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ABSTRACT
We address the problem of automatically detecting partic-
ipant’s influence levels in meetings. The impact and social
psychological background are discussed. The more influen-
tial a participant is, the more he or she influences the out-
come of a meeting. Experiments on 40 meetings show that
application of statistical (both dynamic and static) models
while using simply obtainable features results in a best pre-
diction performance of 70.59% when using a static model, a
balanced training set, and three discrete classes: high, nor-
mal and low. Application of the detected levels are shown
in various ways i.e. in a virtual meeting environment as well
as in a meeting browser system.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
learning

General Terms
Experimentation, Performance

Keywords
Influence detection, Dominance detection, Machine learn-
ing, Small group research

1. INTRODUCTION
In any initial gathering of previously unacquainted indi-

viduals who interact in the pursuit of the solution to a prob-
lem they face together, observable regularities occur. One
of these is that a dominance order, or order of influence is
established [16]. This order plays several important roles.
It is known, for instance, that participants correlate the po-
sition in the order of the group members with the degree
of influence each individual has over the group’s choice of a
solution, and with specific attributions of superior ability.
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Furthermore, intelligence and judgements of high-quality
contributions are generally credited to group members who
rank high [1, 9]. This paper investigates if it is possible to
automatically extract influence rankings that emerge from
small-group meetings through the use of a set of low- and
mid-level speech-related features and statistical models for
recognition and discovery. Based on a large corpus of small-
group meetings, our investigation includes (1) an extensive
overview on relevant literature, pointing out a number of
factors related to human judgement of influence, and (2) a
study on the quality of features (acoustic and speech), and
models (static and dynamic) for the automatic recognition
and discovery tasks. Our work compares and significantly
extends the findings of our previous work [24, 28]. The pa-
per also presents the application of the resulting models in
a meeting browser as well as in a virtual meeting environ-
ment, two applications that have clear value in the context
of multi-modal interfaces.

The paper is organized as follows: Section 2.1 starts by
discussing related work, both in psychology and computer
science, on the role of influential and dominant persons in
meetings and the existing computational approaches for au-
tomatic analysis, respectively. Section 3 then elaborates on
the meeting data set that was collected and annotated as
part of our work. Feature definition and extraction, and the
procedure for generating class labels for evaluation of our
models are discussed in Section 4 and Section 5. The ma-
chine learning techniques that we applied are discussed in
Section 6. Section 7 shows the results we obtained. Two ap-
plications that we designed that apply the developed models
are shown in Section 8. We discuss our results and discuss
future plans in Section 9, and end with conclusions in Sec-
tion 10.

2. RELATED WORK

2.1 Influence and dominance in meetings
Social psychology has studied the concepts of influence

and dominance arising from group discussions for several
years. According to the Status Characteristics and Expecta-
tion states theory [5], if members of a group are either known
to be differentiated with respect to one or more identifiers of
general social status (occupation, age, race, or gender), or
observable as such, the group’s measurable influence rank-
ing will be correlated with variations in social status. This
theory assumes that people, during the initial formation of
these rankings, as well as in the course of seeking problem
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solutions, employ a seemingly rational strategy based upon
beliefs about how abilities are distributed in society. The
solutions offered by those of higher social status, are more
likely to be correct. An alternative view is presented by the
so-called Two Process Theory [20]. This theory identifies
demeanor as the variable of interest and assumes that vari-
ations in demeanor are correlated with variations in relative
social status and influence. Variations in assertiveness and
other components of demeanor explain attainment of posi-
tions in the eventual rankings. Other Social Psychologists
found that the unequal distribution of amounts of verbal
participation, the directionality of initiation of speech ex-
changes and the rates of addressing the group as a whole
also play a part [2, 10].

