
Service Orientation for the Design of HLA Federations

Anthony Cramp, Tom van den Berg, Wim Huiskamp

TNO

Oude Waalsdorperweg 63

2597 AK The Hague

The Netherlands

{anthony.cramp, tom.vandenberg, wim.huiskamp}@tno.nl

ABSTRACT: Service oriented modeling and simulation (M&S) is being pursued by many nations and organizations.

Approaches being taken span from the provision of M&S tools and applications via -as-a-Service cloud computing

technologies to the actual construction of M&S via service oriented techniques. Often these approaches propose that

new technologies are required to achieve service orientation. However, the benefits of service orientation derive from

its core concepts of services, high interoperability, and loose coupling. Achieving service orientation in a High Level

Architecture (HLA) context requires rethinking how federations are designed including the decomposition of simulation

functionality into federates. This paper presents a federation designed in a traditional manner, illustrates how service

oriented design alters the federation design, discusses the benefits and drawbacks of the two approaches, and provides

possible improvements to the Distributed Simulation Engineering and Execution Process (DSEEP) that may become

part of the next iteration of the standard.

1 Introduction

1.1 Service orientation

Service orientation is an approach to the design of

heterogeneous, distributed systems in which solution

logic is structured in the form of interoperating services.

Service orientation has goals of creating intrinsic

interoperability across a distributed system and, thereby,

improving the ability to federate across a multitude of

individual service implementations.

Erl [1] proposes that service orientation is a design

paradigm and constitutes one element of service oriented

computing. Erl’s elements of service oriented computing

along with their inter-relationships are illustrated in

Figure 1.

Figure 1: Service oriented computing.

As is seen in the diagram, all arrows point to Services as

being the core element of service oriented computing. The

benefits of service orientation derive from the structuring

of solution logic (aka simulation) in the form of services.

A Service Oriented Architecture (SOA) captures the

necessary technical information required for services to

achieve meaningful interoperability. A SOA will exist per

distributed system; there is not one single SOA applicable

to all distributed systems. The Open Group has defined a

SOA Reference Architecture (SOA RA) that can be used

for creating a SOA [2]. Quoting the Open Group: “The

SOA RA provides guidelines and options for making

architectural, design, and implementation decisions in the

implementation of solutions. The goal of this SOA RA is

to provide a blueprint for creating or evaluating

architecture.”

The question arises: how can distributed simulation, being

a type of distributed system, benefit from service

orientation? A first step is to analyze how distributed

simulations can be designed with service orientation in

mind, since we believe this is a pre-requisite for realizing

a SOA solution. To this end it is beneficial to look at the

Distributed Simulation Engineering and Execution

Process (DSEEP) [3] - a recommended practice for the

engineering and execution of a distributed simulation

environment - to see how service orientation fits. To date,

DSEEP does not include any specific activities or tasks

for the design and construction of a simulation

environment based on service orientation.

Before we continue, let’s first have a brief summary of

DSEEP, provided in the next section.

1.2 Distributed Simulation Engineering and

Execution Process

DSEEP is a seven step process model for the engineering

and execution of a distributed simulation environment.

Each step is broken down into activities and tasks. The

idea is that the process model is tailored to the needs of a

project, integrating other systems engineering activities

and tasks native to the organization.

The seven steps are in summary:

 Step 1: Define simulation environment

objectives. Define and document a set of

user/sponsor needs that are to be addressed and

transform these needs into a more detailed list of

specific objectives for that environment.

 Step 2: Perform conceptual analysis. Develop an

appropriate representation of the real-world

domain that applies to the defined problem space

and develop the appropriate scenario. Transform

the objectives for the simulation environment to

simulation environment requirements.

 Step 3: Design simulation environment. Produce

the design of the simulation environment. This

involves identifying applications that will

assume some defined role in the simulation

environment (member applications) that are

suitable for reuse, creating new member

applications if required, allocating the required

functionality to the member application

representatives.

 Step 4: Develop simulation environment. Define

the information that will be exchanged at

runtime during the execution of the simulation

environment, establish interface agreements,

modify member applications if necessary, and

prepare the simulation environment for

integration and test.

 Step 5: Integrate and test simulation

environment. Integration activities are

performed, and (formal) testing is conducted to

verify that interoperability requirements are

being met.

