewpoint. Figure 4.2
shows a very short example of viewpoint hopping. This example sequence can

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 19

take anywhere from minutes to weeks. In a complete product creation project the
architect makes thousands1 of these viewpoint changes.

le
ve

l o
f d

et
ai

l

10
6

10
5

10
4

10
3

10

10
2

subject

1/20

2/19

3/18

4

5

6

7

9

10

11
 12

13

14

15

16

17

8

thinking path

of an architect

during

a few minutes

up to 1 day

Figure 4.3: The seemingly random exploration path

Viewpoint hopping is happening quite fast in the head of the architect. Besides
changing the viewpoint the architect is also zooming in and out with respect to
the level of detail. The dynamic range of the details taken into account is many
orders of magnitude. Exploring different subjects and different levels of detail
together can be viewed as an exploration path. The exploration path followed by
the architect (in the architect’s head) appears to be quite random. Figure 4.3 shows
an example of an exploration path happening inside the architects head.

The plane used to show the exploration path has one axis with subjects, which
can be stakeholders, concerns, functions, qualities, design aspects, et cetera, while
the other axis is the level of detail. A very coarse (low level of detail) is for
example the customer key driver level (for instance cost per placement is 0.1
milli-cent/placement). Examples at the very detailed level are lines of code, cycle
accurate simulation data, or bolt type, material and size.

Both axis span a tremendous dynamic range, creating a huge space for explo-
ration. Systematic scanning of this space is way too slow. An architect is using two
techniques to scan this space, that are quite difficult to combine: open perceptive
scanning and scanning while structuring and judging. The open perceptive mode
is needed to build understanding and insight. Early structuring and judging is
dangerous because it might become a self-fulfilling prophecy. The structuring and
judging is required to reach a result in a limited amount of time and effort. See
figure 4.4 for these 2 modes of scanning.

The scanning approach taken by the architect can be compared with simulated

1Based on observations of other architects and own experience.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 20

open

perceptive

scanning

scanning

while

structuring

and
 judging

drunkard's walk

the world is full

of interesting

needs, technologies, ...

bad

bad

good

goal

straight for the goal

ignore everything

that is not contributing

directly to the goal

Figure 4.4: Two modes of scanning by an architect

annealing methods for optimization[18]. An interesting quote from this book,
comparing optimization methods:

Although the analogy is not perfect, there is a sense in which all
of the minimization algorithms thus far in this chapter correspond
to rapid cooling or quenching. In all cases, we have gone greedily
for the quick, nearby solution: From the starting point, go immedi-
ately downhill as far as you can go. This, as often remarked above,
leads to a local, but not necessarily a global, minimum. Nature’s own
minimization algorithm is based on a quite different procedure...

time

room for

open perceptive

exploration
 increasing goal

orientation

Figure 4.5: Combined open perceptive scanning and goal-oriented scanning

See also figure 4.5 for the combined scanning path. The perceptive mode is
used more early in the project, while at the end of the project the goal oriented
mode is dominant.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 21

covered or touched by architects

covered by engineers and experts

le
ve

l o
f d

et
ai

l

subjects

Figure 4.6: The final coverage of the problem and solution space by architect and
engineers

The coverage of the problem and solution space is visualized in figure 4.6.
Note that the area covered or touched by the architect(s) is not exclusively covered,
engineers will also cover or touch that area partially. The architect needs experience
to learn when to dig deeper and when to move on to next subjects. Balancing depth
and breadth is still largely an art.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 22

4.3 Decomposition and integration

The architect applies a reduction strategy by means of decomposition over and
over, as shown in figure 4.7. Decomposition is a very generic principle. Decompo-
sition can be applied for many different problem and solution dimensions, as will
be shown in the later sections.

system

subsystem

subsystem

subsystem

subsystem
subsystem

interface

subsub

system

subsub

system

subsub

system

Figure 4.7: Decomposition, interface management and integration

Whenever something is decomposed the resulting components will be decoupled
by interfaces. The architect will invest time in interfaces, since these provide a
convenient method to determine system structure and behavior, while decoupling
the inside of these components from their external behavior.

The true challenge for the architect is to design decompositions, that in the
end will support an integration of components into a system. Most effort of the
architect is concerned with the integrating concepts, how do multiple components
work together?

Many stakeholders perceive the decomposition and the interface management
as the most important contribution. The synthesis or integration part is more
difficult and time consuming, and will be perceived as the main contribution by
the architect.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 23

4.4 Quantification

The architect is continuously trying to improve his understanding of problem and
solution. This understanding is based on many different interacting insights, such
as functionality, behavior, relationships et cetera. An important factor in under-
standing is the quantification. Quantification helps to get grip on the many vague
aspects of problem and solution. Many aspects can be quantified, much more than
most designers are willing to quantify.

order of magnitude

guestimates

calibrated estimates

10

50
 200

30
 300

100
30
 300

70
 140

90
115

feasibility
measure,

analyze,

simulate

back of the

envelope

benchmark,

spreadsheet

calculation

99.999
 100.001
cycle

accurate

Figure 4.8: Successive quantification refined

The precision of the quantification increases during the project. Figure 4.8
shows the stepwise refinement of the quantification. In first instance it is important
to get a feeling for the problem by quantifying orders of magnitude. For example:

• How large is the targeted customer population?

• What is the amount of money they are willing and able to spend?

• How many pictures/movies do they want to store?

• How much storage and bandwidth is needed?

The order of magnitude numbers can be refined by making back of the envelop
calculations, making simple models and making assumptions and estimates. From
this work it becomes clear where the major uncertainties are and what measure-
ments or other data acquisitions will help to refine the numbers further.

At the bottom of figure 4.8 the other extreme of the spectrum of quantification
is shown, in this example cycle accurate simulation of video frame processing
results in very accurate numbers. It is a challenge for an architect to bridge these
worlds.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 24

incomplete

understanding

calibration

input

100

1000

time

design

robustness

problem

w
or

se

be
tte

r

degrading

performance

measurement

design

estimate and

uncertainty

specification

finished

product

Figure 4.9: Example of the evolution of quantification in time

Figure 4.9 shows an example how the quantification evolves in time. The dotted
red line represents the required performance as defined in the specification. The
shaded area indicates the “paper” value, with its accuracy. The measurements
are shown as dots with a range bar. A large difference between paper value and
measurement is a clear indication of missing understanding. Later during the
implementation continuous measurements monitor the expected outcome, in this
example a clear degradation is visible. Large jumps in the measurements are an
indication of a design which is not robust (small implementation changes cause
large performance deviations).

process

overlay

80
nm

reticule

15
nm

matched

machine

60
nm

process

dependency

sensor

5
nm

matching

accuracy

5
nm

single

machine

30
nm

lens

matching

25
nm

global

alignment

accuracy

6
nm

stage

overlay

12
nm

stage grid

accuracy

5
nm

system

adjustment

accuracy

2
nm

stage Al.

pos. meas.

accuracy

4
nm

off axis pos.

meas.

accuracy

4
nm

metrology

stability

5
nm

alignment

repro

5
nm

position

accuracy

7
 nm

frame

stability

2.5
 nm

tracking

error phi

75
 nrad

tracking

error X, Y

2.5
 nm

interferometer

stability

1
 nm

blue align

sensor

repro

3
 nm

off axis

Sensor

repro

3
 nm

tracking

error WS

2
 nm

tracking

error RS

1
 nm

Figure 4.10: Example of a quantified understanding of overlay in a wafer stepper

Figure 4.10 shows a graphical example of an “overlay” budget for a wafer
stepper. This figure is taken from the System Design Specification of the ASML
TwinScan system, although for confidentiality reasons some minor modifications

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 25

have been applied. This budget is based on a model of the overlay functionality
in the wafer stepper. The budget is used to provide requirements for subsystems
and components. The actual contributions to the overlay are measured during
the design and integration process, on functional models or prototypes. These
measurements provide early feedback of the overlay design. If needed the budget
or the design is changed on the basis of this feedback.

4.5 Coping with uncertainty

The architect has to make decisions all the time, while most substantiating data is
still missing. On top of that some of the available data will be false, inconsistent or
interpreted wrong.

architecting time

m
os

t i
m

po
rta

nt

m
os

t c
rit

ic
al

 is
su

es

all other issues

10%
 90%

20%
80%

spent on

spent on

solved

new

Figure 4.11: The architect focuses on important and critical issues, while
monitoring the other issues

An important means in making decisions is building up insight, understanding
and overview, by means of structuring the problems. The understanding is used
to determine important (for the product use) and critical (with respect to technical
design and implementation) issues. The architect will pay most attention to these
important and critical issues. The other issues are monitored, because sometimes
minor details turn out to be important or critical issues. Figure 4.11 visualizes the
time distribution of the architect: 80% of the time is spent on 10% of the issues.

The architect will, often implicitly, work on the basis of a top 10 issue list, the
ten most relevant (important, urgent, critical) issues. Figure 4.12 shows an example
of such a “worry”-list.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 26

1. response time

from key press

until first image

on display

3. layering to separate

separation of concerns

self sustained

life-cycle separation

robust: paranoia validations

2. cost price

resource budgets

4. reliability of storage

5. database redesign

6. integration schedule

7. movement artefact

8. standby power

9. weak signal handling

10. location-based twiddle

Figure 4.12: Example worry list of an architect

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 27

4.6 Modelling

Modelling is one of the most fundamental tools of an architect.

A model is
a simplified representation of

part of the real world used for:

communication, documentation
analysis, simulation,

decision making, verification

In summary models are used to obtain insight and understanding, facilitating
communication, documentation, analysis, simulation, decision making, verification.
At the same time the architect is always aware of the (over)simplification applied
in every model. A model is very valuable, but every model has its limitations,
imposed by the simplifications.

t
processing
= t
overhead
+
n
rows
* t
row
+
n
row
* n
col
* t
pixel

formal analytical model

Req

Ack

Strobe

synchronization model

position

control

actual

position

required

position

(time)

feedback frequency:

4 kHz (0.25
 msec)

feedback model

model of

coordinate system

semiconductor

supplier

box-maker

consumer

retailer
 service

provider

content

provider

value chain model

x

y

z

R
z

R
x

R
y

6 degrees

of freedom

mockup

wooden model

Figure 4.13: Some examples of models

Models exist in a very rich variety, an arbitrary small selection of models is
shown in figure 4.13.

Models have many different manifestations. Figure 4.14 shows some of the
different types of models, expressed in a number of adjectives.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 28

visual

mathematical

linguistic

formal
 informal

quantitative
 qualitative

concrete
 abstract

executable
 read only

detailed
 global

accurate
 approximate

intuitive
rational

Figure 4.14: Types of models

Models can be mathematical, expressed in formulas, they can be linguistic,
expressed in words or they can be visual, captured in diagrams. A model can be
formal, where notations, operations and terms are precisely defined, or informal
using plain English and sketches. Quantitative models use meaningful numbers,
allowing verification and judgements. Qualitative models show relations and behavior,
providing understanding. Concrete models use tangible objects and parameters,
while abstract models express mental concepts. Some models can be executed (as
a simulation), while other models only make sense for humans reading the model.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 29

4.7 WWHWWW questions

Why

What

How

Who

When

Where

Figure 4.15: The starting words for questions by the architect

All “W” questions are an important tool for the architect. Figure 4.15 shows
the useful starting words for questions to be asked by an architect.

Why, what and how are used over and over in architecting. Why, what and
how are used to determine objectives, rationale and design. This works highly
recursively, a design has objectives and a rationale and results in smaller designs
that again have objectives and rationales. Figure 4.16 shows that the recursion with
why questions broadens the scope, and recursion with how questions opens more
details in a smaller scope.

Why

What

How

Why

What

How

Why

What

How

system

context

subsystem

Figure 4.16: Why broadens scope, How opens details

Who, where and when are used somewhat less frequently. Who, where and
when can be used to build up understanding of the context, and are used in cooper-
ation with the project leader to prepare the project plan.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 30

4.8 Decision Making Approach in Specification and Design

Many specification and design decisions have to be taken during the product creation
process. For example, functionality and performance requirements need to be
defined, and the way to realize them has to be chosen. Many of these decisions
are interrelated and have to be taken at a time when many uncertainties still exist.

1. Problem understanding
 by

exploration and simple models

2. Analysis

by

+ exploring multiple propositions (specification + design proposals)

+ exploring decision criteria (by evaluation of proposition feedback)

+ assessment of propositions against criteria

3. Decision
 by

+ review and agree on analysis

+ communicate and document

4. Monitor, verify, validate

by

+ measurements and testing

+ assessment of other decisions

insufficient data

no satisfying solution

invalidated solution

conflicting other decision

vague problem statement

Figure 4.17: Flow from problem to solution

An approach to make these decisions is the flow depicted in Figure 4.17. The
decision process is modeled in four steps. An understanding of the problem is
created by the first step problem understanding, by exploration of problem and
solution space. Simple models, in problem space as well as in solution space,
help to create this understanding. The next step is to perform a somewhat more
systematic analysis. The analysis is often based on exploring multiple propositions.
The third step is the decision itself. The analysis results are reviewed, and the
decision is documented and communicated. The last step is to monitor, verify and
validate the decision.

The analysis involves multiple substeps: exploring multiple propositions, exploring
decision criteria and assessing the propositions against the criteria. A propo-
sition describes both specification (what) and design (how). Figure 4.18 shows an
example of multiple propositions. In this example a high performance, but high
cost alternative, is put besides two lower performing alternatives. Most criteria get
articulated in the discussions about the propositions: “I think that we should choose
proposition 2, because...”. The because can be reconstructed into a criterion.

The decision to chose a proposition is taken on the basis of the analysis results.
A review of the analysis results ensures that these results are agreed upon. The

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.5

Buskerud University College

page: 31

low cost and performance 2

throughput

cost

safety

high-performance sensor

high-speed moves

20 p/m

5 k$

300 ns

10 m/s

high cost and performance

throughput

cost

safety

highperformance sensor

high-speed moves

additional collision detector

25 p/m

7 k$

200 ns

12 m/s

low cost and performance 1

throughput

cost

safety

high-performance sensor

high-speed moves

 additional pipelining

20 p/m

5 k$

350 ns

9 m/s

Figure 4.18: Multiple propositions

decision itself is documented and communicated2. In case of insufficient data
or in absence of a satisfying solution we have to back track to the analysis step.
Sometimes it is better to revisit the problem statement by going back to the under-
standing step.

Taking a decision requires a lot of follow up. The decision is in practice based
on partial and uncertain data, and many assumptions. An significant amount of
work is to monitor the consequences and implementation of the decision. Monitoring
is partially a soft skill, such as actively listening to engineers, and partially a
engineering activity such as measuring and testing. The consequence of a measurement
can be that the problem has to be revisited, starting again with the understanding
for serious mismatches (“apparently we don’t understand the problem at all”) or
direct into the analysis for smaller mismatches.

The implementation of taken decisions can be disturbed by later decisions.
This problem is partially tackled by requirements traceability, where known inter-
dependencies are managed explicitly. In the complex real world the amount of
dependencies is almost infinite, that means that the explicit dependability specifi-
cations are inherently incomplete and only partially understood. To cope with the
inherent uncertainty about dependabilities, an open mind is needed when screening
later decisions. A conflict caused by a later decision triggers a revisit of the original
problem.

The same flow of activities is used recursively at different levels of detail, as
shown in Figure 4.19. A system problem will result in a system design, where many
design aspects need the same flow of problem solving activities for the subsystems.
This process is repeated for smaller scopes until termination at problems that can
be solved directly by an implementation team. The smallest scope of termination is
denoted as atomic level in the figure. Note that the more detailed problem solving
might have impact on the more global decisions.

2This sounds absolutely trivial, but unfortunately this step is performed quite poorly in practice.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.3

Buskerud University College

page: 32

1. Problem

understanding

2. Analysis

3. Decision

4. Monitor,

verify, validate

1. Problem

understanding

2. Analysis

3. Decision

4. Monitor,

verify, validate

1. Problem

understanding

2. Analysis

3. Decision

4. Monitor,

verify, validate

1. Problem

understanding

2. Analysis

3. Decision

4. Monitor,

verify, validate

system level

subsystem level

atomic level

component level

analysis flow

decision flow

legend

Figure 4.19: Recursive and concurrent application of flow

4.9 Acknowledgements

The team of composable architectures, with the following members Pierre America,
Marcel Bijsterveld, Peter van den Hamer, Jürgen Müller, Henk Obbink, Rob van
Ommering, and William van der Sterren within Philips Research provided valuable
feedback for this article

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.3

Buskerud University College

page: 33

Chapter 5

The customer objectives view

C
ustomer

objectives

key drivers

value chain and

business models

supplier map

Safety

Effective

Flow

Smooth

Operation

Reduce Accident rates

Enforce law

Improve Emergency Response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimise road surface

Speed up target groups

Anticipate on future traffic condition

Ensure Traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Key drivers
 Derived application drivers

Environment

Early hazard detection with

warning and signalling

Maintain safe road condition

Classify and track dangerous

goods vehicles

Detect and warn

non compliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

television
set top

box
set top

box
 television

television
set top

box

head end

head end

supplier 1

supplier 2

supplier 3

supplier 4

supplier 5

competitors or

complementors?

Providers

UPC

Canal+
 AOL

AT&T

Retailers

Fry's

Dixon

Consumers
 Boonstra

Peper

Kok
Chirac

Blair

Pietersen

Smith

Jones

Jansen

Muller

Kleisterlee

Clinton

v.d. Spijker

Meulengraaf

der Kinderen

Reinders

Bush

Rooyakkers

de Vries

Koch

d'Oliviera

van Oranje

Obbink

v.d. Hamer
 Charite

Cruijf

Neeskens
van Hanegem

Goedkoop

Sharon

El Khatabi

de Gruijter

Heijn

Schijvens

Waterreus

Leonardo

van Bommel

Nistelrooij

Gandhi

Pinochet

Bakker

v.d. Meulen

Hoessein

Schroder

Schweitzer

Peters

Gore

System Integrators

Sony
 Philips CE-DN

Loewe

Nokia
Philips CE-TV

Philips CE-PCC

Component and

Platform Suppliers

Philips Semiconductors

Philips Components
 ST

TI

Samsung

Microsoft

Intel

Liberate

Micron

LG

It's

Prodi

A
pplication
 F
unctional
 C
onceptual
 R
ealisation

5.1 Introduction

The customer objectives view describes the goals of the customer, the what. The
goal of articulating these objectives is to better understand the needs and therefore
to be able to design a better product.

In searching the objectives some focus on the product is needed, although the
architect must keep an open mind. The architect must prevent a circular reasoning,
starting from the product functionality and, blinded by the product focus, finding
only objectives matching with this same functionality.

Ideally the trade-offs in the customer domain become clear. For instance what
is the trade-off between performance and cost, or size and performance or size and
cost. The key driver method articulates the essence of the customer needs in a
limited set of drivers.

The customer is often driven by his context. Some of the models and methods
described here address ways to understand the customer context, such as value
chains and business models. Value chains and business models are used to address
the customer’s customer. The supplier map addresses the supplying side of the
customer.

Figure 5.1 shows an overview of the methods in the customer objectives view.

C
ustomer

objectives

key drivers

value chain and

business models

supplier map

Safety

Effective

Flow

Smooth

Operation

Reduce Accident rates

Enforce law

Improve Emergency Response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimise road surface

Speed up target groups

Anticipate on future traffic condition

Ensure Traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Key drivers
 Derived application drivers

Environment

Early hazard detection with

warning and signalling

Maintain safe road condition

Classify and track dangerous

goods vehicles

Detect and warn

non compliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

television
set top

box
set top

box
 television

television
set top

box

head end

head end

supplier 1

supplier 2

supplier 3

supplier 4

supplier 5

competitors or

complementors?

Providers

UPC

Canal+
 AOL

AT&T

Retailers

Fry's

Dixon

Consumers
 Boonstra

Peper

Kok
Chirac

Blair

Pietersen

Smith

Jones

Jansen

Muller

Kleisterlee

Clinton

v.d. Spijker

Meulengraaf

der Kinderen

Reinders

Bush

Rooyakkers

de Vries

Koch

d'Oliviera

van Oranje

Obbink

v.d. Hamer
 Charite

Cruijf

Neeskens
van Hanegem

Goedkoop

Sharon

El Khatabi

de Gruijter

Heijn

Schijvens

Waterreus

Leonardo

van Bommel

Nistelrooij

Gandhi

Pinochet

Bakker

v.d. Meulen

Hoessein

Schroder

Schweitzer

Peters

Gore

System Integrators

Sony
 Philips CE-DN

Loewe

Nokia
Philips CE-TV

Philips CE-PCC

Component and

Platform Suppliers

Philips Semiconductors

Philips Components
 ST

TI

Samsung

Microsoft

Intel

Liberate

Micron

LG

It's

Prodi

A
pplication
 F
unctional
 C
onceptual
 R
ealisation

Figure 5.1: Overview of Customer Objectives View methods

5.2 Key drivers

The essence of the objectives of the customers can be captured in terms of customer
key drivers. The key drivers provide direction to capture requirements and to focus
the development. The key drivers in the customer objectives view will be linked
with requirements and design choices in the other views. The key driver submethod
gains its value from relating a few sharp articulated key drivers to a much longer
list of requirements. By capturing these relations a much better understanding of
customer and product requirements is achieved.

Figure 5.2 shows an example of key drivers for a motorway management system,
an analysis performed at Philips Projects in 1999.

Figure 5.3 shows a submethod how to obtain a graph linking key drivers to
requirements. The first step is to define the scope of the key driver graph. For
Figure 5.2 the customer is the motorway management operator. The next step is to
acquire facts, for example by extracting functionality and performance figures out
of the product specification. Analysis of these facts recovers implicit facts. The
requirements of an existing system can be analyzed by repeating why questions.
For example: “Why does the system need automatic upstream accident detection?”.
The third step is to bring more structure in the facts, by building a graph, which

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.3

Buskerud University College

page: 35

Safety

Effective

Flow

Smooth

Operation

Environment

Reduce accident rates

Enforce law

Improve emergency

response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimize road surface

Speed up target groups

Anticipate on future traffic condition

Ensure traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Early hazard detection

with
 warning
and
signaling

Maintain safe road

condition

Classify and track dangerous

goods vehicles

Detect and warn

noncompliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

Key-drivers
 Derived application drivers
 Requirements

Automatic upstream

accident detection

Weather condition

dependent control

Deicing

Traffic condition

dependent speed control

Traffic speed and

density measurement

Note: the graph is only partially elaborated

for application drivers and requirements

Cameras

Figure 5.2: Example of the four key drivers in a motorway management system

• Build a graph of relations between drivers and requirements

by means of brainstorming and discussions

• Define the scope specific.
 in terms of
 stakeholder
 or
market segments

• Acquire and analyze facts
 extract
facts
from the
product specification

a
nd ask
 why questions
 about the
 specification

of
existing products
 .

• Iterate many times
 increased understanding
 often triggers the
 move
of issues

from
driver
to
requirement
 or vice versa and
 rephrasing

where
requirements

may have
multiple
drivers

• Obtain feedback
 discuss with
 customers
 ,
observe
their
reactions

Figure 5.3: Submethod to link key drivers to requirements, existing of the iteration
over four steps

connects requirements to key drivers. A workshop with brainstorms and discus-
sions is an effective way to obtain the graph. The last step is to obtain feedback
from customers. The total graph can have many n:m relations, i.e. requirements
that serve many drivers and drivers that are supported by many requirements. The
graph is good if the customers are enthusiastic about the key drivers and the derived
application drivers. If a lot of explaining is required then the understanding of the
customer is far from complete. Frequent iterations over these steps improves the
quality of the understanding of the customer’s viewpoint. Every iteration causes
moves of elements in the graph in driver or requirement direction and also causes
rephrasing of elements in the graph.

Figure 5.4 shows an additional set of recommendations for applying the key
driver submethod. The most important goals of the customer are obtained by

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.3

Buskerud University College

page: 36

• Use short names, recognized by the customer.

• Limit the number of key-drivers
 minimal
3
, maximal
6

for instance the well-known
 main function
 of the product
• Don’t leave out the obvious key-drivers

for instance replace “
 ease of use
 ” by

“
minimal number of actions for experienced users
 ”,

or “
efficiency
” by “
integral cost per patient
 ”

• Use market-/customer- specific names, no generic names

• Do not worry about the exact boundary between

Customer Objective and Application

create clear
 goal means
 relations

Figure 5.4: Recommendations for applying the key driver submethod

limiting the number of key drivers. In this way the participants in the discussion
are forced to make choices. The focus in product innovation is often on differen-
tiating features, or unique selling points. As a consequence, the core functionality
from the customer’s point of view may get insufficient attention. An example of
this are cell phones that are overloaded with features, but that have a poor user
interface to make connections. The core functionality must be dominantly present
in the graph. The naming used in the graph must fit in the customer world and be
as specific as possible. Very generic names tend to be true, but they do not help to
really understand the customer’s viewpoint. The boundary between the Customer
Objectives view and the Application view is not very sharp. When creating the
graph that relates key drivers to requirements one frequently experiences that a key
driver is phrased in terms of a (partial) solution. If this happens either the key driver
has to be rephrased or the solution should be moved to the requirement (or even
realization) side of the graph. A repetition of this kind of iterations increases the
insight in the needs of the customer in relation to the characteristics of the product.
The why, what and how questions can help to rephrase drivers and requirements.
The graph is good if the relations between goals and means are clear for all stake-
holders.

5.3 Value chain and business models

The position of the customer in the value chain and the business models deployed
by the players in the value chain are important factors in understanding the goals
of this customer.

Figure 5.5 shows an example value chain from the Consumer Electronics Domain.
At the start of the chain are the component suppliers, making chips and other
elementary components such as optical drives, displays, et cetera. These compo-
nents are used by system integrators, building the consumer appliances, such as
televisions, set top boxes and cellphones. Note that this value chain is often longer

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.3

Buskerud University College

page: 37

than shown here, where components are aggregated in larger components into
subassemblies and finally into systems.

Providers

UPC

Canal+
 AOL

AT&T

Retailers

Fry's

Dixon

Consumers
 Boonstra

Peper

Kok
Chirac

Blair

Pietersen

Smith

Jones

Jansen

Muller

Kleisterlee

Clinton

v.d. Spijker

Meulengraaf

der Kinderen

Reinders

Bush

Rooyakkers

de Vries

Koch

d'Oliviera

van Oranje

Obbink

v.d. Hamer
 Charite

Cruijf

Neeskens
 van Hanegem

Goedkoop

Sharon

El Khatabi

de Gruijter

Heijn

Schijvens

Waterreus

Leonardo

van Bommel

Nistelrooij

Gandhi

Pinochet

Bakker

v.d. Meulen

Hoessein

Schroder

Schweitzer

Peters

Gore

System Integrators

Sony
 Philips CE-DN

Loewe

Nokia
Philips CE-TV

Philips CE-PCC

Component and

Platform Suppliers

Philips Semiconductors

Philips Components
 ST

TI

Samsung

Microsoft

Intel

Liberate

Micron

LG

It's

Prodi

Figure 5.5: Example value chain

The consumer appliances itself are distributed through 2 different channels:
the retailers and the service providers. Retailers sell appliances directly to the
consumers, earning their money with this appliance sales and sometimes also with
maintenance contracts for these appliances. Providers sell services (for instance
telecom, internet), where the appliance is the means to access these services. The
providers earn their money via the recurring revenues of the services.

Retailers and service providers have entirely different business models, which
will be reflected by differences in the key drivers for both parties.

Reality is even much more complicated. For instance adding the content providers
to the value chain adds an additional set of business models, with a lot of conflicting
interests (especially Digital Rights Management, which is of high importance for
the content providers, but is often highly conflicting with (legal) consumer interests).

5.4 Suppliers

The value chain must be described from the point of view of the customer. The
customer sees your company as one of the (potential) suppliers. From the customer
point of view products from many suppliers have to be integrated to create the total
solution for his needs.

In terms of your own company this means that you have to make a map of
competitors and complementers, which together will supply the solution to the
customer. Figure 5.6 shows an example of a simple supplier map for a cable

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.2

Buskerud University College

page: 38

television
set top

box
set top

box
 television

television
cable set

top box

head end

competitors or complementers?

content

consumer world

consumer
Suppliers of appliances, services and

content are colour coded.

The customer does business with

many suppliers, and has to integrate

the products of many suppliers

cable

content

head end
content

Sony

Disney

Sony
 Sony

Philips

Philips

Philips

cable provider

UPC

NDS
 Sagem
 Loewe

Figure 5.6: Example of simple supplier map for a cable provider

provider. If your company is delivering set top boxes, then some companies can be
viewed as competitor and complementer at the same time.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.2

Buskerud University College

page: 39

Chapter 6

The application view

URF examination room

changing room

waiting room

patient 1, intestinal investigation

patient 2, simple X-ray

patient 3, intestinal investigation

patient 4, intestinal

investigation

patient 5, intestinal investigation

8:30
 9:00
 9:30
 10:00
 10:30

6.1 Introduction

The application view is used to understand how the customer is achieving his objec-
tives. The methods and models used in the application view should discuss the
customer’s world. Figure 6.1 shows an overview of the methods discussed here.

The customer is a gross generalization, which can be made more specific by
identifying the customer stakeholders and their concerns, see section 6.2.

The customer is operating in a wider world, which he only partially controls. A
context diagram shows the context of the customer, see section 6.3. Note that part
of this context may interface actively with the product, while most of this context
simply exists as neighboring entities. The fact that no interface exists is no reason
not to take these entities into account, for instance to prevent unwanted duplication
of functionality.

The customer domain can be modelled in static and dynamic models. Entity
relationship models (section 6.4) show a static view on the domain, which can be
complemented by dynamic models (section 6.5).

Customer

objectives Application
Functional Conceptual Realisation

stakeholders and concerns context diagrams

video recorder

TV

tuner

storage

TV

screen

movies

sports

news

soaps

channel transmits

se
le
ct
s

tuner

content

life

canned

age, sex,

violence

attributes

described
by

parents

children

in
fo
rm

s

entity relationship models

URF examination room

changing room

waiting room

patient 1, intestinal investigation

patient 2, simple X-ray

patient 3, intestinal investigation

patient 4, intestinal

investigation

patient 5, intestinal investigation

8:30 9:00 9:30 10:00 10:30

dynamic models

Figure 6.1: Overview of methods and models that can be used in the application
view

6.2 Customer stakeholders and concerns

In the daily use of the system many human and organizational entities are involved,
all of them with their own interests. Of course many of these stakeholders will also
appear in the static entity relationship models. However human and organizations
are very complex entities, with psychological, social and cultural characteristics,
all of them influencing the way the customer is working. These stakeholders have
multiple concerns, which determine their needs and behavior. Figure 6.2 shows
stakeholders and concerns for an MRI scanner.

The IEEE 1471 standard about architectural descriptions uses stakeholders and
concerns as the starting point for an architectural description.

Identification and articulation of the stakeholders and concerns is a first step in
understanding the application domain. The next step can be to gain insight in the
informal relationships. In many cases the formal relationships, such as organization
charts and process descriptions are solely used for this view, which is a horrible
mistake. Many organizations function thanks to the unwritten information flows
of the social system. Insight in the informal side is required to prevent a solution
which does only work in theory.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.2

Buskerud University College

page: 41

patient

comfort

health

nurse

patient

ease of work

operator

ease of use

cleaner

accessibility

safety

inspection

quality

maintainer

accessibility

safety

radiologist

diagnosis
reimburstment

insurance

cost of care

facility man.

space

service supp.

ref. physician

diagnosis

treatment

financial dir.

cash flow

cost of op.

