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Cognitive Task Load Analysis:
Allocating Tasks and Designing
Support
MARK A. NEERINCX

TNO Human Factors
P.O. Box 23, 3769 ZG, Soesterberg, The Netherlands

Abstract

We present a method for Cognitive Task Analysis that guides the early
stages of software development, aiming at an optimal cognitive load for
operators of process control systems. The method is based on a practical
theory of cognitive task load and support. In addition to the classical
measure percentage time occupied, this theory distinguishes two load
factors that affect cognitive task performance and mental effort: the level of
information processing and the number of task-set switches. Recent
experiments provided empirical support for the theory, showing effects of
each load factor on performance and mental effort. The model can be used
to establish task (re-)allocations and to design cognitive support. 

This chapter provides an overview of the method’s foundation and two
example applications. The first example is an analysis of the cognitive task
load for a future naval ship control centre that identified overload risks for
envisioned operator activities. Cognitive load was defined in terms of task
demands in such a way that recommendations could be formulated for
improving and refining the task allocation and user-interface support. The
second example consists of the design and evaluation of a prototype user
interface providing support functions for handling high-demand situations:
an information handler, a rule provider, a diagnosis guide and a task
scheduler. Corresponding to the theory, these functions prove to be
effective, in particular when cognitive task load is high. The user interface is
currently being implemented at a bridge of an icebreaker.

The two examples comprise an integrated approach on task allocation
enhancement and design of cognitive support. The theory and method are
being further developed in an iterative cognitive engineering framework to
refine the load and support model, improve the empirical foundation and
extend the examples of good practices.
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Introduction

In different work domains, such as defence, public safety, process control
and transport, the need to improve the deployment of human knowledge
and capacities is increasing. Whereas safety requirements increase (due to
both company and general public policies), less personnel should be able to
do the concerning tasks by concentration of work in one central control
room and further automation. For example, fewer personnel will have to
manage high-demand situations and supervise complex automated systems
in future ships of the Royal Netherlands Navy. Tasks that were allocated to
separate jobs are currently being combined into new, enriched jobs (e.g.
adding platform supervision to navigation tasks on a ship’s bridge). In
addition to selection and training, adequate (dynamic) task allocation and
computer support can help to realise the required human performance level.
This chapter presents a method for refining task allocations and designing
support functions that extend human knowledge and capacities. 

The proposed method for cognitive task load design is based on recent
research in the field of Human-Computer Interaction (HCI) and the notion
that you need both a model of the environment and the cognitive processes
involved to enhance the design of human-computer work. We can make
effective use of theories of cognitive processing if we also have validated
theories or descriptions of the world on which cognition operates including
the interactions (Green, 1998). When we have an adequate description of
the environment in which cognition operates, then a human viewed as a
behaving system might prove to be quite simple. Or as Simon (1981) stated:
“The apparent complexity of human behaviour over time is largely a
reflection of the complexity of the environment in which a person finds
himself”. However, you still need some cognitive theory, as simple as it may
be, to distinguish the environmental components that affect human
cognitive task performance. Such a theory should not purely focus on task
performance at the micro-level and only be validated with isolated
laboratory tasks as common in basic (experimental) psychological research.
The validation of the models should incorporate essential interactions with
the real-world environment in which the tasks are performed at the level of
real-world operational requirements. Such descriptions enable statements on
human task performance by accounting adequately for how context and
actions are coupled and mutually dependent (cf. Hollnagel, 1998).
Unfortunately, there is not one context-independent, comprehensive theory
on human cognition that can be applied for a complete and do-able analysis
of complex work demands and it will not be present in the near future. For
example, detailed specifications of cognitive processes such as the unified
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theories of Newell (1990) and the multiple-resource model of Wickens
(1992) insufficiently address the dynamic task demands on human-problem
solving in a naval command centre. The solution is not to wait till such a
theory has been developed, but to develop limited or practical theories that
apply to the specific domain or environmental description that is part of it
(cf. Green, 1990). Such a theory should include accepted features of
cognition such as limited processing capacity, be validated in the context of
a specific domain and possibly group of task performers, and provide
predictions of the task performance within this domain (cf. the Simple
Model of Cognition, Hollnagel, 1998).

 

Figure 1: Addressing human-factors knowledge and environmental
constraints in an iterative system development process. 

This chapter presents a practical theory of cognitive task load and computer
support for process-control tasks. The theory has been integrated in a
cognitive engineering framework consisting of the specification and
assessment of computer-supported work (figure 1). According to this
framework, assessments guide the iterative HCI-refinement process
(including possible adjustments of operational requirements), and provide
empirical data for improving the theory and its quantification in a specific
application area (e.g., a “mental load standard” for railway traffic control;
Neerincx & Griffioen, 1996). First, we will summarise the theory on
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cognitive task load and exemplify the corresponding method for task-
allocation assessment in an early system development stage. Subsequently,
we extend the theory with cognitive support concepts and show that the
theory and method can also be applied for user-interface design. For
explanatory objectives, task allocation and user-interface design are dealt
with separately. At the end of this chapter, we will elucidate that the two
examples comprise one practical theory and method to guide an iterative
process of human task and interface design.

Cognitive task load

Task demands

Recently, we developed and validated a practical theory for cognitive load
and support in process-control tasks (Neerincx et al., 2000; Neerincx & Van
Besouw, 2001). The theory includes a model of cognitive task load that
comprises the effects of task characteristics on performance and mental
effort. According to this model, cognitive task load is a function of the
percentage time occupied, the level of information processing and the
number of task-set switches. The first classical load factor, percentage time
occupied, has been used to assess workload in practice for time-line
assessments. Such assessments are often based on the notion that people
should not be occupied more than 70 to 80 percent of the total time
available (Beevis, 1992). To address the cognitive task demands, our load
model incorporates the Skill-Rule-Knowledge framework of Rasmussen
(1986) as an indication of the level of information processing. At the skill-based
level, information is processed automatically resulting into actions that are
hardly cognitively demanding. At the rule-based level, input information
triggers routine solutions (i.e. procedures with rules of the type ‘if
<event/state> then <actions>’) resulting into efficient problem solving in
terms of required cognitive capacities. At the knowledge-based level, based
on input information the problem is analysed and solution(s) are planned, in
particular to deal with new situations. This type of information processing
can involve a heavy load on the limited capacity of working memory.

