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Abstract

Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body
mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not
easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is
demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The
cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected
regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined.
The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to
improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment.
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Introduction

Serum hormone concentrations vary considerably, both be-

tween subjects and within subjects, between days and during the

24-h day-night cycle. The variation in serum concentration is the

result of secretion from endocrine glands into the circulation and

clearance from the blood [1]. Secretion consists of basal

(nonpulsatile) and pulsatile (burstlike) secretion. The serum

concentration profile is hormone-specific [1,2]. It is increasingly

recognized that the pulsatile hormone secretion process supports

important biological functions and that a more constant blood

hormone concentration tends to diminish the sensitivity of the

target tissues to that particular hormone [3].

The awareness of the variability in hormone concentrations

emerged in the 1960’s with the introduction of radioimmunoas-

says. The appreciation of within-day variability is still not

implemented in the current clinical evaluation of a patient’s

endocrine status, except the diagnosis of Cushing’s disease [4].

Generally, patients are tested at a single time point in the morning

under fasting conditions. Such diagnostic tests ignore the

variability and important pulsatile features of circulating hormone

concentrations. In rare cases patients are tested at one or few time

points after experimental perturbation (for example, the oral

glucose tolerance test [5], or the GHRH-arginine stimulation test

[6]).

Hormone secretion is regulated by other hormones; their

dynamic interrelations modulate critical functions in target tissues.

For example, insulin increases the glucose uptake by the liver and

muscle [7]. On the other hand, hormone secretion is often

influenced by several other factors, including gender, body

composition, age, and other hormones [8,9].

The regulation of pituitary hormone secretion is controlled by

hypothalamic hormones, delivered via the pituitary portal system

and feedback signals from the periphery acting on the different

pituitary cell types and/or hypothalamic nuclei, synthesizing and

secreting pituitary-stimulating or inhibiting neurohormones or

transmitters. Feedback signals include hormones synthesized by

endocrine glands, for example, estrogens, testosterone, thyroid

hormones, cortisol, and IGF-I, and metabolic signals, including

leptin and insulin. The knowledge of the complex central

processing of the feedback signals (either positive or negative) is

largely based on physiological studies performed in animals. While

other information about the human signalling is derived from

studies in patients with activating or muting gene deletions, or by

clamping studies in which one or more signals are fixed [10–13]).

One way to characterize the regulatory relations is to construct

networks of these interrelations. Network representations of

dynamic patterns can be obtained by models like dynamic

Bayesian networks or Hidden Markov Models (HMM) [14–16].

In HMM, networks can be built from time-delayed associations.

The applicability of HMM for detecting the interrelation between

hormones is limited for at least two reasons. First, many hormone

interdependencies are reciprocal and are best represented by a

cyclical graph, which has to be accounted for in the more complex

Hierarchical Hidden Markov Models. In addition, the interrela-

tion delays cannot be assumed to be equal among all hormone

relations, which prohibits the use of (first order) HMM. Although

higher order Markov Models do allow for unequal delays, many
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additional parameters need to be estimated which makes the

model complex and more difficult to interpret. Hence, the existing

HMM methods are too rigid for application to hormonal systems.

Therefore, a new strategy with less rigid assumptions was adopted.

The proposed network inference methodology is capable of

handling some types of reciprocity and unequal delays.

The methodology is illustrated with a case study in obese but

non-diabetic women. The detected relations between circulating

hormones before and after treatment are analyzed and visualized

in a network. Relating secretion patterns of circulating hormones

attempts to unravel known and unknown relations between

hormone systems. The latter is without pretending that any

unknown relation, if statistically significant, is proof of a direct

relation. However, such (unexpected) relations may motivate

further investigations in human or animal models to describe

detailed mechanistic dependencies. The study used to illustrate this

methodology investigated the acute effects of bromocriptine on

leptin levels, while keeping caloric intake constant. Leptin is the

satiety hormone that signals the volume of adipose store to the

brain. Bromocriptine is reported to lower the plasma leptin

concentration in subjects with prolactinoma, without affecting

body weight [17]. Because of the implicated metabolic processes,

prolactin, GH, TSH, glucose and insulin are also measured, as are

the HPA hormones ACTH and cortisol.