IT dep.

conformance

security

general

practitioner

patient

administration

patient id

invoice

government

cost of care

administrative

clinical

support

patient

family

support

legend

Figure 6.2: Stakeholders and concerns of an MRI scanner

6.3 Context diagram

The system is operating in the customer domain in the context of the customer. In
the customer context many systems have some relationship with the system, quite
often without having a direct interface.

motorway

management

system restaurants

gas stations

bus lanes

lorry lanes

maintenance contractors

taxes

car administration

government

airports

railways
toll

tunnel

car repair

towing service

fleet management

urban traffic control

advanced vehicle control

environmental monitoring

administrative

competing or
cooperating?

sp
ecia

l

dest
in

at
io

ns

sp
ec

ia
liz

ed

se
gm

en
ts

needed for

contingencies

“add-ons”

special applications
other c

oncerns

th
ir

d
 p

ar
ty

Figure 6.3: Systems in the context of a motorway management system

Figure 6.3 shows a simple context diagram of a motorway management system.
Tunnels and toll stations often have their own local management systems, although
they are part of the same motorway. The motorway is connecting destinations, such
as urban areas. Urban areas have many traffic systems, such as traffic management
(traffic lights) and parking systems. For every system in the context questions can
be asked, such as:

• is there a need to interface directly (e.g. show parking information to people
still on the highway)

• is duplication of functionality required (measuring traffic density and sending
it to a central traffic control center)

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.2

Buskerud University College

page: 42

6.4 Entity relationship model

The OO (Object Oriented software) world is quite used to entity relationship diagrams.
These diagrams model the outside world in such a way that the system can interact
with the outside world. These models belong in the ”CAFCR” thinking in the
conceptual view. The entity relationship models advocated here model the customers
world in terms of entities in this world and relations between them. Additionally
also the activities performed on the entities can be modelled. The main purpose of
this modelling is to gain insight in how the customer is achieving his objectives.

One of the major problems of understanding the customers world is its infinite
size and complexity. The art of making an useful entity relationship model is to
very carefully select what to include in the model and therefore also what not to
include. Models in the application view, especially this entity relationship model,
are by definition far from complete.

video recorder

TV

tuner

storage

TV

screen

movies

sports

news

soaps

channel
 transmits

se
le

ct
s

tuner

content

live

canned

age, sex,

violence

attributes

described

by

parents

children

in
fo

rm
s

Figure 6.4: Diagram with entities and relationship for a simple TV appliance

Figure 6.4 shows an example of an entity relationship model for a simple TV.
Part of the model shows the well recognizable flow of video content (the bottom
part of the diagram), while the top part shows a few essential facts about the
contents. The layout and semantics of the blocks are not strict, these form-factors
are secondary to expressing the essence of the application.

6.5 Dynamic models

Many models, such as entity relationship models, make the static relationships
explicit, but don’t address the dynamics of the system. Many different models can
be used to model the dynamics, or in other words to model the behavior in time.
Examples are of dynamic models are shown in figure 6.5

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.2

Buskerud University College

page: 43

flow models

people

goods

information

wait for

screening

wait for

diagnose

problem
 exam

acute exam

no problem

wait for

exam
state diagrams

20:00
 20:30
 21:00
 21:30
 22:00
 22:30

broadcast

phone rings

pause viewing

finish conversation

resume viewing

start

movie

end

movie

view
 view

talk

record

play

time line

Figure 6.5: Examples of dynamic models

Productivity and Cost of ownership models are internally based on dynamic
models, although the result is often a more simplified parameterized model, see
figure 6.6.

Figure 6.7 shows an example of a time-line model for an URF examination
room. The involved rooms play an important role in this model, therefore an
example geographical layout is shown to explain the essence of the time-line model.

The patient must have been fasting for an intestine investigation. In the beginning
of the examination the patient gets a barium meal, which slowly moves through the
intestines. About every quarter of an hour a few X-ray images-images are made of
the intestines filled with barium. This type of examination is interleaving multiple
patients to efficiently use the expensive equipment and clinical personnel operating
it.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 44

productivity

model

use

events

configuration

working

conditions

typical

production

rate

personnel

consumables

service

facilities

financing
 10

20

30

40

50

60

radiologist

nurse

security

administration

operator

Cost Of Ownership model

Figure 6.6: Productivity and cost models

URF examination room

changing room

waiting room

patient 1, intestinal investigation

patient 2, simple X-ray

patient 3, intestinal investigation

patient 4, intestinal

investigation

patient 5, intestinal investigation

8:30
 9:00
 9:30
 10:00
 10:30

Figure 6.7: Dynamics of an URF examination room

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 45

Chapter 7

The functional view

basic

product

excluding options

optional option

option dependency

7.1 Introduction

The functional view describes the what of the system, or in other words: how is
the system perceived from the outside, especially by the customer. The product
specification (or requirement specification1) covers normally the content of this
view. The content of these specs should be observable from outside of the system.

Several methods and models can be used in this view. (Use) Cases, section 7.2,
describing the system from user point of view. Commercial, service and goods flow
decompositions, section 7.3, describing the product in terms of the commercial
packages and options and the other logistics dimensions. Function and feature
specifications, section 7.4, focusing on a more functional view or a feature wise
view. Performance specification and models, section 7.5, describing performance
aspects such as throughput and latency, as a function of the commercial options
and the available parameter space.

The information model, described in section 7.6 is especially important when
interfacing with other systems. Section 7.7 describes the role of standards in the
product specification.

1Or any combination of the words: system, product, functional, performance, requirement and
specification

7.2 Case descriptions

Use cases are an useful means to describe desired functional behavior in a more
cohesive way. An use case describes a set of functions together in typical, worst
case or exceptional scenarios. Use cases become really effective if the use case
is not limited to the functional behavior, but when the non-functional aspects are
described as well.

worst case, exceptional, or change

use case(s)

typical use case(s)

interaction flow (functional aspects)

select movie via directory

start movie

be able to pause or stop

be able to skip forward or backward

set recording quality

performance and other qualities

(non-functional aspects)

response times for start / stop

response times for directory browsing

end-of-movie behaviour

relation recording quality and storage

functional

multiple inputs at the same time

extreme long movie

directory behaviour in case of

extreme many short movies

non-functional

response time with multiple inputs

image quality with multiple inputs

insufficient free space

response time with many directory entries

replay quality while HQ recording

Figure 7.1: Example personal video recorder use case contents for typical use case
and worst case or exceptional use case

Figure 12.4 shows the possible content for personal video recorder use cases.
The most typical use is to watch movies: find the desired movie and play it.
Additional features are the possibility to pause or stop and to skip forward or
backward. The use case description itself should describe exactly the required
functionality. The required non-functional aspects, such as performance, reliability
and exceptional behavior must be described as well.

Typical use cases describe the core requirements of the products. The bound-
aries of the product must be described as well. These boundaries can be simply
specified (maximum amount of video stored is 20 hours standard quality or 10
hours high definition quality) or a set of worst case use cases can be used. Worst
case use cases are especially useful if the boundaries are rather situational dependent,
the circumstances can be described in the use case.

The exceptional use case are comparable to the worst case use cases. Excep-
tions can be described directly (if insufficient storage space is available the recording
stops and a message is displayed). Here exception use cases are helpful if the
exception and the desired exceptional behavior are dependent on the circumstances.

Figure 12.7 summarizes recommendations for working with use cases. Many
use case descriptions suffer from fragmentation: every function is described as a
separate use case. The overview is lost, and the interaction of functions is missed.
The granularity of use cases should match with the external use.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 47

+ combine related functions in one use case

- do not make a separate use case for every function

+ include non-functional requirements in the use cases

+ minimise the amount of required
 worst case
 and

exceptional use cases

- excessive amounts of use cases propagate to

excessive implementation efforts

+ reduce the amount of these use cases in steps

- a few well chosen
 worst case
use cases simplifies the design

Figure 7.2: Recommendations for working with use cases

Another problem is that too many use cases are described, again with the conse-
quence of losing the overview and worse spending too much time at not relevant
specification issues. The problem is that up front the knowledge is insufficient to
select the most relevant use cases. A somewhat more extensive exploration phase
is recommended, where afterwards a reduction of use cases is applied.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 48

7.3 Commercial, service and goods flow decomposition

The commercial granularity of sellable features and the allowed configurations
can be visualized in a commercial configuration tree, as shown in figure 7.3. All
items in such a tree will appear in brochures, folders, catalogues. Note that the
commercial granularity is often somewhat more coarse than the design decompo-
sition. The commercial packaging is optimized to enable the sales process and to
the margin. In some businesses the highest margin is in the add-ons, the acces-
sories. In that case the add-ons are not part of the standard product to protect the
margin.

basic

product

excluding options

optional option

option dependency

Figure 7.3: Commercial tree as means to describe commercial available variations
and packaging

The commercial tree makes clear what the relations between commercial options
are. Options might be exclusive (either this printer or that printer can be connected,
not both at the same time). Options can also be dependent on other options (High
definition video requires the memory extension to be present. The decomposition
model chosen is a commercial decision, at least as long as the technical implica-
tions are feasible and acceptable in cost.

The same strategy can be used to define and visualize the decompositions
needed for service (customer support, maintenance) and goods flow (ordering,
storage and manufacturing of goods). Figure 7.4 shows the decompositions with
their main decomposition drivers. These decompositions are not identical, but they
are related. The goods flow decomposition must support the commercial as well as
the service decomposition. The goods flow decomposition has a big impact on the
costs side of the goods flow (goods=costs!) and must be sufficiently optimized for
cost efficiency.

The service decomposition is driven by the need to maintain systems efficient,
which often means that minimal parts should be replaced. The granularity of the
service decomposition is finer than the commercial decomposition.

The goods flow decomposition, which needs to support both the commercial as

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 49

commercial

decomposition

saleable features

service

decomposition

replaceable items

(such as consumables)

goods flow

decomposition

stockable items

purchasable items

Figure 7.4: Logistic decompositions for a product

well as the service decomposition, has a finer granularity than both these decom-
positions. At the input side is the goods flow decomposition determined by the
granularity of the supply chain.

In Philips all three decompositions used to fit in the so-called 12NC system, a
logistics identification scheme deployed in the Technical Product Documentation
(TPD). The TPD is the formal output of the product creation process. These
decompositions are used in logistics information systems (MRP).

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 50

7.4 Function and feature specifications

The product specification needs to define the functions and features of the product.
The decomposition for this description is again another decomposition than the
commercial decomposition. The commercial decomposition is too coarse to use it
as basis for the product specification. The technical decomposition in functions and
features is kind of a building box to compose commercial products and packages.

technical functions

HD display

SD->HD up conversion

HD->SD down conversion

HD storage

SD storage

HD IQ improvement

SD IQ improvement

HD digital input

SD digital input

SD analog input

6 HQ channel audio

2 channel audio

pr
od

uc
ts

ho
m

e
ci

ne
m

a

sy

st
em

fla
t s

cr
ee

n

ci

ne
m

a
TV

be
dr

oo
m

 T
V

+

+

+

o

o

+

+

+

+

o

+

-

+

+

+

-

-

+

+

+

+

+

o

+

-

-

o

-

o

-

+

o

o

+

-

+

legend

+
 present

o
 optional

-
 absent

Figure 7.5: Mapping technical functions on products

Figure 7.5 shows a mapping of technical functions and features onto products.
The technical functions and features should still be oriented towards the what of
the product. In practice this view emerges slowly after many iterations between
design decompositions and commercial and logistics oriented decompositions.

functional behaviour

user interface

look & feel

style guide

UI spec

functional

spec

us
er

artificial separation

from user point of view !

prototype

as

complement

to spec

stubs

simulators

us
er

Figure 7.6: Relation between user interface and functional specification

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 51

The struggle in nailing down the functional specification is the degree in which
user interface and functional specification are decoupled and separated. Separation
eases the delivery of look and feel variants. However this separation from user
point of view is rather artificial, see figure 7.6, which shows that the user experi-
ences the system behavior via the user interface. As design team we create then
artifacts as style guides, user interface specifications and functional specifications.

Another consideration is the high dynamics of user interface details versus the
relative stability of the functions itself. Hard coupling of user interface description
and functional specification propagates the dynamics of user interface details into
the entire functional specifications.

Figure 7.6 offers an alternative solution for this dilemma by using a prototype
as complement to the specification for the user interface details. Such an approach
allows the team to limit the functional specification, style guide and user interface
specification to the essentials. A clear description of the way of working is required
for quality assurance purposes: the specification is leading and is verified, is the
prototype archived and a formal part of the specification?

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 52

7.5 Performance

The performance need to be specified quantitatively and verifiable in the functional
view. This means that the performance needs to be specified in conjunction with
the circumstances in which this performance specification is valid. In easy cases
a simple maximum value is sufficient, which is valid under all circumstances.
In many systems the performance specification is more complicated: the system
performance depends on the user settings of the system.

throughput model

required dose

field size

field map

alignment

procedure

internal parameters from realisation:

max v,a

laser power

laser frequency

transmission factor

alignment time

user level

throughput

Figure 7.7: Example of performance modelling: throughput as function of user
controlled values

In not too complicated systems it is sufficient to define a limited set of perfor-
mance points in the parameter space. For more performance critical and complex
systems an external performance model might be required, which describes the
required relation between performance and user settings. Figure 7.7 shows an
example of such a performance model for waferstepper throughput.

Throughput models are the result of several iterations between problem and
solution space. Sufficient understanding of the solution space is needed to know
which user parameters are relevant in the throughput model.

From the functional view (the what perspective) the internal design parameters
are not relevant. In the iteration and decision process this model with external and
internal parameters is a means to understand the consequences of design choices
and to understand the consequences (cost) of customer needs.

The notion of internal and external is also somewhat artificial. In this example
many customers measure the dose and do expect a certain relationship between
dose and throughput. These customers perceive dose as externally known parameter.

Other examples of performance data are: standby time of a cell phone, gas
consumption of a car, average monthly cost of a lease car. Note the increasing
need in these examples for specification of the context.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 53

7.6 Information Model

The information model is layered, as shown in figure 7.8. The highest layer is the
understanding of the humans using the information model. This understanding is
always biased by the individual human knowledge, emotional state and many other
human factors, see [15]. The real meaning of information for human beings is
never completely defined, humans always add interpretation to the definition.

human understanding

and interpretation

of the information

data model or data dictionary

identifiers

types

ranges

information model
 , semantic defined in

terms of:

entities

relations

operations

Figure 7.8: Layering of information definitions

The information model itself describes the semantics of the information. The
syntax and representation aspects are described in the data model or data dictionary.

patient

examination

scan

2D images

3D volume

attributes

scan procedures

exam procedures

attributes

attributes

attributes

attributes

work-list

attributes

Figure 7.9: Example of a partial information model

The information model describes the information as seen outside of the system.
It should not contain internal design choices. The information model is an important
means to decouple interoperating systems. The functional behavior of the systems
is predictable as long as all systems adhere to the information model. Figure 7.9

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 54

shows an example of a part of an information model.
The ingredients of an internal information model are:

• entities

• relations between entities

• operations on entities

The most difficult part of the information model is to capture the semantics
of the information. The information model defines the intended meaning of the
information, in terms of entities, their meaning, the relation with other entities and
possible operations which can be applied on these entities.

12 bit Image:

nx: 16 bit unsigned integer

ny: 16 bit unsigned integer

pixels[nx][ny]: 16 bit unsigned integers [0..4095]

16 bit Image:

nx: 16 bit unsigned integer

ny: 16 bit unsigned integer

pixels[nx][ny]: 16 bit unsigned integers

Figure 7.10: Small part of a datamodel

The technical details of the information model, such as exact identifiers, data
types and ranges is defined in the datamodel. Figure 7.10 shows a small part of a
datamodel defining 12 and 16 bit images. The term data dictionary is also often
used for this lower level of definitions.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 55

7.7 Standards

Compliance with standards is part of the product specification. The level of compliance
and eventual exceptions need to be specified. Duplication of information in the
standard must be avoided (minimize redundancy). The nice characteristic of standards
in general is that the standards are extensively described and well defined. Most
standard related implementation effort is straight forward engineering work, without
the uncertainty of most other parts of the product specification.

well defined standards

and legislation

FDA

HL7

DICOM

HIPAA

VDE

ISO 9001

EMC

business

objectives

application

intention?

realization

consequences

conceptual

assumptions

but many thousands

of pages

Figure 7.11: The standards compliance in the functional view in a broader force
field.

Nevertheless architecting work is required in deciding on standards and in
designing the implementation. Figure 7.11 shows the forces working upon the
standards selection. The market and business environment more or less dictate a
set of standards, if the product not comply the system is not viable. Some of these
standards are mandatory due to legislation (for instance VDE or FDA related),
some are de facto musts (for instance DICOM, the medical imaging communi-
cation standard).

The use of the standard and the compliance level depend on the intended use. A
key question for the architect is: What is the intention of the standard? At the other
hand standards are created by domain experts, which make all kinds of conceptual
assumptions. If the standard is used in a way which does not correspond well with
these assumptions, then it creates many specification and design problems. Good
understanding of the underlying conceptual assumptions is a must for the architect.

The standard can have significant implementation consequences, for instance
in the amount of effort needed or the amount of license costs involved in creating
the implementation. These costs must be balanced with the created customer value.

A major problem with standards compliance is the massive amount of documen-
tation and know how which is involved. The architect must find out the essence in

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 56

terms of objectives, intention, assumptions and consequences of standards. In fact
the architect must have a CAFCR mental model per standard2. For communication
purposes the architect can make this model explicit.

2the CAFCR model is in fact the architecture of the standard itself.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 57

7.8 Summary

The functional view is concerned with all the required externally observable charac-
teristics of the system. The CAFCR model puts a lot of emphasis on the customer.
The operational viewpoint, from the producer point of view, determines also part
of the system. Figure 7.12 summarizes the content of the functional view, where
the left hand side shows the customer specifications and the right hand side the
company operational specifications.

operational

machine

interoperability

human

customer

machine interoperability

human

quality specs

worst case
typical use case(s)

functional

non-functional

functional

non-functional

commercial decomposition

service decomposition

goods flow decomposition

style guide UI spec
 functional spec

data model

information model

throughput model

standards and

legislation

system

Functional view = What: externally observable

quality specs

worst case

typical use case(s)

style guide UI spec

functional spec

data model

information model

Figure 7.12: Summary of functional view

In the previous chapters we discussed the use cases, user interface, functional
specification, quality specifications, and information model from customer point
of view. As shown in this figure the same aspects need to addressed from the
operational point of view, for example:

• typical use case for service and/or production

• functional specification and user interface for service

• performance of adjustment and verification measurements

• information interface for SPC (Statistical Process Control) purposes

Another classification used in figure 7.12 is human oriented or machine inter-
operability oriented. Again such a classification is artificial. For some products

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.0

Buskerud University College

page: 58

with a lot of human user interaction this is a useful separation. Other products, for
instance electronic or software components to be used in other systems, don’t have
immediate human users.

7.9 Acknowledgements

William van der Sterren was very fast in providing relevant feedback.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 59

Chapter 8

The conceptual view

storage

acquisition

processing
 compress
 encoding

display

processing

de-

compress
 decoding
display

acquisition

8.1 Introduction

The conceptual view is used to understand how the product is achieving the speci-
fication. The methods and models used in the conceptual view should discuss the
how of the product in conceptual terms. The lifetime of the concepts is longer than
the specific implementation described in the Realization view. The conceptual view
is more stable and reusable than the realization view.

The dominant principle in design is decomposition, often immediately coupled
to interface management of the interfaces of the resulting components. It is important
to realize that any system can be decomposed in many relevant ways. The most
common ones are discussed here briefly: construction decomposition, section 8.2,
functional decomposition, section 8.3, class or object decomposition, other decom-
positions (power, resources, recycling, maintenance, project management, cost,
execution architecture...), and related models (performance, behavior, cost, ...).

If multiple decompositions are used then the relationships between decompo-
sitions are important. One of the methods to work with these relationships is via
allocation. Within a decomposition and between decompositions the dependency
structure is important.

From development management point of view it is useful to identify the infras-
tructure (factoring out shareable implementations), and to classify the technology
in core, key and base technology.

The complement of decomposition is integration. Articulating the integrating
concepts (start up, shutdown, safety, exception handling, persistency, resource
management,...) provides guidance to the developers and helps to get a consis-
tently behaving system.

8.2 Construction decomposition

tuner
 frame-

buffer
 MPEG
 DSP
 CPU
 RAM

drivers
 scheduler
 OS

etc

audio
 video
 TXT
 file-

system
networking
etc.

view
 PIP

browse
viewport
 menu

adjust
 view

TXT

hardware

driver

applications

services

toolboxes

domain specific
 generic

signal processing subsystem
 control subsystem

Figure 8.1: Example of a construction decomposition of a simple TV

The construction decomposition views the system from the construction point
of view, see figure 8.1 for an example and figure 8.2 for the characterization of the
construction decomposition.

The construction decomposition is mostly used for the design management. It
defines units of design, as these are created and stored in repositories and later
updated. The atomic units are aggregated in compound design units, which are
used as unit for testing and release and this often coincides with organizational
ownership and responsibility.

management of design

file

box

IP core

IC

unit of aggregation for

organisation

test

release

unit of

creation

storage

update

SW example

package

module

PCB

IP cells

IP core

HW example

Figure 8.2: Characterization of the construction decomposition

In hardware this is quite often a very natural decomposition, for instance in
cabinets, racks, boards and finally IC’s, IP cores and cells. The components in the
hardware components are very tangible. The relationship with a number of other
decompositions is reasonably one to one, for instance with the work breakdown for
project management purposes.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 61

The construction decomposition in software is more ambiguous. The structure
of the code repository and the supporting build environment comes close to the
hardware equivalent. Here files and packages are the aggregating construction
levels. This decomposition is less tangible than the hardware decomposition and
the relationship with other decompositions is sometimes more complex.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 62

8.3 Functional decomposition

The functions as described in the functional view have to be performed by the
design. These functions often are an aggregation of more elementary functions in
the design. The functional decomposition decomposes end user functions in more
elementary functions.

Be aware of the fact that the word function in system design is heavily overloaded.
It does not help to define sharp boundaries with respect to the functional decom-
position. Main criterium for a good functional decomposition is its useability for
design. A functional decomposition provides insight how the system will accom-
plish its job.

storage

acquisition

processing
 compress
 encoding

display

processing

de-

compress
 decoding
display

acquisition

Figure 8.3: Example functional decomposition camera type device

Figure 8.3 shows an example of (part of) a functional decomposition for a
camera type device. It shows communication, processing and storage functions
and their relations. This functional decomposition is not addressing the control
aspects, which might be designed by means of a second functional decomposition,
but from control point of view.

How
;

what is the
flow
 of
internal activities

to realise
external functionality
 ?

some keywords:

activities

transformation

input output

data flow

control flow

multiple functional decompositions

are possible and valuable!

Figure 8.4: Characterization of the functional decomposition

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 63

8.4 Designing with multiple decompositions

The design of complex systems always requires multiple decompositions, for instance
a construction and a functional decomposition. Many designers in the design team
need support to cope with this multiplicity.

Most designers don’t anticipate cross system design issues, for instance when
asked in preparation of design team meetings. This limited anticipation is caused
by the locality of the viewpoint, implicitly chosen by the designers.

memory usage

export

server

print

server

database

server

SNR

accuracy

latency

processing

brightness

next

play movie

render film

query DB
 What is the
 memory usage
 of

the
user interface

when
querying the DB

import

server

user

interface

fu
nc

tio
ns

component

ch
ar

ac
te

ris
tic

s

when performing

<function>
?

of the

<component>

How about the

<characteristic>

Figure 8.5: Question generator for multiple decompositions

Figure 8.5 shows a method to help designers to find system design issues. A
three dimensional space is shown. Two dimensions are the decomposition dimension
(component and functional), the last dimension is the design characteristic dimension.

For every point in this 3D space a question can be generated in the following
way:
How about the <characteristic> of the <component> when performing <function>?
Which will result in questions like:
How about the memory usage of the user interface when querying the database?

The designers will not be able to answer most of these questions. Simply
asking these questions helps the designer to change the viewpoint and discover
many potential issues. Luckily most of the not answered questions will not be
relevant. The answer to the memory usage question above might be insignificant
or small.

The architect has to apply a priori know how to select the most relevant questions
in the 3D space. Figure 8.6 shows a set of selection factors that can be used to
determine the most relevant questions.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 64

Critical for system performance

Risk planning wise

Least robust part of the design

Suspect part of the design

- experience based

- person based

Figure 8.6: Selection factors to improve the question generator

Critical for system performance Every question that is directly related to critical
aspects of the system performance is relevant. For example What is the CPU
load of the motion compensation function in the streaming subsystem? will
be relevant for resource constrained systems.

Risk planning wise Questions regarding critical planning issues are also relevant.
For example Will all concurrent streaming operations fit within the designed
resources? will greatly influence the planning if resources have to be added.

Least robust part of the design Some parts of the design are known to be rather
sensitive, for instance the priority settings of threads. Satisfactory answers
should be available, where a satisfactory answer might also be we scheduled
a priority tuning phase, with the following approach.

Suspect part of the design Other parts of the design might be suspect for several
reasons. For instance experience learns that response times and throughput
do not get the required attention of software designers (experience based
suspicion). Or for instance we allocated an engineer to the job with insuffi-
cient competence (person based suspicion).

Figure 8.7 shows another potential optimization, to address a line or a plane in
the multi dimensional space. The figure shows an example of a memory budget
for the system, which is addressing all memory aspects for both functions and
components in one budget. The other example is the design specification of a
database query, where the design addresses the allocation to components as well as
all relevant design characteristics.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 65

component

memory usage

export

server

print

server

database

server

SNR

accuracy

latency

processing

brightness

next

play movie

render film

query DB

memory budget plane

import

server

user

interface

fu
nc

tio
ns

ch
ar

ac
te

ris
tic

s

query DB

design spec

Figure 8.7: Addressing lines or planes at once in the multiple dimensions

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 66

8.5 Internal Information Model

The information model as seen from the outside from the system, part of the
functional view, is extended into an internal information model. The internal infor-
mation model is extended with design choices, for instance derived data infor-
mation is cached to achieve the desired performance. The internal data model
might also be chosen to be more generic (for reasons of future extendibility), or
less generic (where program code is used to translate the specific internal models
in the desired external models.

patient

examination

scan

2D images

3D volume

attributes

scan procedures

exam procedures

attributes

attributes

attributes

attributes

work-list

attributes

volume index

image index

pictorial index
 precompiled

data elements additional

to the external

information model

Figure 8.8: Example of a partial internal information model

The internal information model is an important means to decouple parts of the
design. The functional behavior of the system is predictable as long as components
in the system adhere to the internal information model.

Figure 8.8 shows an example of a part of an information model. In this example
several information elements which are derived from the primary data are stored
explicitly to improve the response time. The pictorial index, existing of reduced
size images, is an example of derived information, which takes some time to
calculate. This index is build in the background during import, so that the navigation
can use it, which makes the navigation very responsive.

All considerations described in section 7.6, such as the layering hold also for
the internal information model.

8.6 Execution architecture

The execution architecture is the run time architecture of a system. The process
decomposition plays an important role in the execution architecture. Figure 8.9
shows an example of a process decomposition.

One of the main concerns for process decomposition is concurrency: which
concurrent activities are needed or running, how to synchronize these activities. A

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 67

image handling
scan control

scan

control

acq

control

recon

control

x
DAS
 recon

db

control

disk

scan

UI

image handling

UI

archiving

control

media

import

export

network

display

control

display
 device hardware

server

process

UI process

legend

Figure 8.9: Example process decomposition

process or a task of an operating system is a concept which supports asynchronous
functionality as well as separation of concerns by providing process specific resources,
such as memory. A thread is a lighter construction providing support for asynchronous
activities, without the separation of concerns.

other architecture

views

execution

architecture

functional

model

process

display

receive
 demux

store

Map

process

task

thread
thread
thread

process

task

thread
thread
thread

process

task

thread
thread
thread

interrupt

handlers
inp

ut

hardware

tuner
 drive

CPU
 DSP
 RAM

inp
ut

repository

structure

queue

DCT
menu

txt

tuner

foundation

classes

hardware

abstraction

list
 DVD drive

UI toolkit
 processing

Applications

play
 zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Figure 8.10: Execution architecture

The execution architecture must map the functional decomposition on the process
decomposition, taking into account the construction decomposition. In practice
many building blocks from the construction decomposition are used in multiple
functions mapped on multiple processes. These shared building blocks are aggre-

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 68

gated in shared (or dynamic link) libraries. Sharing is advantageous from memory
consumption point of view, some attention is required for the configuration management
side1.

Figure 8.10 shows the role of the execution architecture. The main inputs
are the real time and performance requirements at the one hand and the hardware
design at the other hand. The functions need to be mapped on processes, threads
and interrupt handlers, synchronization method and granularity need to be defined
and the scheduling behavior (for instance priority based, which requires priorities
to be defined).

1The dll-hell is not an windows-only problem. Multiple pieces of software sharing the same
library can easily lead to version problems, module 1 requires version 1.13, while module 2 requires
version 2.11. Despite all compatibility claims it often does not work.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 69

8.7 Performance

The performance of a system can be modeled by complementing models. In
figure 8.11 the performance is modelled by a flow model at the top and an analytical
model below. The analytical model is entirely parameterized, making it a generic
model which describes the performance ratio over the full potential range.

t
recon
 =

n
raw-
 x
* (t
 fft
(n
 raw-y
)

n
y
* (t
 fft
(n
 raw-x
)

t
filter
 (
n
raw-x
 ,n
 raw-y
)
 +

+

+

t
fft
(n
)
 =
 c
fft
 * n * log(n)

filter
 FFT
 FFT

correc

tions

n
raw-
 x

n
raw-
 y

n
raw-
 x

n
raw-
 y

n
raw-
 x

n
y

n
x

n
y

n
x

n
y

t
col-overhead

t
corrections
 (
n
x
,n
y
)

t
row
 -overhead

t
control
 -overhead

+

) +

) +

Figure 8.11: Performance Model

Later in the realization view it will be shown that this model is too simplistic,
because it focuses too much on the processing and does not take the overheads
sufficiently in account.

8.8 Safety, Reliability and Security concepts

The qualities safety, reliability and security share a number of concepts, such as:

• containment (limit failure consequences to well defined scope)

• graceful degradation (system parts not affected by failure continue operation)

• dead man switch (human activity required for operation)

• interlock (operation only if hardware conditions are fulfilled)

• detection and tracing of failures

• black box (log) for post mortem analysis

• redundancy

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 70

A common guideline in applying any of these concepts is that the more critical
a function is, the higher the understandability should be, or in other words the
simpler the applied concepts should be. Many elementary safety functions are
implemented in hardware, avoiding large stacks of complex software.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 71

8.9 Start up and shutdown

In practice insufficient attention is paid to the start up and shutdown of a system,
since these are relatively exceptional operations. However the design of this aspect
has an impact on nearly all components and functions in the system. It is really an
integrating concept. The trend is that these operations become even more entangled
with the normal run-time functionality, for instance by run-time downloading,
stand-by and other power saving functionality.

discover kernel HW

initialise kernel data structures

determine next layer

load and initialise loader

determine loading HW

determine next layer

bring in initial state

load and initialise firmware

configure services

allocate resources

load, initialise and start services

configure UI

allocate resources

load, initialise and start UI

detect external services

publish internal services

connect where needed

load

configure

initialise, start

power

boot-loader

HW

kernel

services

user interface

connect to outside

application

stop in safe sequence

flush ongoing activities

close connections

save persistent data

free resources

stop

start up

HW SW interface

shut down

Figure 8.12: Simplified start up sequence

Figure 8.12 shows a typical start up shutdown pattern. The system is brought
step by step to higher operational levels. Higher levels benefit from more available
support functions, lower levels are less dependent on support functions.

One of the considerations in the design of this system aspect is the impact of
failures. The right granularity of operational levels enable coping with exceptions
(for example network not available). For shutdown the main question is how power
failures or glitches are handled.

8.10 Work breakdown

Project leaders expect a work breakdown to be made by the architect. In fact a
work breakdown is again another decomposition, with a more organizational point
of view. The work in the different work packages should be cohesive internally,
and should have low coupling with other work-packages.

Figure 8.13 shows an example of a work breakdown. The entire project is
broken down in a hierarchical fashion: project, segment, work-package. In this
example color coding is applied to show the technology involved and to show

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 72

work packages
project organization

TIP:NBE

R1

x
DAS
 reconstruction

hardware

viewing

database

scanning

x
FEC

run time

acq

prepa-

ration

conver-

sion

algo-

rithms

UI
gfx
algo-

rithms
VDU
 console

import

export
 archive
bulk

data
clinical
database

engine

computing

system

host
 OS
 foundation

classes

start up

shutdown

exception

handling

integra-

tion
SPS
 SDS
 TPS
 alfa

test

beta

test

conf

man

make SW

make HW

buy SW

buy HW

system

segment

project

legend

Figure 8.13: Example work breakdown

development work or purchasing work. Both types of work require domain know
how, but different skills to do the job.

