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Engineering methods to predict the fatigue life of structures have been available since the 

beginning of the 20th century. However, a practical problem arises from complex loading 

conditions and a significant concern is the accuracy of the methods under variable amplitude 

loading. This paper provides an overview of existing fatigue damage models with emphasis 

on relatively new alternative models and computational strategies to predict fatigue life. 

These models are compared and promising new capabilities are discussed. 
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1 Introduction 

Fatigue failure is an important mode of mechanical failure in the field of engineering. This 

type of failure was recognized first by August Wöhler in the 1850 [Schütz, 1996] who 

published his fatigue test results of railway axles in 1870 [Wöhler, 1870]. He found that 

application of a single load far below the static strength of a structure did not cause 

damage but repetition of the same load could induce complete failure.  

Fatigue is featured by the following main characteristic processes: repeated loading may 

cause nucleation of small crack(s), followed by the growth of a dominant crack which may 

finally lead to complete fracture after a sufficient number of load repetitions. 

This paper provides an overview of fatigue damage models and computational strategies 

to predict fatigue life, emphasis is on two relatively new and unknown strategies from the 

point of view of the engineer. The paper is organized in the following manner: Section 2 

consists of an overview of the basics of fatigue, in this section the physical phenomena of 

fatigue damage are explored. Subsequently, the current fatigue design approaches applied 
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in engineering are revisited, namely the total life approach (infinite-life and safe-life 

method) and the damage tolerant approach based on Linear Elastic Fracture Mechanics 

(LEFM).  

Based on its promising characteristics to model fatigue damage, a relatively new field 

called Continuum Damage Mechanics (CDM) is elaborated in Section 3. It begins with a 

presentation of the fundamental concept and definitions. In addition, a brief description on 

how the CDM approach is able to represent physical damage through a mathematical 

formulation in order to accurately describe the damage evolution is given. Section 3 also 

includes the most common method to quantify the damage in experiments. 

The paper continues with a review on existing fatigue damage models based on CDM. 

There are four fatigue damage models studied in this paper, each model contains a unique 

strategy to describe fatigue damage. Section 4 begins with a general description of these 

models along with their related physical background. Each model contains several specific 

parameters to describe, especially, the damage evolution function. These parameters are 

generally determined from standard material tests. 

Section 5 presents a discontinuous damage model. This damage model is based on a 

cohesive zone model where the fatigue damage mechanism is implemented into the 

cohesive law to describe fatigue damage. The section begins with the basic concept of 

cohesive zone theory and this is followed by the description of the damage mechanism. 

The final section of the paper – Section 6 – consists of conclusions and comments on 

previous sections. It describes limitations and advantages as well as opportunities for 

improvements to obtain a model that better fits the results of fatigue experiments as 

compared to the current state of the art. 

2 Fatigue 

According to the ASTM definition, fatigue is a process of progressive localized permanent 

structural change occurring in a material subjected to conditions that produce fluctuating 

stresses and strains at a point or some points and that may culminate in cracks or complete 

fracture after a sufficient number of fluctuations [ASTM, 2002]. The fluctuating stress and 

strain described above are primarily due to mechanical loading which in turn governs the 

nucleation and propagation of the crack. However, several other factors such as 

temperature and chemical environment can affect the behaviour of these phenomena. 

These effects are not considered in this work. Furthermore, the focus is on fatigue of metal 

alloys. 
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2.1 Fatigue mechanisms 

The fatigue process is divided into three distinct stages. In the first stage, a microcrack 

nucleates at one, or sometimes at several locations in the material. Subsequently, a main 

crack (macrocrack) grows in a stable manner during cyclic loading. Finally, when it has 

reached a critical size, the crack becomes unstable and sudden fracture occurs, usually 

within one or a few cycles. In most cases, these stages can be identified afterwards on the 

fracture surface. 

2.1.1 Cyclic characteristic 

Cyclic loading is an idealization of the fluctuating loads that are applied to structures. This 

can be a periodical stress or strain with a certain frequency, mean value and amplitude 

together with the wave shape (sinusoidal, triangular etc.). Standard terminology used for 

constant amplitude fatigue loading is shown in Figure 1. Another important definition 

often used in constant amplitude fatigue loading is the load ratio (R = σmin/σmax).  

Fatigue damage depends primarily on the stress amplitude. A high stress amplitude leads 

to a short fatigue life and vice versa. Cycles with a high mean stress lead to a shorter 

fatigue life than cycles with the same amplitude but with a lower mean stress. However, in 

welded connections, the stress range is considered the most relevant as the effect of the 

applied mean stress is locally compromised by the presence of residual stresses. 

Under laboratory conditions, the fatigue life of metals is fairly independent of the cycle 

shape and frequency. However, viscous effects generated by hysteretic heating becomes 

important in a very high loading frequency. 

 

 

Figure 1. Terminology relating to cyclic loading: 1 - stress peak; 2 - stress valley; 3 - stress cycle; 

σmax - maximum stress; σmin - minimum stress; σm - mean stress; σa - stress amplitude; Δs - stress 

range 
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Figure 2. Typical presentation of an S-N Curve; larger scatter with smaller applied loads 

 

The Wöhler curve or S-N curve presents the results of fatigue tests. It plots the stress range 

Δs (or stress amplitude σa) with certain load ratio against the number of cycles at failure 

(fatigue life Nf ) in a semi or double logarithmic scale. Figure 2 shows a typical S-N curve, 

at low stress level, the curve shows an asymptotic behaviour which describes a fatigue 

property called the fatigue limit. The fatigue limit is the cyclic stress level below which no 

fatigue failure is expected. 

 

 

Figure 3. Schematic stress-strain response of cyclic loading: (a) LCF (•= +σy  and •= −σy )  (b) HCF 

 

The short-life region of the S-N curve is referred to as the low cycle fatigue (LCF) region. 

The region is identified by dominant plastic yielding in subsequent opposite direction, 

which leads to a very short fatigue life. The term high cycle fatigue (HCF) is used to 

describe the large fatigue life of materials which is shown in the region of stress levels that 

do not result in yielding in opposite direction. The difference in stress-strain response 

between LCF and HCF is schematically illustrated in Figure 3. 

In engineering practice, HCF corresponds to a number of cycles greater than 105 [Lemaitre 

& Desmorat, 2005]. A physically based definition often used to refer to high/low cycle 

fatigue is the amount of macroplastic strain compared to the elastic strain. HCF 
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corresponds to a very small macroplastic strain and vice versa. The plastic deformation is 

not present in the graph, however, behaviour similar to that in low cycle fatigue is 

expected in microscale. At a very large number of cycles (approx. N > 108), the fatigue 

failure mode changes from a surface crack to a subsurface crack. This manifests as a change 

in the slope of the S-N curve for constant amplitude loading. Note that the common 

consensus of a fatigue limit after a large-enough number of cycles is enfeebled by tests in 

the giga-cycle range [Stanzl-Tschegg & Mayer, 2001]. This paper emphasizes on HCF of 

surface cracks, i.e. 105 < N < 108.  

