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Abstract— The radar micro-Doppler signature of a target is 

determined by parts of the target moving or rotating in addition 

to the main body motion. The relative motion of parts is 

characteristic for different classes of targets, e.g. the flapping 

motion of a bird's wings vs. the spinning of propeller blades. In 

the present study, the micro-Doppler signature is exploited to 

discriminate birds and small unmanned aerial vehicles (UAVs). 

Emphasis is on micro-Doppler features that can be extracted 

from spectrograms and cepstrograms, enabling the human eye or 

indeed automatic classification algorithms to make a quick 

distinction between man-made objects and bio-life. In addition, 

in case of man-made objects, it is desired to further characterize 

the type of mini-UAV to aid the threat assessment. Also this 

characterization is done on the basis of micro-Doppler features.  

Keywords—radar, time-frequency analysis, birds, mini-UAVs, 

classification, cepstrum 

I. INTRODUCTION 

Within the security and defense domain, radar is more and 
more applied in the confined and crowded urban and littoral 
environments. Consequently, there is a demand for detecting 
and classifying a wider range of small targets such as mopeds, 
dismounts, animals, birds, flocks of birds, and mini-drones. 
Basically, detection of these smaller targets requires lowering 
the detection threshold, with respect to both target radar cross 
section (RCS) and Doppler velocity. However, the sheer 
number of objects in crowded littoral and urban environments 
may potentially saturate the radar signal processing, leading to, 
e.g., lost tracks. Ultimately, situational awareness is affected. 

In these environments, full situational awareness can be 
maintained only if target classification can be done reliably and 
rapidly. Rapid classification allows filtering-out objects that are 
irrelevant for the current mission. For this first rapid 
classification, distinction between broad target classes may be 
sufficient. Depending on the mission, these broad classes could 
be man-made object, i.e., a potential threat, and bio-life, i.e., a 
non-threat, such as a bird. In a next classification step, it is 
desired to provide further separation within the potential threat 
classes to aid the threat assessment. For instance, the size or 
number of rotors of a drone may be an indication of its 
maximum payload. In this paper, the potential of exploiting 

micro-Doppler properties for this two-step classification 
approach will be reviewed. 

The classification problem addressed within the current 
study focuses on recognizing small unmanned aerial vehicles 
(UAVs). Mini-UAVs are an emerging threat and exhibit so 
called ‘LSS’ characteristics, for Low (altitude), Small (RCS) 
and Slow (speed), which makes them challenging radar targets 
when they operate in an environment with for instance birds. 

 To reduce the number of false alarms, it is important to 
quickly classify a UAV as a man-made object, preferable 
before the tracking stage where the identity of all objects 
currently present is maintained, and thus the number of 
uninteresting objects should be minimal to prevent track 
overload. In the next step, further characterization of the UAV 
is desired. Some characteristics of interest are the type of UAV, 
the number of rotors, approximate size, etc. This classification 
can be done by a trained human operator just by visual 
inspection of the preprocessed measurement data. It is also 
possible to use automatic recognition. Key is that the data is 
measured and presented such that certain features can be 
extracted that – combined – characterize the target class. A 
simple Bayesian classifier can e.g. be used to perform 
automatic classification. An important advantage of this 
approach is that this type of classifier also works with a subset 
of available features, in case some features are unstable or of 
low quality. 

This paper discusses only a part of the work done in a much 
broader research project in which different approaches for 
classification are investigated [1]. Here, the emphasis is on 
micro-Doppler features that enable fast distinction between 
birds and mini-UAVs and that can be derived from 
spectrograms and cepstrograms in a rather straightforward 
manner.  

