
1. Introduction

A simulator is usually divided into several components,

which may be manufactured by different parties.

1
 This work has been carried out in the framework of the

SIMULTAAN project, which is partly funded by the Dutch initiative

for High Performance Computing and Networking (HPCN).

Simulator component technology can be used for the

rapid and cost-effective development of simulators

through the re-use and exchange of existing simulator

components.

Components are considered the basic building blocks

of a simulator, which can potentially be used for more

than one type of simulator. Examples of simulator

A Component Architecture for Federate Development
1

Marco Brassé

Wim Huiskamp

TNO Physics and Electronics Laboratory

Command & Control and Simulation

P.O. Box 96864

2509 JG The Hague, The Netherlands

Brasse@fel.tno.nl, Huiskamp@fel.tno.nl

Olaf Stroosma

Delft University of Technology

Faculty of Aerospace Engineering

P.O. Box 5058

2600 GB Delft, The Netherlands

O.Stroosma@lr.tudelft.nl

Keywords:

Simulator Architecture, Simulator Components, HLA-RTI, RD&E Applications

ABSTRACT: The SIMULTAAN Simulator Architecture (SSA) is the product of a joint project of Dutch Simulation

Industry and Research Institutes. The SSA is based on the High Level Architecture (HLA) to promote interoperability

and reusability on several levels. On the level of Federations and Federates, the SSA is fully compatible with HLA. As

an extension to HLA, the SSA defines a new level, that of the Federate Component. SIMULTAAN Federates are

composed of Components (e.g. sensors, dynamic model, visual) in order to increase the potential for re-use. Component

re-use is encouraged by the SIMULTAAN Object repository (SOR), where the SIMULTAAN partners can store and

retrieve Components and/or Federates.

SSA Federates communicate via a data-exchange middle-ware layer, called the Run-time Communication

Infrastructure (RCI). The RCI is currently based on the HLA RTI, but allows other standards such as DIS. The

innovative approach of SSA is that the RCI extends the Federate interoperability concepts of HLA by providing data-

exchange between SSA Components in a similar way. With this approach the RCI abstracts Components from the intra-

SSA Federate protocol and network hardware.

SIMULTAAN Federation execution is coordinated by a two-part system: the Federate Manager and the Scenario

Manager. The Federate Manager is an SSA Component which controls the other Components within the Federate and

represents the Federate to the Federation. The Scenario Manager is an SSA Federate which controls the behaviour of

the Federates within the Federation by issuing commands to the Federate Managers.

A SIMULTAAN Federation is defined by its Federation Object Model (FOM), which is equal to the HLA FOM. The

HLA Simulator Object Model (SOM) describes each SSA Federate in the Federation. Components are described by

their SSA Component Object Models (COM’s). A particular SSA Federate is defined by an aggregate of COM’s, the

SSA Simulator Component Object Model (SCOM).

.

components are a dynamics component, a component

that visualises the virtual environment, or a component

that handles the I/O inside a simulator mock-up.

Consequently, a simulator can be thought of as a set of

interacting components. The total functionality of the

simulator may be expressed as the ‘sum’ of the

functionality of its constructing components.

In order to apply component technology successfully,

the component/simulator architecture has to fulfil

certain conditions: the functionality of each component

must be well defined and the interfaces between

components have to be defined in a formal manner.

Formally described interfaces reduce incompatibility

problems that might otherwise not be noticed until the

integration phase. A clear distinction between the

interface(-description) of a component and its

functionality improves the re-use of that component

since the interface agreements of a new simulator

usually imply modifications of the interfaces of

available components. The architecture must also

support a mechanism to co-ordinate the overall

behavior of the components, which should for example

ensure proper initialization of components before they

are allowed to exchange simulation data.

This paper focuses on the simulator/component

architecture that was developed in the framework of the

SIMULTAAN project, called the SIMULTAAN

Simulator Architecture or SSA.

The paper is organized as follows. Section 2 describes

the SSA which is the main product of the Dutch

SIMULTAAN project. Section 3 describes the

development of Federates based on the results of

SIMULTAAN. The RCI middle-ware layer is discussed

in Section 4. The SIMULTAAN demonstration set-up,

which was used as a functional proof of the SSA

concept is presented in Section 5. Finally, conclusions

are drawn in Section 6.