Materials and Methods

2.1 Experimental data
The data that is used to illustrate the network inference method

comes from a clinical study involving a premenopausal cohort

(n = 18) of obese individuals (BMI.30 kg/m2) with mild insulin

resistance [17–19]. The average height of the subjects was 1.68 cm

(range 1.55–1.76), with a SEM of 1.2 cm. The average weight of

the subjects was 94.4 kg (range 83.7–118.1), with a SEM of 2.51 kg.

The ethical board of Leiden University Medical Center

evaluated and approved the (original) study. All subjects provided

their written consent. The subjects were recruited through

advertisements in local newspapers [17]. Exclusion criteria were

acute or chronic disease, depression, head trauma, smoking,

alcohol abuse, recent transmeridian flights, nightshift work, and

recent blood donation. All participants were required to have

regular menstrual cycles, the studies were done in the early

follicular phase of the menstrual cycle [17]. A total of 246 ml of

blood was collected during each occasion. The subjects were

instructed to remain recumbent, except for bathroom visits. The

subjects were provided with a standardized liquid breakfast (0930),

lunch (1300), and dinner (1830). The caloric content was fixed at

2100 kcal/d, of which 35% came from fat, 49% from carbohy-

drates and 16% from proteins [17]. The lights were switched off at

2300, and back on at 0730.

Blood samples were collected every 10 minutes for 24 hours to

assess the endocrine state of the women. The samples were drawn

from the antecubital vein, in which a canula and a stopcock was

kept patent by continuous NaCl and heparin infusion [17]. In each

sample the concentration of ACTH, cortisol, GH, TSH, prolactin,

leptin, insulin, and glucose was determined. This list is referred to

as the hormones, even though it is noted that glucose is not a

hormone, this convention is for brevity only. The subjects were

subsequently treated with two daily doses of 2.5 mg bromocriptine

during 8 days. On the last day of the treatment the subjects

underwent again a 24-h blood sampling study. Figure 1 shows the

24-h hormone concentration profiles in a representative subject.

2.2 Methods
A network representation offers a comprehensive view of the

dynamic relations that exist between hormones. The network

summarizes the complex regulatory patterns into interpretable

Figure 1. Twenty four-hour hormone concentration profiles in a representative healthy obese female subject who was treated with
bromocriptine for eight days. The black lines show the concentrations before treatment, the gray lines after treatment. Bromocriptine caused a
profound decrease in prolactin levels, and a decrease in serum TSH, ACTH and leptin concentrations, while increasing GH levels. In addition, insulin
and glucose levels also were deminished by bromocriptine.
doi:10.1371/journal.pone.0096284.g001
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descriptions. The network inference strategy uses estimated

secretion rates to assess the association between hormones.

2.2.1 Pulse identification. The estimation of secretion

pulses from observational data is not trivial. The secretion and

decay are difficult to delineate and the translation to mathematical

formulae of these mechanisms does not yield a well-posed

problem. A constraint based method with a minimal set of

assumptions was used to estimate the mass and timing of secretion

pulses [1]. Recently two other operator-independent deconvolu-

tion programs for simultaneously estimating hormone pulses,

secretory mass and hormone half-lives were described (AutoDecon

[20] and an algorithm by Keenan et al [21,22]) but here we use

our own method (VisPulse [1]). As the overlap between

AutoDecon and VisPulse estimates is considerable [1], highly

similar results are to be expected when one of the other methods

was to be used.

The use of secretion profiles, assessed by pulse identification

methods, was motivated by the desire to reduce the auto-

correlation present in the original concentration profiles, see also

Vis et al [23]. Such auto-correlation distorts many types of

measures, including cross correlation. Besides reducing the auto-

correlation, the use of secretion profiles also focuses the analysis to

the hormone release into the serum compartment.

2.2.2 Hormone association. As a measure of the association

between two hormones the lagged Pearson product moment

correlation (that is, cross correlation) is used on the secretion

pulses. It is assumed that the lag of highest positive and/or lowest

negative (optimal) cross-correlation between two hormones

represents the time domain in which regulation between two

hormones is effectuated. This characteristic is used to create a

network representation; if a significant optimal cross-correlation

exists, it is stated that there is a relationship between hormones.

