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ABSTRACT

The use of ISAR imagery for Automatic Target Recognition is seriously hampered by the difficulty of target
motion compensation. Phase perturbations that result from target maneuvers during the processing interval
need to be corrected for. In a previous paper, we demonstrated the use of the local Radon transform for
estimating the radial velocity of a target. This estimate can then be used to align a sequence of range profiles
prior to cross-range compression. In this paper, we make a quantitative comparison of the results that are
obtained using different types of local Radon transformations. In the second part of this paper we outline
an algorithm for compensation of phase perturbation that are caused by non-uniform target rotation. The
algorithm has been tested on simulated data.
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1. INTRODUCTION

Traditionally, ISAR images are formed by evaluating the phase history of a sequence of range profiles during a
certain coherent processing interval, using the Fourier transformation. However, the use of this method for radar
target recognition is seriously hampered by the difficulty of target motion compensation. Phase perturbations
imposed by target maneuvers during the processing interval need to be corrected for.

In a previous paper, we described the use of the the Radon transform of the time-frequency representation
for the correction of phase perturbations during the coherent processing interval.1 In addition, we demonstrated
the application of the local Radon transform to the estimation of the radial velocity of the target. The estimated
radial velocity was then used for alignment of the range profiles prior to cross-range compression.

In this paper we further explore these two issues. In the first part of the paper we discuss range alignment
using the – Cohen’s class – quadratic local Radon transform for radial velocity estimation. In the second part
an algorithm for compensating for non-uniform target rotation is demonstrated. The algorithm is based on
the detection of chirp signal components in the Radon transform of the time-frequency representation. In an
iterative procedure we then determine the location of scatterers that are associated with the chirp components
in the signal. The algorithm can be considered a modification of the CLEAN algorithm for target feature
extraction.2 With the CLEAN algorithm sinusoids are extracted, whereas our algorithm extracts chirps.

2. TARGET TRANSLATIONAL MOTION

In ISAR range-Doppler imaging with ground-based radar systems the radar location is fixed and the synthetic
aperture is created by the motion of the target. Figure 1a shows the geometry of ground-to-air radar ISAR
imaging. The (simulated) data that is used throughout this paper has been generated using the method of
Chen and Miceli.3 In order to obtain simulated data from a maneuvering target a sequence of range profiles is
computed. The individual range profiles are obtained by summation of a series of time-delayed point scatterer
responses. The motion of the target is introduced into the model by changing the positions of the scatterers in
subsequent range profiles.
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Figure 1: (a) Radar and target geometry, and (b) target model.

The radar is located at the origin of the radar coordinate system, with axes X and Y . At X = 0 the target is
located at range R0. Due to translation of the target with time-varying target velocity v(x), the target location
shifts to R(x) (we denote the cross-range time coordinate by x). The target coordinate system, with coordinates
(u, v, w), has its origin at the center of rotation of the target.

The phase of a radar signal that has been reflected by a point scatterer at the center of rotation of a moving
target at range R(x) is given by4

φ(x) = 2π
2f
c

(
R0 −

∫ x

x=0

vR(x)dx
)

, (1)

where c is the speed of wave propagation, f is the frequency of the transmitted radar signal, R0 is the range
of the target rotation center at t = 0, and vR(x) is the target velocity with respect to the Line-Of-Sight (LOS)
of the radar. The LOS velocity vR(x) determines the Doppler frequency shift of the the rotation center of the
target and is defined as

vR(x) = v(x) ·�l, (2)

where v(t) is the velocity of the target and �l is the LOS unit vector.5 The purpose of ISAR motion compensation
is to remove the effect of the target radial velocity on the Doppler frequency, such that only the Doppler shift
that results from target rotation remains.

In our simulations we have modeled the target modeled as a collection of n point scatterers, with coordinates
(ui, vi, wi), i = 1, . . . n, in the 3-D target coordinate system. Figure 1b shows the geometry of a target projected
on the (u, v)-plane. The output of the simulation is a sequence of range profiles u(x, r), where the variable r is
used to denote the range time coordinate and x to denote the pulse (slow) time.

3. THE LOCAL RADON TRANSFORMATION

The linear Radon transformation of a 2-D signal u(x, r) is defined as

ŭ(p, τ) =
∫ +∞

x=−∞
u(x, r = τ + px)dx. (3)

In this parameterization the Radon transform performs the integration of the 2-D signal along slanted lines with
intercept τ and direction p. If the a target moves with a constant radial target velocity vR(x) = v0 the peak
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Figure 2: (a) Flight path, (b) range profiles.

of the Radon transform of a set of range profiles envelopes can be used to estimate v0. Subsequently the range
profiles can be aligned using the radial velocity estimate.6 Figure 2b shows a set of simulated range profiles
that is obtained with a time-varying velocity vR(x) = v0 + αvx

2. The radial flight path R(x) of the target is
shown in Fig. 2a. The global Radon transform is not suited for the estimation of a time-varying radial target
velocity vR(x). A local measurement of the slope of the range profile envelopes can be obtained using a local
Radon transformation.1 Using the relation between the Fourier transformation and the Radon transformation,
we can define a class of local Radon transformations that is an extension of the Cohen’s class of quadratic
time-frequency representations for time-varying spectral analysis7–9.

