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ABSTRACT: Performance assessment is a key factor in designing distributed simulation environments that are fit-for-
purpose and cost-effective. Simulations used for training applications should provide the required level of 
responsiveness and interactivity. Simulations used for analysis or decision support should execute as fast as possible to 
enable quick results on large numbers of scenarios and variables. There are many parameters that have an impact on 
the performance of a typical High Level Architecture (HLA) federation. We describe a structured process for using data 
farming (experiment design, simulation, cloud computing, and data mining) in order to identify key parameters 
affecting the performance of HLA federations. A parameterized and instrumented federation is designed with 
parameters covering areas suspected of impacting HLA performance and instrumentation measuring key values of HLA 
performance. One key parameter set for HLA performance is the computing platform that hosts the federation. Varying 
such a platform in an efficient and cost effective manner is possible using cloud computing via Infrastructure-as-a-
Service providers. Finally, the performance measures captured during federation execution are collated and analysed 
using data mining techniques to identify key parameters and their effect on the performance of the federation. By 
including the Runtime Infrastructure (RTI) as a parameter in the federation design, it may also be possible to identify 
where the HLA itself (instead of particular RTIs or computing platforms) is impacting on simulation performance. 
Initial results from this process are presented and future work, including the creation of a HLA performance model 
from identified parameters, is discussed. 
 
1 Introduction 
 
Performance of simulations can be vitally important. 
Human-in-the-loop simulations for training require an 
appropriate amount of responsiveness to ensure seamless 
interactivity. Any extra computational time taken by the 
simulation infrastructure is time not available to the 
simulation models potentially restricting the fidelity of the 
models in order to achieve simulation timing 
requirements. The latency introduced by the infrastructure 
also affects the responsiveness of the system and possibly 
the stability of the models, for example, due to operator 
induced oscillations. 
 
Similarly, constructive simulations used for analysis or 
decision support need to be performant. A saving of as 
little as a few seconds per simulation iteration can lead to 
vast savings over the life of an analysis covering multiple 
scenario configurations and multiple Monte Carlo 
iterations per configuration. For example, the authors 
have been involved in a number of studies involving 
analysis simulations. One of the analysis simulations 
consists of 100 different simulation configurations with 
each configuration being run over 400 Monte Carlo 
iterations. Each configuration had a runtime of, on 
average, 130 simulation seconds and ran at a wallclock 
rate of 0.1 or 1300 wallclock seconds (21 minutes, 40 
seconds). Executing these simulations sequentially would 
take approximately 600 days. Increasing the wallclock 

rate to even 0.11 would reduce the execution time to less 
than 550 days allowing answers to be produced earlier or 
providing more time for extra scenario configurations to 
be executed1,2. 
 
The performance of this simulation was measured by 
running the simulation. However, this leads to a chicken 
and egg problem whereby the amount of computing 
resources required for the simulation is dependent on the 
performance of the simulation but the performance of the 
simulation is only measured by running the simulation on 
the computing resources. 
 
Being able to predict performance is one way to break 
this circular dependency. Accurate prediction of the 
performance of a simulation provides the simulation 
designers scope to efficiently allocate simulation 
participants, simulation support staff and computing 
resources prior to the final completion of the simulation. 
Of course, some measure of agility will be required to 
adapt to circumstances falling outside the performance 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Wallclock runtime in days = #configurations x #iterations x simtime / 
wallclock rate / seconds per day 
2 The numbers presented for the analysis simulation are representative 
but not exact. Plus, the actual simulation execution didn’t happen 
sequentially; rather multiple machines were employed to execute 
different scenario configurations in parallel. Also, startup and shutdown 
times are not taken into account in the above calculations, which add 
more time. The full suite of iterations in the real simulation on the real 
computing hardware took about one month of continuous execution. 



predication. However, some predication, assuming it is 
correct, is better than none. 
 
Despite the body of research that exists on High Level 
Architecture (HLA) performance, prediction is still 
somewhat hit or miss due, in part, to the large parameter 
space that can affect performance. The parameter space 
for HLA performance spans the simulation stack from the 
computing infrastructure (computers and networks, 
including encryption) through the base platform 
environment (operating systems, programming language) 
into the HLA Runtime Infrastructure (RTI) being used 
and the ways in which the federates interact with the RTI, 
and finally into the domain being simulated and the 
domain coupling that arises across the federates 
interacting during simulation execution. 
 
Exploring this huge parameter space requires techniques 
from experiment design (to identify the most important 
parameters and the important value ranges of those 
parameters), high performance computing (to be able to 
execute all the simulation configurations within a 
reasonable amount of time) and data mining and analysis 
(to be able to search through the data and reveal 
interesting results and/or correlations). 
 
Data farming is the term given to this holistic approach to 
simulation derived data exploration. Horne and Meyer [1] 
presents data farming as an iterative approach covering 
question/topic research and definition, model 
development and gaming, parameter space exploration, 
and data exploration and analysis. They note “in Data 
Farming, there is not necessarily a predefined hypothesis 
that is being confirmed. The data is being ‘explored’. 
Trends and relationships may become exposed, but 
outliers, cusps and saddle points may also be found in the 
n-dimensional output space”. 
 
