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Abstract Reservoir management requires periodic up-
dates of the simulation models using the production
data available over time. Traditionally, validation of
reservoir models with production data is done using
a history matching process. Uncertainties in the data,
as well as in the model, lead to a nonunique history
matching inverse problem. It has been shown that the
ensemble Kalman filter (EnKF) is an adequate method
for predicting the dynamics of the reservoir. The EnKF
is a sequential Monte-Carlo approach that uses an
ensemble of reservoir models. For realistic, large-scale
applications, the ensemble size needs to be kept small
due to computational inefficiency. Consequently, the
error space is not well covered (poor cross-correlation
matrix approximations) and the updated parameter
field becomes scattered and loses important geological
features (for example, the contact between high- and
low-permeability values). The prior geological knowl-
edge present in the initial time is not found anymore
in the final updated parameter. We propose a new
approach to overcome some of the EnKF limitations.
This paper shows the specifications and results of the
ensemble multiscale filter (EnMSF) for automatic his-
tory matching. EnMSF replaces, at each update time,
the prior sample covariance with a multiscale tree. The
global dependence is preserved via the parent–child
relation in the tree (nodes at the adjacent scales). After
constructing the tree, the Kalman update is performed.
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The properties of the EnMSF are presented here with
a 2D, two-phase (oil and water) small twin experiment,
and the results are compared to the EnKF. The ad-
vantages of using EnMSF are localization in space and
scale, adaptability to prior information, and efficiency
in case many measurements are available. These advan-
tages make the EnMSF a practical tool for many data
assimilation problems.
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1 Introduction

History matching (HM) is a process of adjusting the
variables in a reservoir simulation model until it closely
reproduces the past behavior of the reservoir. The accu-
racy of the history matching depends on the quality of
the reservoir model and the quality and quantity of the
data available. In traditional history matching, the pro-
duction data for the entire history are matched at the
same time, and repeated simulations are needed, which
makes the process time-consuming. There are gradient-
based HM methods that require a minimization of a
cost function. In a real and large-scale application, it
is an expensive procedure, and it can be stuck in local
minima. Due to the presence of uncertainties in both
the data and the model, it is hard and expensive to use
traditional methods that might involve repeated HM
exercises with different initial models.

One way to solve these problems is to use sequential
data assimilation schemes, in particular, the ensemble
Kalman filter (EnKF). In the past few years, successful
applications of Kalman filter theory were reported in
many areas of research: the meteorological applications
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[2, 9], nonlinear shallow-water storm-surge models [25],
and atmospheric chemistry and transport modeling
(e.g., [12, 23, 26]).

The EnKF has also entered the world of reservoir
engineering. Several publications have discussed the
use of EnKF with oil reservoir models: Nævdal et al.
[19–21], Gu and Oliver [10], Gao and Reynolds [8], Liu
and Oliver [15], Wen and Chen [27], and Skjervheim
et al. [24], showing promising results and, at the same
time, raising some possible drawbacks.

The EnKF is based on the representation of the
probability density of the state estimate by a finite
number N (N being much smaller than the number
of elements in the state vector) of randomly generated
system states (ensemble members). This method falls
into the Bayesian inversion approach and may provide
a solution to the combined parameter and state esti-
mation problem. The result is an ensemble of analyzed
solutions (the combination between the measurements
and the reservoir model), which best approximates the
posterior probability density function for the model
parameters.

The ensemble size limits the number of degrees of
freedom used to represent forecast and analysis er-
rors. It makes the calculation of the error covariances
practical for modest-sized ensembles. One important
consequence of the use of small-sized ensembles is the
sampling error problem. After a certain number of
assimilation steps, the ensemble loses its variance and
leads to filter divergence. Houtekamer and Mitchell
[13] conclude that the use of a small number of mem-
bers in an ensemble often produces spuriously large
magnitude background error covariances between
greatly separated grid points (unphysical correlations).
They noted that the EnKF analysis scheme could be
improved by excluding observations at great distances
from the grid point being analyzed by performing a “co-
variance localization.” Examples of this approach in-
clude methods based on covariance filtering with Schur
products [11, 14] and methods that perform updates
in small blocks of grid cells [17, 22]. These methods
improve computational efficiency and suppress the neg-
ative effect of sampling errors. The covariances that
are used for localization will have an impact on the
description of the physical correlation carried by the
forecast covariance. Therefore, there is a risk of intro-
ducing correlations that are not physically possible. A
number of researchers have observed and discussed the
imbalances introduced by the localization schemes in
the meteorological applications [16, 18].

