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ABSTRACT 
 
We applied a recently introduced universal image quality index Q that quantifies the distortion of a processed image 
relative to its original version, to assess the performance of different graylevel image fusion schemes.  The method is as 
follows. First, we adopt an original test image as the reference image. Second, we produce several distorted versions of 
this reference image. The distortions in the individual images are complementary, meaning that the same distortion 
should not occur at the same location in all images (it should be absent in at least one image). Thus, the information 
content of the overall set of distorted images should equal the information content of the original test image. Third, we 
apply the image fusion process to the set of distorted images.  Fourth, we quantify the similarity of the fused image to 
the reference image by computing the universal image quality index Q.  The method can also be used to optimize image 
fusion schemes for different types of distortions, by maximizing Q through repeated application of steps two and three 
for different parameter settings of the fusion scheme. 
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1. INTRODUCTION 
 
The increasing availability and the dramatic cost-reduction of co-registered multimodal imagery from different types of 
sensors has spurred the development of techniques for image fusion1,9,13,21-23,25,28,29,31.  The goal of image fusion is to 
represent the visual information present in any number of input images in a single fused image, without the introduction 
of distortion and artifacts or loss of information.  
 
The results of image fusion schemes are usually evaluated visually. Quantitatively assessing the performance is a 
complicated issue because the ideal composite image is normally not available11,14,26,30. One possible approach is to 
generate sets of distorted source images from a known reference image, and compare the fused image with the original 
reference image9,15.  
 
Most image fusion schemes currently in use take a hierarchical approach. They first decompose the input images into 
meaningful details over a range of spatial scales. Then they select the visually most relevant details at each spatial scale 
from the set of (decomposed) input images. Finally they construct a composite or fused image from the set of selected 
details.  The result of hierarchical image fusion schemes depends on the number of levels (spatial scales) that are used in 
the image description. The minimal number of levels required to obtain a perceptually appreciable result depends on (1) 
the size of the relevant image details, (2) the nature of the multiresolution description, (3) the type of filters used in the 
analysis and synthesis phases of the fusion process, and (4) the position and orientation of the details in the source 
images16.  
 

2.  THE UNIVERSAL IMAGE QUALITY INDEX 
 
 
Wang27 recently introduced a universal image quality index Q that quantifies the distortion of a processed image relative 
to its original version. The quality index correlates with the subjective evaluations of human observers for a wide variety 
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of distortions.  It is defined as a combination of three factors: loss of correlation, luminance distortion, and contrast 
distortion.  Let x { | 1, 2, , }ix i N= = ⋅⋅⋅  and { | 1,2, , }iy y i N= = ⋅⋅⋅  be the original and processed image signals 
respectively.  The quality index Q is then given by: 
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The dynamic range of Q is [-1,1]. The maximal value 1 only occurs when both images are identical, i.e. i iy x= for 
all 1,2, ,i N= ⋅⋅ ⋅ .  The minimal value -1 occurs when 2i iy x x= −  for all 1,2, ,i N= ⋅⋅ ⋅ .  The first component in Equation 
(1) is the correlation coefficient between x  and y , which measures the degree of linear correlation between both 
images, and has a dynamic range of [-1,1]. The maximal value 1 is obtained when i iy ax b= +  for all 1,2, ,i N= ⋅⋅ ⋅ , 

where a  and b  are constants and 0a > .  Even if x  and y  are linearly related, there may still occur relative 
distortions between them. These are evaluated in the second and third components. The second component measures 
how close the mean luminance both images are, and ranges between [0,1]. It equals 1 when x y= . Since xσ  and yσ  can 

be regarded as estimates of the contrast of x  and y , the third component measures how similar the contrasts of both 
images are. It also ranges from [0,1]. The highest value 1 is obtained if and only if x yσ σ=  . 

 
In practice we usually want to characterize an entire image using a single overall image quality measure. However, 
image quality is often spatially variant, meaning that different image regions may have different types of distortions. It is 
therefore more appropriate to measure statistical properties locally and combine them into a single measure. Following 
Wang27 we therefore compute the image quality index Q over local image regions using a sliding window approach. 
Starting from the top-left corner of the image, a sliding window of size 8x8 moves pixel by pixel horizontally and 
vertically through all the rows and columns of the image until the bottom-right corner is reached. At the jth step in this 
procedure the local quality index jQ  is computed over the area of the 8x8 sliding window. If the total number of steps 

is equal to M, the overall image quality index is given by 
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3. IMAGE FUSION METHODS 
 
In this section we give a concise overview of the different grayscale image fusion methods we investigated in this study. 
 