The North Atlantic Treaty Organisation (NATO) is one 
organization exploring the use of Data Farming to be used 
for decision support. The NATO Science and Technology 
Organisation (STO) Modelling and Simulation Group’s 
(NMSG’s) Task Group MSG-088 delivered its final 
technical report [2] in which are defined six aspects of 
data farming: rapid scenario development, model 
development, design of experiments, high performance 
computing, analysis and visualization, and collaborative 
processes. The final report notes “… the essence of data 
farming is that it is first and foremost a question-based 
approach. The basic question that is asked over and over 
again in different forms and different contexts is: What 
if?”. 
 
Cloud computing [3] is of particular importance to data 
farming as it offers an expandable computing resource 
that can scale in or out depending on the requirements of 

the experiment being analysed. Cloud computing offers 
an additional benefit in terms of using data farming for 
HLA performance analysis. Since one of the parameter 
sets with a potential impact on HLA performance is the 
computing and network infrastructure, cloud computing 
and, in particular, the Infrastructure-as-a-Service model 
can provide a cost effective way of accessing different 
computing platforms with configurable interconnections. 
 
This paper presents a data farming approach to analyzing 
the performance of HLA federations. No hypotheses are 
made regarding what are the key parameters of HLA 
performance. Instead, a ‘performance federation’ is 
constructed and run over a pre-identified space of 
parameter values. Performance measures recorded by the 
federation are then analysed to identify the effect the 
parameters have on HLA performance. 
 
The structure of this paper follows the data farming steps 
developed in the NATO MSG TG 088 final report. These 
steps are iterative in nature and illustrated in Figure 1. 
 

 
Figure 1: Data Farming "Loop of Loops" (MSG-088 

Report) 
 
We begin with Rapid Scenario Prototyping in Section 2 
wherein the question to be answered is defined along with 
input parameters and measures of effectiveness. Section 3 
presents some details on the Model Development for the 
analysis of HLA federation performance. Section 4 
outlines the design of the performance experiments 
including the selection of parameter values. Section 5 
provides information on the computing environment in 
which the performance experiments are run. Section 6 
documents the analysis process of the data generated by 
the experiment runs and presents some visualisations 
from that data analysis. Section 7 derives answers to the 
original questions from the data analysis. Section 8 
proposes future work to be conducted to continue the 
discovery of parameters affecting HLA federation 
performance. Section 9 summarises the data farming 
process as applied to exploration of HLA federation 
performance and proposes that a collaborative effort be 
established within the community to continue the research 



for the purpose of making performance-based suggestions 
in the evolution of the HLA standard. 
 
2 Rapid Scenario Prototyping 
 
We begin with the top-level question: “How do HLA 
federation parameters affect the performance of those 
HLA federations?” 
 
This is a very broad question requiring answering at least 
two sub-questions: “What is HLA federation 
performance?” and “What are the HLA federation 
parameters?” To begin answering these questions we first 
conduct a review of HLA performance research. 

2.1 Background on HLA Performance Research 
Most HLA performance research has focused on the 
“infrastructure”—communications, computers, HLA RTI 
—aspects in terms of measures such as latency and 
throughput. For example, Knight et al [4] researched the 
effect on latency and throughput across twelve 
independent parameters: 
 

• RTI 
• Number of federates 
• Distribution of federates 
• Data Distribution Management 
• Network transport mode 
• Objects per federate 
• Attributes per object 
• Interactions per federate 
• Parameters per interaction 
• Attribute buffer size 
• Interaction buffer size 
• Data bundling 

 
Drake et al [5] extends this work by adding a Load 
parameter to the test federates to simulate actual work 
performed by federates. Also added was an additional 
metric of one way latency and the calculation of latency 
jitter rather than just presenting average latency over a 
number of test iterations. 
 
Malinga and Roux [6] compared round trip latency across 
two parameters: RTI (three choices) and transport type 
(reliable or best effort). 
 
Morse et al [7] discuss the impact of attribute level 
advisories on the scalability of a federation and 
highlighted the importance of understanding how an RTI 
implements its features and how those features may be 
configured to impact performance for the better (or 
worse). 
 

Burks et al [8] used a one-way latency metric to compare 
different RTI implementations and, in particular, ‘tuned’ 
versions of those RTIs to identify configurations that 
yielded optimal performance. 
 
Fujimoto and Hoare [9] compared attribute update latency 
and time advance rate across RTIs using traditional 
TCP/UDP networking on an Ethernet LAN and an RTI 
using Myrinet. 
 
Van den Berg et al [10] analysed the performance of a 
time-managed simulation over a Wide Area Network. A 
performance model was constructed showing the general 
time advancement pattern of the federation, the major 
components, the processing by each component and the 
messages that are exchanged between the components. 
 
Murray and Faier [11] took a different approach to 
performance and looked at how aspects of Federation 
Object Model design impacted processing time and 
network bandwidth. They found that a single record type 
attribute, as opposed to multiple attributes representing 
the fields of the record type, was more efficient in terms 
of both measures. 
 
Cramp [12] analysed latency, throughput and network 
utilization across three different methods for 
implementing an HLA federation supporting the 
simulation of a domain decomposed into multiple systems 
of systems. 
 
Karlsson and Johansson [13] suggest that RTI 
performance is wider than just speed metrics and should 
also capture aspects related to fault tolerance, stability, 
development and deployment. 
 
