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ABSTRACT 

We present designs for sharp bends in polymer waveguides using colloidal photonic crystal (PhC) structures. Both silica 
(SiO2) sphere based colloidal PhC and core-shell colloidal PhC structures having a titania (TiO2) core inside silica (SiO2) 
shells are simulated. The simulation results show that core-shell Face Centered Cubic (FCC) colloidal crystals have a 
sufficient refractive index contrast to open up a bandgap in the desired direction when integrated into polymer 
waveguides and can achieve reflection >70% for the appropriate plane. Different crystal planes of the FCC structure are 
investigated for their reflection and compared with the calculated bandstructure. Different techniques for fabrication of 
PhC on rectangular seed layers namely slow sedimentation; spin coating and modified doctor blading are discussed and 
investigated. FCC and Random FCC silica structures are characterized optically to show realisation of (001) FCC. 

Keywords: Photonic Crystal, Silica, Face Centre Cubic, Core-shell, Bandstructure, Doctor blading, Sedimentation, Spin 
coating. 
 

1. INTRODUCTION  
 

Single mode polymer waveguides can be used to guide information-carrying light from one component to another on 
a backplane. The low cost and ease of fabrication associated with polymer waveguides makes them attractive but the low 
index contrast inherent in polymeric materials requires large bending radii to reduce radiation loss making it difficult to 
achieve a high component density. Thus, a means to have more compact bends in polymer optical waveguides is 
required. Photonic crystals are artificial periodic structures which have been used to manipulate the properties of light. 
Some applications for photonic crystal are to confine/trap light at resonance1, compress a light pulse by slowing it down2, 
split light into different polarizations3, optical trapping4 and to enhance nonlinear effects5. Periodicity and refractive 
index contrast are the main parameters that determine the functionality of these structures. In this paper, we present the 
design and fabrication of photonic crystal structures that can act as an in-plane reflector for polymer waveguides at 
wavelengths in the 1550 nm range as used in telecommunications. 

We have designed the different photonic crystal structures to be integrated with 5 µm wide polymer 
waveguides. The photonic crystal structures need to be of at least the same size as that of the waveguide for efficient 
bending of the light. Thus, the mature two dimensional photonic crystal structures cannot be used. Rather, three 
dimensional structures need to be implemented. The optical response of the different structures are simulated and 
compared where we use the commercially available Lumerical Solutions software based on the Finite Difference Time 
Domain (FDTD) method. 

Natural sedimentation of mono-dispersed particles on a flat surface is the easiest way to realise three 
dimensional photonic crystal structures. The multi-layer structures fabricated in this manner can be expected to have 
horizontal layers of hexagonally packed spheres stacked above each other. The Face Centre Cubic (FCC) structure is 
formed only if the exact positioning of each individual horizontal layer of spheres repeats itself at every third layer in 
vertical direction. Three different positioning, repeating every third layer, can be designated as A, B and C arrangements 
and the stacking of repeated ABCABC... is the FCC stacking as shown in Fig. 1. The FCC lattice is formed only if 
everything goes right in the natural sedimentation process with the spheres positioning themselves at the right locations 
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without any defects. Defects in the sedimentation process can change the repetition from say the third to every second 
layer resulting in AB, BC or AC stacking. Structures having alternating layers of spheres like ABAB…are called 
Hexagonal Closed Pack (HCP) structures. So, any deviation from ideal sedimentation will result in changing of FCC into 
HCP and a mix of FCC and HCP structures results. This mix of FCC and HCP structures can be named as a Random 
Face Centered Cubic (RFCC) structure. In this paper, we propose to realise FCC structures using a starting surface with a 
rectangular seed layer which may be less prone to defect generation. FCC structures fabricated using both natural 
sedimentation and the new proposed technique are simulated to show that pure FCC structures having sufficient index 
contrast can be used to achieve in-plane bending of light at sharp angles. 

 
 

 
 
Fig. 1: Three different relative arrangements of spheres: A, B and C are represented in White, Red and Blue colors respectively to 
show the stacking of Face Centered Cubic (FCC), Hexagonal Closed Packed (HCP) and Random Face Centered Cubic (RFCC) 
structures. 
 