The unit of the lag is the time interval between two sampling

points, 10 minutes, and is referred to by the Greek letter t.

2.3 Network inference
2.3.1 Inference of a static network. A static or instanta-

neous network is based on links between hormones that are

present without a time lag. This is the commonest application of

association networks found in the literature. The reason for that is

largely based on the lack of time series data. The associations are

usually made with a number of subjects presumed to be in a

steady-state. Since this is a time series of a set of subjects time lags

can be included. As a reference, also a static network analysis is

performed.

A static network is constructed by associating the pulse pattern

of one hormone with the pulse pattern of another. The links of a

network are included when the resultant association is significant.

The association values are calculated per subject, these values are

deemed significant when they are similar across the set of subjects,

as assessed by a t-test. A false discovery rate correction is applied

and a threshold of 5% is used.

A large body of research discusses the merits of conditioning on

other variables to limit the detection of indirect relations. The

procedure is better known as partialization, the variation of other

variables is regressed out of the variable pair of interest before

calculating the association in the first pair. This procedure is

widely used in graphical Gaussian network modeling [24,25]. We

applied such partialization on the static network by calculating the

partial correlation for each pair per subject (for details: see the

Appendix). The partial network is included to let the reader

inspect the relative gain in interpretability achieved with this

procedure for this data. The correlation and partial correlation

networks are given in the Results section.

2.3.2 Dynamic network inference. Some relations between

two hormones are characterized by a delay between them. The

dynamic network appreciates such a delay, while the static

network does not. The relation between the hormones is

characterized by the cross-correlation. The optima, or extremes,

Figure 2. Twentyfour-hour cortisol concentration profile in a healthy obese woman. The secretion amplitude and timing were estimated
by VisPulse which is a mathematical model with minimal assumptions, only an exponential decay is assumed and the secretion is assumed to be
episodic. The latter is interpreted to mean that only a limited set of time points are involved in the episodic secretion, no assumptions are made
about the distribution of the secretion. The residuals are without significant autocorrelation.
doi:10.1371/journal.pone.0096284.g002
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in the cross-correlation function define the delay. To allow for

both positive and negative delayed relations, two optima are

defined for each pair of hormones. The time window in which

regulatory relations are considered is four hours. The mathemat-

ical details of the inference can be found in the Appendix.

After calculating the optima, three validation steps are included.

First, to test the robustness of the found optima a resampling

strategy was followed. This is performed by repeatedly leaving out

two subjects and redoing the analysis. The modes of all the

calculated cross-correlation functions are then examined to assess

the robustness (see Appendix). Secondly, the significance of the

cross-correlation value at the optimal delay is assessed by testing

the average cross-correlation at the optimum against the

assumption that there is no relation, that is, the association is

zero. The test is one sided because the optimum is either positive

or negative. The resulting p-values are subjected to a false

discovery rate (FDR) correction at the a = 0.01 level. The explicit

optimization of searching for the optimal delay is compensated for

by adopting a more conservative threshold. Note that this sort of

optimization is not used in the static network inference, nor the

evaluation of the treatment effect (see later). Thirdly, it is assessed

whether the optimal delay is different from zero by using the

between individual variation of the cohort. In case of a significant

difference there is evidence (but not proof) of a causal relation

between the two hormones, which is shown as an arrow in the

network. The delayed relations are reported such that when b

follows a the network shows an arrow between the two, for

example, aRb. More details about the mathematics involved in

these procedures is shown in the Appendix.

The rationale for setting up this analysis is to detect changes in

the regulatory relations between hormones. Treatments or

different phenotypic states can influence the relation between

two hormones. Changes in the regulatory relation between two

hormones can be twofold; their delay can change and/or the

intensity of the regulation at a specific delay can change. In this

paper we select a reference situation with a specific (optimal) delay

calculated for this situation. All other situations are then compared

to the reference situation in terms of intensity of the regulation at

the pre-selected reference delay. This captures both facets of

change: i) if the optimum delay shifts in the new situation, then the

intensity at the (then non-optimal) pre-selected delay tends to

diminish and ii) if the optimal delay remains the same but the

tightness of the regulations changes, then this will manifest itself as

an intensity change.