Möller et al [14] argue that this infrastructure, while 
important, is probably not the limiting factor in the 
performance of federations. Instead, they propose a 
conceptual model for causes of federation performance 
problems that classify issues in terms of the process 
model, data rates, high-level synchronization, and domain 
model dependencies. 
 
Watrous et al [15] propose that HLA federation 
performance is impacted at multiple levels including 
specific HLA requirements, RTI implementation choices, 
federation requirements, and physical resource 
constraints. 

2.2 Performance Measures of Effectiveness 
From this background research we can identify a few key 
measures of effectiveness when looking at performance of 
HLA federations: 
 



• Latency and Throughput of RTI communication: 
these measure how long it takes a message to 
propagate between federates (latency) and how 
many messages (of a given message length) are 
able to be communicated within a fixed time 
window (throughput). 

• Network overhead of RTI communication: This 
measure can capture the amount of management 
data added by the RTI when sending messages. 
It can also reflect the amount of unnecessary 
data communicated, e.g., messages that are sent 
only to be discarded by the receiver. 

• Time advance rate: Applicable to time managed 
federations, this measure captures the speed at 
which the HLA federation progresses in relation 
to wallclock time. 

• Total time: This is an aggregate measure 
capturing the total time to complete a simulation 
and can give a high level view of the 
performance of a HLA federation. 

• Resource usage: The amount of disk space, 
memory, computing time, network activity, etc 
used by the HLA federation. 

• Other issues: graceful degradation under high 
load; ’deadtime’: is there a window right after a 
processed interaction during which time the 
simulation is non-responsive to new events. May 
be relevant for some (engineering) applications. 

2.3 Performance Parameters 
The extant body of knowledge reveals a large number of 
parameters that have been identified and tested for their 
effects on HLA federation performance. The following 
subsections attempt to summarise and categorise these 
parameters. These lists of parameters are, undoubtedly, 
incomplete and only gain true meaning when the domain 
of parameters values that are applicable are explored. 
 
Some of these parameters are likely to be invariants in 
any performance experiment. For example, the 
infrastructure parameters are probably limited to those 
available, although infrastructure-as-a-service providers 
increase the scope to be able to test across these 
parameters as well. 

2.3.1 Infrastructure Parameters 
Parameters in this category relate to the type and number 
of computing and network resources available to run the 
federation. Such parameters include: 

• The computing core 
• The memory infrastructure 
• The permanent storage infrastructure 
• The network infrastructure 
• Encryption infrastructure 

2.3.2 Platform Parameters 
This category captures the software platform running 
upon the computing infrastructure. This includes all 
software required to create the runtime environment for a 
federate. These parameters include: 
 

• The operating system (OS) and configuration 
• Runtime support environment (e.g., Java Virtual 

Machine, Python interpreter) 
• Support software 
• The RTI 

2.3.3 RTI Parameters 
The choice of RTI is a parameter in the Platform 
category. Individual RTIs will also have a large number 
of parameters that can be used to configure their 
performance. Historically, these parameters are defined in 
a file called RTI.rid. A generic list of such parameters is 
presented below but actual parameters will be dependent 
on the specific RTI. 
 

• Centralized vs decentralized 
• Use of declaration management advisories 
• Data Distribution Management (DDM) 

configuration 
• Network message bundling and transmit options 

2.3.4 Federate Parameters 
These parameters capture how individual federates are 
developed and, in particular, how the federate operates 
and interacts with the RTI. This operation and interaction 
with the RTI is referred to as the federate’s process 
model. It captures details like the work the federate does 
and how the federate receives information from the RTI, 
i.e., via evoked callbacks or asynchronous callbacks [16]. 
Different types of federates will have different impacts on 
federation performance. For example, a federate designed 
to log federation data to disk will incur the relatively slow 
disk access performance and, potentially, pass that on to 
the overall federation performance. These federate level 
parameters are of particular importance since they are 
under direct control of the federate developer. Such 
parameters include: 

• The HLA standard used (dependent on RTI 
support) 

• The programming language and compiler used to 
develop the federate and interact with the RTI 
(may differ from the language the RTI is written 
in) 

• The process model used to interact with the RTI. 
The process model encompasses a number of sub 
parameters including: 

o Timestep 
o Lookahead 



o Time management 
o Disk/OS calls 
o Number of objects per federate 
o Number of interactions per federate 
o Size of attribute instances 
o Size of parameter instances 
o Frequency of updates and sends 

2.3.5 Federation Parameters 
Most parameters fall into this category as it relates to how 
a federation is designed and how federates interact with 
each other during a running federation execution. These 
parameters include: 

• Federation Object Model (FOM) design 
• Number of federates 
• Distribution of federates across available 

computing resources 
• Distribution of RTI components 
• Domain coupling between federates 
• Simulation running time (to capture any effects 

caused by accumulation of factors) 
• Time representation 

2.4 Scope of Parameters and Measures for this 
Paper 

 
The previous sections highlighted the large number of 
measures and parameters related to HLA federation 
performance. 
 
For the purpose of this paper we concentrate on a 
constructive, time managed federation with measures 
being rate of time advance grants compared to wallclock 
time and overall simulation wallclock time. The 
parameters and metrics proposed and researched in the 
literature will indirectly impact these higher level, time 
management metrics. We choose to start at the top level 
and, in the future, delve down to the lower more fine 
grained parameters and metrics. 
 