In HCF, normal mean stresses have a significant effect on the fatigue behaviour of 

components except for welded structures where high residual stresses are present. Normal 

mean stresses are responsible for the opening and closing state of micro-cracks. The 

opening of micro-cracks accelerates the rate of crack propagation and micro-cracks closure 

will slow down the growth of cracks. Thus, tensile normal mean stresses are detrimental 

and compressive normal mean stresses are less detrimental. The shear mean stress does 

not influence the opening and closing state of micro-cracks, and therefore, has little effect 

on crack propagation. There is very little or no effect of mean stress on fatigue strength in 

the LCF region in which the large amounts of plastic deformation cancel out any beneficial 

or detrimental effect of a mean stress. 

2.1.2 Crack initiation 

Crack initiation is a consequence of cyclic slip, i.e. cyclic plastic deformation as a result of 

moving dislocations which is usually limited to a small number of grains. This 

phenomenon, so-called microplasticity, preferably occurs in grains at the material surface 

where constraint on slip due to the surrounding material exists on one side only. A general 

situation in which nucleation occurs due to slip under cyclic loading is shown in Figure 

4(a). It shows progressive development of an extrusion/intrusion pair, often called 

(persistent) slip band. The pairs of extrusion/intrusion act as micro-notches that create 

stress concentrations which in turn promote additional slips growing deeper inside the 

material and eventually develop into a (micro-)crack. 

Fatigue crack initiation is primarily a surface phenomenon. However, not all fatigue cracks 

nucleate along slip bands, fatigue cracks may nucleate at or near material discontinuities or 

sometimes just below the metal surface. These discontinuities include inclusions, second-

phase particles, corrosion pits, grain boundaries, twin boundaries, pores and voids. 

Microcracks can also be present in metals prior to any cyclic loading due to manufacturing 
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Figure 4. (a) Schematic presentation of (a) crack initiation in persistent slip bands and (b) crack 

growth in mode I loading 

 

processes and treatments such as welding. Thus, in some cases, the nucleation phase of 

fatigue can be non-existing or very short. 

An accepted definition of the end of the crack initiation is non-existing. In engineering 

practice, it is, sometimes, defined as the detection threshold of a specific detection 

technique utilized. In this definition, the crack initiation phase depends on the accuracy of 

the method. An alternative, more consistent definition of crack initiation is a microcrack 

that reaches the grain size of the material. 

2.1.3 Crack propagation 

Once microcracks are present and cyclic loading continues, fatigue cracks tend to coalesce 

and grow along the plane of maximum tensile stress. Fatigue crack growth usually consists 

of two subsequent stages, being growth in a shear mode (stage I) followed by growth in a 

tension mode (stage II) (Figure 4(b)). 

The stage I growth is small, usually of the order of several grains. Stage II crack growth in 

ductile materials often occupies a large fraction of the fracture surface (Figure 6). In many 

metal alloys, Stage II crack growth is visible at the cracked surface by striations. They are 

formed by alternate blunting and sharpening of the crack tip in the tensile and 

compressive portions of the loading cycle (shown in Figure 5). In many studies, at 

moderate to high load level, each striation has been shown to correspond to one load cycle. 

In HCF, in an ideally smooth component, the crack initiation phase occupies most of its 
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fatigue life; it may constitute more than 80% of the total fatigue life. This is not the case if 

material and geometrical imperfections are present. In many cases initial microcracks have 

already developed during manufacturing (e.g. machining and welding). In such cases, the 

fatigue life is dominated by the crack growth phase. 

 

 
 

Figure 5. Schematic presentation of crack tip plastic blunting and sharpening 

 

 
 

Figure 6. Fracture surface of welded alloy specimen 



 32

2.1.4 Fracture 

After a sufficient number of cycles, the crack reaches a critical size at which the crack 

becomes unstable. The remaining cross section is traversed by dynamic fracture, usually 

within one or a few cycles. This critical condition in practice is commonly governed by a 

fracture mechanics criterion. The corresponding fracture surface is usually rougher than 

the crack surface caused by stage II fatigue (Figure 6). Its size may vary from a small 

fraction of the cross section for ductile materials at low stress level to almost the entire area 

for brittle materials at high stress level. The specific fracture mode by which final fracture 

occurs depends on the material ductility, stress state level and frequency. 

2.2 Engineering fatigue design 

The fatigue failure criterion plays an important role in the design of many structural 

applications. From the time of Wöhler, works to resolve fatigue have produced numerous 

strategies, diagram types, empirical relations, rules of thumb, etc., in designing against 

fatigue. The two popular strategies to predict the fatigue life, i.e. total-life design and 

defect-tolerant design, are subsequently elaborated in this subsection. 

2.2.1 Total life approach 

As the name suggests this approach makes no distinction between the crack initiation and 

the propagation phases. The most common fatigue design based on this approach is the 

stress-based method. Predicting the fatigue life using this method is conducted by means 

of a ’similitude concept’. It allows engineers to relate the behaviour of small-scale test 

specimens defined under carefully controlled conditions with the likely performance of 

real structures subjected to variable or constant amplitude loads (VAL or CAL) under 

either simulated or actual service conditions. 

The S-N curve, defined in the previous section, is the core of this method in designing 

structural components against fatigue. Many standards use the concept of the S-N curve as 

fatigue design procedure. A typical S-N curve plotted in log-log scale can be 

approximated, especially the HCF region, by a fairly linear relationship [Basquin, 1910], 
 

Δσ ′σ = = ( )
2

b
a f fS N  (1) 

 

where S’f is the fatigue strength coefficient, b is known as the fatigue strength exponent or 

Basquin exponent and Nf  is the number of cycles at failure. 

The material S-N curve provides the baseline fatigue data for a given geometry, loading 
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condition, and material processing. The data can be adjusted, in many cases, to account for 

realistic component conditions such as notches, size, global geometry, surface finish, 

surface treatments, temperature, and various types of loading. 

 

Figure 7 shows the typical S-N curve used in EN1999-1-3 (Eurocode 9) for aluminium 

alloys. The S-N curve derived from standard specimens can be constructed as a 

piecewise-continuous curve consisting of three distinct linear regions when plotted on 

log-log scales. The reference fatigue strength (ΔσC assumed to be at number of cycles 

NC = 2.106), constant amplitude fatigue limit (ΔσD assumed to be at ND = 5.106 with inverse 

slope m1) and the cut-off limit or run-out (at NL = 108 with inverse slope m2) are indicated 

in the curve. A different definition is given by the International Institute of Welding (IIW) 

for the constant amplitude fatigue limit (NCI IW = 107) and IIW omits the constant cut-off 

limit allowing for declining of the fatigue resistance with a slope of mI IW = 22. 

2.2.2 Damage-tolerant approach 

The main difference between damage-tolerant design and the total life approach is the 

assumption of the existence of a crack at the start of the analysis. The method mainly 

focuses on the (stable) crack growth period described in Section 2.1.3. In addition, contrary 

to the empirical S-N methods, this approach is supported by the theory of LEFM. 

