
Data Farming in Support of HLA Performance Assessment

Anthony Cramp, Tom van den Berg, Wim Huiskamp
TNO

Oude Waalsdorperweg 63
2597 AK The Hague

The Netherlands
{anthony.cramp, tom.vandenberg, wim.huiskamp}@tno.nl

ABSTRACT: Performance assessment is a key factor in designing distributed simulation environments that are fit-for-
purpose and cost-effective. Simulations used for training applications should provide the required level of
responsiveness and interactivity. Simulations used for analysis or decision support should execute as fast as possible to
enable quick results on large numbers of scenarios and variables. There are many parameters that have an impact on
the performance of a typical High Level Architecture (HLA) federation. We describe a structured process for using data
farming (experiment design, simulation, cloud computing, and data mining) in order to identify key parameters
affecting the performance of HLA federations. A parameterized and instrumented federation is designed with
parameters covering areas suspected of impacting HLA performance and instrumentation measuring key values of HLA
performance. One key parameter set for HLA performance is the computing platform that hosts the federation. Varying
such a platform in an efficient and cost effective manner is possible using cloud computing via Infrastructure-as-a-
Service providers. Finally, the performance measures captured during federation execution are collated and analysed
using data mining techniques to identify key parameters and their effect on the performance of the federation. By
including the Runtime Infrastructure (RTI) as a parameter in the federation design, it may also be possible to identify
where the HLA itself (instead of particular RTIs or computing platforms) is impacting on simulation performance.
Initial results from this process are presented and future work, including the creation of a HLA performance model
from identified parameters, is discussed.

1 Introduction

Performance of simulations can be vitally important.
Human-in-the-loop simulations for training require an
appropriate amount of responsiveness to ensure seamless
interactivity. Any extra computational time taken by the
simulation infrastructure is time not available to the
simulation models potentially restricting the fidelity of the
models in order to achieve simulation timing
requirements. The latency introduced by the infrastructure
also affects the responsiveness of the system and possibly
the stability of the models, for example, due to operator
induced oscillations.

Similarly, constructive simulations used for analysis or
decision support need to be performant. A saving of as
little as a few seconds per simulation iteration can lead to
vast savings over the life of an analysis covering multiple
scenario configurations and multiple Monte Carlo
iterations per configuration. For example, the authors
have been involved in a number of studies involving
analysis simulations. One of the analysis simulations
consists of 100 different simulation configurations with
each configuration being run over 400 Monte Carlo
iterations. Each configuration had a runtime of, on
average, 130 simulation seconds and ran at a wallclock
rate of 0.1 or 1300 wallclock seconds (21 minutes, 40
seconds). Executing these simulations sequentially would
take approximately 600 days. Increasing the wallclock

rate to even 0.11 would reduce the execution time to less
than 550 days allowing answers to be produced earlier or
providing more time for extra scenario configurations to
be executed1,2.

The performance of this simulation was measured by
running the simulation. However, this leads to a chicken
and egg problem whereby the amount of computing
resources required for the simulation is dependent on the
performance of the simulation but the performance of the
simulation is only measured by running the simulation on
the computing resources.

Being able to predict performance is one way to break
this circular dependency. Accurate prediction of the
performance of a simulation provides the simulation
designers scope to efficiently allocate simulation
participants, simulation support staff and computing
resources prior to the final completion of the simulation.
Of course, some measure of agility will be required to
adapt to circumstances falling outside the performance

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 Wallclock runtime in days = #configurations x #iterations x simtime /
wallclock rate / seconds per day
2 The numbers presented for the analysis simulation are representative
but not exact. Plus, the actual simulation execution didn’t happen
sequentially; rather multiple machines were employed to execute
different scenario configurations in parallel. Also, startup and shutdown
times are not taken into account in the above calculations, which add
more time. The full suite of iterations in the real simulation on the real
computing hardware took about one month of continuous execution.

predication. However, some predication, assuming it is
correct, is better than none.

Despite the body of research that exists on High Level
Architecture (HLA) performance, prediction is still
somewhat hit or miss due, in part, to the large parameter
space that can affect performance. The parameter space
for HLA performance spans the simulation stack from the
computing infrastructure (computers and networks,
including encryption) through the base platform
environment (operating systems, programming language)
into the HLA Runtime Infrastructure (RTI) being used
and the ways in which the federates interact with the RTI,
and finally into the domain being simulated and the
domain coupling that arises across the federates
interacting during simulation execution.

Exploring this huge parameter space requires techniques
from experiment design (to identify the most important
parameters and the important value ranges of those
parameters), high performance computing (to be able to
execute all the simulation configurations within a
reasonable amount of time) and data mining and analysis
(to be able to search through the data and reveal
interesting results and/or correlations).

Data farming is the term given to this holistic approach to
simulation derived data exploration. Horne and Meyer [1]
presents data farming as an iterative approach covering
question/topic research and definition, model
development and gaming, parameter space exploration,
and data exploration and analysis. They note “in Data
Farming, there is not necessarily a predefined hypothesis
that is being confirmed. The data is being ‘explored’.
Trends and relationships may become exposed, but
outliers, cusps and saddle points may also be found in the
n-dimensional output space”.

The North Atlantic Treaty Organisation (NATO) is one
organization exploring the use of Data Farming to be used
for decision support. The NATO Science and Technology
Organisation (STO) Modelling and Simulation Group’s
(NMSG’s) Task Group MSG-088 delivered its final
technical report [2] in which are defined six aspects of
data farming: rapid scenario development, model
development, design of experiments, high performance
computing, analysis and visualization, and collaborative
processes. The final report notes “… the essence of data
farming is that it is first and foremost a question-based
approach. The basic question that is asked over and over
again in different forms and different contexts is: What
if?”.

