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ABSTRACT 
 
We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated 
color space. The resulting color image quality index quantifies the distortion of a processed color image relative to its 
original version. We evaluated the new color image quality metric through observer experiments in which subjects 
ranked images according to perceived distortion. The metric correlates strongly with human perception and can 
therefore be used to assess the performance of color image coding and compression schemes, color image enhancement 
algorithms, synthetic color  image generators, and color  image fusion schemes.  
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1. INTRODUCTION 
 
In many areas of research and development that are concerned with digital imagery there is a real need for a digital 
metric that quantifies how distorted a processed color image appears relative to the original version of the same image, 
as perceived by a human observer.  For instance, in computer graphics, we may wish to compare the degree of 
photorealism of two different rendering methods, or to evaluate visible errors between a synthetic and a real scene. In 
image coding, we may need to evaluate the results of two different compression methods. In image processing, we may 
need to assess the performance of a new color image enhancement technique. In false-color multispectral image fusion, 
we may need to quantify the degree of photorealism of fused imagery. Unfortunately, common metrics like the root 
mean square error (RMSE) are not viable for these tasks because the human visual system does not compare images this 
way (e.g.1 ). Psychophysical evaluation of different image processing techniques is tedious, expensive, and difficult to 
automate. Hence there is a great need for a validated computational image quality metric that correlates with human 
perception and that can be used for automatic optimization of the parameters involved in different image processing and 
rendering techniques.  
 
Over the years a large number of objective metrics have been proposed to assess image and video quality2-29. For an 
overview of different metrics see16,30. Ironically, the metrics that are most widely applied today, like the root mean 
squared error (RMSE) or the peak signal-to-noise ratio (PSNR), are also the ones that correlate least with human 
perception31-41. Human visual system models are more successful, but they are not widely used, since they generally are 
computationally complex.   
 
Most of the digital image distortion metrics in the literature apply to grayscale images. Only a few studies address color 
image quality metrics13,17,25,26,42-44.  Grayscale image quality metrics can in principle be generalized to color image 
quality metrics by applying them to the three (RGB) color channels individually, and then weighing and combining the 
errors in the different channels together.  However, this direct approach does not relate to human perception.  The RGB 
representation is based on primary relative color. This space does not represent color as perceived and analyzed by the 
human visual system. The human visual system uses three paths to analyze color images: one for achromatic information 
and two for chromatic contrast signals. As a result, the individual channels of an RGB color image are perceptually 
highly correlated. Hence, the RGB image should first be transformed into a perceptually uncorrelated color space before 
further analysis is performed. 
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Most of the algorithms used the literature to quantify the distortion of a processed grayscale image relative to its original 
version are designed for some special types of distortions, such as blocking artifacts 3,4,29. Wang and Bovik45 recently 
introduced a general grayscale image quality metric that quantifies a whole range of local image distortions. The quality 
index is computationally simple and correlates with the subjective evaluations of human observers for a wide variety of 
distortions. Here we show that this metric can be extended to color imagery, by applying it to the individual channels of 
a color image in the newly introduced perceptually decorrelated l�� color space46, and by combining the results from the 
individual channels into a weighted vector mean.  
 
 
 

2.  THE GRAYSCALE IMAGE QUALITY METRIC 
 
Wang and Bovik45 recently introduced a universal image quality metric Q that quantifies the distortion of a processed 
image relative to its original version. The distortion metric is defined as a combination of three factors: loss of 
correlation, luminance distortion, and contrast distortion.  Let x { | 1, 2, , }ix i N= = ⋅⋅⋅  and { | 1,2, , }iy y i N= = ⋅⋅⋅  be the 
original and processed image signals respectively.  The quality index Q is then given by: 
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The dynamic range of Q is [-1,1]. The maximal value 1 only occurs when both images are identical, i.e. i iy x= for all 

1,2, ,i N= ⋅⋅ ⋅ .  The minimal value -1 occurs when 2i iy x x= −  for all 1,2, ,i N= ⋅⋅ ⋅ .  The first component in Equation 
(1) is the correlation coefficient between x  and y , which measures the degree of linear correlation between both 
images, and has a dynamic range of [-1,1]. The maximal value 1 is obtained when i iy ax b= +  for all 1,2, ,i N= ⋅⋅ ⋅ , 
where a  and b  are constants and 0a > .  Even if x  and y  are linearly related, there may still occur relative 
distortions between them. These are evaluated in the second and third components. The second component measures 
how close the mean luminance both images are, and ranges between [0,1]. It equals 1 when x y= . Since xσ  and yσ  
can be regarded as estimates of the contrast of x  and y , the third component measures how similar the contrasts of both 
images are. It also ranges from [0,1]. The highest value 1 is obtained if and only if x yσ σ=  . 
 