Core

Key

Base

make
 outsource
 buy
 refer customer

to 3rd party

Own value

IP

Critical for final

performance

Commodity

Technology life cycle

Partnering

Total Product

Figure 8.14: Core, Key or Base technology

Make versus Buy is a limited subset of an entire spectrum of approaches.
The decision how to obtain the needed technology should be based on where the
company intents to add value. A simple reference model to help in making these
decisions is based on core, key, and base technology, see figure 8.14.

Core technology is technology where the company is adding value. In order to
be able to add value, this technology should be developed by the company
itself.

Key technology is technology which is critical for the final system performance. If
the system performance can not be reached by means of third party technology

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 73

than the company must develop it themselves. Otherwise outsourcing or
buying is attractive, in order to focus as much as possible on core technology
added value. However when outsourcing or buying an intimate partnership
is recommended to ensure the proper performance level.

Base technology is technology which is available on the market and where the
development is driven by other systems or applications. Care should be taken
that these external developments can be followed. Own developments here
are de-focusing the attention from the company’s core technology.

existing base system

new HW subsystem

SW dev system

test HW subsystem

test SW for new

HW subsystem

new application

existing base system

integrate

subsystem

SW dev system

test and refine

application

integrate and refine

application

adopt existing base SW

new base system
 test new base system

integrate HW

system

integrate

system

SW for new HW

subsystem

adopt existing

base SW

existing
 new

2 partial

systems for

SW testing

2 existing

base

systems

new base

systems

time

integrated

system

application integration

new subsystem

integration

Figure 8.15: Example integration plan, with 3 tiers of development models

Schedules, work breakdown and many technical decompositions are heavily
influenced by the integration plan. Integration is time, effort and risk determining
part of the entire product creation process. The integration viewpoint must be used
regular because of its time, effort and risk impact.

Figure8.15 shows an example integration plan. This plan is centered around 3
tiers of development vehicles:

• SW development systems

• existing HW system

• new HW system

The SW development system, existing from standard clients and servers, is very
flexible and accessible from software point of view, but far from realistic from
hardware point of view. The existing and new HW systems are much less acces-
sible and more rigid, but close to the final product reality. The new HW system will
be available late and hides many risks and uncertainties. The overall strategy is to
move for software development from an accessible system to a stable HW system
to the more real final system. In general integration plans try to avoid stacking

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 74

too many uncertainties by looking for ways to test new modules in a stable known
environment, before confronting new modules with each other.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.7

Buskerud University College

page: 75

8.11 Acknowledgements

Constructive remarks from Peter Bingley, Peter van den Hamer, Ton Kostelijk,
William van der Sterren and Berry van der Wijst have been integrated in this
document.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 76

Chapter 9

The realization view

complex

compression

simple

compression

100

200

150

250

1.5
 2.0
 2.5
1.0
0.5
0.0

100
20
 40
 60
 80
 120

50

$

so
ur

ce
:

ht
tp

://
w

w
w

.m
pc

om
p.

co
m

/

S

ep
te

m
be

r 5
, 2

00
2

GHz

GByte

performance

effort needed

to obtain required

storage capacity

effort needed

to obtain required

processing performance

no compression

m
an

-y
ea

r

5

10

15

20

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

pentium4

9.1 Budgets

The implementation can be guided by making budgets for the most important
resource constraints, such as memory size, response time, or positioning accuracy.
The budget serves multiple purposes:

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicit

Figure 9.1 shows a budget based design flow. The starting point of a budget
is a model of the system, from the conceptual view. An existing system is used
to get a first guidance to fill the budget. In general the budget of a new system
is equal to the budget of the old system, with a number of explicit improvements.
The improvements must be substantiated with design estimates and simulations
of the new design. Of course the new budget must fulfill the specification of the

budget

design

estimates;

simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements

existing system

model

t
proc

t
over

+

t
disp

t
over

+

+

spec

SRS

t
boot
 0.5s

t
zap
 0.2s

measurements

new (proto)

system

form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

t
proc

t
over

t
disp

t
over

T
proc

T
disp

T
total

feedback

can be more complex

than additions

Figure 9.1: Budget based design flow

new system, sufficient improvements must be designed to achieve the required
improvement.

Early measurements in the integration are required to obtain feedback once the
budget has been made. This feedback will result in design changes and could even
result in specification changes.

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Figure 9.2: Example of a memory budget

Figure 9.2 shows an example of an actual memory budget. This budget decom-
poses the memory in three different types of memory use: code (”read only”
memory with the program), object data (all small data allocations for control and
bookkeeping purposes) and bulk data (large data sets, such as images, which is

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 78

explicitly managed to fit the allocated amount and to prevent fragmentation). The
difference in behavior is an important reason to separate in different budget entries.
At the other hand the operating system and the system infrastructure provide means
to measure these 3 types at any moment, which helps for the initial definition, for
the integration and the verification.

The second decomposition direction is the process. The number of processes
is manageable, processes are related to specific development teams and again the
operating system and system infrastructure support measurement at process level.

9.2 Logarithmic views

A logarithmic positioning of requirements and implementation alternatives helps
to put these alternatives in perspective. In most designs we have to make design
choices which cover a very large dynamic range, for instance from nanoseconds
up to hours, days or even years. Figure 9.3 shows an example of requirements and
technologies on a logarithmic time axis.

Disk
 se

ek

hu
man

 1

st
 ir

rita
tio

n t
hr

es
ho

ld

ap
pl

lev
el

fun
cti

on

re
sp

on
se

hu
man

 2

nd

 irr
ita

tio
n

thr
es

ho
ld

ey
e-

ha
nd

 co
-o

rd
ina

tio
n

1 p
ac

ka
ge

 tr
an

sfe
r

fas
t e

the
rn

et

(ps)

10
-12

(ns)

10
-9

(

s)

10
-6

(ms)

10
-3

(s)

1

cy
cle

 2
GHz C

PU

pu
re

co
nte

xt
sw

itc
h

DRAM la
ten

cy

1 b
yte

 tra
ns

fer

fas
t e

the
rne

t

ze
ro

mes
sa

ge
 tra

ns
fer

ap
pl

lev
el

ne
tw

ork

mes
sa

ge
 ex

ch
an

ge

ap
pl

lev
el

mes
sa

ge

ex
ch

an
ge

ap
pl

lev
el

fun
cti

on

res
po

ns
e

hu
man

 re
ac

tio
n t

im
e

hu
man

 ey
e

FO4 i
nv

ert
er

de
lay

DRAM cy
cle

 tim
e

10
0 H

z T
V

fra
me

10
0H

z v
ide

o

pix
el

tim
e

10
0H

z v
ide

o l
ine

from

low level to high level

processing times

from low to high level

storage/network

application

needs

light

travels

1 cm

Figure 9.3: Actual timing represented on a logarithmic scale

”Fast” technologies can serve many slow requirements, but often slower technologies
offer other benefits, which offset their slowness. ”Slow” technologies offer more
flexibility and power, at the cost of performance. For instance real time executive
interrupt response time are very short, while reacting in a user task is slower,
but can access much more user level data and can interact more easy with other
application level functions. Going from real time executive to a ”fat” operating

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 79

system slows down the interrupt response, with a wealth of other operating system
functionality (networking, storage, et cetera) in return. Again at user process
level the response needed is again bigger, with a large amount of application level
functionality in return (distribution, data management, UI management, et cetera).

Requirements itself also span such a large dynamic range from very fast (video
processing standards determining pixel rates) to much slower (select teletext page).

For every requirement a reasonable implementation choice is needed with respect
to the speed. Faster is not always better, a balance between fast enough, cost and
flexibility and power is needed.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 80

9.3 Micro Benchmarking

The actual characteristics of the technology being used must be measured and
understood in order to make a good (reliable, cost effective) design. The basic
understanding of the technology is created by performing micro benchmarks: measuring
the elementary functions of the technology in isolation. Figure 9.4 lists a typical
set of micro-benchmarks to be performed. The list shows infrequent and often
slow operations and frequently applied operations, which are often much faster.
This classification implies already a design rule: slow operations should not be
performed often1.

object creation

object destruction
 method invocation

component creation

component destruction

open connection

close connection

method invocation

same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creation
OS
 task switch

interrupt response

HW
 cache flush

low level data transfer

power up, power down

boot

Figure 9.4: Typical micro benchmarks for timing aspects

The results of micro-benchmarks should be used with great care, the measure-
ments show the performance in totally unrealistic circumstances, in other words
it is the best case performance. This best case performance is a good baseline
to understand performance, but when using the numbers the real life interference
(cache disturbance for instance) should be taken into account. Sometimes additional
measurements are needed at a slightly higher level to calibrate the performance
estimates.

The performance measured in a micro benchmark is often dependent on a
number of parameters, such as the length of a transfer. Micro benchmarks are
applied with a variation of these parameters, to obtain understanding of the perfor-
mance as a function of these parameters. Figure 9.5 shows an example of the
transfer rate performance as a function of the block size.

For example measuring disk transfer rates will result in this kind of curves, due

1This really sounds as an open door, however I have seen many violations of this entirely trivial
rule, such as setting up a connection for every message, performing I/O byte by byte et cetera.
Sometimes such a violation is offset by other benefits, especially if a slow operation is in fact not very
slow and the brute force approach is both affordable as well as extremely straightforward (simple!)
then this is better than over-optimizing for efficiency.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 81

tim
e

block

size

worst case

optimal block-size

t
overhead

rate
-1

Figure 9.5: The transfer time as function of block size

to a combination of cycle time, seek time and peek transfer rate. This data can
be used in different ways: the slowest speed can be used, a worst case design, or
the buffer size can be tuned to obtain the maximum transfer rate. Both choices
are defensible, the conservative choice is costly, but robust, the optimized choice is
more competitive, but also more vulnerable.

9.4 Performance evaluation

The performance is conceptually modelled in the conceptual view, which is used
to make budgets in the realization view. An essential question for the architect is:
Is this design good? This question can only be answered if the criteria are known
for a good design. Obvious criteria are meeting the need and fitting the constraints.
However an architect will add some criteria himself, such as balanced and future-
proof.

Figure 9.6 shows an example of a performance analysis. The model is shown
at the top of the figure, as discussed in the conceptual view. The measurement
below the model shows that a number of significant costs have not been included
in the original model, although these are added in the model here. The original
model focuses on processing cost, including some processing related overhead.
However in practice overhead plays a dominant role in the total system perfor-
mance. Significant overhead costs are often present in initialization, I/O, synchro-
nization, transfers, allocation and garbage collection (or freeing if explicitly managed).

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 82

overhead

t
recon
 =
 n
raw-
x
* (t
fft
(n
raw-y
)

n
y
* (t
fft
(n
raw-x
)

t
filter
(
n
raw-x
,n
raw-y
)
 +
 +

+

t
fft
(n
)
=
c
fft
 * n * log(n)

filter
 FFT
 FFT
 correc

tions

t
col-overhead

t
corrections
 (
n
x
,n
y
)
t
row
-overhead
 +t
control
-overhead
+

) +

) +

n
raw-
x

n
raw-
y

n
raw-
x

n
raw-
y

n
raw-
x

n
y

FFT computations

column overhead

FFT computations

row overhead

correction computations

overhead

filter computations

read I/O

write I/O

malloc, free

transpose

bookkeeping

number

crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read

I/O

write

I/O

trans-

pose

n
raw-
x

n
y

n
x

n
y

n
x

n
y

t
read I/O
 +t
write I/O
+t
transpose

Figure 9.6: Example of performance analysis and evaluation

9.5 Assessment of added value

The implementation should be monitored with respect to its quality. The most
common monitoring is problem reporting and fault analysis. The architect should
maintain a quality assessment, based on the implementation itself. This is done by
monitoring size and change frequency. In order to do something useful with these
metrics some kind of value indicator is also needed. The architect must build up
a reference of ”value per size” metrics, which he can use for this a priori quality
monitoring.

Figure 9.7 shows an example of a performance cost curve, in this example
Pentium4 processors and hard disks. Performance and cost are roughly propor-
tional. For higher performance the price rises faster than the performance, At
the low performance side the products level out at a kind of bottom price, or
that segment is not at all populated (minimum Pentium4 performance is 1.5 GHz,
the lower segment is populated with Celerons, which again don’t go down to any
frequency).

The choice of a solution will be based on the needs of the customer. To get
grip on these needs the performance need can be translated in the sales value.
How much is the customer willing to pay for performance? In this example the
customer is not willing to pay for a system with insufficient performance, neither
is the customer willing to pay much for additional performance (if the system does

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 83

100

200

150

250

1.5
 2.0
 2.5
1.0
0.5
0.0

100
20
 40
 60
 80
 120

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

50

$

pentium4

so
ur

ce
:

ht
tp

://
w

w
w

.m
pc

om
p.

co
m

/

S

ep
te

m
be

r 5
, 2

00
2

GHz

GByte

performance

performance / cost

storage capacity

performance / cost

processing performance

Figure 9.7: Performance Cost, input data

the job, then it is OK). This is shown in figure 9.8, with rather non-linear sales
value curves.

Another point of view is the development effort. Over-dimensioning of processing
or storage capacity simplifies many design decisions resulting in less development
effort. In figure 9.9 this is shown by the effort as function of the performance.

For example for the storage capacity three effort levels can be distinguished:
with a low cost (small capacity) disk a lot of tricks are required to fit the application
within the storage constraint, for instancing by applying complex compression
techniques. The next level is for medium cost disks, which can be used with simple
compression techniques, while the expensive disks don’t need compression at all.

Figure 9.10 show that many more issues determine the final choice for the
”right” cost/performance choice: the capabilities of the rest of the system, the
constraints and opportunities in the system context, trade-offs with the image quality.
All of the considerations are changing over time, today we might need complex
compression, next year this might be a no-brainer. The issue of effort turns out to
be related with the risk of the development (large developments are more risky)
and to time to market (large efforts often require more time).

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 84

100

200

150

250

1.5
 2.0
 2.5
1.0
0.5
0.0

100
20
 40
 60
 80
 120

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

50

$

pentium4

so
ur

ce
:

ht
tp

://
w

w
w

.m
pc

om
p.

co
m

/

Se

pt
em

be
r 5

, 2
00

2

GHz

GByte

performance

sales value

processing performance

sales value

storage capacity

Figure 9.8: Performance Cost, choice based on sales value

complex

compression

simple

compression

100

200

150

250

1.5
 2.0
 2.5
1.0
0.5
0.0

100
20
 40
 60
 80
 120

50

$

so
ur

ce
:

ht
tp

://
w

w
w

.m
pc

om
p.

co
m

/

S

ep
te

m
be

r 5
, 2

00
2

GHz

GByte

performance

effort needed

to obtain required

storage capacity

effort needed

to obtain required

processing performance

no compression

m
an

-y
ea

r

5

10

15

20

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

pentium4

Figure 9.9: Performance Cost, effort consequences

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 85

cost
processing

performance

storage

capacity

image

quality

effort

time to market

user value

risk

future

evolution

1

2

3

rest of

system

system

context

2

3

Figure 9.10: But many many other considerations

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 86

9.6 Safety, Reliability and Security Analysis

Qualities such as safety, reliability and security depend strongly on the actual
implementation. Specialized engineering disciplines exists for these areas. These
disciplines have developed their own methods. One class of methods relevant for
system architects is the class of analysis methods, which start with a (systematic)
brainstorm, see figure 9.11.

potential hazards
safety

hazard analysis

reliability

FMEA

failure modes

security
 vulnerability risks

probability

severity

effects

consequences

measures

measures

measures

analysis and

assessment

(systematic)

brainstorm

improve

design

Figure 9.11: Analysis methods for safety, reliability and security

Walk-through is another effective assessment method. A few use cases are
taken and together with the engineers the implementation behavior is followed
for these cases. The architect will especially assess the understandability and
simplicity of the implementation. An implementation which is difficult to follow
with respect to safety, security or reliability is suspect and at least requires more
analysis.

9.7 Acknowledgements

William van der Sterren and Peter van den Hamer invented the nice phrase micro
benchmarking.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 87

Chapter 10

Qualities as Integrating Needles

A
pplication
C
ustomer

objectives

F
unctional
 C
onceptual
 R
ealization

safety

evolvability

usability

10.1 Introduction

The 5 CAFCR views become more useful when the information in one view is
used in relation with neighboring views. One of the starting points is the use of the
stakeholder concerns. Many stakeholder concerns are abstracted in a large set of
more generic qualities. These qualities are meaningful in every view in their own
way. Figure 10.1 shows the qualities as cross cutting needles through the CAFCR
views.

Section 10.2 shows an example of security as quality needle. In Section 10.3 a
checklist of qualities is shown, with a definition of all qualities in the checklist.

10.2 Security as Example of a Quality Needle

As an example Figure 10.2 shows security issues for all the views. The green
(upper) issues are the desired characteristics, specifications and mechanisms. The
red issues are the threats to security. An excellent illustration of the security
example can be found in [9].

A
pplication
C
ustomer

objectives

F
unctional
 C
onceptual
 R
ealization

safety

evolvability

usability

Figure 10.1: The quality needles are generic integrating concepts through the 5
CAFCR views

10.2.1 Customer Objectives View

A typical customer objective with respect to security is to keep sensitive infor-
mation secure, in other words only a limited set of trusted people has access. The
other people (non trusted) should not be able to see (or worse, to alter) this infor-
mation.

10.2.2 Application View

The customer will perform many activities to obtain security: from selecting trustful
people to appointing special guards and administrators who deploy a security policy.
Such a policy will involve classifying people with respect to their need for infor-
mation and their trustfulness, as well as classifying information according to the
level of security. To recognize trusted people authentication is required by means
of badges, passwords and in the future additional biometrics. Physical security by
means of buildings, gates, locks, et cetera is also part of the security policy.

The security is threatened in many ways, from burglary to fraud, but also from
simple issues like people forgetting their password and writing it on a yellow
sticker. Social contacts of trusted people can unwillingly expose sensitive infor-
mation, for instance when two managers are discussing business in a business
lounge, while the competition is listening at the next table.

Unworkable procedures are a serious threat to security. For instance the forced
change of passwords every month, resulting in many people writing down the
password.

An interesting article is [3]. It shows how secret security procedures, in this
case for passenger screening at airports, is vulnerable. It describes a method for
terrorists how to reverse engineer the procedures empirically, which turns the effec-
tiveness of the system from valuable to dangerous.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 89

A
pplication
C
ustomer

objectives

F
unctional
 C
onceptual
 R
ealization

sensitive

information

trusted

not trusted

selection

classification

people

information

authentication

badges

passwords

locks / walls

guards

administrators

social contacts

open passwords

blackmail

burglary

fraud

unworkable procedures

cryptography

firewall

security zones

authentication

registry

logging

holes between

concepts

functions for

administration

authentication

intrusion detection

logging

quantification

bugs

buffer overflow

non encrypted

storage

poor exception

handling

missing

functionality

wrong

quantification

specific

algorithms

interfaces

libraries

servers

storage

protocols

desired characteristics, specifications & mechanisms

threats

Figure 10.2: Example security through all views

10.2.3 Functional View

The system under consideration will have to fit in the customer’s security. Functions
for authentication and administration are required. The performance of the system
needs to be expressed explicitly. For instance the required confidence level of
encryption and the speed of authentication have to be specified.

Security threats are usually caused by missing functionality or wrong quantifi-
cation. This threat will surface in the actual use, where the users will find work
arounds that compromise the security.

10.2.4 Conceptual View

Many technological concepts have been invented to make systems secure, for example
cryptography, firewalls, security zones, authentication, registry, and logging. Every
concept covers a limited set of aspects of security. For instance cryptography
makes stored or transmitted data non-interpretable for non-trusted people.

Problems in the conceptual view are usually due to the non-ideal combination
of concepts. For instance cryptography requires keys. Authentication is used to
access and validate keys. The interface between cryptography and authentication
is a risky issue. Another risky issue is the transfer of keys. All interfaces between
the concepts are suspicious areas, where poor design easily threatens the security.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 90

10.2.5 Realization View

The concepts are realized in hardware and software with specific mechanisms, such
as encryption algorithms and tamper free interfaces. These mechanisms can be
implemented in libraries, running at a distributed computer infrastructure. Every
specific hardware and software element involved in the security concepts in itself
must be secure, in order to have a secure system.

A secure realization is far from trivial. Nearly all systems have bugs. The
encryption algorithm may be applicable, but if the library implementation is poor
then the overall security is still poor. Well known security related bugs are buffer
overflow bugs, that are exploited by hackers to gain access. Another example is
storage of very critical security data, such as passwords and encryption keys, in
non encrypted form. In general exception handling is a source of security threats
in security.

10.2.6 Conclusion

Security is a quality that is heavily determined by the customer’s way of working
(application view). To enable a security policy of the customer a well-designed
and well-implemented system is required with security functionality fitting in this
policy.

In practice the security policy of customers is a large source of problems.
Heavy security features in the system will never solve such a shortcoming. Another
common source of security problems is poor design and implementation, causing
a fair policy to be corrupted by the non-secure system.

Note that a very much simplified description of security has been presented,
with the main purpose of illustration. A real security description will be more
extensive than described here.

10.3 Qualities Checklist

Figure 10.3 shows a large set of qualities that can be used as a checklist for archi-
tecting. This set is classified to ease the access to the list. The qualities are not
independent nor orthogonal, so every classification is at its best a means not a goal.

The following sections describe the different qualities briefly, in the functional
view. Note that every quality can in general be described in each of the views.
For instance, if the system is a head end system for a cable operator, then the
useability of the (head end) system describes in the functional view the useability
of the system itself, while in the customer objectives view the useability deals with
the cable operator services.

The descriptions below are not intended to be the definition. Rather the list is
intended to be used as a checklist, i.e. as a means to get a more all round view on

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 91

usability

attractiveness

responsiveness

image quality

wearability

storability

transportability

usable

safety

security

reliability

robustness

integrity

availability

dependable

throughput or

productivity

effective

serviceability

configurability

installability

serviceable

liability

testability

traceability

standards compliance

liable

ecological footprint

contamination

noise

disposability

ecological

reproducibility

predictability

consistent

efficient

resource utilization

cost of ownership

cost price

power consumption

consumption rate

(water, air,

chemicals,

et cetera)

size, weight

accuracy

down to earth

attributes

manufacturability

logistics flexibility

lead time

logistics friendly

evolvability

portability

upgradeability

extendibility

maintainability

future proof

interoperable

connectivity

3
rd
 party extendible

Figure 10.3: Checklist of qualities

the architecture.

10.3.1 Usable

useability The useability is a measure of usefulness and ease of use of a system.

attractiveness The appeal or attractiveness of the system.

responsiveness The speed of responding to inputs from outside.

image quality The quality of images (resolution, contrast, deformation, et cetera).
This can be more generally used for output quality, so also sound quality for
instance.

wearability The ease of wearing the system, or carrying the system around.

storability The ease of storing the system.

transportability The ease of transporting the system.

10.3.2 Dependable

safety The safety of the system. Note that this applies to all the stakeholders, for
instance safety of the patient, operator, service employee, et cetera. Some
people include the safety of the machine itself in this category. In my view
this belongs to system reliability and robustness.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 92

security The level of protection of the information in the system against unwanted
access to the system.

reliability The probability that the systems operates reliable; the probability that
the system is not broken and the software is not crashed. Here again the non-
orthogonality of qualities is clear: an unreliable X-ray system is a safety risk
when deployed for interventional surgery.

robustness The capability of the system to function in any (unforeseen) circum-
stances, including being foolproof for non-educated users.

integrity Does the system yield the right outputs.

availability The availability of the system, often expressed in terms of (scheduled)
uptime and the chance of unwanted downtime.

10.3.3 Effective

throughput or productivity The integral productivity level of the system. Often
defined for a few use cases. Integral means here including aspects like start
up shutdown, preventive maintenance, replacement of consumables et cetera.
A bad attitude is to only specify the best case throughput, where all circum-
stances are ideal and even simple start up effects are ignored.

10.3.4 Interoperable

3rd party extendable How open is the system for 3rd party extensions? PCs are
extremely open; many embedded systems are not extendable at all.

connectivity What other systems can be connected to the system and what appli-
cations are possible when connected?

10.3.5 Liable

liability The liability aspects with respect to the system; who is responsible for
what, what are the legal liabilities, is the liability limited to an acceptable
level?

testability The level of verifiability of the system, does the system perform as
agreed upon?

traceability Is the operation of the system traceable? Traceability is required for
determining liability aspects, but also for post mortem problem analysis.

standards compliance Large parts of the specification are defined in terms of
compliance to standards.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 93

10.3.6 Efficient

resource utilization The typical load of the system resources. Often specified for
the same use cases as used for the productivity specification.

cost of ownership The cost of ownership is an integral estimate of all costs of
owning and operating the system, including financing, personnel, mainte-
nance, and consumables. Often only the sales price is taken as efficiency
measure. This results in a suboptimal solution that minimize only the material
cost.

10.3.7 Consistent

reproduceability Most systems are used highly repetitive. If the same operation
is repeated over and over, the same result is expected all the time within the
specified accuracy.

predictability The outcome of the system should be understandable for its users.
Normally this means that the outcome should be predictable.

10.3.8 Serviceable

serviceability The ease of servicing the system: indication of consumable status,
diagnostic capabilities in case of problems, accessibility of system internals,
compatibility of replaceable units, et cetera.

configurability The ease of configuring (and maintaining, updating the configu-
ration) the system

installability The ease of installing the system; for example the time, space and
skills needed for installing.

10.3.9 Future Proof

evolvability The capability to change in (small) steps to adapt to new changing
circumstances.

portability To be able to change the underlying platform, for instance from Windows
NT to Linux, or from Windows 98SE to Windows XP.

upgradeability The capability of upgrading the entire or part of the system with
improved features.

extendability The capability to add options or new features.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 94

maintainability The capability of maintaining the well-being of the system, also
under changing circumstances, such as end-of-life of parts or consumables,
or new safety or security regulations.

10.3.10 Logistics Friendly

manufacturability The ease of manufacturing the system; for example time, space
and skills needed for manufacturing.

logistics flexibility The capability to quickly adapt the logistics flow, for instance
by fast ramp up (or down) supplier agreements, short lead times, low integration
effort and second suppliers.

lead time The time between ordering the system and the actual delivery.

10.3.11 Ecological

ecological footprint The integral ecological load of the system, expressed in “original”
ecological costs. This means that if electricity is used, the generation of
electricity (and its inefficiency) is included in the footprint.

contamination The amount of contamination produced by the system

noise The (acoustical) noise produced by the system

disposability The way to get the system disposed, for instance the ability to decompose
the system and to recycle the materials.

10.3.12 Down to Earth Attributes

These attributes (as the name indicates) are so trivial that no further description is
given.

cost price

power consumption

consumption rate (water, air, chemicals, et cetera)

size, weight

accuracy

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.3

Buskerud University College

page: 95

10.4 Summary

The qualities of a system can be generalized to the other CAFCR views. This
generalization helps to understand the relationships between the views. Classifi-
cation of the qualities is the basis for a checklist of qualities. This checklist is a
tool for the architect: it helps the architect in determining the relevant qualities for
the system to be created.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.1

Buskerud University College

page: 96

Chapter 11

Story How To

Customer

What

Customer

How

Product

What

Product

How

What
does Customer need

 in Product and
Why
?

story
 case
analyze

design

design
analyze

design

a priori solution knowledge
market

vision

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

11.1 Introduction

Starting a new product definition often derails in long discussions about generic
specification and design issues. Due to lack of reality check these discussions are
very risky, and often way too theoretical. Story telling followed by specific analysis
and design work is a complementary method to do in-depth exploration of parts of
the specification and design.

The method provided here, based on story telling, is a powerful means to
get the product definition quickly in a concrete factual discussion. The method
is especially good in improving the communication between the different stake-
holders. This communication is tuned to the stakeholders involved in the different
CAFCR views: the story and use case can be exchanged in ways that are under-
standable for both marketing-oriented people as well as for designers.

Figure 11.1 positions the story in the customer objectives view and application
view. A good story combines a clear market vision with a priori realization know
how. The story itself must be expressed entirely in customer terms, no solution
jargon is allowed.

Customer

What

Customer

How

Product

What

Product

How

What
does Customer need

 in Product and
Why
?

story
 case
analyze

design

design
analyze

design

a priori solution knowledge
market

vision

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

Figure 11.1: From story to design

A day in the life of Bob

bla blah bla, rabarber music

bla bla composer bla bla

qwwwety30 zeps.

nja nja njet njippie est quo

vadis? Pjotr jaleski bla bla

bla brree fgfg gsg hgrg

mjmm bas engel heeft een

interressant excuus, lex stelt

voor om vanavond door te

werken.

In the middle of the night he

is awake and decides to

change the world forever.

The next hour the great

event takes place:

This brilliant invention will change the world foreverbecause it is so unique and

valuable that nobody beliefs the feasibility. It is great and WOW at the same time,

highly exciting.

Vtables are seen as the soltution for an indirection problem. The invention of Bob will

obsolete all of this in one incredibke move, which will make him famous forever.

He opens his PDA, logs in and enters his provate secure unqiue non trivial

password, followed by a thorough authentication. The PDA asks for the fingerprint of

this little left toe and to pronounce the word shit. After passing this test Bob can

continue.

draft or sketch of

some essential

appliance
ca. half a page of

plain English text

Yes

or

No

that is the question

Figure 11.2: Example story layout

11.2 How to Create a Story?

A story is a short single page story, as shown in Figure 11.2, preferably illustrated
with sketches of the most relevant elements of the story, for instance the look and
feel of the system being used. Other media such as cartoons, animations, video or
demonstrations using mockups can be used also. The duration or the size of the
“story” must be limited to enable focus on the essentials.

Every story has a purpose, something the design team wants to learn or explore.
The purpose of the story is often in the conceptual and realization views. The scope
of the story must be chosen carefully. A wide scope is useful to understand a wide
context, but leaves many details unexplored. An approach is to use recursively
refined stories: an overall story setting the context and a few other stories zooming

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.1

Buskerud University College

page: 98

in on aspects of the overall story.
The story can be written from several stakeholder viewpoints. The viewpoints

should be carefully chosen. Note that the story is also an important means of
communication with customers, marketing managers and other domain experts.
Some of the stakeholder viewpoints are especially useful in this communication.

The size of the story is rather critical. Only short stories serve the purpose
of discussion catalyst. At the same time all stakeholders have plenty of questions
that can be answered by extending the story. It is recommended to really limit
the size of the story. One way of doing this is by consolidating additional infor-
mation in a separate document. For instance, in such a document the point of the
story in customer perspective, the purpose of the story in the technology explo-
ration, and the implicit assumptions about the customer and system context can be
documented.

11.3 How to Use a Story?

The story itself must be very accessible for all stakeholders. The story must be
attractive and appealing to facilitate communication and discussion between those
stakeholders. The story is also used as input for a more systematic analysis of the
product specification in the functional view. All functions, performance figures
and quality attributes are extracted from the story. The analysis results are used to
explore the design options.

Normally several iterations will take place between story, case and design
exploration. During the first iteration many questions will be raised in the case
analysis and design, which are caused by the story being insufficiently specific.
This needs to be addressed by making the story more explicit. Care should be
taken that the story stays in the Customers views and that the story is not extended
too much. The story should be sharpened, in other words made more explicit, to
answer the questions.

After a few iterations a clear integral overview and understanding emerges for
this very specific story. This insight is used as a starting point to create a more
complete specification and design.

11.4 Criteria

Figure 11.3 shows the criteria for a good story. It is recommended to assess a story
against this checklist and either improve a story such that it meets all the criteria
or to reject the story. Fulfillment of these criteria helps to obtain a useful story.
The set of five criteria is a necessary but not sufficient set of criteria. The value of
a story can only be measured in retrospect by determining the contribution of the
story to the specification and design process.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.1

Buskerud University College

page: 99

• accessible, understandable

• valuable, appealing

• critical, challenging

• frequent, no exceptional niche

• specific

"Do you see it in front of you?"

attractive, important

"Are customers queuing up for this?"

"What is difficult in the realization?"

"What do you learn w.r.t. the design?"

names, ages, amounts, durations, titles, ...

"Does it add significantly to the bottom line?"