Cloud computing [3] is of particular importance to data
farming as it offers an expandable computing resource
that can scale in or out depending on the requirements of

the experiment being analysed. Cloud computing offers
an additional benefit in terms of using data farming for
HLA performance analysis. Since one of the parameter
sets with a potential impact on HLA performance is the
computing and network infrastructure, cloud computing
and, in particular, the Infrastructure-as-a-Service model
can provide a cost effective way of accessing different
computing platforms with configurable interconnections.

This paper presents a data farming approach to analyzing
the performance of HLA federations. No hypotheses are
made regarding what are the key parameters of HLA
performance. Instead, a ‘performance federation’ is
constructed and run over a pre-identified space of
parameter values. Performance measures recorded by the
federation are then analysed to identify the effect the
parameters have on HLA performance.

The structure of this paper follows the data farming steps
developed in the NATO MSG TG 088 final report. These
steps are iterative in nature and illustrated in Figure 1.

Figure 1: Data Farming "Loop of Loops" (MSG-088

Report)

We begin with Rapid Scenario Prototyping in Section 2
wherein the question to be answered is defined along with
input parameters and measures of effectiveness. Section 3
presents some details on the Model Development for the
analysis of HLA federation performance. Section 4
outlines the design of the performance experiments
including the selection of parameter values. Section 5
provides information on the computing environment in
which the performance experiments are run. Section 6
documents the analysis process of the data generated by
the experiment runs and presents some visualisations
from that data analysis. Section 7 derives answers to the
original questions from the data analysis. Section 8
proposes future work to be conducted to continue the
discovery of parameters affecting HLA federation
performance. Section 9 summarises the data farming
process as applied to exploration of HLA federation
performance and proposes that a collaborative effort be
established within the community to continue the research

for the purpose of making performance-based suggestions
in the evolution of the HLA standard.

2 Rapid Scenario Prototyping

We begin with the top-level question: “How do HLA
federation parameters affect the performance of those
HLA federations?”

This is a very broad question requiring answering at least
two sub-questions: “What is HLA federation
performance?” and “What are the HLA federation
parameters?” To begin answering these questions we first
conduct a review of HLA performance research.

2.1 Background on HLA Performance Research
Most HLA performance research has focused on the
“infrastructure”—communications, computers, HLA RTI
—aspects in terms of measures such as latency and
throughput. For example, Knight et al [4] researched the
effect on latency and throughput across twelve
independent parameters:

• RTI
• Number of federates
• Distribution of federates
• Data Distribution Management
• Network transport mode
• Objects per federate
• Attributes per object
• Interactions per federate
• Parameters per interaction
• Attribute buffer size
• Interaction buffer size
• Data bundling

Drake et al [5] extends this work by adding a Load
parameter to the test federates to simulate actual work
performed by federates. Also added was an additional
metric of one way latency and the calculation of latency
jitter rather than just presenting average latency over a
number of test iterations.

Malinga and Roux [6] compared round trip latency across
two parameters: RTI (three choices) and transport type
(reliable or best effort).

Morse et al [7] discuss the impact of attribute level
advisories on the scalability of a federation and
highlighted the importance of understanding how an RTI
implements its features and how those features may be
configured to impact performance for the better (or
worse).

Burks et al [8] used a one-way latency metric to compare
different RTI implementations and, in particular, ‘tuned’
versions of those RTIs to identify configurations that
yielded optimal performance.

Fujimoto and Hoare [9] compared attribute update latency
and time advance rate across RTIs using traditional
TCP/UDP networking on an Ethernet LAN and an RTI
using Myrinet.

Van den Berg et al [10] analysed the performance of a
time-managed simulation over a Wide Area Network. A
performance model was constructed showing the general
time advancement pattern of the federation, the major
components, the processing by each component and the
messages that are exchanged between the components.

Murray and Faier [11] took a different approach to
performance and looked at how aspects of Federation
Object Model design impacted processing time and
network bandwidth. They found that a single record type
attribute, as opposed to multiple attributes representing
the fields of the record type, was more efficient in terms
of both measures.

Cramp [12] analysed latency, throughput and network
utilization across three different methods for
implementing an HLA federation supporting the
simulation of a domain decomposed into multiple systems
of systems.

Karlsson and Johansson [13] suggest that RTI
performance is wider than just speed metrics and should
also capture aspects related to fault tolerance, stability,
development and deployment.

Möller et al [14] argue that this infrastructure, while
important, is probably not the limiting factor in the
performance of federations. Instead, they propose a
conceptual model for causes of federation performance
problems that classify issues in terms of the process
model, data rates, high-level synchronization, and domain
model dependencies.

Watrous et al [15] propose that HLA federation
performance is impacted at multiple levels including
specific HLA requirements, RTI implementation choices,
federation requirements, and physical resource
constraints.

2.2 Performance Measures of Effectiveness
From this background research we can identify a few key
measures of effectiveness when looking at performance of
HLA federations:

• Latency and Throughput of RTI communication:
these measure how long it takes a message to
propagate between federates (latency) and how
many messages (of a given message length) are
able to be communicated within a fixed time
window (throughput).

• Network overhead of RTI communication: This
measure can capture the amount of management
data added by the RTI when sending messages.
It can also reflect the amount of unnecessary
data communicated, e.g., messages that are sent
only to be discarded by the receiver.

• Time advance rate: Applicable to time managed
federations, this measure captures the speed at
which the HLA federation progresses in relation
to wallclock time.

• Total time: This is an aggregate measure
capturing the total time to complete a simulation
and can give a high level view of the
performance of a HLA federation.