Potentially relevant micro-Doppler features are discussed in 
Section II. Section III and IV discuss the spectrogram and 
cepstrogram respectively as the two important sources of 
features. Section V shows two real measurement examples. 
Sections VI presents the conclusion. 
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II. RELEVANT FEATURES 

Suitable features provide information on target parameters 
and are discriminative between relevant target classes. For 
reliable classification under varying conditions, features must 
be robust with respect to target type, radar settings, and 
measurement parameters, such as carrier frequency, sample 
rate, polarization, and aspect angle. In this section, the relevant 
micro-Doppler features for classification of birds and mini-
UAVs are reviewed. Some explanatory examples of 
spectrograms of real and synthetic targets, both man-made and 
bio-life, can be found in Chen [2]. His work is also a good 
starting point for understanding the micro-Doppler 
phenomenon in general, feature extraction, classification and 
related micro-Doppler concepts.  

A. Radar Cross Section 

In general, the RCS of mini-UAVs is higher than that of 
birds (depending on the species). RCS is therefore a 
discriminative feature, but it is not a robust feature. Observed 
RCS levels fluctuate significantly as function of aspect angle 
and radar frequency. One reason is that small and medium-
sized birds and mini-UAVs are in the Mie resonance region for 
S-band and X-band radar frequencies. 

B. Main Velocity Component 

Typically, the main velocity component in a spectrogram is 
due to the motion of a target as a whole, assuming the body or 
fuselage gives the strongest reflection. Velocity components 
due to moving parts are usually weaker. The velocity of birds 
and mini-UAVs is in the same range, such that radial velocity 
is not discriminative. Also, radial velocity is not a robust 
feature since it depends on direction of flight. 

C. Spectrogram Periodicity 

Many target micro-motions are of periodic nature, i.e., the 
pendulum-like motion of a bird’s wings and the rotation of 
rotor blades. The related spectrograms are periodic as well. The 
period of a mini-UAV spectrogram is determined by the rotor 
rotation rate, which is generally one order of magnitude higher 
than that of manned helicopters. The period of a bird 
spectrogram is related to the wing beat cycle. The wing beat 
frequency of birds is between 2 and 20 beats per second, 
depending on the species.  

D. Spectrum Width 

The spectrum width indicates the maximum velocity of the 
micro-motions relative to the main velocity component. This 
feature can be exploited to distinguish birds from mini-UAVs. 
The spectrum width associated with flying birds is just several 
meters per second. Typically, the velocity spread related to 
spinning rotors is much wider. The spectrum width feature is 
robust with respect to radar parameters, but it depends on the 
target aspect angle. High sampling rates are necessary to obtain 
the unambiguous Doppler spectrum. 

E. Spectrogram Symmetry 

The shape of the spectrogram relative to the main velocity 
component is indicative for the number of moving parts and 
their relative direction of motion. Typically, the spectrogram of 
a rotor with an even number of blades is symmetric about the 
main velocity component; the blades give rise to the ‘blade 

flash’ at the same time. In case of a rotor with an odd number 
of blades, the flashes occur after each other resulting in an 
asymmetric spectrogram (for some examples see, e.g., [3]). 
Also birds induce an asymmetric spectrogram, because both 
wings move up and down at the same time. 

III. SPECTROGRAM GENERATION 

A spectrogram reveals the instantaneous spectral content of 
the time-domain signal and also the variations of the spectral 
content over time. The appearance of a spectrogram depends 
on waveform and processing parameters, which will be 
discussed next.  

A spectrogram is obtained by taking the magnitude squared 
of the short time Fourier transform (STFT) of a discrete signal, 
where the STFT can be written as: 

     { [ ]}   (   )  ∑  [ ] [   ]          
    

(1) 

Here,  [ ] is the discrete signal,  [ ] is the discrete 
window function, which is nonzero in [    ] and zero 
elsewhere,   is the number of samples in the analysis window, 
and   is the discrete frequency    , where    is the Fourier 
resolution,           with sampling frequency   . For  
radars measuring range and Doppler,    is sometimes called 
PRF or SRF for pulse and FMCW-radars respectively. Index   
determines the position of the analysis window. By repeatedly 
calculating the STFT with increasing   using a step size   , 
the spectrogram can be obtained.    can be chosen such to 
realize a certain overlap between two consecutive analysis 
windows, which gives a smoother result in the time dimension. 
Evidently, for  , a power of 2 can be chosen or   can be zero-
padded to a power of 2 in order to enable using the FFT which 
is computationally faster compared to (1). We will assume this 
is the case in the remainder of this text. 