To address the demands of attention shifts, the model distinguishes
task-set switching as a third load factor in the performance of process control
tasks. Complex task situations consist of several different tasks, with
different goals. These tasks appeal to different sources of human knowledge
and capacities and refer to different objects in the environment. We use the
term task set to denote the human resources and environmental objects with
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the momentary states, which are involved in the task performance.
Switching entails a change of applicable task knowledge on the operating
and environment level. Figure 2 shows a model for multiple task
performance that we will use to specify the goal-directed and situation-
driven elements of computer-supported human behaviour. Three
abstraction levels of human behaviour are distinguished. First, an activity is
the combination of tasks and actions that are performed to accomplish a
general goal in a definite period and for a specific scenario (e.g. damage
control on a cargo ship in stormy weather during night). A scenario consists
of an initial state of the ship and environment, and a sequence of events
that trigger tasks. Second, tasks are performed to accomplish a sub-goal (e.g.
restore propulsion engine). The term task set is used to denote the
composite of  goal, knowledge and processing resources of the operator,
and the corresponding objects in the environment. A task is activated by an
event (e.g. engine shutdown) and/or a predefined goal of the task executor.
Third, actions are the elements of observable behaviour that affect the state
of a specific object in the environment. The process state determines which
action is active or should be activated.

Figure 2: The descriptive framework for multiple task performance by one
operator (who has to deal with an engine shutdown and fire on deck A in
the example).

Three dimensional “load space”

The combination of the three load factors determines the cognitive task
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information processing (i.e. the percentage knowledge-based actions) and
the number of task-set switches are high. Figure 3 presents a 3-dimensional
“load” space in which human activities can be projected with regions
indicating the cognitive demands that the activity imposes on the operator.
It should be noted that these factors represent task demands that affect
human operator performance and effort (i.e. it is not a definition of the
operator cognitive state).  In practice, operator activities will not cover all
possible regions in the cube of figure 3. A higher level of information
processing may cause the time occupied to increase. Also a larger amount of
task-set switches may cause the time occupied to increase because the costs
of these switches are so severe that the operator needs more time to execute
the task. The cognitive task load analysis of this chapter aims at a cube that
is “empty” for the critical regions such as distinguished below. For
remaining critical situations, it aims at empowering the operators so that
they can meet the specific demands.

Figure 3: The three dimensional model of cognitive task load with four
general problem regions.
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Table 1: Overview of four negative effects of cognitive task demands for a
certain task period.

Task Performance Period
Short

(<5min)
Medium

(5-20min)
Long

(>20min)
Time occupied  Low
Info processing Low
Task switches   Low

no problem Under-load

Time occupied  High
Info processing Low
Task switches   Low

no problem Vigilance

Time occupied  High
Info processing All
Task switches   High

Cognitive lock-up

Time occupied  High
Info processing High
Task switches   High

Overload

It should be noted that the effects of cognitive task load depend on the
concerning task duration (see table 1). In general, the negative effects of
under- and overload increase over time. Under-load will only appear after a
certain work period, whereas (momentary) overload can appear at every
moment. When task load remains high for a longer period, carry-over
effects can appear reducing the available resources or capacities for the
required human information processing (Rouse, 1988). Vigilance is a well-
known problematic task for operators in which the problems increase in
time. Performance decrease can already occur after 10 minutes when an
operator has to monitor a process continuously but does not have to act
(Levine et al., 1973; Parasuraman, 1986). Vigilance can result in stress due to
the specific task demands (i.e. the requirement to continuously pay attention
on the task) and boredom that appears with highly repetitive, homogeneous
stimuli. Consequently, the only viable strategy to reduce stress in vigilance,
at present, appears to be giving the freedom to stop when people become
bored (Scerbo, 2001). Recent research on cognitive lock-up shows that
operators have fundamental problems to manage their own tasks
adequately. Humans are inclined to focus on one task and are reluctant to
switch to another task, even if the second task has a higher priority. They
are stuck to their choice to perform a specific task (Boehne & Paese, 2000)
and have the tendency to execute tasks sequentially (Kerstholt & Passenier,
2000). 
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In a sequence of experiments, we validated the 3-dimensional load
model. For example, a study in the high-fidelity, “one to one”, control
centre simulator of a Royal Netherlands Navy frigate showed substantial
performance decrease in the problem areas of figure 3 (i.e. for specific load
values). In general, empirical research should provide the data to establish
the exact boundaries of the critical regions for a specific task domain (e.g.
by expert assessments and/or operator performance evaluations).

Analysis method

Neerincx et al. (2000) describe an analysis method for human-computer
task performance to establish the task demands in term of the three load
factors in figure 3. This method combines specifications of task-set classes
with specific task-set instances (i.e., activities). Figure 4 shows the
specification process of the goal- and situation-driven task elements with
their mutual relations.

A task decomposition describes the task classes. It defines the breakdown
structure of tasks and provides an overview of the general task objectives
assigned to persons and related to detailed descriptions of human actions
with the corresponding information needs.

An (hierarchically ordered) event list describes the event classes that
trigger task classes and provides an overview of the situation-driven
elements. An event is referring to a change in an object that can take place
in specific situations and has specific consequences. 

Scenarios describe sequences of event instances with their consequences
on a time line and the initial state of the objects that events act upon. They
show a particular combination of events and conditions that cause one line
of user actions. Scenarios can be a valuable tool to envision computer-
supported work, and to estimate the costs and benefits of the support for
the human task performance (Carroll, 1995). In particular, scenarios can
provide a “bridge” between the software engineering focus on software’s
functionality and human factors focus on users’ goals and information
needs (cf. “use cases” in object-oriented software engineering). In our
method scenarios consist of a sequence of events that occur in a specific
state. The purpose of this description is not restricted to the general mission
of an abstract function, such as damage control. Scenarios are formulated
for a large set of action triggering events and, therefore, they can be rather
specific.