 Step 6: Execute simulation. The simulation is

executed and the output data from the execution

is captured and pre-processed.

 Step 7: Analyze data and evaluate results. The

output data from the execution is analyzed and

evaluated, and results are reported back to the

user/sponsor.

1.3 Document overview

This paper discusses a modified DSEEP that includes

service orientation activities in steps 3 and 4. The paper

shows how a particular simulation environment is

designed using the “classic” DSEEP and then shows how

the same simulation environment would be designed with

a “service oriented” DSEEP. Section 2 briefly describes

the Case Study. Section 3 presents the classic DSEEP and

section 4 presents the service oriented DSEEP using

IBM’s Service Oriented Modeling Architecture (SOMA)

as a guide. Section 5 briefly discusses how the High Level

Architecture (HLA) may serve as a SOA for services.

Lastly, section 6 provides a summary and conclusions.

2 Case study

The case study is called “Situational Awareness in

Maritime Missile Defense”, where units in a task force

exchange information to create a common tactical air

picture for real world objects in a real world environment.

Real world objects are for example missiles and aircraft.

Each unit has sensors to track real world objects and a

tactical data link to exchange and manage tracks of real

world objects with the other units in the task force.

The objective of the simulation environment is to measure

and evaluate the different options in creating such a

common tactical air picture. The simulation environment

models the real world environment and real world objects,

the units and their sensors, the relevant command and

control processes, and the tactical data link. The

simulation is a non-real time Monte Carlo simulation,

with stochastic variations in sensor parameters. The scope

of the case study is the design of the simulation

environment, i.e. DSEEP steps 3 and 4.

The case study makes use of SoaML (Service oriented

architecture Modeling Language) and SysML (Systems

Modeling Language) for the design of the simulation

environment. SoaML [5] and SysML [6] are two UML

(Unified Modeling Language) profiles from the Object

Management Group. SoaML is a modeling language for

the specification and design of services within a service-

oriented architecture. SysML is a general-purpose

modeling language for systems engineering applications.

3 Designing a simulation environment –

the classic way

For the design of a simulation environment, DSEEP steps

3 and 4 are applicable. DSEEP design activities are:

Step 3: Design simulation environment

 3.1: Select member applications

 3.2: Design simulation environment

 3.3: Design member applications

Step 4: Develop simulation environment

 4.1: Develop simulation environment data

exchange model

 4.2: Develop simulation environment agreements

These activities are elaborated in the following sections.

3.1 (3.1) Select member applications

The purpose of this activity is to determine the suitability

of individual simulation systems to become member

applications of the simulation environment. This includes

amongst others a search of existing repositories, an

analysis of the capabilities of potential member

applications, and a trade-off analysis.

An example of a simple trade-off table is shown in Figure

2. The rows list the requirements (that is, the operational

activities that the simulation environment must model)

and the columns list the potential member applications.

Each cell lists the suitability (in the range 1 to 3) of the

potential member application for fulfilling the listed

requirement. A more complex trade-off table may

indicate how various design options perform against

relevant criteria.

Figure 2: A simple trade-off table.

3.2 (3.2) Design simulation environment

The purpose of this activity is to prepare the simulation

environment design and allocate the responsibility to

represent the entities and actions in the conceptual model

to the member applications.

Once the member applications are selected, the physical

architecture of the simulation environment can be

developed. This includes amongst others the allocation of

modeling responsibilities to member applications and the

evaluation of design options.

The structure of the simulation environment can be

represented with a SysML Block Definition Diagram

shown in Figure 3.

Figure 3: Physical structure of the simulation environment.

SV-1 Systems Interface Description (Structure)

«Software»

SA Federation

«Software»

Recorder

«Software»

Unit

«Software»

Execution

Manager

«Software»

Coordinator

«Software»

Threat Generator

«Software»

Run Time

Infrastructure

«Software»

Dashboard

1

+threat generation

1

+coordination

1 1 1

+execution manament

1

+unit simulation

1..*

Figure 3 shows the block named SA Federation, which is

composed of a block named Execution Manager, a block

named Threat Generator, etc. The composition

relationship shows that the SA Federation is composed of

one Execution Manager that fulfills the role execution

management, one Threat Generator that fulfills the role of

threat generation, and one or more Units that fulfill the

role unit simulation.