2. SIMULTAAN Simulator Architecture

SIMULTAAN was a 2.5 years project which brought

together knowledge and experience in the area of

simulators and distributed simulation from universities,

research institutes and industry in The Netherlands. The

six members of the consortium are

• TNO Physics and Electronics Laboratory (project

leader);

• National Aerospace Laboratory NLR;

• Delft University of Technology, Faculty of

Aerospace Engineering;

• Siemens Netherlands NV;

• Fokker Space BV;

• Hydraudyne Systems & Engineering BV.

Two main results of the project can be distinguished:

1. SIMULTAAN Simulator Architecture.

A generic framework applicable for a wide range

of simulators, including manned mock-ups of

vehicles, high-fidelity flight simulators and

unmanned simulators.

2. Permanent Intellectual Infrastructure.

The SIMULTAAN consortium strengthened

working relationships between its partners.

The SIMULTAAN Simulator Architecture (SSA)

defines a simulator component architecture that

addresses the identified needs for a successful federate

development process and makes effective use of

simulator component technology. The SSA is intended

to maximize the re-use potential of components by

defining a standard interface for simulator components.

In this way simulator development time will be

reduced. By making sure that components comply to

the standard interface, and comply to a number of rules,

they can be re-used in other simulators built on the

same architecture. The SSA is often used in an RD&E

environment that requires rapid re-configurability of

simulators, but it can also be used in an industrial

environment.

The SSA facilitates interoperability between Federates

in a Federation. On the level of Federates and

Federations, the SSA is fully compatible with HLA. As

an extension to HLA, the SSA introduces a new level,

that of the Federate Component. A SIMULTAAN

Federate is composed of SIMULTAAN Components.

The SSA facilitates interoperability between

Components inside a Federate, in a similar manner as

HLA-RTI does between Federates.

The SSA identifies the following key architectural

elements: Component, Run-time Communication

Infrastructure (RCI), Federate Manager (FM), and

Scenario Manager (SM).

A Component is the basic building block for a

SIMULTAAN federate. All SIMULTAAN

Components interact with the simulation environment

through a standard interface, which is provided by the

Run-time Communication Infrastructure.

The Run-time Communication Infrastructure (RCI) is

an object-oriented middle-ware layer for exchanging

data between Components as well as between

Federates. The RCI provides the Component developer

an abstraction layer to shield the developer as much as

possible from the underlying interoperability standards.

Each SIMULTAAN Federate is built from a set of

Components with one obligatory Component, called the

Federate Manager. The Federate Manager acts as an

intermediary between the Components in the Federate

and the rest of the Federation; it represents the Federate

to the Federation. The Federate Manager keeps track of

the state of its Federate and its Components.

The SIMULTAAN Scenario Manager is an SSA

Federate that controls the behavior of the Federates

within the Federation by issuing commands to the

Federate Managers (like start scenario execution, stop

scenario execution, hold scenario execution). The

Scenario Manager is the only SIMULTAAN Federate

that does not have a Federate Manager.

…Component 1 Component N

Scenario
Manager

…

Component 1 Component N
Federate
Manager…

...

Federate 1

Federate M

Federate
Manager

Federation

RCI

Figure 1

Besides the identified elements in the architecture, the

SSA consists of the SSA Rules, the SSA Interface

Specification and the SSA Object Model Templates.

The SSA Rules are rules with which a SIMULTAAN

federate or component has to comply. They define the

responsibilities and relationships in a SIMULTAAN

federation.

The most prominent SSA Rule is that all Components

must adhere to the SSA State Transition Diagram

(SSA-STD), which is depicted in Figure 2. The SSA-

STD is used by the Federate Manager to co-ordinate

the state transitions of the Federate during the scenario

execution. The Federate Manager prepares its Federate

for joining the Federation and when the Federate has

joined the Federation, the Federate Manager initiates

and checks the state transition of the Components in its

Federate, as requested by the Scenario Manager.

The SSA Interface Specification (SSA-IF) is a formal,

functional description of the interface between the

application and the Run-time Communication

Infrastructure (RCI).

The SSA Object Model Templates (SSA-OMT) are

standardized formats to define the functionality of

federates and components and their respective

interactions. The SSA-OMT is equivalent to the HLA-

OMT [2]. The different object models used in the SSA

are presented in Section 3.