In this paper, we focus on data assimilation with the
ensemble multiscale filter (EnMSF) [29] for estimation
of the oil reservoir parameters (permeability). This

new approach solves some of the limitations of EnKF
discussed above by allowing for a spatial localization
that preserves the correct correlations.

Multiscale estimation is based on the concept of
using a multiscale tree that describes the spatial cor-
relations. The method is based on an algorithm [28]
inspired by image processing research. The degree of
freedom to choose a certain tree and to set up the
parameters for the update of the ensemble makes the
method very appealing. At the same time, one should
be aware of the strong dependence of the performance
of the method on the choices mentioned above.

In this paper, we will show an interesting feature of
the algorithm and the influence of its setting on the
quality of the estimates in case of a reservoir engineer-
ing application. Due to the complexity of the method,
we look only at a one time step update of the ensemble.
In Section 2, the theoretical background for the EnKF
and for the EnMSF and the assumptions that need to
be made are presented. In Section 3, a 2D, two-phase
example is presented with seismic data. The numbering
of the cells in the numerical grid is discussed. The
conclusions follow in Section 4.

2 EnKF and EnMSF—theoretical background

2.1 Kalman filter for nonlinear systems

Kalman filtering represents a link between a model
and measurements. First, a state vector x needs to
be defined (a collection of variables representing the
model). The following superscripts for x will be used
in the equations: f represents the forecast state and a
represents the analysis state. Kalman filtering processes
the measurements in a physically consistent way taking
into account the model dynamics. This is achieved by
extending the deterministic model represented by

xk+1 = M (xk, k)

to a stochastic model

xk+1 = M (xk, k) + wk,

where M represents the nonlinear model, which prop-
agates the state of the system from time k to k + 1, and
wk is the white-noise process, wk ∼ N(0, Qk), which
quantifies the uncertainties in the model. The covari-
ance matrix Qk needs to be specified.

All the available data for time k are stored in a vector
yk. In general, there are fewer observations than vari-
ables in the model. The only correct way to compare
the values measured with the state vector is to use a
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function from the model space to observation space
called the observation operator H:

yk = Hkxk. (1)

Through the observation operator Hk, a forecast for the
observed data locations can be made from the forecast
of the state. Uncertainties in the measurements need to
be specified as well. Therefore, the vector yk from Eq. 1
is expanded as follows:

yk = Hkxk + vk.

The observation operator Hk is a collection of inter-
polation operators from the model discretization to the
observation points (conversions from model variables
to the observed parameters); vk is the observation
noise process, vk ∼ N(0, Rk). The covariance matrix Rk

needs to be specified.

2.2 Ensemble Kalman filter

The EnKF was introduced by Evensen [4] and has
been successfully used in many applications [6, 13]. This
Monte Carlo approach is based on the representation of
the probability density of the state estimate by an en-
semble of possible states, ξ1, ξ2, . . . , ξN . Each ensemble
member is assumed to be a single sample from a distri-
bution of the true state. Whenever necessary, statistical
moments are approximated with sample statistics. We
can rewrite the steps of the Kalman filter algorithm for
the EnKF, as shown below.

• Initialization step: an ensemble of N states is gen-
erated to represent the uncertainty in x0,
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• Analysis step: when the measurements become
available, the mean and the covariance are replaced
with the equivalent ones in the analysis step:
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Here, wi,k and vi,k are the realizations of the noise
processes wk and vk, respectively. Based on the new
updated values ξ a

i,k, the analysis covariance matrix
Pa

k is built.

The advantages of this algorithm are that P f
k and

Pa
k are always positive semidefinite and that the linear

tangent model is not required because the ensembles
are propagated using the original model, as in Eq. 2.
In the final implementation of the algorithm, P f

k values
do not need to be computed [4]. For most practical
problems, the forecast equation (Eq. 2) is computa-
tionally dominant [3]. As a result, the computational
effort required for the EnKF is approximately N model
simulations.