A set of Basic Action Sequences (BAS) describes the general relationships
between event classes and task classes as general procedures without
situation specifics. Action sequence diagrams define the dynamic or control
aspects of task performance, i.e. the events and conditions that trigger task
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execution sequences. These diagrams are a combination of specifications
for time-lines (e.g., Kirwan & Ainsworth, 1992), operational sequences (e.g.
Kirwan & Ainsworth, 1992), and co-operation processes (e.g. Neerincx &
de Greef, 1998).

A set of Compound Action Sequences (CAS) describes the relationships
between event instances and task instances for specific situations as
activities with the corresponding interface support. Per scenario, the BASs
of the events are instantiated and integrated into a CAS that do not contain
feedback loops and selection mechanisms (such as if x then y), so that the
time-line can be established per chart (for a proposed CAS format, see
figure 7).

Figure 4: Processes and data flows for the specification of task demands in
the analysis stage of user interface development.

Analysis of task allocations: An example

Recently, the Royal Netherlands Navy developed the Integrated Monitoring
and Control System (IMCS) for a new ship: the Air Defence and Command
Frigate. The IMCS is a large and complex system that is used in diverse
situations and work settings for supervision and control of the platform
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systems and damage control. In the first phase of the IMCS development,
the high-level system requirements were provided as Government
Furnished Information. This section gives a brief overview of the method
for cognitive task analysis that was applied to assess these system
requirements (for details, see Neerincx et al., 2000). 

Specification

To make the task demands explicit for the IMCS operators, we followed the
specification process of figure 4. First, we specified the task-set classes. At the
top-level, the task decomposition distinguished four platform functions:
provide survivability, provide mobility, and support hotel functions,
weapons and sensors. In the first instance, the task breakdown stopped
when all task allocations to the control-centre crew and IMCS could be
designated within it. After establishing the jobs as a set of tasks that have to
be performed by one person, decomposition continued until the subtask
can be mapped on a specific IMCS support function of the Air Defence and
Command Frigate or defined as a 'pure' human action, so that either the
human-computer interaction or an observable human action is specified. 

Subsequently, we transformed the general task-set specifications into
task-set instances and “envisioned” about 40 different scenarios. Two critical
scenarios that differed from each other fundamentally were selected for
further analysis. The first, ‘fire in the galley in harbour’, consists of an
‘unexpected’ calamity with extra complications occurring in a quiet situation
and a small crew, while the second consists of a very severe damage in war-
time, comprising a hectic situation that the complete crew must be able to
deal with. The two selected scenarios were transformed into CASs using the
BASs for handling the events of this scenario. Navy experts estimated for
each action the fastest and slowest performance and the level of
information processing according to the Skill-Rule-Knowledge-framework.
This resulted in two CASs per scenario: one consisted of the fastest
performances and the other the slowest. The actual Action Sequences
consisted of a number of actors, the action times were presented in them,
and the individual BASs were coded separately to get an overview of the
number of switches between task sets in an activity. For scenario 1, the fast
CAS lasted about 18 minutes and the slow version about 56 minutes. For
scenario 2, the fast CAS lasted about 25 minutes and the slow version about
72 minutes.
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Assessment

In the first step of the assessment, general patterns and extremes of task load
were identified. The percentage time occupied, the percentage knowledge-
based actions and the number of task-set switches for each person of the
future ship control-centre crew, can be directly derived from the CASs.
Differences in the time a person is occupied appeared mainly between
scenarios. There was a large variance: between 8% to 70% occupied. Time
occupied did not appear to be a cause of overload on its own, because it
remained below the critical level of 70-80% (Beevis, 1992). Overall, the
tasks of managers and operators showed a large knowledge-based component
for which system and process knowledge is required. The work is complex
and cognitively demanding for the complete crew. Managers’ tasks comprise
primarily planning, supervision, priority determination and co-ordination,
while the operators have to assess, diagnose and solve specific technical
problems. The future situation in the Air Defence and Command Frigate
requires that the operators have knowledge of specific parts of the platform
control system and tasks they are involved in. In the Cognitive Task
Analysis method, a task set is defined as a BAS for a specific event. For
example, when the same BAS appears more than once in a CAS, they are
viewed as different task sets, because they apply to different events (i.e.
different objects in the environment). Task-set switching proved to appear
rather often. In particular, for manager 1, the number of task-set switching
showed to be high in the fast scenario 2: 54 switches in an hour (i.e. a
switch every 67 seconds). The number of switches increased in scenario 2
when action times were longer, because the operational requirements were
more difficult to satisfy in this condition. 

In the second step of the assessment, situations of momentary overload
were identified. The CASs show the action times of each person and the
interrelationships between the actions: the critical path. Often, more than
one person is on the critical path, so that sub-optimal performance of one
person at a specific moment will often have a major effect upon the overall
SSC-crew performance. Therefore, it is of utmost importance to detect
possible peak loads for all persons. Compared to the general load, for
momentary peak loads the time scale of occurrences of almost continuous
knowledge-based actions with a lot of switches is much shorter  (between 5
and 15 minutes) and the load limit is higher. For example, the momentary
load of operator 2 in the fast condition of scenario 2 proved to be relatively
high. In a period of five minutes, he should have to switch every 20-second
to a new task set that comprises almost always a knowledge-based action. It
can be expected that he will not be able to fulfil these task demands and,
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because he is on the critical path, this will have an impact on the overall
crew performance. Further, in this period the operator performs 19
interactions with the IMCS. For this specific action sequence of operator 2,
it is very important that the dialogue with the IMCS is as efficient as
possible, i.e., the user interface structure should map very well on this
sequence.

