A Component Architecture for Simulator Development

98S-SIW-233

1

Nico Kuijpers
Paul van Gool
Hans Jense
TNO Physics and Electronics Laboratory
P.O. Box 96864
2509 JG, The Hague
The Netherlands
kuijpers @fel.tno.nl, vangool @fel.tno.nl, jense @fel.tno.nl

Keywords: simulator architecture, simulator components, HLA-RTI, RD&E applications

ABSTRACT: Research, Development and Engineering applications require the rapid development of simulators,
preferably through the reuse of simulator components. In order to facilitate the reuse and exchange of simulator
components, research institutes and industry in The Netherlands are collaborating in the SIMULTAAN project. The
main result of this project will be a simulator component architecture that facilitates ‘plug & play’ with components to
build a simulator. Another result will be a component repository, which facilitates the exchange of simulator

components.

The realization of the simulator architecture is the Run-time Communication Infrastructure (RCI). The application
programmer is shielded from the complexity of simulator interoperability standards. In addition to inter-federate
communication, the RCI will also provide inter-component communication. If performance requirements are melt, inter-
component communication will be based on an available HLA-RTI, otherwise a dedicated RTI will be developed.

1. Introduction

When developing a simulator, several basic
components are combined to provide the simulator’s
operator with a virtual representation of real-world
dynamics and the real-world environment. Recurring
stages of simulator development are: requirements
analysis, design, implementation, integration and
testing of the system. The simulator’s functionality is
usually divided amongst several components (e.g.
visual, motion and dynamic model). The interfaces
used to integrate the components are usually based on
per-project requirements. This limits the reusability of
the components. An architecture that supports the reuse
and exchange of components is proposed in this paper.

The simulator component architecture is intended to
maximize the reuse potential of components by
defining a standard interface for simulator components.
In this way simulator development time will be
reduced. By making sure that components comply to
the standard interface, and comply to a number of rules,
they can be reused in another simulator built on the
same architecture. The common architecture will be
used in an RD&E environment where the rapid

' This work has been carried out in the framework of the
SIMULTAAN project which is partly funded by the Dutch initiative
for High Performance Computing and Networking (HPCN).

1336

reconfigurability of simulators is essential. However, it
can also be used in an industrial environment.

In order to meet the requirements with respect to
flexibility and rapid prototyping, an object-oriented,
layered architecture is developed. Applications will be
built on top of the so-called Run-time Communication
Infrastructure (RCI). The RCI provides the
SIMULTAAN developer with an abstraction layer (or
middle-ware) which shields the developer from the
underlying interoperability standards.

To further encourage the reuse and exchange of
simulators and components, the HLA Object Model
Templates [1] will be used to describe the intrinsic
capabilities of =~ SIMULTAAN components and
federates.

The paper is organized as follows. Section 2 describes
the current simulator development in The Netherlands.
The SIMULTAAN project and its goals are presented
in Section 3. Section 4 describes the development of
simulators based on the results of the SIMULTAAN
project. Section 5 introduces the SIMULTAAN Object
Models. The objectives and the architecture of the RCI
are presented in Section 6. Finally, conclusions are
drawn in Section 7.

1998 Spring Simulation Interoperability Workshop

2. Current Simulator Development

Within The Netherlands the SIMULTAAN consortium
has the knowledge and capabilities to develop full-
mission simulators for both military and civil use.
However, knowledge and disciplines are spread
amongst the consortium members which causes delay
and repetition during design of the system and the
integration of subsystems.

Negotiations are necessary per project 10 achieve
agreements between participating companies and
institutes. Work is in general defined at subsystem
level. The simulator architecture and the interfaces
between the different components and subsystems have
to be defined case by case. Partly because of ad-fioc
interface definitions, reuse of available hardware and
software is limited. Usually modifications are necessary
to meet the newly defined interface definitions. Thus a
considerable amount of work is needed for
requirements analysis, design, implementation,
integration and testing of the system.