The allocation of modeling responsibilities to member

applications can be visualized using the SysML allocation

relationship as shown in Figure 4. Here the allocation

relationships are stereotyped with

IsCapableOfPerforming.

Figure 4: Allocation of modeling responsibilities.

3.3 (3.3) Design member applications

The purpose of this activity is to design member

applications.

This activity is not further elaborated.

3.4 (4.1) Develop simulation environment data

exchange model

The purpose of this activity is to develop the simulation

data exchange model.

The allocation of responsibility of modeling operational

activities to member applications will lead to

requirements on information exchange between member

applications. The information exchange requirements can

be specified in a logical data model, a logical

representation of the Simulation Data Exchange Model

(SDEM). The entity items represent the data exchanged

by member applications. The entity items may be grouped

in modules, and augmented with attributes and data types.

An example of a logical data model where the data is

grouped in modules is shown in Figure 5.

Figure 5: Logical data model of SDEM.

Based on the entity items specified in the logical data

model, a physical representation of the SDEM can be

developed; for HLA the physical representation

corresponds to the Federation Object Model (FOM).

3.5 (4.2) Establish simulation environment

agreements

The purpose of this activity is to establish the operating

agreements among member applications to establish a

fully consistent, interoperable, simulation environment.

Various diagrams can be used to capture simulation

environment agreements and describe the way in which

simulation architecture services (i.e. HLA RTI API

services) are used by member applications. Simulation

environment agreements cover issues such as

initialization, synchronization, termination, progression of

time, events, life cycle of entities, update rates, etc.

Diagrams that can be used to visualize agreements

between member applications include UML state

transition diagrams (e.g. for simulation execution states),

UML sequence diagrams (e.g. for specific event traces),

and UML activity diagrams (e.g. for describing the

actions that must be performed in a certain state). These

diagrams are generally system oriented and describe

agreements from a system point of view.

SV-5 Operational Activ ity to Systems Function Traceability

«Software»

SV-1::Threat

Generator

«OperationalActiv ity»

Launch

(from OV-5)

«OperationalActiv ity»

Detonate

(from OV-5)

«OperationalActiv ity»

Fly

(from OV-5)

«Software»

SV-1::Coordinator

«OperationalActiv ity»

Resolv e Identification and

Classification Conflicts

(from OV-5)

«OperationalActiv ity»

Resolv e Track Correlation

Conflicts

(from OV-5)

«OperationalActiv ity»

Resolv e Track Reporting

Conflicts

(from OV-5)

«IsCapableOfPerforming»

«IsCapableOfPerforming»

«IsCapableOfPerforming»

«IsCapableOfPerforming»

«IsCapableOfPerforming»

«IsCapableOfPerforming»

DIV-2 Logical Data Model

«LogicalDataModel»

Link16 Module

J3.2 Air Track

J7.0 Track Management

J7.2 Correlation

«LogicalDataModel»

Platform Module

Aircraft

Detonation

Missile

Munition

PhysicalEntity

Platform

SurfaceVessel

WeaponFire

«LogicalDataModel»

Execution Management Module

Create Object Request

Create Object Result

EM Message

Set RNG State

Set Variable Request

Set Variable Result

4 Designing a simulation environment – a

service oriented approach

The previous section described the approach for designing

a simulation environment using a more systems oriented

approach based on DSEEP. This section introduces the

notion of service and identifies activities and tasks for

designing a simulation environment following a services

oriented approach that is currently lacking in DSEEP.

This approach is based on the main steps in SOMA

(Service-Oriented Modeling and Architecture), a

methodology from IBM for the identification,

specification and realization of services in a service

oriented architecture [4]. Using a service oriented

approach based on SOMA, the activities for DSEEP step

3 and 4 are now as follows:

Step 3: Design simulation environment

 3.1: Identify services

 3.2: Specify services

 3.3: Realize services

Step 4: Develop simulation environment

 4.1: Compose services

 4.2: Implement services

Throughout these activities the service orientation design

principles from [1] should be followed. The activities are

described in the following sections.

4.1 (3.1) Identify services

The purpose of this activity is to identify candidate

services that are involved in the simulation environment.