If we want to generate a visually useful spectrogram of a 
certain event, such as the flapping of a bird’s wing, we first 
need to choose a value for  . As a rule of thumb, we should 
choose to have the integration interval      as a fraction of the 
length of the event. This we refer to as the ‘short integration 
interval’. Note that the radar wavelength is critical in order to 

obtain a certain velocity resolution   , as,    
 

  
 

   

  
. To 

quantify the example, the wing beat frequency of the majority 
of bird species is in the range of 2 to 20 beats per second, and 
the maximum radial velocity around 15 m/s depending on the 
measurement angle. If we measure with X-band, then   
  cm. If we take a fairly high wing beat frequency of 10 Hz and 
sample it 5 times faster, i.e. 50 Hz, our      becomes 20 ms. 
This fixes    to 0.75 m/s, which is an acceptable value. The 
spectrum width associated with flying birds is only several 
meters per second. The sample rate can thus be relatively low, 
i.e., several kHz in X-band 

Rotor blades exhibit much fasters events, with much higher 
velocities. The event – a single rotation of a rotor – is usually 
in the order of several milliseconds with blade tip velocities 
reaching up to 200 m/s or higher. With a CW radar we can 
realize the high    required to measure the high velocity, say 
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several tens of kHz. Such high sample rates are also feasible 
for some short-range surveillance radars. 

For periodic events that are ‘stable’ for a while, we can 
generate the ‘long integration interval’ spectrogram. By 
applying a longer integration time     , several cycles of the 
rotor blades are included. The instantaneous spectral content is 
now dominated by the rotation rate of the blades causing 
modulation peaks. The instantaneous radial velocity of the 
blades is no longer observable. The difference between short 
and long integration interval is shown in Fig. 1. 

 

Fig. 1. Simulated spectrograms of rotating helicopter blades, using a 
relatively short integration time of 2.5 ms (left) and a relatively long 

integration time of 150 ms (right). 

In Fig. 2 the effect of overlapping integration intervals is 
shown. In the left figure the overlap is only 40%. The 
discontinuities in frequency from one integration interval to the 
next are apparent. In the right figure the overlap is 80%. Here 
the changes of the spectral content are more gradual and the 
spectrogram is more detailed.  

 

Fig. 2. Simulated spectrograms of rotating helicopter blades, using different 

overlaps between successive time sequences: left 40% and right 80%. 

IV. CEPSTROGRAM GENERATION 

The power cepstrum was defined in a 1963 paper by Bogert 
et al [4]. One can use it to obtain information about the rate of 
change in the spectrum and it has been used for e.g. 
characterizing seismic echoes from earthquakes and for human 
speech analysis. In the original paper the (continuous) cepstrum 
is defined as, 

  { ( )}  |   {   (| { ( )}| )}|  

The free variable has the dimension of time and has been 
coined ‘quefrency’ (comically in line with the rest of the 
cepstrum vocabulary). The periodicity can be obtained by 
taking the inverse of it.  

Noll and Schroeder proposed the short-time cepstrum 
version for their speech research [5]. We can construct the 

short-time cepstral graph, or ‘cepstrogram’ from the discrete 
STFT through, 

   { [ ]}(   )  |    {   (|    { [ ]}(   )| )}| 

The cepstrogram will prove particularly valuable in the case 
of long integration interval measurements on rotor resp. 
propeller carrying targets. We can use it to determine the 
spectrogram periodicity, which is related to the blade flash 
frequency, which in turn is related to the angular velocity of the 
rotor or propeller. In case of multiple rotors, we might even 
determine whether we deal with a single rotor, or multicopter 
type target. In clear cases, we can even estimate the number of 
rotors and their individual angular velocities. To illustrate this, 
we have generated synthetic time signals of mini-UAVs having 
1, 2, 4, 6 and 8 rotors. We assumed 12cm blade length with 2 
blades per rotor. The average rotation rate was 80 RPS, with 6 
RPS difference between the rotors. In addition, we have added 
a slight 3 RPS variance on the rotors to account for some minor 
steering dynamics over time. The simulations were done for a 
CW radar operating at 10 GHz, with a sampling rate of 24 kHz 
and       85.3ms.  