2. FCC STRUCTURES FOR IN-PLANE BENDING 
 

The optical properties of a FCC structure with 1000nm diameter silica spheres is modelled and simulated. The 
photonic crystal structure is ‘integrated’ at the end of a 5 µm high polymer waveguide with the intention to bend the light 
travelling inside the waveguide. The FCC structure of silica spheres will act as a reflector if the index contrast (Δn) 
between the silica spheres (nsilica=1.45) and the background air (nair=1.0) is sufficient to open up a band-gap at the 
incident direction. In our example, the photonic crystal is tilted at 45° to the incident light in order to bend the light at 
90°. The reflected light will be guided by a polymer waveguide placed at a right angle to the incident waveguide. In the 
simulations, air acts as the cladding of the waveguides and background for the stacked silica spheres. The modelled 
photonic crystal structure with the waveguide arrangement and the calculated 90° and back reflected optical powers are 
shown in Fig. 2. 
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Fig. 2: (a) Modelled natural sedimentation FCC photonic crystal structure embedded in polymer waveguides for 90° bending of light. 
(b) 90° and back reflected optical powers are plotted in red and green colors respectively. 
 

Reflections from the structure can be expected at a wavelength of 1500 nm using Bragg’s Law for an effective 
refractive index of ݊௘௙௙ = 1.33. The effective refractive index of the FCC structure is calculated from ݊௘௙௙ = ݊௦௜௟௜௖௔	 ∗	0.74 + ݊௔௜௥ ∗ 0.26 where 0.74 is the packing factor of the silica spheres in air. The red plot in Fig. 2(b) confirms 90° 
reflections around 1500 nm. The small reflection intensity shows that the index contrast between silica and air is not 
sufficient to open up a wide bandgap which results in most of the light transmitting through the structure. The green plot 
in Fig. 2(b) shows negligible reflections in the backward direction. 

A larger refractive index contrast is required for higher reflectivity and can this be achieved by increasing 
refractive index of the spheres. Core-shell spheres having core of higher refractive index material TiO2 (ntitania = 2.4) 
inside a silica (nsilica = 1.45) shell can be considered. Such core-shell particles embedded into polymer waveguides are 
modelled and simulated to see whether the index contrast is sufficient for such structures to be efficient reflectors at 
telecom wavelengths. The effective refractive index of the core-shell particles having ݊௖௢௥௘ = 2.4 and ݊௦௛௘௟௟ = 1.45 is 
calculated to be ݊௦௣௛௘௥௘ = 1.67 using	݊௦௣௛௘௥௘ = [݊௖௢௥௘ ∗ ସଷ ௖௢௥௘ଷݎߨ ] + [݊௦௛௘௟௟ ∗ ସଷ ௦௛௘௟௟ଷݎ)ߨ − ௖௢௥௘ଷݎ )]. The effective refractive 
index of core-shell FCC structure in air background is calculated to be 1.5 using ݊௘௙௙ = 0.74 ∗ ݊௦௣௛௘௥௘ + 0.26 ∗݊௕௔௖௞௚௥௢௨௡ௗ = 1.5 where 0.74 is the sphere packing factor in FCC. The larger refractive index contrast ݊߂ = 0.67 
between the core-shell particles and the background air is very helpful for the photonic crystal to act as a reflector. The 
calculated reflection intensities from core-shell particles crystal are shown in Fig. 3. The red plot shows that more than 
50% reflection at 90° can be obtained around telecom wavelengths. These reflections from photonic crystal reflector also 
follow Bragg’s law and move to smaller wavelengths with an increase in angle of incidence. 

 
Fig. 3: Red plot shows calculated optical power in 90° waveguide. Green plot shows calculated optical power reflected backwards in 
the incident waveguide from TiO2-SiO2 core-shell photonic crystal structure. 

The possibility of forming RFCC structures using the natural sedimentation process will make it difficult to 
obtain a pure FCC structure. This lack of control in stacking might be overcome if the spheres are forced to position 

(a) (b) 
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(a)                                                                                       (b) 

Fig. 5: (a) 90° reflection response from truncated rectangular seed layer structure. (b) Bandstructure of core-shell FCC crystal. 
 

Fig. 5(b) shows that band-gap in L-U and L-K directions follow the same trend so it can be concluded that L-U 
and L-K directions in the reciprocal space are identical. Reflections from (001) plane of FCC unit cell is mapped to the 
middle point of W-K directions which is named as X. The calculated reflection response for normal incidence of light on 
(001) plane of core-shell FCC photonic crystal shows a reflection peak around 1.6 THz. The reflection spectrum from the 
(001) plane of core-shell FCC is plotted on top of the calculated bandstructure in Fig. 7(a) to show that reflection peak 
falls in the band-gap frequencies at X point which is right in the middle of W-K direction. It can be observed in the 
bandstructure that band-gap at X moves to larger frequency values on moving towards W or K point from X. 

 

 
                                      (a)                                                                            (b) 
Fig. 6: (a) Calculated reflection spectrum at normal incidence to (111) plane of the FCC crystal. (b) Reflection spectrum from (111) 
FCC plane plotted against bandstructure showing band-gap in the Γ-L direction. 
 