For this paper, the parameters of interest for their impact 
on the metrics are: 

• Number of federates 
• Simulation running (end) time 
• Timestep per federate 
• Lookahead per federate 
• Time parameters for the evokeCallback and 

evokeMultipleCallbacks based federate process 
model 

 
These measure and parameter choices dictate the 
development of the model to be used to explore the 
parameter value space and the resulting captured metrics. 
 
 

3 Model Development 
 
One approach to the development of a model for testing 
HLA federation performance is to develop a conceptual 
representation of the HLA and conduct the testing within 
this representation. Gianni et al [17] take this approach by 
representing a HLA federation as an Extended Queueing 
Network (EQN) and performing performance simulations 
on this model. 
 
We take the approach of building a testing federation that 
can be run to test input parameters by analyzing captured 
output. 
 
The testing federation is composed of multiple test 
federates that implement the test logic and log the 
measured metrics. The lifecycle of these test federates is 
managed by a single execution manager federate that uses 
interactions and federation sychronisation points to 
manage the start of the test execution. A management 
script captures the scenario parameters and iterates over 
all combinations of the parameter values and controls the 
starting and stopping of the federate processes. The 
source code for this test environment is available on 
Github (https://github.com/anthonycramp/hla-
performance). Each configuration of parameter values is 
iterated multiple times to average any transient work load 
resident on the host computer. In particular, the first 
iteration is usually ignored due to it incurring ‘warm-up’ 
artefacts that won’t exist for subsequent iterations. 
 
The architecture of the performance test environment is 
illustrated in the sequence diagram presented in Figure 2 
and described in the following subsections. 
 

 
Figure 2: Sequence diagram for the performance test 

environment. 

Scenario
Configuration

Scenario
Management

Test
Fed

Exman
Fed

Test
Fed

Read
Start

Start

Ready

Ready

Sync
Sync

Init Init

Sim Sim

Log Log

Sync
Sync

Start

ReadyAck

ReadyAck



3.1 Test Federate 
 
The test federates accept command line arguments in 
order to be able to set the parameter values for timestep, 
lookahead, min and max time for evokeCallback, and the 
end time of the simulation. 
 
The test federate algorithm proceeds as follows: 

1. Connect to the RTI, attempt to create the 
federation execution (using RPR-FOM as the 
Federation Document Data (FDD)), attempt to 
join the federation execution (using a name 
specified on the command line) 

2. Periodically send a Ready interaction, with the 
name of the federate as a parameter instance, 
until a ReadyAck interaction is received, with a 
matching federate name (these interactions are 
defined in a custom exman.xml FOM module) 

3. Wait for the announcement of a synchronization 
point and, once announced and achieved, wait 
for the federation to be synchronized. The 
execution manager federate is responsible for 
registering this synchronization point. 

4. In order to exercise the RTI a little, the test 
federate publishes and subscribes to the Spatial 
attribute of the 
BaseEntity.PhysicalEntity.Platform.SurfaceVess
ell object class. For this paper, test federates 
don’t register/discover object instances, 
update/reflect attribute values or send/receive 
interactions. These will be added in the future. 

5. The federate enables time constraint and 
regulation using the default HLAfloat64 time 
representation. 

6. A simulation loop is entered whereby a time 
advance grant to current time plus timestep is 
requested and the grant waited upon. The 
waiting is executed either via the single 
argument call to evokeCallback or the two 
argument call to evokeMultipleCallbacks. The 
loop exits once a predetermined simulation end 
time is reached. 

7. After exiting the simulation loop, the test 
federate waits for a synchronization point to be 
announced (registered by the execution manager 
federate). Once it has been announced, the test 
federate achieves the synchronization point and 
waits for the federation to be synchronized. 

8. Finally, the test federate attempts to resign from 
and destroy the federation execution and then 
terminates. 

 

The test federate records the current system time 3 in 
memory at key points. This logging is carefully managed 
so as to impose minimal overhead on federate 
performance. For example, the memory for the logging 
structure is pre-allocated so that no dynamic memory 
allocations (due to logging) occur. 
 
System time is recorded before entering the simulation 
loop and after exiting the loop. This time delay is the 
simulation time measure. Also, system time is recorded 
each pass through the simulation loop in order to measure 
the time advance rate. These measures, along with the 
parameter values for this test configuration, are written to 
a text file before the federate terminates but after all 
simulation measurements have occurred so as to not 
capture disk access time in the measured values. 

3.2 Execution Manager Federate 
The execution manager federate is simply responsible for 
the registration of the synchronization points that act as 
barriers for the test federates to beginning simulation 
execution and shutting down. The execution manager 
federate is provided with a list of federate names it 
expects will join the federation. At startup, the execution 
manager listens for Ready interactions that are sent from 
the test federates. These interactions contain the name of 
the federate sending the interaction and are sent 
periodically by each test federate. Once a Ready 
interaction is received, the execution manager records the 
presence of that test federate and sends a ReadyAck 
interaction to tell the test federate to stop sending the 
Ready interactions4. Once all expected federates have 
been registered, the execution manager registers the first 
synchronization point indicating the start of the 
simulation. Once the federation is synchronized at this 
point, the execution manager immediately registers the 
end synchronization point and waits for all the federates 
to achieve it. The execution manager then attempts to 
resign and destroy the federation execution and then 
terminates. 