2.2 Computational approaches
Although the literature on modelling and understanding

the concepts of dominance and influence in multi-party in-
teraction is abundant, very few attempts to automatically
estimate such quantities in real discussions have been made
so far [4, 24, 28]. Regarding influence, existing approaches
assume that (1) this high-level concept can potentially be de-
duced from low and mid-level signal observations [23], and
(2) such observations present regularities (patterns) that
models for recognition and discovery are able to extract.
Basu et al. [4] described an approach for automatic discov-
ery of influence, in a multi-sensor lounge room where peo-
ple played interactive debating games, using the influence
model. This model is a Dynamic Bayesian Network (DBN)
which regards group interactions as a group of Markov chains,
each of which influences the others’ state transitions. Al-
though this model is a tractable option, it has the limitation
that it only models influence between pairs of players, and
does not explicitly model the group as such.

To address this issue, Zhang et al. recently proposed a
two-level influence model [28], a DBN with two levels corre-
sponding to players and team. The player level represents
the actions of individual players. The team level represents
group-level actions. The team state at the current time-step
influences the players’ states at the next time step. In turn,
the team state at the current time-step is also influenced
by all the players’ states at the current time-step. The ex-
plicit hierarchy in the model allows for the estimation of
the influence of each of the players on the team state, and
the distribution of participant-to-team influence is automat-
ically learned from data in an unsupervised fashion.

In another work, Rienks et al. [24] recently proposed a
supervised learning approach. The method was based on
the formulation of the problem as a three-class classification
task in which, through manually annotated data, meeting
participants are labeled as having high, normal, or low dom-
inance, using a Support Vector Machine (SVM). A number
of features related to speaker-turns and their content were
extracted for each participant from speaker-turn segmen-
tations, speech transcriptions, and addressing labels, all of
which were manually produced.

Our present work extends earlier works in several ways.
First, we systematically compare a number of supervised
(resp. unsupervised) machine learning methods to recog-
nize (resp. discover) dominance rankings, that include and
supersede the methods by [24] and [28]. Second, we in-
vestigate a number of common features derived from audio
and speech that need to be adapted for models that handle

static or dynamic observations. Third, a larger and more
challenging meeting corpus is used as the basis for experi-
ments. Finally, we describe two specific applications of the
investigated models, as components of a meeting browser
and a virtual meeting room.

3. DATA COLLECTION: MEETINGS AND
QUESTIONNAIRES

It is clear that if we ever want to deduce the influence
ranking automatically, we need to have a collection of small
group meetings from which we have these rankings, as well
as access to as most of the signals from that meeting as possi-
ble in order to be able to assess the expected observable reg-
ularities. All meetings used were project scenario meetings
from the Augmented Multi-Party Interaction (AMI) project,
which were especially designed to achieve as-close-to natural
interaction as possible between the meeting participants in
a controlled environment.

For the experiments described in this paper we confined
ourselves to the meetings recorded at TNO-Soesterberg in
the Netherlands. containing 40 meetings of 10 different de-
sign teams with an average duration of 30 minutes each.
For all the meetings, questionnaires have been filled in by
the participants on which a number of questions had to be
completed. One of the questions asked participants to rank
all of the meetings participants, including themselves, from
most to least influential by assigning them unique nomi-
nal values ranging from one (most influential) to four (least
influential). Participants were not allowed to rank people
equivalently. The resulting permutations of the numbers
one, two, three and four, were used for quantization into
three classes as described in section 5.

Figure 1: A view from an overview camera on a
typical meeting recorded at TNO-Soesterberg.

Figure 1 shows the view from one of the overview cam-
eras for a typical meeting. Scenarios were used for these
meetings, which described design meetings where partici-
pants were asked to play different roles: a project manager,
a marketing expert, a user interface designer, and an indus-
trial designer. During a period of four meetings, a complete
design of a remote control had to be realized.
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4. EXTRACTION OF FEATURES
The features we use include a selection of the features de-

scribed by Rienks et al. [24], as well as some newly designed
ones. The used features relate to the demeanor of the par-
ticipants as well as to the status of the participants. They
can be grouped into three categories: individual speech be-
havior, interaction behavior, and semantic-based features.
The first group of features contains features dealing with
individual speech behavior and comprises the following:

• The number of turns*. A turn is defined by a com-
plete utterance without silences longer than 1.5 s that
contains at least one word.