Conclusions 

The assessment of the four CASs showed possible risks for overload that
are mainly caused by the composite of measures on time occupied,
percentage of knowledge-based actions and the number of task-set
switches. Because cognitive load was described in terms of task and
interface characteristics, recommendations could be formulated for task
allocation and interface design to diminish these risks. The IMCS
specification for the future Air Defence and Command Frigate should be
improved by describing a general coherent user interface structure and
establishing the dialogue principles for its components. In particular, the
interface should enable efficient task-set switching and may even provide
support to keep track of task sets that ‘run in the background’ and to
return to these task sets. It should be noted that the IMCS requirements
specification defines a number of individual support components from
sensor-fusion and filtering mechanisms to damage control advice functions.
Each function will probably have a positive effect on the local task
performance. However, an overview on the interrelationships and the
combined effects of these functions is lacking. For example, a general
“high-level” user interface structure is lacking and the management of the
support functions can be a load factor in itself (i.e., the control of the
envisioned information presentations). To establish support for the
managers of the crew, to diminish peak loads and to prevent human biases
such as cognitive lock-up, the combined effects and integration of the support
in the overall task performance should be defined explicitly. Human-centred
development of interactive systems requires an iterative design process in
which cognitive engineers provide the required human factors input in
terms of guidelines, user interface concepts, methods and facilities (cf. ISO
13407). Because the IMCS-development had already been started and the
development process defined, it was difficult to bring these insights into this
process. 
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High-demand situations and cognitive support

Neerincx & de Greef (1998) propose a model-based design approach that
aims at human-computer co-operative problem solving by integrating
cognitive support into the user interface. Based on this approach and the
load theory (figure 3), we developed a framework that distinguishes a small
set of user-interface and cognitive-support functions with specific high-level
design principles. Below, we will present the framework and, in the
subsequent section, we will provide an example design consisting of these
functions.

Time occupied 

There is a trade-off between the benefits of support facilities and the
interaction costs. In particular when the time pressure is high and the user
has only a small part of his or her cognitive resources available to manage
and consult such facilities, the benefits should outweigh the costs
substantially. The additional time required for interacting with the support
facility should be small compared to the execution time for the primary
task. We distinguish four general design principles to reduce the interaction
load that apply to the user interface: 
1. User adaptation. The user interface design should take account of both

the general characteristics of human perception, information transfer,
decision-making and control, and the specific user characteristics with
respect to education, knowledge, skills and experience. 

2. Goal conformance. The functions and function structure of the user
interface should map, in a one-to-one relation, on users' goals and
corresponding goal sequences. Functions that users don't need should
be hidden for these users.

3. Information needs conformance. The information that is provided by the user
interface should map, in a one-to-one relation, on the information needs
that arise from users' goals. Irrelevant information should not be
presented to the users.

4. Use context. The human-computer interaction should fit to the
envisioned use context and/or situation (e.g. a speech interface should
not be designed for noisy environments). 

Level of information processing 

Based on the Skill-Rule-Knowledge-framework of Rasmussen (1986), we
distinguish four support functions: rule provision, information handling,
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problem exploring, and rule checking. Below we will discuss these
functions, following the human information processing steps of figure 5. 

Figure 5: Four cognitive support functions at the knowledge-based (KB),
rule-based (RB) and skill-based (SB) level. The broken arrows represent
“short-cuts” in the human information processing based on training,
experience and/or support.

The Rule Provision function provides the normative procedure for solving (a
part of) the current problem. Due to training and experience, people
develop and retain procedures for efficient task performance (i.e. they apply
the rule-based “short-cuts” of figure 5). Performance deficiencies may arise
when the task is performed rarely so that procedures will not be learned or
will be forgotten, or when the information does not trigger the
corresponding procedure in human memory. For these situations, rule
provision aims at supplementing human procedural knowledge. We
distinguish four design principles: 
1. The support function should take the initiative to provide information

at the right time. Consequently, the user does not need to know when
and how to search for information and does not need to invest in these
actions. 

2. Rule provision should consist of context-specific, procedural task
knowledge. The advice is minimal, not more than necessary. Each
individual (sub)procedure should however describe a complete
problem-solving path to accomplish the (sub)goal. 

3. The user interface of the rule provision facility should be an
well-integrated part of the human-machine dialogue. A minimal and
consistent interaction requires little knowledge and contributes to
efficient task performance.

4. The advice should be provided in such a way that the user remains in
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the loop of the overall activity by interactive involvement in the process
of action executions as part of a task procedure.

The Information Handling support filters and combines information to
improve situation awareness, i.e. knowledge of the state of the system and
its environment (Endsley, 1995). Due to the increasing availability of
information, situation awareness can deteriorate without support. Sensor
information should therefore be combined into alarms that are structured
according to their function, such as fire control, propulsion and energy
supply. Furthermore, Information Handling can support the operators in
keeping overview by making the structure of the complete system explicit at
a global level and by indicating functional relationships between system
components. Taken together, Information Handling support should
enhance information acquisition and recall in such a way that situation
awareness is optimal for the current task performance. Three design principles
for this type of support can be formulated:
1. An information handling support function should provide an overview

of state and process variables, showing the correspondence to system's
components (i.e. structure) and the fluctuations in time (history).

2. Alarms should be prioritised according to the current situation and
provide information about how to (start to) solve the problem.
Important alarms should stand out and irrelevant alarms should be
hidden.

3. The support should enable fast and easy access to the requested
information with adequate orientation cues and state explanation. It
should correspond to the optimal search strategy for the specific task
and situation, i.e., support several accurate information acquisition
processes of users.