3.3 Scenario Management 
A script program manages the test federation. The values 
of the test parameters are captured in this script. The 
script iterates over all valid combinations of these 
parameter values (the validity conditions are also captured 
in the script) and launches the test federates and execution 
manager federate with the appropriate command line 
arguments. Each valid combination is executed multiple 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 The test federate is written in Java and System.nanoTime() is used to 
query the system timer. All measures are time periods between two calls 
to this method. 
4 This process could be implemented using the Management Object 
Model (MOM). However, the RTI under test did not, at the time of 
writing, provide MOM functionality. 



times in order to gain an average performance across any 
computing artefacts that may occur during execution. 
 
The script monitors the ‘liveness’ of each of the federates 
and begins the next combination of parameter values once 
it has detected that all federates have terminated. 
 
4 Design of Experiments 
 
Choice of the values for these parameters needs to be 
informed so as to limit the need to test all possible 
combinations, the number of which can rapidly explode. 
Sanchez [18] and NATO MSG-088 [2] describe various 
methods for intelligently choosing values. The simplest 
approach is referred to as a 2k factorial design or a coarse 
grid. This approach basically takes a low value and a high 
value for each of the k parameters so as to generate a 
general first order effect arising from that particular 
parameter. This is the approach taken for this paper. 
 
In addition to the 2k factorial design, some parameter 
values impact on the choice of other parameter values. 
For example, the timestep value of a federate must be 
greater than or equal to the lookahead of that federate 
since it is not possible to request a time advance to a point 
in time less than the federate’s current time plus its 
lookahead. Also, the minimum value of the 
evokeMultipleCallbacks method must be less than the 
maximum value. 
 
The following table presents the values for the 
parameters. These are chosen somewhat arbitrarily since 
the purpose is to look for answers in the data instead of 
predicting how the values will impact performance. 
 
Parameter Low Value High Value 
#Federates 2 8 
End simulation time 20 100 
Timestep 0.01 1.0 
Lookahead 0.01 1.0 
evokeCallback 0.001 0.1 
evokeMultipleCallbacks 
min time 

0.001 0.1 

evokeMultipleCallbacks 
max time 

0.1 1.0 

 
These parameter values give a total of 96 combinations. 
The first five parameters yield 32 (25) combinations. The 
final two parameters yield three combinations due to the 
restriction that the min time be less than the max time. 
Thus, the total combinations are 32x3=96. 
 
In addition, each of these 96 combinations are run five 
times yielding a total of 480 federation executions. 
 

The RTI and computing configuration are kept as 
invariants. The RTI is kept anonymous as the RTI’s 
developer has not (at time of writing) been consulted 
about the performance results. Suffice it to say that the 
RTI is a Java implementation and supports the IEEE 
1516-2010.1 interface specification. 
 
The computing configuration is named Machine M: 
Apple MacBook Pro with a 2.8GHz Intel Core i7, 16GB 
of 1600MHz DDR3 RAM and running Mac OS X 10.9.3 
and Java Version 1.7.0_55. 
 
5 High Performance Computing 
 
The scope of the performance experiments for this paper 
have been deliberately kept small to focus on the data 
farming process. As such, the size of the parameter space 
is limited and a high performance computing environment 
is not needed. Thus, the test federation is able to be run 
manually. While not employed for the performance 
results in this paper, extra computing configurations could 
be accessed through Infrastructure-as-a-Service providers 
such as Amazon Web Services (AWS) or Google 
Compute Engine (GCE).  
 
These services provide the ability to provision virtual 
machines of specific configurations (although, of these 
two, only Amazon provides Windows virtual machines). 
Both services also provide the ability to create a virtual 
network of virtual machines that is partitioned off from 
the rest of the Internet. This could be employed for testing 
the performance across a network of computers. 
Although, care would need to be taken in the 
interpretation of results due to the performance penalty of 
using virtualized and shared resources. At best, 
performance should be reported relative to a baseline 
established on the virtualized resources.  
 
However, both AWS and GCE do not allow multicast or 
broadcast network traffic within these virtual networks, 
which would limit applicability since most RTIs use 
multicast at least during the initial discovery phase. As 
such, in order to achieve a similarly virtualized test 
environment, other infrastructure-as-a-service providers 
or the establishment of a private data farming 
environment will be researched. With respect to the latter 
approach, the NATO MSG-088 report [2] describes three 
such environments established by United States, Germany 
and Singapore. 
 
6 Analysis and Visualisation 
 
Each of the test federates record the performance 
measures in text files. These text files are written to a 
directory created per federation configuration. 



 
The data analysis process begins with data collection and 
curation. A script traverses all the data output and records 
it into a relational database table with columns for each of 
the parameters and a column each for the total simulation 
time, the average time advance rate, the minimum time 
advance rate and the maximum time advance rate. Having 
all this data collated in a central database allows for 
efficient querying and visualization of results across 
different parameter dimensions. 
 
The data in the resulting database is effectively an n-
dimensional cube that can be analysed and visualized 
using typical online analytical processing (OLAP). The 
cube can be sliced and diced to reduce its dimensionality 
by picking particular values for the parameter values. If 
the raw step-by-step time advance rates were retained or 
linked then that data could be drilled down to from the 
top-level aggregate data. This would be particularly 
important if the data revealed a wide range between the 
minimum and maximum time advance rate. 
 