C
ustomer

objectives

A
pplication

F
unctional

C
onceptual

R
ealization

C
ustomer

objectives

A
pplication

A
pplication

A
pplication

Figure 11.3: criteria for a good story

Accessible, understandable The main function of a story is to make the oppor-
tunity or problem communicable with all the stakeholders. This means that
the story must be accessible and understandable for all stakeholders. The
description or presentation should be such that all stakeholders can live through,
experience or imagine the story. A “good” story is not a sheet of paper, it is
a living story.

Important, valuable, appealing, attractive The opportunity or problem (idea, product,
function or feature) must be significant for the target customers. This means
that it should be important for them, or valuable; it should be appealing and
attractive.

Most stories fail on this criterium. Some so-so opportunity (whistle and bell-
type) is used, where nobody gets really enthusiastic. If this is the case more
creativity is required to change the story to an useful level of importance.

Critical, challenging The purpose of the story is to learn, define, analyze new
products or features. If the implementation of a story is trivial, nothing will
be learned. If all other criteria are met and no product exists yet, than just do
it, because it is clearly a quick win!

If the implementation is challenging, then the story is a good vehicle to study
the trade-offs and choices to be made.

Frequent, no exceptional niche Especially in the early exploration it is important
to focus on the main line, the typical case. Later in the system design more
specialized cases will be needed to analyze for instance more exceptional
worst case situations.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.1

Buskerud University College

page: 100

A typical case is characterized by being frequent, it should not be an excep-
tional niche.

Specific The value of a story is the specificity. Most system descriptions are very
generic and therefore very powerful, but at the same time very non specific.
A good story provides focus on a single story, one occasion only. In other
words the thread of the story should be very specific.

Specificity can be achieved in social, cultural, emotional or demographic
details, such as names, ages, and locations. “Eleven year old Jane in Shanghai”
is a very different setting than “Eighty two year old John in an Amsterdam
care center”. Note that these social, cultural, emotional or demographic
details also help in the engagement of the audience. More analytical stories
can be too “sterile” for the audience.

Another form of specificity is information that helps to quantify. For example,
using “Doctor Zhivago” as movie content sets the duration to 200 minutes.
Stories often need lots of these kinds of detail to facilitate later specification
and design analysis. When during the use of the story more quantification is
needed, then the story can be modified such that it provides that information.

A good story is in all aspects as specific as possible, which means that:

• persons playing a role in the story preferably have a name, age, and
other relevant attributes

• the time and location are specific (if relevant)

• the content is specific (for instance is listening for 2 hours to songs of
the Beatles)

Story writers sometimes want to show multiple possibilities and describe somewhere
an escaping paragraph to fit in all the potential goodies (Aardvark works, sleeps,
eats, swims et cetera, while listening to his Wow56). Simply leave out such an
paragraph, it only degrades the focus and value of the story.

11.5 Example Story

Figure 11.4 shows an example of a story for hearing aids. The story first discusses
the problem an elderly lady suffers from due to imperfect hearing aids. The story
continues with postulated new devices that helps her to participate again in an
active social life.

Figure 11.5 shows for the value and the challenge criteria what this story
contributes.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 101

source: Roland Mathijssen

Embedded Systems Institute

Eindhoven

Betty is a 70-year-old woman who lives in Eindhoven. Three

years ago her husband passed away, and since then, she lives

in a home for the elderly. Her two children, Angela and Robert,

come and visit her every weekend, often with Betty’s

grandchildren Ashley and Christopher. As with so many women

of her age, Betty is reluctant to touch anything that has a

technical appearance. She knows how to operate her television,

but a VCR or even a DVD player is way to complex.

When Betty turned 60, she stopped working in a sewing studio.

Her work in this noisy environment made her hard-of-hearing

with a hearing-loss of 70dB around 2kHz. The rest of the

frequency spectrum shows a loss of about 45dB. This is why she

had problems understanding her grandchildren and why her

children urged her to apply for hearing aids two years ago. Her

technophobia (and her first hints or arthritis) inhibit her from

changing her hearing aids’ batteries. Fortunately, her children

can do this every weekend.

This Wednesday, Betty visits the weekly Bingo afternoon in the

meeting place of the old-folk’s home. It’s summer now and the

tables are outside. With all those people there, it’s a lot of

chatter and babble. Two years ago, Betty would never go to the

bingo: “I cannot hear a thing when everyone babbles and clatters

with the coffee cups. How can I hear the winning numbers?!”.

Now that she has her new digital hearing instruments, even in

the bingo cacophony, she can understand everyone she looks

at. Her social life has improved a lot, and she even won the

bingo a few times.

That same night, together with her friend Janet, she attends Mozart’s opera The Magic

Flute. Two years earlier, this would have been one big low rumbly mess, but now she

even hears the sparkling high piccolos. Her other friend Carol never joins their visits to

the theaters. Carol also has hearing aids; however, hers only “work well” in normal

conversations. “When I hear music, it’s as if a butcher’s knife cuts through my head.

It’s way too sharp!”. So Carol prefers to take her hearing aids out, missing most of the

fun. Betty is so happy that her hearing instruments simply know where they are and

adapt to their environment.

Figure 11.4: Example of a story

11.6 Acknowledgements

Within the IST-SWA research group lots of work has been done on scenario and
story based architecting, amongst others by Christian Huiban and Henk Obbink.
Rik Willems helped me to sharpen the specificity criterium. Melvin Zaya provided
feedback on the importance of the story context and the ”point” of the story. Roland
Mathijssen provided an example story.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 102

Challenges in this story:

Intelligent hearing instrument

Battery life at least 1 week

No buttons or other fancy user interface on the hearing instrument,

other than a robust On/Off method

The user does not want a technical device but a solution for a problem

Instrument can be adapted to the hearing loss of the user

Directional sensitivity (to prevent the so-called cocktail party effect)

Recognition of sound environments and automatic adaptation (adaptive

filtering)

source: Roland Mathijssen, Embedded Systems Institute, Eindhoven

C
onceptual

R
ealization

C
ustomer

objectives

A
pplication

Value proposition in this story:

quality of life:

active participation in different social settings

usability for nontechnical elderly people:

"intelligent" system is simple to use

loading of batteries

Figure 11.5: Value and Challenges in this story

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 103

Chapter 12

Use Case How To

broadcast

20:00
 21:00
 22:00
 23:00

phone rings

pause viewing

finish conversation

resume viewing

start

movie

end

movie

view
 view

talk

record

play

1. programmed recording

of other station

2. very long

phone call

play

3. Dad

zaps

12.1 Introduction

The use case technique is frequently used in specification and design, for example
RUP[20] is advocating it is as tool. The power of use cases is that they put specifi-
cations in user perspective. Use cases facilitate analysis and design and verification
and testing by providing concrete inputs. In practice the following problems arise
when use cases are used:

• designers apply the technique too local, for example software only

• the use cases are limited to functionality, ignoring quantified information

The purpose of this article is to explain the use case technique at system level,
applied in a multi-disciplinary way. We will show how to obtain understanding
from use cases of typical use and how to analyze the specification and design for
worst cases and boundary conditions.

12.2 Example Personal Video Recorder

We use time shift recording as a use case of desired user functionality. Figure 12.1
shows the concurrent activities that occur when straightforward time shifting is

used. In this example the user is watching a movie, which is broadcasted via
conventional means. After some time he is interrupted by the telephone. In order
to be able to resume the viewing of the movie he pauses the viewing, which starts
invisible the recording of the remainder of the movie. Sometime later he resumes
viewing where he left of, while in the background the recording of the not yet
finished movie continues.

broadcast

20:00
 21:00
 22:00
 23:00

phone rings

pause viewing

finish conversation

resume viewing

start

movie

end

movie

view
 view

talk

record

play

Figure 12.1: Example use case Time Shift recording

In this simple form (pause/resume) this function provides freedom of time to
the user. This appears to be very attractive in this interaction modus. However
when such an appliance is designed limits out of the construction world pop up,
which intrude in the user experience. The list below shows a number of construction
limits, which are relevant for the external behavior of the appliance.

• number of tuners

• number of simultaneous streams (recording and playing)

• amount of available storage

• management strategy of storage space

Construction limits, but also more extensive use cases, see figure 12.2, show
how the intrinsic simple model can deteriorate into a more complex interaction
model. Interference of different user inputs and interference of appliance limita-
tions compromise the simplicity of the interaction model.

12.3 The use case technique

Figure 12.3 shows what elements should be present in a use case. The purpose of
the use case is to make the specification clear of functionality or behavior of the

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 105

broadcast

20:00
 21:00
 22:00
 23:00

phone rings

pause viewing

finish conversation

resume viewing

start

movie

end

movie

view
 view

talk

record

play

1. programmed recording

of other station

2. very long

phone call

play

3. Dad

zaps

Figure 12.2: What if conflicting events happen during the pause interval?

system and what the desired non-functional requirements (or qualities) are. The
use case technique can also be applied for technical interfaces, where the use case
illustrates the specification from the perspective of the using system.

use case

(sub)system

or component

user or system

specified

functionality

behavior

interfaces

qualities (NFR's)

input data

format

size

content

context

interaction

output data

format

size

content

Figure 12.3: Content of a Use Case

The use case also described the input of the (sub)system in terms of format, size
and content. The expected outputs are described with the same attributes. Then the
interaction with the context of the system must be described, as far as relevant for
this specific use case.

Figure 12.4 shows the elements of two use cases also from the personal video

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 106

worst case, exceptional, or change

use case(s)

typical use case(s)

interaction flow (functional aspects)

select movie via directory

start movie

be able to pause or stop

be able to skip forward or backward

set recording quality

performance and other qualities

(non-functional aspects)

response times for start / stop

response times for directory browsing

end-of-movie behaviour

relation recording quality and storage

functional

multiple inputs at the same time

extreme long movie

directory behaviour in case of

extreme many short movies

non-functional

response time with multiple inputs

image quality with multiple inputs

insufficient free space

response time with many directory entries

replay quality while HQ recording

Figure 12.4: Example personal video recorder use case contents

recorder domain. At the left hand a typical use case is presented: watching a
pre-recorded movie. The right side shows the elements of examples of worst
cases or boundary cases. At the bottom of both use cases the possible quantifi-
cation is shown. For example in the typical case user response times can be
specified or image quality in relation to required storage capacity. For worst cases
many more numbers are relevant for design. These worst case numbers arise from
the confrontation of the extremes of the user needs with the quantification of the
technology limitations.

12.4 Example URF examination

This use case example focuses on the quantification aspect. Figure 14.7 shows the
typical case for URF (Universal Radiography Fluoroscopy) examinations when
used image intestines. Three examination rooms are sharing one medical imaging
workstation. Every examination room has an average throughput of 4 patients per
hour (patient examinations are interleaved, as explained below for Figure 14.8).

The average image production per examination is 20 images, each of 10242

pixels of 8 bits. The images are printed on large film sheets with a size of approxi-
mately 24∗30cm2. One film sheet consists of 4k by 5k pixels. The images must be
sufficiently large to be easily viewed on the light-box. These images are typically
printed on 3 film sheets. Image quality of the film sheets is crucial, which translates
into the use of bi-cubic interpolation.

Figure 14.8 shows how patient examinations are interleaved. The patient is
examined over a period of about one hour. This time is needed because the barium
meal progresses through the intestines during this period. A few exposures are
made during the passage of clinical relevant positions. The interleaving of patients
in a single examination room optimizes the use of expensive resources. At the level
of the medical imaging workstation the examinations of the different examination

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 0.1

Buskerud University College

page: 107

exam

room 1

exam

room 3

exam

room 2

image production: 20 1024
 2
 8 bit images per examination

3 examination rooms connected to

examination room: average 4 interleaved examinations / hour

film production: 3 films of 4k*5k pixels each

1 medical imaging

workstation + printer

high quality output

(bi-cubic interpolation)

Figure 12.5: Typical case URF examination

rooms are imported concurrently. The workstation must be capable of serving all
three acquisition rooms with the specified typical load. The latency between the
end of the examination and the availability of processed film sheets is not very
critical.

The amount of worst case and boundary situations is very large, so selection
of relevant ones is needed. The danger of working out too many use cases is
that all this work is also transformed in realizations and verifications resulting in
excessive implementation efforts. Reduction of the amount of use cases can be
done in steps, by replacing several detailed use cases by one slightly more gener-
alized use case. The consequence of such a transformation is that also the design is
simplified, where the focus should be on excellent performance of typical use cases
and acceptable performance and behavior for worst cases and exceptional cases.

12.5 Summary

Figure 12.7 summarizes the recommendations for use cases. A common pitfall is
that people describe use cases at single function level. The usage aspect disappears
in this way and many small problems become invisible. Therefor a good use case
combines several functions into one user activity. The use case should be quantified
to make it useful for design, analysis and verification. The amount of use cases
should be limited.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 108

exam

room 1

exam

room 2

exam

room 3

1 hour

time

9:00
 10:00
9:30

patient 1

patient 2

patient 3

patient 4

Figure 12.6: Timing of typical URF examination rooms

+ combine related functions in one use case

- do not make a separate use case for every function

+ include non-functional requirements in the use cases

+ minimise the amount of required
 worst case
 and

exceptional use cases

- excessive amounts of use cases propagate to

excessive implementation efforts

+ reduce the amount of these use cases in steps

- a few well chosen
 worst case
use cases simplifies the design

Figure 12.7: Recommendations for working with use cases

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 109

Chapter 13

Threads of Reasoning

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

13.1 Introduction

The submethods provide generic means to cope with a limited part of the system
architecture. The CAFCR model and the qualities provide a framework to position
these results. The story telling is a means to do analysis and design work on the
basis of concrete and specific facts. In this chapter a reasoning method is discussed
to integrate all previous submethods. This reasoning method covers both the high
level and the detailed views and covers the relation between multiple submethods
and multiple qualities. The method is based on the identification of the points of
tension in the problem and potential solutions.

The reasoning approach is explained as a 5 step approach. Section 13.2 provides
an overview of the approach and gives a short introduction to each step. Section 13.3
describes the actual reasoning over multiple viewpoints: how to maintain focus and
overview in such a multi-dimensional space? How to communicate and document?
Section 13.4 explains how the threads of reasoning fit in the complete method.

13.2 Overview of Reasoning Approach

Fast exploration of the problem and solution space improves the quality of the
specification and design decisions, as explained in Chapter ??. It is essential to
realize that such an exploration is highly concurrent, it is neither top-down, nor

bottom-up, see viewpoint hopping and decision making in Sections ?? and ??. In
practice many designers find it difficult to make a start. In fact this does not have
to be difficult: most starting points can be used, as long as the method is used with
a sufficient open mind (that means that the starting point can be changed, when the
team discovers that more important specification or design decisions are needed).

2. create insight:

+ submethod in one of CAFCR views

+ qualities checklist

3. deepen insight via facts:

+ via tests, measurements, simulations

+ story telling

4. broaden insight via questions:

+ why

+ what

+ how

5. define and extend the thread:

? what is the most important / valuable

? what is the most critical / sensitive

! look for the conflicts and tension

1. select starting point:

! actual dominant need or problem

continuously

consolidate in simple models

communicate to stakeholders

refactor documentation

Figure 13.1: Overview of reasoning approach

Figure 13.1 shows an overview of the entire reasoning approach. Step 1 is to
select a starting point. After step 1 the iteration starts with step 2 create insight.
Step 3 is deepening the insight and step 4 is broadening the insight with the
questions. The next iteration is prepared by step 5 refining or selecting the next
need or problem.

During this iteration continuous effort is required to communicate with the
stakeholders to keep them up to date, to consolidate in simple models that are
used during analysis and discussions and to refactor the documentation to keep it
up to date with the insights obtained.

13.2.1 Selecting a Starting Point

As stated earlier it is more important to get started with the iteration than to spend
a lot of time trying to find the most ideal starting point. A very useful starting point
is to take a need or problem that is very hot at the moment. If this issue turns out
to be important and critical then it needs to be addressed anyway. If it turns out to
be not that important, then the outcome of the first iteration serves to diminish the
worries in the organization, enabling it to focus on the important issues.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 111

In practice there are many hot issues that after some iterations turn out to be
non-issues. This is often causes by non-rational fears, uncertainty, doubt, rumors,
lack of facts et cetera. Going through the iteration, which includes fact finding,
quickly positions the issues. This is of great benefit to the organization as a whole.

step 1 starting point

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

slow response

Figure 13.2: Example of a starting point: a slow system response discussed from
the designer’s viewpoint

The actual dominant needs or problems can be found by listening to what
is mentioned with the greatest loudness, or which items dominate in all discus-
sions and meetings. Figure 13.2 shows the response time as starting point for the
iteration. This starting point was triggered by many design discussions about the
cause of a slow system response and about potential concepts to solve this problem.

13.2.2 Building up Insight

The selected issue can be modeled by means of one of the many submethods as
described in the CAFCR chapters. Doing this, it will quickly become clear what
is known (and can be consolidated and communicated) and what is unknown, and
what needs more study and is hence input for the next step. Figure 13.3 shows the
response time model as potential submethod.

step 2 creating insight

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

performance

re
sp

on
se

tim

e
m

od
el

Figure 13.3: Example of creating insight: to study the required performance a
response model of the system is made

An alternative approach is to look at the issue from the perspective of quality.
One then has to identify the most relevant qualities, by means of the checklist

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 112

in Figure 10.3. These qualities can be used to sharpen the problem statement.
Figure 13.3 shows the performance as quality to be used to understand the response
time issue.

13.2.3 Deepening the Insight

The insight is deepened by gathering specific facts. This can be done by simula-
tions, or by tests and measurements on existing systems. At the customer side story
telling helps to get the needs sufficiently specific, as illustrated by Figure 13.4.

step 3 deepening insight

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

story

specific needs

simulations, test,

measurements

specific facts

Figure 13.4: Deepening the insight by articulating specific needs and gathering
specific facts by simulations, tests and simulations

It is important in this phase to sample specific facts and not to try to be complete.
A very small subset of specific facts can already provide lots of insight. The speed
of iteration is much more important than the completeness of the facts. Be aware
that the iteration will quickly zoom in on the core design problems, which will
result in sufficient coverage of the issues anyway.

13.2.4 Broadening the Insight

Needs and problems are never nicely isolated from the context. In many cases the
reason why something is called a problem is because of the interaction between the
function and the context. The insight is broadened by relating the need or problem
to the other views in the CAFCR model. This can be achieved by the why, what
and how questions as described in Section ?? and shown in Figure 13.5.

The insight in the quality dimension can also be broadened by looking at the
interaction with related qualities: what happens with safety, when we increase the
performance?

13.2.5 Define and Extend the Thread

During the study and discussion of the needs and problems many new questions and
problems pop up. A single problem can trigger an avalanche of new problems. Key
in the approach is not to drown in this infinite ocean full of issues, by maintaining

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 113

step 4 broadening insight

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

why?
 what?

how?
 how?
what?

why?

how?

why?

w
ha

t

ho

w
?

Figure 13.5: Broadening the insight by repeating why, what and how questions

focus on important and critical issues. The most progress can be made by identi-
fying the specification and design decisions that seem to be the most conflicting,
i.e. where the most tension exists between the issues.

The relevance of a problem is determined by the value or the importance of the
problem for the customer. The relevance is also determined by how challenging a
problem is to solve. Problems that can be solved in a trivial way should immedi-
ately be solved. The approach as described is useful for problems that require some
critical technical implementation. The implementation can be critical because it is
difficult to realize, or because the design is rather sensitive1 or rather vulnerable
(for example, hard real-time systems with processor loads up to 70%).

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

definition in terms of tension

image quality

performance

cost

algorithms

multi processor

pipeline design

Figure 13.6: Example definition of the thread in terms of tension for a digital TV

Figure 13.6 shows the next crucial element to define the thread: identification
the tension between needs and implementation options. The problem can be formu-
lated in terms of this tension. A clearly articulated problem is half of the solution.

The example in Figure 13.6 shows the tension between the customer objec-
tives and the design options. The image quality objective requires good algorithms
that require a lot of processing power. Insufficient processing power lowers the
system performance. The processing power is achieved by a pipeline of multiple

1for instance in MRI systems the radius of the gradient coil system and the cost price were related
with (rmagnet−rgradientcoil)

5. 1 cm more patient space would increase the cost dramatically, while
at the same time patient space is crucial because of claustrophobia.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 114

processors. The cost of the number crunching capacity easily exceeds the cost
target.

13.3 Reasoning

The reasoning by the architect is based on a combination of subjective intuition
and objective analysis. The intuition is used to determine the direction and to
evaluate results. The analysis partially validates the direction and partially helps
the architect to develop his intuition further.

detect

mismatch

architect

intuition

objective

criteria

objective

ranking

intuitive

ranking

solution

problem

improved solution

understanding

improved problem

understanding

improve criteria

adjust intuition

improve solution

solution
solution

Figure 13.7: Reasoning as a feedback loop that combines intuition and analysis

The assessment of the solutions is done by means of criteria. An objective
ranking of the solutions can be made based on these criteria. The architect (and
the other stakeholders) have their own subjective ranking based on intuition. By
comparing the objective and subjective rankings a better understanding is achieved
of both problem and solutions. This is shown in Figure 13.7. The increased
understanding of the problem is used to improve the criteria. The increased under-
standing of the problem and the solutions influences the intuition of the architect
(for instance this type of function is more expensive than expected). The increased
understanding of the solution will trigger new solution(s).

During the reasoning a network of related issues emerges, as shown in Figure 13.8.
Figure 13.8 visualizes the network as a graph, where a dot represents a specifi-
cation or a design decision and a line represents a relation. Such a relation can be:
is implemented by, is detailed by, is conflicting with, enables or supports et cetera.
The thickness of the line indicates the weight of the relation (thin is weak, thick is
strong).

This graph is a visualization of the thread of reasoning followed by an architect.
Crucial in such a thread is that it is sufficiently limited to maintain overview and
to enable discussion and reasoning. A good thread of reasoning addresses relevant

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 115

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

Figure 13.8: One thread of reasoning showing related issues. The line thickness is
an indication for the weight of the relation.

problem(s), without drowning in the real world complexity.

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

key

drivers

cost

perfor-

mance

response

time

target
CoO

store

zap

IQ

case

IQ

spec

context

cost

budget

time

budget

pipeline

design

functional

model

processing

library

micro

benchmarks

Figure 13.9: Example of the documentation and communication for a digital TV.
The thread is documented in a structured way, despite the chaotic creation path.
This structure emerges after several iterations.

A continuous concern is to communicate with the stakeholders and to consol-
idate the findings, for instance in documentation. Figure 13.9 shows the more
structured way to document and communicate these findings. The architect needs
several iterations to recognize the structure in the seeming chaotic thread of reasoning.
This example discusses the thread that has been shown in Figure 13.6. This single
thread of reasoning addresses three key drivers as shown in Figure 13.9: IQ (Image
Quality), cost and performance. Most information in the thread of reasoning addresses
these key drivers, however some additional information emerges too, such as the

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 116

context of the digital TV at home, the functionality of the zap and store functions
and the internal functional models.

13.4 Outline of the complete method

The threads of reasoning are the integration means of the overall method. In this
section a short description is given how the threads of reasoning are are combined
with the submethods, quality checklists and story telling to form a complete method.
The steps in the description refer to Figure 13.7. Note that this aspect is speculative,
because it has not been applied and therefore cannot be evaluated at this moment.
Only an outline can be given now. A more detailed description of the method has
to wait until further research is due.

The starting point (step 1) of a product creation is often a limited product speci-
fication, belonging in the Functional view. The next step is to explore (step 2)
the customer context (Customer Objectives and Application views) and to explore
the technical merits (Conceptual and Realization views). This exploration is used
to identify a first set of customer-side opportunities and to identify the biggest
technical challenges. During the exploration the submethods and quality check-
lists are used as a source of inspiration, for instance to determine the opportunity
in the business model of the customer. Next (step 3) a story must be created that
addresses the most important and valuable opportunities and the biggest technical
challenges. The story is used to derive a first use case and to do a more thorough
exploration (step 4) of the specification and the design. At this moment the first
thread of reasoning is already visible (step 5), connecting a coarse product speci-
fication with customer opportunities and technical challenges. From this moment
onwards the steps are repeated over and over, extending the thread of reasoning
and creating one or two more threads of reasoning if needed. The submethods and
the qualities are used during these iterations as a toolbox to describe specific parts
of this creation process.

13.5 Summary

The reasoning approach is a means to integrate the CAFCR views and the qualities
to design a system that fits entirely in the customer needs. The threads of reasoning
approach is described by five steps. The result can be visualized as a graph of many
related customer needs, specification issues and design issues. In this graph the
core reasoning can be indicated around a limited set of key drivers or quality needs.
In Chapter 18 the graph will be visualized for the Medical Imaging Workstation
case.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 117

Part III

Medical Imaging Case
description

Chapter 14

Medical Imaging Workstation:
CAF Views

prepare

diagnosis
 diagnosis
acquire

images

report

authorise

archive

clinical

review

education

research

demonstra-

tion

treatment

planning
time

richness

clinical

value

medical

imaging

workstation

14.1 Introduction

This chapter discusses the Customer Objectives, Application and Functional views
of the Medical Imaging Workstation. Section 14.2 describes the radiology context.
Section 14.3 describes the typical application of the system. Section 14.4 shows the
key driver graph, from customer key drivers to system requirements, of the Medical
Imaging Workstation. Section 14.5 shows the development of functionality of the
family of medical imaging workstations in time. Section 14.6 discusses the need
for standardization of information to enable interoperability of systems within the
department and the broader scope of the hospital. The conclusion is formulated in
section 14.7.

14.2 Radiology Context

The medical imaging workstation is used in the radiology department as an add-
on to URF X-ray systems. The main objective of the radiologist is to provide
diagnostic information, based on imaging, to the referring physician. In case of
gastrointestinal problems X-ray images are used, where the contrast is increased
by digestion of barium meal.

radiology department
family

doctor

patient

referring

physician

nurse,

operator

radiologist

consult

request

request

report

report

findings

film

film

image
image

interaction

interaction

interaction

paper or el. form

electronic

human interaction

intense

weak

legend

Figure 14.1: The clinical context of the radiology department, with its main stake-
holders

The work of the radiologist fits in an overall clinical flow, see Figure 14.1.
The starting point is the patient visiting the family doctor. The family doctor can
refer to a consultant; for gastrointestinal problems the consultant is an internist.
The family doctor writes a request to this consultant. In the end the family doctor
receives a report from the consultant.

Next the patient makes an appointment with the consultant. The consultant will
do his own examination of the patient. Some of the examinations are not done by
the consultant. Imaging, for example, is done by radiologist. From the viewpoint
of the radiologist the consultant is the referring physician. The referring physician
uses a request form to indicate the examination that is needed.

The patient makes an appointment via the administration of the radiology department.
The administration will schedule the examination. The examination is done by
hospital personnel (nurses, operator) under supervision of the radiologist. Most
contact is between nurse and patient; contact between radiologist and patient is
minimal.

The outcome of the imaging session in the examination room is a set of films
with all the images that have been made. The radiologist will view these films later
that day. He will dictate his findings, which are captured in written format and sent
to the referring physician. The referring physician performs the overall diagnosis
and discusses the diagnosis and, if applicable, the treatment with the patient.

The radiology department fits in a complex financial context, see Figure 14.2.
The patient is the main subject from a clinical point of view, but plays a rather
limited role in the financial flow. The patient is paying for insurance, which
decouples him from the rest of the financial context.

The insurance company and the government have a strong interest in cost

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 120

radiology

hospital

admini-

stration

government
insurance

patient

equipment

and service

providers

facilities

schedules

re

gu
la

tio
ns

bu

dg
et

payment

budget

bill

eq
ui

pm
en

t

se

rv
ic

es

pa
ym

en
t

pa
ym

en
t

payment

budget

equipment

services

payment

regulations

budget

Figure 14.2: The financial context of the radiology department

control1. They try to implement this by means of regulations and budgets. Note
that these regulations vary widely over the different countries. France, for instance,
has stimulated digitalization of X-ray imaging by higher reimbursements for digital
images. The United States regulation is much less concerned with cost control, here
the insurance companies participate actively in the health care chain to control the
cost.

The hospital provides facilities and services for the radiology department. The
financial decomposition between radiology department and hospital is not always
entirely clear. They are mutually dependent.

The financial context is modeled in Figure 14.2 in a way that looks like the
Calculating with Concepts technique, described by Dijkman et al in [5]. The
diagram as it is used here, however, is much less rigorous as the approach of
Dijkman. In this type of development the main purpose of these diagrams is
building insight in the broader context. The rigorous understanding, as proposed
by Dijkman, requires more time and is not needed for the purpose here. Most
elements in the diagram will not even have a formal interface with the product to
be created. Note also that the diagram is a simplification of the reality: the exact
roles and relations depend on the country, the culture and the type of department.
For example a university hospital in France is different from a commercial imaging
center in the USA. Whenever entities at this level are to be interfaced with the

1sometimes it even appears that that is the main interest, quality of health care appears than to be
of secondary importance

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 121

medical imaging workstation then an analysis is needed of the greatest common
denominator to be able to define a rigorous interface.

modalities from

other vendors

HIS

Philips

modalities

PACS

RIS

IT infrastructure

CIS
 LIS

generic

clinical specific

info

image workflow

modality

systems

medical imaging workstation
 modality

enhancement

administrative

mainframes

archive
 report
 review
 tele
 print

legend

Figure 14.3: Application layering of IT systems

The medical imaging workstation is playing a role in the information flow in the
hospital, it is part of the large collection of IT systems. Figure 14.3 shows a layered
model of IT systems in the hospital, to position this product in the IT context. It
is a layered model, where the lower layers provide the more generic functionality
and the higher layers provide the more specific clinical imaging functionality.

In the hospital a normal generic IT infrastructure is present, consisting of
networks, servers, PC’s and mainframes. More specialized systems provide clinical
information handling functions for different hospital departments (LIS for laboratory,
CIS for cardio and RIS for radiology) and for the entire hospital (HIS Hospital
Information System).

The generic imaging infrastructure is provided by the PACS (Picture Archiving
and Communication System). This is a networked system, with more specialized
nodes for specific functions, such as reporting, reviewing, demonstration, teaching
and remote access.

The medical imaging workstation is positioned as a modality enhancer: an add-
on to the modality product to enhance productivity and quality of the examination
equipment. The output of the modality enhancer is an improved set of viewable
images for the PACS.

Figure 14.4 shows a reworked copy of the reference model for image handling
functions from the “PACS Assessment Final Report”, September 1996 [4]. This
reference model is classifying application areas on the basis of those characteristics
that have a great impact on design decisions, such as the degree of distribution, the
degree and the cause of variation and life-cycle.

Imaging and treatment functions are provided of modality systems with the
focus on the patient. Safety plays an important role, in view of all kinds of hazards

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 122

information

handling

image handling

archiving

imaging and

treatment

base technology

localised

patient focus

safety critical

limited
 variation

due to "nature":

human anatomy

pathologies

imaging physics

distributed

limited
 variation due to "nature":

human anatomy

pathologies

imaging physics

entirely distributed

wide
 variation due to "socio-geographics":

psycho-social,

political, cultural factors

service business

not health care specific

extreme robust

fire, earthquake,

flood proof

life time

100 yrs (human life)

not health care specific

short life-cycles

rapid innovation

Figure 14.4: Reference model for health care automation

such as radiation, RF power, mechanical movements et cetera. The variation
between systems is mostly determined by:

• the acquisition technology and its underlying physics principles.

• the anatomy to be imaged

• the pathology to be imaged

The complexity of these systems is mostly in the combination of many technologies
at state-of-the-art level.

Image handling functions (where the medical imaging workstation belongs)
are distributed over the hospital, with work-spots where needed. The safety related
hazards are much more indirect (identification, left-right exchange). The variation
is more or less the same as the modality systems: acquisition physics, anatomy and
pathology.

The information handling systems are entirely distributed, information needs
to be accessible from everywhere. A wide variation in functionality is caused by
“social-geographic” factors:

• psycho-social factors

• political factors

• cultural factors

• language factors

These factors influence what information must be stored (liability), or must not

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 123

be stored (privacy), how information is to be presented and exchanged, who may
access that information, et cetera.

The archiving of images and information in a robust and reliable way is a highly
specialized activity. The storage of information in such a way that it survives fires,
floods, and earthquakes is not trivial2. Specialized service providers offer this kind
of storage, where the service is location-independent thanks to the high-bandwidth
networks.