SOMA describes three techniques for identifying

services: goal-service modeling (using objectives and

performance measures), domain decomposition (a top

down-down approach), and existing asset analysis (a

bottom up approach). These three techniques can equally

be applied to the identification of services in a simulation

environment. While identifying candidate services also

modeling responsibilities should be allocated to these

services. In case of existing services, modeling

responsibilities should also be derived from these services

(reverse-engineered).

This activity includes the following tasks:

 Perform top-down analysis to identify services,

by using the conceptual model and simulation

environment requirements.

 Perform bottom-up analysis to identify services,

by searching repositories and surveying existing

components, interfaces, services, etc.

 Perform goal-service modeling to identify

services, by using the objectives and

performance measures of the simulation

environment.

 Categorize services in a service hierarchy or

grouping.

 Allocate modeling responsibilities to services.

Figure 6: Services architecture.

Sv cV-1 Serv ices Context Description (Architecture)

«serv icesArchitecture»

Situational Awareness

«serv iceContract»

Surv eillance

«serv iceContract»

Information

Management

s2 :Surv eillant
s1 :Surv eillant

im2 :Information

Manager

im1 :Information

Manager

«serv iceContract»

Threat

Generation

tg :Threat Generator
+producer

+consumer

+consumer

+provider

+consumer

+consumer

+provider
+consumer

+consumer

The SoaML services architecture diagram can be used to

describe the identified services. The services architecture

is a high-level view of the Service Oriented Architecture

of the simulation environment. It shows how participants

work together for some purpose by providing and using

services. Figure 6 provides the Service Oriented

Architecture for Situational Awareness. It shows the

service participants, the role of each participant, and

service contracts. A service contract is the specification of

the agreement between providers and consumers of the

service. It specifies for example the information

exchanged between service participants and the

obligations that must be met in doing so. The details of

service contracts and service participants will be provided

by later activities (service specification and service

realization). At this stage a high level overview of

candidate services is sufficient.

The identified candidate services are:

 Threat Generation: a service for the generation

of real world objects.

 Surveillance: a service for the tracking of real

world objects.

 Information Management: a service for the

general management of tracks.

The Surveillance and Information Management services

are defined in line with the Link 16 message grouping.

4.2 (3.2) Specify services

The purpose of this activity is to elaborate and detail the

identified services, and to specify the service interfaces.

This activity includes the following tasks:

 Specify service interfaces.

 Specify service dependencies on other services.

 Specify the flow of information among services.

 Develop service data exchange model.

 Develop service agreements.

The service interface specifies how the service provider

and service consumer interact, and specifies the

conditions under which they interact. Referring to SoaML

[5], the service interface specifies:

 Name of the service interface.

 Required and provided interfaces.

 Service interface interactions with data

input/output, pre-conditions, post-conditions,

and exceptions.

 Any rules or constraints.

 Qualities of the service interface, such as

performance and fidelity.

 Policies for using the service interface.

The required and provided interfaces will result in what is

called a service data exchange model. This data exchange

model specifies the messages that the service produces

and consumes. For HLA this is comparable with the

Simulation Object Model (SOM).

The service interface interactions, rules, constraints,

qualities, policies, etc., are collectively called the service

agreements. They specify the conditions or terms under

which the service may be used. For HLA this is

comparable with the agreements that are associated with

the SOM.

The services architecture diagram for Situational

Awareness shown in the previous activity lists a number

of service contracts and service participants. The

connector between a service contract and a participant

shows the role of the participant in the service contract,

e.g. consumer or producer. This role relates to a service

interface.

When looking at these roles in the services architecture

diagram the following service interfaces can be identified:

Threat Generation Service, Surveillance Service, and

Information Management Service. Figure 7 lists the

service interfaces. The diagram also shows two additional

service interfaces: Recording Service and Execution

Management Service. These are not shown in the services

architecture diagram for space reasons.

Figure 7: Service interfaces.

A service interface can be bi-directional and is specified

from the perspective of the service provider. The service

interface specifies the realized interfaces (by the provider)

and the used interfaces (of the consumer), and the

messages that will be received by the provider or

consumer respectively. The service interface can also

have an associated behavior that specifies the interactions

between provider and consumer.