Problem Exploring comes into play when there is not a complete (executable)
procedure available to deal with the current alarms and situation. First, the
problem and solution space has to be analysed. Subsequently, based on
information about the environment (state, process) and information from
memory, a procedure must be planned for solving the problem. Based on a
mental model (i.e. an internal representation of the system), the person sets
local goals, initiates actions to achieve them, observes the extent to which
the actions are successful and, if needed, poses new subgoals to minimise
the discrepancy between the present state and the desired state. A problem-
exploring function consists of a knowledge-based component that can
execute some problem-solving activities such as the generation of
hypotheses and the selection of an urgent and most promising one. Another
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possibility is to provide predictions of future states based on the current
user actions (e.g. predictive displays, Wickens, 1992). The benefits of such
predictions can be very large for a number of tasks if the “predicted path” is
explicitly presented and well integrated into the overall presentation of state
information. We distinguish three design principles for Problem Exploring
support:
1. The user must understand what the support function is doing and why,

so that, for example, the user will remain in the loop of task execution.
2. The problem-solving process of the support function should be

compatible with user's problem-solving process and enable the
involvement of specific user's capabilities.

3. For providing predictions of future states, the “predicted path” should
be explicitly presented and well integrated into the overall presentation
of state information.

Rule Checking functions recognise when the human operator has strayed
from the normative problem-solving path, and help to reach a more correct
task outcome (Silverman, 1992). However, as task difficulty increases, a
point will be crossed at which subject-matter experts can no longer be
assisted by Rule Checking alone. Thus, under conditions of high task load
this kind of support seems not to be optimal. A further restriction is that
the users must have some knowledge to start their task execution. If they do
not know which goals to achieve, then they cannot be critiqued. In general,
the first three principles that were identified for Rule Provision apply also to
Rule Checking. 

Task-set switching

Task-set switching support should comply with the following design
principles:
1. For the momentary activity, it should provide an up-to-date overview of

the tasks with corresponding actions, including the current status of the
activity and the status of each task.

2. The current priority of each task should be shown. Changes in priority
should be communicated to the users, so that they can keep a correct,
up-to-date situation awareness.

3. Humans are inclined to focus on the tasks they are working on,
neglecting tasks with a possible higher priority (“cognitive lock-up”, see
previous section). The support functions should check if users do the
required abstraction from action level to the task and activity level.
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Design of cognitive support: An example

The previous section distinguished three load factors and a small set of
corresponding support functions that can reduce the negative effects of
each factor on task performance and mental effort. The present section will
provide an example design of the user’s task, support and interaction for the
ship control system manager that is being developed in the European
ATOMOS and DISC projects. To exemplify the design method, we will
provide small (simplified) task descriptions for four support functions that
reduce the negative effects of a specific load factor on an integrated ship’s
bridge (see table 2):
• An information handler that supports task-set integration for keeping

overview of the overall system’s state. Based on the system structure
and current events, this function provides an overview of alarms and a
set of integrated views (i.e., system overviews).

• An emergency scheduler that supports task-set switching by providing an
overview of prioritised alarms that have to be handled or are being
handled, based on the overview of alarms.

• A rule provider that supports task-set switching by providing the context-
specific procedures for each emergency with the current state of each
procedure. Context information comprises the state of the objects in
the task set, such as the position of the ship (e.g. harbour at open sea),
the location of an emergency (e.g. a fire in room 12) and the
maintenance data of a machine (e.g. pump X replaced last week). The
combination of emergency scheduler and rule provider provides the
action plan for the operator.

• A diagnosis guide that supports task-set integration for alarm handling.
This guide consists of an overview of possible symptom-cause relations
between alarms, e.g. ordered by probability. Based on context
information, the alarm overview and the system structure, relations
between the alarms are proposed, and based on the settled relations, the
context information is refined.
 

Table 2: Four example support functions that reduce the negative effects
of each load factor.

 
Load factor Support type Support function
Time occupied Information handling Information handler
Level of information
processing

Rule provision
Problem exploring

Rule Provider
Diagnosis Guide

Task-set switching Task managing Emergency Scheduler
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User interface design

In general, user interface design follows the general top-down process of
software development resulting in user interface specifications at three
abstraction levels (Neerincx et al., 2001). On the first level, based on users’
goals and information needs, the system’s functions and information
provision are specified (i.e. the task level of the user interface is determined).
On the second level, the control of the functions and the presentation of
the information is specified (i.e. the “look-and-feel” or the communication level
of the user interface is established). On the third level, the interface design
is implemented in a specific language on a specific platform (i.e. the actual
interface or the implementation level of the user interface is established). The
distinction between these three specification levels is not intended to
advertise the “old” waterfall software life cycle. It is based on the notion
that software development is a top-down and iterative process. For example,
specific software components can be developed down to the
implementation level after which a re-analysis phase starts for these
components and/or new components. The next two subsections present
the specifications of the user interface at the task and communication level
respectively. 

Task Level 

Usability at the task level is established by mapping user's goals --and
corresponding goal sequences-- on system's operations, and mapping user's
information needs on system's information provision. First, such an analysis
must specify the functions that users need for specific goals and the
corresponding goal- and situation-driven action sequences. Functions not
needed should be hidden for the users (i.e. the minimal interface, Carroll,
1984). Second, the mapping of user's information needs on system's
information provision is performed by means of an information analysis.
Such an analysis establishes which information is required to accomplish a
specific goal at a specific moment. Corresponding to the example analysis
of task allocations in the Air Defence and Command Frigate, we followed
the specification process of figure 4 for the design of cognitive support in
the integrated ship’s bridge. 
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Decomposition of Tasks. We specified and, subsequently, enriched the task
decomposition with data flow diagrams showing the information that have
to be communicated between the tasks. The data flows between human
tasks and machine tasks provide a high-level specification of the user
interface (see Figure 6).

Figure 6: The processes and data flows for the support of operator’s
situation assessment, activity planning and task execution.