Clustering of knowledge and experience in The
Netherlands is necessary to compete with the
established international simulator industry. The
SIMULTAAN project was defined to provide the
knowledge clustering and intelligence infrastructure for
simulator development.

3. The SIMULTAAN Project

SIMULTAAN is a 2.5 year project, started in January
1997, which brings together knowledge and experience
in the area of simulators and distributed simulation
from universities, research institutes and industry in
The Netherlands. The project is partly funded by the
Dutch initiative for High Performance Computing and
Networking (HPCN). The six consortium members are

» TNO Physics and Electronics Laboratory (project
leader);

» National Acrospace Laboratory NLR;

o Delft University of Technology, Faculty of
Aerospace Engineering;

o Siemens Netherlands NV;

e Fokker Space BV;

e Hydraudyne Systems & Engineering BV.

SIMULTAAN aims at the development of a generic
simulator architecture. This architecture will be the
basis for federations consisting of several simulators
and appropriate scenario management facilities. The
SIMULTAAN results will be demonstrated at the end
of the project by realizing one representative

1337

98S-SIW-238

federation. The project results will be applicable to
future simulator projects.

A SIMULTAAN federate consists of a number of
components; one of them is the federate manager,
which controls the operation of the federate. Examples
of components commonly found in simulators are a
visual system, a motion system, a dynamic model, and a
mock-up server.

SIMULTAAN will facilitate the interoperability of
federates and components by providing a standard
interface to the application programmer. Two types of
communication can be distinguished: communication
between components (local communication) and
communication between federates (global
communication). Both types of communication will be
supported by the architecture. For the communication
between federates international standards for simulator
interoperability will be used. This means the
SIMULTAAN architecture will support both DIS and
HLA by providing one common interface.

Four results of the project can be distinguished:

1. The SIMULTAAN Simulator Architccture (SSA)
which is the common high-level architecture for
simulators and tools developed by the
SIMULTAAN partners.

2. The Run-time Communication Infrastructure (RCI)
which is an implementation of the SSA. The RCI
will be discussed in Section 6.

3. A set of components and federates compliant with
the SSA standards and developed for the purpose
of the SIMULTAAN Demonstration.

4. The SIMULTAAN Object Repository (SOR)
which is part of the infrastructure to reuse and
exchange components and federates developed by
the SIMULTAAN partners.

The SIMULTAAN Simulator Architecture (SSA) will
facilitate interoperability between the components of a
federate and between federates of a federation. The
SSA includes the SSA Rules, the SSA Interface
Specification and the SSA Object Model Templates.

The SSA Rules are rules with which a SIMULTAAN
federate or component has to comply. They define the
responsibilities and relationships in a SIMULTAAN
federation. The SSA Interface Specification (SSA-IF)
is a formal, functional description of the interface
between the application and the Run-time
Communication Infrastructure (RCI). The SSA Object
Model Templates (SSA-OMT) are standardized
formats to define the functionality of federates and
components and their respective interactions. The SSA-

1998 Spring Simulation Interoperability Workshop

OMT will be equivalent to the HLA-OMT [1].

The Run-time Communication Infrastructure provides
the run-time interface services for communication
between components in a federate and between
federates in a federation, according to the SSA
Interface Specification (2], The RCI can be regarded as
middle-ware, which will hide the complexities of the
underlying interoperability ~standards from the
SIMULTAAN component or federate developer. This
way component development time can be reduced.

Another result of the project is the SIMULTAAN
Object Repository (SOR). The SOR will contain SSA
compliant simulators, components and tools. It may
also contain configuration, initialization, and validation
data for components, simulators, and tools. In this way
SIMULTAAN will support the process of simulator
development (e.g., requirements analysis, design,
composition and validation). The SOR allows
controlled access by the SIMULTAAN partners.

4. SIMULTAAN Federate Development

SIMULTAAN Federate Development describes the
way SIMULTAAN partners will produce federates
using the results of the project. New components may
have to be developed or existing components may need
to be adapted. During the design process, such needs
will be identified and translated to component
requirements. The Federate Development process will
result in a validated simulator or tool. A federation can
be created by producing its federates and defining the
interactions between them in a Federation Object
Model (FOM).