SvcV-1 Serv ices Context Description (Serv ice Interfaces)

«ServiceInterface»

Threat Generation

Serv ice

«ServiceInterface»

Information

Management Serv ice

«ServiceInterface»

Surveillance Serv ice

«ServiceInterface»

Recording Serv ice

«ServiceInterface»

Execution Management

Serv ice

«ServiceInterface»

Tactical Data Link

Serv ice

Figure 8 shows the interfaces associated with the service

interfaces Information Management Service, Surveillance

Service, and Threat Generation Service. In this example,

the service interface Information Management Service

only realizes the Information Management interface on

which the service receives Track Management and Track

Correlation messages. This service interface does not use

an interface to send messages back to the consumer.

Similarly, the service interface Surveillance Service only

realizes the Surveillance interface on which the service

receives Air Track messages. And the service interface

Threat Generation Service uses the Threat Generation

interface of the consumer to send WeaponFire, Munition

and Detonation messages on. Other service interfaces

may both realize and use interfaces to receive and send

messages on.

Figure 8: Service interfaces details.

Following this example, the service data exchange model

for the Surveillance Service consists of an Air Track

message that the service consumes and produces.

The behavior associated with a service interface may be

described by a UML sequence diagram, a UML state

diagram, or a UML activity diagram. For example, the

sequence diagram in Figure 9 shows that Air Track

messages are sent every 8 to 20 seconds from a sender to

a receiver interface. This is of course a simple example,

but the same diagram(s) may be used to illustrate much

more complex interactions between service consumer and

producer. In SoaML the behavior diagram can be

associated with the service interface using the

containment relationship.

Figure 9: Services event trace.

Rules, constraints, etc., may apply to the service interface.

These are usually described in text, although UML

constructs can be used to associate these with the service

interface that is specified in SoaML.

4.3 (3.3) Realize services

The purpose of this activity is to evaluate service

realization options and decide on which member

application will realize what service participant.

At this point in the process the actual services do not exist

yet and still need to be implemented (unless services are

provided by existing member applications). The idea is to

evaluate service realization options and select the most

feasible option for implementation.

This activity includes the following tasks:

 Analyze candidate member applications for

service realization.

 Evaluate service realization options.

 Determine technical feasibility.

 Record realization decisions.

 Document simulation environment design.

 Design member applications.

A service participant is the type of a provider and/or

consumer of a service. The services architecture shown

earlier lists a number of participants, which are ultimately

realized by a member application in the simulation

environment. Each participant plays a role in a service

contract and uses the service interfaces to interact with

other service participants. A participant uses ports to

provide or request services.

Sv cV-2 Serv ices Resource Flow Description (Interfaces)

«ServiceInterface»

Surv eillance Serv ice

«ServiceInterface»

Threat Generation Serv ice

«interface»

Surv eillance

+ Interaction(J3.2 Air Track)

«interface»

Information Management

+ Interaction(J7.0 Track Management)

+ Interaction(J7.2 Correlation)

Receiv er :

Surv eillance

Sender

«interface»

Threat Generation

+ Interaction(WeaponFire)

+ Object(Munition)

+ Interaction(Detonation)

«ServiceInterface»

Information Management Serv ice

Receiv er :

Information

Management

Sender

Receiv er :Threat

Generation

Sender

«use»

Sv cV-10c Serv ices Ev ent-Trace Description (Surv eillance)

Receiver :

Surveillance

(from SvcV-2)

Sender

(from SvcV-2)

*[8-20sec]:Interaction(J3.2 Air Track)

Figure 10 shows three service participants and their ports.

Each port has a name and is stereotyped with either

“Service” (offering a service) or “Request” (consuming a

service). For example, the Surveillant has two ports

related to Surveillance Service and one port related to

Threat Generation Service. One Surveillance Service port

is used for receiving Air Track messages (the port named

SS), and the other for sending Air Track messages (the

port named SR). The third port is named TGR, and is

used to receive threat generation messages on.

In the diagram the Request port is a “conjugate” port, that

is, it inverts the required and provided interfaces of a

service interface. The tilde (“~”) is used to indicate that a

port is a conjugate port.

Figure 10: Service participants.

The above diagram can be expanded to show more detail

on the interfaces that each port supports. Figure 11 shows

the provided and required interface per port. Depending

on the service interface, a port can have any number of

provided or required interfaces.

Figure 11: Service participants: ports and interfaces.

The first task is to analyze the suitability of candidate

member applications to represent service participants and

realize the specified services. In some cases member

applications need to be designed from scratch, and/or

candidate member applications need to be modified. .