• Resource usage: The amount of disk space,
memory, computing time, network activity, etc
used by the HLA federation.

• Other issues: graceful degradation under high
load; ’deadtime’: is there a window right after a
processed interaction during which time the
simulation is non-responsive to new events. May
be relevant for some (engineering) applications.

2.3 Performance Parameters
The extant body of knowledge reveals a large number of
parameters that have been identified and tested for their
effects on HLA federation performance. The following
subsections attempt to summarise and categorise these
parameters. These lists of parameters are, undoubtedly,
incomplete and only gain true meaning when the domain
of parameters values that are applicable are explored.

Some of these parameters are likely to be invariants in
any performance experiment. For example, the
infrastructure parameters are probably limited to those
available, although infrastructure-as-a-service providers
increase the scope to be able to test across these
parameters as well.

2.3.1 Infrastructure Parameters
Parameters in this category relate to the type and number
of computing and network resources available to run the
federation. Such parameters include:

• The computing core
• The memory infrastructure
• The permanent storage infrastructure
• The network infrastructure
• Encryption infrastructure

2.3.2 Platform Parameters
This category captures the software platform running
upon the computing infrastructure. This includes all
software required to create the runtime environment for a
federate. These parameters include:

• The operating system (OS) and configuration
• Runtime support environment (e.g., Java Virtual

Machine, Python interpreter)
• Support software
• The RTI

2.3.3 RTI Parameters
The choice of RTI is a parameter in the Platform
category. Individual RTIs will also have a large number
of parameters that can be used to configure their
performance. Historically, these parameters are defined in
a file called RTI.rid. A generic list of such parameters is
presented below but actual parameters will be dependent
on the specific RTI.

• Centralized vs decentralized
• Use of declaration management advisories
• Data Distribution Management (DDM)

configuration
• Network message bundling and transmit options

2.3.4 Federate Parameters
These parameters capture how individual federates are
developed and, in particular, how the federate operates
and interacts with the RTI. This operation and interaction
with the RTI is referred to as the federate’s process
model. It captures details like the work the federate does
and how the federate receives information from the RTI,
i.e., via evoked callbacks or asynchronous callbacks [16].
Different types of federates will have different impacts on
federation performance. For example, a federate designed
to log federation data to disk will incur the relatively slow
disk access performance and, potentially, pass that on to
the overall federation performance. These federate level
parameters are of particular importance since they are
under direct control of the federate developer. Such
parameters include:

• The HLA standard used (dependent on RTI
support)

• The programming language and compiler used to
develop the federate and interact with the RTI
(may differ from the language the RTI is written
in)

• The process model used to interact with the RTI.
The process model encompasses a number of sub
parameters including:

o Timestep
o Lookahead

o Time management
o Disk/OS calls
o Number of objects per federate
o Number of interactions per federate
o Size of attribute instances
o Size of parameter instances
o Frequency of updates and sends

2.3.5 Federation Parameters
Most parameters fall into this category as it relates to how
a federation is designed and how federates interact with
each other during a running federation execution. These
parameters include:

• Federation Object Model (FOM) design
• Number of federates
• Distribution of federates across available

computing resources
• Distribution of RTI components
• Domain coupling between federates
• Simulation running time (to capture any effects

caused by accumulation of factors)
• Time representation

2.4 Scope of Parameters and Measures for this
Paper

The previous sections highlighted the large number of
measures and parameters related to HLA federation
performance.

For the purpose of this paper we concentrate on a
constructive, time managed federation with measures
being rate of time advance grants compared to wallclock
time and overall simulation wallclock time. The
parameters and metrics proposed and researched in the
literature will indirectly impact these higher level, time
management metrics. We choose to start at the top level
and, in the future, delve down to the lower more fine
grained parameters and metrics.

For this paper, the parameters of interest for their impact
on the metrics are:

• Number of federates
• Simulation running (end) time
• Timestep per federate
• Lookahead per federate
• Time parameters for the evokeCallback and

evokeMultipleCallbacks based federate process
model

These measure and parameter choices dictate the
development of the model to be used to explore the
parameter value space and the resulting captured metrics.

3 Model Development

One approach to the development of a model for testing
HLA federation performance is to develop a conceptual
representation of the HLA and conduct the testing within
this representation. Gianni et al [17] take this approach by
representing a HLA federation as an Extended Queueing
Network (EQN) and performing performance simulations
on this model.

We take the approach of building a testing federation that
can be run to test input parameters by analyzing captured
output.

The testing federation is composed of multiple test
federates that implement the test logic and log the
measured metrics. The lifecycle of these test federates is
managed by a single execution manager federate that uses
interactions and federation sychronisation points to
manage the start of the test execution. A management
script captures the scenario parameters and iterates over
all combinations of the parameter values and controls the
starting and stopping of the federate processes. The
source code for this test environment is available on
Github (https://github.com/anthonycramp/hla-
performance). Each configuration of parameter values is
iterated multiple times to average any transient work load
resident on the host computer. In particular, the first
iteration is usually ignored due to it incurring ‘warm-up’
artefacts that won’t exist for subsequent iterations.

The architecture of the performance test environment is
illustrated in the sequence diagram presented in Figure 2
and described in the following subsections.

Figure 2: Sequence diagram for the performance test

environment.

Scenario
Configuration

Scenario
Management

Test
Fed

Exman
Fed

Test
Fed

Read
Start

Start

Ready

Ready

Sync
Sync

Init Init

Sim Sim

Log Log

Sync
Sync

Start

ReadyAck

ReadyAck

3.1 Test Federate

The test federates accept command line arguments in
order to be able to set the parameter values for timestep,
lookahead, min and max time for evokeCallback, and the
end time of the simulation.