The straightforward approach to devise a local Radon transformation is to divide the data into overlapping
segments and perform the Radon transformation on each of the segments. Let the signal uw(x, r) be a portion
of the data weighted by the sliding window function w(x) centered at cross-range time x, i.e.

ux(x′, r) = u(x′, r)w(x′ − x, r). (4)

The sliding-window Radon transform is then given by

ŭx(p, τ) =
∫ +∞

x′=−∞
ux(x′, r = τ + px′)dx′. (5)

The sliding-window Radon transform and the sliding-window Fourier transform are closely related. Taking the
Fourier transformation of Eq. (5) with respect to the range r, we find

ûx(p, f) =
∫ +∞

x′=∞
ej2πfpx′

ûx(x′, f)dx′, (6)

which is a sliding-window Fourier transformation with respect to the x-coordinate. This relation can now
be used to devise a class of local Radon transformations analoguous to the Cohen’s class of time-frequency
representations.

A fundamental time-frequency representation in Cohen’s class is the Wigner distribution, defined as7

W (t; f) =
∫ +∞

τ=−∞
e−j2πfτu(t+ τ/2)u∗(t− τ/2)dτ, (7)
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which is the Fourier transformation with respect to the shift variable τ of the instantaneous auto-correlation
function R(t; τ), given by

R(t; τ) = u(t+ τ/2)u∗(t− τ/2), (8)

where the asterisk denotes complex conjugation. The Wigner distribution provides a sharper time-frequency
localization than the sliding-window Fourier power spectrum. However, the quadratic structure of the Wigner
distribution gives rise to cross terms, which may seriously complicate the interpretation of the Wigner distri-
bution. The cross terms can be suppressed by smoothing the Wigner distribution over time and frequency to
obtain a new representation

P (t; f) =
∫ +∞

t′=−∞

∫ +∞

f ′=−∞
Ψ(t′; f ′)W (t− t′; f − f ′)dt′df ′. (9)

The smoothing function Ψ(t; f) is called the kernel of the time-frequency representation P (t; f). The class of
the time-frequency representations that can be obtained by smoothing the Wigner distribution in time and
frequency is called Cohen’s class. The sliding-window power spectrum or spectrogram is a member of Cohen’s
class. The kernel of the spectrogram is given by

ΨSPEC(t; f) = Ww(−t;−f), (10)

where Ww(t, f) is the Wigner distribution of the sliding window function w(t).

The properties of a certain Cohen’s class quadratic time-frequency representation are determined by the
corresponding kernel function. In general, the kernels are most easily designed in the 2-D Fourier transformed
domain. The 2-D Fourier transform of the 2-D convolution Eq.(9) is given by

M(ν; τ) = Ψ(ν; τ)A(ν; τ), (11)

where M(ν; τ) is the characteristic function of the time-frequency representation and A(ν, τ) is the ambiguity
function of the signal u(t).

Using the relation between local Radon transformation and the sliding-window Fourier transformation Eq.(6)
we now propose a class of quadratic local Radon representations. The relation of the quadratic local Radon
representation and sliding-window Radon power spectrum Radon transform analogue of the relation between
Wigner distribution and spectrogram.

The local Wigner-Radon representation of the 2-D signal u(x, r) is defined as

S(x, r; p, τ) =
∫ +∞

ξ=−∞
R(x, r; ξ, ρ = τ + pξ)dξ. (12)

This local Radon representation is obtained by integration along slanted lines of the 2-D instantaneous auto-
correlation function R(x, r; ξ, ρ), defined as

R(x, r; ξ, ρ) = u(x+ ξ/2, r + ρ/2)u∗(x − ξ/2, r − ρ/2). (13)

As a result, we can apply the tools and methods of quadratic time-frequency analysis to local Radon power
spectrum analysis. For instance, cross term suppression can be achieved by smoothing the Wigner-Radon
representation. A similar approach is taken as in standard quadratic time-frequency analysis. Kernels that
have desirable properties, such as optimal cross term suppression for a broad class of signals, can be also
be employed for local Radon transform analysis. The corresponding local Radon power spectra have similar
properties as their time-frequency counterpart.
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4. RANGE ALIGNMENT USING THE QUADRATIC LOCAL RADON
TRANSFORMATION