2.3 Ensemble multiscale filter

The EnMSF [29] provides an alternative way to per-
form the update step. The original ensemble covariance
is represented by a tree structure, and physically long
distance dependencies are kept through the relations
between the tree nodes.

It consists of three basic steps:

1. Assigning grid cells (pixels) to the finest scale nodes
and computing the tree parameters from sample
propagation through the tree (tree construction)

2. Upward sweep (moving information upwards in
the tree)

3. Downward sweep (spreading information down-
wards in the tree to the finest scale)

The ensemble members are partitioned with respect
to grid geometry and settings (like the pixel numbering
and the tree specification). The multiscale algorithm
places the partition at the finest scale nodes (leaf nodes)
and computes the parameters at the upper tree nodes.
Now, the upward and downward steps can be per-
formed and the output is a set of updated replicates.

2.3.1 Example

Since the ensemble multiscale algorithm is more com-
plex than EnKF, first, a little example is shown. The
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Fig. 1 The initial grid
division

example greatly simplifies the method but allows us to
grasp the general idea.

Each pair of figures, Figs. 1–2, 3–4, and 5–6, shows
a grid and corresponding tree states. This is the first
stage of the EnMSF—tree construction. The 4 × 4 grid
is a representation of permeability, where grey is high
permeability and black is low.

The grid cells (pixels) are numbered and each group
of four is assigned to a leaf node of a binary tree
(Figs. 1 and 2). Here, it should be noted that having an
ensemble of size N:
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the first leaf node, for example, contains a matrix with
the first four states of each ensemble member:
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The state at each higher scale node is a linear com-
bination of states at its direct children. At the middle
scale, the four most influential states are kept at each
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Fig. 2 Tree with pixel values assigned to the leaf nodes (fines
scale nodes)

Fig. 3 The middle scale
representation on the grid

of the two nodes (Figs. 3 and 4). They happen to be the
high-permeability channel. These eight values are used
to compute the four states at the root node (Figs. 5 and
6), which is the center of the high-permeability channel.
This is the end of the tree construction part when all the
nodes contain sets of parameters needed to perform the
upward and downward sweeps.

Assume that a measurement is available in pixel 1.
It is placed at the node that had pixel 1 assigned to
it, the first leaf node (a circle in Fig. 7). Going up the
tree, a Kalman-based update is performed, and at the
end, the root node contains the knowledge from the
measurement. Downward sweep (Fig. 8) spreads the
knowledge from the root node to all the other nodes.
In consequence, the finest scale contains the analyzed
states xia (xa

i ), i = 1, 2, ..., 16.
Clearly, the ensemble filter operates on an ensemble

representing a distribution of the truth. For simplicity,
the example shows one grid representation. It should
be clear though that the states at the tree nodes come
from the dependencies in the ensemble.

2.3.2 The end of the example and some mathematics
in the algorithm

The most complex is step 1, containing crucial assump-
tions and many flexible variables. Steps 2 and 3 are
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Fig. 4 Pixels selected for the middle scale of the tree
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Fig. 5 Root node
representation on the grid

based on Kalman filter theory. Some mathematical
details are presented here to enrich the simple example
shown above. The full detailed description can be found
in [29]. Some necessary notation is shown in Fig. 9.

Additionally, some symbols used in the text are:

Notation

χ(s) State vector at node s
χM(s) The vector of finest-scale states descended

from s
χ(s|s) The state at node s after the upward sweep
χ(s|S) The state at node s after the downward sweep
χ(sγ |s) Projected state at node sγ
j Superscript indicating an ensemble

Any other symbols are explained in the text.
The whole process starts with assigning the grid

cells (pixels) to the leaf nodes of the tree. The cells
can be numbered in various ways that determine the
assignment. Two choices are shown in the next section.
Assigned pixels provide states at the fine scale nodes of
the tree.

x
4

x
7

x
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Fig. 6 Pixels selected for the root (top) node of the tree

Fig. 7 A scheme of the
upward sweep

A state at each non-fine-scale node s is a linear
combination of the states at its children:

χ(s) = V(s)

⎡

⎢
⎣

χ(sα1)
...