The basis of the damage-tolerant method is the existence of a relationship between the 

 

 

Figure 7. Fatigue strength curve log-log coordinates; a - fatigue strength ; b - reference fatigue 

strength; c - constant amplitude fatigue limit; d - cut-off limit; e - IIW declining fatigue resistance 
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crack growth rate da/dN and the stress intensity range (ΔK = Kmax - Kmin) which may be 

obtained from experiments. Where a represents the crack size and the maximum and 

minimum stress intensity factors (Kmax, Kmin), based on LEFM, describe the stress state at 

the crack tip under the far-field (mode I) stresses σmax and σmin, respectively [Griffith, 1921]. 

This material-dependent relationship (shown in Figure 8) shows an increase of crack 

growth rate with increasing stress intensity range. For low values of ΔK, a steep decrease in 

crack growth rate with decreasing ΔK is observed. No or hardly any crack growth is 

expected at a certain value of ΔK, which is called the stress intensity range threshold value, 

ΔKth. At the other extreme, a rapid increase of da/dN with increasing ΔK is observed, when 

the maximum stress intensity approaches the critical stress intensity factor, KIc or material 

toughness, Kmat. 

 

Figure 8. Crack growth rate da/dN schematically plotted as a function of the stress intensity factor 

range ΔK in a log-log scale 

 

The prediction of (extended) fatigue life, in this case, entails a semi-empirical crack 

propagation law based on fracture mechanics. This is an approximation of the crack 

growth rate curve given in Figure 8 which was introduced by Paris [Paris & Erdogan, 1963] 

therefore also called Paris law, 
 

= Δ( )m
da

C K
dN

 (2) 

 

with C and m being the material constants. The fatigue life can be determined by 

substituting the appropriate expression for ΔK (dependent on dimension, local geometry 

and loading type) for a specific structural configuration and integrating the corresponding 

equation from the initial crack ai to the critical crack size af as follows, 
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ai

N da
C K

 (3) 

 

A number of modifications to the Paris law have been proposed over the years to also 

account for the stress ratio effect [Forman, 1972;Walker, 1970], the threshold limit 

[McEvily, 1973], large-scale yielding [Dowling & Begley, 1976], crack retardation [Wheeler, 

1972; Willenborg et al., 1971] and plasticity-induced crack closure [Elber, 1971; Huang et al., 

2005; Newman, 1984]. Despite the extensive use of these models, the essential physical 

background of fatigue crack growth is not completely described by the theory. 

It is important to note that the relation between da/dN and ΔK is meaningful only if a 

linear elastic fracture mechanics description is satisfied, i.e. the size of the plastic zone near 

the crack tip should be much smaller than any relevant length dimensions for the crack 

problem of interest. In this way, the stress intensity factor controls the plastic deformation 

near the crack tip, and, in turn, the fracture process near the crack tip. Moreover, the Paris 

law is not suited to describe small crack growth due to the fact that growth of these small 

flaws is dominated by microstructural effects. Despite these shortcomings, the method is 

very useful to determine the (residual) fatigue life in engineering practice. 

2.2.3 Complex loading 

Many typical structural components are subjected to cyclic loads during service lives. 

These loads are often multiaxial in nature with fluctuating amplitudes, mean values and 

frequencies. Loads that are multiaxial in nature occur when a structural component is 

simultaneously subjected to tensile (or bending) and torsion loads. If the frequencies of 

these load types are in-phase, they are called proportional loading. Non-proportional 

loading is referred if loads are multiaxial with out-of-phase frequencies which lead to a 

shorter fatigue life. During crack growth, multiaxial loading leads to a mixed-mode state of 

stress (any combination of the modes shown in Figure 9) at the crack tip which may 

significantly influence the crack growth direction as well as the crack growth rate. 

Varying load amplitude can greatly affect the fatigue life of a component. Application of 

(single/periodic) overloads during the crack initiation period may result in premature 

crack initiation which leads to a shorter fatigue life. However, if the overloads are applied 

during the crack propagation period, crack retardation is expected. This crack retardation 

is related to the residual compressive stress field induced at the vicinity of the crack tip 

after an overload. Following an overload, the crack growth driving force is reduced due to  
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Figure 9. The three modes of crack tip deformation 

 

the residual compressive stress, thus retarding the crack propagation. After the crack tip 

exits the compressive zone, the crack growth rate resumes its original value. 

In engineering methods, VAL is usually translated into several blocks of CALs using rain 

flow analysis. This translation process, however, cannot naturally account for the complex 

loading effects described previously. A physically based approach should be pursued in 

order to naturally include the VAL effects on the fatigue life and to provide better results 

in predicting the fatigue behaviour. Moreover, the crack initiation model should involve 

microscale phenomena of plasticity and the crack growth model should incorporate 

crack-tip plasticity to better describe its blunting and sharpening mechanisms during 

opening of a new crack surface. 

3 Continuum damage mechanics 

The fatigue design methods described previously are, to a certain extent, lacking a 

theoretical or physical background. Thus, an alternative approach based on damage 

mechanics is explored in this chapter. The concept of damage was first introduced by 

Kachanov in 1958 to predict creep failure of metals [Kachanov, 1958]. In 1978, Lemaitre and 

Chaboche [Lemaitre & Chaboche, 1978], developed the concepts of material damage and 

established a new branch of mechanics by means of the theory of continuum mechanics. 

This new theory is called Continuum Damage Mechanics (CDM). This field has developed 

significantly, especially in the last thirty years, to model other various modes of failure in 

materials such as ductile damage [Gurson, 1977; Lemaitre, 1985], creep-fatigue 

interaction [Lemaitre & Chaboche, 1974], LCF in metals [Chow &Wei, 1991; Lemaitre & 

Desmorat, 2005] and HCF [Lemaitre & Desmorat, 2005; Lemaitre & Doghri, 1994; Lemaitre 

et al., 1999]. This section provides a general description of CDM, Section 4 describes the 

application of CDM to fatigue. 
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CDM describes the development of cracks, voids or cavities in each scale that lead to 

deterioration of the mechanical properties of the materials [Krajcinovic, 1984; Lemaitre & 

Chaboche, 1978; Murakami, 1983]. Damage in solid materials can be characterized on three 

scales: the micro, the meso and the macro scale. The microscale is the scale where 

microvoids, microcracks or decohesion in microstructures are analyzed. Visible or 

near-visible discrete damage manifestations such as the isolated cracks discussed in 

fracture mechanics, are treated as phenomena on the macroscale. The mesoscale is a 

building block of CDM in which discrete phenomena can be smeared into average effects 

[Cauvin & Testa, 1999]. 

Models have been developed in recent years to formulate and represent damage on the 

mesoscale. The method discussed in this chapter is a phenomenological approach, which 

treats a damaged material element with certain properties as if it were in a homogeneous 

medium regardless to how those properties physically are affected by damage. 