Manipulation and visualisation of this n-dimensional data 
is best done via an interactive tool allowing a user to step 
in and out of the data space. Such a tool would have 
support for quickly identifying outliers and other 
interesting data features. Machine learning and data 
mining algorithms such as classification, clustering and 
regression can assist in this process. 
 
It is probably more efficient for this small testing 
federation to have each of the federates write their results 
directly to the final database. However, as the parameter 
space increases and the number of simultaneous 
federation executions grows with the employment of high 
performance computing resources, writing text files to a 
local directory is an efficient and scalable way of 
capturing results. The subsequent analysis step becomes 
more complex but can be facilitated by technologies and 
tools like MapReduce5 and Hadoop6. 
 

6.1 Example Analysis and Visualisation 
 
Data from performance runs are presented in Table 1 in 
Section 12 at the end of this paper. The PM column refers 
to the process model used by the federate and is coded as 
follows: 

• P1: evokeCallback(0.001) 
• P2: evokeCallback(0.1) 
• P3: evokeMultipleCallbacks(0.001, 0.1) 
• P4: evokeMultipleCallbacks(0.001, 1.0) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 http://research.google.com/archive/mapreduce.html 
6 http://hadoop.apache.org/ 

• P5: evokeMultipleCallbacks(0.1, 1.0) 
 
The Average Simulation Time is the average over all 
federates in each federation and then over iterations 2, 3, 
and 4 (results from iterations 1 and 5 are discarded as 
warm up and cool down iterations respectively). The 
Minimum and Maximum Simulation Time columns are 
calculated similarly. 
 
The parameters end time and timestep affect how many 
calls each federate makes to request a time advance 
during a simulation. As such, it is not possible to directly 
compare simulation times where the end time and 
timestep differ. Therefore, a secondary parameter of 
“number of frames” is introduced to capture how many 
time advance requests are made by a federate. The 
simulation time is divided by the number of frames to get 
an average simulation time per frame metric that is 
suitable for comparison. 
 
The plot below (Figure 3) presents the average simulation 
time (seconds) per frame (y-axis) for the five different 
process models (x-axis) across all values of end time, 
timestep and lookahead. Two series of values are 
presented: one for federations with two federates and the 
other for federations with eight federates. 
 

 
Figure 3: Average simulation time per frame vs process 

model for 2 and 8 federate federations 
 

From this plot it is seen the that P1 and P2 process models 
result in longer simulation times. However, the simulation 
times for P1 and P2 in the 8 federate case are almost 
twice the simulation times for the P3, P4 and P5 process 
models. In the two federate case the extra simulation time 
for the P1 and P2 process models is only around 4%. 
 
Surprisingly, for the P3, P4 and P5 process models, the 
simulation time is largely similar across two or eight 
federates indicating decent scalability (in this simplistic 
federation) for this RTI. It also indicates that perhaps the 
values for the number of federates should be changed and 
further experimentation undertaken to identify the 
scalability inflection point. 
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The variance in the results for P1 and P2 for the eight 
federate case indicates that there is likely some 
dependency between those results and the hidden 
parameters of end time, timestep and/or lookahead. A 
look through the data implies that a smaller timestep 
yields a lower average simulation time per frame for the 
same end time. Also, a larger end time yields a lower 
average simulation time frame for the same time step. 
Different lookahead values seem to have no impact on 
average simulation time per frame. However, smaller end 
times and larger end times yield more frames resulting in 
greater overall simulation time so care needs to be taken 
in applying these results directly. 
 
Average simulation time per frame hides any anomolies 
that may occur in the actual simulation time per frame 
encountered by a federate. Figure 4 below (data is inTable 
2 in Section 12) scatter plots the actual simulation time 
(seconds) per frame for the P1 and P3 process models in a 
federation with eight federates. The simulation time per 
frame (basically the time taken from time advance request 
to receiving a time advance grant in this test environment) 
is very jittery for process model P1. The values for 
process model P3 are much more consistent. Similar 
results to P1 could be plotted for P2. Also, process 
models P4 and P5 yield similar results to P3. 
 

 
Figure 4: Actual simulation time (seconds) per frame for 

process models P1 and P3, 8 federate federation, end time 
100s, timestep 1.0s, lookahead 0.01s 

 
The reason for the difference in performance of P1 and P2 
compared to P3, P4 and P5 is due to it taking a lot more 
calls to evokeCallback (P1 and P2) before a time advance 
grant is returned. Compared to the number of calls 
required of evokeMultipleCallbacks (P3, P4 and P5). For 
the RTI under test, it takes over 100,000 calls to 
evokeCallback on one frame, but the very next frame can 
take as little as three calls. The following frame goes back 
to requiring over 100,000. The up and down pattern for 
evokeMultipleCallbacks also exists but the larger number 
of calls required is only around 30. 
 

 
7 Answers 
 
Given the analysis so far it is evident that for the used 
RTI, process models P1 and P2 result in poorer 
performance than for performance models P3, P4 and P5. 
Also, in regards to performance models P3, P4 and P5, 
the actual timing values supplied seem to not matter. 
 