χ(sαq)

⎤

⎥
⎦ ,

where matrices V(s) are obtained based on a process
described in Appendix A. The size of χ(s) is controlled
by the setup of V(s), that is, it was V(s) that allowed
keeping four states at the upper scale nodes in the
example. When all the states are computed and the
measurements are placed at the tree nodes, the upward
and downward sweeps can be carried out.

Going up the tree, the algorithm updates the states
at the nodes. Then, each node s gets the value χ j(s|s).
χ j(s|s) is the state vector updated with all the mea-
surements in the subtree rooted at s. At the top of the
tree, the value for the root node is obtained, χ j(0|0).
This is the basis to perform the downward sweep of the
algorithm. χ j(0|0) is the initial point, namely, χ j(0|S).
Going down the tree, the value χ j(s|S) is assigned to
each node s. That is the state value containing the
knowledge from all given measurements. This way, at
the end of the sweep, we get updated ensemble states
at the finest scale, which can be used to perform the
next forecast step.
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Fig. 8 A scheme of the downward sweep and final updated
values
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Fig. 9 Notation: sαi, the ith child of node s; sγ , the parent of node
s; m(s), the scale where s is placed; M, finest scale; 0, the root node

The equations leading the upward and downward
sweeps are:

The upward sweep equation

χ j(s|s) = χ j(s) + K(s)
[
Y j(s) − Ŷ j(s)

]

The states χ j(s) at each node s are updated
with perturbed measurements Y j(s) using weight-
ing factor K(s) and predicted measurements Ŷ j(s)
(Appendix B).

The downward sweep equation

χ j(s|S) = χ j(s|s) + J(s)
[
χ j(sγ |S) − χ j(sγ |s)]

Previous states χ j(s|s) at each node obtain the
knowledge from all measurements through the
weighting parameter J(s) (Appendix C). χ j(0|S) =
χ j(0|0) is initially known from the upward sweep and

Fig. 10 The training image 250 × 250

truth
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Fig. 11 The truth 64 × 64

projected replicates χ j(sγ |s) can be computed based
on matrices V(s) (Appendix D).

The whole procedure explained above, with the
three steps, is able to approximate the forecast error
covariance by constructing the tree and then to get the
updated ensemble by moving up and down the tree
assimilating the available measurements. In the end,
the updated ensemble is obtained at the finest scale and
the corresponding analyzed covariance matrix can be
calculated.

3 Application

A twin experiment is prepared for the algorithm to
check its performance. The results are compared to the
EnKF’s, as it is described in [5]. All shown results are
one update time results.

Given the training image1 (Fig. 10), an ensemble was
generated using The Stanford Geostatistical Modeling
Software. Algorithm snesim [1] generated 2D samples
of permeability fields with grid size 64 × 64 and from
the training image with grid size 250 × 250. Each of 100
replicates is built of two values of permeability: high
10,000 mD (grey color) and low 500 mD (black). The
first replicate was assumed to be the “truth” (Fig. 11)
and removed from the ensemble.

The values of the observations are the perturbed
values of the “truth.” It means that the permeability
field is updated with permeability measurements. In
practice, these values cannot be measured. Therefore,
this example is not realistic but allows us to test almost
any possible setup. Throughout the tests, the tree is a

1Training image is an image representing the features and the
distribution of ensemble members [1].



Comput Geosci (2009) 13:245–254 251

meas

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Fig. 12 The data

quadtree (four children for every parent), there are 16
pixels assigned to each finest-scale node, and 16 states
preserved at coarser scale nodes.

The task is to assimilate large-scale data. It might be
possible to obtain the measurement in every pixel of
the field. This kind of data is very noisy and, obviously,
the number of data points is very large. It is known that
EnKF is not an efficient tool to assimilate a very large
amount of observations. The standard deviation of the
measurement noise is, therefore, equal to a large value
of 9. The data are shown in Fig. 12.

The EnMSF will be run twice, each time with a
different grid numbering. The numbering schemes are
shown in Figs. 13 and 14.