• The number of words per turn.

• The duration per turn measured in milliseconds.

The second category of features reveals aspects of the in-
teraction going on in the meeting:

• The number of floorgrabs*. A floorgrab is defined
each time a participant started speaking after a silence
greater than 1.5 seconds.

• The number of successful interruptions*. We
defined a successful interruption as was done in [17]. A
successful interruption is counted for speaker A, when
speaker A starts talking while another speaker B is
talking and speaker B finishes his turn before speaker
A does. To compensate for backchannel noise, the turn
from speaker A had to be at least three words long.

• The number of times a person is interrupted
by someone else*. We count a speaker A, as being
interrupted, when another speaker B starts speaking
while speaker A has not finished and speaker B finishes
his turn at least three words after speaker A.

The third category contains the features related to the
meeting semantics, such as the role of the participants, and
the topics of the meetings:

• The predefined role of the participant. As al-
ready described in Section 3, there are four types of
roles assigned to the meeting participants: Project
Manager, Industrial Designer, User Interface Designer
and Marketing Expert.

• Topic initialization*. For this feature we calculated
the number of topics initiated by each of the partici-
pants, that were resumed by another participant.

All these features were obtained from the manual tran-
scriptions of the meetings. These transcriptions were all
made according to the guidelines defined by Moore et al.
[18], and contained time information, which made the ex-
traction of the feature values for each of the meetings a
relatively straightforward task. The predefined roles were
obtained from the meeting metadata, and the topic steer-
ing feature was obtained using probabilistic latent seman-
tic analysis (PLSA) [12]. PLSA is a language model that
projects documents in the high-dimensional bag-of-words
space into a topic-based space of lower dimension. Each
dimension in this new space represents a “topic”, and each
document is represented as a mixture of topics. In our case,

Figure 2: Illustration of the sequential features
which serve as input to the dynamic model: (a) a
sequence of binary features. For example, one indi-
cates speaking, and zero indicates silent. (b) A se-
quence of number of words (or utterance duration)
features, where a, b, c indicate the number of words
(or the speaking duration) in one utterance sepa-
rately. We repeat the same value within the same
utterance. The value for the silence segments was
set to zero.

a document corresponds to one speech utterance. Therefore,
the topic boundary is equivalent to the utterance boundary.
PLSA is thus used as a feature extractor that could po-
tentially capture “topic turns” in meetings. We repeat the
PLSA aspect within the same utterance. The topic for the
silence segments was set to zero.

The described features need to be adapted to be used as
observations by the static and dynamic models described in
Section 6. For the static model, most of the features have
been normalized (indicated by the ‘*’) in order to make them
inter-meeting and inter-person comparable. This was done
in line with the work by Rienks et al. [24]. The fraction

or share F
′
Pn of a feature value for a given person n was

calculated given all the values for that feature in a meeting,

by defining the normalized feature value (F
′
Pn) = FP n∑4

i=1 FP i
.

For the dynamic model, the features are manipulated as
follows. For the first feature, speaking turn, the feature se-
quence consists of binary values, one if the person speaks
and zero otherwise. We apply a similar treatment to the
floorgrab, interruption, and interrupted features. This is il-
lustrated in Figure 2 (a). For the number of words feature,
we repeat the value within the same utterance. The number
of words for the silence segments was set to zero (Figure
2(b)). Note that this feature representation is effectively
using non-causal information. The turn duration feature is
treated similarly. Finally, the role feature was not used for
the dynamic model, as its value is constant for each partic-
ipant over the entire meeting.