In the preceding section on static network inference the idea of

partialization was introduced. In a dynamic network partialization

also has relevance, but it is not clear how to perform this. Whereas

in the static network the partial correlation of two hormones has to

be established while correcting for all other six hormones, this

number of partializing variables explodes when considering time

delays. How many delays should be included the partialization

step? Obviously, such an explosion of possibilities leaves room for

chance results. Methods to validate the resulting partial correla-

tions are far from trivial. Hence, we restrict ourselves to

correlations instead of partial correlations for the dynamic nets.

Moreover, use of hormone secretion values lowers the risk of

finding indirect correlations considerably.
2.3.3 Treatment effect. The study used two sampling series

of subjects, one before and one after a treatment with bromo-

criptine. To assess whether the treatment did change the

amplitude in the network, the before treatment and after

treatment cross correlation values were evaluated using a paired

t-test (see Equation 11). The treatment effect is assessed and

subjected to an FDR correction. Effects are deemed significant,

after FDR correction, at a = 0.05, additionally, the relations with a

tendency (0.05,a,0.10) to a treatment effect are also reported.

Results

3.1 Pulse identification
Pulsatility is a characteristic of the secretion process of many

hormones. An attempt is made to estimate the timing and

amplitudes of the secretion pulses with a previously developed

Figure 3. Correlation A and partial correlation B hormone networks. The significant links show a high degree of overlap between the
correlation and the partial correlation networks.
doi:10.1371/journal.pone.0096284.g003

Network Identification of Hormonal Regulation

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e96284



numerical method (VisPulse [1]). Figure 2 shows a typical example

of a 24-hr hormone series, here an example of cortisol, that was

modeled with VisPulse. In gray the measured data is shown and in

black the modeled data. The concentration profile shows a clear

diurnal pattern with a nadir in the afternoon and evening, and a

zenith in the early morning, which is the normal pattern for

cortisol. The model correctly identifies the concentration spikes, or

pulses, that are characteristic for the 24-hr levels of many

hormones, including cortisol. The estimated secretion gives insight

in the timing and the mass of the pulses of cortisol released to the

general circulation. The data and the minimal model assumptions

are well matched as both are in concordance. As discussed in the

Method section, all following analyses will be performed on the

estimated secretion profile.

3.2 Static network inference
The static association network is created by calculating for each

subject the correlation between all hormone pairs. For each

hormone pair the estimated correlation for all subjects is tested for

being unequal to zero by means of a t-test. The hormone pair

correlation that is significant across subjects is included in the

network.

Figure 3 shows the results of the analysis on the network. The

left panel shows the normal association network, and the right

panel shows the partial correlation network. Between the two

Figure 4. The triplet ACTH, TSH, and prolactin is fully connected in the network. These relation, and the relation with cortisol, are shown in
more detail. ACTH-cortisol is clearly connected. The TSH-prolactin relations is more modest but still significant. The relation ACTH-TSH is significant,
but shows a wide optimum, interestingly Cortisol-TSH shows a similarly wide optimum which is shifted to the right. ACTH-Prolactin shows a narrow
optimum while cortisol-prolactin is again wider and shifted to the right.
doi:10.1371/journal.pone.0096284.g004
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methods, the majority of links are identical though some difference

in the strength is observed. The difference between the normal and

the partial network is exemplified by the link between cortisol and

TSH, as cortisol is largely regulated by ACTH. The association

network identifies a link between cortisol and TSH, while in the

partial network the variation in cortisol (driven by ACTH) is

removed and identifies no relation between the two. A similar

observation is made between cortisol and prolactin.

3.3 Dynamic network inference
The network is based on the dynamic interactions between

hormones as described by the cross correlation function as

documented in the Appendix. To provide a better understanding

of the relations between estimated secretion sequences, some

examples are highlighted, and the intermediate steps are shown in

graphical form. In all results, the before treatment volunteer

cohort was used as the reference cohort (see above).

