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Chapter I

INTEGRATON OF DIVERGENT AIMS
IN MULTIDIMENSIONAL ANALYSIS

The predictive value of multiset multivariate methods is related to the optimal
inægration of two criteria: stability and exactness. Based on sEategies to combine
stable with exact prediction, we introduce a classification of hybrid and adjusted
multivariate methods. some considerations on mathematical tools and presentation are
added. An outline of the sruch¡¡e of this monograph is provided.

Introduction

Prediction is an important goal in multivariate analysis. we presume that the
researcher has optimized measurements in such a way that they are representative and

reliable for the samples to be studied. Within this scope we pursue the formulation of
prediction methods that are støble and at t¡e same time exøct. Therefore we have to
find some optimal integration of these two more or less divergent aims. In this
monograph an approach is preferred in which stable and exact predictions are

integrated in a theoretically simple way, because that is believed to offer possibilities
for arriving at better predictions. Theorertcally simple implies that the inægraæd

methods must be characærized by the fact that they maximize (or minimize) one æalar
function. (Without loss of generality the alternative of minimizing will subsequently
be omitted.) In addition, the contributions of the building blocks of the fit function
that define stability or exactness should not be balanced by user defined weights or
weights determined by cross-validation. Such weighæd fit functions introduce too
many additional degrees of freedom to be called simple here.

Most existing methods, which will be classified as hybrid methods are not simple
integraæd. Sequential and cyclic hybrid methods do not maximize one fir funcrion.
Sequential hybrid methods maximize several fit functions successively, while
utilizing optimal parameters of previously fitted models. An example is principal

component-Discriminant Analysis (Hoogerbrugge, willig and Kisæmaker, 19g3),
where the predictor variables are first decomposed into principal components, after
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which only a few dominant components are used in a discriminant analysis. Cyctic
hybrid methods maximize several fit functions cyclically, while utilizing optimal
parameters of previously fitted models, until a stationary phase is reached. An
example is "Soft Modelling" introduced and advocated by Herman wold (19g2). This
type of modelling is ofæn called "Partial Læast Squares" or "pLS", which refers to the
partitioning of parameters in estimable subsets. Apart from sequential and cyclic
metlods, many additive and multiplicative hybrid methods maximize one fit function,
but incorporate (exponential) weights ûo balance ståbilify and exactness of prediction.

These weights are user defined or optimized by cross-validation. An example of an

additive hybrid method wirh a balancing weight is Ridge Regression (Hoerl &
Kennard, 1970).

In this monograph we pursue the construction of simple inægrated methods. we
apply two guide-lines to achieve our goal. The first guide-line is to specialize sråbility
and exactness as much as possible in independent subfunctions, for example local
versus global functions. A local function is non zero only at a limited range of its
argument, while a global function maybe non zero everywhere. The second guide-

line is to incorporate special constraints for improving stability or exactness. Methods
with such constraints we call adjustedmethods.

The working field of our simple integrated approach is the area of multiset analysis.

In multiset analysis we consider information from different sources collecæd in two
or more sets, where each set contains one or more variables. Sometimes the
information is available as a number of matrices with similarities or dissimilarities-
Apart from the construction of simple inægraæd methods, we aim at ttre description
of multiset methods in a comprehensive system, using new theoretical concepts such

asfiIters, reflected variable, directed conebrton and secondary prediction.

In section 1.1 we relate st¿bility and exactness of prediction with corresponding
multivariate criteria, which are respectively set variance and sel correlation.In the
context of optimizing stability and exactness of prediction we provide in section 1.2

more ex¡rmples of hybrid methods and elaborate on the difference with adjusted
methods. In section 1.3 we introduce matrix algebra as a multidimensional tool for
condensing large amounts of information. In section 1.4 we make some comments on
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the relation between models and scalar fit functions and section 1.5 offers an
overview of the whole monograph.

1.1 Set variance and set correlation

In the multiset context we define multivariate prediction always between latent
variables corresponding to different sets of observed variables. Generally each latent
variable will be a linear combination of observed variables, so that they are not lat€nt
in the sense that we cannot actually compute them, as is the case in certain branches
of factor analysis and LISREL modelling. The term laænt only refers to the fact that
these variables ¿üe not directly observed. This definition of multivariaæ prediction is
without loss of generality, because prediction of one observed variable can be
achieved by defining a set of variables with only one variable. If a latent variable is
the weighæd sum of one set of variables, we denote the latent variable by set variate.
The stability of a predictive set variate is expected to be highest if the predictive set
variate is as representative as possible for the corresponding set ofobserved predictor
variables. A classical statistical measure for describing the dominant variation within a
set ofvariablæis setvarianc¿. Set variance in this predictive context refers to the total
variance of all predictor variables accounted for by the predictive set variate. Set
variance is the name used in this monograph for the "optimal weighting" criærion of
Principal Component Analysis (Gifi, 1990, chapær 3).
The exactness of prediction of a criærion set variate by a predictive set variate can be
quantified by the squared conelation. We refer to correlations between set variates of
different sets of observed variables as set conelar¡bns. If the set correlation is I or -1
an exact prediction is possible. If the set correlation is 0, prediction is not possible.
Examples of set correlation criteria are Canonical Correlation Analysis (CCA) and
(Canonical) Discriminant Analysis (DA) (also called canonical variate analysis,
Gittins, 1985).

In the context of this monograph set variance describes variation within sets of
variables and set correlation describes relations betweensets ofvariables. Stability of
set variates and exactness of multivariate prediction can now be optimized by
combining set variance and set correlation criteria in one analysis.
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1.2 Hybrid and adjusted methods
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We discern two main strategies for integrating the criæria of set variance and set

correlation. One straægy leads to hybridmethods and the other to adjusted methods.

In the next two sections we provide more examples of hybrid methods and elaborate

on the difference with adjusted methods. Section 1.2.3 shows how specialization in

hybrid methods changes the competitive parts in more complementary parts.

1.2.1 Hybrid mcthods use competitive subfunctions

Hybrid methods merge set variance and set correlation by joining their corresponding

fit functions in an additive, multiplicative, sequential or cyclic way. In principle all

participating fit functions are incorporated in an equivalent way. We give some more

examples.

A not very obvious example of an additive hybrid method is Redundancy Analysis

(RA) of Van den Wollenberg (1977). As will be shown in chapær 2, this method

uses a set variance measure for the criærion set and a set correlation measur€ for the

predictor set. The metric of sets gives an indication of the hybrid nature of RA (cf.

Meulman, 1986). In terms of the metric of sets we analyze the criterion set in the

Euclidean metric and the predictor set in the Mahalanobis metric. DeSarbo (1981)

formulates a weighted additive hybrid model on top of this by adding up RA and

CCA with weights specified by the user. Continuum Regression proposed by Stone

& Brooks (1990) is an example of a exponentially weighæd multiplicative hybrid

model. As will be shown in chapter 5, a set correlation fit function is multiplied wittr

an exponentially weighæd set variance fit function. Many sequential hybrid models

are formulated in two-sæp procedures by applying a set variance function in the first

sæp followed by a set correlation function in the second sæp. For instance, the

Principal Components regression method extracts some suitable number of

dimensions in the first sæp and applies regression in a second sæp. Hoogerbrugge,

Willig and Kisæmaker (1983) describe such a procedure for Discriminant Analysis,

which is commonly used in chemometics.
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h hybrid methods all participating fit functions are incorporated in an equivalenr way.
In this sense the contributing parts have to do the sarnc job: optimizing a subfunction.
We conceive hybrid methods therefore as competitive methods.