5. EXTRACTION OF CLASS LABELS
In our work, to be able to evaluate influence rankings, we

turn the problem into a multi-class classification problem,
where we need to assign class labels to each of the meeting
participants. To obtain the class label ground-truth, both
for evaluation and for training of supervised methods, we
used the rankings of the individual participants provided
by the questionnaires. This is in contrast to our earlier
work, where we used external observers either to rank all
the meeting participants from most to least dominant [24],
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or to assign continuous influence values to participants [28].
As we had four participants, this resulted in four rankings
for the same meeting. On these rankings, a binning algo-
rithm was applied that resulted in three discrete class labels:
’High’, ’Normal’, and ’Low’. This was done by summing up
and then normalizing the rank scores for each of the partici-
pants. The total score for each participant was then binned
depending on the score of the participant in relation to the
score of the others. (e.g. each participant was assigned four
times either a 1,2,3 or 4 as rank number, resulting in a max-
imum score of 16 points out of a total of 40). The normal-
ized value was subsequently binned using the labels ‘High’

(F
′
Pn > 30%), ‘Normal’ (20% < F

′
Pn < 30%), and ‘Low’

(F
′
Pn < 20%). As a consequence, apart from the fact that

features are now comparable between meetings, the feature
values that originally had ‘approximately’ the same value
now also end up in the same bin. The resulting data set has
a total of 160 labels (40 meetings times four participants)
resulting in 34 observations for ’Low’, 91 for ’Normal’, and
35 for ’High’.

6. AUTOMATIC INFLUENCE DETECTION

6.1 The dynamic model
We investigate the unsupervised model recently proposed

by Zhang et al. [28]. The team-player influence model is
a dynamic Bayesian network (DBN) with a two-level struc-
ture: the player level and the team level (Figure 3). The
player level represents the actions of individual players, evolv-
ing based on their own Markovian dynamics (Figure 3 (a)).
The team level represents group-level actions (the action be-
longs to the team as a whole, not to a particular player). In
Figure 3 (b), the arrows up (from players to team) repre-
sent the influence of the individual actions on the group ac-
tions, and the arrows down (from team to players) represent
the influence of the group actions on the individual actions.
The model considers probability distributions over sets of
random variables {S, O}, where S is a set of state variables
that represents individual and team actions, and O is set
of observation variables. The model is a directed graphical
model represented as G = (V, E), where V = {S, O} is a set
of variables, and E is a set of oriented edges. A directed
graphical model is a family of probability distribution that
factorizes according to an underlying graph [14]. Following
[28], let Oi and Si denote the observation and state of the
ith player respectively, and SG denotes the team state. For
N players, and observation sequences of identical length T ,
according to Figure 3, the joint distribution is given by

P (S, O) =

N∏
i=1

P (Si
1) ·

T∏
t=1

N∏
i=1

P (Oi
t|Si

t) ·
T∏

t=1

P (SG
t |S1

t · · ·SN
t )

·
T∏

t=2

N∏
i=1

P (Si
t |Si

t−1, S
G
t−1). (1)

Regarding the player level, the actions of each individ-
ual are modelled with a first-order Markov model (Figure
3 (a)) with one observation variable Oi and one state vari-
able Si. Furthermore, to capture the dynamics of all the
players interacting as a team, a hidden variable SG (team
state) is added to model the group-level actions. Unlike
the individual player states that have their own Markovian
dynamics, the team state is not directly influenced by its

previous state. SG could be seen as the aggregate behaviors
of the individuals, yet provides a useful level of description
beyond individual actions. There are two kinds of relation-
ships between the team and players:

1. The team state at time t influences the players’ states at
the next time (down arrow in Figure 3 (b)). In other words,
the state of the ith player at time t+1 depends on its previ-
ous state as well as on the team state, i.e., P (Si

t+1|Si
t , S

G
t ).