The numbering can express our belief in the depen-
dencies in the actual field. The square-manner number-
ing (Fig. 13) keeps groups of pixels close in the grid
close in the tree. It is not a perfect mapping, though.
For example, pixels 6 and 17 are direct neighbors but
they are placed at different nodes.

The other approach (Fig. 14) numbers the pixels
row-wise as if one believes that the channels are hor-
izontal. It can be improved if there is some prior
knowledge available, for example, about the channel
placement. It is visible in the results that interesting
artifacts come from those two different approaches.

The plots of the prior, EnKF estimation and EnMSF
with square and row-wise numbering estimations are

Fig. 13 A square-manner
numbering of the pixels
in the numerical grid

1 2 5 6 17 18 · · ·
3 4 7 8 19 20
9 10 13 14

11 12 15 16
...

Fig. 14 A row-wise
numbering of the pixels
in the numerical grid

1 2 3 4 5 6 · · ·
65 66 67 68 69 70 · · ·

129 130

...

shown in Figs. 15, 16, 17, and 18. The prior is relatively
smooth and it is the best estimate if no data are given
(the mean of the ensemble). Any proper assimilation
should give an improvement to the prior, which is the
case in here.

The comparison of the performances is based on
a root mean square error (RMSE) values and visual
judgment. Table 1 contains RMSE between the truth
and the prior, EnKF, EnMSF + square numbering,
EnMSF + row-wise numbering.

The RMSE measures, roughly, the mean difference
between respective pixels. It is a point not-global mea-
sure; it cannot give information on large-scale features.
Additionally, one update step should not only rely on
the RMSE. Hence, the visual comparison is also useful.
It might suggest a need to search for a completely
different measure of similarity.

The plot of EnKF in Fig. 16 is smooth, and it seems
like it sharpens a contrast in the prior. Its RMSE is
not satisfactory either. The two versions of EnMSF
(Figs. 17 and 18) show artifact lines, which come from
the numbering schemes used. Nevertheless, the plots
extract the high-permeability channels quite well. The
two approaches were going to show that EnMSF can
be adjusted to a given problem, especially when some
prior knowledge is available about the channel orienta-
tion or concentration.
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Fig. 15 A mean of the ensemble members—the prior
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Fig. 16 Assimilation with EnKF
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Fig. 17 Assimilation with EnMSF and numbering scheme like
in Fig. 13
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Fig. 18 Assimilation with EnMSF and numbering scheme like
in Fig. 14

Table 1 RMSE between the truth and different results

Prior EnKF EnMSF+square EnMSF+row wise

1.4002 1.3356 1.0795 1.0773

4 Conclusions

The EnMSF is a new technique for reservoir engi-
neering. The method has been developed from image
processing. The goal of this paper is to show an ap-
plication of this filter to a simple reservoir engineering
problem and to analyze its potential.

It is known that large data sets cause computational
problems for Kalman filters. Therefore, there is a need
for efficient tools to handle this kind of application.

Multiscale filtering is a way of representing the co-
variance matrix in the assimilation process by a tree
structure. This simplification preserves the strongest
correlations between the grid cells. The most com-
plicated part of the method is the definition of the
tree; it contains crucial assumptions and flexible pa-
rameters. There are features that influence the filter’s
performance that can be adjusted to solve particular
problems. Here, we focused on the numbering schemes
that can represent our belief in the field dependencies.
Certainly, it is very efficient to manipulate when some
prior knowledge about the field is available.

The two numbering schemes shown in this paper
represent different ideas. The first one, square-like,
might be universal to keep close pixels on the grid close
in the tree. The second, row wise, can be suggested by
horizontal flow information. Both schemes show good
performance compared to EnKF in case of large data
sets. The perfect mixture would be created when an
approximate position of the channel was known. The
shape or way of numbering could be adjusted to the
feature.

Since the EnMSF is a complex and interesting algo-
rithm, it needs further experiments and investigation.
Full runs with a reservoir simulator and more tests are
required.