1.2.2 Adjusted methods for a complemcntary approach

Adjusæd methods combine set variance and set correlation criteria in such a way that
one main criterion is modifîed by constraints corresponding to other, secondary
criæria for improving st¿bility or exactness. The adjustments can be, for example,
partialling out, improving or reflecting. Each adjustment will be carried out by
enforcing some kind of consrraint, named afær the effeci of the adjustment. The
partialling out constraint implies forcing a secondary function to be equal to zero. It
nullifies all relations with external information that is known to be irrelevant. The
improving constraintlocally improves a secondary adjusting function. Tlne reflecting
constaint filters out irrelevant information as much as possible by using known
relevanf external information as a mirror. Space restrictions, which force latent
variables to be in the space of some designated set of variables, can always be
simulated by extreme weighting in multiset hybrid models. Therefore these space
restrictions are not incorporated in the list of const¡aints for adjusted methods.

In adjusted methods we do not want different subfunctions to do the samejob in a
competitive way, but to do dffirent jobs in a complementary way. we achieve this
goat by maximizing one ftt function modified by constraints of other secondary
models. Set variance and set correlation are simple inægraæd in adjusted methods. In
chapter 3 on Set Correlation with Set Variance Constraints, the emphasis is primarily
on maximizing squared conelations between set variates, and secondarily on locally
improving the variance accounted for by the set variates by some fixed improvement
step. so the main fit function is the sum of squared set correlations, and the
secondary set variance constraint enables a local improvement on the variance
accounted for' In chapter 4 on Set Variance with Set Correlation Constraints the
emphasis is primarily on maximizing the variance accounted for by predictive set
variates, and secondly on using the correlations with external set variates for
modifying the importance of the predictive set variates. As an example consider these
extremes: If the correlation is 1 or -1, the importance of the predictive set variates
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remains unchanged; if the conelation is 0 the importance is 0. In fact, we maximize

the'rclevant variance accounted for'by filæring out inelevant information as much as

possible. The main fit function is to maximize variance accounted for and the

secondary set correlation constraint is to assess the relevance of the information. For
this purpose we formulate reflecting fiIters, which project variables on to a reference

set and then reflect these va¡iables back to their own set.

1.2.3 Specialization in hybrid methods

Competitive hybrid methods can approximare the complementary property of adjusted

methods by an appropriaæ modification of the fit functions involved. In chapter 5 on

Directed Correlations and Partial Læast Squares we forrnulate a multiplicative hybrid

method with a global and a local fit function. The global fit function is maximized

over all sets, and the optimal set variate of all other sets can change if one of the

optimal set variates is changed. The local fit function gives in principle an optimum

for each set variate separately; the optimal set variates remain invariant under changes

of other sets. By this approach the maximization of the local fit function is focused

within sets and occupies a different niche from the global function, which maximizes

the relations between sets. Another example of specialization is to model the

projections of set variates in regions with moderate and high eigenvalues different

from projections in spurious regions with low eigenvalues.

1.3 Multidimensional geometry by matrix algebra

To inægrate concise descriptions of within set structure with concise descriptions of
relations between sets \ile need some device for making concise descriptions. We

have chosen to make these descriptions with matrix algebra, which offers an

extension of the basic Euclidean geometry of two and three dimensions to ¿
dimensions. Although it is possible to work with matrix algebra without drawing any

geometric pictures, we like to keep in touch with basic Euclidean geometry. The

visual illusradon and explanation of matrix theory can provide valuable 'insights' and

therefore several drawings of variable structures have been added. Variables or
patterns can be geometrically represented by points or vectors (arrows) in a

multidimensional space. We emphasizp that each point or vector in this space stands
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for a whole variable or pattern. An appropriate low-dimensional representation of
these points (for example in a plane) can reveal the structure of a set and/or the
relations between sets. It is also possible to infer predictions from one set to another.

1.4 Models and fit functions

Throughout this monograph we will very ofæn describe a model or multivariate
technique by just giving the least squares function to fit the model. we opæd for this
approach with the following considerations.

- In most loss functions the model is fitæd by minimizing the residual error and
therefore the model can easily be derived from this function. If we do not confine
ourselves to least squares functions, it is possible for many functions to derive a
model and fit this model in another way. This viewpoint, however, will not be
elaboraæd.

- For well-known techniques like principal component Analysis or Multiset
Canonical Correlation Analysis it is possible to give two or maybe more models for
the same least squares fit function. For such dual æchniques a fit function gives a

more precise description of its properties than just one model. A simple example of
this phenomenon is given by the correlation between two variables. If we take nvo
unit normalized variables, a fixed variable h and some space restricted laænt
variable x both having zero mean, then the fit function for the (Pearson) correlation
is h'x. Maximizin-g h'x gives the same result for x as minimizing the loss
functions llt¡ - x¿ll2 or llx - hall2 with scalar weights b and a.The corresponding
models derived from these loss functions are respectively h=xå+e¡ and x=hø+e¡.
This makes our slight preference for fit functions plausible.

1.4.1 Notation

Without loss of generality all variables are assumed to be centred and to have unit
sum of squares. For variable h this implies thath'l=0 and h'h=l, where I is a
vector with elements 1. With this convenient normalization the (Pearson) correlation
between two variables is denoted by the inner product, as we did in the previous
section with h'x for the correlation between h and x. Geometrically the correlation
h'x gives the cosine of the angle between vector h and x.
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The optimal solution in p dimensions of several models is indeterminate, due to

rotâtional freedom. Most fit functions of the methods involved can be maximized by

an eigenvalue decomposition. Exceptions are Set Component Analysis and Nonlinea¡

Reflecæd Discriminant Analysis, for which an iterative algorithm is described in

chapær 6, and most of the PLS methods of chapær 5. We always implicitly assume

that the optimal solution inp dimensions is defined by taking the firstp eigenvectors

with the eigenvalues arranged in descending order. By this choice, all solutions for

different numbers of dimensions are nested.

I .5 Outline

In chapter 2 on Multiset Models we describe well-known multivariate methods by

defining filters that transform the eigenvalues. The basic method for this filter
approach is Multiset Filtered Component Analysis (MFCA). In chapær 2 and 3 the

filærs a¡e simple functions of the eigenvalues. In chapter 4 transition matrices are

incorporated in the filters, that modify the eigenvalues through projections. A
preliminary version of the theory in chapter 2 is presented in Nierop, 1989. The

structure of chapter 2 is guided by the construction of MVA methods with set

variance and set correlation constituents. In a section about one rype of filter we

discuss methods like Multiset Principal Component Analysis (MPCA), which apply

only set variance filters, and methods like Multiset Canonical Correlation Analysis

(MCCA), which apply only set correlation filters. Two new MPCA methods are

formulated for balancing the set variance between sets, based on potential variance

accounted for and information span. In consecutive sections set variance and set

correlation are integrated in hybrid methods. These methods are hybrid and not

adjusæd, because the integration is not with special constraints for improving stability

or exactness. In a section about dffirent types of filters we start with straighforward

additive hybrid methods without weights. Some sequential hybrid methods are

discussed in a section abot¡t discrete compound fílters. Finally some weighæd

additive hybrid methods are described in the last section about continuous compound

fiIters. All compound filters apply the specialization of hybrid methods mentioned at

the end of section 1.2.3. Spurious regions with low eigenvalues are dominaæd by set
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variance modelling and regions with higher eigenvalues are dominated by set

correlation modelling.