2. The team state at time t is influenced by all the
players’ states at the current time (up arrow in Figure 3
(b)), resulting in a conditional state transition distribution
P (SG

t |S1
t · · ·SN

t ).
An extra hidden variable Q is added in the model to

switch parents for SG. The idea of switching parent (also
called Bayesian multi-nets in [6]) is as follows: a variable
,SG in this case, has a set of parents {Q, S1 · · ·SN} (Figure
3(c)). Q is the switching parent that determines which of
the other parents to use, conditioned on the current value of
the switching parent. {S1 · · ·SN} are the conditional par-
ents. In Figure 3(c), Q switches the parents of SG which
corresponds to

P (SG
t |S1

t · · ·SN
t ) =

N∑
i=1

P (SG
t , Q = i|S1

t · · ·SN
t ) (2)

=

N∑
i=1

P (Q = i|S1
t · · ·SN

t )P (SG
t |Si

t · · ·SN
t , Q = i) (3)

=

N∑
i=1

P (Q = i)P (SG
t |Si

t) =

N∑
i=1

αiP (SG
t |Si

t). (4)

From Equation 3 to Equation 4, two assumptions are
made: (i) Q is conditionally independent of {S1 · · ·SN};
and (ii) when Q = i, SG

t only depends on Si
t . The dis-

tribution over the switching-parent variable P (Q) describes
how much influence or contribution the states of the player
variables have on the state of the team variable. The term
αi = P (Q = i) is referred to as the influence value of the ith

player. Obviously,
∑N

i=1 αi = 1 (the sum of contributions of
all players equals 1). In multi-party meetings, αi represents
the influence of each participant.

6.2 The static models
The static models are applied for post-meeting processing,

in contrast to the dynamic model. This implies that they use
features whose values are summed and normalized when the
whole meeting is over, and that the models are not able to
‘track’ the influence online. All static models are supervised
models that build a model from training data (feature values
and class labels). The task of the supervised learner is to
predict the class value for any valid combination of inputs
after having seen a number of training examples. In total,
four types of static classifiers were used:

• Support Vector Machines (SVM) are used for clas-
sification and regression. Their common factor is the
use of a technique known as the ‘kernel trick’ to apply
linear classification techniques to non-linear classifica-
tion problems. Multi-class problems are solved using
pairwise classification [7].

• Multi Layered Perceptrons (MLP), or feedforward
neural networks, are a special kind of neural network,
consisting of multiple layers of perceptrons. A percep-
tron is a simple binary classifier which maps its inputs
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Figure 3: The team-player influence model (reproduced from [26]).(a) Markov Model for individual player.
(b) Two-level influence model (for simplicity, we omit the observation variables of individual Markov chains,
and the switching parent variable Q). (c) Switching parents. Q is called a switching parent of SG, and
{S1 · · ·SN} are conditional parents of SG. When Q = i, Si is the only parent of SG.

xi or x (a real-valued vector) to an output value f(x)
[26].

• The C4.5 Decision Tree Learner (C4.5). A deci-
sion tree consists of non-terminal nodes and terminal
nodes. The non-terminal nodes represent tests on one
or more attributes of the data. The terminal nodes
represent the outcome: the decision of the classifier.
At each non-terminal node the classifier will test an
attribute of the input instance and push it on a branch
depending on the outcome of the test. C4.5 is an al-
gorithm that creates decision trees [21].

• NaiveBayes Classifier (NB). This is a probabilistic
classifier that uses Bayesian Formulations using prior
probabilities to assign class labels, assuming indepen-
dent attributes [13].

7. RESULTS
This section contains the results for both the static and

the dynamic model. As we modeled the problem as a classi-
fication problem we will mention the percentage of the cor-
rectly classified instances and a confusion matrix for both
models.

7.1 Results for the dynamic model
We train the dynamic model using all (except the ‘role’

feature) features individually. All features were extracted at
5 frames per second. For example, for a 5-minute meeting,
the total number of feature frames is 1500. Since the learned
influence value αi using the dynamic model is a real value,
ranging from 0 to 1, to compare it to the manually labeled
influence rank (a discrete value out of the three labels {1, 2,
3}), we transform αi into a discrete label using two thresh-
olds: th1, th2 based on the following equation. The values
of th1 and th2 range from 0.1 to 0.5 under the constraint
that th1 < th2,

labeli =

 3 : αi < th1

2 : th2 > αi > th1

1 : αi > th2

For all experiments, we used ten-fold cross-validation. We
first divided the data into ten subsets each of which con-
tained four meetings. We then tested the models ten times
with different parameter configurations (i.e. th1, th2), each
time leaving out one of the subsets to compute performance.