All of these application functions build on top of readily available IT compo-
nents: the base technology. These IT components are innovated rapidly, resulting
in short component life-cycles. Economic pressure from other domains stimulate
the rapid innovation of these technologies. The amount of domain-specific technology
that has to be developed is decreasing, and is replaced by base technology.

prepare

diagnosis
 diagnosis
acquire

images

report

authorise

archive

clinical

review

education

research

demonstra-

tion

treatment

planning
time

richness

clinical

value

medical

imaging

workstation

Figure 14.5: Clinical information flow

Figure 14.5 comes from the same report [4] showing the information flow
within this reference model. During this flow the clinical value is increasing:
annotations, comments, and anamnesis can be added during and right after the
acquisition. The preparation for the diagnosis adds analysis results, optimizes
layout and presentation settings, and pre-selects images. Finally the diagnosis is
the required added value, to be delivered to the referring physician.

At the same time the richness of the image is decreasing. The richness of
the image is how much can be done with the pixels in the image. The images after
acquisition are very rich, all manipulation is still possible. When leaving the acqui-
sition system the image is exported as a system independent image, where a certain
trade-off between size, performance, image quality, and manipulation flexibility is
made. This is an irreversible step in which some information is inherently lost.
The results of the preparation for diagnosis are often frozen, so that no accidental

2Today terrorist attacks need to be included in this list full of disasters, and secure needs to be
added to the required qualities.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 124

changes can be made afterwards. Because this is the image used to diagnose, it
is also archived to ensure liability. The archived result is similar to an electronic
photo, only a limited set of manipulations can still be performed on it.

Cardiovascular

"high end"

high performance

extensive functionality

Radiography

"low end"

patient throughput

simple functionality

URF

universality

"workhorse"

high end URF

+vascular functionality

low end URF

price fighter

mid end URF

Figure 14.6: URF market segmentation

The first releases of the medical imaging workstation, as described in this case,
are used in conjunction with URF (Universal Radiography Fluoroscopy) systems.
This family of systems is a mid-end type of X-ray system, see Figure 14.6. At
the high end cardiovascular systems are used, with high clinical added value and
a corresponding price tag. At the low end “radiography” systems offer straight
forward imaging functionality, oriented at patient throughput. Approximately 70%
of all X-ray examinations are radiographic exposures.

The URF systems overlap with cardiovascular and radiography market segments:
high end URF systems also offer vascular functionality. Low end URF systems
must fit in radiography constraints. The key driver of URF systems is the univer-
sality, providing logistic flexibility in the hospital.

14.3 Typical Case

The specification and design of the medical imaging workstation was based on
“typical” cases. Figure 14.7 shows the typical case for URF examinations. Three
examination rooms are sharing one medical imaging workstation. Every exami-
nation room has an average throughput of 4 patients per hour (patient examinations
are interleaved, as explained below for Figure 14.8).

The average image production per examination is 20 images, each of 10242

pixels of 8 bits. The images are printed on large film sheets with a size of approxi-
mately 24∗30cm2. One film sheet consists of 4k by 5k pixels. The images must be
sufficiently large to be easily viewed on the lightbox. These images are typically

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 125

exam

room 1

exam

room 3

exam

room 2

image production: 20 1024
 2
 8 bit images per examination

3 examination rooms connected to

examination room: average 4 interleaved examinations / hour

film production: 3 films of 4k*5k pixels each

1 medical imaging

workstation + printer

high quality output

(bi-cubic interpolation)

Figure 14.7: Typical case URF examination

printed on 3 film sheets. Image quality of the film sheets is crucial, which translates
into the use of bi-cubic interpolation.

exam

room 1

exam

room 2

exam

room 3

1 hour

time

9:00
 10:00
9:30

patient 1

patient 2

patient 3

patient 4

Figure 14.8: Timing of typical URF examination rooms

Figure 14.8 shows how patient examinations are interleaved. The patient is
examined over a period of about one hour. This time is needed because the barium
meal progresses through the intestines during this period. A few exposures are
made during the passage of clinical relevant positions. The interleaving of patients
in a single examination room optimizes the use of expensive resources. At the level
of the medical imaging workstation the examinations of the different examination
rooms are imported concurrently. The workstation must be capable of serving all
three acquisition rooms with the specified typical load. The latency between the

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 126

end of the examination and the availability of processed film sheets is not very
critical.

14.4 Key Driver Graph

Figure 14.9 shows the key drivers from the radiologist point of view, with the
derived application drivers and the related requirements, as described in Section ??.
The graph is only visualized for the key drivers and the derived application drivers.
The graph from application drivers to requirements is a many-to-many relationship,
that becomes too complex to show in a single graph.

The key drivers are discussed in Subsections 14.4.1 to 14.4.5.

many

to

many

report quality

diagnostic quality

safety and liability

cost per diagnose

time per diagnose

Customer

key drivers
 Requirements

diagnose
at
light-box
with
films

all preparation
 in
exam room

interoperability
 over
systems
and
vendors

multiple images
 per
film

minimise operator handling

multiple applications
 per
system

clear patient identification

left right indicators

follow procedures

freeze diagnostic information

derived

Application drivers

acquisition
and
viewing settings

contrast, brightness
 and
resolution
of
light-box

selection
of
relevant material

use
of
standards

import

auto-print

parameterized layout

spooling

storage

navigation / selection

auto-delete

viewing

contrast / brightness

zoom

annotate

export

system response

system throughput

image quality

annotation

material cost

operational cost

shared information model

viewing settings

patient, exam info

functionality

qualities

interfaces

Figure 14.9: Key drivers, application drivers and requirements

14.4.1 Report Quality

The report quality determines the satisfaction of the referring physician, who is the
customer of the radiologist. The layout, accessibility, and all these kind of factors
determine the overall report quality. The radiologist achieves the report quality by:

selection of relevant material The selection of the material to be reported to the
referring physician determines to a large degree the report quality.

use of standards The use of standard conventions, for instance pathology classi-
fication, improves the report quality.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 127

14.4.2 Diagnostic Quality

The diagnostic quality is the core of the radiologist’s work. The diagnostic quality
is achieved by:

acquisition and viewing settings The actual acquisition settings and the related
viewing settings have a great impact on the visibility of the pathology and
anatomy.

contrast, brightness and resolution of lightbox The lightbox has a very good diagnostic
image quality: high brightness, high resolution, and many images can be
shown simultaneously.

14.4.3 Safety and Liability

Erroneous diagnoses are dangerous for the patient; the radiologist might be sued
for mistakes. Also mistakes in the related annotations (wrong patient name, wrong
position) are a safety risk for the patient and hence a liability risk for the radiologist.
The derived application drivers for safety and liability are:

clear patient identification Erroneous patient identification is a safety risk.

left right indicators Erroneous positioning information is a safety risk. Left-right
exchanges are notoriously dangerous.

follow procedures Clinical procedures reduce the chance of human errors. Following
these procedures lowers the liability for the radiologist.

freeze diagnostic information Changing image information after the diagnosis is
a liability risk: different interpretations are possible, based on the changes.

14.4.4 Cost per Diagnosis

Insurance and government generate a lot of cost pressure. Cost efficiency can be
expressed in cost per diagnosis. The cost per diagnosis is reduced in the following
ways:

interoperability over systems and vendors Mix and match of systems, not constrained
by vendor or system lock-ins, allow the radiology department to optimize the
mix of acquisition systems to the local needs.

multiple images per film Film is a costly resource (based on silver). Efficiency
of film real estate is immediately cost efficient. A positive side effect is that
film efficiency is also beneficial for viewing on the lightbox, because the
images are then put closer together.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 128

minimize operator handling Automation of repeated actions will reduce the amount
of personnel needed, which again is a cost reduction. An example is the use
of predefined and propagated settings that streamline the flow of information.
This is a cost reduction, but most of all it improves the convenience for the
users.

multiple applications per system Universality of acquisition system and workstation
provides logistics flexibility in the radiology department. This will in the end
result in lower cost.

14.4.5 Time per Diagnosis

Time efficiency is partially a cost factor, see 14.4.4, but it is also a personal satis-
faction issue for the radiologist. The time per diagnosis is reduced by the following
means:

diagnose at lightbox with films This allows a very fast interaction: zooming is
done by a single head movement, and the next patient is reached by one
button, that exchanges the films mechanically in a single move.

all preparation in exam room The personnel operating the examination room also
does the preparation for the diagnosis. This work is done on the fly, inter-
leaved with the examination work.

14.4.6 Functional Requirements

The functionality that is needed for to realize the derived application drivers is:

import The capability to import data into the workstation data store in a meaningful
way.

autoprint The capability to print the image set without operator intervention:

parametrized layout Film layout under control of the remote acquisition
system.

spooling Support for concurrent import streams, which have to be printed
by a single printer.

storage The capability to store about one day of examinations at the workstation,
both as a buffer and to enable later review:

navigation/selection The capability to find and select the patient, exami-
nation and images.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 129

autodelete The capability to delete images when they are printed and no
longer needed. This function allows the workstation to be used in an
operator free server. The import, print and auto-delete run continuously
as a standard sequence.

viewing All functions to show and manipulate images, the most frequently used
subset:

contrast/brightness Very commonly used grey-level user interface.
zoom Enlarge part of the image.
annotate Add textual or graphic annotations to the image.

export Transfer of images to other systems.

Note that the import, storage and autoprint functionality are core to satisfy the
key drivers, while the viewing and export functionality is only nice to have.

14.4.7 Quality Requirements

The following qualities need to be specified quantitatively:

system response Determines the speed and satisfaction of preparing the diagnosis
by means of the workstation.

system throughput As defined by the typical case.

image quality Required for preparation of the diagnosis on screen and for diagnosis
from film. Specific quality requirements exists for the relation between
image and annotation:

annotation The relation between annotation and image is clinically relevant
and must be reproducible.

material cost The cost price of the system must fit in the cost target.

operational cost The operational cost (cost of consumables, energy, et cetera)
must fit in the operational target.

14.4.8 Interface Requirements

Key part of the external interfaces is the shared information model that facilitates
interoperability between different systems. The cooperating systems must adhere
to a shared information model. Elements of such an information model are:

viewing settings Sharing the same presentation model to guarantee the same displayed
image at both systems.

patient, exam info Sharing the same meta information for navigation and identi-
fication.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 130

14.5 Functionality

Figure 14.10 shows a retrospective overview of the development of functionality
over time. The case described here focuses on the period 1992, and 1993. However
the vision of the product group was to design a platform that could serve many
applications and modalities. The relevance of this retrospective overview is to
show the expected (and realized!) increase of functionality.

1992
 1993
 1994
 1995
 1996

RF 1.1

URF basis

View, Print

Store, Communicate

RF 1.2

vascular

import

RF 2.1

cardio

bolus chase

RF 2.2

Dicom

X 3.1

spine

Rad 2.1

basis

View, Print

Store ,Communicate

Rad 1.1

PCR

Print

CT/MR 1.1

stack

MPR

dental

CT/MR 1.2

MR

import

CT/MR 2.1

volume

angio

Figure 14.10: Retrospective functionality roadmap

The first release of the product served the URF market and provided the so-
called view-print-store-communicate functionality. We already saw in figure 14.9
that a lot of functionality is hidden in this simple quartet.

Release 1.2 added import from vascular systems to the functionality. Cardio
import and functionality and bolus chase reconstruction were added in release 2.1.
Cardio functionality in this release consisted mostly of analysis functions, such as
cardiac volume and wall motion analysis. The bolus chase reconstruction takes a
series of exposures as input an fuses them together into a single large overview,
typically used to follow the bolus chase through the legs.

Release 2.2 introduced DICOM as the next generation of information model
standard. The first releases were based on the ACR/NEMA standard, DICOM
succeeded this standard. Note that the installed base required prolongation of
ACR/NEMA-based image exchange. Release 3.1 added spine reconstruction and
analysis. The spine reconstruction is analogous to the bolus chase reconstruction,
however spine specific analysis was also added.

On the basis of the URF-oriented R1.1 workstation a CT/MR workstation was
developed, which was released in 1994. CT/MR images are slice-based (instead
of projection-based as in URF), which prompted the development of a stack view
application (fast scrolling through a stack of images). Reconstruction of oblique
and curved slices is supported by means of MPR (Multi Planar Reformatting). A

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 131

highly specialized application was built on top of these applications. This was
a dental package, allowing viewing of the jaws, with the molars, and with the
required cross sections.

Release 2.1 of the CT/MR workstation added a much more powerful volume
viewing application and a more specialized angio package, with viewing and analysis
capability.

Also derived from the RF workstation a radiography workstation was built.
R1.1 of this system was mostly a print server, while R2.1 supported the full view-
print-store-communicate functionality.

The commercial, service and goods flow decompositions were present as part
of the formalized documentation (TPD).

14.6 Interoperability via Information Model

The health care industry is striving for interoperability by working on standard
exchange formats and protocols. The driving force behind this standardization is
the ACR/NEMA, in which equipment manufacturers participate in the standard-
ization process.

DICOM
ACR/NEMA

Philips
GE
Siemens

cardio

vascular

MRI
CT

medical

imaging

RF

bolus

chase

vascular

analyse

vendor

world

standard

product

family

applications

URF

cardio

analyse

high innovation rate

high interoperability

gl
ob

al

s

ta
nd

ar
di

za
tio

n

ta

ke
s

m
or

e
th

an
 5

 y
ea

rs

legend

Figure 14.11: Information model, standardization for interoperability

Standardization and innovation are often opposing forces. The solution is
often found in defining an extendable format. and in standardization of the mature
functionality. Figure 14.11 shows the approach as followed by the medical imaging
product group. The communication infrastructure and the mature application infor-
mation is standardized in DICOM. The new autoprint functionality was standardized
at vendor level. Further standardization of autoprint is pushed via participation in
DICOM work groups.

A good strategy is to use the standard data formats as much as possible, and
to build vendor specific extensions as long as the required functionality is not yet

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.4

Buskerud University College

page: 132

standardized. The tension between standardization and innovation is also present
at many levels: between vendors, but also between product groups in the same
company and also between applications within the same product. At all levels the
same strategy is deployed. Product family specific extensions are made as long as
no standard vendor solution is available.

This strategy serves both needs: interoperability for mature, well defined function-
ality and room for innovative exploration.

The information model used for import, export and storage on removable media
is one of the most important interfaces of these systems. The functionality and the
behavior of the system depend completely on the availability and correctness of this
information. The specification of the information model and the level of adherence
and the deviations is a significant part of the specification and the specification
effort. A full time architect created and maintained this part of the specification.

14.7 Conclusion

The context of the system in the radiology department has been shown by means
of multiple models and diagrams: clinical context with stakeholders, financial
context, application layers in IT systems, a reference model for health care automation,
clinical information flow, and URF market segmentation. Figure 14.12 shows the
coverage in actual documentation of the submethods discussed in part II. The actual
documentation of the Customer Objectives and Application views was quite poor,
as indicated in Figure 14.12. Most of the models and diagrams shown here were
not present in the documentation of 1992. The application of the system has been
shown as typical case. The typical case was documented explicitly in 1992. The
key driver graph, discussed in Section 14.4, is also a reconstruction in retrospect.
The limited attention for the Customer Objectives and Application views is one of
the main causes of the late introduction of printing functionality.

The functional view was well documented in 1992. The functions and features
have been discussed briefly in Section 14.5. The functions and features were well
documented in so-called Functional Requirement Specifications. Interoperability,
discussed briefly in Section 14.6, was also documented extensively. Figure 14.12
shows that the coverage of the Functional view is high.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 133

C
ustomer

objectives

A
pplication
 F
unctional

key drivers

value chain

business models

suppliers

context diagram

stakeholders and concerns

entity relationship models

dynamic models

case descriptions

commercial decomposition

service decomposition

goods flow decomposition

function and feature

specifications

performance

external interfaces

standards

explicitly addressed
 addressed only implicitly
 not addressed

coverage based on documentation status of first product release

legend

Figure 14.12: Coverage of submethods of the CAF views

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 134

Chapter 15

Medical Imaging Workstation:
CR Views

Pixmap cache

viewport
viewport
viewport

grey-

value

image

grey-

value

image

resized

image

resized

image

resized

image

resized

image

raw

image

raw

image

raw

image

raw

image

resized

image

grey-

value

image

gfx

text

retrieve
 enhance
 lookup
 merge
 display

viewport

4 * 1024
2

1 byte / pixel

4 * 460
2

2 byte / pixel

4 * 460
2

1 byte / pixel

4 * 460
2

1 byte / pixel

5

retrieve
 enhance
 interpolate
 lookup

96
2
 200
2
96
2

merge
 display

raw

image

raw

image

raw

image

enhanced

image
 inter-

polate

200
2
 200
2

block size:

9kB

block size:

8 kB

block size:

256kB

4 * 1024
2

2 byte / pixel

1024
2
8 bit
 image requires

4 256kB blocks

8 1024
2
 images require

48 256kB blocks

12 blocks shortage

460
2
image
8 bit
 requires 27 8kB blocks

200
2
 images require 5 8kb blocks

all screen-size
 images require

334 8kB blocks, 78 blocks shortage

15.1 Introduction

The conceptual and realization views are described together in this chapter. The
realization view, with its specific values, brings the concepts more alive.

Section 15.2 describes the processing pipeline for presentation and rendering,
and maps the user interface on these concepts. Section 15.4 describes the concepts
needed for memory management, and zooms in on how the memory management
is used to implement the processing pipeline. Section 15.3 describes the software
architecture. Section 15.5 describes how the limited amount of CPU power is
managed.

The case material is based on actual data, from a complex context with large
commercial interests. The material is simplified to increase the accessibility, while
at the same time small changes have been made to remove commercial sensitivity.
Commercial sensitivity is further reduced by using relatively old data (between 8
and 13 years in the past). Care has been taken that the value of the case description
is maintained.

15.2 Image Quality and Presentation Pipeline

The user views the image during the examination at the console of the X-ray
system, mostly to verify the image quality and to guide the further examination.
Later the same image is viewed again from film to determine the diagnosis and to
prepare the report. Sometimes the image is viewed before making a hardcopy to
optimize the image settings (contrast, brightness, zoom). The user expects to see
the same image at all work-spots, independent of the actual system involved.

what you see

at one work-spot

is

what you get

at another

work-spot

???

X-ray system

image

generation

presen-

tation

monitor

film

network,

storage

Easyvision

application

processing

presen-

tation

monitor

film

network,

storage

3
rd
 party

workstation
 monitor

Figure 15.1: The user expectation is that an image at one work-spot looks the same
as at other work-spots. This is far from trivial, due to all data paths and the many
parties that can be involved

Figure 15.1 shows many different possible work-spots, with different media.
The user expects What You See Is What You Get (WYSIWYG) everywhere. From
an implementation point of view this is far from trivial. To allow optimal handling
of images at other locations most systems export images halfway their internal
processing pipeline: acquisition specific processing is applied, rendering specific
processing is not applied, but the rendering settings are transferred instead. All
systems using these intermediate images need to implement the same rendering in
order to get the same image perception. The design of these systems is strongly
coupled, due to the shared rendering know-how.

Figure 15.2 shows the rendering pipeline as used in the medical imaging workstation.
Enhancement is a filter operation. The coefficients of the enhancement kernel are
predefined in the acquisition system. The interpolation is used to resize the image
from acquisition resolution to the desired view-port (or film-port) size. The grey-
levels for display are determined by means of a lookup table. A lookup table (LUT)
is a fast and flexible implementation of a mapping function. Normally the mapping
is linear: the slope determines the contrast and the vertical offset the brightness of
the image. Finally graphics and text are superimposed on the image, for instance
for image identification and for annotations by the user.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 136

spatial

enhancement

interpolate

Look up table

invert

contrast / brightness

graphics

merge

colour

LUT

HW
SW

monitor

image

from

database

ou
tp

ut

input

contrast

brightness

bi-linear

bi-cubic

legend

Figure 15.2: The standard presentation pipeline for X-ray images

The image interpolation algorithm used depends on desired image quality and
on available processing time. Bi-linear interpolation is an interpolation with a low-
pass filter side effect, by which the image becomes less sharp. An ideal interpo-
lation is based on a convolution with a sinc-function (sin(x)/x). A bi-cubic inter-
polation is an approximation of the ideal interpolation. The bi-cubic interpolation
is parameterized. The parameter settings determine how much the interpolation
causes low pass or high pass filtering (blurring or sharpening). These bi-cubic
parameter choices are normally not exported to the user interface, the selection
of values requires too much expertise. Instead, the system uses empirical values
dependent on the interpolation objective.

view-port 1
 view-port 2

view-port 3
 view-port 4

view-

port
5

UI icons, text

1152 pixels

96
0

pi
xe

ls

ca
. 4

60

pi
xe

ls

ca
 2

00

pi
xe

ls

Figure 15.3: Quadruple view-port screen layout

The monitor screen is a scarce resource of the system, used for user interface
control and for the display of images. The screen is divided in smaller rectangular
windows. Windows displaying images are called view-ports. Every view-port uses
its own instantiation of a viewing pipeline. Figure 15.3 shows an example of a
screen layout, viewing four images simultaneously. At the bottom left a fifth view-

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 137

port is used for navigational support, for instance in case of zooming this view-port
functions as a roadmap, enabling direct manipulation of the zoom-area. The fifth
view-port also has its own viewing pipeline instance.

The concepts visible in this screen layout are view-ports, icons, text, an image
area (with the 4 main view-ports), and a user interface area with navigation support.
The figure adds a number of realization facts, such as the total screen-size, and the
size of the view-ports. The next generation of this system used the same concepts,
but the screen size was 1280*1024, resulting in slightly larger view-ports and a
slightly larger ratio between image area and user interface area.

Screen:

low resolution

fast response

Film:

high resolution

high throughput

Network:

medium resolution

high throughput

Figure 15.4: Rendered images at different destinations

At all places where source images have to be rendered into viewable images
an instance of the presentation pipeline is required. Note that the characteristics
of the usage of the presentation pipeline in these different processes vary widely.
Figure 15.4 shows three different destinations for rendered images, with the different
usage characteristics.

15.3 Software Specific Views

The execution architecture of Easyvision is based on UNIX-type processes and
shared libraries. Figure 15.5 shows the process structure of Easyvision. Most
processes can be associated with a specific hardware resource, as shown in this
figure. Core of the Easyvision software architecture is the database. The database
provides fast, reliable, persistent storage and it provides synchronization by means
of active data. The concept of active data is based on the publish-subscribe pattern [6]
that allows all users of a some information to be notified when changes in the
information occur. Synchronization and communication between processes always
takes place via this database.

Figure 15.5 shows four types of processes: client processes, server processes
database process, and operational processes. A client interacts with a user (remote

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 138

user interface
communication

data base

export
 print
optical

storage

optical disk

drive
 printer
disk drive
network

UI devices
 system

monitor

Unix

daemons

client

process

associated

hardware

control and

data flow

remote systems

and users
 user

client

user control

server

process

operational

process

legend

Figure 15.5: Software processes or tasks running concurrently in Easyvision

or direct), while the servers perform their work in the background. The database
connects these two types of processes. Operational processes belong to the computing
infrastructure. Most operational processes are created by the operating system,
the so called daemons. The system monitoring processes is added for exception
handling purposes. The system monitor detects hanging processes and takes appro-
priate action to restore system operation.

A process as unit of design is used for multiple reasons. The criteria used to
determine the process decomposition are:

management of concurrency Activities that are concurrent run in separate processes.

management of shared devices A shared device is managed by a server process.

unit of memory budget Measurement of memory use at process level is supported
by multiple tools.

unit of distribution over multiple processors A process can be allocated to a processor,
without the need to change the code within the process.

unit of exception handling Faults are contained within the process boundaries.
The system monitor observes at process level, because the operating system
provides the means at process level.

Manageability, visibility and understandability benefit from a limited number of
processes. One general rule is to minimize the amount of processes, in the order of
magnitude of ten processes.

The presentation pipeline, as depicted in Figure 15.2, is used in the user interface
process, the print server and the export server.

Figure 15.6 shows the software from the dependency point of view. Software in
higher layers depends on, has explicit knowledge of, lower layers of the software.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 139

Software in the lower layers should not depend on, or have explicit knowledge of
software in higher layers.

DSI

3M

RC

Desk, cabinets, cables, etc.

Standard IPX workstation
DOR
HC

interf

RC

interf

SunOS

NIX
RC

driver

HC

driver

DOR

driver

Spool
 HCU
 Store
 Image
 Gfx
 UI
 DB
 PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools
 Print
 Store
 View
 Cluster

operating system

toolbox

hardware

application functions

user interface

connected system

SW infrastructure

legend

Figure 15.6: Simplified layering of the software

The caption of Figure 15.6 explicitly states this diagram to be simplified. The
original design of this software did not use the layering concept. The software has
been restructured in later years to make the dependency as layering explicit. The
actual number of layers based on larger packages did exceed 15. Reality is much
more complex than this simplified diagram suggests.

15.4 Memory Management

The amount of memory in the medical imaging workstation is limited for cost
reasons, but also for simple physical reasons: the workstation used at that moment
did not support more than 64 MByte of physical memory. The workstation and
operating system did support virtual memory, but for performance reasons this
should be used sparingly.

A memory budget is used to manage the amount of memory in use. Figure 15.7
shows the memory budgets of release 1 and release 2 of Easyvision RF side by
side. Three types of memory are distinguished: program or code, read-only from
operating system point of view, object data, dynamically allocated and deallocated
in a heap-based fashion, and bulk data for large consecutive memory areas, mostly
used for images.

Per process, see Section 15.3, the typical amount of memory per category
is specified. The memory usage of the operating system is also specified. The
dynamic libraries, that contain the code shared between processes, is explicitly
visible in the budget.

The figure shows the realization for two successive releases, for which we can
observe that the concepts are stable, but that the realization changes significantly.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 140

shared code

UI process

database server

print server

DOR server

communication server

UNIX commands

compute server

system monitor

application total

UNIX

file cache

total

R1

2.0

4.2

2.2

4.2

15.4

0.5

28.5

R1

12.0

7.0

2.0

10.0

31.0

R1

6.0

0.2

0.2

0.4

0.4

1.2

0.2

8.6

R1

6.0

14.2

4.4

9.6

6.6

26.6

0.7

66.1

7.0

3.0

76.1

memory budget in Mbytes
 R2

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

R2

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

R2

12.0

3.0

9.0

1.0

4.0

6.0

35.0

R2

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

code
 object data
 bulk data
 total

Figure 15.7: Memory budget of Easyvision release 1 and release 2

Release 1 used a rather straightforward communication server, operating on all
import streams in parallel, keeping everything in memory. This is very costly with
respect to memory. R2 serializes the memory use of different import streams and
uses the memory in a more pipelined way. These changes result in a significant
reduction of the memory being used. In the same time frame the supplier dictated
a new operating system, SunOS was end-of-life and was replaced by Solaris 2. This
had a negative impact on the memory consumption; the budget shows an increase
of 7 MByte to 10 MByte for the UNIX operating system.

M
B

yt
es

time

10

20

nett used

used address space

gross used

Figure 15.8: Memory fragmentation increase. The difference between gross used
and nett used is the amount of unusable memory due to fragmentation

The decomposition in object data and bulk data is needed to prevent memory
fragmentation. Fragmentation of memory occurs when the allocation is dynamic
with different sizes of allocated memory over time. The fragmentation increases
over time. Due to the paging of the virtual memory system not all fragmentation

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 141

is disastrous. Figure 15.8 shows the increase of the amount of memory over time.
The net amount of memory stabilizes after some time, but the gross amount of
memory increases due to ongoing fragmentation. The amount of virtual memory
in use (and the address space) is increasing even more, however a large part of this
virtual memory is paged out and is not really a problem.

virtual memory

physical

memory

memory

management

unit

disk storage

instruction

and data

cache

heap memory, malloc() free()

allocator, chunk

view PixMap

cache

print PixMap

cache

cluster PixMap

cache

operating

system

toolbox

hardware

application

functions

user

interface

Medical imaging R/F cache sizes
 legend

Figure 15.9: Cache layers at the corresponding levels of Figure 15.6

The hardware and operating system support fast and efficient memory-based
on hardware caching and virtual memory, the lowest layer in Figure 15.9. The
application allocates memory via the heap memory management functions malloc()
and free(). From an application point of view a sheer infinite memory is present,
however the speed of use depends strongly on the access patterns. Data access
with a high locality are served by the data cache, which is the fastest (and smallest)
memory layer. The next step in speed and size (slower, but significantly larger) is
the physical memory. The virtual memory, mostly residing on disk, is the slowest
but largest memory layer.

The application software does not see or control the hardware cache or virtual
memory system. The only explicit knowledge in the higher software layers of these
memory layers is in the dimensioning of the memory budgets as described later.

The toolbox layer provides anti-fragmentation memory management. This
memory is used in a cache like way by the application functions, based on a Least
Recently Used algorithm. The size of the caches is parameterized and set in the
highest application layer of the software.

The medical imaging workstation deploys pools with fixed size blocks to minimize
fragmentation. A two level approach is taken: pools are allocated in large chunks,
every chunk is managed with fixed size blocks. For every chunk is defined which
bulk data sizes may be stored in it.

Figure 15.10 shows the three chunk sizes that are used in the memory management
concepts chunks, block sizes and bulk data sizes as used in Easyvision RF. One
chunk of 1 MByte is dedicated for so-called stamp images, 96*96 down scaled
images, used primarily for visual navigation (for instance pictorial index). The
block size of 9 kbytes is exactly the size of a stamp image. A second chunk of 3

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 142

chunk size:3MB

for large images

from 225 kB (480*480*8)

to 3 MB (1536*1024*16)

block size:

256kB

chunk size: 2MB

for small (screen) images

from 8kB

to 225 kB

block size: 8 kB

chunk size: 1MB

for stamp images

96*96*8 (9kB)

block size: 9kB

Figure 15.10: Memory allocators as used for bulk data memory management in
Easyvision RF

MBytes is used for large images, for instance images with the original acquisition
resolution. Small images, such as images at display resolution, will be allocated
in the third chunk of 2 MBytes. The dimensioning of the block and chunk sizes
is based on a priori know-how of the application of the system, as described in
Section 14.3. The block sizes in the latter two chunks are 256 kbytes for large
images and 8 kbytes for small images. These block sizes result in balanced and
predictable memory utilization and fragmentation within a chunk.

raw

image

resized

image

enhanced

image

grey-

value

image

view-

port

gfx

text

retrieve
 enhance
 inter-

polate

lookup
 merge
 display

Figure 15.11: Intermediate processing results are cached in an application level
cache

The chunks are used with cache like behavior: images are kept until the memory
is needed for other images. Figure 15.11 shows the cached intermediate results.
This figure is a direct transformation of the viewing pipeline in Figure 15.2, with
the processing steps replaced by arrows and the data-arrows replaced by stores. In
Section 15.5 the gain in response time is shown, which is obtained by caching the
intermediate images.

Figure 15.12 shows how the chunks are being used in quadruple viewing (Figure 15.3).
The 10242 images with a depth of 1 or 2 bytes will be stored in the 3 MB chunks.
The smaller interpolated images of 4602 will go into the 2 MB chunks, requiring

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 143

Pixmap cache

viewport
viewport
viewport

grey-

value

image

grey-

value

image

resized

image

resized

image

resized

image

resized

image

raw

image

raw

image

raw

image

raw

image

resized

image

grey-

value

image

gfx

text

retrieve
 enhance
 lookup
 merge
 display

viewport

4 * 1024
2

1 byte / pixel

4 * 460
2

2 byte / pixel

4 * 460
2

1 byte / pixel

4 * 460
2

1 byte / pixel

5

retrieve
 enhance
 interpolate
 lookup

96
2
 200
2
96
2

merge
 display

raw

image

raw

image

raw

image

enhanced

image
 inter-

polate

200
2
 200
2

block size:

9kB

block size:

8 kB

block size:

256kB

4 * 1024
2

2 byte / pixel

1024
2
8 bit
 image requires

4 256kB blocks

8 1024
2
 images require

48 256kB blocks

12 blocks shortage

460
2
image
8 bit
 requires 27 8kB blocks

200
2
 images require 5 8kb blocks

all screen-size
 images require

334 8kB blocks, 78 blocks shortage

Figure 15.12: Example of allocator and cache use. In this use case not all interme-
diate images fit in the cache, due to a small shortage of blocks. The performance
of some image manipulations will be decreased, because the intermediate images
will be regenerated when needed.