The most straightforward way to fuse graylevel images is to take a (weighted) pixelwise average of the source images. 
Simply taking the mean of the source images significantly reduces the contrast of the details represented in the 
individual source images. A better approach is to determine the optimal weighting coefficients by a principal component 
analysis (PCA) of all input values7,12,18.  In that case the weighting coefficients correspond to the eigenvector of the 
covariance matrix of the input values that has the largest eigenvalue. 
 
Hierarchical or multi-scale image fusion algorithms are widely used in image fusion, since they can preserve the 
perceptually relevant contrast details from the original source images and they do not introduce many artifacts in the 
fusion process. These methods first decompose the source images in contrast details at different spatial scales. Then they 
select the perceptually most relevant (combination of) details from these individual decompositions and use these to 
construct a multi-scale representation for the fused image. Finally, they reconstruct the fused image from its multi-scale 
representation. The multi-scale image fusion techniques we investigated in this study are respectively: the Difference of 
Low-Pass (DoLP) or Laplacian pyramid4, the Ratio of Low-Pass pyramid21, the contrast pyramid24, the filter-subtract-
decimate Laplacian pyramid2,6, the gradient pyramid3,6, the morphological pyramid20, the discrete wavelet transform8-

10,19, and a shift invariant extension of the discrete wavelet transform8,15-17. Each of these methods will be discussed 
briefly in the folowing sections. 
 
3.1. Laplacian pyramid fusion 
 
An image pyramid is a collection of images at different spatial scales that together represent the original source image. 
Such a multi-resolution image representation can be obtained through a recursive reduction of the input image, i.e. a 
combination of low-pass or band-pass filtering and decimation. The popular Laplacian pyramid (also known as 
Difference of Low-Pass pyramid), introduced by Burt and Adelson5, is a sequence of images in which each image is 
Laplacian filtered and subsampled copy of its predecessor.  The construction of this pyramid is as follows. First, a 
Gaussian or low-pass pyramid is constructed.   The original image is adopted as the bottom or zero-level of the Gaussian 
pyramid. Each node of pyramid level i (1 i N≤ ≤ , where N is the index of the top level of the pyramid, i.e. the lowest 
resolution level) is obtained as a (Gaussian) weighted average of the nodes at level 1i − . Because of the reduction in 
spatial frequency content each image in the sequence can be represented by an array that has only half the dimensions of 
its predecessor. The process which generates each image in the sequence from its predecessor is called a REDUCE 
operation, since both the sample density and the resolution are decreased. A set of band-pass filtered images that 
correspond to Laplacian or difference of low-pass filtered images, is obtained by taking the difference of successive 
levels of the Gaussian pyramid. Since these levels differ in sample density it is necessary to interpolate new values 
between the given values of the lower frequency image before it can be subtracted from the higher frequency image. 
Interpolation is achieved simply by defining the EXPAND operation as the inverse of the REDUCE operation. Thus, 
every level in the Laplacian pyramid is a difference of two levels in the Gaussian pyramid, making it equivalent to a 
convolution with a Laplacian-like band-pass filter.  
 
The Laplacian pyramid is a complete representation of the input image. The input image can be recovered exactly by 
reversing the steps used in the construction of the pyramid. The Laplacian image fusion scheme is a three step 
procedure5,21,22. First, a Laplacian pyramid is constructed for each of the source images. Next, a Laplacian pyramid is 
constructed for the composite image by selecting from corresponding nodes in the component pyramids those that have 
a maximum absolute value. Finally, the composite or fused image is recovered from its pyramid representation through 
the EXPAND and add reconstruction procedure. 
 
3.2. Ratio of Low-Pass pyramid fusion 
 
The construction of a Ratio of Low-Pass or RoLP pyramid21 is very similar to that of a Difference of Low-Pass (DoLP) 
or Laplacian pyramid. First, a Gaussian pyramid is created for the input source image. Instead of taking the difference 



between successive layers of the Gaussian pyramid, as is done in the construction of the DoLP pyramid, we take the 
ratio of two successive layers. The rationale for this approach is that global luminance changes should have no influence 
on the multiresolution representation of the image.  
 
The RoLP image fusion scheme is essentially identical to the Laplacian scheme. First, a RoLP pyramid is constructed 
for each of the source images. Then, the RoLP pyramid of the composite image is composed by comparing 
corresponding nodes in the individual pyramids and selecting those that have a maximum absolute contrast value. 
Finally the fused image is recovered from its pyramid representation through the EXPAND and multiply reconstruction 
procedure. 
 