Federate
Received

Scenario Data

Locally
Unconfigured

Locally
Configured

Hold
Federate
Execution

Federate Joined
Federation

Federate
Error

Real-Time
Operation

Federate
Execution
Stopped

QUIT

START CONFIGURE

UNCONFIGURE

JOIN

LEAVE

DISCARD
SCENARIO

INITIALIZE
SCENARIO

GET READY

PAUSE

RESET

DISCARD
SCENARIO

GO

STOP

ERROR

SAVE

RESUME

RESTORE

Scenario Manager in charge of state transition

Federate Manager in charge of state transition

Figure 2

3. SIMULTAAN Federate Development

SIMULTAAN Federate Development describes the

way SIMULTAAN partners produce federates. New

components may have to be developed or existing

components may need to be adapted. During the design

process, such needs will be identified and translated to

component requirements. The Federate Development

process will result in a validated simulator or tool. A

federation can be created by producing its federates and

defining the interactions between them in a

SIMULTAAN Federation Object Model (FOM), which

is equivalent to the HLA-FOM.

User requirements for the federate are specified in

cooperation with the end-user and can be regarded as a

starting point for the development. From the user

requirements, the system requirements are identified.

The system requirements initiate the design process of

the SIMULTAAN Federate.

On the Federation level, the SSA identifies the SSA-

SOM and the SSA-FOM, both equivalent to the HLA-

SOM and HLA-FOM. On the Component level, the

SSA identifies the SSA-COM and the SSA-SCOM,

which are explained next.

 Each SIMULTAAN component has a Component

Object Model (SSA-COM). This object model formally

specifies the attributes and interactions a component

publishes to other components. It also specifies the

attributes and interactions a component will subscribe

to during run-time.

Each SSA Federate is build from a set of interoperable

Components. The interactions and attributes that are

exchanged between all Components of one Federate,

including the data that is exchanged with other SSA

Federates, is formally described in the SIMULTAAN

Simulator Component Object Model (SSA-SCOM).

The difference between the SCOM and the SOM is that

the latter merely describes the interface between SSA

Federates and not the intra-Federate communication

between the Components.

The SSA-COM and the SSA-SCOM object models

have similar roles on the component level compared

with the SOM and the FOM on the federation level.

Both the SSA-COM and SSA-SCOM descriptions are

expressed in the HLA-OMT format.

Distinction between COM and SCOM on one hand,

and SOM and FOM on the other hand, enables

different treatment of local and global communication.

Local communication is the exchange of information

between components in a federate, whereas global

communication is the exchange of information between

federates. Distinguishing between local and global

communication allows for a mapping of the local

communication onto a dedicated network that is able to

handle intra-Federate high-speed data exchange while

having the possibility to communicate with the outside

world at another data exchange rate and possibly via

other physical network media.

The SIMULTAAN object models enable clear

specifications for the capabilities of federates and

components. Federate and federation development in

SIMULTAAN can be compared to the HLA Federation

Development and Execution Process (FEDEP) [4].

A SIMULTAAN Federate will be designed with

optimal use of existing components. Therefore access is

needed to the descriptions of object models and

components that are available in the SIMULTAAN

Object Repository (SOR). The SOR will contain SSA

compliant simulators, components and tools. It may

also contain configuration, initialization, and validation

data. The SOR allows controlled access by the

SIMULTAAN partners.

4. Run-time Communication

Infrastructure and Code Generation

The SIMULTAAN Simulator Architecture (SSA) is the

common high-level architecture for simulators and

tools. The SSA provides services to both the

Components and the Federate, which is the distributed

composition of the Components. All Components

interact with the simulation environment through a

standard interface, which is provided by the Run-time

Communication Infrastructure. The RCI is the

implementation of the SSA Interface Specification.

The RCI provides the component developer with the

necessary functionality to incorporate the Component

into a SIMULTAAN Federate. The RCI provides a

protocol-independent interface to the simulated

environment. The design of the abstraction layer and

the Application Programmer’s Interface (API) have

been discussed in detail in a previous paper [1], and is

briefly summarized below.

The RCI consists of two separate software layers, one

is called the Environment and the other is called the

Communication Server (see Figure 3).

Application

Environment

Communication Server

(C.S.)
RCI

user-defined
simulation

a Component

DIS C.S. HLA C.S. High-speed C.S.

network

HLADIS

Figure 3

The Environment provides components with an

overview of both the federate and the federation. The

Environment reflects the current state of the federate,

i.e., the state of all its components. It allows the

addition and deletion of components. Furthermore, the

RCI allows components to subscribe to relevant

information. Each component can publish data to which

other components of the federate may subscribe.