Fig. 3 and Fig. 4 show the cases for a single rotor and 6 
rotors respectively. Note that the cepstrum peaks around 
6.25ms, which indicates a periodicity of 160Hz originating 
from the 2 blade flashes we see for each full rotor cycle. Also 
note the 6 lines in Fig. 4 and their non-equidistant position in 
the cepstrogram, due to the different rotation rates. 

 

Fig. 3. Spectrogram and cepstrogram from a simulated stationary target with 

1 rotor carrying 2 blades. 

 

Fig. 4. Spectrogram and cepstrogram from a simulated stationary target with 

6 rotors carrying 2 blades per rotor. 

With 3 blades per rotor, we would have found the cepstral 
peaks around 4.17ms.  

To further demonstrate the potential of the cepstrogram, we 
point out the natural cyclic property of the (inverse) Fourier 
transform in (3). Let us assume a radar with a sampling rate of 
only, say 3 kHz, corresponding to a feasible range-Doppler 
surveillance operation. The blind velocity at X-band is around 
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+/- 22.5 m/s, whilst the blade tip velocity in our example is 

        -         m/s, so significant aliasing occurs. This 
disables us to find the micro-Doppler spectrum width. 
However, if we monitor the cepstrogram, we can still identify 
the micro-Doppler periodicity of the target, indicating a man-
made object, probably a mini-UAV. This is illustrated in Fig. 5 
for a quadcopter type target. Note that the cepstral resolution is 
much lower now, but still shows multiple rotors.  

 

Fig. 5. Spectrogram and cepstrogram from a simulated stationary target with 

4 rotors and 2 blades per rotor. Sampling frequency is 3 kHz. 

V. APPLICATION ON REAL MEASUREMENTS 

A low power CW-radar operating at X-band was used to 
acquire measurements on real life targets. In Fig. 6 a 
measurement on a small radio-controlled (RC) helicopter is 
shown. The spectral width is clearly visible in the long 
integration interval and appears quite constant. The short 
integration interval reveals a relative slowly rotating, even-
bladed main rotor and a much faster rotating, yet shorter 
second rotor (the tail rotor), also even-bladed. Both rotors are 
also visible in the cepstrogram, with the main rotor producing 
the strongest signal at 20.6ms quefrency, which corresponds to 
~24 RPS for the two-bladed main rotor. This value is true for 
this particular RC helicopter. 

 

Fig. 6. Long and short integration interval spectrograms (top) of an RC 

helicopter shown bottom left. The cepstrogram is shown bottom right.  

An octocopter example is shown in Fig. 7. The short 
integration interval now appears chaotic due to the 
superposition of 8 asynchronous rotors. The long integration 
interval does reveal the spectral width and quite some 

dynamics in the separate harmonics, but the periodicity cannot 
be deduced from the spectrogram. The cepstrogram however 
show quefrency peaks around 5.5ms, which is 90.1 RPS for 
two-bladed rotors. As with the previous example, this value is 
true for this particular octocopter. 

 

Fig. 7. Long and short integration interval spectrograms (top) of an RC 

octocopter shown bottom left. The cepstrogram is shown bottom right. 

VI. CONCLUSION 

In this paper we have shown that spectrograms and 
cepstrograms can be used to easily extract key features for 
automatic or visual recognition of LSS-targets versus bio-life. 
The long integration interval spectrogram reveals the spectral 
width, and body velocity. The short integration interval 
spectrogram shows the spectral symmetry as well as the 
individual rotor echoes and blade flashes. The cepstrogram 
shows the periodicity, and in clear cases also the number of 
rotors. The cepstrogram may also be particularly useful in case 
of lower sampling frequencies.  
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