User requirements for the federate are specified in
cooperation with the end-user and can be regarded as a
starting point for the development. From the user
requirements, the system requirements are identified.
The system requirements initiate the design process of
the federate.

The federate will be designed with optimal use of
existing components. Therefore access is needed to the
descriptions of components that are available in the
SIMULTAAN Object Repository (SOR). When all
components are available, the developers can build the
federate. For validation, the federate is tested against
the requirements and demonstrated to the end user.

5. SSA Object Model Templates

In HLA, object models are used to describe an object’s
intrinsic capabilities [1]. In order to facilitate the reuse
and exchange of components and federates, the

1338

98S-STW.234

following object models have been identified fo,
SIMULTAAN.

° Each component will have a Component Object
Model (COM). This object model formalty
specifies the attributes and interactiong a
component publishes to other components. It also
specifies the attributes and interactions a
component will subscribe to during run-time.

® A Simulator Component Object Model (SCOM)
formally specifies all interactions and attributes
between the components of one federate. Using
this model it can be determined whether all
subscriptions are actually published.

e The Simulator Object Model (SOM) formally
specifies the attributes and interactions a federate
publishes to the federation. It also specifies the
attributes and interactions a federate will subscribe
to during run-time. The SIMULTAAN SOM is
equivalent to the HLA SOM.

® The Federation Object Model (FOM) formally
specifies all interactions and attributes within the
federation. Using this model it can be determined
whether all subscriptions are actually published,
The SIMULTAAN FOM is equivalent to the HLA
FOM.

Distinction between COM and SCOM on one hand, and
SOM and FOM on the other, enables different
treatment of local and global communication. Local
communication is the exchange of information between
components in a federate, whereas global
communication is the exchange of information between
federates. -

The SIMULTAAN object models enable clear
specifications for the capabilities of federates and
components. Federate and federation development in
SIMULTAAN can be compared to the HLLA Federation
Development and Execution Process (FEDEP) [3].

6. Run-time Communication
Infrastructure

The SIMULTAAN Simulator Architecture (SSA) is the
common high-level architecture for simulators and
tools. The SSA will provide services to both the
components and the federate. Components are ‘glued’
together to form an aggregate federate. The Run-time
Communication Infrastructure (RCI) is the
implementation of the SSA services.

Components and federates are different in nature and
have their specific requirements on the SIMULTAAN
Simulator Architecture (SSA). For example,

1998 Spring Simulation Interoperability Workshop

communication between components is often local
within one site, point-to-point and optimized with some
dedicated protocol (e.g. reflective shared memory like
SCRAMNET). Communication between federates is
between sites, one-to-many and less optimized.
Furthermore, communication between federates
requires compliance with standards for simulator
interoperability. The SSA provides an architecture
where the different requirements are united in one
solution.

As described in the previous sections, the
SIMULTAAN Simulator Architecture (SSA) will
shield the interoperability —standards from the
component or federate developer by presenting an
abstraction layer (or middle-ware). The RCI will
provide the component developer with the mecessary
functionality to incorporate the component into a
SIMULTAAN federate. The RCI is a protocol-
independent interface to the simulated environment.
The design of the abstraction layer and the Application
Programmer’s Interface (API) are discussed in this
section.

The design of the RCI is mainly inspired by HLA and
one of its objectives is to enable the migration from
DIS to HLA with minimal changes. The object-oriented
design of the RCI promotes both the reuse of existing
software components and facilitates the extension of
the RCI itself.

For a SIMULTAAN component, two simulation
environments can be identified:

1. The environment inside a federate: This
environment consists of a set of collaborating
components. It presents an overview of the other
components within the federate.

2. The environment outside a federate: This
environment represents the federation. It presents
an overview of all simulated entities that are part
of the federation.