Components can send and receive events. The

translation of the events to a specific interoperability

standard (such as DIS or HLA) is left to the

Communication Server.

The Communication Server represents the layer that

takes care of the actual communication. Its function can

be compared to that of the HLA-RTI. In a way it

represents a distributed operating system. The interface

between the Environment and the Communication

Server is based on the HLA Interface Specification [3].

A Communication Server communicates with other

Communication Servers to exchange object and event

information to keep the Environment up-to-date.

Currently, the Communication Server is based on the

HLA RTI, but allows other standards such as DIS.

Dedicated versions of the Communication Server can

be implemented for the support of specific simulation

protocols or network layers. This requires only minimal

changes in the application-specific source code as it

merely interacts with the Environment.

The innovative approach of SSA is that the RCI

extends the Federate interoperability concepts of HLA

by providing data-exchange between SSA Components

in a similar way. Components use equivalents of the

HLA federation management services, declaration

management services and object management services

in a similar way. In this way, the RCI abstracts

Components from the intra-SSA Federate protocol and

network hardware, and establishes a clear separation

between communication aspects and application-

specific aspects. This enables a Component developer

to focus on the required functionality of the specific

Component rather than the technical details of the

communication aspects.

To further facilitate the developer with an abstraction

of the communication it is noted that the simulation

objects and the simulation events are formally

described in an HLA-OMT format through its

Component Object Model (SSA-COM). This enables

the use of automatic code generators to construct

object-oriented classes (for instance C++ or Java) for

each simulation object and simulation event in the

COM. The automatic code generation approach has

proven to be highly successful in SIMULTAAN. The

generated code shields the application programmer

from doing elaborate bookkeeping concerning attribute

updates, while making use of the encoding and

decoding facilities offered by the RCI to communicate

attribute and parameter values along the physical

network.

5. Implementation and Demonstration

In SIMULTAAN, the SSA Federation is mapped onto

an HLA Federation. This approach is straightforward as

the SSA-SOM and SSA-FOM are identical to the HLA-

SOM and HLA-FOM.

An SSA Federate consists of a set of Components,

which always includes at least the Federate Manager

Component (the exception on this rule is the Scenario

Manager). The set of Components –and hence the SSA

Federate- is implemented as an HLA federation on

itself, each Component being mapped onto an HLA

federate. This ensures that communication on the

Component level is similar to communication on the

Federate level. Furthermore, the SSA-COM and SSA-

SCOM play a role analogous to the HLA-SOM and

HLA-FOM within the constructed HLA federation.

In the SSA implementation we now have one HLA

federation representing the SSA Federation and

additional HLA federations for each SSA Federate. It is

noted that each SSA Federate is represented in the SSA

Federation by its Federate Manager Component. The

SSA Federation now consists of all Federate Manager

Components (implemented as HLA federates) of the

participating SSA Federates plus the Scenario

Manager.

This concept is feasible only if the Federate Manager

Component can be part of two HLA federations, i.e.,

the HLA federation that constitutes the SSA Federate

and the HLA federation that constitutes the SSA

Federation. To this end, the Federate Manager requires

a special version of the RCI that is equipped with two

Communication Servers, one for local communication

inside the SSA Federate, and one for global

communication between the SSA Federates. This

implies that the RCI, as part of a single application,

must fully participate in two HLA federations

simultaneously, which is not feasible with the RTI

version used.

For this purpose, a special version of the

Communication Server of the RCI was developed that

is able to communicate with another Communication

Server along a separate socket connection. The FM is

subsequently split up in two processes, one process

participates in the HLA federation that forms the SSA

Federate and the other process participates in the HLA

federation that forms the SSA Federation. In this way, a

bridge is implemented between two HLA federations,

exchanging data through a separate connection.

This approach requires that each simulation event and

simulation object update must be encoded/decoded

along the socket connection. A shared memory solution

was considered, but the socket solution has the

advantage that the processes may reside on different

(low-end) computers and it proved to be a very portable

solution across different operating systems.

A functional proof of concept of the SSA architecture

has been presented in a large demo on the 24
th

 of June,

1999 at TNO-FEL in which all SIMULTAAN partners

participated. The demo used the DMSO RTI 1.3v5 as

the underlying distributed simulation layer for the RCI

Communication Server.

A rescue/evacuation scenario was conceived that

comprised two manned fire-truck Federates at TNO-

FEL (the Hague) and a manned rescue helicopter

Federate located at the Delft University of Technology.