The test federate algorithm proceeds as follows:

1. Connect to the RTI, attempt to create the
federation execution (using RPR-FOM as the
Federation Document Data (FDD)), attempt to
join the federation execution (using a name
specified on the command line)

2. Periodically send a Ready interaction, with the
name of the federate as a parameter instance,
until a ReadyAck interaction is received, with a
matching federate name (these interactions are
defined in a custom exman.xml FOM module)

3. Wait for the announcement of a synchronization
point and, once announced and achieved, wait
for the federation to be synchronized. The
execution manager federate is responsible for
registering this synchronization point.

4. In order to exercise the RTI a little, the test
federate publishes and subscribes to the Spatial
attribute of the
BaseEntity.PhysicalEntity.Platform.SurfaceVess
ell object class. For this paper, test federates
don’t register/discover object instances,
update/reflect attribute values or send/receive
interactions. These will be added in the future.

5. The federate enables time constraint and
regulation using the default HLAfloat64 time
representation.

6. A simulation loop is entered whereby a time
advance grant to current time plus timestep is
requested and the grant waited upon. The
waiting is executed either via the single
argument call to evokeCallback or the two
argument call to evokeMultipleCallbacks. The
loop exits once a predetermined simulation end
time is reached.

7. After exiting the simulation loop, the test
federate waits for a synchronization point to be
announced (registered by the execution manager
federate). Once it has been announced, the test
federate achieves the synchronization point and
waits for the federation to be synchronized.

8. Finally, the test federate attempts to resign from
and destroy the federation execution and then
terminates.

The test federate records the current system time 3 in
memory at key points. This logging is carefully managed
so as to impose minimal overhead on federate
performance. For example, the memory for the logging
structure is pre-allocated so that no dynamic memory
allocations (due to logging) occur.

System time is recorded before entering the simulation
loop and after exiting the loop. This time delay is the
simulation time measure. Also, system time is recorded
each pass through the simulation loop in order to measure
the time advance rate. These measures, along with the
parameter values for this test configuration, are written to
a text file before the federate terminates but after all
simulation measurements have occurred so as to not
capture disk access time in the measured values.

3.2 Execution Manager Federate
The execution manager federate is simply responsible for
the registration of the synchronization points that act as
barriers for the test federates to beginning simulation
execution and shutting down. The execution manager
federate is provided with a list of federate names it
expects will join the federation. At startup, the execution
manager listens for Ready interactions that are sent from
the test federates. These interactions contain the name of
the federate sending the interaction and are sent
periodically by each test federate. Once a Ready
interaction is received, the execution manager records the
presence of that test federate and sends a ReadyAck
interaction to tell the test federate to stop sending the
Ready interactions4. Once all expected federates have
been registered, the execution manager registers the first
synchronization point indicating the start of the
simulation. Once the federation is synchronized at this
point, the execution manager immediately registers the
end synchronization point and waits for all the federates
to achieve it. The execution manager then attempts to
resign and destroy the federation execution and then
terminates.

3.3 Scenario Management
A script program manages the test federation. The values
of the test parameters are captured in this script. The
script iterates over all valid combinations of these
parameter values (the validity conditions are also captured
in the script) and launches the test federates and execution
manager federate with the appropriate command line
arguments. Each valid combination is executed multiple

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3 The test federate is written in Java and System.nanoTime() is used to
query the system timer. All measures are time periods between two calls
to this method.
4 This process could be implemented using the Management Object
Model (MOM). However, the RTI under test did not, at the time of
writing, provide MOM functionality.

times in order to gain an average performance across any
computing artefacts that may occur during execution.

The script monitors the ‘liveness’ of each of the federates
and begins the next combination of parameter values once
it has detected that all federates have terminated.

4 Design of Experiments

Choice of the values for these parameters needs to be
informed so as to limit the need to test all possible
combinations, the number of which can rapidly explode.
Sanchez [18] and NATO MSG-088 [2] describe various
methods for intelligently choosing values. The simplest
approach is referred to as a 2k factorial design or a coarse
grid. This approach basically takes a low value and a high
value for each of the k parameters so as to generate a
general first order effect arising from that particular
parameter. This is the approach taken for this paper.

In addition to the 2k factorial design, some parameter
values impact on the choice of other parameter values.
For example, the timestep value of a federate must be
greater than or equal to the lookahead of that federate
since it is not possible to request a time advance to a point
in time less than the federate’s current time plus its
lookahead. Also, the minimum value of the
evokeMultipleCallbacks method must be less than the
maximum value.

The following table presents the values for the
parameters. These are chosen somewhat arbitrarily since
the purpose is to look for answers in the data instead of
predicting how the values will impact performance.

Parameter Low Value High Value
#Federates 2 8
End simulation time 20 100
Timestep 0.01 1.0
Lookahead 0.01 1.0
evokeCallback 0.001 0.1
evokeMultipleCallbacks
min time

0.001 0.1

evokeMultipleCallbacks
max time

0.1 1.0

These parameter values give a total of 96 combinations.
The first five parameters yield 32 (25) combinations. The
final two parameters yield three combinations due to the
restriction that the min time be less than the max time.
Thus, the total combinations are 32x3=96.

In addition, each of these 96 combinations are run five
times yielding a total of 480 federation executions.

The RTI and computing configuration are kept as
invariants. The RTI is kept anonymous as the RTI’s
developer has not (at time of writing) been consulted
about the performance results. Suffice it to say that the
RTI is a Java implementation and supports the IEEE
1516-2010.1 interface specification.