In chapter 3 on Set Correlation with Set Variance Constraints we formulate the

adjusted method of set component Analysis (Nierop, 1989, 1993). The method is

related with the hybrid methods of chapter 2 by describing quadratic filærs. Various
relations with other methods are discussed. For instance we show that maximizing
the SCA fit function gives the same results as fitting the INDSCAL model and

simultaneously penalizing non-orthogonality betrveen the INDSCAL dimensions and

the residuals. The properties of INDSCAL and SCA are compared in a simulation
study.

In chapær 4 on Set Variance with Set Conelation Constraints or Reflected Variance

the principle of reflecting variance (Nierop, 1991) is elaboraæd by defining Reflected

component Analysis (RcA) and Reflected Discriminant Analysis (RDA). It will be

shown theoretically how and under which conditions RDA can improve group
prediction compared to Discriminant Analysis (DA) and principal component -
Discriminant Analysis (PC-DA). In a simulation study theoretical resulrs are

confirmed. Some multiset and nonlinear extensions are proposed.

In chapter 5 on Directed Conelations and Partial Læast Squares a new multiplicative
hybrid method is formulated that maximizes the product of two complementary fit
functions, a local and a global MVA function. The local function gives a multiset
alternative for maximizing variance accounted for. The global function maximizes the

sum of squared correlations as formulated in chapter 3. These adjusæd correlations
are called directed correlations and are embedded in a multiset path analysis
framework utilizing primary and secondary predictions. The product function that
globally maximizes direcæd correlations and locally increases set variance as much as

possible is called Lifæd Direcæd Conelations (LDC). LDC is able to describe many

existing MVA methods, hybrid and adjusted methods. It also reformulates some

cyclic hybrid methods as multiplicative hybrid methods. Examples of these cyclic
methods are basic Partial læast Squares (wold, 1982), exænded partial læast Squares
(Lohmöller, 1989), Consensus PLS (Geladi, Martens, Martens, Kalvenes &
Esbensen, 1988), PLS1 regression (Stone & Brooks, 1990) and pLS Hierarchical
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Components (Lohmöller, 1989). Hitherto the PLS system was basically defined by

fitting several models cyclically. An overall maximization criterion was lacking.

Therefore it was classified as 'soft modelling'. With the LDC fit function the

appropriate maximization criterion is added to most of the PLS algorithms and

therefore PLS is turned into 'hard modelling'. Furthermore PLS variants with
theoretically better predictions can now be formulated, like in section 5.4.8 for the

asymmetric PLS2 regression method (Manne, 1987). Continuum regression (Stone

& Brooks, 1990) is reformulaæd as a weighæd multiplicative hybrid method. At the

end of chapter 5 adjusted methods like SCA of chapær 3 and reflected variance

methods of chapær 4 are formulated as special cases of directed conelations theory.

In chapter 6 we present two algorittrms for non eigenvalue-eigenvector problems.

First a simultaneous and successive monotone convergent algorithm for Set

Component Analysis (chapter 3) is developed, where an interesting general

algorithmic subproblem is to maximize the set variance of different matrices by

corresponding orthogonal latent variables. Secondly we elaborate a monotone

convergent algorittrm for Nonlinear Reflecæd Discriminant Analysis (chapter 4).

In chapær 7 we present analyses of real-life data using three methods developed in the

preceding chapters. For a psychomeric application of Set Component Analysis

(chapter 3) we compare the SCA solution of the Miller-Nicely data with the

corresponding INDSCAL solution. Reflecæd Discriminant Analysis from chapær 4 is

applied on mass spectrometric barley tissue profiles and compared with results for
PC-DA. The barley tissue profiles are also analysed with Nonlinear Reflecæd

Discriminant Analysis.

Finally we have concluding rema¡ks in chapær 8. Some methods and extensions in
the line of this monograph are indicaæd that might give useful analytic tools in the

future.



Chapter 2

A FILTER VIEV/

ON MULTISET MODELS

Many Multivariate Analysis (MVA) methods are build up with set va¡iance and set
correlation constituents. our fint aim is to show a variety of consfuction methods and
not an exhaustive inventory of methods. Two new methods are proposed, based on
potential variance accountedforandinformation span.The last three main sections
show how set variance and set correlation can be integrated with competitive
subfunctions and therefore illustrate the concept of hybrid methods.

Introduction

we describe well-known multiset multivariaæ methods in a comprehensive sysæm by

filtering the eigenvalues of sers of variables (Nierop, 1989). The approach is inspired
by van de Geer (1986). All filters in this chaprer apply simple funcrions ro rhe
eigenvalues of the original data. In section 2.1 the basic method for filtering
eigenvalues is described as Multiset Filæred component Analysis (MFCA). we
illustrate in the MFCA framework how space restrictions, which force latent variables
to be in the space of some designaæd set of variables, can be used for specific
prediction purposes. The global structure of this chapter is guided by the construction
of MVA methods with set variance and set correlation. constituents. Local atæntion is
given to the balancing of set variance between sets.

In section 2.2we discuss methods thatdefine only one type of fitter forall sets.In
section 2.2-r we introduce Multiset Principal component Analysis (MpcA), which
applies only sel variance filters. Two new MpcA methods are formulated for
balancing the set variance between sets, based on potential variance accountedfor
(section 2.2.4) and ínformation spare (section 2.2.s). A completely ne,ü approach of
balancing sets is offered in chapter 5 and denoted by multiset reciprocal pCA. RPCA
differs so much from the system of methods presented in this chapær that a sepæate

treatment is justified. The last 'one type of filter' method we describe is Multiset
Canonical Correlation Analysis (MccA), defined only by set correlation filærs. lve
show how to apply space restrictions in MccA in order to obt¿in ordinary 2 sets
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CCA. In the consecutive sections 2.3 to 2.5 set variance and set correlation are

inægraæd in hybrid methods. These methods are hybrid and not adjusæd, because the

integration is without special constraints for improving stability or exactness. In

section 2.3 we give some examples of straightforward additive hybrid methods that

define a dffirent rype of filter for different sets. Redundancy Analysis (Van den

Wollenberg, 1977) and, multiset generalizations of RA are formulated by specifying

different types of filærs in MFCA. Sequential hybrid methods very often arc two-srep

methods. The two-step methods are discussed in section 2.4 about discrete compound

filters.In the last section about conrtnuous compoundfilters we give weighæd hybrid

methods like Multiset Ridge Regression (MRR) and Fixed Set Component Analysis
(FSCA) that approximate the complementary approach of adjusted methods

mentioned in chapær 1 the most. All compound filærs apply the specialization of
hybrid methods mentioned at the end of section 1.2.3. Spurious regions with low

eigenvalues are dominated by set variance modelling and regions with higher

eigenvalues are dominated by set conelation modelling.

2.1 Multiset Filtered Component Analysis (MFCA)

We present Multiset Filæred Component Analysis as a ùool box for constructing many

MVA methods. The MFCA method is additive with respect to the contribution of the

sets. Basic componenß arcfilters for each set which model the eigenvalue st¡ucture of
these sets. In this chapter the filærs only consist of simple functions applied to the

eigenvalues.