DM

FM

AV

VS

AS

MS

VH3

PA

FM

AS

CC1

SM

SM1

FM

DM

VS

AV

MS

AS

VH2 HC1

FM

MS

VS

AS

DM

DM

PA

SV

FM

MO

AV

VS

MS

VH1

AS

Figure 4

In Figure 4, a schematic view is presented of the

Federates that participated in the SIMULTAAN

demonstration. In this figure, VH1, VH2 and VH3

represent fire truck Federates, HC1 is the helicopter

Federate, CC1 is a control center Federate to assess the

performance of the players, and SM1 depicts the

Scenario Manager. The components of each SSA

Federate are shown in the boxes.

Some examples of the components used are the

Federate Manager (FM), a Dynamics Model (DM), a

Visual System (VS), a Mock-up Server (MS), a

Motion Platform (MO), an Audio System (AS), and a

performance assessment Component (PA). Each

component was executed on a separate computer. The

computer hardware consisted of a mixture of Unix

based machines (SGI) and NT machines. Both low

fidelity and medium fidelity mock-ups were provided.

6. Conclusions

In this paper the SIMULTAAN architecture for

simulator development has been discussed. The

SIMULTAAN Simulator Architecture is intended to

maximize the re-use potential of components by

defining a standard interface. Components that comply

to the standard interface, and comply to a number of

rules, can be re-used in another simulator built on the

same architecture.

The global design strategy for the SIMULTAAN

Simulator Architecture was presented, followed by the

Run-time Communication Infrastructure. Although the

concepts are based on HLA, some important

differences can be identified. The main differences

between HLA and the SIMULTAAN approach can be

summarized as follows:

• An abstraction layer (or middle-ware) and a code

generator is applied to hide the complexities of the

underlying interoperability standards.

• The various interoperability standards are shielded

from the developer to enable simulation protocol

migration with minimal changes in the application

code.

• Mechanisms for communication between

components within a federate are provided.

• Multiple Communication Servers can be used to

allow dedicated high-speed inter-component

communication with minimal changes in the

application code.

The first implementation of the RCI has been built on

top of the HLA-RTI. In the near future, the RCI will

have additional support for the real-time scheduling of

Component tasks. Further activities concern the

development of a dedicated version of the RCI that is

based on a high-speed Communication Server.

The results of the SIMULTAAN project will be applied

in future collaborations between the SIMULTAAN

partners.

7. References

[1] Nico Kuijpers, Paul van Gool, Hans Jense, “A

Component Architecture for Simulator

Development”, Simulation Interoperability

Workshop, Spring 1998

[2] Defense Modeling and Simulation Office (DMSO),

“High Level Architecture Object Model Template”.

[3] Defense Modeling and Simulation Office (DMSO),

“High Level Architecture for Simulations Interface

Specification”.

[4] Defense Modeling and Simulation Office (DMSO),

“Federation Development and Execution Process

(FEDEP) Model”.

[5] J. Rumbaugh et al, “Object-Oriented Modeling and

Design”, Prentice-Hall, 1991.

[6] E. Gamma et al, “Design Patterns --- Elements of

Reusable Object-Oriented Software”, Addison-

Wesley, 1995.

Author Biographies

MARCO BRASSE is a member of the scientific staff

in the Command & Control and Simulation Division at

TNO-FEL. He is a project member for several projects

in the area of distributed simulation. He holds an M.Sc.

in Computing Science and a Master of Technological

Design (MTD) in Software Technology, both from

Eindhoven University of Technology, the Netherlands.

His research interests include parallel and distributed

computing, software architectures, and design

methodologies.

WIM HUISKAMP is a research scientist in the same

division. He holds an M.Sc. degree in Electrical

Engineering at Twente University of Technology, The

Netherlands. He works in the field of High

Performance Computing and Networking and

specialises in design and implementation of distributed

computer architectures. His research interests include

system architectures, real-time visual simulation and

multi-media technology. Wim was the project lead for

SIMULTAAN.

OLAF STROOSMA is a software architecture

researcher at the Control and Simulation Division of

Delft Aerospace. He holds an M.Sc. degree in

aerospace engineering from Delft University of

Technology (DUT). He has participated in the

SIMULTAAN project of the joint Dutch simulation

industries and institutes, as well as in the SIMONA

project aiming the development of an advanced flight

simulator at DUT. His research interests include

software architectures for real-time distributed

simulation, and the application of intelligent agent

technology to improve human-computer interaction.