The computing configuration is named Machine M:
Apple MacBook Pro with a 2.8GHz Intel Core i7, 16GB
of 1600MHz DDR3 RAM and running Mac OS X 10.9.3
and Java Version 1.7.0_55.

5 High Performance Computing

The scope of the performance experiments for this paper
have been deliberately kept small to focus on the data
farming process. As such, the size of the parameter space
is limited and a high performance computing environment
is not needed. Thus, the test federation is able to be run
manually. While not employed for the performance
results in this paper, extra computing configurations could
be accessed through Infrastructure-as-a-Service providers
such as Amazon Web Services (AWS) or Google
Compute Engine (GCE).

These services provide the ability to provision virtual
machines of specific configurations (although, of these
two, only Amazon provides Windows virtual machines).
Both services also provide the ability to create a virtual
network of virtual machines that is partitioned off from
the rest of the Internet. This could be employed for testing
the performance across a network of computers.
Although, care would need to be taken in the
interpretation of results due to the performance penalty of
using virtualized and shared resources. At best,
performance should be reported relative to a baseline
established on the virtualized resources.

However, both AWS and GCE do not allow multicast or
broadcast network traffic within these virtual networks,
which would limit applicability since most RTIs use
multicast at least during the initial discovery phase. As
such, in order to achieve a similarly virtualized test
environment, other infrastructure-as-a-service providers
or the establishment of a private data farming
environment will be researched. With respect to the latter
approach, the NATO MSG-088 report [2] describes three
such environments established by United States, Germany
and Singapore.

6 Analysis and Visualisation

Each of the test federates record the performance
measures in text files. These text files are written to a
directory created per federation configuration.

The data analysis process begins with data collection and
curation. A script traverses all the data output and records
it into a relational database table with columns for each of
the parameters and a column each for the total simulation
time, the average time advance rate, the minimum time
advance rate and the maximum time advance rate. Having
all this data collated in a central database allows for
efficient querying and visualization of results across
different parameter dimensions.

The data in the resulting database is effectively an n-
dimensional cube that can be analysed and visualized
using typical online analytical processing (OLAP). The
cube can be sliced and diced to reduce its dimensionality
by picking particular values for the parameter values. If
the raw step-by-step time advance rates were retained or
linked then that data could be drilled down to from the
top-level aggregate data. This would be particularly
important if the data revealed a wide range between the
minimum and maximum time advance rate.

Manipulation and visualisation of this n-dimensional data
is best done via an interactive tool allowing a user to step
in and out of the data space. Such a tool would have
support for quickly identifying outliers and other
interesting data features. Machine learning and data
mining algorithms such as classification, clustering and
regression can assist in this process.

It is probably more efficient for this small testing
federation to have each of the federates write their results
directly to the final database. However, as the parameter
space increases and the number of simultaneous
federation executions grows with the employment of high
performance computing resources, writing text files to a
local directory is an efficient and scalable way of
capturing results. The subsequent analysis step becomes
more complex but can be facilitated by technologies and
tools like MapReduce5 and Hadoop6.

6.1 Example Analysis and Visualisation

Data from performance runs are presented in Table 1 in
Section 12 at the end of this paper. The PM column refers
to the process model used by the federate and is coded as
follows:

• P1: evokeCallback(0.001)
• P2: evokeCallback(0.1)
• P3: evokeMultipleCallbacks(0.001, 0.1)
• P4: evokeMultipleCallbacks(0.001, 1.0)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5 http://research.google.com/archive/mapreduce.html
6 http://hadoop.apache.org/

• P5: evokeMultipleCallbacks(0.1, 1.0)

The Average Simulation Time is the average over all
federates in each federation and then over iterations 2, 3,
and 4 (results from iterations 1 and 5 are discarded as
warm up and cool down iterations respectively). The
Minimum and Maximum Simulation Time columns are
calculated similarly.

The parameters end time and timestep affect how many
calls each federate makes to request a time advance
during a simulation. As such, it is not possible to directly
compare simulation times where the end time and
timestep differ. Therefore, a secondary parameter of
“number of frames” is introduced to capture how many
time advance requests are made by a federate. The
simulation time is divided by the number of frames to get
an average simulation time per frame metric that is
suitable for comparison.

The plot below (Figure 3) presents the average simulation
time (seconds) per frame (y-axis) for the five different
process models (x-axis) across all values of end time,
timestep and lookahead. Two series of values are
presented: one for federations with two federates and the
other for federations with eight federates.

Figure 3: Average simulation time per frame vs process

model for 2 and 8 federate federations

From this plot it is seen the that P1 and P2 process models
result in longer simulation times. However, the simulation
times for P1 and P2 in the 8 federate case are almost
twice the simulation times for the P3, P4 and P5 process
models. In the two federate case the extra simulation time
for the P1 and P2 process models is only around 4%.

Surprisingly, for the P3, P4 and P5 process models, the
simulation time is largely similar across two or eight
federates indicating decent scalability (in this simplistic
federation) for this RTI. It also indicates that perhaps the
values for the number of federates should be changed and
further experimentation undertaken to identify the
scalability inflection point.

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0	
 1	
 2	
 3	
 4	
 5	
 6	

2	
 Federates	

8	
 Federates	

The variance in the results for P1 and P2 for the eight
federate case indicates that there is likely some
dependency between those results and the hidden
parameters of end time, timestep and/or lookahead. A
look through the data implies that a smaller timestep
yields a lower average simulation time per frame for the
same end time. Also, a larger end time yields a lower
average simulation time frame for the same time step.
Different lookahead values seem to have no impact on
average simulation time per frame. However, smaller end
times and larger end times yield more frames resulting in
greater overall simulation time so care needs to be taken
in applying these results directly.