27 blocks of 8kB for an 1 byte pixel depth or 54 blocks for 2 2 bytes per pixel.
Also the screen size images of the navigation view-port fall in the range that maps
on the 2 MB chunk, requiring 5 blocks per 2002 image.

Everything added together requires more blocks than available in the 2 and 3
MB chunks. The cache mechanism will sacrifice the least recently used interme-
diate results.

For memory and performance reasons the navigation view-port is using the
stamp image as source image. This image, which is shown in a small view-port at
the left hand side of the screen, is only used for navigational support of the user
interface. Response time is here more important than image quality.

The print server uses a different memory strategy than the user interface process,
see Figure 15.13. The print server creates the film-image by rendering the individual
images. The film size of 4k*5k images is too large to render the entire film at once
in memory: 20 Mpixels, while the memory budget allows 9 Mbyte of bulk data
usage. The film image itself is already more than the provided memory budget!

The film image is built up in horizontal bands, which are sent to the laser
printer. The size of the stroke is chosen such that input image + intermediate results
+ 2 bands (for double buffering) fit in the available bulk data budget. At the same
time the band should not be very small because the banding increases the overhead
and some duplicate processing is sometimes needed because of edge effects.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 144

4k pixels

128 pixels

1024 pixels

original images

1024

pixels

Figure 15.13: Print server is based on different memory strategy, using bands

The print server uses the same memory management concepts as shown in the
figure with cache layers, Figure 15.9. However the application level caching does
not provide any significant value for this server usage, because the image data flow
is straightforward and predictable.

15.5 CPU Usage

The CPU is a limited resource for the Easyvision. The performance and throughput
of the system depend strongly on the available processing power and the efficiency
of using the processing power. CPU time and memory can be exchanged partially,
for instance by using caches to store intermediate results.

Figure 15.14 shows typical update speeds and processing times for a single
image user interface layout. Contrast brightness (C/B in the figure) changes must
be fast, to give immediate visual feedback when turning a contrast or brightness
wheel. Working on the cached resized image about 7 updates per second are
possible, which is barely sufficient. The gain of the cached design relative to the
non-cached design is about a factor 8 (7 updates per second versus 0.9 updates per
second). Zooming and panning is done with an update rate of 3 updates per second.
The performance gain for zooming and panning is from application viewpoint less
important, because these functions are used only exceptionally in the daily use.

Retrieving the next image (also a very frequent user operation), requires somewhat
more than a second, which was acceptable at that moment in time. This perfor-
mance is obtained by slightly compromising the image quality: a bilinear inter-
polation is used for resizing, instead of the better bi-cubic interpolation. For the
monitor, with its limited resolution this is acceptable, for film (high resolution, high

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 145

pipeline timing proportional

retrieve
 enhance
 interpolate
 LUT

g

f

x

dis-

play

accumulated processing time in seconds

0.05s
0.025s
0.075s
0.2s
0.5s
0.3s

raw

image

resized

image

grey-

value

image

gfx

retrieve
 enhance

lookup

(LUT)

gfx

merge
 display
view-

port

enhanced

image

inter-

polate

txt

next

0.9s
-1

C/B

7 s
-1

zoom

3 s
-1

update rate for

common user actions

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
 0

1024
2
 920
2
 920
2
 920
2
1024
2

Figure 15.14: The CPU processing times are shown per step in the processing
pipeline. The processing times are mapped on a proportional time line to visualize
the viewing responsiveness

brightness) bi-cubic interpolation is required.
For background tasks a CPU budget is used, expressed in CPU seconds per

Mega-byte or Mega-pixel. This budget is function-based: importing and printing.
Most background jobs involve a single server plus interaction with the database
server.

Two use cases are relevant: interactive viewing, with background jobs, and
pure print serving. For interactive response circa 70% of CPU time should be
available, while the load of printing for three examination rooms, which is a full
throughput case, must stay below 90% of the available CPU time. Figure 15.15
shows the load for serving a single examination room and for serving three exami-
nation rooms. Serving a single examination room takes 260 seconds of CPU
time per examination of 15 minutes, leaving about 70% CPU time for interactive
viewing. Serving three examination rooms takes 13 minutes of CPU time per 15
minutes of examinations, this is just below the 90%.

15.6 Measurement Tools

The resource design as described above is supported in the implementation by
means of a few simple, but highly effective measurement tools. The most important
tools are: Object Instantiation Tracing, standard Unix utilities and a heap viewer.

The resource usage is measured at well defined moments in time, by means of
events. The entire software is event-based. The event for resource measurement
purposes can be fired by programming it at the desired point in the code, or by a

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 146

210 s/exam

50 s/exam

communication

data base

print

remote systems

and users

printer

disk

im
po

rt

pr

in
t

3.
5

C
P

U
 s

ec
on

d

pe

r

M

pi
xe

l o
ut

pu
t

2.
5

C
P

U
 s

ec
on

d

pe

r

M

by
te

 in
pu

t

print

10.5 min /

exam

import

2.5 min /

exam

margin

2 min

serving 3

examination

rooms

serving one

examination

room

CPU time

available for

interactive

viewing

30
%

90
%

Figure 15.15: Server CPU load. For a single examination room sufficient CPU
time is left for interactive viewing. Serving three examination rooms fits in 90% of
the available CPU time.

user interface event, or by means of the Unix command line.
The resource usage is measured twice: before performing the use case under

study and afterwards. The measurement results show both the changes in resource
usage as well as the absolute numbers. The initialization often takes more time in
the beginning, while in a steady running system no more initialization takes place.
Normally the real measurement is preceded by a set of actions to bring the system
in a kind of steady state.

Note that the budget definitions and the Unix utilities fit well together, by
design. The types of memory budgeted are the same as the types of memory
measured by the Unix utilities. The typically used Unix utilities are:

ps process status and resource usage per process

vmstat virtual memory statistics

kernel resource stats kernel specific resource usage

The heap-viewer shows the free and allocated memory blocks in different colors,
comparable with the standard Windows disk defragmentation utilities.

The Object Instantiation Tracing (OIT) keeps track of all object instantiations
and disposals. It provides an absolute count of all the objects and the change in
the number of objectives relative to the previous measurement. The system is
programmed with Objective-C. This language makes use of run-time environment,
controlling the creation and deletion of objects and the associated housekeeping.
The creation and deletion operations of this run-time environment were rerouted
via a small piece of code that maintained the statistics per class of object instanti-
ations and destructions. At the moment of a trigger this administration was saved

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 147

AsynchronousIO

AttributeEntry

BitMap

BoundedFloatingPoint

BoundedInteger

BtreeNode1

BulkData

ButtonGadget

ButtonStack

ByteArray

0

237

21

1034

684

200

25

34

12

156

-3

-1

-4

-3

-1

-3

0

0

0

-4

+3

+5

+8

+22

+9

+3

1

2

1

+12

[819200]

[8388608]

[13252]

class name
 current

nr of

objects

deleted

since

t
n-1

created

since

t
n-1

heap

memory

usage

Figure 15.16: Example output of OIT (Object Instantiation Tracing) tool

in readable form. The few lines of code (and the little run time penalty) have paid
many many times. The instantiation information gives an incredible insight in the
internal working of the system.

The Object Instantiation Tracing also provided heap memory usage per class.
This information could not be obtained automatically. At every place in the code
where malloc and free was called some additional code was required to get this
information. This instrumentation has not been completed entirely, instead the
80/20 rule was applied: the most intensive memory consumers were instrumented
to cover circa 80% of the heap usage.

Figure 15.16 shows an example output of the OIT tool. Per class the current
number of objects is shown, the number of deleted and created objects since the
previous measurement and the amount of heap memory in use. The user of this
tool knows the use case that is being measured. In this case, for example, the
next image function. For this simple function 8 new BitMaps are allocated and 3
AsynchronousIO objects are created. The user of this tool compares this number
with his expectation. This comparison provides more insight in design and imple-
mentation.

Figure 15.17 shows an overview of the benchmarking and other measurement
tools used during the design. The overview shows per tool what is measured and
why, and how accurate the result is. It also shows when the tool is being used.

The Objective-C overhead measurements, to measure the method call overhead
and the memory overhead caused by the underlying OO technology, is used only in
the beginning. This data does not change significantly and scales reasonably with
the hardware improvements.

A set of coarse benchmarking tools was used to characterize new hardware
options, such as new workstations. These tools are publicly available and give a
coarse indication of the hardware potential.

The application critical characterization is measured by more dedicated tools,
such as the image processing benchmark, which runs all the algorithms with different

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 148

Byte benchmark
 computer platform performance

OS, shell, file I/O

coarse
 new hardware

new OS release

test / benchmark
 what, why
 accuracy
 when

SpecInt (by suppliers)
 CPU integer
 coarse
 new hardware

file I/O
 file I/O throughput
 medium
 new hardware

image processing
 CPU, cache, memory

as function of image, pixel size

accurate
 new hardware

Objective-C overhead
 method call overhead

memory overhead

accurate
 initial

socket, network
 throughput

CPU overhead

accurate
 ad hoc

data base
 transaction overhead

query behaviour

accurate
 ad hoc

load test
 throughput, CPU, memory
 accurate
 regression

se
lf

m
ad

e

pu

bl
ic

Figure 15.17: Overview of benchmarks and other measurement tools

image and pixel sizes. This tool is home made, because it uses the actual image
processing library used in the product. The outcome of these measurements were
used to make design optimizations, both in the library itself as well as in the use of
the library.

Critical system functionality is measured by dedicated measurement tools, which
isolate the desired functionality, such as file I/O, socket, networking and database.

The complete system is put under load conditions, by continuously importing
and exporting data and storing and retrieving data. This load test was used as
regression test, giving a good insight in the system throughput and in the memory
and CPU usage.

15.7 Conclusion

This chapter described several decompositions: a functional decomposition of the
image processing pipeline, a construction decomposition in layers and a process
decomposition of the software. The image quality, throughput and response time
have been discussed and especially the design choices that have been made to
achieve the desired performance level. The design considerations show that design
choices are related to consequences in multiple qualities and multiple CAFCR
views. Reasoning over multiple CAFCR views and multiple qualities is needed to
find an acceptable design solution. All information presented here was explicitly
available in product creation documentation.

A number of submethods has not been described here, such as start up and
shutdown, but these aspects are covered by the documentation of 1992. Figure 15.18
shows the coverage of the submethods described in part II by the documentation of

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.7

Buskerud University College

page: 149

C
onceptual
 R
ealization

construction decomposition

functional decomposition

designing with multiple decompositions

execution architecture

internal interfaces

performance

start up

shutdown

integration plan

work breakdown

safety

reliability

security

budget

benchmarking

performance analysis

granularity determination

value and cost

safety analysis

reliability analysis

security analysis

explicitly addressed
 addressed only implicitly
 not addressed

coverage based on documentation status of first product release

legend

Figure 15.18: Coverage of submethods of the CR views

the first release. This coverage is high for most submethods. Safety, reliability and
security were not covered by the documentation in 1992, but these aspects were
added in later releases of the product.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 150

Chapter 16

Story Telling in Medical Imaging

salesman
 radiologist

Try it yourself,

see how easy it is

Yes, this is great!

ECR'91 European Congress of Radiology

16.1 Introduction

Stories have not been used explicitly in the development of the medical imaging
workstation. Informally however a few stories were quite dominant in creating
insight and focus. These informal stories do not meet all criteria described in
Chapter ??, especially the specificity is missing. The typical case, as described
in Chapter 14 is complementary to the stories. We now add the required specific
quantitative details.

The main stories dominating the development were:

The sales story how to capture the interest of the radiologist for the product, see
Section 16.2.

The radiologist at work describing the way a radiologist works. This story explains
why the radiologist is not interested in viewing, but very interested in films,
see Section 16.3.

The gastro intestinal examination how the URF system is used to examine patients
with gastro intestinal problems. This story is not described here, because it
is outside the scope of the discussed thread of reasoning

Section 16.4 relates the stories to the CAFCR model and discusses the criteria
for stories as described in Chapter ??.

16.2 The Sales Story

The main function of the medical imaging workstation is rather invisible: layout
and rendering of the medical images on film. To support the sales of the product
more attractive appealing functionality was needed. The medical community is a
rather conservative community, as far as technology is concerned: computers and
software are mostly outside their scope. The sales approach was to provide an easy
to use product, showing recognizable clinical information.

salesman
 radiologist

Try it yourself,

see how easy it is

Yes, this is great!

ECR'91 European Congress of Radiology

Figure 16.1: The main sales feature is easy viewing

At the European Congress of Radiology the system was shown to the radiol-
ogist. The radiologists were immediately challenged to operate the system themselves,
see Figure 16.1.

next / previous examination

next / previous image

increase / decrease contrast

increase / decrease brightness

+
-

+
-

+
-

+
-

Figure 16.2: The simple remote control makes the viewing easy

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 152

The frequently used operations were available as single button operations on
the remote control, see Figure 16.2: Select the examination, by means of previous/next
examination buttons; Select image by previous/next image buttons; Adapt contrast
and brightness by increase/decrease buttons.

Note that this is a nice sales feature, but that in day-to-day life the radiologist
does not have the time to stand behind the workstation and view the images in this
way. The viewing as described in Section 16.3 is much faster and efficient.

16.3 The Radiologist at Work

The radiologist has the following activities that are directly related to the diagnosis
of a patient: supervising the examination, viewing the images to arrive at a diagnosis,
dictating a report and verifying and authorizing the textual version of the report.
Figure 16.3 shows these activities.

activities of the radiologist

Examination

Room

dictation

room

supervision

of the

examination

view and

diagnose,

dictate report

verify and

authorise

report

auto-

loader

light-box

Figure 16.3: Radiologist work-spots and activities

The radiologist is responsible for the image acquisition in the examination
room. The radiologist is not full-time present in the examination rooms, but super-
vises the work in multiple rooms. The radio technicians and other clinical personnel
do most of the patient handling and system operation.

The films with examinations to be viewed are collected by clinical personnel
and these films are attached in the right order to carriers in the auto-loader. The
auto-loader is a simple mechanical device that can lift a set of films out of the store
to the front of the lightbox. Pressing the button removes the current set of films
and retrieves the next set of films.

The activity of viewing and determining the diagnosis takes an amazingly short
time. Figure 16.4 shows this activity in some more detail. A few movements of
the head and eyes are sufficient to get the overview and to zoom in on the relevant
images and the relevant details. The spoken report consists of a patient identifi-
cation, a few words in Latin and or some standard medical codes. The recorded

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 153

tens of seconds

auto-

loader

light-box

films loaded by

clinical personnel

during the day

looks at

images

moves head

forward / backward

moves head or eyes

left/right/up/down

zoom in
 overview

image selection, panning

mumbles a few

Latin words or

clinical codes

in recorder

presses

next button

ne
w

 fi
lm

s

ol
d

fil
m

s

report

Figure 16.4: Diagnosis in tens of seconds

spoken report is sent to the dictation department; the transcription will be verified
later. The radiologist switches to the next examination with a single push on
the next button of the auto-loader. This entire activity is finished within tens of
seconds.

The radiologist performs this diagnosis sometimes in between patients, but
often he handles a batch of patient data in one session. Later on the day the radiol-
ogist will verify and authorize the transcribed reports, again mostly in batches.

16.4 Towards Design

The sales story provides a lot of focus for the user interface design and especially
the remote control. The functions to be available directly are defined in the story.
Implicit in this story is that the performance of these functions is critical, a poor
performance would kill the sales. The performance was not specified explicitly.
However the implied response times were 1 second for image retrieval and 0.1
seconds for a contrast/brightness change. These requirements have a direct effect
on the pipeline design and the user interface design.

Figure 16.5 shows the flow from both stories to requirements and design. It
also shows the inputs that went into the stories: at the commercial side the ease
of use as sales feature and the film efficiency as the main application value. The
gain in film efficiency is 20% to 50% relative to the screen copy approach used
originally, or in other words the typical use of 3 to 5 film sheets is reduced to 2 to 3

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 154

sales

story

20 1024
 2

8 bit images

3 films
of
4k*5k
pixels

per examination

4 exams / room

3 rooms/workstation

analyse

design

memory budget

CPU load

network load

disk budget

algorithms

analyse

design

response time, minimal UI
ease

of use

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

radiologist

at work

film

efficiency

processing throughput and quality

response times:

image retrieve, C/B

RC functionality

pipeline design

RC design

Figure 16.5: The stories in relation to the CAFCR views and the derived require-
ments and design choices

film sheets. These numbers are based on the typical case described in Section 14.3.

The a priori know-how that the response time in a software only solution would
be difficult, makes this a challenging story. The technical challenge in this story
is to achieve the desired image quality and throughput, also in the software only
solution.

The minimal user interface is also a design challenge. Without the sales story
the user interface provided would have been much too technical, an overwhelming
amount of technical possibilities would have been offered, without understanding
the clinical world view.

The story of the radiologist at work, in combination with the typical case,
is the direct input for the throughput specification. The throughput specification
is used for the memory and disk budgets and the CPU and network loads. The
image quality requirements, in combination with the loads and budgets, result in
algorithmic choices.

The original software completely ignored the need for printing images on film,
it was not even present! The developer crew assumed that radiologists would use
the workstation for “soft” diagnosis. Soft diagnosis is diagnosis from the monitor
screen instead of film. A better understanding of the radiologist was needed to
get the focus on the film printing functionality. The story immediately clarifies
the importance of film sheets for diagnosis. The story also provides input for
the functionality to create the layout of images and text on film. The auto-print
functionality has been added in an extremely pragmatic way, by (mis-)using exami-
nation data fields to request printing. This pragmatic choice could only be justified
by the value of this function as was made clear in this story.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 155

16.5 Conclusion

Stories have not been used explicitly in the case. Somewhat less specific oral
stories were provided by the marketing manager. Quantitative information was
described in a typical case. The facts for quantification were provided by appli-
cation managers. The presence of a quantified typical case provided the means
for design, analysis and testing. The lack of explicit story, in combination with
the poor coverage of the Customer Objectives and Application views as described
in Chapter 14 in general, caused the late addition of the printing functionality.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 156

Chapter 17

Medical Imaging in
Chronological Order

legend

DSI

3M

RC

Desk, cabinets, cables, etc.

Standard Sun workstation
DOR
HC

interf

RC

interf

 SunOS, SunView

NIX
RC

driver

HC

driver

DOR

driver

Spool
 HCU
 Store
 Image
 Gfx
 UI
 DB
 PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools
 Print
 Store
 View
 Cluster

operating system

hardware

application functions

user interface

connected system

SW infrastructure

toolbox

17.1 Project Context

Philips Medical Systems is a very old company, dating back to 1896 when the
first X-ray tubes were manufactured. Many imaging modalities have been added
to the portfolio later, such as Ultra Sound, Nuclear Medicaid, Computed Tomog-
raphy and Magnetic Resonance Imaging. Since the late seventies the management
was concerned by the growing effort to develop the viewing functionality of these
systems. Many attempts have been made to create a shared implementation of the
viewing functionality, with failures and partial successes.

In 1987 a new attempt was started by composing a team, that had the charter
to create a Common Viewing platform to be used in all the modalities. This team
had the vision that a well designed set of SW components running on standard
workstation hardware would be the solution. In the beginning of 1991 many
components had been built. For demonstration purposes a Basic Application was
developed. The Basic Application makes all lower level functionality available via
a rather technology-oriented graphical user interface. The case description starts at
this moment, when the Basic Application is shown to stakeholders within Philips
Medical Systems.

17.2 Introduction

The context of the first release of Medical Imaging is shown in Section 17.1. The
chronological development of the first release of the medical imaging workstation
is described in Section 17.3. Sections 17.4 and 17.5 zoom in on two specific
problems encountered during this period.

17.3 Development of Easyvision RF

The new marketing manager of the Common Viewing group was impressed by
the functionality and performance of the Basic Application. He thought that a
stand alone product derived from the Basic Application would create a business
opportunity. The derived product was called Easyvision, the first release of the
product was called Easyvision R/F. This first release would serve the URF X-ray
market. The Common Viewing management team decided to create Easyvision RF
in the beginning of 1991.

basic application

toolboxes

100 kloc

interactive viewing

marketing opinion:

"All the functionality is available,

we only have to provide a clinical UI"

Easyvision RF

integrated product

360 kloc

print server +

communication +

interactive viewing

1991
 1993
1992

performance

problems

IQ

problems

Figure 17.1: Chronological overview of the development of the first release of the
Easyvision

The enthusiasm of the marketing people for the Basic Application was based
on the wealth of functionality that was shown. It provided all necessary viewing
functions and even more. Figure 17.1 shows the chronology, and the initial marketing
opinion. Marketing also remarked: ”Normally we have to beg for more function-
ality, but now we have the luxury to throw out functionality”. The addition of
viewing software to the conventional modality products1 was difficult for many
reasons, such as legacy code and architecture, and safety and related testing require-
ments. The Easyvision did not suffer from the legacy, and the self sustained product

1Modality products are products that use one imaging technique such as Ultra Sound, X-ray or
Magnetic Resonance Imaging

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 158

provided a good means to separate the modality concerns from the image handling
concerns.

This perception of a nearly finished product, which only needed some user
interface tuning and some functionality reduction, proved to be a severe underes-
timation. The amount of code in the 1991 Basic Application was about 100 kloc
(kloc = thousand lines of code, including comments and empty lines), while the
product contained about 360 kloc.

user interface
communication

data base

export
 print
optical

storage

optical disk

drive
 printer
disk drive
network

UI devices

system

monitor

Unix

daemons

software

process

associated

hardware

control and

data flow

remote systems

and users
 user

user

user control

import

legend

Figure 17.2: The functionality present in the Basic Application shown in the
process decomposition. The light colored processes were added to create the
Easyvision

The Basic Application provided a lot of viewing functionality, but the Easyvision
as a product required much more functionality. The required additional function-
ality was needed to fit the product in the clinical context, such as:

• interfacing with modalities, including remote operation from the modality
system

• storage on optical discs

• printing on film

Figure 17.2 shows in the process decomposition what was present and what was
missing in the 1991 code. From this process decomposition it is clear that many
more systems and devices had to be interfaced. Figures 17.2 and 17.3 are explained
further in Chapter 15.

Figure 17.3 also shows what was present and what was missing in the Basic
Application, but now in the construction decomposition. Here it becomes clear
that also the application-oriented functionality was missing. The Basic Appli-
cation offered generic viewing functionality, exposing all functionality in a rather
technical way to the user. The clinical RF user expects a very specific viewing
interaction, that is based on knowledge of the RF application domain.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 159

legend

DSI

3M

RC

Desk, cabinets, cables, etc.

Standard Sun workstation
DOR
HC

interf

RC

interf

 SunOS, SunView

NIX
RC

driver

HC

driver

DOR

driver

Spool
 HCU
 Store
 Image
 Gfx
 UI
 DB
 PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools
 Print
 Store
 View
 Cluster

operating system

hardware

application functions

user interface

connected system

SW infrastructure

toolbox

Figure 17.3: The functionality present in the Basic Application shown in the
construction decomposition. The light colored components were added to create
the Easyvision

The project phases from the conception of a new product to the introduction in
the market is characterized by many architectural decisions. Architecting methods
are valuable means in this period. Characteristic for an immature architecting
process is that several crises occur in the integration. As shown in Figure 17.1
both a performance and a (image quality related) safety crisis happened in that
period.

17.4 Performance Problem

The performance of the system at the end of 1991 was poor, below expectation.
One of the causes was the extensive use of memory. Figure 17.4 shows the perfor-
mance of the system as a function of the memory used. It is also indicates that a
typically loaded system at that moment used about 200 MByte. Systems which use
much more memory than the available physical memory decrease significantly in
performance due to the paging and swapping to get data from the slow disk to the
fast physical memory and vice versa.

The analysis of additional measurements resulted in a decomposition of the
memory used. The decomposition and the measurements are later used to allocate
memory budgets. Figure 17.5 shows how the problem of poor performance was
tackled, which is explained in much more detail in Chapter 15. The largest gains
were obtained by the use of shared libraries, and by implementing an anti-fragmentation
strategy for bulk data. Smaller gains were obtained by tuning, and analyzing the
specific memory use more critical.

Figure 17.6 shows the situation per process. Here the shared libraries are shown
separate of the processes. The category other is the accumulation of a number

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 160

total measured memory usage

pe
rfo

rm
an

ce

physical

memory
 paging to disk

MB
64
 200

code
O

S
 data
 bulk data
 fragmen-

tation

MB
0
 memory usage

Figure 17.4: Memory usage half way R1

measured

code

OS

data

bulk data

fragmen-

tation

budget

anti-fragmenting

 budget based

awareness,

measurement

DLLs

tuning

200

MB

74

MB

Figure 17.5: Solution of memory performance problem

of small processes. This figure shows that every individual process did fit in the
available amount of memory. A typical developer tests one process at a time. The
developers did not experience a decreased performance caused by paging, because
the system is not paging if only one process is active. At the time of integration,
however, the processes are running on the same hardware concurrently and then
the performance is suddenly very poor.

Many other causes of performance problems have been found. All of these are
shown in the annotated overlay on the software process structure in Figure 17.7.

Many of the performance problems are related to overhead, for instance for
I/O and communication. A crucial set of design choices is related to granularity:
a fine grain design causes a lot of overhead. Another related design choice is the
mechanism to be used: high level mechanisms introduce invisible overheads. How
aware should an application programmer be of the underlying design choices?

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 161

sh
ar

ed
 li

br
ar

ie
s

U
I

co
m

m
un

ic
at

io
n

se
rv

er

st
or

ag
e

se
rv

er

pr
in

t s
er

ve
r

ot
he

r

U
N

IX

10

20

30

0

budget per process
 (right column)

10

MByte

measured
 (left column)

da

ta

co
de

20

Figure 17.6: Visualization per process

user interface
communication

data base

export
 print
optical

storage

optical disk

drive
 printer
disk drive
network

UI devices

remote systems

and users
 user

data base granularity

information model layering

process communication overhead

active data granularity, update

graphics updates

framebuffer access

I/O overhead

network I/O

overhead

processing

file I/O

overhead

Figure 17.7: Causes of performance problems, other than memory use

For example, accessing patient information might result in an implicit trans-
action and query on the database. Building a patient selection screen by repeatedly
calling such a function would cause tens to hundreds of transactions. With 25 ms
per transaction this would result in seconds of overhead only to obtain the right
information. The response becomes even worse if many layers of information have
to be retrieved (patient, examination, study, series, image), resulting in even worse
response time.

The rendering to the screen poses another set of challenges. The original Basic
Application was built on Solaris 1, with the SunView windowing system. This
system was very performance efficient. The product moved away from SunView,
which was declared to be obsolete by the vendor, to the X-windowing system.
The application and the windowing are running in separate processes. As a conse-
quence all screen updates cause process communication overhead, including several
copy operations of screen bitmaps. This problem was solved by implementing an
integrated X-compatible screen manager running in the same process as the appli-

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 162

cation, called Nix2.
Interactive graphics require a fast response. The original brute force method to

regenerate always the entire graphics object was too slow. The graphics implemen-
tation had to be redesigned, using damage area techniques to obtain the required
responsiveness.

17.5 Safety

The clinical image quality can only be assessed by clinical stakeholders. Clinical
stakeholders start to use the system, when the performance, functionality and relia-
bility of the system is at a reasonable level. This reasonable level is achieved after
a lot of integration effort has been spent. the consequence is that image quality
problems tend to be detected very late in the integration. Most image quality
problems are not recognized by the technology-oriented designers. The technical
image quality (resolution, brightness, contrast) is usually not the problem.

x

f(x
)

false

contour

10 bits pixel value

8 bits pixel value

Figure 17.8: Image quality and safety problem: discretization of pixel values
causes false contouring

Figure 19.18 shows a typical image quality problem that popped up during
the integration phase. The pixel value x, corresponding to the amount of X-ray
dose received in the detector, has to be transformed into a grey value f(x) that is
used to display the image on the screen. Due to discretization of the pixel values
to 8 bits false contours become visible. For the human eye an artefact is visible
between pixels that are mapped on a single grey value and neighboring pixels that
are mapped on the next higher grey value. It is the levelling effect caused by the
discretization that becomes visible as false contour. This artefact is invisible if
the natural noise is still present. Concatenation of multiple processing steps can
strongly increase this type of artifacts.

The original design of the viewing toolboxes provided scaling options for textual
annotations, with the idea that the readability can be guaranteed for different viewport
sizes. A viewport is a part of the screen, where an image and related information

2A Dutch play on words: niks means nothing

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 163

for user readability the font-size was

determined "intelligently"; causing a dangerous

mismatch between text and image
URF monitor output:

fixed size letters at fixed grid

tumor>

EV output: scaleable fonts in graphics overlay

tumor>

Figure 17.9: Safety problem caused by different text rendering mechanisms in the
original system and in Easyvision

are shown. This implementation of the annotations on the X-ray system, however,
conflicts in a dangerous way with this model of scalable annotations, see Figure 17.9.

The annotations in the X-ray room are made on a fixed character grid. Sometimes
the ’>’ and ’<’ characters are used as arrows, in the figure they point to the tumor.
The text rendering in the medical imaging workstation is not based on a fixed
character grid; often the texts will be rendered in variable-width characters. The
combination of interface and variable-width characters is already quite difficult.
The font scaling destroys the remaining part of the text-image relationship, with
the immediate danger that the annotation is pointing to the wrong position.

The solution that has been chosen is to define an encompassing rectangle at the
interface level and to render the text in a best fit effort within this encompassing
rectangle. This strategy maintains the image-text relationship.

17.6 Summary

The development of the Easyvision RF started in 1991, with the perception that
most of the software was available. During the developement phase it became clear
that a significant amount of functionality had to be added in the area of printing.
Chapter 14 will show the importance of the printing fumctionality. Performance
and safety problems popped up during the integration phase. Chapter 15 will show
the design to cope with these problems.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 164

Chapter 18

Threads of Reasoning in the
Medical Imaging Case

Philips operational view

(manufacturing, service, sales)

C
onceptual

efficient

useable

R
ealization
C
ustomer

objectives

A
pplication
 F
unctional

diagnosis

time efficient

throughput
 processing

library

cost revisited in context of clinical needs and

realization constraints;
 note: original threads are significantly simplified

diagnostic

quality

image

quality
 IQ spec

pixel

depth

CPU

budget

typical

case

common

console

memory

limit

BoM

Moore's

law

purchase

price

CoO

economic

sound

render

engine

effective

operational

constraints

M'

S

M

B

U"

P'

T

U

U'
 P

profit margin

standard workstation

C

memory budget

18.1 Introduction

The thread of reasoning has not been applied consciously during the development
of the Medical Imaging Workstation. This chapter describes a reconstruction of
the reasoning as it has taken place. In Section 18.2 the outline of the thread is
explained. Section 18.3 describes the 5 phases as defined in Chapter 13:

1. Select starting point (18.3.1)

2. Create insight (18.3.2)

3. Deepen insight (18.3.3)

4. Broaden insight (18.3.4)

5. Define and extend the thread (18.3.5)

18.2 Example Thread

Figure 18.1 shows a set of interrelated customer objectives up to interrelated design
decisions. This set of interrelated objectives, specification issues and concepts

is a dominant thread of reasoning in the development of the medical imaging
workstation.

Concepts
Customer objectives
 Specification issues

time efficient

diagnostic quality

safety (liability)

system response

system throughput

image quality

resource management

processor, memory

internal logistics

concurrency, processes

image processing

algorithms

re
in

fo
rc

in
g

co
nf

lic
tin

g

re
in

fo
rc

in
g

co
nf

lic
tin

g

de
si

gn

sp
ac

e

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

Figure 18.1: The thread of reasoning about the tension between time efficiency on
the one hand and diagnostic quality, safety, and liability on the other hand. In the
design space this tension is reflected by many possible design trade-offs.

The objectives of the radiologist are at the same time reenforcing and (somewhat)
conflicting. To achieve a good diagnostic quality sufficient time is required or
examine and study the results, which can be in conflict with time efficiency. On the
other hand a good diagnostic quality will limit discussions and repeated examina-
tions later on, by which good diagnostic quality can help to achieve time efficiency.