In practice we usually want to characterize an entire image using a single overall image quality measure. However, 
image quality is often spatially variant, meaning that different image regions may have different types of distortions. It is 
therefore more appropriate to measure statistical properties locally and combine them into a single measure. Following 
Wang45 we therefore compute the image quality index Q over local image regions using a sliding window approach. 
Starting from the top-left corner of the image, a sliding window of size 8x8 moves pixel by pixel horizontally and 
vertically through all the rows and columns of the image until the bottom-right corner is reached. At the jth step in this 
procedure the local quality index jQ  is computed over the area of the 8x8 sliding window. If the total number of steps 
is equal to M, the overall image quality index is given by 



 
1

1 M

j
j

Q Q
M =

= �  (2) 

 
 

3. THE COLOR IMAGE QUALITY METRIC 
 
In this section we extend the grayscale quality metric Q to include color by applying it to the individual dimensions of a 
perceptually decorrelated color space, and combining the individual components in a (weighted) vector mean. The 
rationale for this approach is the fact that the human visual system processes the retinal image in three decorrelated 
visual channels: one luminance channel and two color opponent channels. As a result, luminance and color distortions 
will contribute independently to perceived image quality, and should therefore be calculated independently before 
combining them into a single overall perceived image quality metric. 
 
The common RGB image representation is based on primary relative color. This space does not represent color as 
perceived and analyzed by the human visual system. In RGB space, there is a strong correlation between the individual 
image channels. For instance, most pixels will have large values for the red and green channels if the blue channel is 
large. The human visual system encodes the chromatic signals conveyed by the three types of retinal cone 
photoreceptors in an opponent fashion. This color opponency is often interpreted as an attempt to remove correlations in 
the signals of different cone types that are introduced by the strong overlap of the cone spectral sensitivities47. Ruderman 
et al.46 recently derived the perceptually decorrelated l�� color space from a principal component transform of a large 
ensemble of hyperspectral images that represents a good cross-section of natural scenes.  
 
In the following sections we first discuss the RGB to l�� transform.  Then we construct the color quality metric by 
applying the grayscale metric Q to each of the channels in the l�� color space. 
 
 
3.1. The RGB to l�� transform 
 
First the RGB tristimulus values are converted to device independent XYZ tristimulus values. This conversion depends 
on the characteristics of the display on which the image was originally intended to be displayed. Because that 
information is rarely available, it is common practice to use a device-independent conversion that maps white in the 
chromaticity diagram to white in RGB space and vice versa 48. 
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The device independent XYZ values are then converted to LMS space by 
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Combination of (3) and (4) results in 
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The data in this color space shows a great deal of skew, which is largely eliminated by taking a logarithmic transform: 
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The inverse transform from LMS cone space back to RGB space is as follows. First, the LMS pixel values are raised to 
the power ten to go back to linear LMS space. Then, the data can be converted from LMS to RGB using the inverse 
transform of Equation (5): 
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Ruderman e.a.46 recently derived a color space, called l��, which effectively minimises the correlation between the LMS 
axes. This result was derived from a principal component transform to the logarithmic LMS cone space representation of 
a large ensemble of hyperspectral images that represented a good cross-section of natural scenes. The principal axes 
encode fluctuations along an achromatic direction (l), a yellow-blue opponent direction (�), and a red-green opponent 
direction (�). The resulting data representation is compact and symmetrical, and provides automatic decorrelation to 
higher than second order. 
 
Ruderman e.a.46 presented the following simple transform to decorrelate the axes in the LMS space: 
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If we think of the L channel as red, the M as green, and S as blue, we see that this is a variant of a color opponent 
model: 
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The resulting data representation is compact and symmetrical, and provides automatic decorrelation to higher than 
second order. 



 
3.2. Construction of the color quality metric 
 
The color quality metric Qcolor

  is defined as: 
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where Ql, Q�, Q� represent respectively the quality factors given by Equation 2, computed for each of the individual l�� 
color channels, and wl, w�, w� are the corresponding weights attributed to the perceived distortions in each of these 
channels. The Q values corresponding to the image distortions used in this study were always positive.  Equation (10) is 
designed in analogy to most modern color difference equations49. 
 