First, the relation between hypothalamus-pituitary-adrenal

(HPA) axis hormones ACTH and cortisol is shown. Figure 4(A)

shows the individual cross correlation profiles on the estimated

secretion profile of ACTH and cortisol. The individual results

reveal a consistent optimum at lag 1 for all individuals and some

heterogeneity in the higher lag ranges. The former translates to a

significant relation at lag 1 and the latter to non-significant average

cross correlation for higher lags. The algorithm identified the

positive and negative optima, but the correlation is significantly

different from zero in only the positive optimum. A lag of 1 means

that there is a delay of the 10 minutes in the second series

compared to the first time series, which is the interval between two

sampling points. On the other hand, a lag of 0 means that there is

no delay, while a lag of 21 means that the second series precedes

the first series.

Second, the significant relation between the two other pituitary

hormones prolactin (PRL) and TSH is shown and serves as an

example of how the network behaves in cases that are less evident.

Figure 4(B) shows the individual relation profiles based on the

estimated secretion sequences of prolactin and TSH. The results

indicate that some of the secretion events found in prolactin and

TSH are coupled, albeit to a significantly lower degree than found

for ACTH and cortisol. The negative optimum follows the positive

optimum by 30 minutes and may indicate a refractionary period (a

temporary inhibition of new events) in both hormones or in the

mechanism that drives the both secretion events. For reference,

Figure S1 shows these profiles after treatment and Figure S2 shows

these profiles for a lean cohort (BMI 21.8 kg/m2, SEM 0.4, 5 male,

4 female).

With the detailed discussion of the relations between ACTH,

cortisol, TSH, and prolactin, an attempt is made to familiarize the

reader with the application of the methodological concepts

introduced here by showing the crosscorrelation results in full

before abstracting these concepts in a network. The idea of

directionality will be illustrated here. When the crosscorrelation is

highest at lag 0 the two hormones are maximally associated

without a lag. When the highest crosscorrelation is not at lag 0, a

delay between the two hormones (may) exists. Since not all peaks

are sharp ambiguity can arise. For example, when the cross-

correlation at lag 0 and at lag 1 is similar it is not clear whether

there is a temporal direction. The directionality is here validated

by differentiating the association at the optimal lag against the

association at lag 0.

Figures 4(A) and 4(B) illustrate how the method summarizes a

relation between hormones and how the detection of optima

performs in real data. Having described the detected relations

between ACTH-cortisol and TSH-prolactin, it is only natural to

wonder whether there are detectable crossed relations between

these hormones. Figure 4(C) shows the relation between ACTH-

TSH is significant at lag 0 although the association at lag 1 is

almost as high. Figure 4(E) points out that the relation between

ACTH-prolactin is similar in timing but with some narrower

optimum. Since ACTH and cortisol are related (see Figure 4(A))

the relations with TSH on the one hand and prolactin on the other

hand are also investigated. Figure 4(D) shows that there is a

significant relation between cortisol and TSH, which is not

surprising given that ACTH and TSH are significantly associated.

The relation between cortisol and prolactin, shown in Figure 4(F),

is consistent with the latter relation. It is interesting to note that

ACTH-TSH shows an optimum at lag 0 or 1 but that cortisol-

TSH shown an optimum at lag 21 or 0, neither relations are with

detectable directionality. The relation ACTH-prolactin is sharp

and located at lag 0 while the cortisol-prolactin relation is

identified at lag 21.

The relations described in the preceding paragraph show the

interconnectedness of the hormones which is illustrative of the

network structure governing these processes. Figure 4 is the basis

for a small part of the network. The positive association between

ACTH and cortisol at lag 1 is significant in both the association

and the direction. The latter translates to a directed relation

between ACTH and cortisol in the network. The negative

association is not significant, and thus not included in the network.

All other associations are included as described before with the

addition that negative relations are shown as dashed lines to allow

Figure 5. The dynamic hormone network and the treatment
effect. Links with an arrow indicate directionality, links without are
suppressed. The black circles indicate a significant treatment effect. The
top four hormones are release in the pituitary, while the others are
released in the periphery, and glucose is ingested as food.
doi:10.1371/journal.pone.0096284.g005
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for easy visual discrimination between positively and negatively

associations. Finally, a solid black circle is added to each relation

that changed as a result of the treatment. The mathematical details

of the procedure are in the Appendix.