The customer objectives are translated into specifications. The diagnostic quality
and safety/liability translate for example into image quality specifications (resolution,
contrast, artefact level). A limited image quality is a primary source of a poor
diagnostic quality. Artifacts can result in erroneous diagnostics, with its safety and
liability consequences.

The time efficiency is achieved by system throughput. The workstation should
not be the bottleneck in the total department flow or in the system response time.
Waiting for results is clearly not time efficient.

Also at the specification level the reenforcing and the conflicting requirements
are present. If the image quality is good, no tricky additional functions are needed
to achieve the diagnostic quality. For instance if the image has a good clinical
contrast to noise ratio, then no artificial contrast enhancements have to be applied.
Function bloating is a primary source of decreased throughput and increased response
times. The conflicting aspect is that some image quality functions are inherently
time consuming and threaten the throughput and response time.

The design space is full of concepts, where design choices are needed. The

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 166

concepts of resource management, internal logistics and image processing algorithms
have a large impact on the system response time and throughput. The image
processing algorithms determine the resulting image quality.

The design space is not a simple multi-dimensional space, with orthogonal,
independent dimensions. The image processing algorithm has impact on the CPU
usage, cache efficiency, memory usage, and image quality. The implementation
of these algorithms can be optimized to one or two of these entities, often at the
cost of the remaining optimization criteria. For instance: images can be stored
completely in memory, which is most efficient for CPU processing time. An alter-
native is to store and process small parts of the image (lines) at a time, which
is more flexible with respect to memory (less fragmentation), but the additional
indirection of addressing the image line costs CPU time.

Adding concurrency partially helps to improve response times. Waiting times,
for instance for disk reads, can then be used to do other useful processing. On the
other hand additional overhead in context switching, and locking is caused by the
concurrency.

The essence of the thread of reasoning is to have sufficient insight in the customer
and application needs, so that the problem space becomes sharply defined and
understood. This understanding is used to select the sweet spots of the design
space, that satisfy the needs. Understanding of the design space is needed to
sharpen the understanding of the problem space; in other words iteration between
problem and solution space is required.

18.3 Exploration of Problems and Solutions

In this section the thread of reasoning is shown as it emerges over time. For every
phase the CAFCR views are annotated with relevant subjects in that phase and the
relations between the subjects.

Figures 18.2 to 18.6, described in Subsections 18.3.1 to 18.3.5, show the phases
as described in Chapter 13. The figures show the main issues under discussion as
dots. The relations between the issues are shown as lines between the issues, where
the thickness of the line indicates the relative weight of the relationship. The core
of the reasoning is indicated as a thick arrow. The cluster of issues at the start point
and at the finish are shown as letter in a white ellipse. Some clusters of issues at
turning points in the reasoning are also indicated as white ellipse.

18.3.1 Phase 1: Introvert View

At the moment that the architect (me) joined the product development a lot of
technology exploration had been transformed into a working prototype, the so-
called basic application. Main ingredients were the use of Object-Oriented (OO)
technology and the vision that a “software only” product was feasible en beneficial.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 167

Philips operational view

(manufacturing, service, sales)

C
onceptual

S

C
ustomer

objectives

A
pplication
 F
unctional
 R
ealization

purchase

price

response

time

Introvert view: cost and impact of new technologies

useable

efficient

operational

constraints

M

B

profit

margin

SW only

memory

use

OO design

Figure 18.2: Thread of reasoning; introvert phase. The starting point (S) is the
a priori design choice for a SW only solution based on Object Orientation. The
consequence for resource usage, especially memory (M) and the business (B),
especially product margin are explored.

Experienced architects will address two major concerns immediately: will
the design with these new technologies fit in the technical constraints, especially
memory in this case, and will the product fit in the business constraints (do we
make sufficient margin and profit)?

The response time has been touched only very lightly. The system was only
capable of viewing, an activity for which response time is crucial. The prototype
showed acceptable performance, so not much time was spent on this issue. Design
changes to eventually solve cost or memory issues potentially lower the perfor-
mance, in which case response time can suddenly become important.

Figure 18.2 shows the thread of reasoning in this early stage. Striking is the
introvert nature of this reasoning: internal design choices and Philips internal needs
dominate. The implicitly addressed qualities are useability and efficiency. Most
attention was for the operational constraints. The direction of the reasoning during
this phase has been from the Conceptual and Realization views towards the opera-
tional consequences: starting at the designers choice for OO and software only (S),
via concerns over memory constraints (M) towards the business (B) constraints
margin and profit. The figure indicates that more issues have been touched in the
reasoning, such as response time from user point of view. In the day to day situation
many more related issues have been touched, but these issues had less impact on
the overall reasoning.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 168

18.3.2 Phase 2: Exploring Memory Needs

The first phase indicated that the memory use was unknown and unpredictable. It
was decided to extend the implementation with measurement provisions, such as
memory usage. The OIT in the dynamic run time environment enabled a very
elegant way of tracing object instantiations. At the same time a new concern
popped up: what is the overhead cost induced by the run time environment?

Philips operational view

(manufacturing, service, sales)

A
pplication
 R
ealization

M'

U

F
unctional
 C
onceptual
C
ustomer

objectives

URF exam
 memory

use

OO

design

dynamic

run-time

run time

overhead

OIT

memory

measure-

ment

heap

allocation

typical

case

bulk data

How to measure memory, how much is needed?

from introvert to extrovert

memory

budget

useable

efficient

Figure 18.3: Thread of reasoning; memory needs. Create insight by zooming in on
memory management (M’). Requirements for the memory management design are
needed, resulting in an exploration of the typical URF examination (U).

The object instantiation tracing could easily be extended to show the amount
of memory allocated for the object structures. The large data elements, such as
images, are allocated on the heap and required additional instrumentation. Via the
bulkdata concept this type of memory use was instrumented. Bottom up the insight
in memory use was emerging.

The need arose to define relevant cases to be measured and to be used as the
basis for a memory budget. An URF examination was used to define a typical
case. Now the application knowledge starts to enter the reasoning process, and the
reasoning starts to become more extrovert. Efficiency and usability are the main
qualities addressed.

Figure 18.3 shows the thread of reasoning for Phase 2. The reasoning is still
bottom-up from Realization towards Application View. The realization concerns
about speed and memory consumption (M’) result into concepts for resource management
and measurement support. For analysis and validation a use case description in the

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 169

Functional view is needed. The use case is based on insight in a URF exami-
nation (U) from application viewpoint.

18.3.3 Phase 3: Extrovert View Uncovers Gaps in Conceptual and
Realization Views

The discussion about the URF examination and the typical case made it very clear
that radiologists perform their diagnoses by looking at the film on the lightbox.
This is for them very efficient in time. Their speed of working is further increased
by the autoloader, which quickly shows all films of the next examination.

C
ustomer

objectives

A
pplication
 R
ealization

U

U'

P

F
unctional
 C
onceptual

diagnosis

film on

lightbox

time

efficient
 throughput
 auto-print

film

layout

spooling

rendering
 processing

library

spool

processes

HC interface

HC driver

autoloader

server

processes

HCU

printserver

pipeline

URF exam
 typical

case

Radiologists diagnose from film, throughput is important

Extrovert view shows conceptual and realization gaps!

usable

efficient

 effective

Philips operational view

(manufacturing, service, sales)

Figure 18.4: Thread of reasoning; uncovering gaps. The insight is deepened by
further exploration of the URF examination (U) and the underlying objectives (U’)
of the radiologist. The auto-print functionality is specified as response for the
radiologist needs. The technical consequences of the auto-print are explored, in
this case the need for printing concepts and realization (P).

To support this typical workflow the production of filmsheets and the throughput
of films and examinations is important. Interactive viewing on the other hand is
from the radiologist’s point of view much less efficient. Diagnosis on the basis of
film takes seconds, diagnosis by interactive viewing takes minutes. The auto-print
functionality enables the production of films directly from the examination room.

auto-print functionality requires lots of new functions and concepts in the system,
such as background printing (spooling), defining and using film layouts, using the
right rendering, et cetera. The processing library must support these functions.
Also an execution architecture is required to support the concurrency: server processes

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 170

and spool processes are introduced. Last but not least, hardcopy units (HCU), for
example laser printers, need to be interfaced to the system. A new set of compo-
nents is introduced in the system to do the printing: hardcopy interface hardware,
hardcopy driver, and the hardcopy units themselves.

During this phase the focus shifted from efficiency to effectiveness. Efficiency
is mostly an introvert concern about resource constraints. Effectiveness is a more
extrovert concern about the quality of the result. Hitchins clearly explains in [7]
efficiency and effectiveness, and points out that the focus on efficiency alone creates
vulnerable and sub-optimal systems. Usability remains important during this phase,
for example auto-print.

Figure 18.4 shows the thread of reasoning of Phase 3. The insights obtained
during the previous phase trigger a further exploration of the Customer Objectives
and Application View. The insight that an efficient diagnosis (U’) is performed
by means of film sheets on a lightbox (U) triggers the addition of the auto-print
function to the Functional View. New concepts and software functions are needed
to realize the auto-print function (P). The direction of reasoning is now top-down
over all the CAFCR views.

18.3.4 Phase 4: from Diagnosis to Throughput

The discussion about URF examinations and the diagnostic process triggers another
thread, a thread about the desired diagnostic quality. The high brightness and
resolution of films on a lightbox ensures that the actual viewing is not degrading the
diagnostic quality. The inherent image quality of the acquired and printed image is
critical for the final diagnostic quality.

At specification level the image quality is specified in terms of resolution,
contrast and dynamic range. At application level the contrast is increased by the
use of barium meal, which takes the contrast to the required level in these soft (for
X-ray low contrast) tissues. At the same time the combination of X-ray settings
and barium meals increases the dynamic range of the produced images.

The size of the images depends on the required resolution, which also deter-
mines the film layout. The rendering algorithms must fulfil the image quality speci-
fications. The rendering is implemented as a pipeline of processing steps from an
optimized processing library.

One of the costly operations is the interpolation. One of the design options was
to use the processing in the hardcopy unit. This would greatly relieve the resource
(processor and memory) needs, but it would at the same time be much less flexible
with respect to rendering. It was decided not to use the hardcopy unit processing.

A CPU budget was created, based on the typical case and taking into account
all previous design know-how. This CPU budget did fit in the required throughput
needs.

Usability, effectiveness and efficiency are more or less balanced at this moment.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 171

R
ealization
C
ustomer

objectives

A
pplication

U"

P'

T

C
onceptual
F
unctional

diagnosis

film on

light-box

time efficient

throughput

film

layout

rendering
 processing

library

HC interface

HCU

URF exam

from extrovert diagnostic quality, via image quality,

algorithms and load, to extrovert throughput

diagnostic

quality

image

quality

contrast

dynamic

range

resolution

HCU

processing

pixel

depth

interpolation

barium

meal

pipeline

CPU

budget

typical

case

useable

efficient

 effective

Philips operational view

(manufacturing, service, sales)

Figure 18.5: Thread of reasoning; phase 4. The insight is broadened. Starting at
the objective to perform diagnosis efficient in time (U”), the application is further
explored: type of examination and type of images. The specification of the imaging
needs (contrast, dynamic range, resolution) is improved. The consequences for
rendering and film layout on a large set of realization aspects (P’) is elaborated.
The rendering implementation has impact on CPU usage and the throughput (T) of
the typical case.

Figure 18.5 shows the thread of reasoning for Phase 4. During this phase the
reasoning iterates over all the CAFCR views. The diagnostic quality (U”) in the
Customer Objectives View results via the clinical acquisition methods in the Appli-
cation view in image quality requirements in the Functional View. The layout and
rendering in the Conceptual view result in a large set of processing functions (P’) in
the Realization view. The specific know how of the processing in the Realization
is used for the CPU and memory budgets in the conceptual view, to validate the
feasibility of supporting the typical case in the Functional view. The typical case
is a translation of the throughput (T) needs in the Application View.

18.3.5 Phase 5: Cost Revisited

At this moment much more information was available about the relation between
resource needs and system performance. The business policy was to use standard
of-the-shelf workstations. The purchase price by the customer could only be met
by using the lowest cost version of the workstation. Another policy was to use
a Philips medical console, which was to be common among all products. This

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 172

console was about half of the material cost of the Medical Imaging workstation.

Philips operational view

(manufacturing, service, sales)

C
onceptual

efficient

useable

R
ealization
C
ustomer

objectives

A
pplication
 F
unctional

diagnosis

time efficient

throughput
 processing

library

cost revisited in context of clinical needs and

realization constraints;
 note: original threads are significantly simplified

diagnostic

quality

image

quality
 IQ spec

pixel

depth

CPU

budget

typical

case

common

console

memory

limit

BoM

Moore's

law

purchase

price

CoO

economic

sound

render

engine

effective

operational

constraints

M'

S

M

B

U"

P'

T

U

U'
 P

profit margin

standard workstation

C

memory budget

Figure 18.6: Thread of reasoning; cost revisited. The entire scope of the thread
of reasoning is now visible. Sufficient insight is obtained to return to the original
business concern of margin and cost (C). In the mean time additional assumptions
have surfaced: a common console and standard workstation to reduce costs. From
this starting point all other viewpoints are revisited: via time efficient diagnosis to
image quality to rendering and processing and back to the memory design.

The real customer interest is to have a system that is economically sound, and
where throughput and cost of ownership (CoO) are balanced. Of course the main
clinical function, diagnosis, must not suffer from cost optimizations. A detailed
and deep understanding of the image quality needs of the customer is needed to
make an optimized design.

Note that at this moment in time many of the considerations discussed in the
previous steps are still valid and present. However Figure 18.6 is simplified by
leaving out many of these considerations.

Besides efficiency, effectiveness, and usability, the operational constraint is
back in the main reasoning thread. At this moment in time that makes a lot of sense,
because problem and solution space are sufficiently understood. These constraints
never disappeared completely, but the other qualities were more dominant in the
intermediate phases.

Figure 18.6 shows the thread of reasoning in Phase 5. The original business
viewpoint is revisited: do we have a commercial feasible product? A full iteration
over all CAFCR views relates product costs (C) to the key drivers in the Customer
Objectives. The main tensions in the product specification are balanced: image

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 173

quality, throughput of the typical case and product cost. To do this balancing the
main design choices in the Conceptual and Realization views have to be reviewed.

18.4 Conclusion

Philips operational view

(manufacturing, service, sales)

efficient

useable

R
ealization
C
onceptual
C
ustomer

objectives

A
pplication
 F
unctional

effective

operational

constraints

M'

S
 M

B

U"

P'

T

U

U'

P

C

phase 1
 phase 2
 phase 3
 phase 4
 phase 5

legend

Figure 18.7: All steps superimposed in one diagram. The iterative nature of the
reasoning is visible: the same aspects are explored multiple times, coming from
different directions. It also shows that jumps are made during the reasoning.

The know-how at the start of the product creation was limited to a number
of nice technology options and a number of business and application opportu-
nities. The designers had the technology know-how, the marketing and appli-
cation managers had the customer know-how. The product creation team went
through several learning phases. Figure 18.7 shows the many iterations in the five
phases. During those phases some of the know-how was shared and a lot of new
know-how emerged. The sharing of know-how made it possible to relate customer
needs to design and implementation options. The interaction between the team
members and the search for relations between needs and designs triggered many
new questions. The answers to these questions created new know-how.

The architecting process has been analyzed in retrospect, resulting in this description
of threads of reasoning. This Chapter Threads of Reasoning shows that:

• The specification and design issues that are discussed fit in all CAFCR views
or the operational view.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 174

• The positioning of the issues and their relationships in the CAFCR views
enable a compact description of the reasoning during the product creation.

• Submethods are used to address one issue or a small cluster of issues.

• Qualities are useful as integrating elements over the CAFCR views.

• The threads of reasoning are an explicit way to facilitate the interaction and
the search for relations.

• The threads of reasoning create an integral overview.

• The threads of reasoning facilitate a converging specification and design.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 2.4

Buskerud University College

page: 175

Part IV

Experiences with Teaching
Architecural Reasoning

Chapter 19

Decomposing the Architect; What
are Critical Success Factors?

Nature

Education
Experience

patterns

skills

Environment

variation

feedback

stimulating

19.1 Introduction

One of the big challenges of today is: How do we get more, and effective, system
architects? At Philips and the Embedded Systems Institute we have been very
successful in teaching the non-technical aspects of systems architecting to people.
This course, called SARCH, has been given 36 times (May 2006) to about 570
participants. We also provide the Embedded Systems Architecting course (ESA),
that has been given more than 20 times to more than 300 participants, which
addresses the technical broadening of designers. We identified a number of missing
steps in between these courses: addressing multi-disciplinary design. We fill this
hole by ”single aspect” courses that address one aspect at the time, for instance,
performance or reliability. The performance oriented course, that has been given 7
times to about 100 people, is also successful. The next course that we developed
to fill this hole is the Multi-Objective System Architecting and Design (MOSAD)
course. The evaluation after 3 courses revealed a problem: the participants are
satisfied, but the teacher is not satisfied. The dissatisfaction of the teacher is that
the participants pick up many submethods and techniques provided in the course,
but they struggle to integrate this into an architecting approach.

Nature

Education
Experience

patterns

skills

Environment

variation

feedback

stimulating

Figure 19.1: Decomposing Contributing Factors

This conclusion triggered the analysis of critical success factors for system
architects. We decomposed these factors into four categories: education, experience,
environment, and nature, as shown in Figure 19.1. We will discuss these four
categories in separate sections. We will start with a section about the architect, to
create a baseline for the further analysis.

19.2 What is an Architect?

root

technical

knowledge

generalist

technical

knowledge

business,

application insight

process insight

psychosocial

skills

Figure 19.2: Typical Development of a System Architect

System architects need a wide range of knowledge, skills and experience to be
effective. Figure 19.2 shows a typical development of a system architect.

The system architect is rooted in technology. A thorough understanding of a
single technological subject is an essential underpinning. The next step is a broad-
ening of the technical scope.

When the awakening system architect has reached a technological breadth, it
will become obvious that most problems have a root cause outside of technology.
Two main parallel streams are opened:

• The business side: the market, customers, value, competition, logistics, service
aspects

• The process side: who is doing what and why

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 178

During this phase the system architect will broaden in these two dimensions.
The system architect will view these dimensions from a technological perspective.
Again when a sufficient level of understanding is attained an awareness starts to
grow that people behave much less rationally than technical designs. The growing
awareness of the psychological and the sociological aspects is the next phase of
growth.

Most developers of complex high tech products are specialists. They need
an in-depth understanding of the applicable technology to effectively guide the
product development. The decomposition of the development work is most often
optimized to create a work breakdown enabling these specialists to do their work
with as much autonomy as possible.

Most generalists are constrained in the depth of their knowledge by normal
human limitations, such as the amount of available time and the finite capacity of
the human mind. The figure also shows that a generalist has somewhere his roots in
in detailed technical knowledge. This root is important for the generalist himself,
since it provides him with an anchor and a frame of reference. It is vital in the
communication with other specialists, because it gives the generalist credibility.

Both generalists and specialists are needed. Specialists are needed for their
in depth knowledge, while the generalists are needed for their general integrating
ability. Normally there are much more specialists required than generalists. There
are more functions in the Product Creation Process which benefit from a generalist
profile. For instance the function of project-leader or tester both require a broad
area of know how.

al
l-r

ou
nd

 s
pe

ci
al

is
t
 systems architect

sp
ec

ia
lis

t

root

knowledge

aspect

architect

breadth of

knowledge

de
pt

h
of

kn

ow
le

dg
e

Figure 19.3: Growth in technical breadth, intermediate functions from specialist to
system architect

Architects require a generalist profile, since one of their primary functions is
to generate the top-level specification and design of the system. The step from a
specialist to a generalist is of course not a binary transition. Figure 19.3 shows
a more gradual spectrum from specialist to system architect. The arrows show
that intermediate functions exist in larger product developments, which are natural

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 179

stepping stones for the awakening architect.
Examples of aspect architects are:

• subsystem architects

• SW, mechanics or electronics architects

For instance a software architect needs a significant in-depth knowledge of software
engineering and technologies, in order to design the software architecture of the
entire system. On the other hand a subsystem architect requires multi-disciplinary
knowledge, however the limited scope reduces the required breadth to a hopefully
realistic level.

architect

product scope

pe
op

le
 s

co
pe

technology

only

including

designers

(process)

including

individuals

(human factors)

including

stakeholders

function
 product
 product

line

portfolio

architect

system

architect

product line

architect

portfolio

architect
solution

context

technology

context

fitting

technical

sound

Figure 19.4: Different Architecting Scopes

Many products are becoming so complex that a single architect is not capable of
covering the entire breadth of the required detailed knowledge areas. In those cases
a team of architects is required, that is complementing each other in knowledge and
skills. It is recommended that those architects have complementary roots as well;
as this will improve the credibility of the team of architects.

Figure 19.4 shows that the scope of architects widely varies. The common
denominator for all these architects is the bridge function between context and
technology (or problem and solution). An architect needs sufficient know-how to
understand the context as well as the technology, in order to design a solution,
which fits in the context and is technical sound at the same time.

In general increasing the product scope of an architect coincides with an increase
in people scope at the same time.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 180

19.3 Education

ESA

SW

Execution

architecture

SARCH

ESA

stakeholders

available

missing

external

architecture school

root

technical

know-how

generalist

technical

know-how

business, application insight

process insight

psycho-social

skills

apply theory

in practice

become

all-round

experience the

non-technical aspects

see every human

as an individual

System

design

methods

Bredemeyer

SW architecture

Architectural

reasoning

ESA

s
ystem
ESA

silicon

ESA

mechatronics

marketing, process

and many more

Bredemeyer -

Role of the architect

Thomas Gilb - EVO,

requirements eng

mathematics

physics

chemistry

mechanical

engineering

computer

science

electronical

engineering

conventional

curriculums

advanced

SARCH

reliability
engineering

QFD and more

legend

Figure 19.5: Proposed Curriculum for System Architects

A curriculum proposal for architects is shown in Figure 19.5. At the top of the
figure the growth path of a system architect is shown. Below the courses or course
subjects are shown which fit in the architect career path. Note that this is not a
unified list for all architects. Instead it is a palette of courses, where the architect
must select the courses which best fit his current needs. In color coding is indicated
if courses are available internal or external.

explore

specific details

submethods

framework

integration

via qualities

reasoning

story
 use

case
analyse

design

detailed

design
analyse

design

a priori solution know-how
market

vision

safety

performance

+ key drivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

and many more

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

method outline
 method visualization

throughput
 processing

library

diagnostic

quality

image

quality
 IQ spec

pixel

depth

CPU

budget

typical

case

common

console

memory

limit

BoM
 Moore's

law

purchase

price
CoO

render

engine

M'

S

M

B

U"

P'

T

U

U'
 P

profit margin

standard workstation

memory budget

Figure 19.6: The outline of a CAFCR based architecting method

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 181

Figure 19.6 shows the overall outline of an architecting method, as it is being
used in the MOSAD or Architectural Reasoning course. The right hand side shows
the visualization of the steps of the method. The framework is a decomposition into
five views, the “CAFCR” model, Customer Objectives, Application, Functional,
Conceptual, and Realization views.

Per view in the decomposition a collection of submethods is given. The collec-
tions of submethods are open-ended. The collection is filled by borrowing relevant
methods from many disciplines.

A decomposition in itself is not useful without the complementing integration.
Qualities are used as integrating elements. The decomposition into qualities is
orthogonal to the “CAFCR” model.

The decomposition into CAFCR views and into qualities both tend to be rather
abstract, high level or generic. Therefore, a complementary approach is added to
explore specific details: story telling. Story telling is the starting point for specific
case analysis and design studies.

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

mono-

disciplinary

multi-

disciplinary

system

system

requirements

design

decisions

parts

connections

lines of code

nu
m

be
r o

f

de

ta
ils

and growing every year....
10
8

Figure 19.7: Connecting System Design to Detailed Design

These approaches are combined into a thread of reasoning: valuable insights
in the different views in relation to each other. The basic working methods of the
architect and the decompositions should help the architect to maintain the overview
and to prevent drowning in the tremendous amount of data and relationships. The
stories and detailed case and design studies should help to keep the insights factual.

The translation of system requirements into detailed mono-disciplinary design
decisions spans many orders of magnitude. The few statements of performance,
cost and size in the system requirements specification ultimately result in millions
of details in the technical product description: million(s) of lines of code, connec-
tions, and parts. The technical product description is the accumulation of mono-
disciplinary formalizations. Figure 19.7 shows this dynamic range as a pyramid
with the system at the top and the millions of technical details at the bottom.

The combination of Figures 19.6 and 19.7 brings us to a very common organi-

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 182

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealisation

H
ow

can the product be realized

W

hat
are the critical decisions

What
does Customer need

in Product and
 Why
?

system

requirements

design

decisions

parts

connections

lines of code

and growing every year....

ga
p

Figure 19.8: Organizational Problem: Disconnect

zational problem: the disconnect between customer oriented reasoning (breadth,
CAFCR) and technical expertise (depth, the mono-disciplinary area in the pyramid).
Figure 19.8 shows this disconnect.

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealisation

How
can the product be realized

What
are the critical decisions

What
does Customer need

in Product and
 Why
?

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

system

requirements

design

decisions

parts

connections

lines of code

nu
m

be
r o

f

de

ta
ils

and growing every year....
10
8

Figure 19.9: Architect: Connecting Problem and Technical Solution

Our definition of the work of an architect places this role as a bridge between
these two worlds, as shown in Figure 19.9. In essence the architect must combine
and balance breadth and depth iterations.

We should realize that this architect role is quite a stretching proposition. The
architect is stretched in customer, application and business direction and at the
same time the same architect is expected to be able to discuss technological details
at nuts and bolts level. By necessity the architect will function most of the time at
higher abstraction levels, time does and brain capacity don’t allow the architect to

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 183

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

nu
m

be
r o

f

de

ta
ils

st
re

tc
h

en
gi

ne
er

st
re

tc
h

sy
st

em

ar
ch

ite
ct

st
re

tc
h

se
ni

or

en
gi

ne
er

100
 10
 1

Figure 19.10: Major Bottleneck: Mental Dynamic Range

spend all time at detailed design level. Figure 19.10 shows that different people fill
different spots in the abstraction hierarchies. For communication purposes and to
get a healthy system design the roles must have sufficient overlap. This means that
all players need to be stretched regularly beyond their natural realm of comfort.

The MOSAD course provides means to address:

• the breadth of systems architecting

• the depth of technological design

• the connection of breadth and depth

If we look back at the first editions of the MOSAD course, then we see that partic-
ipants have the tendency to either go for breadth or for depth. But exploring
both breadth and depth, and even more challenging connecting breadth and depth
appears to be very difficult.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 184

19.4 Nature

0

1

2

3

4

5

6

7

8

9

co
mmun

ica
tio

n

tea
mwor

k

do
cu

men
tat

ion

mult
i-ta

sk
ing

fle
xib

le,
 op

en

au
th

by
 ex

pe
rtis

e

sp
ec

ial
ist

ge
ne

ra
lis

t

co
nc

ep
tua

l

pr
ag

mati
c

co
ns

tru
cti

ve
 cr

itic
al

ab
so

rp
tio

n k
nh

w

cre
ati

vit
y

man
ua

l s
kil

l

pr
oc

es
s i

ns
igh

t

po
liti

cs
 in

sig
ht

im
pr

ov
em

en
t

co
mple

ten
es

s

sc
he

du
le

mon
ito

r p
ro

gr
es

s

ini
tia

l c
os

t

de
cis

ion
 m

ak
ing

cu
sto

mer
 va

lue

sa
les

 fe
atu

re

co
mmer

cia
l in

sig
ht

co
ac

hin
g

se
lec

tio
n

ap
pr

ais
al

moti
va

tio
n

Figure 19.11: Profile of an ”Ideal” System Architect

The profile of the ”ideal” system architect shows a broad spectrum of required
skills, as shown in Figure 19.11. A more complete description of this profile and
the skills in this profile can be found at[14]. Quite some emphasis in the skill set is
on interpersonal skills, know-how, and reasoning power.

This profile is strongly based upon an architecting style, which is based on
technical leadership, where the architect provides direction (know-how and reasoning
power) as well as moderates the integration (interpersonal skills).

0

1

2

3

4

5

6

7

8

9

co
mmun

ica
tio

n

tea
mwor

k

do
cu

men
tat

ion

mult
i-ta

sk
ing

fle
xib

le,
 op

en

au
th

by
 ex

pe
rtis

e

sp
ec

ial
ist

ge
ne

ra
lis

t

co
nc

ep
tua

l

pr
ag

mati
c

co
ns

tru
cti

ve
 cr

itic
al

ab
so

rp
tio

n k
nh

w

cre
ati

vit
y

man
ua

l s
kil

l

pr
oc

es
s i

ns
igh

t

po
liti

cs
 in

sig
ht

im
pr

ov
em

en
t

co
mple

ten
es

s

sc
he

du
le

mon
ito

r p
ro

gr
es

s

ini
tia

l c
os

t

de
cis

ion
 m

ak
ing

cu
sto

mer
 va

lue

sa
les

 fe
atu

re

co
mmer

cia
l in

sig
ht

co
ac

hin
g

se
lec

tio
n

ap
pr

ais
al

moti
va

tio
n

Figure 19.12: For Comparison: Profile of a Project Leader

The required profile is so requiring that not many people fit into it, it is a so-
called sheep with seven legs. In real life we are quite happy if we have people
available with a reasonable approximation of this profile. The combination of
complementary approximations allows for the formation of architecture teams,
which as a team are close to this profile.

For comparison the profile of a project leader is shown in Figure 19.12. A
project leader is totally focused on the result. This requires project management
skills, which is the core discipline for project leaders. The multi-tasking ability is
an important prerequisite for the project leader. If this ability is missing the person
runs a severe risk on a burn out.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 185

communication

teamwork

documentation

multi-tasking

flexible, open

auth by expertise

specialist

generalist

conceptual

pragmatic

constructive critical

absorption knhw

creativity

process insight

politics insight

improvement

completeness

schedule

monitor progress

initial cost

decision making

customer value

sales feature

commercial insight

coaching

selection

appraisal

motivation

project leader

system architect

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

interpersonal skills

know-how

reasoning power

process
project man

commercial

human resource man

Figure 19.13: Project Leader versus System Architect

The comparison is further visualized in Figure 19.13, where the more detailed
skills from Figures 19.11 and 19.12 are grouped together.

• Generalist

• Multi-tasking

• Authority by expertise

• Constructive critical

• Balance between conceptual and pragmatic

Figure 19.14: Most Discriminating Characteristics

In practice the characteristics shown in Figure 19.14 are quite discriminating
when selecting (potential) system architects: The first reduction step, when searching
for architects, is to select the generalists only. This step reduces the input stream
with one order of magnitude. The next step is to detect those people which need
time and concentration to make progress. These people become unnerved in the
job of the system architect, where frequent interrupts (meetings, telephone calls,
people walking in) occur all the time. Ignoring these interrupts is not recom-
mendable, this would block the progress of many other people. Whenever these

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 186

people become system architect nevertheless they are in sever danger of stress and
burn out, hence it is also the benefit of the person itself to fairly asses the multi-
tasking characteristic.

The attitude of the (potential) architect is important for the long term effec-
tiveness. Roughly two attitudes can be distinguished: architects that ask for formal
power and architects that operate on the basis of build-up authority. Building
up authority requires know-how and visible contribution to projects. We have
observed that architects asking for formal power are often successful on the short
term, creating a single focus in the beginning. However in the long run the inbreeding
of ideas takes its toll. Architecting based on know-how and contribution costs a lot
of energy, but it pays back in the long term.