Method Accuracy (%)
Number of turns 56.25 (4.23)
N.o.w. per turn 57.50 (5.27)
Turn duration 61.25 (4.84)

Individual Floorgrabs 48.75 (4.77)
Features Succ. interr. 48.13 (4.16)

Is Interrupted 45.00 (3.44)
Topic Init. 53.50 (4.54)

Fusion average 54.38 (3.94)

Table 1: Results on the dynamic model using differ-
ent features (standard deviation in brackets).

High Normal Low ← Classified as
23 10 1 High
26 50 15 Normal
9 9 17 Low

Table 2: One example confusion matrix of the rec-
ognized influence labels.

We reported the mean accuracy and the standard deviation.
The results are summarized in Table 1. For feature fusion,
we use a naive averaging method: α = 1

K

∑K
i=1 αi, where

K is the the number of features. We also report the fusion
result in Table 1.

7.2 Results for the static models
We created two versions of feature values, one version

where all the feature values were normalized, and one where
all the normalized feature values were normalized and binned
dependent on their share in relation to the other partici-
pants. This binning was performed using the same thresh-
olds as described in section 5. Ten fold cross-validation was
in every case applied while determining the results. The
performance on the original (unbalanced) data are shown in
Table 3.

It appears that the static models are sensitive to unbal-
anced training. Given a baseline of 57% (91 out of the 160
observations were labelled ’Normal’), the results are far from
good.

Although the results on the original case are more repre-
sentative for the data as it naturally is, a set of 100 different
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Unbalanced
Classifier Normalized (%) Normalized/Binned (%)

C45 46.25 57.50
Naive Bayes 66.25 61.25

MLP 55.00 53.13
SVM 61.25 60.00

Table 3: Results of the static model on the original
unbalanced data sets.

balanced versions was also created, each containing 34 ob-
servations for all of the class labels (102 in total). More than
one balanced version was created to preserve the distribution
of the feature values. Ten-fold cross validation was applied
on all the 100 data sets. The performance on the balanced
provides an indication of the legitimacy of our approach as
will be discussed. Table 4 shows the averaged performances
including standard deviations for all balanced data sets.

Balanced
Classifier Normalized (%) Normalized/Binned (%)

C45 52.18 (5.14) 54.93 (5.13)
Naive Bayes 59.65 (2.98) 60.16 (3.40)

MLP 54.21 (4.30) 50.82 (4.36)
SVM 58.78 (3.64) 58.45 (3.85)

Table 4: Results of the static models on balanced
data sets (standard deviation in brackets).

As we now have a baseline of 33% due to our balanced
training sets, it appears that the results as shown in Table 4
are much better than those in Table 3. To make the results
more comparable to the results produced by the dynamic
model we took the two balanced (normalized and binned)
sets that produced the best and the worst result and com-
puted the performance for each of the classifiers when only
using the individual features. The results are summarized
in Table 5.

Best Perf. (%) Worst Perf. (%)
Number of turns 57.84 (NB) 46.08 (SVM)
N.o.w. per turn 50.98 (MLP) 36.27 (NB)
Turn duration 56.86 (NB) 37.25 (SVM)
Floorgrabs 31.37 (SVM) 20.59 (NB)
Succ. interr. 50.00 (C4.5) 46.16 (SVM)
Is Interrupted 42.16 (C4.5) 30.39 (NB)
Role 46.08 (MLP) 45.01 (C4.5)
Topic Change 57.84 (NB) 51.96 (MLP)
All features 70.59(NB) 42.16 (C45)

Table 5: Performance of individual features for the
balanced sets (normalized and binned) with the best
(70.59%) and worst performance (42.16%) on all fea-
tures (model in brackets).