Fig. 5(b) shows inter-crossings of optical bands near K/U and W points in the bandstructure. The crossings of 
the bands result in transfer of energy between the optical bands present for those frequencies. A small reflection peak in 
the reflection response appears just next to the strong reflection peak at the start of the intercrossing. This new peak gets 
energy from the stronger peak in the neighborhood in result of the energy transfer. As a result, the initial peak before the 
start of the crossing transfers its complete energy to the new born peak and disappears. This generation of two peaks in 
the reflection response because of the intercrossing can be observed on changing the angle of incidence on (001) plane of 
FCC. The relatively small peak next to the larger reflection peak in Fig. 5(a) for 45° incidence of light on truncated core-
shell FCC is because of the intercrossing of bands. Reflection response for 45° incidence on (001) plane of FCC is 
plotted on the bandstructure in Fig. 7(b) to show the agreement between the bandstructure and calculated reflection 
spectrum. It can be observed in Fig. 7(b) that the reflection peak for 45° incidence is situated at larger values of 
frequencies which is as per predictions from the bandstructure. Two peaks at 1.6 THz and 1.85 THz are observed 
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because of the inter-crossings. It is observed that the peak at 1.85 THz just next to the initial peak at 1.6 THz gets 
stronger with increasing angle of incidence and depletes the 1.6THz peak. 

 

 
(a)                                                                            (b) 

Fig. 7: (a) Reflection spectrum from (001) FCC plane is in agreement with band-gap at X point (b) Reflection response from (001) 
FCC plane at 45° incidence shows two peaks because bands are inter-crossing at that point. 
 

3. MANUFACTURING AND CHARACTERIZATION OF COLLOIDAL CRYSTALS 
 

The crystal structure and orientation of the particles in the colloidal crystals determine the reflection and 
transmission of the light and thus the properties of the photonic crystal. The preferred crystal form of mono-dispersed 
particles is the FCC stacking. Fabrication of FCC structures without any external field or force will result in a hexagonal 
ground plane as shown in Fig. 8(A). The presented hexagonal plane is the (111) plane of the FCC structure. It has been 
shown by A. Mihi et al6, H. Yang et al7and Y. L. Wu8 that application of external forces during spincoating or doctor 
blading can result in the formation of an FCC with different orientations than (111) FCC. Here, we have selected a 
rectangular ground plane i.e. (001) plane of FCC instead of (111) plane as shown in Fig. 8(B). 
 

 
 

Fig. 8: (A) (111) FCC plane. (B) (001) FCC plane with marked base of FCC cell. 
 

The rectangular ground plane stacking has two major advantages over the hexagonal ground layer for the 
formation of photonic crystals. Starting from a square ground plane, only one type of crystal should be formed in the 
subsequent layers i.e. FCC, and all these layers form reflection planes perpendicular to the substrate. Unfortunately, the 
manufacturing of (001) FCC using only external forces is very difficult to control. Crystal regions are formed in small 
domains throughout a large sample, and the positioning of such crystals cannot be done accurately with respect to any 
optical features, such as waveguides. In order to overcome this issue, we used a template having a square array of holes 
to force the colloid to crystallize in the (001) FCC layer9, which should induce self-assembly of the subsequent layer into 
the (001) FCC crystals. The template is manufactured by nano-imprint lithography. The nano-imprint stamp has an array 
of rods which is marked on to a polymer substrate. During imprinting, the polymer is solidified around the rods using 
UV light. In our experiments, this results in the formation of an area of 1 mm2 having holes at a distance of 900 to 1100 
nm. This variation was used in order to assess the influence of the pitch on the crystal formation. Different methods of 
growth can be used to fabricate square lattice structures over nano-imprinted seed layer region. We have used spin 
coating, slow sedimentation and modified doctor blading which are shown in Fig. 9 A, B and C respectively. 

A B 
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Fig. 13: Reflection on different position of the sedimentated sample. 
 

4. CONCLUSIONS 

 
We have simulated different FCC structures that can be integrated into polymer waveguides to show that core-shell 
colloidal photonic crystal structures can be used for achieving sharp bends in polymer waveguides. Air-clad silica 
spheres photonic crystal structures can only provide reflections 15% as compared to more than 50% reflections from 
core-shell structures. Truncated core-shell photonic crystal structures on rectangular seed layer are calculated to reflect 
more than 70% of the incident light. Different fabrication techniques for fabrication of silica spheres FCC structures on 
top of rectangular seed layer have been investigated and implemented. Our initial characterization results show that FCC 
structures with (001) FCC ground plane can be fabricated which can be distinguished from (111) FCC or RFCC 
structures using optical characterization. 
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