 

4. OBSERVER EXPERIMENTS 
 
To assess the agreement between our color image quality metric and human visual perception we performed observer 
experiments in which subjects ranked images according to perceived distortion. The distortions were produced by 
quantizing the original images along each of the individual dimensions in the perceptually decorrelated l�� color space. 
Since there are many nonlinearities in the way the visual system responds to the retinal image, we can not expect a linear 
relation between the color image quality metric and the perceived amount of distortion. However, since the metric does 
increase monotonically with the perceived amount of distortion, it induces a ranking according to the amount of 
distortion. This ranking should correlate with the ranking produced by the human observers. 
 
4.1. Stimuli 
 
The two original 24 bits color reference images used in this study are shown in Figure 1. These images were selected 
because they show a significant amount of spatial detail on different levels of resolution in combination with a large 
variation in colors. The “Mandrill” image is 512x512 pixels in size, and the “parrots” image is 384x256 pixels in size, 
each pixel being represented by three bytes (one for each of the R,G, and B channels).  For each reference image, a set 
of degraded images was constructed as follows. First, the original image was transformed into the perceptually 
decorrelated l�� representation. In this space, the individual channels of the reference image were progressively and 
uniformly quantized. Uniform quantization was performed by dividing the color space range of the original images into 
a given number of equally large intervals. Coefficients inside an interval were attributed the value of the lower bound of 
the interval. The set of quantization intervals was successively chosen such that the quality index Q from Equation (2) 
was approximately evenly distributed  between 0.1 and 0.9. Finally, the resulting quantized images were transformed 
back to RGB space for display. The effect of quantization along the l dimension is a reduction of the mean luminance of 
the image. Quantization along the � and � dimensions results in an overall color shift. 
 
We used two different image sets. Images in the first set were quantized in a single channel only (l, � or �), and in 7 
progressive steps.  Images in the second set were distorted in two channels simultaneously (either in l and �, l and �, or � 
and �), and again in 7 steps.  As a result, each of the two original reference images has 21 corresponding degraded 
versions in both sets (resulting from the 7 quantization steps in respectively each of the three l�� channels in the first set, 
and for each of the three combinations of 2 individual channels in the second set).   
 
We printed color hardcopies of the reference images and their corresponding quantized representations on high quality 
glossy photographic paper, using a 600 dpi laser printer. The printed images were 7x7 cm2 in size. 
 
4.2. Subjects 
 
Subjects were trained observers, men and women between the ages of 18 and 60. All had normal or corrected-to-normal 
vision, and no known color deficiencies.  
 



 

  
(a) (b) 

Figure 1.  The original 24 bits RGB color images used in the experiments.  The first image (a) represents two parrots, 
and the second image (b) shows the face of a Mandrill monkey. 

 
 
 
4.3. Experimental design 
 
We collected rank ordering data from subjects on the sets of printed color images. First, the subjects were given an 
original (unprocessed) image that served as a reference. Then, on each run, subjects were handed a randomly ordered set 
of  images, corresponding to progressively quantized versions of the reference image. The subjects were asked to rank 
each series of degraded (quantized) color images by how similar each image was in comparison to the given reference 
image. The subjects had the ability to change, as required, the classification that they had already done by doing 
permutations between images until all images were ranked. They had no constraint of time to do this task. We asked the 
subjects to keep the images on a viewing stand as they sorted them and to keep their viewing distance fixed at 
approximately 30 cm. At this distance the visual angle of the images is about 4 degrees.  
 
The prints were presented to the observers in a Macbetch SpectraLight II booth, and thus viewed under homogeneous 
lighting. The luminance reflected from the print was maximally 450 cd/m2 (white paper). The color temperature of the 
illuminant is approximately 6430 K. 
 
To measure how close the rankings produced by the human observers agree with the ranking induced by the metric we 
computed the coefficient Tc,, which corresponds to the correlation between the set of observer rankings and the ranking 
induced by the metric50. Tc, is the average of the Kendall rank-order correlation coefficients between each ranker and the 
metric ranking.  
 
We performed three different experiments. 

1. In the first experiment, 16 observers ranked 7 images that were distorted in a single color channel only, for 
each of the color channels separately and consecutively.  