The next task is to evaluate the service realization

options. Decision factors for service realization include

service security, service cohesion, service coupling,

service usage and service deployment. Depending on the

situation there may be various options in the realization of

services by member applications. For example, the

execution management service can be provided by a

dedicated member application, or can be provided by a

member application that also provides other services such

as threat generation. These options need to be evaluated.

Also the technical feasibility of the different options

should be determined and the decisions regarding the

service realizations should be recorded.

Once all member applications are identified and service

realization decisions are taken, the next task is to

document the simulation environment design. Some of

the diagrams that may be used to document the design are

described next.

The structure of the simulation environment can be

described with a SysML Block Definition Diagram as

already discussed in section 3.2. Figure 12 shows the

service realization by member applications using the

UML Realizes relationship between participant and

Sv cV-1 Serv ices Context Description (Participants)

«Request» TGR :

~Threat Generation

Service

«Request» SR :

~Surveillance Service
«Service» SS :

Surveillance Service

«participant»

Surv eillant

«Request» TGR :

~Threat Generation

Service

«Request» SR :

~Surveillance Service
«Service» SS :

Surveillance Service

«Request» IMR :

~Information

Management Service«Service» IMS :

Information

Management Service

«Service» SS :

Surveillance Service

«participant»

Information

Manager

«Request» IMR :

~Information

Management Service«Service» IMS :

Information

Management Service

«Service» SS :

Surveillance Service

«Service» TGS :

Threat Generation

Service

«participant»

Threat Generator
«Service» TGS :

Threat Generation

Service

Sv cV-2 Serv ices Resource Flow Description (Participants)

«Request» SR :~Surveillance Service

«Service» SS :Surveillance Service

«Request» TGR :~Threat Generation Service

«participant»

Sv cV-1::

Surv eillant

«Request» SR :~Surveillance Service

«Service» SS :Surveillance Service

«Request» TGR :~Threat Generation Service

«Request» IMR :~Information Management Service

«Service» IMS :Information Management Service

«Service» SS :Surveillance Service«participant»

Sv cV-1::

Information

Manager «Request» IMR :~Information Management Service

«Service» IMS :Information Management Service

«Service» SS :Surveillance Service

«Service» TGS :Threat Generation Service

«participant»

Sv cV-1::Threat

Generator

«Service» TGS :Threat Generation Service

Surveillance

Surveillance

Information Management

Information Management

Threat Generation

Threat Generation

Surveillance

selected member application. By using this relationship

each member application inherits the ports that are

defined for the participant. So, in this example, the

Coordinator is both an EM Participant and an Information

Manager, and inherits the ports from Information

Manager and from EM Participant.

Figure 12: Systems-services realization.

The inherited service ports can subsequently be used in

the description of the information flow between member

applications. A SysML Internal Block Diagram can be

used for this. Figure 13 provides an example of a

simulation environment with three member applications

and the information flow between them: one Coordinator,

one Unit and one Threat Generator. For simplicity, the

Recorder and Execution Manager are left out of the

picture.

Figure 13: Systems resource flow.

4.4 (4.1) Compose services

The purpose of this activity is to assemble a simulation

data exchange model and agreements from the individual

service data exchange models and service agreements.

This activity includes the following tasks:

 Develop simulation data exchange model from

service data exchange models.

 Develop simulation environment agreements

from service agreements.

This activity is not further elaborated.

4.5 (4.2) Implement services

The purpose of this activity is to implement the services

in the member applications.

This activity includes the following tasks:

 Implement member application designs.

 Implement simulation environment

infrastructure.

This activity is not further elaborated.

5 Service oriented HLA Federations:

discussion

A distributed simulation architecture designed with

service orientation in mind needs to be realized in some

manner. This realization is captured in a Service Oriented

Architecture (SOA) that, according to Erl [1], is

developed with eight service oriented design principles in

mind:

 Standardized Service Contract

 Service Loose Coupling

 Service Abstraction

 Service Reusability

 Service Autonomy

 Service Statelessness

 Service Discoverability

 Service Composability

How these design principles are captured in a distributed

simulation framework such as the High Level

Architecture (HLA) is the next major work activity on the

path to true service oriented distributed simulations.