In Fig. 3 we compare the results of Quadratic Local Radon Transform (QLRT) analysis of the range profiles of
Fig. 2 with four different kernels. There is only one target present in the range profile sequence. As a result, the
range shift due to the translational motion is constant in range. Therefore, a local analysis in the x-coordinate
only is sufficient in the single target case. The images in Fig. 3 represent the local directional decomposition
S(x; p, τ = 0) of the range profile envelopes |u(x, r)|. Figure 4b shows the estimate of the local direction of
the range profile envelopes pm(x) ≈ dR(x)/dx. The local direction is directly proportional to the radial target
velocity vR(x) and can be estimated as the location of the peak of S(x; p). Figure 4a shows the estimated radial
flight path of the target R(x).

The spectrogram kernel LRT (cf. Eq.(10)) suffers from similar drawbacks as the spectrogram. The extracted
maximum deviates strongly from the true direction where sudden changes in the signal occur. The results of
the Choi-Williams kernel LRT with kernel

ΨCW(κ; ξ) = e−
(2πκξ)2

σ , (14)

where κ and ξ are the Doppler frequency and pulse time correlation variables, and Smoothed Pseudo Wigner
LRT with kernel

ΨSPW(κ; ξ) = h(κ)w(ξ/2)w∗(−ξ/2), (15)

are closest to the true direction of the target (Figs.3b and 3c). The result of the Cone-kernel LRT, with

ΨCK(κ; ξ) = w(ξ)|ξ| sin(πκξ)
πκξ

, (16)

is close to that of the spectrogram kernel LRT.

Figure 5 shows the ISAR images that are obtained when using the different QLRT kernels for range alignment.
The Doppler-range ISAR image u(fD, r) is obtained by taking the DFT with respect to the pulse time (x) of
the aligned range profiles. A measure of the quality of the range alignment is given by the peakedness of the
images (after scaling to their peak amplitude), defined as

k =
∑

|u(fD, r)|4 . (17)

The images show that best focussing is achieved with the Choi-Williams kernel LRT and Pseudo Smoothed
Wigner kernel LRT. When using the true radial flight path for range alignment we have k = 13.2. We have
tested our range alignment procedure on measured data, with similar results and relative performance of the
different kernels.

5. DOPPLER FREQUENCY ALIGNMENT

After compensation for linear motion of the target, the remaining phase variations in a range cell during the
CPI are due to the rotational motion of the target. In traditional range-Doppler ISAR imaging uniform target
rotation is assumed, since it will result in the localization of point scatterers in the target at a single Doppler
frequency. The Doppler frequency produced by a scatterer in the target can be expressed as4

fD(x) =
2f
c

∣∣∣�v(x) ·�l(x)
∣∣∣ , (18)

where �v(t) is the scatterer’s velocity vector. Let �r = (u, v, w) be the position vector of a scatterer measured
from the center of rotation, the Doppler frequency shift of the scatterer is then given by4, 5

fD(x) =
2f
c

(
�Ω(x) × �r

)
·�l(x). (19)
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Figure 3. Local directional spectra, (a) Spectrogram kernel, (b) pseudo smoothed Wigner distribution kernel, (c)
Choi-Williams kernel, (d) cone kernel. The dashed line is the location of the maximum.

For a smoothly moving target, the angle η between the rotation vector �Ω and the LOS unit vector remains
approximately constant over the CPI. The Doppler frequency shift that is induced by the target rotation is
constant as well, and is given by4

fD =
2f
c
Ω sin(η)rc =

2fc

c
Ωerc, (20)

with Ωe the magnitude of the effective rotation vector and rc the cross range displacement of the scatterer.
The rotation vector is a combination of the roll, pitch, and yaw rotations of the target. The combined actual
rotation vector determines the Doppler frequency-shift of the scatterers.4, 5 The effective rotation vector �Ωe is
normal to the LOS unit vector and normal to the image projection plane.5

For non-uniform target rotation the Doppler frequency will not remain constant during the CPI and as a
result the ISAR image will be blurred. Time-frequency analysis has been proposed to capture the variations
in Doppler frequency as a function of time.10, 11 Although time-frequency analysis is has proven itself as
an excellent tool for analyzing time-varying Doppler frequencies, there are some drawbacks that decrease its
usefulness for ISAR target recognition. For instance, the improved resolution of time-frequency representations
of Cohen’s class seldomly completely outweighs the problem of cross term interference in the time-frequency
images. Moreover, time-frequency analysis expands a 2-D sequence of range profiles into a 3-D sequence of ISAR
images, and the amount of data may quickly become difficult to handle for a target recognition algorithm.