The SIMULTAAN environment will combine the two
environments. It will give a component an overview of
the other components in its federate and an overview of
the simulated entities in the federation. The top-level
object model [4] of the RCI is shown in Figure 1.

e 5 dated Fel
GComponent - Er Lid

1+ through by 14| Server

Figure 1: RCI Top Level Object Model

1339

98S-SIW-2338

Environment:

The SIMULTAAN Environment will provide
components an overview of both the federate and the
federation. The Environment will reflect the current
state of the federate, i.e., the state of all its components.
It will allow the addition and deletion of comporents.
Furthermore, it will allow components to subscribe to
relevant information. Each component can publish data
to which other components of the federate may
subscribe. Components can send and receive events.
The translation of the events to a specific
interoperability standard (such as DIS or HLA) is left
to the Communication Server.

Component:

A Component is the basic building block for a
SIMULTAAN federate. The interface between the
Component and the Environment is the only interface
the component developer will have to deal with.

Communication Server:

The Communication Server represents the object that
takes care of the actual communication. Its function can
be compared to that of the HLA-RTL In a way it
represents a distributed operating system. The interface
between the Environment and the Communication
Server will be based, to some extent, on the HLA
Interface Specification [2]. A Communication Server
will communicate with other Communication Servers.
Three specialisations of the Communication Server are
shown in Figure 2. Notice that it is possible to have
multiple Communication Servers within the RCI, which
enables the use of a different Communication Server
for local and global communication. To this end the
distinction between COM/SCOM and SOM/FOM is
made, as mentioned in Section 5.

Cormmunication
Sarver

DIS Communication HLA Communication Local Communication
Server Server Server

Figure 2: Communication Server Inheritance Diagram

DIS Communication Server:

A specialisation of the Communication Server that will
translate all events to DIS PDUs, and vice versa. This
type of server will only be used for inter-federate
communication.

1998 Spring Simulation Interoperability Workshop

l
'r

HLA Communication Server:

A specialisation of the Communication Server that will
translate all events to HLA interactions and HLA
attributes, and vice versa. This type of server will be
used for inter-federate communication and perhaps for
inter-component communication, if the HLA-RTI
provides sutficient performance.

Local Communication Server:

A specialisation of the Communication Server that will
be used for inter-component communication. The Local
Communication Server can be used for inter-
component communication over a dedicated
communication medium such as reflective shared
memory (SCRAMNET).

6.1

As shown in Figure 1 components communicate
exclusively with the environment. The environment
class provides a view of the ‘world’, as seen by a
component.

Environment

Environment K>———]
(o]
SimObjectSet CompObjectSet EventSet
SimObject CompObject Event

Figure 3: Environment Object Model

SimObjectSet:

Set of simulated entities relevant to the federation.
SimObject:

The state of a simulated entity.

CompObjectSet:

Set of component objects relevant to the federate.
CompObject:

The state of a SIMULTAAN component.

EventSet:

Set of simulation events, such as simulation

management events and other unique occurrences in the
simulation session.

Event:
A unique occurrence in the session, e.g., an object state
update, simulator management requests, component

1340

98S-SIW-238

creation.

The Environment will also supply components with
functionality to create and destroy a federate. Creatiog
and destruction of a federate will be done by a federate
manager. Once a federate has been created, other
components can join the federate.

The Environment provides a publish and subscribe
mechanism. Components may publish object- ang
event-classes. This means that during the federation
execution, these types of objects and events will be
created by the component. Components may also
unpublish, which means that objects and events will no
longer be provided by the component.

Subscription possibilities will be offered by the
Environment. Components can indicate an interest in
other objects or events. The creation of attribute sets, as
needed by the HLA-RTI, will not have to be done by
the developer. The RCI will perform these tasks. A
component can specify its response to events by
defining callbacks. It is possible to specify multiple
callbacks to an event.

The environment class will supply methods to create
and delete objects. Further methods include the
possibility to send events, and retrieve the time. Events
can be sent to the entire federation, a specific federate
or a specific component within the federate. The
Environment class is completely protocol-independent
and therefore entirely reusable.

6.2

The Communication Server represents the underlying
interoperability standard. Its main goal is to exchange
object and event information with other
Communication Servers and keep the Environment up-
to-date. The Communication Server will be partially
protocol-dependent and therefore each interoperability
standard will require its own Communication Server.