3.1 Representative Volume Element 

As mentioned previously, in the phenomenological approach, CDM divides the material 

into small elements with homogeneous properties. Such an element is called a 

representative volume element (RVE). An RVE is the smallest volume of mesoscale in a 

body where the following conditions are satisfied: the material structural discontinuities 

can be assumed to be statistically homogeneous and the corresponding mechanical state of 

the material can be represented by the statistical average of the mechanical variables in that 

volume [Hashin, 1983; Hill, 1963]. Through the RVE, a material with discontinuous 

microstructure can be idealized as a continuum by means of the statistical average of the 

mechanical state in the material. The mechanical state of the continuum is unique only if 

the RVE is large enough to contain a sufficient number of discontinuities and at the same 

time small enough so that the variation of the macroscopic variable is insignificantly 

small [Murakami, 2012]. 

The size requirement of an RVE depends on the microstructure of the relevant material 

and on the mechanical phenomena to be considered. For metals, the appropriate RVE size 

is usually in the order of (0.1 mm)3 [Lemaitre, 1996]. Among damage phenomena, brittle 

damage and fatigue damage are much more localized than creep damage and ductile 

damage. Thus, the required size of an RVE for brittle and fatigue damage is larger than 

that for creep and ductile damage [Murakami, 2012] such that the localized brittle and 

fatigue damages can be sufficiently contained in the RVE. 

In the phenomenological approach, the discrete entities of damage are not described 
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explicitly in the RVE, but their combined effects are represented by means of macroscopic 

internal variables (e.g. plastic strain), in such a way that the formulation of damage can be 

consistently based on the thermodynamics principles. 

3.2 Damage variable 

The damage variable represents the average material degradation within the RVE. It 

reflects the various types of damage at the micro-scale level such as nucleation and growth 

of voids, cracks, cavities, micro-cracks, and other microlevel defects [Budiansky & 

O’connell, 1976; Krajcinovic, 1996; Lubarda & Krajcinovic, 1993]. The choice of the damage 

variables is an important step in the development of damage models in order to efficiently 

describe the damage evolution. In the most general three dimensional problem, 

microcavities, interface debonds and microcrack orientations are most often governed by 

the loading principle direction and material status (anisotropic or isotropic). Hence, a 

tensorial variable is more suitable to describe the directional nature of the damage. The 

most general tensorial damage variable at any given state of damaged material is the 

eighth-order damage tensor which provides a linear relationship between the elastic 

moduli of damaged and undamaged material. However, application of this damage tensor 

in a damage model is difficult in practical situations. 

3.2.1 Scalar damage variable 

The damage variable can be defined as the surface density of microcracks and 

microcavities lying on the plane cutting the RVE (shown in Figure 10(a)). The damage is 

thus defined as, 
 

δ=
δ

DS
D

S
 (4) 

 

where δS is the area of the intersection of the plane in the RVE and δSD is the effective area 

of the intersection of all microcracks or microvoids in that plane in the RVE. 

An important concept in CDM is the effective stress [Kachanov, 1958; Rabotnov, 1968], it 

represents the increase of stress σ induced by the external loading F due to decrease in 

the load-carrying area S as illustrated in Figure 10(b). The effective stress is defined as, 
 

σσ =
−


1 D

 (5) 
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Figure 10. (a) Scalar damage representation, (b) Deformation and damage in one-dimension; 

1 - undamaged state; 2 - damaged state; 3 - fictitious undamaged state S = (1 - D)S 

 

Beside the effective area reduction, damage quantification can also be based on the 

variation of the effective elastic modulus E of the material. In order to do so, the concept of 

strain equivalence principle [Lemaitre, 1971] is introduced. The principle states that the 

strain of a damaged continuum ε(σ,D) is equivalent to strain of the (fictitious) undamaged 

continuum ε( σ , D ≡ 0) with the usual stress replaced by the effective stress (illustrated in 

Figure 10(b)). After a simple derivation using the strain equivalence principle, the damage 

variable can be described as a function of the effective elastic modulus written as follows, 
 

= −


1
E

D
E

  (6) 

 

where E is the elastic modulus of the damaged material which varies linearly with the 

damage variable D. The damage definition given in Eq. (6) is the most common method to 

experimentally measure damage in a material. Figure 11 shows the elastic modulus 

reduction during cyclic loading as a result of damage growth. 

The scalar damage definition (Eq. (4) and Eq. (6)), resulting in isotropic damage, is the 

simplest approach of CDM and is sufficient to describe material deterioration induced by 

microplasticity such as in HCF [Lemaitre, 1984; Lemaitre & Desmorat, 2005]. 

3.3 Critical damage criterion 

From the definition of Eq. (4) and Eq. (6), the value of the damage variable D is bound by 0 
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and 1 (0 ≤ D ≤ 1), where D = 0 for the undamaged RVE and D = 1 for the fully broken RVE. 

However, in many cases failure of the RVE occurs for D < 1 due to a process where sudden 

decohesion of atoms occurs in the remaining resisting area of the RVE. The value of D at 

which this applies is called the critical damage Dc. Its value strongly depends on the  

material structure, the failure mechanism and the condition of loading. The value may 

vary between Dc ≈ 0 for pure brittle fracture to Dc ≈ 1 for pure ductile fracture. In most 

cases, Dc ranges from 0.2 to 0.5 [Lemaitre, 1996]. Mesocrack initiation occurs when the 

damage reaches Dc for isotropic damage. 

4 Continuum damage models for fatigue life prediction 

This chapter elaborates a number of existing fatigue damage models based on CDM. 

Although some models given in this section have been used to model fatigue crack growth, 

the summaries provided here remain solely focused on fatigue crack initiation. An 

evaluation of the models is provided in Section 6. 

4.1 Chaboche model 

This phenomenological model, proposed by [Chaboche, 1974], is based on a generalization 

of the model of [Marco & Starkey, 1954] and the damage curve approach by [Manson & 

Halford, 1981]. It is a simple engineering tool to predict the fatigue life of structures up to 

macrocrack initiation. Similar to the total life approach using the S-N curve, this model 

describes the damage evolution in each cycle as function of the maximum stress σmax, the  

 

 

Figure 11. (a) Elastic moduli reduction due to damage in HCF (b) Stress-strain curve of 

graphite/epoxy composite at various stages fatigue life (R = 0.1) [Daniel & Charewicz, 1986] 
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mean stress σm and the total damage variable D. However, the non-linearity of damage 

evolution is taken into account using CDM which provides an indirect measure of fatigue 

damage (degradation of modulus elasticity as a function of fraction of number of cycles). 

The damage evolution function is written as [Chaboche & Lesne, 1988; Chaboche, 1974]: 
 

βαβ+  σ − σ = − −    σ − 
1 max1 (1 )

( )(1 )
m

m
dD D dN

M D
  (7) 

 

with σ = − σ0( ) (1 )m mM M b . The function σ( )mM is introduced to describe the linear 

relationship between the mean stress and the fatigue limit. The coefficient α is given as: 
 

σ − σ σ
α = −

σ − σ
max

max

( )
1

f m

u
a    with   ∞σ σ = σ + σ − σ( ) (1 )f m m f mb  (8) 

 

The symbol defines as x = 0 if x < 0 and x = x if x > 0. The parameters α, β, 0M and b 

are material dependent. The parameter ∞σ f is the fatigue limit for fully reversed loading 

conditions (R = – 1), σu is the ultimate stress, σ σ( )f m is the fatigue limit  for a non-zero 

mean-stress. 
 