3.3. Contrast pyramid fusion 
 
A contrast pyramid21 is defined as the difference of the RoLP and the identity pyramid. The rationale for this image 
representation is the fact that the human visual system is sensitive to luminance ratios or contrast. The fusion scheme is 
identical to the DoLP and RoLP fusion schemes. 
 
3.4. Filter-Subtract-Decimate pyramid fusion 
 
The filter-subtract-decimate (FSD) process reduces the computational complexity of the Laplacian pyramid construction 
process2,6. However, the resulting image representation does not allow an exact reconstruction of the input image. For 
binomial filters of small extent significant reconstruction errors may result16. The fusion scheme is identical to the DoLP 
and RoLP fusion schemes. 
 
3.5. Gradient pyramid fusion 
 
In addition to extracting edge information via the Laplacian or RoLP pyramids, an image can also be represented as a 
series of gradient pyramids3. The gradient pyramid can be generated by applying gradient operators to each level of the 
Gaussian pyramid. This produces horizontal, vertical, and diagonal pyramid sets for each level in the Gaussian pyramid. 
To reconstruct an image from its gradient pyramid is somewhat more complicated than reconstruction from either a 
Laplacian or a RoLP pyramid, because there are several intermediate steps involved. The fusion scheme is identical to 
the other pyramid fusion schemes. 
 
3.6. Morphological pyramid fusion 
 
A morphological low-pass pyramid can be constructed by successive application of an alternating iterative 
morphological filter followed by sampling20. Linear filters alter object intensities and therefore the estimated location of 
their contours. In contrast, morphological filters remove image details without adding a grayscale bias. They are 
therefore well suited for hierarchical pattern decomposition. A morphological band-pass pyramid is obtained by 
subtracting the successive layers of a morphological low-pass pyramid, using the morphological (dilation) equivalent of 
the linear EXPAND operation.  
 
3.7. Discrete wavelet transform fusion 
 
A method similar to the pyramid image fusion schemes is based on the discrete wavelet transform (DWT). The main 
difference is that while image pyramids are overcomplete signal representations, the wavelet transform results in a 
nonredundant image representation. A drawback of the DWT is the fact that it is a shift-variant signal representation, i.e. 
a shift of the input signal yields a nontrivial modification of the transformation coefficients. When applied to pixel-level 
image fusion, this results in a shift dependent fusion scheme. This problem can be avoided by using a shift invariant 
extension of the DWT (SIDWT), which yields an overcomplete and thus shift invariant multiresolution image 
representation15-17. This technique is especially useful for the fusion of motion sequences, where it outperforms other 
methods with respect to temporal stability and consistency8,15-17.  
 
 



3.8. Node selection rule 
 
All multiscale fusion schemes investigated in this study were applied with a node-wise maximum value selection rule, in 
combination with taking the average of the lowest resolution image representations (pyramid top levels).  In practice, 
there is of course a multitude of selection and combination rules available.  The actual choice of the rules will depend on 
the intended application.   
 
 

4. EXPERIMENTS 
 
 
4.1. Creation of complementary image pairs  
 
Figure 1a shows the original 512x512 image of Lena. We repeatedly applied the blur tool in Photoshop 7, using a soft 
brush with a diameter of 230 pixels, to eliminate high spatial frequency details from Lena’s face and from the feathers 
on her hat. We applied the eraser tool, using a soft brush with a diameter of 300 pixels and with the opacity set to 40%, 
to create the impression of a highlight and a shadow.  Figure 1b shows the result of eliminating the high spatial 
frequency details from Lena’s face, and the addition of a highlight to the upper right corner of the image. Figure 1c 
shows the result of eliminating the high spatial frequency details from the feathers on Lena’s hat, and the addition of a 
shadow to the lower right corner of the image.  
 
4.2. Fusion of complementary image pairs 
 
The complementary image pairs from Figure 1b and 1c were fused using the different image fusion procedures 
described in Section 3. An example of a fused result is shown in Figure 1d. The multiscale fusion methods (i.e. all 
methods presented in Section 3 except the pixelwise average and the principal component method) were applied with the 
number of scales ranging from 1 to 7.  
 