Appendix A

The proper detailed description of the idea is presented
in [29]. We search for a set of V(s) values that provides
the scale-recursive Markov property on the tree, i.e.,
decorrelates q + 1 following sets of one scale: first, q
sets are all the children of the node s, and the set q + 1
contains all the other nodes in this scale that are not
children of s. The decorrelation is a minimization of
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conditional cross-covariances between the mentioned
sets, given node s.

The tree that will approximate the forecast covari-
ance matrix well should be based on the scale-recursive
Markov property. The set of V(s) values providing the
scale-recursive Markov property perfectly would have
a very high dimension since it would keep the total de-
pendence between the finest states on the upper scale.
Therefore, for practical purposes, the state dimensions
in coarser scales will be constrained. This is easier if
V(s) values are block diagonal; each block corresponds
to a different and only one child of s.

The way V(s) values are built V(s) has the form:

V(s) = diag[V1(s), ..., Vq(s)],
where Vi(s) is a matrix corresponding to the ith child of
s, sαi, for i = 1, ..., q.

There are two constraints hidden here. The first one
limits the number of rows in matrices Vi(s) to di(s). The
second one, if necessary, coarsens the number of rows
in V(s).

Constructing matrices Vi(s) To obtain Vi(s) values, q
conditional covariances would have to be minimized for
each non-fine-scale node s. Those would be the con-
ditional cross-covariances between child i (i = 1, ..., q)
and the rest of the nodes in the same scale, given the

parent. Since direct minimization is inconvenient, the
algorithm uses a predictive efficiency method.

Predictive efficiency method The method is more ef-
ficient to compute than all the conditional cross-
covariances. It picks Vi(s) values that minimize the
departure from optimality of the estimate:

ẑic(s) = E[zic(s)|Vi(s)zi(s)],
where zi(s) is a vector of states at node sαi (= χ(s)) and
zic(s) is a vector of states on all nodes at scale m(s) + 1
except node sαi. It was proven [7] that they are given by
the first di(s) rows of:

V ′
i(s) = U T

i (s)Cov[zi(s)]−1/2,

where Ui(s) contains the column eigenvectors of:

Cov−1/2[zi(s)]Cov[zi(s), zic(s)]CovT

× [zi(s), zic(s)]Cov−T/2[zi(s)].
Here, it should be noted that di(s) are chosen by the
user. The picked rows have the highest corresponding
eigenvalues. The reason is that we assume that the
column eigenvectors of Ui(s) are lined in a decreasing
(corresponding eigenvalue) order.

Appendix B

K(s) = Ĉov[χ(s), Ŷ(s)][Ĉov[Ŷ(s)] + R(s)]−1

{
R(s) = r(s), m(s)=M;
R(s) = diag[K(sα1)R(sα1)KT(sα1), ..., K(sαq)R(sαq)KT(sαq)], m(s)<M.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y j(s) = y(s) + e j(s), m(s)=M;

Y(s) =

⎡

⎢⎢
⎢
⎢
⎣

K(sα1)Y j(sα1)
...

K(sαq)Y j(sαq)

y(s) + e j(s)

⎤

⎥⎥
⎥
⎥
⎦

, m(s)<M.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ŷ(s) = h(s)χ j
M(s), m(s)=M;

Ŷ(s) =

⎡

⎢⎢
⎢
⎢
⎣

K(sα1)Ŷ j(sα1)
...

K(sαq)Ŷ j(sαq)

h(s)χ j
M(s)

⎤

⎥⎥
⎥
⎥
⎦

, m(s)<M.

Appendix C

J(s) = Ĉov[χ(s|s)]FT(s)Ĉov
−1[χ(sγ |s)]

F(s) = Ĉov[χ(sγ )]A(s)TĈov
−1[χ(s)]

A(s) = Ĉov[χ(s), χ(sγ )]Ĉov
−1[χ(sγ )]

Appendix D

χ j(sγ |s) = F(s)χ j(s|s) + w′ j(s).



254 Comput Geosci (2009) 13:245–254

Matrix F(s) is like that in Appendix C and w′ j(s) is a
zero-mean random perturbation with covariance Q′(s):

Q′(s) = Ĉov[χ(sγ )] − F(s)A(s)Ĉov[χ(sγ )],
where F(s) and A(s) are like those in Appendix C.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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