
98S-SIW_238

A Component Architecture for Simulator Developmentl

Nico Kuijpers
Paulvøn Gool

Hans Jense

TNO Physics and Electronics Laboratory
P.O. Box 96864

2509IG, The Hague
The Netherlands

kuijpers @fel.tno.nl, vangool @fel.tno.nl, jense@fel.tno.nl

Keywords: simulator architecture, simulator components, HLA-RTI, RD&E applications

ABSTRACT: Research, Development and Engineering applications require the rapid development of simulators,
preferably through the reuse of simulator components In order to facilitate the reuse and exchange of simulator
components, research institutes and industry in The Netherlands are collaborating in the SIMULTAAN project. The
mqin result of this project will be a símulator component architecture that facilitates 'plug & play' with components to
build a simulator. Another result will be a component repository, which facilitates the exchange of simulator
components.
The realization of the simulator architecture is the Run-time Communication Infrastructure (RCI). The application
programmer is shielded from the complexity of simulator interoperability standards. In addition to inter-federate
communication, the RCI will also provide inter-component communication. If performance requirements are met, inter-
component communication will be based on an available HLA-RTI, otherwise a dedicated RTI will be developed.

1. Introduction
When developing a simulator, several basic
components are combined to provide the simulator's
operator with a virtual representation of real-world
dynamics and the real-world environment. Recurring
stages of simulator development are: requirements
analysis, design, implementation, integration and
testing of the system. The simulator's functionality is
usually divided amongst several components (e.g.

visual, motion and dynamic model). The interfaces
used to integrate the components are usually based on
per-project requirements. This limits the reusability of
the components. An architecture that supports the reuse
and exchange of components is proposed in this paper.

The simulator component architecture is intended to
maximize the reuse potential of components by
defining a standa¡d interface for simulator components.
In this way simulator development time witl be
reduced. By making sure that components comply to
the standard interface, and comply to a number of rules,
they can be reused in another simulator built on the
same architecture. The common architecture will be
used in an RD&E environment where the rapid

t This work has been carried out in the f¡amework of the
SIMULTAAN project which is partly funded by the Dutch iniriative
for High Performance Computing and Networking (HPCN).

reconhgurabilify of simulators is essential. However, it
can also be used in an industrial environment.

In order to meet the requirements with respect to
flexibility and rapid prototyping, an object-oriented,
layered architecture is developed. Applications will be

built on top of the so-called Run-time Communication
Infrastructure (RCD. The RCI provides the
SIMULTAAN developer with an abstraction layer (or
middle-ware) which shields the developer from the
underlying interoperability standards.

To further encourage the reuse and exchange of
simulators and components, the HLA Object Model
Templates [1] will be used to describe the intrinsic
capabilities of SIMULTAAN components and
federates.

The paper is organized as follows. Section 2 describes
the current simulator development in The Netherlands.
The SMULTAAN project and its goals are presented
in Section 3. Section 4 describes the development of
simulators based on the results of the SMULTAAN
project. Section 5 introduces the SIMULTAAN Object
Models. The objectives and the architecture of the RCI
are presented in Section 6. Finally, conclusions a¡e
drawn in Section 7.

1336
I 998 Spring Simulation Interoperability Workshop



2. Current Simulator DeveloPment

integration of subsYstems'.

Negotiations are nece achieve

ugrã"*"ntt between es and

institutes. \üork is in bsystem

level. The simulator architecture and the interfaces

between the different components and subsystems have

to be defined case by case' Partly because of ad-hoc

interface definitions, reuse of available hardware and

software is limited. Usually modifications are necessary

to meet the newly defined interface definitions. Thus a

considerable amount of work is needed for

requirements analysis, design, implementation,

integration and testing of the system'

Clustering of knowledge and experience in The

Netherlands is necessary to compete with the

established international simulator industry' The

SIMULTAAN project was defined to provide the

knowledge clustering and intelligence infrastructure for

simulator develoPment,

3. The SIMULTAAN Project
SIMULTAAN is a 2'5 year project, started in January

1997, which brings together knowledge and experience

in the area of simulators and distributed simulation

from universities, research institutes and industry in

The Netherlands. The project is partly funded by the

Dutch initiative for High Performance Computing and

Networking (HPCN)' The six consortium members are

. TNO Physics and Electronics Laboratory (project

leader);
r National Aerospace Laboratory NLR;
. Delft University of Technology, Faculty of

Aerospace Engineering;
¡ Siemens Netherlands NV;
. Fokker Space BV;
. Hydraudyne Systems & Engineering BV.