Specification of Events. A distinction can be made between internal events (i.e.
events that arise in the ship itself such as a malfunction in the electricity
supply) and external events (i.e. events that arise in the ship’s environment
such as the appearance of another ship). These classes can be subdivided
further with increasing level of detail. Table 3 shows an example of a part of
an event list containing events of task sets that have to be accomplished
with different applications, so that they can be used to show the interface-
support functions of the system manager.
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Table 3: Example event list

Event category Basic
event

Example event Example
consequence

Weather … … Storm X
approaching

Deviation
from route

Current … … …
Vessel
passing 

… none

Vessel
gives way

Vessel X from
port Y gives way

…

Extern

Sea state
Traffic

Vessel
changes to
collision
course

Vessel X from
port Y changes
to collision
course

A collision
occurs

Cargo Gas-leak Release of toxic
fumes

…

Engine
shutdown

A temperature
rise caused shut-
down engine X

Ship can not
maintain it’s
current speed

Propul-
sion

Temp.
above
max.level.

Engine X’s
temperature
exceeds set point

Engine speed
is limited

Collision
Avoidance

… Collision sensor
X malfunction

A collision
occurs

Navigation … Ship off course Ship can’t
arrive at ETA

System
Failure

Electric Short
circuit

Short circuit in
cooling pump X

Engine’s
cooling circuit
out of order

Intern

Fire      Fire in the
engine room

Engine speed
is limited

Specification of Basic Action Sequences. Below, we will show an example action
sequence in which two simple procedures (BASs) for fire control and
dealing with an engine shutdown are integrated. The fire control procedure
consists of alert crew, close section, plan attack route, close doors,
extinguish fire, plan smoke removal, close doors and remove smoke. The
shutdown procedure consists of detection, determine cause, solve problem
and restart engine.
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Table 4: Scenario 1 “Fire in the cooling-system of the engine”

Initial state 
Ship is en route to Hamburg; there are two operators present on the bridge. 
Time Event

Location Engine’s cooling- pump in engine room
Details Short circuit causes a fire in the pump,

which is located in the cooling system.
Consequences Cooling system will not work and the

engine temperature will increase.

21.54 Short
circuit

Source None (event is not detected by system)
Location Engine room
Details A pump in the engine room is on fire
Consequences Unknown

22.03 Fire

Source Smoke detector of Fire Control System
Location Engine room
Details The temperature of the engine

increased beyond the set point.
Consequences The engine shuts down after a period

of high temperature.

22.06 Max.
temp.
engine 

Source Propulsion management system
Location Engine room
Details The temperature was too high for the

critical period.
Consequences The vessel cannot maintain its current

speed.

22.08 Engine
shut-
down

Source Propulsion management system

Specification of Scenarios. To specify the interface support of the System
Manager, scenarios are created with multiple events from different domains.
Table 4 presents an example of such a scenario: its initial state, the events
with time of appearance, location, details, consequences and source (i.e., the
detector that provides the event to the operator). This scenario contains a
number of different events that require integration of (sensor) information,
diagnosis, procedural task knowledge and task-set switching. Therefore, this
scenario can be used to envision the support functions of the system
manager. A short circuit in a cooling pump causes a fire and the
corresponding fire alarm is presented to the operator. This short circuit also
causes a malfunctioning cooling circuit, so that the temperature of the
engine increases and is above the maximum level for a specific duration,
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resulting in the presentation of the corresponding temperature alarm. The
high temperature causes an engine shutdown and the corresponding alarm
is presented to the operator. First, the scenario imposes task-set switching
between dealing with the fire and the engine shutdown. Second, the
scenario imposes task-set integration: the operator has to abstract from the
fire and shutdown tasks to infer the relations of these separate alarms.
Subsequently, the shutdown task can be continued with the correct
procedure. 

Specification of Compound Action Sequence. Scenario 1 is transformed into a
Compound Action Sequence (CAS) using the procedures (BASs) for
handling the events of this scenario. The CAS provides an overview of
actions and processes performed during the scenario. Figure 7 presents the
CAS for scenario 1. The following components can be distinguished: 
• Actors. In this CAS there are two actors (the System and the Operator).

The System actor is subdivided in two columns (the Applications and
the System Manager). The Operator column is subdivided in columns
representing executions of three tasks: the fire, shutdown, and assess-
and-plan task. 

• Timeline. The vertical axis shows the timeline. It should be noted that
the timeline is not linear (a block sometimes represents 6 minutes, while
at another place it represents ½ minute), so that the diagram can zoom
in on a time-period where more actions are performed.

• Events. A column is used to present events that occur during the
scenario. Figure 7 shows four events: short circuit, fire, maximum
temperature engine exceeded, and engine shutdown. The first one is
not detected by the actors (i.e. no flow of actions/processes result
directly from this event).

• Actions. At a certain moment the operator performs actions belonging
to a task (column).

• Processes. The system manager and applications run several processes to
support the users with their task performance. 

• User-system partition. The broken line between the two actors shows the
user-system partition (i.e. the human-machine interaction at the task
level). The user interacts with multiple processes at the same time. For
example, during the fire task the operator uses the rule provision
process of the System Manager. At the same time the user performs
operations using the Fire Control System application. In particular,
Figure 7 shows the interaction with the support functions for task-set
switching and task-set integration: Information Handler (IH), Scheduler
(SC), Rule Provider (RP) and Diagnosis Guide (DG).
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Figure 7: Part of the Compound Action Sequence (CAS) for scenario 1.
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Communication Level 

The previous subsection specified the user interface at the task level: a high-
level description of the human-computer interaction and the role of the
system manager. This specification will be transformed to a low-level
description of the presentation and control elements based on user
requirements, HCI standards and technical constraints. The plain interface
is an interface for operators who have always sufficient knowledge and
capacities available to execute their tasks (Neerincx & de Greef, 1998). The
system manager integrates context-specific task support into this interface
to complement possible knowledge and capacity deficiencies, resulting into
the support interface of the system manager. First the plain interface of the
application manager will be described and, subsequently, the support that is
integrated into this interface by the system manager.

Figure 8: The "plain" interface of the Application Manager (with an extra support
button).