The balance between conceptual thinking and being pragmatic is also rather
discriminating. Conceptual thinking is a must for an architect. However the capability
to translate these concepts in real world activities or implementations is crucial.
This requires a pragmatic approach. Conceptual-only people dream up academic
solutions.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 187

19.5 Experience

The effectiveness of an architect depends on experience. In all years of being
an engineer, designer and architect, a lot of different needs in different contexts
with different solutions with different complicating challenges pass by. If all these
events are processed by the (potential) architect, then a frame of reference is created
that is very valuable for future architecting work.

grey level

mapping

Look up table

invert

contrast / brightness

ou
tp

ut

input

contrast

brightness

gradient field

generation

Gz

Gx

Gy

RF

TE

TR

wafer stage

movement

v
 y

t

v
 x

ex
po

se

ex
po

se

st
ep

Figure 19.15: Example: Trapezoid Pattern

In this section we will illustrate the experience factor by means of a few archi-
tecture patterns that repeatedly popped up in completely different domains. For
this purpose we look at the Trapezoid Pattern, as shown in Figure 19.15. One of
the very common technical problems is the actuation by software of some physical
entity, for instance for positioning, moving or displaying. In these cases the software
often has to create set-points for one parameter, where this parameter is constant at
different levels for some time and switches linearly from one level to another level.
For instance, a sample table is at a given position (constant), moves with a constant
velocity to the next position, and then stays at the next position for some time
(constant). This same behavior is also present in the actuation of gradient fields in
MRI scanners, and in the grey level mapping in imaging displays (although the last
example uses grey levels as running parameters instead of time).

In the system a chain of transformations takes place to get from a high level
software representation towards an actual physical behavior by physical objects.
Figure 19.16 shows such a chain of three steps: computation, conversion, and
actuation. Note that this chain is often more complex in real systems with more
software steps (controller algorithms, corrections), more electronic steps (controllers,
amplifiers), and more mechanical steps (motors, transmission). The high level
software representation that is the starting point is unconstrained (high precision

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 188

breakpoints

(x
1
, y
1
)

(x
n
, y
n
)

(x
1
, y
1
)

(x
2
, y
2
)

(x
3
, y
3
)
 (x
4
, y
4
)

.
.

analog

signal

discrete

samples

(
1
, v
1
)

(t
, v
t
)

(
2
, v
2
)

.
.
.

V(t)

DAC

mechanical

optical

or

physical

effect
co
m

pu
ta

tio
n

ac
tu

at
io

n

co
nv

er
si

on

[m/s]

[mT/m]

Figure 19.16: From SW input to physical Effect

in time as well as in value). The most common representation is break-point
based: the coordinates, where the running parameter changes the linear behavior,
are specified.

The conversion and actuation steps have their own particular transfer functions.
These steps may introduce additional delays, noise, variations et cetera. The virtual
model in the high level software does not take this into account or makes (calibrated)
assumptions.

input is discrete

output is discrete

potential problems:

staircase effects

not all values can be reached

impact on frequency domain

broken invariants (surface)

potential benefits:

optimized algoritms (fixed point)

Figure 19.17: Discretization effects

The computation step transforms the unconstrained representation into a constrained
sampled list of values. This transformation is a discretization in two directions:
time and value, see Figure 19.17. This discretization may introduce system level
problems:

Staircase effects the linear shape is approximated by many staircase-like steps.
The question is how this software output is transformed into the actual physical
actuation and if artifacts will be observable in the physical performance.

Not all values can be reached . Normally the digital to analog conversion is a
bottleneck in the values that can be reached. This conversion can be very

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 189

much limited in low cost solutions (8-bits, 256 values) to limited (16-bit,
65536 values). The time-values are also limited, varying from sub-microsecond
for more expensive solutions to milliseconds for simple low-cost controls.
The consequence of this limitation is that the physical reality may differ in
a systematic way from the virtual model in the high level software. For
example the high level software may have determined that at moment t =
3.14159 the system should be at position x = 2.718281, while actually the
system is controlled to stop at t = 3.1, x = 2.7.

Impact on frequency domain The staircase approximation of linear behavior intro-
duces many higher frequencies in the frequency domain. Many of the higher
frequency artifacts are filtered out in the analog and physical part of the
chain. However, due to aliasing-like problems the system performance might
degrade in unexpected ways.

Broken invariants (surface) The high level software model in many systems is
based on invariants. For instance, if we control velocity linear, then we
expect that we now the position as the integral of velocity. Discretization, at
lower software level, will violate the higher level assumption. If the model
assumes we move with v = 3.14159m/s, while we actually move with
v = 3.1m/s, then the position will deviate significant. Interestingly, the low
level software can compensate for this error by modulating the value: 58%
of the time v = 3.1m/s and 42% of the time v = 3.2m/s. These solutions
work, but introduce again their own next level of problems and artifacts.
In this example the frequency of the modulation may introduce unexpected
physical behavior, such as vibrations.

A priori use of the need for discretization can also turn into a benefit. Especially
the consequent use of integer representations (with some pragmatic normalization,
such as 255 = 5V olt) reduces processor load, memory use and may increase
system performance.

Discretization problems, the artifacts introduced by discretization, the measures
against artifacts are also universally applicable. However, the exact consequence
and the right countermeasure are domain dependent.

x

f(x
)

false

contour

10 bits pixel value

8 bits pixel value

Figure 19.18: Example of Discretization Problem

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 190

As example of discretization problems Figure 19.18 shows a typical image
quality problem that popped up during the integration phase of a Medical Imaging
Workstation. The pixel value x, corresponding to the amount of X-ray dose received
in the detector, has to be transformed into a grey value f(x) that is used to display
the image on the screen. Due to discretization of the pixel values to 8 bits false
contours become visible. For the human eye an artefact is visible between pixels
that are mapped on a single grey value and neighboring pixels that are mapped on
the next higher grey value. It is the levelling effect caused by the discretization that
becomes visible as false contour. This artefact is invisible if the natural noise is
still present. Concatenation of multiple processing steps can strongly increase this
type of artifacts.

discontinuity in

first derivative

smooth

smooth curves prevent artefacts

(vibration, image, clipping)

Figure 19.19: Example of Generic Smoothing Consideration

An example of a pattern that builds further on this transformation chain is
shown in Figure 19.19. Physical systems in general start to show artifacts with
discontinuous inputs. The linear approximation used in the trapezoid pattern has a
discontinuity in the derivative. For example, if we control velocity, then the accel-
eration jumps at the break-point. A solution for this discontinuity is to smooth
the input function, for instance by a low-pass filter. Note that most analog and
mechanical systems are already natural low-pass filters. Despite the low-pass
characteristic of the later part of the chain artifacts might still be induced by the
discontinuity. These remaining artifacts can be further removed by using an explicit
low-pass filter in the high level software model. Again this is an example of a
pattern that is universally applied in multiple domains.

The example showed a small subset of patterns that an architect experiences.
This subset as its has been discussed here is highly technical. However, in real life
technical patterns and organizational patterns are experienced concurrently. For
example in the trapezoid example also a number of organizational patterns pop
up, related to mono-disciplinary experts and multi-disciplinary design, and system
integration.

In Figure 19.20 the career of an architect is shown with the repeated encounters

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 191

environment

legend

system

design pattern

time

process pattern

architects move from:

product to product

environment to environment

architects experience:

thousands of patterns

design
 patterns in systems

process
 patterns in environments

human
 patterns in environments

human pattern

Figure 19.20: Architects Collect a Rich Set of Patterns

of patterns in different products and in different environments. We estimate that an
experiences architect encounters (and files and uses) thousands of patterns. All
these patterns form a frame of reference for the architect as an individual. This
frame of reference helps the architect to assess new architectures very quickly.
Potential problem areas are identified and design issues are weighted very fast,
thanks to this frame of reference.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 192

19.6 Environment

The business process for an organization which creates and builds systems consisting
of hardware and software can be decomposed in 4 main processes as shown in
figure 19.21. This process decomposition model is more extensively discussed
in[12].

customer

Customer-Oriented Process

$$

sales
 logistics
production
 service
presales

Product Creation Process

Policy and

Planning Process

People, Process, and Technology Management Process

Bu
si

ne
ss

D

riv
er

s

C
us

to
m

er

R
oa

dm
ap

Bu
dg

et
, p

la
n

Pr
od

uc
t

ro
ad

m
ap

Te
ch

no
lo

gy
, P

ro
ce

ss
,

an
d

Pe
op

le
 ro

ad
m

ap
s

Bu
dg

et
s

Pe
op

le

Te
ch

no
lo

gy

Pr
oc

es
s

N
ee

ds
 a

nd

Fe
ed

ba
ck

Te
ch

ni
ca

l

Pr

od
uc

t

D

oc
um

en
ta

tio
n

Pr
od

uc
t-r

el
at

ed

pr
oc

es
se

s

Pe
op

le

Te
ch

no
lo

gy

Pr
oc

es
s

In
fo

rm
at

io
n

O
rd

er

Pr
od

uc
t

$$

Su
pp

or
t

Pr
od

uc
t N

ee
ds

an

d
fe

ed
ba

ck

material

N
ee

ds
 a

nd

Fe
ed

ba
ck

Figure 19.21: Simplified decomposition of the Business

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cash flow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cash flow tomorrow
as well.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 193

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

Policy and Planning Process This process is future oriented, not constrained by
short term goals, it is defining the future direction of the company by means
of roadmaps. These roadmaps give direction to the Product Creation Process
and the People and Technology Management Process. For the medium term
these roadmaps are transformed in budgets and plans, which are committal
for all stakeholders.

commercial

sa
le

s

cu
st

om
er

 s
up

po
rt

m
ar

ke
tin

g

research &

engineering

m
ec

ha
ni

ca
l e

ng
in

ee
rin

g

el
ec

tri
ca

l e
ng

in
ee

rin
g

so
ftw

ar
e

en
gi

ne
er

in
g

goods flow

pu
rc

ha
si

ng

lo
gi

st
ic

s

m
an

uf
ac

tu
rin

g

finance &

administration

human resource

management

CEO

Figure 19.22: Line Organization Stovepipe

The challenge for companies is to organize themselves in a way that support
these 4 different types of processes. Rather common is that the �People and Technology
Management Process is mapped on the line organization, see Figure 19.22. This
figure also shows a common problem of hierarchical organization structures: the
organizational entities become (over)specialized stovepipes.

The Product Creation Process maps often on a business oriented project organi-
zation, as shown in Figure 19.23. The stovepipe problem is here also present,
although the stovepipes are now in the product/market direction.

The combination of both organization models results in a matrix organization,
where the two types of organizations have different concerns. The line organization
is competence and skill oriented, looking for synergy and re-use opportunities.
The line organization typically has a long term focus, but an introvert perspective.
The business organization is customer oriented and result driven. The business
organization typically has a short term focus, but an extrovert perspective.

Figure 19.25 positions the System Architecture Process in the simplified process
decomposition. The System Architecture Process bridges the Policy and Planning

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 194

business unit 2

product/market oriented

business unit 1

product/market oriented

project 1

project 2

project 3

project 4

Figure 19.23: Business Organization Stovepipe

sa
le

s

cu

st
om

er
 s

up
po

rt

m
ar

ke
tin

g

m
ec

ha
ni

ca
l e

ng
in

ee
rin

g

el

ec
tri

ca
l e

ng
in

ee
rin

g

so

ftw
ar

e
en

gi
ne

er
in

g

pu
rc

ha
si

ng

lo
gi

st
ic

s

m

an
uf

ac
tu

rin
g

project 1

project 2

project 3

project 4

customer oriented

result driven

short term

competence, skill oriented

synergy, re-use driven

long term

extrovert

introvert

do
mina

tin
g s

tov
ep

ipe

or

co
mple

men
tar

y c
ult

ur
es

?

Figure 19.24: Different Concerns

Process and the Product Creation Process. The roadmaps made in the policy and
planning process are the shared understanding of direction of the company:

• It positions the products in the market and within the product portfolio.

• It shows the relations between products, such as re-use of technology.

• It positions the product in the technology life-cycle.

• It relates products and technology to the (long lead) development of people
and process

The System Architecture Process is the process that:

• Gathers input for the Policy and Planning Process

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 195

customer

Customer-Oriented Process

$$

sales
 logistics
 production
 service
presales

Product Creation Process

People, Process, and Technology Management Process

Bu
si

ne
ss

D

riv
er

s

C
us

to
m

er

R
oa

dm
ap

Bu
dg

et
, p

la
n

Pr
od

uc
t

ro
ad

m
ap

Te
ch

no
lo

gy
, P

ro
ce

ss

an
d

Pe
op

le
 ro

ad
m

ap
s

Bu
dg

et
s

Pe
op

le

Te
ch

no
lo

gy

Pr
oc

es
s

N
ee

ds
 a

nd

Fe
ed

ba
ck

Te
ch

ni
ca

l

Pr

od
uc

t

D

oc
um

en
ta

tio
n

Pr
od

uc
t r

el
at

ed

pr
oc

es
se

s

Pe
op

le

Te
ch

no
lo

gy

Pr
oc

es
s

In
fo

rm
at

io
n

O
rd

er

Pr
od

uc
t

$$

Su
pp

or
t

Pr
od

uc
t N

ee
ds

an

d
fe

ed
ba

ck

Co
nt

ex
t,

Vi
sio

n

Policy and

Planning Process

R
ea

lit
y

ch
ec

k

St
ak

eh
old

er

int
er

ac
tio

n
Systems Architecting Process

material

Figure 19.25: Positioning System Architecting

• Brings in technical overview and common sense in the Policy and Planning
Process and the Product Creation Process

• Transfers the intention of the Policy and Planning Process into the Product
Creation Process

• Performs the system level Requirement analysis, Specification, Design and
Verification

• Maintains the consistency, integrity and balance.

systems engineering as discipline

job rotation

stimulate architect exposure

stretch all engineers

cultivate customer & market oriented culture

share and invest in future exploration and vision

Figure 19.26: What Can We Do to Improve the Environment?

Until now we have sketched the organizational and process environment in

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 196

which the system architect operates. A complex environment that is full of human
factors, such as conflicting interests and complementing (or opposing?) characters.
The natural growth direction in this environment is specialization. In some organi-
zations the security or standardization efforts hurt the architecting effectiveness.
For example, we have seen organizations where customer key drivers, cost of
ownership models, and market roadmaps are marketing confidential. The gap as
described in Figure 19.8 is here imposed by the organization.

Figure 19.26 shows what we can do to improve the environment from system
architecting perspective.

Systems engineering as discipline Conventional disciplines are technology oriented,
for instance: mechanical, electrical, and software engineering. However,
systems engineering has grown into a discipline itself. Most organizations
have a severe lack of systems engineers and systems architects. Organiza-
tional ownership for systems engineering as a discipline counter-balances
the natural tendency towards specialization.

Job rotation is one of the means to broaden employees. The cultivation of a
systems attitude requires such a broadening, it is a prerequisite to become
systems engineer

Stimulate architect exposure to help them overcome their introvert nature and to
help them bridge the gap between managers and architects.

stretch all engineers The broadening mentioned before should not be limited to
(potential) system architects. The extremely challenging job of a system
architect becomes somewhat more feasible if the engineers are at least system-
aware.

cultivate customer and market oriented culture Especially in large organizations
the distance from local organizational concerns to customers and market can
become large. System architects suffer tremendously from introvert organi-
zations, because the architect has to connect the customer and market needs
to technological decisions.

share and invest in future exploration and vision Good architects base their work
on a vision. Some investment is needed to create a vision and to keep the
vision up-to-date. A vision becomes much more powerful if it is shared
throughout the organization.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 197

19.7 Discussion and Conclusions

This paper was triggered by the not yet satisfactory results of our newly developed
MOSAD course. Analysis of the critical success factors for system architects
provides us with the following insights:

• Only a limited set of technical educated people have a personality profile
(the nature component) that fits with the architecting role.

• System architecting education for people that do not fit in this architect
profile is, nevertheless, a good investment. System aware designers ease
the job of the system architect.

• Environmental issues, such as organization and processes, have a big impact
on the effectiveness of architects.

• Architects need to be stimulated and supported to break through roadblocks
imposed by the environment.

• To integrate and use multi-disciplinary design techniques a broad frame of
reference is needed. Such a frame of reference helps to position, relate and
weight issues, and to identify risks. Without the ability to quickly determine
value, relevance and criticality, designers drown in the practical infinite space
of problems and solutions.

• A frame of reference grows over time and is the result of experience. This
process can be supported by explicit reflection, for instance triggered by a
mentor or intervision by peers.

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealisation

Environment
 :

stimulate job rotation

expose engineers

recognize multi-disciplinary

Experience
 :

>1000 design patterns

and process patterns

Nature
:

Foster engineers with

architect potential

Education
 :

How to educate, stimulate

depth and breadth?

Figure 19.27: Conclusion

Figure 19.27 summarizes the conclusions:

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 198

Education How do we stimulate and educate breadth and depth synthesis?

Nature People with architecting genes are scarce; We have to foster and stimulate
those people that fit in the architecting profile.

Experience plays a very critical role in cultivating architects. Good architects
have a very rich frame of reference with thousands of patterns.

Environment has a big impact on architect effectiveness. Stimulation of job
rotation helps to enrich the frame of reference. By exposing engineers to
multi-disciplinary aspects the awareness for system issues increases The
environment (management, rewarding system) must recognize the value of
multi-disciplinary design.

19.8 Acknowledgements

Louis Stroucken detected a painful copy-paste error and provided other useful
feedback.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 199

Abbreviations

1471 IEEE standard defining an architecture descriptions

9001 ISO standard defining quality management

9126 ISO standard describing a quality framework

ACR The American College of Radiology

ASML Lithography Company in Veldhoven, the Netherlands

ATAM Architecture Tradeoff Analysis Method by Rick Kazman

BAPO Business Architecture Process Organization

BoM Board of Management

BoM Bill of Material

CAFCR Customer Objectives, Application, Functional, Conceptual, Realization

C/B Contrast/Brightness

CFO Chief Financial Officer

CIS Cardiology Information System

CMO Chief Marketing Officer

COM Component Object Model, by Microsoft

CoO Cost of Ownership

CPU Central Processing Unit

CT Computer Tomography

CTO Chief Technical Officer

DB DataBase

DICOM Digital Imaging and Communications in Medicine

dll dynamic link library

DOR optical disk

DSP Digital Signal Processor

DVD optical disk succeeding the CD, officially no abbreviation, but some people
use it for Digital Video Disc or Digital Versatile Disc

EMC Electro-Magnetic Compatibility

ESA Embedded Systems Architecting course

ESI Embedded Systems Institute

EVO Evolutionary Project Management method by Thomas Gilb

FDA Food and Drug Administration

FFT Fast Fourier Transform

FMEA Failure Mode Effect Analysis

FRS Functional Requirements Specification

fte Full Time Equivalent, unit of planning indicating a full time available person

GE General Electric

gfx graphics

GHz Giga Hertz

GSM Cell phone standard

GST General Systems Theory

HACCP Hazard Analysis And Critical Control Point

HCU Hardcopy Unit

HD High Definition video

HIPAA Health Insurance Portability and Accountability Act

HIS Hospital Information System

HL7 Health Level 7 standard defining meta information for health care

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 201

HQ High Quality audio

HW Hardware

IEEE Institute of Electrical and Electronics Engineers, Inc

INCOSE International Council on Systems Engineering

I/O Input/Output

IQ Image Quality

ISO International Organization for Standardization

IT Information Technology

KOALA a SW component technology used in Philips consumer products

kB kilo Bytes

kloc kilo lines of code

LIS Laboratory Information System

LUT Look Up Table

MB, MByte Mega-Byte

MB, Mbit Mega-bit

MHz Mega Hertz

MLC Material and Labor Cost

MPEG Moving Pictures Experts Group, a compression standard for movies

MPR Multi Planar Reformatting

mrad milliradial

MRI Magnetic Resonance Imaging

MRP Material Resource Planning

NEMA National Electrical Manufacturers Association

nm nanometer, 10−9 meter

OIT Object Instantiation Tracing

OO Object-Oriented

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 202

OS Operating System

OSI Open System Interconnect

PACS Picture Archiving and Communication System

PCP Product Creation Process

PCR Radiography based on Phosphor plate reader

PDA Personal Digital Assistant

PIP Picture In Picture

PMS Philips Medical Systems

PMSnet Philips interoperability protocol, extending the ACR/NEMA or DICOM
protocol

ps Unix command to show process statistics

PVR Personal Video Recorder

QFD Quality Function Deployment

RAM Random Access Memory

RC Remote Control

RF Radio Frequency

RIS Radiology Information System

ROI Return On Investment

RUP Rational Unified Process

SAAM A Method for Analyzing the Properties of Software Architectures by Rick
Kazman

SARCH Course System Architecting at Center of Technical Training (CTT) of
Philips

SD Standard Definition video

SDS System Design Specification]

SE Systems Engineering

SEI Software Engineering Institute

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 203

SNR Signal to Noise Ratio

SPC Statistical Process Control

SPS System Performance Specification

SRS System Requirements Specification

SW Software

SwA Software Architectures group at Philips Research

TPD Technical Product Documentation

TPS Test Performance Specification

TRIZ Theory of Inventive Problem Solving

TXT Teletext

UI User Interface

UNIX widely used Operating System

URF Universal Radiography Fluoroscopy

US Ultra Sound

VAP Visual Architecting Process by Bredemeyer

VDE Verband der Elektrotechnik Elektronik Informationstechnik

VDU Video Display Unit

vmstat Unix command to show (virtual) memory statistics

WWHWWW Why What How Where When Whom

WYSIWYG What You See Is What You Get

X Window management system

xDAS Data Acquisition System, the x is the version or the type

xFEC Front End Controller, the x is the version or the type

ZIFA Zachman Institute for Framework Advancement

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 204

Bibliography

[1] Dana Bredemeyer and Ruth Malan. Resources for software architects.
http://www.bredemeyer.com/, 1999.

[2] Dana Bredemeyer and Ruth Malan. Role of the software architect. http:
//www.bredemeyer.com/pdf_files/role.pdf, 1999.

[3] Samidh Chakrabarti and Aaron Strauss. Carnival booth: An algorithm
for defeating the computer-assisted passenger screening system.
http://swissnet.ai.mit.edu/6805/student-papers/
spring02-papers/caps.htm, 2002. Shows that security systems
based on secret designs are more vulnerable and less secure.

[4] Gerardo Daalderop, Ann Ouvry, Luc Koch, Peter Jaspers, Jürgen Müller, and
Gerrit Muller. PACS assessment final report, version 1.0. confidential internal
report XLB050-96037, September 1996.

[5] Remco M. Dijkman, Luï¿1
2s Ferreira Pires, and Stef M.M. Joosten.

Calculating with concepts: a technique for the development of business
process support. In A. Evans, R. France, A. Moreira, and B. Rumpe,
editors, Lecture Notes in Informatics, volume 7, pages 87–98. GI-edition,
2001. http://www.google.com/url?sa=U&start=3&q=http:
//www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=
7764 Proceedings of the UML 2001 Workshop on Practical UML-Based
Rigorous Development Methods.

[6] EventHelix.com. Publish-subscribe design patterns. http:
//www.eventhelix.com/RealtimeMantra/Patterns/
publish_subscribe_patterns.htm, 2000.

[7] Derek K. Hitchins. Putting systems to work. http://www.hitchins.
co.uk/, 1992. Originally published by John Wiley and Sons, Chichester,
UK, in 1992.

[8] Carnegie Mellon Software Engineering Institute. How do you define software
architecture? http://www.sei.cmu.edu/architecture/

http://www.bredemeyer.com/
http://www.bredemeyer.com/pdf_files/role.pdf
http://www.bredemeyer.com/pdf_files/role.pdf
http://swissnet.ai.mit.edu/6805/student-papers/spring02-papers/caps.htm
http://swissnet.ai.mit.edu/6805/student-papers/spring02-papers/caps.htm
http://www.google.com/url?sa=U&start=3&q=http://www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764
http://www.google.com/url?sa=U&start=3&q=http://www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764
http://www.google.com/url?sa=U&start=3&q=http://www.ub.utwente.nl/webdocs/ctit/1/00000068.pdf&e=7764
http://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
http://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
http://www.hitchins.co.uk/
http://www.hitchins.co.uk/
http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html

definitions.html, 2002. large collection of definitions of software
architecture.

[9] Charles C. Mann. Homeland insecurity. The Atlantic Monthly, pages 81–
102, September 2002. Volume 290, No. 2T; Very nice interview with Bruce
Schneier about security and the human factor.

[10] James N. Martin. Systems Engineering Guidebook. CRC Press, Boca Raton,
Florida, 1996.

[11] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[12] Gerrit Muller. Process decomposition of a business. http://www.
gaudisite.nl/ProcessDecompositionOfBusinessPaper.
pdf, 2000.

[13] Gerrit Muller. The role and task of the system architect. http://www.
gaudisite.nl/RoleSystemArchitectPaper.pdf, 2000.

[14] Gerrit Muller. Function profiles; the sheep with 7 legs. http://www.
gaudisite.nl/FunctionProfilesPaper.pdf, 2001.

[15] Gerrit Muller. Communicating via CAFCR; illustrated by security example.
http://www.gaudisite.nl/CommunicatingViaCAFCRPaper.
pdf, 2002.

[16] Henk Obbink, Jürgen Müller, Pierre America, and Rob van Ommering.
COPA: A component-oriented platform architecting method for
families of software-intensive electronic products. http://www.
hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf, 2000.

[17] D.L. Parnas and P.C. Clements. A rational design process: How and why to
fake it. IEEE Transactions on Software Engineering, SE-12., No. 2:251–257,
February 1986.

[18] William H. Press, William T. Vetterling, Saul A. Teulosky, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, Cambridge, England, 1992. Simulated
annealing methods page 444 and further.

[19] Eberhardt Rechtin and Mark W. Maier. The Art of Systems Architecting. CRC
Press, Boca Raton, Florida, 1997.

[20] Wikipedia. Rational unified process (rup). http://en.wikipedia.
org/wiki/Rational_Unified_Process, 2006.

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 206

http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/RoleSystemArchitectPaper.pdf
http://www.gaudisite.nl/RoleSystemArchitectPaper.pdf
http://www.gaudisite.nl/FunctionProfilesPaper.pdf
http://www.gaudisite.nl/FunctionProfilesPaper.pdf
http://www.gaudisite.nl/CommunicatingViaCAFCRPaper.pdf
http://www.gaudisite.nl/CommunicatingViaCAFCRPaper.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process

History
Version: 3.4, date: July 3, 2007 changed by: Gerrit Muller

• added Use cases Chapter
Version: 3.3, date: June 8, 2007 changed by: Gerrit Muller

• Part IV: changed into experiences with teaching architecural reasoning
Version: 3.2, date: December 15, 2004 changed by: Gerrit Muller

• added Part IV; background reading
Version: 3.1, date: September 17, 2003 changed by: Gerrit Muller

• added Appendix "Abbreviations"
Version: 3.0, date: July 28, 2003 changed by: Gerrit Muller

• changed the book title in ”Architectural reasoning explained”
• refactored the book in a PhD thesis and a more explaining book
• removed the scientific justification and explanation chapters
• performed overdue spell checking

Version: 2.0, date: July 15, 2003 changed by: Gerrit Muller
• added ”The future of architecting research”
• changed status in preliminary draft

Version: 1.7, date: July 11, 2003 changed by: Gerrit Muller
• added ”Reflection on research method to study architecting methods”

Version: 1.6, date: July 9, 2003 changed by: Gerrit Muller
• added ”Balancing genericity and specificity”

Version: 1.5, date: July 7, 2003 changed by: Gerrit Muller
• added ”Evaluation of architectural reasoning by diverse sources”

Version: 1.4, date: June 12, 2003 changed by: Gerrit Muller
• added ”Evaluation of architectural reasoning”

Version: 1.3, date: May 21, 2003 changed by: Gerrit Muller
• added ”Overview of architecting method based on CAFCR and architectural reasoning”
• updated the introduction
• refactored "Architectural reasoning" chapters:

• moved "problem solving approach" to "basic working methods of an architect"

• split case chapter in "chronological description" and "thread of reasoning"

Version: 1.2, date: April 9, 2003 changed by: Gerrit Muller
• added ”Story telling in Medical Imaging”

Version: 1.1, date: March 26, 2003 changed by: Gerrit Muller
• moved ”Story how to” before”Threads of Reasoning”

Version: 1.0, date: March 20, 2003 changed by: Gerrit Muller
• updated figure with book structure

Version: 0.9, date: February 17, 2003 changed by: Gerrit Muller
• added ”Medical Imaging workstation: CAF views”

Version: 0.8, date: February 6, 2003 changed by: Gerrit Muller
• updated figure 1 with the structure of the book
• added ”Threads of reasoning in the medical imaging case”

Version: 0.7, date: January 28, 2003 changed by: Gerrit Muller
• added ”Conceptual and Realization View of Medical Imaging workstation”

Version: 0.6, date: January 21, 2003 changed by: Gerrit Muller
• added ”Introduction to Medical Imaging case study”

Version: 0.5, date: January 17, 2003 changed by: Gerrit Muller
• added ”Positioning Architecting Methods in the business”

Version: 0.4, date: January 15, 2003 changed by: Gerrit Muller
• added ”Research method to study architecting”

Version: 0.3, date: November 11, 2002 changed by: Gerrit Muller
• added ”Criterions for architecting methods”

Version: 0.2, date: July 3, 2002 changed by: Gerrit Muller
• recommended literature and resources to introduction

Version: 0.1, date: June 20, 2002 changed by: Gerrit Muller
• Added chapter ”Basic working methods architect”
• Added chapter ”Quality needles”
• removed section ”Qualities” from chapter ”Threads of reasoning”
• Added chapter ”Realization View”

Version: 0, date: March 28, 2002 changed by: Gerrit Muller
• Created very preliminary bookstructure, no changelog yet

Gerrit Muller
Architectural Reasoning Explained
July 24, 2014 version: 1.2

Buskerud University College

page: 207

	Introduction
	I Introduction
	What is Systems Architecting in an Industrial Context?
	Introduction
	Description of the Business Context
	Internal Stakeholders
	Acknowledgements

	Overview of CAFCR and Threads of Reasoning
	Introduction
	Architecting Method Overview
	The CAFCR Model

	Introduction to Medical Imaging Case Study
	Market and Application
	Technology

	II Theory of architectural reasoning
	Basic Working Methods of a System Architect
	Introduction
	Viewpoint hopping
	Decomposition and integration
	Quantification
	Coping with uncertainty
	Modelling
	WWHWWW questions
	Decision Making Approach in Specification and Design
	Acknowledgements

	The customer objectives view
	Introduction
	Key drivers
	Value chain and business models
	Suppliers

	The application view
	Introduction
	Customer stakeholders and concerns
	Context diagram
	Entity relationship model
	Dynamic models

	The functional view
	Introduction
	Case descriptions
	Commercial, service and goods flow decomposition
	Function and feature specifications
	Performance
	Information Model
	Standards
	Summary
	Acknowledgements

	The conceptual view
	Introduction
	Construction decomposition
	Functional decomposition
	Designing with multiple decompositions
	Internal Information Model
	Execution architecture
	Performance
	Safety, Reliability and Security concepts
	Start up and shutdown
	Work breakdown
	Acknowledgements

	The realization view
	Budgets
	Logarithmic views
	Micro Benchmarking
	Performance evaluation
	Assessment of added value
	Safety, Reliability and Security Analysis
	Acknowledgements

	Qualities as Integrating Needles
	Introduction
	Security as Example of a Quality Needle
	Qualities Checklist
	Summary

	Story How To
	Introduction
	How to Create a Story?
	How to Use a Story?
	Criteria
	Example Story
	Acknowledgements

	Use Case How To
	Introduction
	Example Personal Video Recorder
	The use case technique
	Example URF examination
	Summary

	Threads of Reasoning
	Introduction
	Overview of Reasoning Approach
	Reasoning
	Outline of the complete method
	Summary

	III Medical Imaging Case description
	Medical Imaging Workstation: CAF Views
	Introduction
	Radiology Context
	Typical Case
	Key Driver Graph
	Functionality
	Interoperability via Information Model
	Conclusion

	Medical Imaging Workstation: CR Views
	Introduction
	Image Quality and Presentation Pipeline
	Software Specific Views
	Memory Management
	CPU Usage
	Measurement Tools
	Conclusion

	Story Telling in Medical Imaging
	Introduction
	The Sales Story
	The Radiologist at Work
	Towards Design
	Conclusion

	Medical Imaging in Chronological Order
	Project Context
	Introduction
	Development of Easyvision RF
	Performance Problem
	Safety
	Summary

	Threads of Reasoning in the Medical Imaging Case
	Introduction
	Example Thread
	Exploration of Problems and Solutions
	Conclusion

	IV Experiences with Teaching Architecural Reasoning
	Decomposing the Architect; What are Critical Success Factors?
	Introduction
	What is an Architect?
	Education
	Nature
	Experience
	Environment
	Discussion and Conclusions
	Acknowledgements

	Abbreviations