SIMIJLTAAN aims at the development of a generic

simulator architecture. This architecture will be the

basis for federations consisting of several simulators

and appropriate scenario management facilities' The

SMULTAAN results will be demonstrated at the end

of the project by realizing one representative

98S-SIV/-238

federation. The project results will be applicable to

future simulator Projects.

A SIMLTLTAAN federate consists of a number of
components; one of them is the federate manager'

which controls the operation of the federate. Examples

of components commonly found in simulators are a

visual system, a motion system, a dynamic model, and a

mock-up server'

SIMULTAAN will facilitate the interoperability of

federates and components by providing a standard

interface to the application programmer' Two types of

communication can be distinguished: communication

between components (local communication) and

communication between federates (global

communication). Both types of communication will be

supported by the architecture' For the communication

beiween federates international standards for simulator

interoperability will be used. This means the

SIMULTAAN architecture will support both DIS and

HLA by providing one colrunon interface.

Four results of the project can be distinguished:

1. The SIMULTAAN Simulator A¡chitecture (SSA)

which is the common high-level architecture for

simulators and tools developed by the

SIMULTAAN Partners.
2. The Run-time Communication Infrastructure (RCI)

which is an implementation of the SSA. The RCI

will be discussed in Section 6'

3. A set of components and federates compliant with

the SSA standa¡ds and developed for the purpose

of the SIMULTAAN Demonstration.

4. The SIMULTAAN Object Repository (SOR)

which is part of the infrastructure to reuse and

exchange components and federates developed by

the SMULTAAN Partners.

The SIMULTAAN Simulator Architecture (SSA) will

facilitate interoperability between the components of a

federate and between federates of a federation' The

SSA includes the SSA Rules, the SSA Interface

Specification and the SSA Object Model Templates'

The SSA Rules are rules with which a SIMULTAAN
federate or component has to comply' They define the

responsibilities and relationships in a SIMLILTAAN

fedãration. The SSA Interface Specification (SSA-IF)

is a formal, functional description of the interface

between the application and the Run-time

Communication Infrastructure (RCI)' The SSA Object

Model Templates (SSA-OMT) are standardized

formats to define the functionality of federates and

components and their respective interactions' The SSA-

r337
iffi s ¡.¿"t ¡on I nt e rop e rability wo rlcs ho p



98S-SIW-Z¡t

OMT will be equivalent ro rhe HLA_OMT tll.

Another result of the project is the SIMULTAAN
Object Reposirory (SOR). The SOR will contain SSA

cont¡olled access by the SIMULTAAN partners.

4. SIMULTAAN Federate Development
SIMULTAAN Federate Development describes the

User requirements for the federate are specihed in
cooperation with the end-user and can be regarded as a
starting point for the development. Frorñ the user
requ¡rements, the system requirements are identified.
The_system requirements initiate the design process of
the federate.

components a¡e available, the developers can build the
federate. For validation, the federate is tested against
the requirements and demonstrated to the end user.

5. SSA Object Model Templates
In HLA, object models are used to describe an object,s
intrinsic capabilities [1]. In order to facilitate the reuse
and exchange of components and federates, the

following object models have been identified forSIMTILTAAN.
.. , ]

o The Federation Object Model (FOM) formally
specifies all interactions and att¡ibutes within the
federation. Using this model it can be determined
whether all subscriptions are actually published.
The SIMULTAAN FOM is equivaleniro rhe HLA
FOM.

Distinction between COM and SCOM on one hand, and
SOM and FOM on the other, enables different
treatment of local and global communication. Local
communication is the exchange of information between
components in a federate, whereas global
communication is the exchange of information between
federates.

The SIMULTAAN object models enable clear
specifications for the capabilities of federates and
components. Federate and federation development in
SIMULTAAN can be compared to the IILA Federation
Development and Execution process (FEDEP) I3l.

6. Run-timeCommunication
fnfrastructure

The SMULTAAN Simulator Archirecrure (SSA) is rhe
common high-level architecture for simulators and
tools. The SSA will providê services to both the
components and the federate. Components are .glued,
together to form an aggregate federate. The Run_time
Communication Infrastru*ure (RCI) is the
implementation of the SSA services.

Components and federates are different in nature and
have their specifìc requirements on the SIMULTAAN
Simulator Architecture (SSA). For example,

1338

I99SSpringSi*rto@



communication between components is often local

within one site, point-to-point and optimized with some

dedicated protocol (e.g. reflective shared memory like

SCRAMNET). Communication between federates is

between sites, one-to-many and less optimized.