Plain Interface. Figure 8 shows the plain user interface that consists of three
parts. The status area is shown on the top part of the screen. This area has a
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fixed size, is always available and is never covered by overlapping windows
or dialogue boxes. The main role of the status area is to present real-time
status and alarm information. An 'alarm bell' is shown on the left side of the
status area. The alarm bell is used to indicate the alarm status: no
emergencies (grey), emergencies (red), new emergencies (a short period of
blinking red/grey accompanied by a modulated sound signal), and priority
raise of emergencies (blinking and sound).

The application presentation area in the middle of the screen is used to
present the active application (Figure 8 shows the navigation application).

The common control area at the bottom of the screen has a fixed size, is
always available and is never covered by overlapping windows. Its main use
is to switch from one application to another. The first button on the left is
added to the application manager interface to switch the system manager’s
support on or off (see below). 

Figure 9: The user interface in support mode.

Support Interface. Figure 9 provides an example of the user interface in
support mode (i.e. an example interface state during fire control). Two new
areas can be identified in this mode. An emergency presentation area
situated directly underneath the status area and a procedure presentation
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area on the left side of the application presentation area. The application
presentation area is somewhat smaller than in the plain interface to make
room for the two new areas. 

A first type of Information Handling appears in the emergency
presentation area combining low-level alarms (e.g. sensor values) and
categorising the resulting emergencies into groups (In the current example:
Fire, Propulsion, Hull Stress and Navigation). In this way, the amount of
alarm information on the screen is reduced compared to the “classical”
alarm lists. This report presents an example for the system manager’s user
interface for a workstation with only one display. When the operator can
use two displays, the emergency presentation area can be presented on a
separate one. Another type of Information Handling support is offered by
integrated views in the application tree (for example an integrated view of
the propulsion, electricity, track control and cargo to show the
interdependencies). Such a view offers an overview of state and process
variables, the fluctuations in time and the relevant relations between
different systems (applications). 

Scheduling support is located in the emergency presentation area. It is
possible that two emergencies of the same type occur simultaneously. The
emergencies are ordered in the appropriate group according to time of
occurrence. Each emergency is presented as a hyperlink that “loads” the
corresponding procedure in the procedure presentation area. Selection of an
emergency is indicated by 'inverted' video. Next to each emergency a
number is given to indicate the priority of that particular emergency. Next
to the group name a priority indicator (horizontal bar) and the
corresponding number are given, showing the highest priority of that group
(the fire group has the priority of “3” in the example of Figure 9). 

The emergency presentation area provides the overall work plan for
emergency handling. It can be viewed as a shared work plan if multiple
operators are involved in such tasks: e.g. one operator who executes a fire
procedure and another operator who prevents a collision. These operators
can help each other or switch tasks. Suppose that the operator who is
engaged in a fire fighting procedure needs advice from his colleague. The
colleague can then obtain the same view as the other operator (but to
prevent confusion he can not operate the other operators procedure or
application) and advise him. When the original 'fire fighter' changes to
another emergency (for example the collision prevention), the procedure is
released and the other operator can continue at the right place in the
procedure because of the checkmarks made by the other operator.

The procedure presentation area provides web-browsing functionality
and contains two tabs: ‘Action List’ and ‘Relation’. Rule Provision support is
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provided by the first tab that presents a list of all actions that must be
performed to deal with the selected emergency: 
• For every emergency, the content of the page will be dynamically

created: actions that apply to the current emergency and context are
selected, the objects of these actions are instantiated and the result is
presented in the page. In this way, a context-specific concrete
procedure can be formulated (Neerincx & De Greef, 1998). Each
procedure step can contain hyperlinks that refer to the corresponding
sub-procedure or to an explanation of the content. 

• Checkmarks can be placed in the appropriate checkboxes to indicate
that a specific step in the procedure was completed. The background of
the following step in the procedure is highlighted while the background
of the other actions is grey (i.e. the first not check-marked step is
highlighted). It is important to note that the user and the system
manager can place checkmarks (in different colours). Each procedure
ends with a ‘Finished’ step to assure that the emergency is really solved
and to prevent that an emergency ‘suddenly’ disappears from the
scheduler without the operator being aware of it. States of procedures
are preserved (by means of the checkmarks) till the emergency is
finished.

• The relevant application for the current (i.e. highlighted) step is
activated and presented automatically in the application presentation
area. 

The ‘Relation’ tab in the procedure presentation area contains diagnosis
guidance, i.e., hypotheses about relations between two or more of the present
emergencies (one of these emergencies must be the currently active
emergency). Unlike the ‘Action List’ tab that is always available, the
‘Relation’ tab is not available most of the time (indicated by being dim). It
becomes available (the name blinks a few times and is not dimmed)
whenever one or more hypotheses about emergencies are discovered by the
system manager (in the procedure presentation area of figure 9):
• Each hypothesis can contain hyperlinks that refer to a procedure to

evaluate that hypothesis (when no procedure is available more
information about the hypothesis will be presented). 

• A toggle switch is presented before each hypothesis to indicate whether
the hypothesis is true (Y), not true (N) or still open (no button pushed).
Each diagnosis of the relations ends with a ‘Finished’ checkbox. 

• After the diagnosis finished, the system manager will indicate and
explain whether the choices were consistent in a dialogue box. When
the choices were not consistent, the ‘Relation’ tab is shown again after
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this box. When the choices were consistent, the dialogue box proposes
changes in the context model that correspond to the hypotheses
assessment. The operator can either approve of these changes (by
clicking <OK>) or don’t approve (by clicking <Not OK>). When the
operator presses <OK>, the changes are made and immediately used to
dynamically improve the procedures; the operator is returned to the
‘Action List’ tab that contains the improved procedure. When the
operator presses <Not OK>, the changes are not made and he is
returned to the ‘Relation’ tab. 