The network with lagged relations is shown in Figure 5. In this

figure only the non-instantaneous relations are shown for brevity,

the complete list of identified significant relations, directionality,

and treatment effects is tabulated in Table 1. Of the 36 identified

relations, 8 are significantly affected by the treatment with

bromocriptine (and 6 show a tendency to an effect with a q-value

between 0.05 and 0.10). The majority of the treatment affected

relations are targeting either TSH or PRL, but relations that target

ACTH, cortisol, insulin and GH are also found.

Discussion

The results point out the hormones that appear to be associated

during a normal day, and which of these relations changed as a

result of the treatment with dopamine d2 agonist bromocriptine.

Well-established associations were found for ACTH and cortisol

[26–29], and between cortisol and TSH [30,31]. The latter serves

as a partial validation of the method. The network further revealed

that insulin is with a positive relation to leptin, glucose and GH,

Table 1. The network is based on the data presented in this table.

Relation Lag in t Type Relation q-value p-value directionality Treatment effect q-value

GH-INS 6 2 5.432e-07 0.636 0.080,

INS-GH 15 + 5.064e-03 0.000 0.991

TSH-GH 0 + 9.897e-04 NaN 0.892

PRL-GH 0 + 5.785e-03 NaN 0.012*

GLC-GH 5 2 1.883e-03 0.252 0.366

INS-TSH 15 + 9.897e-04 0.000 0.658

INS-TSH 1 2 3.619e-04 0.091 0.573

GH-TSH 0 + 9.897e-04 NaN 0.892

GH-TSH 10 2 1.397e-03 0.000 0.080,

PRL-TSH 0 + 1.312e-03 NaN 0.592

ACTH-TSH 0 + 9.897e-04 NaN 0.185

ACTH-TSH 21 2 5.248e-05 0.000 0.043*

CRT-TSH 0 + 1.312e-03 NaN 0.080,

CRT-TSH 21 2 7.605e-04 0.000 0.051,

GLC-TSH 1 2 9.562e-03 0.303 0.146

INS-PRL 12 2 7.622e-06 0.000 0.099,

GH-PRL 0 + 5.785e-03 NaN 0.012*

TSH-PRL 0 + 1.312e-03 NaN 0.592

ACTH-PRL 0 + 4.296e-03 NaN 0.146

ACTH-PRL 23 2 3.854e-03 0.001 0.043*

CRT-PRL 23 2 5.597e-04 0.000 0.007*

GLC-PRL 21 2 1.312e-03 0.005 0.043*

INS-ACTH 6 2 1.196e-03 0.125 0.158

GH-ACTH 3 2 5.069e-03 0.151 0.040*

TSH-ACTH 0 + 9.897e-04 NaN 0.185

PRL-ACTH 0 + 4.296e-03 NaN 0.146

INS-CRT 17 2 2.510e-04 0.005 0.185

PRL-CRT 1 + 1.290e-03 0.817 0.146

ACTH-CRT 1 + 2.109e-11 0.001 0.676

GLC-CRT 2 2 2.682e-03 0.008 0.070,

INS-LPT 23 + 5.069e-03 0.040 0.687

CRT-LPT 2 2 2.878e-03 0.022 0.185

GLC-LPT 14 2 3.880e-03 0.094 0.146

INS-GLC 1 + 5.085e-03 0.744 0.862

INS-GLC 11 2 1.859e-03 0.003 0.676

GH-GLC 20 + 5.209e-03 0.013 0.291

For each relation the lag, in terms of t, is shown. The type of the relation, positive or negative, is indicated by + or 2. The q-value of the identified relations are false
discovery rate corrected (at a = 0.01). For each relation the p-value for directionality is shown (H0 : t = 0). The last column shows the q-value of the treatment effect (at
a = 0.10) and the asterisks (*) marks the significant treatment effect (,0.05), a tilde (,) a tendency to an effect (0.05,q,0.10). (t refers to a 10 minute interval).
doi:10.1371/journal.pone.0096284.t001
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and with a negative relation to ACTH, PRL and glucose. These

resuls appear inline with literature. It is worthwhile to note that the

treatment did not change the relation between insulin and PRL

(see Table 1). Similarly, a stable relation is identified between

insulin and glucose.