Suppose ttre dat¿ to be analyzed are collected in the matrix H, partitioned into Ksets:

ff= (H1,..,Hk,..,HK) with n rows (objects) and m¡ columns (variables) for set H¡.
We assume without loss of generality that the variables are centred and have unit sum

of squares, so the columns have sum of squares equal to 1. These assumptions imply

that H¿'H¿ is a correlation matrix between the variables of set ft. The Singular Value

Decomposition (SVD) for set È is given by Ht - PtÕrQt', where Pp (n x p¡¿) and

Q* (n*x p*) denote orthonormal singular vector matrices and Õ¿ denotes a diagonal

matrix with p¡ non-zero singular values in descending order (p*<m*).So H¿H¿'=

P*@?*P*'and the eigenvectors P¿ and the eigenvalues O? of the symmetric matrix

HtH&' are equal to respectively the singular vectors P¿ and the squared non-zero
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singular values Õ¿ of H¿. For the analysis of H¿H¿' we only need p¿ and of, but
not Qt. The eigenvectors P& can be interpreted as independent basic information
patterns derived from the variables and the eigenvalues ô2¡ as information weights
assigned to these information pattenr.

The additive fit function of Multiset Filtered Component Analysis is a function of
common laænt variables X. It maximizes

K
MFCA: Fit(X) = i tr X'P¿Q¿(Õf)p¿'X,

k=l

13

(2.1)

with X'X=I, where P¿ rs grvenwrttl Ã )t=1, where P¿ is given by the SVD for set È, H¿ = ptÕte&', and where
ot(,Þb denotes a matrix with the filtered eigenvalues of set &. The filær e maps the
values of some matrix A in a formal way into matrix o(A). The filær is indexed with
,t, so every set has its own filær O¿.

we now derive particular methods by specifying the filærs. we give some simple
examples and start with Multiset hincipal Component Analysis (Mpce¡. The method
will be discussed in section 2.2.1 and is defined by a set variance filter

MPCA: o¿(o?) = úrlt. (2.2)

As will be shown later on in section 2.2. 1, substitution of this filter in (2.1) results in
Q.7).Tt,.e loss funcrion correspondineto (2.7) is called suMpcA* by Kien (19g9,
p.15). All different types of MpcA formulaæd in section 2.2.r willbe described by
substituting different scalars wpin (2.2). The names of the corresponding filters are:
identiry filærfor wk=I,tracefilterfor w¡=tfi,¡rrteigenvaluefilærfor w¡=fi¡and
maxVAF filter foru5}p Êrt

For Multiset Canonical Correlation Analysis (Canoll, 1968) úo be discussed in section
2.2.6,we have a set coÍelation filter

MCCA: o¿(o?) = r, (2.3)

where I is an identity matrix of appropriate size. Substitution of this constant fùter in
(2.1) results later in formula (2.22) of secrion 2.2.6 tboutMccA. By applying the
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constânt filter we replace the Pythagorean distånces between the rows of a certain set

by the Mahalanobis distances (Meulman, 1986).

For the description of Canonical Correlation Analysis (CCA) we have to add

subspace restrictions for predictor set c to (2.3)

CCA: C)¿(,Þ?) = I, with X = PcPc'X. for K=2 (2.4)

The canonical variates of set c are given by the optimal X for c =1 and c =2. This is

explained in section 2.2.8.

Many other methods can be described with MFCA by specifying filters, whether or

not in combination with subspace restrictions. In the next section we will first

elaborate morc extensively on the subject of subspace rcstrictions.

2.1.1 Subspace restrictions Íor prediction

In general, subspace restrictions introduce an asymmetry in the analysis concerning

the location of the common latent variables in one particular set. The motivation for

this asymmetry can be prediction; for instance, the prediction of one or more sets of

criterion variables by a linear combination of predictor variables. The common latent

variables of MFCA can only be expressed as a linear combination of predictor

variables, if the space spanned by the predictor set also includes the common latent

variables. For predictor set c this is achieved by requiring X = P6P6'X. The X are

sometimes labeled with c in order to discriminaæ between the optimal solutions X¡a,¡

that we obt¿in after imposing subspace restrictions on different sets c. We use the

notation 'c'especially for subspace restrictions in order to avoid confusion with 'È'in

subsequent sections. We give two examples of applying subspace restrictions for

predicúon purposes.

The intoduction of prediction in MCCA (2.3) is formulated as

CMCCA Clr(O?) = f, with X = PcPc'X, (2.s)

where the upper left superscript c of cMCCA indicates that we are dealing with a

subspace restriction on set c in MCCA. By maximizing this fit function we find

common latent variables that are a linear combination of set c and have the highest
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sum of squared canonical correlations with all other sets. In this case set c is a
predictor set in a 'set variate' sense, because it maximizes the relations with the set
variates and not with the set variables in terms of variance accounted for. The
maximization of cMCCA for K = 2 and c = I or Zgives the ccA solution, with the
canonical variates of set c equal to X¡s,¡. The two maximization problems lead in
principle to the same eigenvalue problem (section 2.2.8).If we know the prediction
for one set, we can easily derive from this solution the prediction for tle other set.

For more than two sets we cannot reduce the K maximization problems for c =
r,...,K to one single eigenvalue problem. Each prediction problem has to be solved
by itself, unless some of the Ps matrices occupy exactly the same space. In Gifi
(1990) a relaæd version of .MCCA is used for multivariaæ analysis of variance.

In an analogous way we introduce prediction of set variables in MpcA (2.2) by

¿T\4PCA ()r(o?l = &t.tr,with X = PcPc'x, (2.6)

with a subspace restriction on predictor set c in lupcA. By maximizing this fit
function for w¿-l V,t we find common laænt variables that are a linear combination
of set c and have the largest variance accounted for of all sets. For w¡ = qafi¡ y ¡
we maximize the mean proportion of variance of all sets accounted for by the
predictor set. For two sets (2.6) is equal to principal Covariates Regression as

proposed by De Jong & Kiers (1992) with s=wl and (l-c)=w2.

It is important to notice that subspace restrictions in an additive multiset method like
MFCA are also possible by introducing a very large weight ws in filter oc of
predictor set c. In this way (2.6) can for instance be simulaæd with (2.2). Therefore
subspace restrictions add no essential new feature to the MFCA method. Nevertheless

they are convenient and in next sections we will find other examples of applying
subspace restrictions for prediction purposes.

2,2 One type of filter

In the following subsections we give examples of methods that define only one type
of filter for all sets, only set variance or only set conelation filters. First we present

straightfonvard generalizations of Principal Component Analysis (Pca¡ for multiple

l5
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sets (MPCA) by applying set variance filærs and discuss in section 2.2.2 the upper

bounds for the variance accounted for under several conditions. These upper bounds

lead to the definition of potential variance accounted for and a corresponding

balancing of sets in section 2.2.4.ln section 2-2.5 the information span is proposed

r¡s a measure for assessing the efficiency of information transfer and the sets are

balanced with regard to this information span. Next Multiset Canonical Conelation

Analysis (MCCA) and ordinary 2 sets Canonical Correlation Analysis are defined

briefly. These methods apply set correlation filærs. The relation of CCA with MCCA
and MFCA is established in section 2.2.8.