Evaluation 

A storyboard visualises a number of possible consecutive steps within an
interaction sequence situated in typical use context. We created storyboards
for the support interface in order to collect feedback from domain experts
and possible users, and to prioritise the support functions taking
technological design constraints into account. Our storyboards consisted of
a sequence of screendumps (such as figure 9) for a specific scenario or
compound action sequence with a narrative description of the human-
computer dialogue. In the first implementation stage, another project
partner implemented the most cost-effective and feasible functions in a
demonstrator. For example, the implementation of a diagnosis guide was
postponed, because empirical foundation of its effectiveness was lacking
and the required technology is rather advanced. 

In correspondence with the cognitive engineering approach of the
introduction in this chapter (see figure 1), we did a first internal analytical
assessment of the user interface specification, till the level of storyboards, to
test if it complies with the user requirements and HCI guidelines. It was
shown that the guidelines were generally well addressed. The user interface
design can be viewed as a manifestation of current human-computer
interaction knowledge and corresponds with new interface proposals for
naval ship control centres and manned space labs (Neerincx et al., 2001).
The support is expected to diminish cognitive task load in critical situations,
to facilitate dynamic allocation of tasks to multiple users and to keep users
in the loop of human-machine task execution. A small number of
experiments validated central design principles and showed positive effects
of the Rule Provider (Neerincx & de Greef, 1998; Neerincx et al., 2001). In
an evaluation with 57 navy cadets of the Royal Netherlands Navy, the
support functions leaded to a substantial increase in operator performance,
especially at high task load. We did not find negative “out-of-the-loop
effects” of the support, like “automatic” following of incorrect advices or
decreased situation awareness (Grootjen et al., 2002). Currently, part of the
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support is being implemented on the bridge of an icebreaker in the
European ATOMOSIV project. 

Discussion

This chapter presented an overview of a practical theory on cognitive task
load and support that is being developed in a cognitive engineering
framework (figure 1). Recent experiments in laboratory and real-world
settings showed the large effects of the three load factors on task
performance and mental effort, and provided empirical foundation of the
cognitive support functions. The theory has been integrated in a method for
cognitive task analysis that can be used in the early stage of system
development processes. In this chapter we chose to give an overview of the
theory and method, and some example applications. The empirical
foundation is being provided elsewhere (e.g. Neerincx & van Besouw, 2001;
Grootjen et al., 2002).

Recently, the cognitive task load model was integrated into an
ERGOtool for the assessment of (future) assembly lines in industry via
questionnaires and scenario observations. The ERGOtool is being applied
and tested at different European companies (Van Rhijn et al., 2001). In
addition to this tool, we are developing simulations of the ‘Compound
Action Sequences’, that can be used to “refine” the task allocation and to
assess the effects of support functions in an early software development
stage. As another example, we applied the analysis method for Cognitive
Task Analysis to assess the task load of the operator in the future control
room for a 6-kilometre motor traffic tunnel (the “Westerscheldetunnel”).
The analysis identified a number of bottlenecks that should be resolved in
order to guarantee adequate operator performance. In sum, current and
near-future research will provide results to improve the method and its
theoretical and empirical foundation. Persons who were involved in its
development have mainly applied the method so that we have (yet) limited
experience of its “usability” (but see for example van Rhijn et al., 2001). The
“complete” Cognitive Task Analysis method comprises a lot of information
with respect to the “load and support” theory, the specification and
assessment techniques, the relevant user interface guidelines and standards,
and the increasing set of examples. For the European Space Agency (ESA),
we developed a customised version of the method for designers of the user
interfaces in the International Space Station. To make the method easy to
access, maintain and update, it is being provided as an interactive guide, a
Web-based usability handbook, providing example applications and
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validations (i.e. enhancing the HCI foundation for space lab interfaces). We
expect to assess its usability in the near future. 

Our analysis approach focuses on (external) cognitive task factors at a
“meso-level” (i.e. we do not deal with macro-level work schedules in terms
of days or micro-level dialogue issues in terms of milliseconds). A current
project will further explicate the relations of task demands (e.g. of
communication tasks) with internal cognitive and emotional states. More
elaborate micro-level analyses as supported by the Information Processing
model of Hendy & Farrell (1997) are related to ours, but are difficult to
apply for complex real-world task environments (cf. Gray & Kirschenbaum,
2000; Nardi, 1996). In future, they may become more practical, e.g. by
simulation environments, and help to further analyse task elements for
specific details.

Conclusions

This chapter presented a practical theory on mental load and cognitive
support in process-control tasks. The theory comprises a model of cognitive
task load that describes load in terms of three behavioural factors: the
percentage time occupied, the level of information processing and the
number of task-set switches. The higher the value of each factor, the higher
the load will be. Furthermore, the practical theory distinguishes specific
cognitive support functions that affect these values. For example,
procedural support will diminish the level of information processing if it complies
with a number of guidelines. A second example is task management support
that will diminish the task-set switching demands if it fulfils a compound set of
user requirements. The theory of mental load and cognitive support
comprises the effects of task and interface characteristics on performance
and mental effort to enable an iterative process of human task and interface
design. For this objective, the theory is integrated into a method for
cognitive task analysis that can be applied in the first phase of software
development for the assessment of task allocations and high-level system
specifications, and for the design of cognitive support functions. 

In a first example, the method was applied to the assessment of the
specifications of the Integrated Monitoring and Control System of the
future Air Defence and Command Frigate. As a result of the analysis,
particularly the large number of task-set switches was identified as an
overload risk for envisioned activities in the future Ship Control Centres.
Because mental load was described in terms of task and interface
characteristics, recommendations could be formulated for task allocation
and interface design. 
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In a second example, the Cognitive Task Analysis method was applied
to develop a support interface for the integrated ship’s bridge. An
evaluation with a prototype interface showed the benefits of the support
(Grootjen et al., 2002). Based on this design and evaluation, the
ATOMOSIV project will implement a support interface on an icebreaker.

Taken together, these examples comprise an integrated approach on
task allocation enhancement and design of cognitive support. Recent results
of this approach are promising, providing for example indications that
cognitive support can help to realise adequate (dynamic) task allocations.
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KB Knowledge-Based
RB Rule-Based
RP Rule Provider
SB Skill-Based
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