8 Future Work 
 
The intent is to expand the parameter set and range of 
values per parameter to generate a fuller data space from 
which to derive correlations (and, hopefully, causations) 
between parameter values and HLA federation 
performance. With this expanding scope, a new test 
environment (either using an existing public cloud or 
developing an internal private cloud) will be used to allow 
completion of the performance runs in a timely manner. 
Additional performance measures will be captured to 
provide more insight into the tradeoffs engendered in the 
selection of various parameter values. Additionally, non-
federation metrics will be captured to identify second 
order effects on performance such as third-party 
application CPU load, memory usage, disk access, and 
network use. These secondary metrics are particularly 
important to capture in public, virtualized, shared 
computing platforms. 
 
The increased data space will require the employment of 
data mining algorithms to identify key parameter sets and, 
finally, in the derivation of a performance model that is 
representative of the data collected. 
 
9 Summary 
 
We have presented a data farming approach to exploring 
and analyzing the space of parameters that potentially 
affect the performance of HLA federations. The 
parameter space is potentially huge and experimenting in 
such a space requires support from several fields captured 
in the data farming methodology: rapid scenario 
prototyping, model development, design of experiments, 
high performance computing and analysis and 
visualization. 
 
One step of the data farming process as reported by the 
NATO MSG-088 task group has not been discussed yet in 
this paper. Collaborative processes covers the teamwork 
required to maintain a healthy data farm from the 
experiment designers through the computing team and on 
to the analysts. We end this paper by proposing a 
performance team with the necessary skills be established 
within the Simulation Interoperability Standards 
Organisation (SISO) community to continue the research 
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on HLA performance with a view to making performance 
based suggestions on the evolution of the HLA. In order 
to establish a level playing field the team would start by 
defining agreed methods and procedures to measure HLA 
performance.  
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12 Data 
 

Table 1: Simulation Data Results 
#FED PM EndT (s) TS (s) #Frames LHD (s) AVG SIM T (ns) MIN SIM T (ns) MAX SIM T (ns) AVG ST/FRAME (s) 
2 P1 20 0,01 2000 0,01 56,46032717 56,252417 56,698317 0,02823 
2 P2 20 0,01 2000 0,01 57,903679 57,802833 57,985213 0,028952 
2 P3 20 0,01 2000 0,01 54,790349 54,680757 54,852616 0,027395 
2 P4 20 0,01 2000 0,01 54,66029583 54,587349 54,713394 0,02733 
2 P5 20 0,01 2000 0,01 55,044595 53,826493 55,72255 0,027522 
8 P1 20 0,01 2000 0,01 96,02848358 95,530187 96,327429 0,048014 
8 P2 20 0,01 2000 0,01 95,37848029 94,772291 96,115905 0,047689 
8 P3 20 0,01 2000 0,01 53,31894283 53,124708 53,502852 0,026659 
8 P4 20 0,01 2000 0,01 52,65814558 52,216342 53,414581 0,026329 
8 P5 20 0,01 2000 0,01 53,08759292 52,189616 53,710031 0,026544 
2 P1 20 1 20 0,01 0,641514333 0,582148 0,685257 0,032076 
2 P2 20 1 20 0,01 0,629404333 0,547157 0,704944 0,03147 
2 P3 20 1 20 0,01 0,553491833 0,550598 0,558404 0,027675 
2 P4 20 1 20 0,01 0,544958667 0,524619 0,555382 0,027248 
2 P5 20 1 20 0,01 0,479461167 0,376466 0,562291 0,023973 
8 P1 20 1 20 0,01 1,246927875 1,170826 1,313135 0,062346 
8 P2 20 1 20 0,01 1,203941375 1,167344 1,247632 0,060197 
8 P3 20 1 20 0,01 0,577439083 0,554209 0,640085 0,028872 
8 P4 20 1 20 0,01 0,582201333 0,562886 0,630617 0,02911 
8 P5 20 1 20 0,01 0,566887833 0,553592 0,61027 0,028344 
2 P1 20 1 20 1 0,6054065 0,522492 0,663463 0,03027 
2 P2 20 1 20 1 0,603123 0,531656 0,658796 0,030156 
2 P3 20 1 20 1 0,535834167 0,534216 0,537324 0,026792 
2 P4 20 1 20 1 0,542841667 0,533754 0,559383 0,027142 
2 P5 20 1 20 1 0,562990833 0,560639 0,564883 0,02815 
8 P1 20 1 20 1 1,272072875 1,136138 1,43314 0,063604 
8 P2 20 1 20 1 1,285272042 1,199841 1,384903 0,064264 
8 P3 20 1 20 1 0,595028792 0,559139 0,656344 0,029751 
8 P4 20 1 20 1 0,586511333 0,539842 0,667346 0,029326 
8 P5 20 1 20 1 0,5856945 0,546134 0,678086 0,029285 
2 P1 100 0,01 10000 0,01 280,1258333 277,624 282,492 0,028013 
2 P2 100 0,01 10000 0,01 280,5368333 277,696 283,642 0,028054 
2 P3 100 0,01 10000 0,01 267,701 265,298 271,055 0,02677 
2 P4 100 0,01 10000 0,01 270,8658333 270,561 271,024 0,027087 
2 P5 100 0,01 10000 0,01 274,5218333 274,412 274,594 0,027452 
8 P1 100 0,01 10000 0,01 462,4359167 462,049 462,959 0,046244 
8 P2 100 0,01 10000 0,01 462,6778333 460,617 463,78 0,046268 
8 P3 100 0,01 10000 0,01 264,4117083 263,87 264,832 0,026441 
8 P4 100 0,01 10000 0,01 261,104 259,09 264,637 0,02611 
8 P5 100 0,01 10000 0,01 264,356375 261,632 265,868 0,026436 
2 P1 100 1 100 0,01 2,991847333 2,921354 3,069313 0,029918 
2 P2 100 1 100 0,01 2,883334667 2,766244 2,991599 0,028833 
2 P3 100 1 100 0,01 2,619080167 2,575113 2,679672 0,026191 
2 P4 100 1 100 0,01 2,699565167 2,653196 2,757232 0,026996 
2 P5 100 1 100 0,01 2,806422167 2,799595 2,81017 0,028064 
8 P1 100 1 100 0,01 5,217799208 5,035349 5,343164 0,052178 
8 P2 100 1 100 0,01 5,076578792 4,958876 5,178918 0,050766 
8 P3 100 1 100 0,01 2,708294833 2,680744 2,760317 0,027083 
8 P4 100 1 100 0,01 2,679911583 2,665196 2,724619 0,026799 
8 P5 100 1 100 0,01 2,709734667 2,687948 2,760207 0,027097 
2 P1 100 1 100 1 2,948851833 2,874261 3,009218 0,029489 
2 P2 100 1 100 1 2,916675167 2,822951 3,019887 0,029167 
2 P3 100 1 100 1 2,7529615 2,735937 2,768221 0,02753 
2 P4 100 1 100 1 2,7092835 2,595965 2,768161 0,027093 
2 P5 100 1 100 1 2,7995955 2,783733 2,809897 0,027996 
8 P1 100 1 100 1 5,2292615 5,137961 5,387298 0,052293 
8 P2 100 1 100 1 5,3708665 5,144697 5,62323 0,053709 
8 P3 100 1 100 1 2,699719667 2,653402 2,786291 0,026997 
8 P4 100 1 100 1 2,723542792 2,686884 2,788623 0,027235 
8 P5 100 1 100 1 2,696968417 2,67522 2,750964 0,02697 
 