Mapping these design principles to the HLA requires

thought on how services are implemented as federates and

Sv cV-3a Systems-Serv ices Matrix

«participant»

Sv cV-1::Threat

Generator

«Software»

SV-1::Threat

Generator

«participant»

Sv cV-1::EM

Participant

«Software»

SV-1::Coordinator

«participant»

Sv cV-1::Information

Manager

«participant»

Sv cV-1::Surv eillant

«Software»

SV-1::Unit

«Software»

SV-1::Recorder

«Software»

SV-1::Execution

Manager

«participant»

Sv cV-1::EM Manager

«Software»

SV-1::Dashboard

«participant»

Sv cV-1::Recorder

Controller

«participant»

Sv cV-1::Recorder

SV-2 Systems Resource Flow Description (1 unit)

«Software»

SA Federation

/TGR:~Threat

Generation Service

/SS

/IMS

/SR

/IMR

SIM1 :Unit

/TGR:~Threat

Generation Service

/SS

/IMS

/SR

/IMR

/TGS:Threat Generation Service
TG :Threat Generator

/TGS:Threat Generation Service

/IMS

/IMR

/SS

SIM0 :Coordinator

/IMS

/IMR

/SS

«EntityItem» Munition,

«EntityItem» WeaponFire,

«EntityItem» Detonation

«EntityItem» J7.2 Correlation,

«EntityItem» J7.0 Track Management

«EntityItem» J7.0 Track Management

«EntityItem» J3.2 Air Track

what service support is provided by the HLA Runtime

Infrastructure (RTI). Federates could provide one or more

services depending on granularity and cohesiveness of the

defined services. On the other hand, higher level

composed services might implemented across multiple

services and require service orchestration functionality

within the RTI. The following paragraphs describe how

some of the service design principles listed above might

be achieved in the HLA context.

What would a standardized service contract mean in the

context of the HLA? The Simulation Object Model

(SOM) is more a data dictionary than it is a service

interface description. Base Object Models (BOMs)

provide a possible path towards the definition of a service

contract [7][8].

Does the Service Discoverability design principle make

sense for the HLA, considering federations are usually

engineered and executed in a manner that ensures all data

providers and consumers are present and available by

design? One possible use for service discoverability

within HLA could be to provide a runtime check within a

federate to ensure all required services are available. How

would the HLA support discoverability? One approach

could leverage the use of BOMs as service contracts and

registered with a federation execution as FOM modules.

In the current HLA standard it would be possible to

discover which service contracts (BOMs) a particular

federate supports by having service provider federates

register their BOMs as FOM modules and service

consumer federates inspecting the Management Object

Model (MOM) for the FOM modules supported by

particular federates. Another approach would be to define

a standard FOM module containing generic “Service

Information Objects” that service providers would

register and to be discovered by service consumers. Each

of these solutions have drawbacks and a nicer solution

would be to introduce the concept of a service to the HLA

and provide mechanisms within the HLA to explicitly

allow a federate to register services they provide and for a

consumer to discover services as they appear.

Service Composability provides for the creation of higher

level services formed from the composition of lower level

services. These composed services require orchestration

in how the lower level services are accessed. This

orchestration can be done automatically from a high level

description of the composition. Adding support to the

HLA RTI for the execution of such a high level

description could allow for the automatic provision of

composed services to service consumers. This would

require the HLA standard to define an appropriate

composition language (probably by adopting an existing

standard) and adding the requirement that the HLA RTI

provide an execution engine for the language.

Mapping service orientation to the HLA requires more

work. Note that the goal here is not to connect to the RTI

in a service oriented manner; rather the goal is for

federates to interact in a service oriented manner. The

interaction would be facilitated via the RTI providing the

role of the Enterprise Service Bus (ESB) although it is

expected that additional services or a layer above the

existing services be added in order to fully support service

oriented HLA federations. These new services or service-

oriented layer would not (necessarily) be reliant on web

service technologies. The existing language APIs are fully

capable of supporting service oriented message patterns.

6 Summary and conclusions

The DSEEP is currently lacking a service oriented

development approach. This paper has identified

additional activities for inclusion in the DSEEP to support

service oriented development of a distributed simulation.

Further evaluation needs to be conducted on how these

activities can be best be integrated into DSEEP.

The description of a simulation environment in terms of

services provides potential for enhanced reuse of

simulation functionality. Services are typically small and

self-contained units of simulation logic and, as such,

provide ideal building blocks for composing simulations.