Average simulation time per frame hides any anomolies
that may occur in the actual simulation time per frame
encountered by a federate. Figure 4 below (data is inTable
2 in Section 12) scatter plots the actual simulation time
(seconds) per frame for the P1 and P3 process models in a
federation with eight federates. The simulation time per
frame (basically the time taken from time advance request
to receiving a time advance grant in this test environment)
is very jittery for process model P1. The values for
process model P3 are much more consistent. Similar
results to P1 could be plotted for P2. Also, process
models P4 and P5 yield similar results to P3.

Figure 4: Actual simulation time (seconds) per frame for

process models P1 and P3, 8 federate federation, end time
100s, timestep 1.0s, lookahead 0.01s

The reason for the difference in performance of P1 and P2
compared to P3, P4 and P5 is due to it taking a lot more
calls to evokeCallback (P1 and P2) before a time advance
grant is returned. Compared to the number of calls
required of evokeMultipleCallbacks (P3, P4 and P5). For
the RTI under test, it takes over 100,000 calls to
evokeCallback on one frame, but the very next frame can
take as little as three calls. The following frame goes back
to requiring over 100,000. The up and down pattern for
evokeMultipleCallbacks also exists but the larger number
of calls required is only around 30.

7 Answers

Given the analysis so far it is evident that for the used
RTI, process models P1 and P2 result in poorer
performance than for performance models P3, P4 and P5.
Also, in regards to performance models P3, P4 and P5,
the actual timing values supplied seem to not matter.

8 Future Work

The intent is to expand the parameter set and range of
values per parameter to generate a fuller data space from
which to derive correlations (and, hopefully, causations)
between parameter values and HLA federation
performance. With this expanding scope, a new test
environment (either using an existing public cloud or
developing an internal private cloud) will be used to allow
completion of the performance runs in a timely manner.
Additional performance measures will be captured to
provide more insight into the tradeoffs engendered in the
selection of various parameter values. Additionally, non-
federation metrics will be captured to identify second
order effects on performance such as third-party
application CPU load, memory usage, disk access, and
network use. These secondary metrics are particularly
important to capture in public, virtualized, shared
computing platforms.

The increased data space will require the employment of
data mining algorithms to identify key parameter sets and,
finally, in the derivation of a performance model that is
representative of the data collected.

9 Summary

We have presented a data farming approach to exploring
and analyzing the space of parameters that potentially
affect the performance of HLA federations. The
parameter space is potentially huge and experimenting in
such a space requires support from several fields captured
in the data farming methodology: rapid scenario
prototyping, model development, design of experiments,
high performance computing and analysis and
visualization.

One step of the data farming process as reported by the
NATO MSG-088 task group has not been discussed yet in
this paper. Collaborative processes covers the teamwork
required to maintain a healthy data farm from the
experiment designers through the computing team and on
to the analysts. We end this paper by proposing a
performance team with the necessary skills be established
within the Simulation Interoperability Standards
Organisation (SISO) community to continue the research

0	

0.05	

0.1	

0.15	

0	
 25	
 50	
 75	
 100	

P1	

P3	

on HLA performance with a view to making performance
based suggestions on the evolution of the HLA. In order
to establish a level playing field the team would start by
defining agreed methods and procedures to measure HLA
performance.

10 References

[1] Gary E. Horne, Ted E. Meyer, “Data Farming:

Discovering Surprise”, Proceedings of the 2004
Winter Simulation Conference.

[2] NATO Science and Technology Organisation
Modelling and Simulation Task Group 088, “Data
Farming in Support of NATO”, STO Technical
Report TR-MSG-088, AC/323(MSG-088)/TP/548,
March 2014.

[3] Peter Mell and Timothy Grance, “The NIST
Definition of Cloud Computing”, National Institute
of Science and Technology, U.S. Department of
Commerce, Special Publication 800-145.

[4] Pamela Knight et al, “Analysis of Independent
Throughput and Latency Benchmarks for Multiple
RTI Implementations”, Simulation Interoperability
Workshop, September 2002. 02F-SIW-068.

[5] Ray Drake et al, “Independent Benchmarking of RTI
Real-Time Performance”, Simulation Interoperability
Workshop, September 2003. 03F-SIW-024.

[6] L. Malinga and Willem H. le Roux, “HLA RTI
Performance Evaluation”, Simulation
Interoperability Workshop, July 2009. 09E-SIW-005.

[7] Katherine L. Morse, Frank J. Hodum and Peter M.
Wickis, “Attribute Level Advisories and Scalability”,
Simulation Interoperability Workshop, September
2001. 01F-SIW-066.

[8] Terrell Burks et al, “Latency Performance of Various
HLA RTI Implementations”, Simulation
Interoperability Workshop, April 2001. 01S-SIW-
015.

[9] Richard Fujimoto and Peter Hoare, “HLA RTI
Performance in High Speed LAN Environments”,
Simulation Interoperability Workshop, September
1998.

[10] Tom van den Berg et al, “Execution Management
Solutions for Geographically Distributed
Simulations”, Simulation Interoperability Workshop,
Spring 2009. 09S-SIW-008.

[11] Bob Murray and Adam Faier, “Designing FOMs for
Performance”, Simulation Interoperability
Workshop, September 2000. 00F-SIW-116.

[12] Anthony Cramp, “Simulation Multiple Systems of
Systems Using The High Level Architecture”, PhD
Thesis, University of Adelaide, 2009.

[13] Peter Karlsson and Magnus Johansson, “RTI
performance in a wider scope”, Simulation
Interoperability Workshop, June 2003. 03E-SIW-
074.