The damage D and the number of cycles to macrocrack initiation FN are determined by 

integrating Eq. (7) for constant σmax and σm between D = 0 and D = 1. Combined with 

Eq. (8), this gives: 

β+
−α

 
  

= − −   
  

 

1
1 1

1
1 1

F

N
D

N
 ,         

−β
 σ − σ

=  β + − α σ 
max1

( 1)(1 ) ( )
m

F
m

N
M

 (9) 

The material parameters and coefficients are easily determined from conventional test 

data, including the S-N curve for crack initiation as described in [Chaboche & Lesne, 1988]. 

4.2 Peerlings model 

The fatigue damage model by [Peerlings, 1999] describes damage due to HCF through 

deterioration of the stiffness moduli of the material. The model assumes that the damage 

development does not introduce anisotropic material behaviour. Thus, a single scalar 

damage variable D is sufficient to describe the local damage state of the material. The 

effect of the damage on stresses is given as [Lemaitre & Chaboche, 1990], 
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σ = − ε(1 )ij ijkl klD C  ,        
ν= δ δ + δ δ + δ δ

+ ν − ν + ν
( )

(1 )(1 2 ) 2(1 )ijkl ij kl ik jl il jk
E E

C  (10) 

 

with σij  (i, j = 1, 2, 3) is stress component, εkl  (k, l = 1, 2, 3) is the strain and δ is the 

Kronecker delta. The effective stiffness moduli (1 – D) ijklC  decrease as damage 

accumulates, which results in complete loss of the mechanical integrity when the damage 

reaches the critical value which is regarded as crack initiation. 

As the material is continuously loaded, the damage variable which affects the strain-stress 

relationship (Eq. (10)) will evolve. The damage evolution is assumed to start only when a 

specified limit is exceeded. The model defines this limit, which is also referred to as 

damage loading surface (Figure 12), in terms of strain. The damage loading surface is given 

as follows, 
 

ε κ = ε ε − κ( , ) ( )f   (11) 

 

where ε is a scalar representing the equivalent measure of the strain state or equivalent 

strain and κ is a threshold parameter. The damage loading surface f = 0 is corresponding 

to the fatigue limit of the material. For f < 0, the strain state is within the damage loading 

surface, thus, there will be no damage. If the equivalent strain is equal to or greater than 

the threshold κ, the damage loading function f ≥ 0 is reached and the damage increases. 

The von Mises strain is selected to define the equivalent strain, which is given as, 
 

ε = −
+ ν

 2
1

3
1

J  , where = − ε ε21 1
2 16 2 ij ijJ I and = ε1 kkI  (12) 

 

Besides the condition f ≥ 0, the model assumes that the damage variable can only increase 

for continued loading ≥f 0 and it remains constant during unloading. The damage growth 

 

 

Figure 12. Damage loading surface defined in strain space 
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function during loading is given as, 
 

 ε ε ≥ ≥ <= 


  ( , ) if 0 and 0 and 1
0 otherwise

g D f f D
D    with α βε = ( , ) Dg D Ce e  (13) 

 

where ε is the strain rate and C, α and β are material parameters. 

The constitutive model given above together with the equilibrium equations and boundary 

conditions are solved using the finite element (FE) method. The loading history is divided 

into a finite number of time increments and the damage growth is integrated within these 

increments. The details of obtaining the linear system of equations along with the method 

to integrate the damage in a large number of cycles within each increment is given 

in [Peerlings et al., 2000]. 

One advantage of this model is that application of complex loading is a straightforward 

procedure. In uniaxial, fully reversed constant amplitude strain εa , the damage growth 

and the fatigue life (Eq. (13)) can be solved in closed form. It is assumed that the equivalent 

strain equals the strain amplitude at both extremes (i.e. in tension and compression) and 

that there is no fatigue limit (κ = 0). Integration of Eq.(13) over N cycles, after substituting 

ε( , )g D and setting D = 1, gives the following number of cycles to failure. 

 

− β+−αβ += −
α

( 1)1
(1 )

2f aN e e
C

  (14) 

 

Material parameters C, α and β are determined by modification of Eq. (14) to the high cycle 

part of the strain-based approach of [Basquin, 1910] as given in [Peerlings et al., 2000]. 

4.3 Chow model 

The Chaboche model described previously faces two fundamental unresolved problems. 

The first problem is the definition of the multiaxial stress parameters associated with the 

maximum stress and mean stress. The second problem is the inadequate formulation in the 

case of complex loading as described in Section 2.2.3. In order to tackle these problems, 

Chow developed a constitutive damage model of fatigue failure [Chow &Wei, 1991, 1999]. 

This fatigue damage model offers an interesting combination between a phenomenological 

approach and micromechanical modelling of material degradation. 

The model introduces a damage tensor that consists of two scalar damage variables. These 

scalars are introduced to take into account the Poisson’s ratio change (represented by the 

damage variable μ f ) during tension loading (experimentally observed in [Chow &Wang, 



 44

1987]) in addition to the change in the elastic modulus (represented by the damage 

variable fD ). The damage evolution function for the two damage variables are postulated 

within the framework of irreversible thermodynamics described as follows, 
 

= −
1/22

Df
f f

fd

Y
dD dw

Y
 ,   

μγ
μ = −

1/22

f
f f

fd

Y
d dw

Y
,   

μ μ+ γ
=

1/22 ( )

Df Df f f
f

ffd

Y dY Y dY
dw

Y K w
 (15) 

with = −0( ) (1 )
f

f
c

w
D w K

w
and fdY is given as, 

μ= + γ2 21
2

( )fd Df fY Y Y  with −= − σ σ
−

11
: :

1
T

Df
f

Y
D

C  and μ = − σ σ
−
1

: :
1

T
f

f
Y

D
A  (16) 

 

where σ, σT are stress and stress transpose; γ and 0K are material dependent parameters;  
 

μ( , )f fDC and μ( , )f fDA are the damage effect tensors; fw and cw are the overall fatigue 

damage and the critical value of the overall fatigue damage, respectively. 

The contribution of a tensile stress to the fatigue damage accumulation is different from 

that of a compressive stress due to closure of some microcracks. To take into account this 

phenomenon, the stress σ in DfY and μfY is replaced with the active stress σact . In the 

uniaxial case, for reversed loading (stress ratio less than zero) condition σ = σ − ασact min   
 

and in full compression loading σ = α σ − σact min( ) , where α is the damage efficiency factor 
 

(a material parameter which varies from 0 to 1). 

In the case of HCF, where overall plasticity is negligible, fatigue damage accumulation per 

cycle is calculated using Eq. (15) and written as, 
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where σc is the stress tensor determined by the damage surface σ = − =1/2
0( ) 0fd c ffdF Y B  

with 0 fB is a material dependent parameter related to the fatigue endurance limit. 