Table 2: Actual Simulation Time (seconds) per frame for process models P1 and P3 in an 8 federate federation, end 
time 100, timestep 1.0, lookahead 0.01 

 
Frame# P1 P3 Frame# P1 P3 

1 0,120166 0,039268 51 0,051834 0,023605 
2 0,056189 0,045185 52 0,038469 0,031157 
3 0,091901 0,044554 53 0,078223 0,02076 
4 0,018081 0,022407 54 0,050557 0,027199 
5 0,095939 0,028863 55 0,013533 0,02467 
6 0,044147 0,024363 56 0,054487 0,026227 
7 0,08718 0,030903 57 0,028803 0,028015 
8 0,049953 0,024443 58 0,022727 0,026629 
9 0,065286 0,027228 59 0,027693 0,025817 

10 0,13517 0,024959 60 0,024871 0,025898 
11 0,07433 0,025522 61 0,043377 0,028255 
12 0,038612 0,031374 62 0,048992 0,024431 
13 0,083616 0,024624 63 0,082412 0,02812 
14 0,04178 0,026148 64 0,051083 0,026211 
15 0,038479 0,02561 65 0,034333 0,023054 
16 0,07461 0,026558 66 0,029924 0,029333 
17 0,050893 0,030336 67 0,040093 0,023949 
18 0,044009 0,021406 68 0,060876 0,025426 
19 0,043753 0,025099 69 0,063518 0,026558 
20 0,04932 0,025951 70 0,040979 0,026739 
21 0,079514 0,031891 71 0,073107 0,028445 
22 0,051578 0,022522 72 0,018488 0,024803 
23 0,045699 0,030613 73 0,065615 0,026395 
24 0,039756 0,017859 74 0,053004 0,031009 
25 0,035749 0,042144 75 0,074425 0,023585 
26 0,022699 0,025798 76 0,029784 0,029766 
27 0,048275 0,028081 77 0,052591 0,024724 
28 0,032846 0,027362 78 0,087645 0,025828 
29 0,084444 0,029198 79 0,031276 0,023537 
30 0,041743 0,029511 80 0,046381 0,029477 
31 0,092034 0,027916 81 0,046295 0,023986 
32 0,053512 0,026133 82 0,069475 0,027097 
33 0,018445 0,023152 83 0,028936 0,027397 
34 0,096744 0,029149 84 0,041218 0,0269 
35 0,061424 0,024881 85 0,056892 0,025145 
36 0,031332 0,027455 86 0,041127 0,026944 
37 0,030513 0,027072 87 0,064598 0,025362 
38 0,037442 0,026051 88 0,039732 0,024759 
39 0,03365 0,026881 89 0,067278 0,025879 
40 0,065737 0,026139 90 0,044579 0,026424 
41 0,029295 0,025365 91 0,050313 0,026215 
42 0,055221 0,025659 92 0,022893 0,028216 
43 0,079971 0,027335 93 0,075467 0,029063 
44 0,06414 0,026825 94 0,029615 0,02386 
45 0,049686 0,027415 95 0,056652 0,027053 
46 0,058595 0,025798 96 0,048522 0,025604 
47 0,059421 0,027529 97 0,078523 0,024051 
48 0,055169 0,028101 98 0,064364 0,02709 
49 0,05429 0,023897 99 0,057363 0,026525 
50 0,054583 0,028325    

 