2 .2. 1 Malrtset Principal Component Analysk ( MPCA)

A generalization of PCA for multiple ses is described by maximizing the following
function

MPCA: Fit(X) = r, f r[l X'H¿H¿'X = tr f X'pr@?*[1)pr'X

= tr X'HDilH'x = tr X'Pp¿¡¡(@É"rrn-rJ)pp"rix, (2.7)

denote the common laænt variables with X'X=I,
denote fxexl balancing constants for set k,

Dlü ,with I of
appropriate size,

Ppa¡t=(Pl,...,P¿,...,P¡),where we use the notation 'prfi, to indicaæ a partitioned matrix,

Õpart

The loss function correspondineto (2.7) is called SUMPCA+ by Kiers (1989, p.l5).
We point out that Ppa¡.t¡Þ3a¡'tppart' does not give the eigenvalue decomposition of
matrix HH', because Pp¿1=(P1,...,P¡<) is usually not an orthonormal matrix. Only
the P¡ are orthonormal for each set È separately. As we saw in section 2.1 formula

Þl

where nXp = (x1,..,,x5,...,xp)

W1,,..,Wk,,.. rw K

wtl 0 0

0 wpl 0

0 0 wxl

rÞ1 0 0

0 iÞ¿ 0

0 0 {Þ¡
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(2.2) substitution of this MpcA filær in (2.1) results in (2.7). The last part of both
lines in equation (2.7) is derived from the singular value Decomposition (SVD) of
each H¿, with H¿ = PtrÞtQ¿'. This part of (2.7) is added to get used to the idea that
the balancing of seß can also be described by a rescaling of the eigenvalues of these
sets. It shows that instead of maximizing the variance accounted for by X of the
partitioned manix

IdiD;) 12 
= 1H p 11 

12,..,H k*ll | 2,..,H 
xrkr 

12),

we can equivalently maximize the variance accounted for of the partitioned matrix

pp¿¡1Õp¿¡1D-nl I 2 - 1p 1a ylt | 2,..,p 
*a **ll 12,..,? yô xrkl t2 

).

As mentioned before the loss function conespondingto (2.7) is called suMpcA* by
Kiers (1989, p.15). The application of balancing constånts can for instance be found
in the sequential hybrid STATIS method developed by L'Hermier des plantes (1976)
(See also Kiers, 1989, p. 10). Because we are maximizing balanced variance
accounted for, we can relate the balancing constants w¿ with the variance accounted
for. In the next sections we will first derive for each set separately the upper bounds
of the variance accounted for, then we describe some examples of balancing in MpcA
by defining several MPCA filüers. Alt MPCA filters are conceived as set variance
filærs.

2.2.2 Poterxial variance accotnted for

Our rationale for the balancing of sets in MPCA is to control the maximum influence
of the sets on the solution with respect to their set variance. The influence of set È is
measured by the Variance Accounted For (VAF) byp common latent variables X. In
matrix formulation this VAF is equal o

VAF(X,È) = tr X'HftH¿'X = tr X'PtÕ?p*'X. (2.8)

An upper bound for (2.8) can be derived by Theorem 2 of ren Berge (19g3). This
theorem can be applied, because matrix x'p¿ is a suborthonormal matrix with rank <
p arLd ú,is a fixed diagonal matrix. A matrix is suborthonormal if it is a submatrix of
an orthonormal matrix. For X'P¿ this orthonormal matrix can be construct€d by

l7
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adding to the columns of X and P¿ their (semi-)orthonormal complement and

multiplying the two (n x n) orthonormal matrices in an appropriate way. The
inequality resulting from Theorem 2 is in our case

trX'P¿Õ]P¿'x s I Êr*, (2.e)

with the eigenvalues fr¡ uranged in descending order. The upper bound for set ,t of
the VAF inp dimensions is now given by the sum of the firstp eigenvalues

P¡
maxVAFþ,k) = 2 Qí*, (2.10)

with the eigenvalues fr¡mangeain descending order. we will refer to the value of
maxvAFþ,k) us the potential variance accounted Íor Qrotential vAF).It gives the

highest possible variance accounted forthat can be found for set È in ap dimensional

solution. we now derive upper and lower bounds of maxvAFþ,È). The upper bound
is reached, if H¿ is of deficient rank in the sense that the rz¡p smallest eigenvalues

are all equal to zero and maxVAF(p,È) =¡rfir=*¡. The lower bound is reached if H¿
is orthonormal and therefore all eigenvalues ¿¡re equal to 1. Under this condition the

m¡^p smallest eigenvalues are as large as possible, and maxVAF(p,k)=p.
Summarizing the results for set /c with unit nonnalized variables the poæntial VAF
varies between

p < maxVAFQt,k)3m¡. (2.1t)

2.2.3 Dffirentways lor defining balance among sets

We formulate some straightforward types of MPCA by fixing the balancing const¿nts

w¡¿in asimple way. In the next section we elaborate on the relation between balancing

sets and variance accounted for. The first type of analysis is MPCAi with w¿-l V/c.

So the rescaled eigenvalues are idenrtcal to the original eigenvalues. After substitution

of w¿=f Ykin(Z.1) we have to maximize

.s=1

.t=1

MPCAi: Fit(X) = tr X'HH'X = tr X'Ppa¡tÕ3*PPart'X, (2.r2)
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with X'x=r and notation according to (2.i). The type of set balancing presented

above amounts to maximizing the variance accounted for by X of the partitioned
matrix Pp"rtÕpan. lhe way the variables are grouped in sets has no influence on tre
solution, because PpartÕÊar.tpparr'=H H'.

The second type of analysis in this secrion we call MpCAt with w¿ = G&*) V,t. In
this case the balancing constånt is the trace of H¿H¿', which is equal to the sum of
the eigenvalues Õ! and equal to t}le sum of squares of H¡. with unit normalized
variables we have t&r=n¿. In the format of (2.2)we maximize (2.1) with filær

19

MPCAI odo?) =útt&. (2.13)

For MPCAT this amounts to maximizing the variance accounted for by X of the
partitioned matrices PpartÕpart (or H) afær the sum of squares of each set is
normalizpd to 1. Geometrically this normalization is achieved by rescaling all
sumvectors P¡rD¡¡l to sum of squares 1. verifying this statement we have
l'Õ¿P¡'P¿@ ¡l=lÞf, l=r¡Õ?t,vÈ. In figure 2.1 we show the implications of rrace
balancing for set a and bwith each 16 variables.

A set¿ B ætb
Figure 2.1 Trace balancing in MPCAT-

The eigenvalues of set ¿ are all chosen equal to 1 and the first two eigenvalues of b arc
equal to 9 and 4. From the orthogonal rescaled matix paaa/¡júlll2 *" have drawn
the two largest columnvectors denoted here by (m¿,nd in figure 2.1.A. The largest
columnvectors (m¿,n¿) from P¡Õ¿(trÕfi)-llz æedrawn in figure 2.1.8. The contour
of the shaded ellipses can be used to construct for any vectors X the variance
accounted for. This will be elaborated in chapær 5 (see figure 5.1). The radius of the
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thick quarter-circles is equal to the length of the rescaled sumvectors paûalþOh-llz
and P¡Õ¿1(trÕ?ù-112. Ansumvectors rescaled by trace balancing lie on a hypersphere

with radius 1 The potential vAF forp2 is .13 for ser ¿ and .81 for set å. Generally

we state that the trace balancing allows for great relative differences in potential VAF,
aspecially when the number of dimensions p is small. Of course ttre MPCAT solutions

will generally be dominaæd by sets with large potential vAF. we choose MpcAt if
we want tlre mean proportion of variance accounted for by X as large as possible.

The third type of analysis is MPCAf with w¿ = fi¡¿ Yk. The balancing const¿nr in
(2.7) is now the¡Írst eigenvalue Êt* otH,tHÈ', with the eigenvalues arranged in
descending order. We maximize (2.1) with filær

MPCAf: or(o?l =ú*tÊu. (2.14)

In figure 2.2 we show the implications of the first eigenvalue balancing by rescaling

set a and å appropriaæly.

A set¿ B setå

Figure 2.2 First eigenvalue balancing in MPCA|.