Implementation of the model using FE can be performed through a user material 

subroutine (usually available in commercial FE codes) where for a given loading history, 
 

the overall fatigue damage fw is calculated by solving the constitutive model. If fw reaches 

its critical value cw , a material element is said to have broken and a crack is initiated. As in 
  

Peerling’s model, this model also provides a straightforward procedure for a complex 

loading condition with the advantage of different damage accumulation between tension 

and compression loading. 
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The material parameters γ, 0K , α, 0 fB and cw needed for this model are determined from 

monotonic tensile and stress-controlled uniaxial fatigue tests. The details of the procedures 

to obtain these parameters are given in [Chow &Wei, 1999]. 

4.4 Lemaitre model 

Contrary to the previous models, the two scale fatigue model by [Lemaitre et al., 1999] 

offers the possibility to account for micro-plasticity and micro-damage which characterize 

HCF. In HCF, damage and plasticity occur at the microscale and have no influence on the 

elastic macroscopic behaviour except in the failure stage [Lemaitre et al., 1999]. This model 

describes the fatigue process prior to macrocrack initiation. 

The model considers a representative volume element in a body and it postulates that 

inside the RVE, a micoscale volume M is included (i.e. inclusion). The model is 

schematically described in Figure 13, where the superscripts μ, e and p refer to microscopic 

 

 

Figure 13: Micro-element embedded in elastic RVE [Lemaitre & Desmorat, 2005] 

 

variables, elastic properties and plastic properties, respectively. The matrix that surrounds 

the inclusion has elastic properties E, ν of the RVE. The inclusion M itself has the same 

elastic properties as the matrix but it undergoes plastic deformation and is subjected to 

damage. The yield stress of the inclusion is taken equal to the fatigue limit of the material 

∞σ f . Thus, neither plasticity nor damage occur below this value. When the damage 

variable reaches a critical value, the inclusion is broken which corresponds to fatigue 

macrocrack initiation. 

At the mesoscale, the stress is denoted as σ and the total, elastic and plastic strains are 

denoted as ε, εe and εp , respectively. Their values are known from a FE computation. As 

for HCF, the plastic strain εp is considered zero. 
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In order to describe the damage development at microscale, the stress and strain state of 

volume M have to be known. These entities are evaluated using the Eshelby-Kröner 

localization law of micromechanics [Eshelby, 1957; Kroner, 1961] which relates the strain at 

microscale to the mesoscopic strain. For a spherical inclusion, the localization law reads, 
 

μμε = ε + β ε − ε( )p p
ijij ij ij  with 

− νβ =
− ν

2 4 5
15 1

 (18) 

The strain in the inclusion is divided into an elastic part and a plastic part μμ με = ε + ε pe
ij ij ij  

where the elastic part is written as 
 

μ μ
μ σ σ+ ν νε = − δ

− −
1

1 1
ije kk

ijij E D E D
  (19) 

 

The damage loading surface ( μf = 0) of the inclusion, considering linear kinematic 

hardening, is given as 
 

μ μ μ ∞= σ − − σ( )eq ff X  (20) 

with (.)eq is the von Mises equivalent, 
μ

μ σσ =
−


1 D

 is the effective stress and μX is the 

microscale back stress. 
 

The set of constitutive equations for plastic strain, linear kinematic hardening and damage 

evolution law is: 
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If D reaches the critical value cD , the crack initiates. The superscript D denotes the 

deviatoric properties = − δ(.) (.) (1 /3) (.)D
ij ij ij kk , μp is the accumulated plastic strain and the 

plastic modulus yC , the damage strength S and the damage exponent s are material 

dependent parameters. The damage energy release rate μY is given as, 
 

+ + − − μ μμ μ μ μ
μ

   σ −σσ σ σ σ   + ν ν= + − +  
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2 2

2 2 2 2
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2 2(1 ) (1 ) (1 ) (1 )

kk kk
Y h h

E ED hD D hD
  (23) 
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where the
+μσ and

−μσ denote the positive and negative parts of the principle stress 

tensor, respectively. A smaller damage growth during compression due to micro-defects 

closure is accounted for by parameter h. An often applied value for metals is h = 0.2  
 

[Lemaitre & Desmorat, 2005]. The plastic damage threshold μ
Dp is calculated as, 

 

∞
μ

μ ∞

 σ − σ
 = ε
 Δσ − σ 

1
2 ( )

m
u f

pDD
eq f

p   (24) 

 

with εpD is the plastic threshold at monotonic uniaxial tension and m is a material 

dependent parameter. The material parameters S, s, εpD , m and cD ) can be identified by 

the ’fast identification method’ given in [Lemaitre & Desmorat, 2005]. The method requires 

results from tensile tests as well as low and high cycles fatigue tests. 

The model accounts not only for complex loading and micro-defects closure, but also for 

microplasticity, which is an important physical feature of HCF. Moreover, HCF damage is 

influenced by the initial state of the materials, i.e. the initial plastic strain and the initial 

damage which are induced by the thermo-mechanical history of casting, metal forming, 

welding, and also damages by accident. These initial conditions can be introduced into the 

model as initial values ε = ε0
pp and = = 0( 0)D t D . 

4.5 Application example of Lemaitre model 

In [Lemaitre & Desmorat, 2005], an application example of their two scale fatigue damage 

model is described. The model is used to predict the crack initiation period of a tubular 

component. The middle part of the tube is thinned to facilitate crack initiation (Figure 

14(a)). The total length of the tube is L = 250 mm with inner radius of r = 27.5 mm. The 

thickness of the thinned part varies from 1.2 to 0.6 mm. The tube was loaded in tension-

torsion with proportional and non-proportional (900 out of phase) loading conditions. The 

maximum applied force and torque are maxF = 14000 N and maxC = 420 Nm, respectively. 

The mesoscale variables are obtained through an elastic FE analysis of the tube. The history 

of (elastic/plastic) strains and stresses at every instant (time t) at the thinned part are 

known from this reference computation. As the microscale variables at nt and the 

mesoscale variables at nt and + 1nt are known, the microscale variables at + 1nt can be 

determined as follows [Lemaitre & Desmorat, 2005], 
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• A local elastic prediction assumes elastic behaviour ( μ με = εp p
n , μ μ= nX X and = nD D ), 

which gives the following variables, 
 

μμ
+ε = ε + β ε − ε 1( )pp

n n ,    μμ
+σ = σ − − β ε − ε 12 (1 )( )pp

n nG  (25) 

 

• A local plastic predictor is used. If the variables obtained from the elastic predictor 

satisfy μ ≤ 0f , the μ μ
+σ = σ 1n , μ μ

+ε = ε1n and μ μ
+ε = ε1
e e

n are set. Otherwise, the following non-

linear equation has to be solved using the Newton iterative scheme: 
 

μμ μ μ μ
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where μ μ μ= σ −s X , = −β + −3 (1 ) (1 )y nG C DG , =
+ ν2(1 )

E
G , μ μ μ= 2

3
( / )D

eqm s s , 
μμ μ

+Δ = −1 nnp p p ν and E is the elastic tensor. After convergence, Δp and μ
+1ns are obtained 

and the rest of the variables at +1nt including +1nD can be determined. The process is 

repeated until cD is reached. 