[14] Björn Möller, Mikael Karlsson, Björn Löfstrand,
“Common Federation Performance Bottlenecks”,
Simulation Interoperability Workshop, September
2005. 05F-SIW-044.

[15] Ben Watrous, Len Granowetter, Douglas Wood,
“HLA Federation Performance: What Really
Matters?”, Simulation Interoperability Workshop,
September 2006. 06F-SIW-107.

[16] Mikael Karlsson and Peter Karlsson, “An In-Depth
Look at RTI Process Models”, Simulation
Interoperability Workshop, March 2003. 03S-SIW-
055.

[17] Daniele Gianni, Paolo Bocciarelli and Andre
D’Ambrogio, “Model-Driven Performance
Prediction of HLA-Based Distributed Simulation
Systems”, Proceedings of the 2012 Winter
Simulation Conference.

[18] Susan M. Sanchez, “Work Smarter, Not Harder:
Guidelines for Designing Simulation Experiments”,
Proceedings of the 2006 Winter Simulation
Conference.

11 Author biographies

ANTHONY CRAMP is a Defence Science and
Technology Organisation (DSTO, Australia) International
Fellow working within the Modeling, Simulation and
Gaming department of TNO Defence, Security and
Safety, The Netherlands until February 2015 on topics
including M&S as a Service and HLA performance. His
research interests include distributed systems and
simulations, software architectures, and programming
languages. From March 2015 he can be contacted via his
DSTO email address:
anthony.cramp@dsto.defence.gov.au.

TOM VAN DEN BERG is a scientist in the Modeling,
Simulation and Gaming department at TNO Defence,
Security and Safety, The Netherlands. He holds an M.Sc.
degree in Mathematics and Computing Science from
Delft Technical University. His research area includes
simulation systems engineering, distributed simulation
architectures and concept development &
experimentation.

WIM HUISKAMP is Chief Scientist Modelling,
Simulation and Gaming in the M&S department at TNO
Defence, Security and Safety in the Netherlands. Wim
leads TNO’s research program on Simulation, which is
carried out on behalf of the Dutch MOD. Wim is a
member of the NATO Modelling and Simulation Group
(NMSG) and currently acts as its Chairman. He has also
chaired several NMSG Technical Working groups,
including the NMSG M&S Standards Subgroup (MS3)
and he is the liaison of the NMSG to the Simulation
Interoperability Standards Organization SISO.

12 Data

Table 1: Simulation Data Results
#FED PM EndT (s) TS (s) #Frames LHD (s) AVG SIM T (ns) MIN SIM T (ns) MAX SIM T (ns) AVG ST/FRAME (s)
2 P1 20 0,01 2000 0,01 56,46032717 56,252417 56,698317 0,02823
2 P2 20 0,01 2000 0,01 57,903679 57,802833 57,985213 0,028952
2 P3 20 0,01 2000 0,01 54,790349 54,680757 54,852616 0,027395
2 P4 20 0,01 2000 0,01 54,66029583 54,587349 54,713394 0,02733
2 P5 20 0,01 2000 0,01 55,044595 53,826493 55,72255 0,027522
8 P1 20 0,01 2000 0,01 96,02848358 95,530187 96,327429 0,048014
8 P2 20 0,01 2000 0,01 95,37848029 94,772291 96,115905 0,047689
8 P3 20 0,01 2000 0,01 53,31894283 53,124708 53,502852 0,026659
8 P4 20 0,01 2000 0,01 52,65814558 52,216342 53,414581 0,026329
8 P5 20 0,01 2000 0,01 53,08759292 52,189616 53,710031 0,026544
2 P1 20 1 20 0,01 0,641514333 0,582148 0,685257 0,032076
2 P2 20 1 20 0,01 0,629404333 0,547157 0,704944 0,03147
2 P3 20 1 20 0,01 0,553491833 0,550598 0,558404 0,027675
2 P4 20 1 20 0,01 0,544958667 0,524619 0,555382 0,027248
2 P5 20 1 20 0,01 0,479461167 0,376466 0,562291 0,023973
8 P1 20 1 20 0,01 1,246927875 1,170826 1,313135 0,062346
8 P2 20 1 20 0,01 1,203941375 1,167344 1,247632 0,060197
8 P3 20 1 20 0,01 0,577439083 0,554209 0,640085 0,028872
8 P4 20 1 20 0,01 0,582201333 0,562886 0,630617 0,02911
8 P5 20 1 20 0,01 0,566887833 0,553592 0,61027 0,028344
2 P1 20 1 20 1 0,6054065 0,522492 0,663463 0,03027
2 P2 20 1 20 1 0,603123 0,531656 0,658796 0,030156
2 P3 20 1 20 1 0,535834167 0,534216 0,537324 0,026792
2 P4 20 1 20 1 0,542841667 0,533754 0,559383 0,027142
2 P5 20 1 20 1 0,562990833 0,560639 0,564883 0,02815
8 P1 20 1 20 1 1,272072875 1,136138 1,43314 0,063604
8 P2 20 1 20 1 1,285272042 1,199841 1,384903 0,064264
8 P3 20 1 20 1 0,595028792 0,559139 0,656344 0,029751
8 P4 20 1 20 1 0,586511333 0,539842 0,667346 0,029326
8 P5 20 1 20 1 0,5856945 0,546134 0,678086 0,029285
2 P1 100 0,01 10000 0,01 280,1258333 277,624 282,492 0,028013
2 P2 100 0,01 10000 0,01 280,5368333 277,696 283,642 0,028054
2 P3 100 0,01 10000 0,01 267,701 265,298 271,055 0,02677
2 P4 100 0,01 10000 0,01 270,8658333 270,561 271,024 0,027087
2 P5 100 0,01 10000 0,01 274,5218333 274,412 274,594 0,027452
8 P1 100 0,01 10000 0,01 462,4359167 462,049 462,959 0,046244
8 P2 100 0,01 10000 0,01 462,6778333 460,617 463,78 0,046268
8 P3 100 0,01 10000 0,01 264,4117083 263,87 264,832 0,026441
8 P4 100 0,01 10000 0,01 261,104 259,09 264,637 0,02611
8 P5 100 0,01 10000 0,01 264,356375 261,632 265,868 0,026436
2 P1 100 1 100 0,01 2,991847333 2,921354 3,069313 0,029918
2 P2 100 1 100 0,01 2,883334667 2,766244 2,991599 0,028833
2 P3 100 1 100 0,01 2,619080167 2,575113 2,679672 0,026191
2 P4 100 1 100 0,01 2,699565167 2,653196 2,757232 0,026996
2 P5 100 1 100 0,01 2,806422167 2,799595 2,81017 0,028064
8 P1 100 1 100 0,01 5,217799208 5,035349 5,343164 0,052178
8 P2 100 1 100 0,01 5,076578792 4,958876 5,178918 0,050766
8 P3 100 1 100 0,01 2,708294833 2,680744 2,760317 0,027083
8 P4 100 1 100 0,01 2,679911583 2,665196 2,724619 0,026799
8 P5 100 1 100 0,01 2,709734667 2,687948 2,760207 0,027097
2 P1 100 1 100 1 2,948851833 2,874261 3,009218 0,029489
2 P2 100 1 100 1 2,916675167 2,822951 3,019887 0,029167
2 P3 100 1 100 1 2,7529615 2,735937 2,768221 0,02753
2 P4 100 1 100 1 2,7092835 2,595965 2,768161 0,027093
2 P5 100 1 100 1 2,7995955 2,783733 2,809897 0,027996
8 P1 100 1 100 1 5,2292615 5,137961 5,387298 0,052293
8 P2 100 1 100 1 5,3708665 5,144697 5,62323 0,053709
8 P3 100 1 100 1 2,699719667 2,653402 2,786291 0,026997
8 P4 100 1 100 1 2,723542792 2,686884 2,788623 0,027235
8 P5 100 1 100 1 2,696968417 2,67522 2,750964 0,02697