Figure 2.2has the same design as figure 2.1 only the scaling is changed. The radius

of the thick quarter-circles is equal to the length of the largest columnvectors ma and

m¡ of raspectively Pa<Þa@1-al urdPuÐu{tl. The poæntial VAF for p=2is 2.00 for ser

a and I.M for set å. Generally we state that the first eigenvalue balancing allows for
small relative differences in potential VAF, especially when the number of dimensions

is very small. The relative differences between sets in potential VAF can increase

quickly, if the number of dimensions p increases.
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2.2.4 Balancing oÍseß related to variance accowtedÍor

In the previous section we defined several types of set balancing. For the identical
balancing in MPCAi with w¿=l VÈ, the potential VAF of set È is between p and m¡¡,
dependent on the structure of the rescaled variables Hkwln as derived in (2.11). For
MPCAT this range is between plm¡ and l. We can find considerable differences in
poæntial VAF betr¡¡een sets, if the number of va¡iables of sets is large compared to the
number of dimensions. From the potential variance point of view the appropriate
balancing for set k in (2.7) would be to take )rrt = maxVAF Q),k) Vk, as formulated in
(2.10)' in order to obtain an equally balanced maximum influence of the sets on the
solution with respect to their set variance. T\e ¡naxVAF balancing gives another type
of MPCA We maximize (2.1) with filær

MPCAm: odob =&*t9, Êrr, (2.1s)

with p equal to the number of columns of X. In figure 2.3 with the same design as
for figure 2.r we illustrate the maxvAF balancing by rescaling set ¿ and b for p=2
dimensions (2.1Ð.

2t

AætaB
Figure 2.3 MaxVAF bal.ancing in MpCAm.

set å

The radius of the thick quarter-circles is equal ûo the length of the rescaled sumvecton
Poao\qlo+çjr,)-rt2 andPoaú|Ji?u+Su¡-ttz. we taue drawn rhe largesr
columnvectors (ma,na) and (m¡,n¿) from respectively paÕo @?o*Êzo)-rl2 und
p¡AútæÊu)-ttz hfigure 2.3.4 and 2.3.8. The poæntial VAF forp=2 is 1.00 for
set ¿ and 1.00 for set å as could be expected.
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The balancing of both MPCAT (2.13) and MPcAf (2.14) appears ro be special cases

of MPCAm balancing. It only depends on the number of dimensions we want to

comput€. Forp equal to the maximum number of dimensions we find the equality
MPCAm = MPCAT and forp = I rhe equality MPCAn = MPCAf. The solurions of
MPCAm are not nested. (Solutions are nested if successive computation of p
dimensions always gives the same results as simultaneous computation of p
dimensions for all possiblep.) This property can be seen as a drawback compared to
MPCAT and MPCAf. If one definiæly wants to choose only between trace balancng
or first eigenvalue balancing, the number of dimensions of the solution compared to

the maximum number of variables in a set has to be decisive.

An even more strict qluality concept can be formulaæd by requiring an equal balance

of the influence of sets on each dimension with respect to set variance. In the case of
successive one dimensional solutions the MPCAm fit function can be adapted to this

concept by using deflation. Afær each successive st€p the original matrices H¿ are

replaced by their antiprojections on the previous dimensions of x¡. The resulting X
will be orthogonal. In fact we apply first eigenvalue balancing, because in each step

there is only one dimension to find ttre maximum of

PK . .
dMPCAf: Fit(X) = I > xr'Pl¿)s(rÞir)s lñ&)ìP&)s'xs,

.l=1¡t=l
(2.16')

where deflation enters ttris frt function by defining

H&)sÚk)î =pr*lrÞ?*l|(t)s' = HÈH*' = PtQtP*' fors=1Vft

H¡¿,¡sH¡t;s' =Y¡¡¡rôl*lrP¡È,¡s'= (I-x¡-lxs-l')Hlt)s-1H¡¿¡¡-1'Q-xs-lxs-t')

= (I-xs-1x5-1 )P&n-tÐ?*lr-tPlt)s-t'(I-xs-tx¡-t'). for s = 2,...,p Yk

In each successive dimension the datamatrices H¿1'r) change and therefore the singular
vectors and singular values of the sets also change.
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2.2.5 The information span otmntrices

Insæad of variance accounted for we can formulate anotler reasonable principle for
the balancing of sets by assessing the amount of superfluous information. The
efficiency of information transfer can be called the information span.

The information span of a set of variables is high if there is no superfluous or
spurious information. Geometrically this means that the variables are all orthogonal.
The information span of a set is low if all the variables of the set contain the same
information. We then have just m¿ replications of the same variable.

we gain an insight in the information span of a matrix by studying the eigenvalue
structure of a matrix. We presume that the researcher has collecæd the data in such a
way that all the variables of one set are possible candidaæs to describe some relation
with other sets or with some laænt variable. All the variables contain reliable
information of equal importance and therefore we set the information weight of each
variable equal to one, equal to the scaling of unit normalized variables. With these
assumptions and normalizations the eigenvalues indicaæ the information weight of the
eigenvectors (infornarton patterns).If an eigenvalue (infonnation weight) is greater
than 1, tlre information of the corresponding eigenvector (information pattern) is
supported too much by the variables with respect to the efficiency of information
tansfer. It indicaæs that there is a replication or gradual resemblance between some
variables. The part of the eigenvalue that is greater than I is actually referring to
superfluous information. If an eigenvalue is smaller than 1, the information of the
corresponding eigenvector is not supported enough by the variables. In the extreme
case the eigenvalue (information weight) is close to zero and the information of the
corresponding eigenvector (information pattern) is very spurious. Summarizing we
can construct a measure for information span of a matrix by adding up the non-
superfluous part of the eigenvalues by øking I as an upper cut off value and dividing
this by the sum of all eigenvalues. We describe the information span /¿ of set II¿ with
z¿ unit normalized variables by

nk.
I*= 2I(ú*),

23
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Ì,for Q*ttc > L

where the rank quotient p¿ is defined by

where @1¿ denote the diagonal elements of iD¡ defined by the complete full rank SVD

Ht = PtÕtQt'. The rank quotient p¿ is incorporated in the information span /¿ in

order to correct for matrices H¿ of deficient rank that have for instance less rows than

columns. By adding many variables to a set one can artificially blow up spurious

information patterns to have a 'stable' information weight >1. Usually this kind of
stabilization is misleading, but if one is sure that all the added variables are very

reliable, the correction can of course be omiued by setting Q¡¡l,Yk (2.18).

The definition of information span for unit normalized variables results in an upper

bound of I¡ - 1, if there is no superfluous information, and a lower bound of I¡=

^¡L, 
if we have rn¿ replications of the same variable. The rank of II¿ is given by

Qtm*. The efficienl rank of H¿ is defined by I¡¿m¡¡, if desired rounded off to the

nearest inæger. In chapter 7 the efficient rank will be computed for real-life examples.

By now we can formulate a balancing of MPCA based on the principle of information

span. We formulaæ MPCAs by specifying the appropriate information spanfúter

MPCAs: a1&¿=ú¿¡, v& (2.r9)

which has to be substituæd in (2.1). The same balancing is achieved by taking the

balancingconståntsof MPCA in(Z.l)equalto wk=f¿.If thevariablesof allsetsare

unit normalized, we can say that in MPCAs the sets are weighted by their efficient

rank.

u Chapter 2

Vk.t

v¿ (2.18)

Yk,t

! ,w?ø = Q*Q?*^it

I ,w?,¿ = Q*mll

mk.
Q*= 2Q(6*),

t=l

I o<o?¿

I a<0,,¿

-0 forfi¡=s I
- mkr for Qll¡, > 0 J'
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The effects of the balancing in MPCAs for the extreme cases of ^I¿ appeal to common
sense. If tlere is no superfluous information, there is no change in the weight of the

set. If all the va¡iables of the set are exactly equal, the set contributes to the solution as

if it has only one unit normalized variable. In this way the sets are balanced by the

diversity of their information patterns. In the preceding sections the emphasis was

mol€ on the information weights and less on tle diversity of the information pattems.