From Table 5 it follows that, in particular, the feature
‘Floorgrabs’ by itself is unable to outperform the naive base-
line of 33%. The ‘Topic Change’-feature on the other hand
seems to be quite robust and useful. Post hoc feature sub-
set evaluation revealed a best subset containing the fea-

tures ‘Number of turns’, ‘Turn Duration’, ‘Role’ and ‘Topic
Change’. The method we applied searches for features which
highly correlate to the class-labels and have a low inter fea-
ture correlation [11]. This way the features that complement
each other are preserved whereas features with a discrimina-
tive power similar to other features are being removed. Us-
ing only the resulting subset, a best performance of 69.61%
was achieved using NB (not shown in Table 5). We conclude
the results on the static model by presenting the confusion
matrix for our best result (70.59%), which used all features,
in Table 6.

High Normal Low ← Classified as
26 8 0 High
3 23 8 Normal
4 7 23 Low

Table 6: Confusion Matrix on our best run
(=70.59%) using Naive Bayes.

From the confusion matrix it follows that ‘Low’ influence
persons are sometimes even labeled as ‘High’, whereas ‘High’
influence persons are never labeled as ‘Low’ influence.

7.3 Interpretation of the results
After looking at the outcomes of the dynamic model (Ta-

ble 1) and comparing it to those for the static model (Table
5), the following issues are worth commenting:

1. It appears that the best combined feature performance
of the static model (70.59%), outperforms the best perfor-
mance of the dynamic model (54.38%). One reason might
be that the dynamic model is a generative model, whereas
the static is a discriminative model trained in a supervised
manner.

2. The best individual feature for the dynamic model
turns out to be the turn duration, while the best individual
features for the static model seem to be the number of turns
and the topic initialization. This indicates that the best fea-
ture using dynamic model is not necessarily the best feature
using static models.

3. For each individual feature, it is hard to say which
model is better. For example, the performance of the number
of turns feature whilst using the dynamic model is better
than using SVM, but worse than using NB.

4. The best subset, containing just four out of the eight
examined features, resulted for the static model in a nearly
equal performance to that for the complete feature set. With
respect to the amount of effort one wants to invest on feature
extraction, this is certainly something to take into account.

5. With respect to the significance of our results, we would
like to mention that although our sample size is considerably
larger than [24], it is still relatively small when compared to
a typical classification problem.

On a general level differences between the dynamic and
the static model lie in the fact that the static model is com-
paratively quite fast, is able to combine several features and
requires feature values calculated over the whole meeting.
The dynamic model, on the other hand, can deal with dy-
namic feature value updates, but cannot output influence
of each meeting participant at any moment of the meeting,
while the static model could output such values with some
heuristics [24].

262



8. APPLICATIONS
We now present two applications of the developed mod-

els. A first implementation has been created for the JFerret
meeting browser, developed by Wellner et al. [27], which en-
ables people to access meeting information. Here the influ-
ence levels are shown over the meeting depicted by a graph
(see Figure 4). The application allows for ‘live’ tracking of
the influence levels

Live tracking of the influence levels was made possible in
a way similar to [24]. Occurrences for each of the features,
such as interruptions, are observed and further processed
by the model responsible for producing the final value. The
plug-in is extended with a feature that allows for manually
setting a time period wherein the observations are used for
computation of the influence value. This provides the op-
portunity to view the output either as a set of cumulatively
increasing lines (whole meeting period), or as a set of lines
revealing more about the change of the output over time,
such as a five-minute time period as shown in Figure 4. One
could envision that, one day, if the browser is used by man-
agers interested in the performance of their employees, the
influence levels plug-in could provide valuable information.
If just and valid arguments were put forward on one hand
and the person was not influential in the given setting on the
other hand, this might also be a point to address. Also as
a preparation task, looking over the behavior of how influ-
ential participants were in a previous meeting might prove
useful when selecting someone to attend an upcoming meet-
ing with these same participants.

Figure 4: A graphical visualization of the calculated
influence levels.