Furthermore, communication between federates

requires compliance with standards for simulator

interoperability. The SSA provides an architecture

where the different requirements are united in one

solution.

As described in the previous sections, the

SIMULTAAN Simulator A¡chitecture (SSA) will
shield the interoperability standards from the

component or federate developer by presenting an

abstraction layer (or middle-ware). The RCI will
provide the component developer with the necessary

functionality to incorporate the component into a

SIMULTAAN federate. The RCI is a protocol-

independent interface to the simulated environment'

The design of the abstraction layer and the Application

Programmer's Interface (API) are discussed in this

section.

The design of the RCI is mainly inspired by HLA and

one of its objectives is to enable the migration from

DIS to HLA with minimal changes' The object-oriented

design of the RCI Promotes both the reuse of existing

software components and facilitates the extension of
the RCI itself.

For a SMULTAAN component, two simulation

environments can be identified:

1. The environment inside a federate: This

environment consists of a set of collaborating

components. It presents an overview of the other

components within the federate'

2. The environment outside a federate: This

environment represents the federation. It presents

an overview of all simulated entities that are part

ofthe federation.

The SIMULTAAN environment will combine the two

environments. It will give a component an overview of
the other comPonents in its federate and an overview of
the simulated entities in the federation' The topJevel

object model [4] of the RCI is shown in Figure 1'

98S-SN/-238

Environment:
The SIMULTAAN Environment will provide

components an overview of both the federate and the

federation. The Environment will reflect the current

state of the feCerate, i.e., the state of all its components'

It will allow the addition and deletion of components.

Furthermore, it will allow components to subscribe to

relevant information' Each component can publish data

to which other components of the federate may

subscribe. Components can send and receive events'

The translation of the events to a speciltc

interoperability standard (such as DIS or HLA) is left

to the Communication Server.

Component:
A Component is the basic building block for a

SIMULTAAN federate. The interface between the

Component and the Environment is the only interface

the component developer will have to deal with.

C o mmun i c at ion S e rv e r'.

The Communication Server represents the object that

takes care of the actual communication' Its function can

be compared to that of the HLA-RI. In a way it
represents a distributed operating system' The interface

beìween the Environment and the Communication

Server will be based, to some extent, on the HLA
Interface Specification l2l. A Communication Server

will communicate with other Communication Servers'

Three specialisations of the Communication Server are

shown in Figure 2. Notice that it is possible to have

multiple Communication Servers within the RCI, which

enables the use of a different Communication Server

for local and global communication. To this end the

distinction between COIVVSCOM and SOMiFOM is

made, as mentioned in Section 5.

DIS Communicqtion Serve r:

A specialisation of the Communication Server that will
t unìlat" all events to DIS PDUs, and vice versa. This

type of server will only be used for inter-federate

communication.

r tto

Ñprng Si*ulation Interoperab iliry Workshop

Figure 2: Communication Server Inheritance Diagram

Figure 1: RCI ToP Level Object Model



H LA Communication Se rver:
A specialisation of the Communication Server that will
hanslate all events to HLA interactions and HLA
attributes, and vice versa. This type of server will be
used for inter-federate communication and perhaps for
inter-component communication, if the HLA-RTI
provides suffi cient performance.

Local Communication Senver:
A specialisation of the Communication Server that will
be used for inter-component communication. The Local
Communication Server can be used for inter-
component communication over a dedicated
communication medium such as reflective shared
memory (SCRAMNET).

6.1 Environment
As shown in Figure I components communicate
exclusively with the environment. The environment
class provides a view of the ,world,, as seen by a
component.

Environment

SimObjectSet CompObjectSet EventSet

SimObject CompObject Event

Figure 3: Environment Object Model

SimobjectSet:
Set of simulated entities relevant to the federation.

SimObject:
The state of a simulated entity.

CompObjectSet:
Set ofcomponent objects relevant to the federate.

CompObject:
The state of a SIMULTAAN componenr.

EventSet:
Set of simulation events, such as simulation
management events and other unique occurrences in the
simulation session.

Event:
A unique occurrence in the session, e.g., an object state
update, simulator management requests, component

98S_SrW_238

creation.

supply components with
estroy a federate. Creaüon
will be done by a federab

manager. Once a federate has been created, e¡f¡s¡
components can join the federate.

The Environment provides a publish and subscribe
mechanism. Components may publish object_ and
event-classes. This means that during the federation
execution, these types of objects and events will be
created by the component. Components may also
unpublish, which means that objects and events will no
Ionger be provided by the component.