Table 2: Actual Simulation Time (seconds) per frame for process models P1 and P3 in an 8 federate federation, end
time 100, timestep 1.0, lookahead 0.01

Frame# P1 P3 Frame# P1 P3

1 0,120166 0,039268 51 0,051834 0,023605
2 0,056189 0,045185 52 0,038469 0,031157
3 0,091901 0,044554 53 0,078223 0,02076
4 0,018081 0,022407 54 0,050557 0,027199
5 0,095939 0,028863 55 0,013533 0,02467
6 0,044147 0,024363 56 0,054487 0,026227
7 0,08718 0,030903 57 0,028803 0,028015
8 0,049953 0,024443 58 0,022727 0,026629
9 0,065286 0,027228 59 0,027693 0,025817

10 0,13517 0,024959 60 0,024871 0,025898
11 0,07433 0,025522 61 0,043377 0,028255
12 0,038612 0,031374 62 0,048992 0,024431
13 0,083616 0,024624 63 0,082412 0,02812
14 0,04178 0,026148 64 0,051083 0,026211
15 0,038479 0,02561 65 0,034333 0,023054
16 0,07461 0,026558 66 0,029924 0,029333
17 0,050893 0,030336 67 0,040093 0,023949
18 0,044009 0,021406 68 0,060876 0,025426
19 0,043753 0,025099 69 0,063518 0,026558
20 0,04932 0,025951 70 0,040979 0,026739
21 0,079514 0,031891 71 0,073107 0,028445
22 0,051578 0,022522 72 0,018488 0,024803
23 0,045699 0,030613 73 0,065615 0,026395
24 0,039756 0,017859 74 0,053004 0,031009
25 0,035749 0,042144 75 0,074425 0,023585
26 0,022699 0,025798 76 0,029784 0,029766
27 0,048275 0,028081 77 0,052591 0,024724
28 0,032846 0,027362 78 0,087645 0,025828
29 0,084444 0,029198 79 0,031276 0,023537
30 0,041743 0,029511 80 0,046381 0,029477
31 0,092034 0,027916 81 0,046295 0,023986
32 0,053512 0,026133 82 0,069475 0,027097
33 0,018445 0,023152 83 0,028936 0,027397
34 0,096744 0,029149 84 0,041218 0,0269
35 0,061424 0,024881 85 0,056892 0,025145
36 0,031332 0,027455 86 0,041127 0,026944
37 0,030513 0,027072 87 0,064598 0,025362
38 0,037442 0,026051 88 0,039732 0,024759
39 0,03365 0,026881 89 0,067278 0,025879
40 0,065737 0,026139 90 0,044579 0,026424
41 0,029295 0,025365 91 0,050313 0,026215
42 0,055221 0,025659 92 0,022893 0,028216
43 0,079971 0,027335 93 0,075467 0,029063
44 0,06414 0,026825 94 0,029615 0,02386
45 0,049686 0,027415 95 0,056652 0,027053
46 0,058595 0,025798 96 0,048522 0,025604
47 0,059421 0,027529 97 0,078523 0,024051
48 0,055169 0,028101 98 0,064364 0,02709
49 0,05429 0,023897 99 0,057363 0,026525
50 0,054583 0,028325