Contrasting the previous examples, the relation between TSH

and prolactin is only known to exist under extra-physiological

conditions in which exogenous thyrotropin-releasing hormone

(TRH) is injected in a non-physiological dose which results in an

increase in both TRH and prolactin concentration [32]. Whether

the mode of action of TRH is similar under physiological

conditions is still unknown. Here we provide evidence that can

support the hypothesis that this mechanism is also active under

physiological conditions. Based on the relations shown in Figure 4

it is speculated that the associations presented are the result of

ACTH directly, ACTH in combination with TRH, or between

CRH and TRH.

Previous observations in obese subjects have suggested that

central dopamine receptor functioning is impaired [33]. Different

studies have demonstrated that short-term treatment with

bromocriptine decreased leptin, insulin, TSH, ACTH and PRL

secretion [34]. The difference between the network before and

after bromocriptine administration might be explained by

improved insulin sensitivity. If insulin is important to feedback

signaling of different hypothalamic-pituitary hormone systems,

gastric bypass surgery in the obese patient might be a suitable

model of insulin sensitivity, because of its effect on insulin secretion

and sensitivity [35–37].

With respect to the experimental data, the largest unknown is

the day-to-day intra-subject variation. The latter issue cannot be

solved statistically, but requires repeated 24-hr observations of the

same individuals, preferably on consecutive days. Due to

restrictions on the allowable volume of blood extraction, such is

not possible without further advancement in measurement

techniques that allow for an order of magnitude reduction in the

required sample volume. The latter is notwithstanding plausible

additional (ethical) restrictions related to a .48-hr observation-

sampling regime.

The present approach of relating secretion patterns of

circulating hormones attempts to unravel known and unknown

relations between hormone systems. The results are presented

without pretending that any unknown relation, if statistically

significant, is proof of a direct relation. We have shown how

relations and differences can be detected in a case-control type of

context by assessing the treatment effect of bromocriptine. The

latter idea can be extended to other cases, and normal ranges can

be defined for well-defined subgroups. Given such a reference the

deviations in the hormone relations can interpreted as a departure

from a healthier state [38,39].

Conclusions

Detecting relations in systems with a level of complexity that is

similar to the human endocrine ensemble is not easy. Our

approach gives associations between hormones, and even in cases

of detected directionality, no claims about causation can be made.

Nevertheless with the use of observational data we are able to

detect many known relations between hormones. This serves as a

validation of the method. Most relations are previously described

in literature, but not in conjunction with the other relations. In

addition to the expected relations we were able to identify some

relations, such as TSH and PRL, that are without evidence under

physiological conditions.

What our approach adds is the unsupervised detection of these

relations in a cohort and the subsequent evalution of a treatment

effect. The network approach provides an convenient visualization

of the identified relations. The analysis of the intervention with

bromocriptine reveals that many of the relations are conserved,

pointing to a remarkable consistency in the complex relations

between endocrine entities. As the insulin resistance improved as a

result of the treatment, the relations involving TSH, cortisol and

GH appear the most affected along with the drastic changes in

relations with PRL.

Supporting Information

Materials S1 Mathematical Appendix and Figures S1
and S2. Figure S1. The after treatment relations between
ACTH, TSH, prolactin, and cortisol are shown here in
more detail. ACTH-cortisol is clearly connected. The TSH-

prolactin relation is more modest but still significant. The relation

ACTH-TSH is significant, but shows a wide optimum, interest-

ingly Cortisol-TSH shows a similarly wide optimum which is

shifted to the right. ACTH-Prolactin shows a narrow optimum

while cortisol-prolactin is again wider and shifted to the right.

Figure S2. The lean control relations between ACTH,
TSH, prolactin, and cortisol are shown here in more
detail. ACTH-cortisol is clearly connected. The TSH-prolactin

relation is more modest but still significant. The relation ACTH-

TSH is significant, but shows a wide optimum, interestingly

Cortisol-TSH shows a similarly wide optimum which is shifted to

the right. ACTH-Prolactin shows a narrow optimum while

cortisol-prolactin is again wider and shifted to the right.

(PDF)
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