Another implementation has been realized in the Virtual
Meeting Room (VMR), a copy of the smart meeting room
at IDIAP, developed at Twente [22]. The VMR was devel-
oped for signal replay, as a remote conferencing application,
and to serve as a test environment for meeting assistants.
In this meeting room, the relative influence levels can be
depicted by the size of the black balls shown in front of the
participants (see Figure 5). This in addition to, for example,
the domes surrounding the participants’ heads that provide
information about their gaze behavior. [19].

9. DISCUSSION AND FUTURE WORK
This section contains some thoughts and future work on

the approach that we took.

Figure 5: A visualization of the calculated influence
levels in a Virtual Meeting Room

Taking it all together, it appeared that we could not repro-
duce the results mentioned in [24]. Our best result (70.59%)
is 4.5% lower. We believe this to be mainly due to two rea-
sons. In the first place, we used many more and longer
lasting meetings, resulting in a significantly larger number
of data samples (102 vs. 32 for the static model). Second,
the acquisition of class labels differed in a way that the val-
ues in our case were provided by the participants themselves
and not by external observers.

Although there is no evidence that the ‘subjective’ route
we took here will differ from an ‘objective’ one, in this case
there were two reasons to take a more ’subjective’ route.
In the first place it is a costly enterprise to have all meet-
ings being watched (preferably more than once). Second,
this research is grounded with respect to real-time meeting
supporting applications such as the live assistants further
explained below. On the other hand, it must be said that
we did not did not use a complete ’subjective’ view as we
merged the individual contributions into one single class la-
bel.

Another point we would like to stress is that we extracted
the class labels in a way comparable to [24]. A drawback of
this approach is that this will always result in an unequal
distribution of the labels. For the dynamic model we found,
for example, that using different thresholds yields better
results. Hence, in future experiments one could decide to
modify these in order to end up with an equally balanced
corpus. We did not do this, as we wanted our results to be
comparable with our earlier work.

The features we used were distilled from our earlier work
combined with the social psychological literature we stud-
ied, and intuitively all seemed appropriate. Closer inspec-
tion revealed however that especially the ‘floorgrab’ feature
by itself performed very badly and seemed hardly to have
any discriminative power. A broader spectrum of features,
possibly from other modalities such as vision, might even-
tually lead to better results. Head orientation information
from which addressee information can be distilled [15] could
prove beneficial in this case [24]. Another aspect is the per-
formance measure we used. We looked at exact prediction
of the correct class labels, whereas from an end user point
of view, the inter personal findings (Was A more influential
than B?) might be of greater importance. Currently, differ-
ent evaluation methods are therefore under construction.
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Perhaps the most interesting question, namely how real-
time accessibility to influence values might impact a meeting
or the individual participants, is still work that lies ahead,
and no experiments have been conducted yet to see how
and if the presentation of this information might actually
have an impact on the meeting. DiMicco reports on such
experiments using a system called Second Messenger [8],
which shows real-time text summaries of participants’ con-
tributions. In that work, it turned out that after increasing
the visibility of the less frequently speaking group members,
these started to speak more frequently than before, whereas
the more dominant people started to speak 15% less. We are
thinking of conducting similar experiments in the future.

We foresee and plan to integrate the developed models on
influence detection into meeting assistants that support the
meeting process or specific individuals in real time. Meet-
ing assistants can be thought of as (embodied) pervasive
software systems that operate alone or in groups, interact
with the users and with other participants, and learn user
preferences (see e.g. Project Neem [3]). It is expected that
meeting assistants in the future will be used as tools for re-
mote meeting participation. In previous work, e.g. [25], we
reported initial findings on experiments with meeting assis-
tants.

10. CONCLUSIONS
This paper stressed the role and the impact of influence

levels on meetings and its participants. We have shown
that automatic detection of influence rankings is a hard and
rather complex task. With our best performance touching
70% using static machine learning models, it is clear that we
just made some explorative steps on the long path that lies
ahead in order to fully understand humans in a way that
allows us to automatically extract their relative influence
levels within small groups.
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