Subscription possibilities will be offered by the
Environment. Components can indicate an interest in
other objects or events. The creation of atfibute sets, as
needed by the HLA-RTI, will nor have to be done by
the developer. The RCI will perform these tasks. À
component can specify its response to events by
defining callbacks. It is possible to specify multipll
callbacks to an event.

The environment class will supply methods to create
and delete objects. Further methods include the
possibility to send events, and retrieve the time. Events
can be sent to the entire federation, a specific federate
or a specific component within the federate. The
Environment class is completely protocol-independent
and therefore entirely reusable.

6.2 CommunicationServer
The Communication Server represents the underlying
interoperability standard. Its main goal is to exchangã
object and event information with other
Communication Servers and keep the Environment up-
to-date. The Communicarion Server will be partialiy
protocol-dependent and therefore each interoperability
standard will require its own Communication Server.

The interface between Environment and
Communication Server will be based on the HLA
Interface Specification to establish comparibility with
HLA t2l. Therefore, the design of the Communication
Server subsystem will include classes that correspond
with RTI' Management Services. Note that the
Communication Server is nothing more than a facade
for these management services [5].

The communication server functionality is divided into
various subsystems to reduce complexity. The

1340
I 998 Spring S imulation Interope rabitity Works hop



Communication Server object model [4] is shown in

Figure 4.

The FedAmbassador and RTlAmbassador classes

provide the connection to the HLA-RTI' The other

classes identified in Figure 4 will be discussed below.

FederationData:
The FederationData object will parse the SCOM and

FOM in order to determine all possible components

that may be instantiated and all possible events that

may be sent during the execution of the federate.

The SCOM and FOM will be a symbolic representation

of the components and events (and their attributes and

parameters, respectively). The FederationData class

will provide a mapping of these symbolic names and

the RCI handles for them.

EventFactory;
Events a¡e the only means for a component to

communicate. Events may contain data. The

EventFactory class will be used to convert the protocol-

independent events to HLA interactions, DIS PDUs, or

some other communication protocol, and vice versa'

This class has a close relation with the FederationData

class. The EventFactory class will have three methods.

The frst method can be used to create an instance of an

Event of a specific type. That instance can then be

modified and sent through the RCI. The other two

methods are used to convert an event to the protocol-

dependent representation and to convert a protocol-

dependent representation to an event.

ObjectFactory;
The ObjectFactory class [5] will be used to convert the

protocol-independent representation of CompObjects

and SimObjects to an HLA object or an EntityState

PDU, or some other communication protocol, and vice

98S-SIW-238

versa. This class has a close relation with the

FederationData class. The ObjectFactory class

resembles the EventFactory and will also have three

methods.

The first method can be used to create an instance of a

CompObject or SimObject. That instance can then be

modified and sent through the RCI. The other two

methods arë used to convert an object to the protocol-

dependent representation and to convert a protocol-

dependent representation of an object to a CompObject

or SimObject.

EventManager:
The EventManager will handle all publication and

subscription issues for Events that possibly occur in the

federate. It will be possible to change the transport and

order type of events.

The EventManager is the class that actually receives

the events from the FedAmbassador instance and sends

the events to the RTlAmbassador instance. It will have

to transform the events to either DIS PDUs, HLA
interactions, or some other representation. It will use

the EventFactorY class for that.

The EvenManager will use the FederationData

instance to determine if an incoming event is a subclass

of an event the component is subscribed to' If that is the

case, the EventManager will pass the event on to the

CompAgent.

Similar classes are defined to manage the components

and federates. These classes are called CompManager

and SimManager, resPectivelY.

CompAgent:
A component can register a callback for any type of
event. The callback specifies the action to be taken

when such an event occurs. The CompAgent handles

incoming events by invoking the callbacks registered

for that event. An invocation of a callback can either be

the execution of a global function or a method'

6.3 ConcePt of Execution

Each application that is part of the federate needs to

create an instance of the Environment' Objects of a

certain Component class will be instantiated and will
inform the Environment that they wish to join the

federate. V/hen doing so they will specify a frequency

at which they wish to be scheduled.