The balancing of sets by the trace of the eigenvalues in formula (2.13) is an example
of focussing only on the quantity of information. The fîrst eigenvalue and maxvAF
balancing give an intermediaæ approach, because they partly include the variation of
the eigenvalue structure. In some simple eigenvalue structure cases they give the same

results as the information span balancing.

The æchniques formulated by moulding MPCA emphasize an equally balanced
influence on the solution with respect to set variance, but they do not affect the
correlations of set variates. With set variates we denote linear combinations of set

variables. In the next section we will discuss a technique that balances the influence
on the solution only with respect to set conelation.

2.2-6 Multiset Canonical Corebrton Analysis (MCCA)

In MCCA as formulated by Carroll (1963) we maximize squared conelarions between

canonical variates andp common latent variables

25

MCCA: Fit(X,Z¡..,hk,..,2K)= 
åå 

(xs'z¡k¡ì2, (2.20)

where ,Xp = (x1,...,x¡,...,xp) denote the common latent variables

with X'X=f,
and n(Z*)p = (z¡k¡t,...,2(k)s,...,2(þp) denote the unit normalized canonical

variates for set & and dimension s,

with z¡k)s =H*\*¡s - P¿Õ¿Q¿'t¡¿,¡, = P¿v¡&)s,

and zß)s'z&)s = t(&h'Ht'H&t&)s=y(Ds'Pk'Pkv(k)s = vl&)s'vl&)s = 1. V,t,s

As in the preceding sections the SVD for set /r is given by Ht - ptOteft,, where p¿

(n*p*) and Q¿ (m*xpt) denote orthonormal singular vector matrices and Õ¿
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denotes a diagonal matrix withp¿ non-zero singular values in descending order. The
canonical weights \H, can be derived from the weights vlt)s by tlt), = e¿<Þtlv(t),
v/c,s. originally carroll (1968) also incorporaæd weights for the sets as we have
done in MPCA, but we have omitæd them in MCCA.

To show the relation of MCCA with MFCA we need a description of MCCA wi¡h
only the X as unknown parameters. Therefore we want to find suboptimal values for
the canonical variates z(¿,¡¡, which are a function of x. we substitute zß)s = ptv &ß
with v¡¿,¡s'v1t)s = 1 Vå,s ,n (2.20) and compute a conditional maximum tor (2.20)
with X fixed by maximizing

Fit(xrdlÈ)r,v(È¡s) = (x¡'P ¡v¡k)ù2 * cft)s,

where x¡ denotes the fixed common latent variable x¡,
and c&)s denotes the sum for all other fixed parameters.

VÈ,s (2.21)

VÈ,S

By applying the cauchy-schwarz inequality on the non fixed parameærs of (2.21) we
know that 1xr'P¡v¡t;s)2S(vl¿)s'vl¿)¡)(x¡'P¿P¡'x¡) = (xr'p¿p¡,x5). A maximum for
(2.21) is reached if (x¡'p¿v¡k)ò2 = (x¡'p¿p¿'xs)
P¿'x¡(xs'P¿P¡ç'x)-112. With this equality we simplify
suboptimal values P¿P¿'x¡(xs'P kP¡'x)'ll2 for z¡k¡s

MCCA: Fit(X) = i, í (x¡'P¿P¿'x¡(x¡'P¿P¿'xr)-ll2¡2
s=1&=l

K
- tr > X'P¿P¡'X = tr X'Ppa¡tPparr'X,

b=1

with X'X=r and the matrices P¿ collected in one partitioned matrix
Ppa¡t=(Pl,--.,P¡). As we saw in section 2.1 formula (2.3) substitution of this
constafi fùtar in (2.1) results in (2.22). The constånt filær is a ser correlation filtr:r.

2.2.7 Canonical Conelntion Analysk (CCA)

Ordinary 2-sets CCA is usually not defined in terms of the common latent variables

X. Rather we simply maximize the sum of the canonical correlations between the

and thereforc v(k)s =
(2.20) by inserting the

(2.22)
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canonical variates of two sets. Using exactly the same notation as in the previous
section this can be expressed as the maximization of

CCA: Fit(Z¡h2) = 
ärr,r'rr(r) = tr ZlZ2 =rr V1,p1,p2V2,

with Z*=IJ¡T* = PtÕtQt'Tt = PtVt
and Zk'Zk = Tft'Ht'HtTt = Vt'Pt'PtV¿ = V¿'\/¿ = l.

The solution for v1 and v2 can be found by øking respectively the p principal left
and right singular vectors of matrix plpz- The singular values give the canonical
correlations.

2.2. 8 Relntion between CCA and MCCA

we can derive ccA from MccA (and MFCA) by imposing subspace restrictions on
the common latent variables x. we want the solution x to be in the subspace
associated with rIç, spanned by the orthonormal basis p6 (see section 2.I.1).In other
words we require

X -- P¿P¿'X, (2.24)

The same restriction is obtained if we require X = pcvc and therefore vc = pc'X,
because Pa'P6 = f.

The laænt variables x, restricted to be in some specific set c, are denoted by x(").
Insertion for X of respecrively X1r¡ = p1V1 and X(Z) = p2y2in (2.22) for K =2
results in the maximization of two differpnt functions:

n

(2.23)

for k = 1,2

(2.2s)

luccA: Fit(Vr) = tr Vt'Vt + V1'p1'p2p2'plVt
2uccA: Fit(vz) = rr v2'v2 + v2'P2'P1P lp2y2,

with respectively X11¡'X11¡=V1'!1=¡ for IMCCA, and X12¡'X12¡=V2'!2=[ ¡e¡
2Ir¿CCe. The formulation of (2.25) is consisrenr with the formularion of cMCCA in
(2.5). The optimal solutions for v1 and yz can be found by raking the p principal
eigenvectors of respectively matrix p1'p2p2'p1 and p2'p1plp2. These
eigenvectors are equal to respectively thep principal left and right singular vectors of
matrix P1'P2, which we recognize ftom (2.23). The eigenvalues of p1'p2p2,p1 and
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P2'P¡P1'P2 are equal to the squared singular values of P1'P2 and therefore equal to

the squared canonical correlations. For K=2 the solutions of both cMCCA and CCA
are nested and the relation between the fit functions of cMCcA and CCA is given

dimensionwise by c\4ççArit=1+(CCAni¿2. ttre canonical variates of set 1 are given

by the optimal X1t¡ and the canonical variates of set 2 by the optimal X12;, because

X11¡=21=p1V1 and Xp¡=22-p2V2, see (2.23).

2.3 Different types of lilter

In the preceding sections we applied always tle same filær for all sets. Only subspace

rcstrictions introduced some asymmetry in the analysis. We now describe another

kind of asymmetry in the analysis by combining different types of filters in one

analysis. A set correlation filær is assigned to one set or group of sets and a set

variance filær is assigned to another set or group of sets. In this way we introduce

several additive hybrid methods. First we formulaæ Redundancy Analysis as an

example with two sets. Next we give some generalizations of Redundancy Analysis

for multiple sets.

2.3.1 Redundancy Analysis (RA)

The æchnical formulation of Redundancy Analysis (RA) can be found in Anderson

(1951), who defined the model by imposing linear resrricrions on regression

coefficients or in other words by reducing the rank of the regression matrix. The

model is also called the Reduced Rank Regression model. For a recent overview see

Van der læeden (1990). We begin with a description of Redundancy Analysis and

subsequently we show how RA can be conceived of as a two set MFCA with
different filærs.