4.3. Image fusion quality 
 
The quality of the fused result was determined relative to the original Lena image in Figure 1a by computing the quality 
measure Q (Equation 2) with both the fused image and the original Lena image as input.  Figure 2 shows the quality of 
the fusion result as a function of the number of levels used in the fusion process, for all multiscale fusion methods 
investigated in this study.  For comparison we also show the result of simply averaging the input images. The result of 
the principal component analysis is not shown here since it coincides with the result of the averaging procedure. Figure 2 
shows that the Laplacian image fusion scheme has the best overall performance. The contrast pyramid has a comparable 
performance which is only slightly below that of the Laplacian pyramid.  The discrete wavelet transform and the shift 
invariant discrete wavelet transform perform less well. When up to 4 levels are used in the fusion process the results of 
these two methods are comparable. For more than 4 levels the discrete wavelet transform outperforms the shift invariant 
discrete wavelet transform. When 7 levels are used in the fusion process the result of the discrete wavelet transform even 
approaches that of the Laplacian pyramid scheme. In contrast, the quality of the fusion result of the shift invariant 
discrete wavelet transform decreases with an increasing number of fusion levels. Identical and of still lower quality is the 
result of the filter-subtract-decimate and gradient pyramid fusion processes. In contrast to the other methods the result of 
these fusion schemes is nearly independent of the number of resolution levels or scales used in the fusion process.  The 
quality of the morphological fusion scheme steadily decreases with the number of fusion levels. When more than 5 
levels are used the quality of the fused result is even below that of a simple average. Finally, the ratio pyramid shows the 
overall lowest performance, which is always below the quality obtained through simple pixelwise averaging.  
 
Most hierarchical image fusion procedures appear to have a maximum level beyond which the quality of the fused result 
does not increase, and beyond which it sometimes even decreases. The reason is that oversegmentation occurs at these 
levels, resulting in incorrect local mean image values. 
 



Figure 3 shows the quality of the different levels of a 7 level Laplacian pyramid representation of respectively the two 
input images from Figure 1b and 1c, and an example of a fused result in Figure 1d. The quality of each level is 
computed relative to the corresponding level of the Laplacian pyramid representation of the original Lena image as 
shown in Figure 1a. This figure shows that the quality of the Laplacian pyramid layers of the fused image is always 
larger than the quality of each of the individual input image layers. This implies that the fused image provides a more 
complete representation of the image details at all levels of resolution. Note that the quality of the lower levels of the 
image in which Lena’s hat was blurred is less than the quality of corresponding layers of the image in which her face 
was blurred. This is a result of the fact that the Lena’s hat contains a larger amount of small scale detail than her face. 
Hence, blurring the hat removes a larger amount of detail than blurring her face.  As a result the quality of the lower 
levels of the blurred-hat image is less than those of the blurred-face image. 
 
 
 

5. CONCLUDING REMARKS 
 

We showed that a recently introduced universal image quality index Q that quantifies the distortion of a processed image 
relative to its original version27, can be used to assess the performance of graylevel image fusion schemes.  The method 
involves the use of an original test image as the reference image, and two or more versions of this reference image that 
have (partly) complementary distortions. The fusion schemes to be evaluated are applied to the distorted images, and the 
image quality index Q is computed with the fused result and the original reference images as input. The method can in 
principle be used to optimize image fusion schemes for different types of distortions, by maximizing the image quality 
index Q for different parameter settings of the fusion scheme. 
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Figure 1  (a) Original image of Lena. (b) Result of the application of a local blur operator to Lena’s face and the 
superposition of a bright glare spot to the upper right corner of image (a); Qb=0.7854. (c) Result of the application of a 
local blur operator to the feathers on Lena’s hat and the superposition of a dark shadow to the lower right corner of 
image (a); Qc=0.6751. (d) Result of the fusion of images (b) and (c) with a 7 level Laplacian pyramid, in combination 
with a maximal node selection rule and the adoption of the average of the mean intensities (top-levels) of (b) and (c) as 
the mean intensity of (d). Qd= 0.8986. 
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Figure 2  Quality of the fusion result as a function of the number of levels used in the fusion process, for all multiscale 
fusion methods investigated in this study.  The result of simple pixelwise averaging is also shown for comparison. The 
result of the principal component analysis is not shown here since it coincided with that of the averaging process. 
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Figure 3  Quality of the different levels of a 7 level Laplacian pyramid representation of respectively the two input 
images from Figure 1b and 1c, and  the fused result shown in Figure 1d. The quality of each level is computed relative to 
the corresponding level of the Laplacian pyramid representation of the original Lena image as shown in Figure 1a.  
 