 

The material parameters (ductile steel) used in the simulation are: E = 200 GPa, ν = 0.3, 

σy = 380 MPa, σu = 474 MPa, yC = 50 GPa, ∞σ f = 180 MPa, εpD = 0.05, m = 3, S = 2.6 MPa, s 

= 2, h = 0.2 and cD = 0.3. Figure 14(b) gives the comparison between the number of cycles to 

crack initiation according to tests expN and the number of cycles to crack initiation  

 

                     

Figure 14. (a) A thinned tube (b) Two-scale fatigue model predictions [Lemaitre & Desmorat, 2005]  

expN

( )b

compN
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according to the computation compN of the thinned tube with pure torsion and tension-

torsion cyclic loads. Figure 14 indicates that the number of cycles at failure is predicted 

with reasonable accuracy, especially when bearing in mind that the fatigue life is subjected 

to significant scatter. 

5 Cohesive zone model 

5.1 Introduction 

In this section as opposed to the previous section, a discontinuous approach to fatigue 

fracture is presented. Where the CDM is dedicated to crack initiation, the cohesive zone 

model (CZM) given in this section is aimed at describing crack propagation. The concept of 

CZM was first introduced by Dugdale [Dugdale, 1960] and Barenblatt [Barenblatt, 1962]. A 

cohesive zone is placed in front of the physical crack tip at a predefined crack path. 

Separation between two adjacent virtual surfaces is resisted by the presence of the cohesive 

traction. The cohesive traction represents the inter-atomic forces and acts as the resistance 

to crack propagation. During loading, the atomic structure changes and this can be 

reflected by variations in the cohesive traction. A cohesive law defines the traction as a 

function of the separation of the boundaries of the cohesive zone. It describes the 

constitutive behaviour of the CZM. 

As discussed in Section 2.1.3, the mechanism of fatigue crack growth consists of plastic 

blunting and subsequent sharpening of the crack tip. The crack tip opening displacement 

during blunting directly influences the crack extension during sharpening where a larger 

displacement results in a longer crack extension. Therefore, it is convenient to use the 

cohesive zone model to describe fatigue crack growth as it directly deals with crack tip 

opening (separation). 

There is a great variety in Traction-Separation Laws (TSLs) (summarized in [Chandra et al., 

2002]) but they all exhibit the same global behaviour. Upon the application of external 

loads to a cracked body (Figure 15 shows TSL in normal direction), the cohesive surfaces 

separate gradually leading to an increase in traction nT until a maximum value σmax,0 is 

reached. This maximum is called the cohesive strength. The traction decreases to 

approximately zero as the separation Δn reaches a critical value δsep . 

In a cohesive zone, the progressive deterioration of the material strength in front of the 

crack tip is represented by the reduction of the cohesive traction. 
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                Figure 15: Cohesive process zone [Shet & Chandra, 2002] 

5.2 Cohesive zone formulation 

Using the principle of virtual work, the mechanical equilibrium considering the effect of 

the cohesive tractions is written as 
 

σ δε − ⋅δΔ = ⋅δ  
int ext

: CZ eV
S S

dV T dS T udS  (27) 

where V is the specimen volume, intS is the internal cohesive surface and extS is the 

external surface (Figure 16), σ is the Cauchy stress tensor, ε is the strain tensor, u is the 

displacement vector, CZT denotes the cohesive traction vector, eT is the external traction 

vector and Δ is a vector representing the separation displacement across the two adjacent 

cohesive surfaces. The cohesive tractions consist of normal and tangential components: 

= +CZ n tT T n T t . Symbols n and t denote the unit vectors normal and tangent to the 

  

 

Figure 16: Schematic representation of mechanical equilibrium using CZM 
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cohesive surface, respectively. The separation displacement vector, Δ = Δ + Δn tn t , is 

calculated from the displacements ( topu and botu in Figure 15) of the opposing cohesive 

surfaces, where Δn and Δt are the normal and tangential separation displacements, 

respectively. 

One of the most common TSL is an exponential traction law [Needleman, 1990] given as 

follows, 

      Δ Δ Δ Δ Δ     = σ − − + − − −     δ δ δ  δ δ       
    Δ Δ Δ Δ
 = σ + − −     δ δ δ δ     

2 2

max,0 2 2
0 0 00 0

2

max,0 2
0 0 0 0

exp exp (1 ) 1 exp

2 1 exp exp

n n t n t
n

t n n t
t

T e q

T eq

  (28) 

where δ0 is called the characteristic length which describes the separation required to reach 

the cohesive strength in normal loading (Figure 15), e = exp(1), q is the coupling 

representation between normal and shear tractions i.e. the ratio between the area under the 

functions of pure tangential and pure normal traction. 

5.3 Damage mechanism 

Simulation of crack propagation under cyclic loading is conducted by introducing a 

damage mechanism into the cohesive zone that describes the material degradation due to 

accumulated irreversible deformation. The amount of material degradation can be 

quantitatively represented by a damage variable (0 ≤ D ≤ 1). A value in between 0 and 1 

results in a reduced cohesive stiffness. 

The cohesive traction function depends on the current state of damage as well as the 

current separations which leads to an irreversible and history dependent traction-

separation equation. Using the effective stress concept [Lemaitre, 1996], the damage variable 

is incorporated into the TSL of Eq. (28) by replacing the initial cohesive strength of the 

undeteriorated material σmax,0 with the current cohesive strength of the deteriorated 

material given as [Roe & Siegmund, 2003], 

 
σ = σ −max max,0(1 )D , (29) 

 

where =  
t

D Ddt . The damage evolution function D is given as, 

Δ  
= − Δ − δ δ σ 
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where H is the Heaviside function and Δ is the rate of the displacement resultant. The 

parameters Δ , T and fC are given as, 

 

Δ = Δ + Δ2 2
n t ,  = +

2
2

22
t

n
T

T T
eq

,  
σ

=
σmax,0

c
f

fC ,  < <0 1fC  (31) 

where σc
f the cohesive zone endurance limit which is related to the fatigue threshold. In 

order to properly describe fatigue crack propagation under cyclic loading, the paths of 

unloading and reloading need also to be considered for the irreversible CZM (illustrated in 

Figure 17). In [Wang & Siegmund, 2006], the unloading-reloading path in normal and 

tangential loading direction are given as, 
 

= + Δ − Δ
Δ
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n

T
T T  ,  

σ
= + Δ − Δ

δ
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0

2 ( )t t t tT T e  (32) 

where Δ ,maxn is the maximum value of normal separation before unloading and ,maxnT is 

the corresponding normal traction (Eq. (28)) with σmax,0 replaced by σmax . A similar 

definition is also applied to the tangential direction. 