However, for certain types of Doppler frequency variation the time-frequency representation can be used as
an intermediate step for coherent processing of non-stationary signals. In the following we will demonstrate this
approach for a target with accelerating rotation. We have developed an algorithm to correct for this type of
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Figure 4: (a) Flight path, (b) local direction.

non-uniform rotation using the linear Radon transformation of the time-frequency representation of a sequence
of range profiles.

6. RADON-WIGNER CHIRP CLEAN ALGORITHM

In Figs. 6a and 6b we show a two point scatterer target model and the simulated radar return signal from this
target,where we have increased the (yaw) rotation rate linearly during the CPI. The angle η = π/2 between the
rotation vector �Ω and the LOS unit is assumed to remain constant over the CPI. The Doppler frequency shift
for a single point scatterer that is induced by accelerating rotation can now be approximated by

fD(x) =
2f
c
(Ω0 + αΩx) rc = fD(x = 0) + αfDx, (21)

where αΩ is the acceleration rate of the rotation. The time-frequency representation P (x, fD) of the radar
return signal is shown in Fig. 6c. The two point scatterers are expressed as two ridges with in time-frequency
representation with intercept νD = fD(x = 0) and (constant) direction αfD . The parameters that describe
the localization of these linear features can be estimated from the Radon transform of the time-frequency
representation.12, 13

The Radon transform of the time-frequency representation is defined as

Q(αfD , νD) =
∫ +∞

x=−∞
P (x, fD = νD + αfDx)dx. (22)

The ridges have been mapped to peaks that are localized at the intercept and direction corresponding to the
parameters of the point scatterers. The location of the peaks in the Radon-Wigner transform can now be used
to estimate the cross-range position of the point scatterers. Here, we demonstrate an iterative algorithm for
robust estimation of the scatterer positions from the parameters of the chirp components in the signal. The
algorithm can be considered a modification of the CLEAN algorithm and the approach taken here is similar

Proc. of SPIE Vol. 5102     195

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/17/2014 Terms of Use: http://spiedl.org/terms



Doppler

ra
ng

e

spectrogram kernel  k= 4.7

(a)

Doppler

ra
ng

e

smoothed PWD kernel  k= 6.8

(b)

Doppler

ra
ng

e

Choi−Williams kernel  k= 7.2

(c)

Doppler

ra
ng

e

cone kernel  k= 6

(d)
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to that of the AUTOCLEAN algorithm for autofocus ISAR motion compensation.14 The algorithm can be
summarized as follows

• Step 1: Compute the Radon-Wigner representation of the radar return signal y(x, r = ri).

• Step 2: Estimate the Doppler frequency change rate αfD of the highest peak in the Radon-Wigner repre-
sentation.

• Step 3: De-chirp the signal by multiplication of y(x) with the complex conjugate of a signal yc with chirp
rate αfD , i.e., yc(x) = ej2παfD

x2
.

• Step 4: Estimate fD(x = 0) through estimation of the frequency of the dominant sinusoid in the de-chirped
signal (e.g. via the 1-D FFT of the de-chirped signal with zero-padding for high accuracy).

• Step 5: Subtract the dominant sinusoid from the de-chirped signal.

• Step 6: Undo the de-chirping by multiplication with y∗c (x).

• Step 7: Repeat Steps 1 to 6 until the relative change of the energy of the signal between two consecutive
iterations is less than some threshold ε.

A numerical example to demonstrate the algorithm is shown in Fig. 6. Figures 6a-d show the model and
estimated point scatterer location, the input radar return signal and the remainder after subtraction of the first
chirp component, the time-frequency representation of the radar return signal, and the Radon-Wigner transform
of the input signal, respectively. Figures 6e-h show the results at the second iteration of the algorithm. The
result of the algorithm for a more complicated target is shown in Fig. 6. Figure 6a shows the an ISAR image that
has been blurred by non-uniform – constant acceleration – target rotation. The Radon-Wigner chirp CLEAN
algorithm in Fig. 6 results in a much improved localization of the scatterers.

7. CONCLUSIONS

In this paper we have demonstrated the use of the Radon transformation for ISAR range and Doppler frequency
alignment. Accuracy of range alignment could be improved by using quadratic local Radon transformations,
compared to the results that can be obtained using the sliding-window Radon transformation. Similar results
have been obtained in experiments with measured data. For Doppler frequency alignment we have outlined
an algorithm that is based on chirp detection in the Radon-Wigner transform. The algorithm is based on the
linear Radon transform of the time-frequency representation. Consequently, the best results are obtained when
scatterers are expressed as linear chirps in the time-frequency representation, e.g. for the case of constant accel-
eration of rotation that was demonstrated here. However, for more complicated target rotation similar results
may be obtained using a generalized Radon-Wigner transformation for the detection of dominant scatterers in
the time-frequency representation.
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