2. In the second experiment, 4 subjects ranked a mixed subset of 12 of the images used in the first experiment, 
such that each set contained 4 progressively quantized versions of the original image for each of the three color 
channels. 

3. In the third experiment, 4 observers ranked 21 images, corresponding to 7 progressively quantized versions of 
the original image for each of the three color channels. The images were selected such that the quality metric Q 
was well distributed for each of the individual color channels. 



 
4.4. Results 
 

 
Figure 2.   Results of the three experiments. Top row: Experiment 1. Middle row: Experiment 2. Bottom row: 
Experiment 3.  See text for explanation. 
 
Shown in Figure 3 are the results of three experiments. In the first experiment (top images in Fig. 3), the images were 
only distorted in a single channel (l, � or �) as described in section 4.1. The subjects made rankings for the 7 images in 
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each of the three channels separately. Good correlation between the quality metric Q and the average ranking is 
obtained. In the second experiment (middle images in Fig. 3), we selected 12 images out of the 21 used in experiment 1 
so that the quality metric in each channel was well distributed. The subjects made rankings for these 12 images (mixed 
up). The data indicate that the quality levels of the three channels start to compete. At the same Q value, distortions in 
the l channel are given the lowest ranking, followed by the distortions in the � channel and the � channel, respectively. 
Or, in other words, distortions in the � channel are less visible than the same amount of distortion in the � channel and 
the l channel. In the third experiment (bottom images in Fig. 3), 21 images were used that were distorted in two channels 
simultaneously (either in l and �, l and �, or � and �). The subjects made rankings for these 21 images (mixed up). 
Although this was a harder task than in experiments 1 and 2, it could still be performed with satisfaction.  We obtained 
the objective rankings as follows. First, we computed the color quality metric Qcolor (Eq. 10) for different values of the 
weighting factors wl, w� and w�. The values at which the Spearman rank-order correlation coefficient (between objective 
and average subjective ranking) was at maximum are respectively wl=3.3, w�=1.3 and w�= 0.9 for the Parrot image, and 
wl=2.8, w�=0.9 and w�= 0.8 for the Mandrill image. Apparently, the quality metric for l dominates the color quality 
metric. 
 
The coefficient Tc, which can take on values between 0 (no agreement) and 1 (identical rankings), was in the range of 
0.96-0.99, 0.83-0.90, and 0.83-0.85 for respectively the l, � and � channels. This indicates significant agreement, at the 
1% level, between the observer rankings and the ranking induced by the metric. To test the hypothesis that this observed 
agreement in rankings exceeds what one would expect if the rankings had been made randomly, we computed the z 
statistic. Since the probability of obtaining a z value greater than the computed values is p<<0.00001 we may conclude 
with a high degree of confidence that the raters as a group show strong agreement with the metric ranking. After 
establishing this fact in the first experiment, we therefore decided to use less subjects in the rest of the experiments. 
 
 
 
 

5. CONCLUDING REMARKS 
 
The objective image quality measure presented in this paper shows strong correlation with human visual perception. 
Hence, it provides a meaningful objective measure of overall image quality, minimizing the need for time-consuming 
and intricate subjective tests in many digital color image processing applications. 
 
The relative image quality ranking technique used in the present study forces the observers to collapse the ensemble of 
local quality variations over the entire image plane into a single judgment. Observers may use different individual 
criteria to weigh the relative importance of image distortions. These criteria may depend on the type of distortion and on 
the composition of the local image region.  We may gain insight into the way these factors affect the overall perceived 
image quality by giving the observer a clear instruction on how the judgments should be made. For example, the 
observer can be instructed to judge image quality based on the worst artifact. Or, alternatively, to only judge the quality 
of smooth image regions, or the quality of edge regions, etc. When artifacts are suprathreshold, such instructions will 
change the observer's ratings. Consequently, the instructions given to the observer should reflect the technique used in 
the quality metric to sum errors across space and assign a quality rating to the image. Another way of handling this issue 
is to divide the image into small subregions and have the user specify image quality for these different image regions32. 
For some observers the quality of the whole image is quite as important as the quality of each image element; whereas 
for others the color appearance of the background elements is more relevant than the color appearance of the object 
elements51. Within the scope of this paper only a small number of distortions could be investigated. Future research will 
focus on the perceptual attributes that prevail in the perceptual quality judgement, and the effects of their spatial 
distribution (image composition). 
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