Communication Server

The interface between Environment and
Communication Server will be based on the HLA
Interface Specification to establish compatibility with
HLA [2]. Therefore, the design of the Communication
Server subsystem will include classes that correspond
with RTI- Management Services. Note that the
Communication Server is nothing more than a facade
for these management services [5].

The communication server functionality is divided into
various subsystems to reduce complexity. The

1998 Spring Simulation Interoperability Workshop

Communication Server object model [4] is shown in
Figure 4.

] ObjectFactory J

1 CompManagor] ‘ CompAgent ’
EventManagor

Erlambassndw i—— ‘——{Fudﬁmhusanor]

Figure 4: Communication Server Object Model

FaderalionData

The FedAmbassador and RTIAmbassador classes
provide the connection to the HLA-RTI. The other
classes identified in Figure 4 will be discussed below.

FederationData:

The FederationData object will parse the SCOM and
FOM in order to determine all possible components
that may be instantiated and all possible events that
may be sent during the execution of the federate.

The SCOM and FOM will be a symbolic representation
of the components and events (and their attributes and
parameters, respectively). The FederationData class
will provide a mapping of these symbolic names and
the RCI handles for them.

EventFactory:

Events are the only means for a component to
communicate. Events may contain data. The
EventFactory class will be used to convert the protocol-
independent events to HLA interactions, DIS PDUs, or
some other communication protocol, and vice versa.
This class has a close relation with the FederationData
class. The EventFactory class will have three methods.

The first method can be used to create an instance of an
Event of a specific type. That instance can then be
modified and sent through the RCI. The other two
methods are used to convert an event to the protocol-
dependent representation and to convert a protocol-
dependent representation to an event.

ObjectFactory.

The ObjectFactory class [5] will be used to convert the
protocol-independent representation of CompObjects
and SimObjects to an HLA object or an EntityState
PDU, or some other communication protocol, and vice

1341

98S-SIW-238

versa. This class has a close relation with the
FederationData class. The ObjectFactory class
resembles the EventFactory and will also have three
methods.

The first method can be used to create an instance of a
CompObject or SimObject. That instance can then be
modified and sent through the RCIL The other two
methods aré used to convert an object to the protocol-
dependent representation and to convert a protocol-
dependent representation of an object to a CompObject
or SimObject.

EventManager:

The EventManager will handle all publication and
subscription issues for Events that possibly occur in the
federate. It will be possible to change the transport and
order type of events.

The EventManager is the class that actually receives
the events from the FedAmbassador instance and sends
the events to the RTIAmbassador instance. It will have
to transform the events to either DIS PDUs, HLA
interactions, or some other representation. It will use
the EventFactory class for that.

The EventManager will use the FederationData
instance to determine if an incoming event is a subclass
of an event the component is subscribed to. If that is the
case, the EventManager will pass the event on to the
CompAgent.

Similar classes are defined to manage the components
and federates. These classes are called CompManager
and SimManager, respectively.

CompAgent:

A component can register a callback for any type of
event. The callback specifies the action to be taken
when such an event occurs. The CompAgent handles
incoming events by invoking the callbacks registered
for that event. An invocation of a callback can either be
the execution of a global function or a method.

6.3

Each application that is part of the federate needs to
create an instance of the Environment. Objects of a
certain Component class will be instantiated and will
inform the Environment that they wish to join the
federate. When doing so they will specify a frequency
at which they wish to be scheduled.

Concept of Execution

Figure 5 presents the operational concept of RCI. The
application_communicates with the Environment. The

1998 Spring Simulation Interoperability Workshop

Environment is kept up-to-date by one or more
Communication Servers. For global communication, a
choice has to be made between the DIS and HLA
Communication Server, wheras for local
communication a dedicated Communication Server
may be used. The Communication Servers do not
necessarily communicate over the same communication

medium.
Application

Environment Run-time Communication
s Infrastructure (RCI)
Cammunication Server

user-defined simulation model

Dis
Communication Sarver

HLA
Communication Server

g
Local
Communication Server
HLA-RTI

compliant J f

DIS
compliant

communication medium

Figure S: Operational Concept of the RCI

Once a component has successfully joined a federate, it
will be able to publish Event classes and Object classes.
This will inform the Environment what type of Objects
and Events will be created by the component during
this session. The component can also subscribe to
Events and Objects. For each subscription it may
register a callback. Multiple callbacks can be
registered. Once this is done, the component hands over
control to the Environment.