This is definitely a benefit. A drawback (or better said, a

risk) might be that services result in many member

applications all providing only one or a couple of

services. This risk of added complexity and overhead

should however be addressed in activity (3.3) Realize

services, where the different service realization options

are evaluated.

A service oriented approach introduces new notions such

as service interfaces, service data exchange model and

service agreements. How these concepts are captured in

particular distributed simulation technical architectures is

an open question. One option could be Base Object

Models (BOMs). BOMs began life in the HLA

community but are being expanded to other distributed

simulation environment, such as Test and Training

Enabling Architecture (TENA), and have Service-

Oriented Architectures (SOAs) as one of their potential

application domains. More work needs to directed in this

area.

Mapping service orientation to distributed simulation

technical architectures will be a challenging task. Note

that the goal is to have distributed simulation participants

interact in a service-oriented manner rather than have the

participants interact with the simulation infrastructure as

if it were a service. In terms of the HLA, the goal is for

federates to see each other as service providers and to

interact as such instead of purely interacting with the RTI.

Although, the RTI is an essential component of an HLA

based SOA as it provides the core activities of an

Enterprise Service Bus (ESB).

The authors recommend that SISO, as the simulation

interoperability standards organisation and in its role as

custodian of HLA and DSEEP, should lead the

investigation w.r.t. the application of SOA in the M&S

domain. A study group should research the topic in more

detail and develop recommendations regarding service

oriented methodology and possible extensions of a future

iteration of the DSEEP and HLA standards.

7 References

[1] Thomas Erl, “SOA: Principles of Service Design”,

Prentice Hall, 2007.

[2] The Open Group, “SOA Reference Architecture

Technical Standard”, Document Number C119,

November, 2011.

[3] “IEEE Standard 1730-2010 – IEEE Recommended

Practice For Distributed Simulation Engineering and

Execution Process (DSEEP)”, Institute of Electrical

and Electronics Engineers, 2010.

[4] Norbert Bieberstein et al, “Executing SOA: A

Practical Guide for the Service-Oriented Architect”,

IBM Press, 2008.

[5] “Service Oriented Architecture Modeling Language

(SoaML), Version 1.0.1”, Object Management

Group, May 2012.

[6] “Systems Modeling Language (SysML), Version

1.3”, Object Management Group, June 2012.

[7] “SISO-STD-003-2006: Base Object Model (BOM)

Template Specification”, Simulation Interoperability

Standards Organization, 2006.

[8] “SISO-STD-003.1-2006: Guide for Base Object

Model (BOM) Use and Implementation”, Simulation

Interoperability Standards Organization, 2006.

8 Author biographies

ANTHONY CRAMP is a Defence Science and

Technology Organisation (DSTO, Australia) International

Fellow working within the Modeling, Simulation and

Gaming department of TNO Defence, Security and

Safety, The Netherlands until February 2015 on topics

including M&S as a Service and HLA performance. He

joined DSTO in 1999 working on the Virtual Maritime

System Architecture, a HLA based simulation framework

for maritime C2 centric experimentation, and received his

PhD from the University of Adelaide in 2009 based on

research into the construction of HLA simulations

containing multiple systems of systems. His research

interests include distributed systems and simulations,

software architectures, and programming languages. From

March 2015 he can be contacted via his DSTO email

address: anthony.cramp@dsto.defence.gov.au.

TOM VAN DEN BERG is a scientist in the Modeling,

Simulation and Gaming department at TNO Defence,

Security and Safety, The Netherlands. He holds an M.Sc.

degree in Mathematics and Computing Science from

Delft Technical University. His research area includes

simulation systems engineering, distributed simulation

architectures and concept development &

experimentation.

WIM HUISKAMP is Chief Scientist Modelling,

Simulation and Gaming in the M&S department at TNO

Defence, Security and Safety in the Netherlands. Wim

leads TNO’s research program on Simulation, which is

carried out on behalf of the Dutch MOD. Wim is a

member of the NATO Modelling and Simulation Group

(NMSG) and currently acts as its Chairman. He has also

chaired several NMSG Technical Working groups,

including the NMSG M&S Standards Subgroup (MS3)

and he is the liaison of the NMSG to the Simulation

Interoperability Standards Organization (SISO).