 

 

Figure 17: Schematic representation of unloading and reloading behaviour during cyclic loading; 

reduction of the cohesive strength due to accumulation of damage 

5.4 Cohesive Parameters 

The cohesive parameters include the cohesive strength σmax,0 , the characteristic length δ0 , 

the cohesive energy φ and the cohesive zone endurance limit σc
f . The endurance limit 

which is represented by the ratio fC is set to be 0.25 [Roe & Siegmund, 2003]. The cohesive 

strength is related to the yield stress of the bulk material ( ≈ σ2 y to σ3 y ) [Chen & Kolednik, 
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2005]. The cohesive energy is equal to the area under the TSL (Figure 15) and for an 

exponential TSL as given previously, the cohesive energy is φ = σ δmax,0 0e . This energy is 

equal to the fracture energy cG of the material [Chen & Kolednik, 2005]. 

5.5 FE implementation 

Implementation of the model in FE consists of describing the cohesive element constitutive 

behavior according to the TSL as well as the damage definition. Zero thickness cohesive 

elements are placed in front of a predefined crack path and their upper and lower nodes 

are connected to the bulk elements. In the initial state, the cohesive element and the facing 

edges of the neighbouring bulk elements occupy the same spatial position; at deformed 

state, normal and tangential tractions are induced between the neighbouring bulk 

elements. The cohesive element stiffness matrix coh
elK and the element force vector coh

elf are 

given as, 
 

−
= Θ Θ ξ
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1
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−
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1
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1

detel T df B T J , (33) 

where B is the shape function matrix, J is the Jacobian matrix, Θ is the transformation 

matrix, x is element natural coordinate and the stiffness matrix D and T are defined as 
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If the critical damage is reached, due to separation in cohesive elements during unloading 

and reloading, the cohesive element is said to be broken and the crack tip is extended. 

5.6 Application example of the fatigue crack growth model based on CZM 

In [Ural et al., 2009], an application of CZM to predict the fatigue crack growth rate 

including crack retardation due to an overload is given. A compact tension (CT) specimen 

made of aluminium alloy A356-T6 is loaded in tension with maxP = 4144.4 N and maxP = 

3230 N with stress ratio R = 0.1 and R = 0.5, respectively. At the predefined crack path, 60 

cohesive elements are placed inside 13080 bulk elements under plane strain assumption. A 

slightly different TSL, i.e. a triangle-based TSL, is used as well as a slightly modified 

damage function of Eq. (30). Cycle by cycle simulation of high cycle fatigue is prohibitively 

expensive. An extrapolation scheme was proposed to predict the crack growth life of the 
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specimens where a crack extension is estimated in a large number of cycles by a scaling 

function. Figure 18 shows comparison between experimental results and the prediction 

results of the model. The figure indicates that there is a moderate to reasonable agreement 

between the prediction and the test. More research is required in order to determine the 

cause of the scatter in the prediction results. 

 

      

Figure 18a. Prediction results on crack retardation: the overload was applied at N = 4000 

[Ural et al., 2009]  

 

               
 

Figure 18b. Results of a CZM prediction on crack growth rate of aluminium alloy A356-T6 

specimen [Ural et al., 2009]  
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6 Evaluation and conclusion 

The total fatigue life comprises of the crack initiation and the crack propagation periods. 

Crack initiation in metallic materials is caused by cyclic slip and is greatly influenced by 

the surface condition such as the surface roughness or the presence of a (sharp) notch. On 

the other hand, crack propagation involves the alternate blunting and sharpening of the 

crack tip and depends strongly on the material properties and the defect size. The 

theoretical background of any method to predict the crack initiation and/or crack 

propagation periods should be based on the corresponding mechanisms. 

There are two engineering models widely used to predict the fatigue life of a structure or 

component. The model based on the S-N curves is strongly based on empirical data. The 

fatigue life prediction method based on linear elastic fracture mechanics (LEFM) has a 

physical background. However, it utilizes an empirical law to describe the relation 

between ΔK and da/dN. Application of these models is difficult or impossible in complex 

loading conditions such as multiaxial and non-proportional loading. Sequences in loads in 

case of variable amplitude loading influence the fatigue life, but this is poorly covered by 

both models. 

Alternative models are summarized in this article based on continuum damage mechanics 

(CDM). Contrarily to the S-N curve model and the LEFM model, these models consider the 

fatigue process on a microlevel. The models can be implemented in numerical procedures, 

such as a FE model, to determine the fatigue life. The phenomenological CDM concept is 

shown to provide a good basis for crack initiation simulation. This paper summarizes four 

existing CDM based models dedicated to fatigue crack initiation. 

Each of the CDM-based model describes the process during crack initiation using a 

damage accumulation mechanism. Due to loading, damage accumulates according to the 

damage mechanism up to a defined critical value which represents the crack initiation. 

Definition of damage mechanisms are different between models. A direct relation between 

the damage development and the loading configuration is found in Chaboche model. The 

damage mechanism in Peerling model relates the equivalent elastic strain due to the 

loading configuration to damage accumulation. In HCF, the elastic assumption is generally 

accepted at macroscale. On the other hand, Chow model offers a damage mechanism with 

two damage variables which is motivated by experimental observation. The damage 

mechanism relates the local stress and damage accumulation through thermodynamics 

potentials. In Lemaitre model, the damage mechanism is defined as a function of 
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accumulated plastic strain at microscale. It is a physically-motivated mechanism which 

describes the fatigue damage due to crystallographic slips (extrusion-intrusion). 

The Chaboche model describes the deterioration processes before macrocrack initiation 

through a damage accumulation process which is obtained from indirect damage 

measurement. It is a simple engineering tool which includes the non-linear damage 

behavior in high cycle fatigue (HCF). Even though, this model offers no significant 

advantage compared to the S-N curve approach, it provides a first and important step 

towards more advanced models. 

The fatigue damage model by Peerlings describes fatigue damage accumulation based on 

the equivalent elastic strain. The physical process involving microplasticity during crack 

initiation is not captured in this model. In addition, the difference in damage effects due to 

loads in tension and compression is also not present. However, application of complex 

loading is included. 

The fatigue model by Chow takes into account the changes in elastic modulus and 311 

Poisson’s ratio due to fatigue damage. Similar to the Peerlings model, the ability of the 

model to describe fatigue under multiaxial loading, including shear is advantageous. 

Moreover, it also considers the difference between tension and compression in fatigue 

damage accumulation by introducing a damage efficiency factor. 

Finally, the Lemaitre model includes an important physical feature in HCF, i.e. 

microplasticity at the crack tip that promotes microinitiation and micropropagation, as 

well as the other capabilities found in the previous models. Based on its good physical 

background together with several extra benefits as described previously, among all the 

models, the Lemaitre model is expected to give the most accurate prediction of fatigue 

crack initiation period. 

A cohesive zone model gives an alternative approach to model crack propagation and/or 

fracture of materials. Application of the model in a FE analysis is relatively easy, which 

makes this approach attractive. The fatigue crack growth is simulated by incorporating a 

constitutive law that describes the damage development during unloading and reloading 

at the crack tip. The damage mechanism can be regarded as a representation of plastic-

induced deterioration at the crack tip during cyclic loading. With a good damage 

mechanism definition, the effect of overloads on the crack growth behaviour can be 

naturally captured, which is beneficial compared to models based on LEFM where curve 

fitted parameters are required to capture the effect of overloads. 
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