The Environment will recejve incoming Events from
the Communication Server and will activate the
appropriate callbacks. A component can subscribe to
the Sync Event which is a clock tick that will be
generated at the frequency the component requested. A
Component can also send its own Events. In a nutshell,
this is the concept of execution of the RCL

7. Conclusions

In this paper the SIMULTAAN architecture for
simulator development has been discussed. The
SIMULTAAN Simulator Architecture is intended to
maximize the reuse potential of components by
defining a standard interface. By making sure that
components comply to the standard interface, and

1342

98S-SIW.534

comply to a number of rules, they can be Teuseq
another simulator built on the Same architecture,

The global design strategy for the SIMUL’I‘AAN
Simulator Architecture was presented, followed
more detailed discussion of the RCI. Although the
concepts are based on HLA, some importan
differences can be identified. The main differenccs
between HLA and the SIMULTAAN approach can be
summarized as follows:

® An abstraction layer (or middle-ware) wijj be
realized to hide the complexities of the underlying
interoperability standards.

e The various interoperability standards will be
shielded from the developer to enabie Migration
from DIS to HLA with minimal changes in the
application code.

® Mechanisms for communication between the
components within a federate will be provided.

® The exchange of simulator components between
SIMULTAAN partners will be encouraged by the
SOR.

® Multiple Communication Servers can be used to
allow dedicated high-speed inter-component
communication with minimal changes in the
application code.

The first implementation of the RCI will be built on top
of the HLA-RTL The results of the SIMULTAAN
project will be applied in future collaborations between
the SIMULTAAN partners.

8. References

[1] Defense Modeling and Simulation Office (DMSO0),
“High Level Architecture Object Model Template™.

[2] Defense Modeling and Simulation Office (DMSO),
“High Level Architecture for Simulations Interface
Specification”, Version 0.3.

[3] Defense Modeling and Simulation Office (DMSO0),
“Federation Development and Execution Process
(FEDEP) Model”.

(4] J. Rumbaugh et ai, “Object-Oriented Modeling and
Design”, Prentice-Hall, 1991.

[5] E. Gamma et al, “Design Patterns - Elements of
Reusable Object-Oriented Software”, Addison-
Wesley, 1995,

Author Biographies

NICO KUIJPERS is a member of the scientific staff
in the Command & Control and Simulation Division at
TNO-FEL. He is project leader for several

1998 Spring Simulation Interoperability Workshop

e

collaborative projects in the area of distributed
simulation, both nationally with partners in Dutch
industry and academia, and internationally within
European research programs. He holds a M.Sc. in
Computing Science from Eindhoven University of
Technology and a Master of Technological Design in
Software Technology, also from Eindhoven University

of Technology.

PAUL VAN GOOL is a member of the scientific staff
in the same division. He has experience in the
mathematical modeling of fixed- and rotary-wing
aircraft for real-time simulation and the design and
implementation of real-time distributed interactive
simulation systems. He holds a Ph.D. in Aeronautical
Engineering from the Delft University of Technology.

HANS JENSE is a senior scientist in the same
division, where he coordinates the Virtual Environment
R&D program, and is technical lead in various VE and
simulation related projects. He holds a Ph.D. in
Computer Science from the University of Leiden.

e S T R A R i

1343

98S-SIW-238

1998 Spring Simulation Interoperability Workshop

Summary Report
The 1998 Spring Simulation Interoperability Workshop

Position Papers

Volume III

March 9-13, 1998

SISO, Inc.
PO Box 781238
Orlando, Florida 32878-1238