Figure 5 presents the operational concept of RCI' The

application.communicates with the Environment' The

t34t
I S g I S p rir, I S i 

^ulat 
io n I nt e rop e rab il ity Wo rks ho p

Figure 4: Communication Server Object Model



Environment is kept up_to_date by one or moreLofiununlcation Servers. For global communication, achoice has to be made betw-een tne- OIS 
'an¿ 

HfeCommunication Server, wheras for localcommunication a dedicated Communication Servermay be used. The Communication S""u"i. do notnecessarily communicate over the same communication
medium.

e8S_SIW_æA

comply to a number of rules, they can be reused inanother simulator built on the same L"¡iìe"tu¡". : ,.

The global design sE:
Simulator A¡chitecture I
more detailed discussio
concepts are based I

differences can be iden
between HLA and rhe Sl
summarized as follows:

o An abstraction layer (or middle_ware) will berealized to hide the complexities of the underlvino
interoperability standards. --'J",6

. The various interoperability standards will beshielded from the developei to enable migrationfrom DIS to HLA with minimal chìnges in theapplication code.
¡ Mechanisms for communication between thecomponents within a federate will be provided.. ï. exchange of simulator 

"ornpon"nt, between
SIMULTAAN parrners will be Àcouraged by theSOR.

o Multiple Communication Servers can be used toallow dedicated high_speed inter_component
communication with minimal changes in the
application code.

The_first implementation of the RCI will be built on topof the HLA-RTI. The resulrs of the Sitr¿UffAeru
grot^e_11v!l Ue applied in furure 

"ollu¡orJons between
the SIMULTAAN partners.

8. References

[] Defe.nse Modeling and Simularion Office (DMSO),
"High Level A¡chitecture Object Model Template,,.

[2J Defense Modeling and Simulation Ofn"e'pnASO¡,
"High Level A¡chitecture for Simulations Interface
Specifi cation", Version 0.3.

[3].D;fense Modeling and Simulation Office (DMSO),
'Federation Development and Execution process
(FEDEP) Model".

[4i J. Rumbaugh et ai, .,ObjecrOriented 
Modeling and

Design", prentice_Hall, 7gg t.
[5] E. Gamma et al, ,.Design patterns ___ Elements ofReusable ObjecrOriented Software,,, Addison_

Wesley, 1995.

Author Biographies

NICO KUUPERS is a member of rhe scienrific staffin the Command & Control and Simulation óiUsion atTNO-FEL. He is project Iea¿", io, several

user-def¡ned simulalion model

I Run-tima communícation

J' 
lntrastructure (RCt)

Dts
compliant

communicat¡on medium

Figure 5: Operational Concept of the RCI

Ol:9 u component has successfully joined a federate, it
:j1l be fle to publish Evenr classJs'-JõU¡"", classes.This will inform
and Events wiil objects

this session. ä during

:::l'- t *j il'ïj;reglster a callback. M an beregistered. Once this is done, the component hands overcontrol to the Environment.

The Environment will receive incoming Events fromthe Communication Server and *lli" *iì*" theappropriate callbacks. A component can subscribe tothe Sync Event which is a clock ri"k' ;; will begenerated at the frequency the component.;il;; ;Lomponent can also send its own Events. In å nutshell,this is the concept of execution of the RCI.

7. Conclusions
In ,lir paper rhe SIMULTAAN a¡chitecrure for
::Ty]|"j devetopmenr has been ¿ir"urr"¿. TheSIMULTAAN Simulator Architecture is intended tomaximize the reuse potential of .o.iãn"nt, bydefining a srandard inierface. By .;kiõ" rur" thutcomponents comply to the standard intãrface, and

1342

l99SSpringS;*@



collaborative distributed

5¡6ulation, bo in Dutch

industry and llY within

European rese M.Sc. in

Computing Science from Eindhoven University of

Technology and a Master of Technological Design in

Software Technology, also from Eindhoven University

sfTechnologY.

PAUL VAN GOOL is a member of the scientific staff

in the same division. He has experience in the

mathematical modeling of f,rxed- and rotary-wing

aircraft. for real-time simulation and the design and

implementation of real-time distributed interactive

simulation systems. He holds a Ph.D. in Aeronautical

Engineering from the Delft University of Technology.

ÍIANS JENSE is a senior scientist in the same

division, where he coordinates the Virtual Environment

R&D program, and is technical lead in various VE and

simulation related projects. He holds a Ph'D. in

Computer Science from the University of Leiden.

1343
I 998 S p rin g S imulat ion I nt e rop e rab ility Wo rks ho p



Summary Report
The 1998 spring SimulatÍon rnteroperability workshop

Position Papers

Volume III

March 9-13, 1998

SISO, Inc.
PO Box 781238

Orlando, Florida 3287 8-1238