In RA as defined by Anderson (1951) we maximize the variance of the criterion set

that is accounted for by the canonical variates of the predictor set. Some authors

(e.g.,Van den Wollenberg,l9TT) divide the variance accounted for by the number of
criterion variables, which are also referred to as criteria. For each dimension r of the

solution the variance accounted for is called the redundoncy of the criæria- The sum of
the redundancies is called theoverall redandancy. We indicaæ the predictor set with c
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and the criærion set with È and maximize the overall
follows

RÂ: Fit(Zò = TT Zç,IJ¡IJ¡ç,Zç

29

redundancy of the criæria as

9.,ftr, =

(2.26)

where Zc =*Tc= PcÕcQc'Tc = PcVc

denote the canonical variates of the predicüor set c with Zr,Z, = Vc'Vc = f,
Ht = P/ÞtQ¿'denotes the SVD of the criærion set È

and *'rorr t"the redundancy of the m¡ cnænafor dimension s.

By specifying the fîlærs and subspace restrictions we formulate RA as a two sets

MFCA and maximize for predictor set c and criærion set ft

CRA AdAz¡¡=fi¡

Cf"fOl¡ = I, with X = Pcpc'X. for K=2 (2.27)

In this way we denote the use of different filters in one analysis accompanied by
subspace restrictions.

We still have to show that (2.27) does the same job as the ordinary formulation of
RA. we substitute (2.27) with P6'x = vc in (2.1) and compare it with (2.26).'vle
obtain the equality cRAp¡¡=p+RA¡¡¡. Therefore maximization of these two functions
gives the same optimal canonical variates for the predictor set

The top filær in (2.27) is an identity fïlær and represents the ser variance part of this
additive hybrid method. The bottom filær is a constant filær and represents the set
correlation part. As indicated in section 2.1.1 the subspace restriction in cRA (2.27)
can be simulaæd by introducing a very large weight in the filær of predictor set c.

2.3.2 Multiset Redundancy Analysis (MRA)

Generalizations of RA for multiple sets can be formulaæd by combining two different
types of filærs in the following way

a

= tr VcPc'PtQ!¡P¡¡'PçY ç,
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o¡<D?) = ú*lr
()"(<Þ"2) = I, with Xc = PcPc'Xc, Yk * c (2.28)

where c denotes the predictor set and

denote fixed balancing constants

for criærion set,t Vk+ c

With this function we maximize the variance of the criterion sets that is accounted for

by linear combinations of the predictor set. The choice of the balancing constants is

discussed extensively in section 2.2.1.

2.3. 3 Multiset MIMIC method (MMIMIC)

The Multiple effect Indicators for Multiple Causes (MIMIC) model (Hauser &
Goldberger, 1971) is basically a two sets model, where one set of variables, the input

set, influences another set of variables, tåe output set. Other names for the input

variables are exogenous or independent variables and for the output variables

endogenous or dependent variables. The influence of the input set on the output set is

mediaæd by unobserved latent variables.

We define the MIMIC method generalized for multþle sets. .In addition we give the fit
function for the ordinary MIMIC method, which is a special two sets case. The

Multiset MIMIC (MMIMIC) method resembles the MRA method. The subspace

restrictions are omitted compared to MRA and there are several input sets insæad of

one predictor set. We obtain

odo?) =&r*lt for l=L,...,L,

k-(L+l),...,KL<K (2.29)

denote the input sets and

MMIMIC:

l)¡o/¡ = ¡,

where 1,...,1,...,L

wL+1,...,wk,...,wK denotefixed balancing constants foroutputsetfr.

With this method we mediate the influence of the input sets on the output sets by

common latent variables X. For w¿=l V/c the MMIMIC method is one of the

generalizations of RA for multiple sets suggested by Van de Geer (1984).
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The ordinary MIMIC solution is found by inserting filter (2.2g) with z = l, K = 2
and w2 = 1 in (2.1). We maximize for input set c and output set,t

MMIC: Fi(X) = tr X'PcPc'X + tr X'p¿<Þ!p¿'X. (2.30)

The MMIC fit function is the same as the reformulated reduced rank regression
function described by De Læeuw & Bijleveld (19g7) and Bijleveld (r9s9).In fact they
create a family of solutions by introducing a weight a2 for input set c,tr dz
x'PcPc'x. For the limiting case d=0 they prove that (2.30) is equal to principal
component analysis of the output variables, which can be easily verified by omitting
the left part in (2.30). In this way the set correlation part disappears and only the set
variance part remains. For d-oo they prove that (2.30) is equal to RA, which can be
understood by realizing that the left part has an absolute maximum ofp if the common
latent variables are in the space of the input variables, so if X=pcp"'X. After
insertion of X=PcPc'x=pcvc for x we recognize in the right part of (2.30) the
formulation of RA in (2.26).In van der Burg (l9gg) method (2.30) is described in a
comparable way as a two sets generalization of RA by releasing the subspace
restrictions of the RA predicûor set.

2.4 Discrete compound fïlters

In this section we discuss the possibility of constructing compound filters by
combining two filærs in one, separated by a threshold value. we show how reduced
rank preprocessing steps can be incorporated in the analysis by applying this kind of
filters. The concept is illustrated by elaborating the practice of replacing a set of
variables by an approximation of lowerrank in a first step, followed by an analysis of
this reduced rank approximation in a second sæp. usually these method s arc two-step
hybrid methods fitting a set variance function in the first sæp and a set correl.ation
function in the second step. In chapter I we classified these methods as sequential
hybrid methods.

2.4.1 Two-step hybrid mcthods

Two-step hybrid methods usually combine reduced rank preprocessing with ccA or
from ccA derived methods, like Discriminant Analysis (See Gitins, 19g5). The
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purpose is to eliminate the possibility of finding CCA solutions with very small

variance accounted for by the canonical variates. This is achieved by literally

eliminating from each set the part of the information that projects on singular vectors

with small singular values. In other words, we are reducing the rank of the set & by

replacing Ht = P/ÞtQe'by g¿ = PtlfuQ&', where Q¡ denotes a diagonal matrix

equal to @¿ ,but with singular values below a certåin threshold value made equal to

zero. After this preprocessing step CCA is performed in a second step on the matrices

H*.

t ldentity

E Reduced constant

) First eigenvalue

0.0
0.0 0.4

Figenvalues

Figure 2.4 Reduced constant JíIter.

The two sæp hybrid method for CCA described above can be compressed in one

MFCA sæp by filæring the eigenvalues of set È in such a way that all eigenvalues

below a certain threshold become equal to zero and above this threshold become equal

to one. The resulting filær is represented in figure 2.4 as the reduced constant filtÊr,

together with the idenrtty filær and the first eigenvalue frlfer. For the definitions of the

last two filærs see (2.2) nd (2.3). The eigenvalues are on the horizontal axis and the

filæred eigenvalues are on the vertical axis. The identity filær is given by a sloping

line with an arbitrary chosen largest eigenvalue of 1.6. The reduced constant filter

consists of two parts, separated by a threshold. In figure 2.4 we took a value for the

threshold of 0.33x0?. Eigenvalues beneath this threshold are transformed to 0 and

above this threshold to 1. The left part in the filter of this hybrid method approximates

the identity filær which is a set variance filter, and the right part is equal to the

1.5

o

Ë t.o
o
èo
(.)

g
Ò

Ë o's

1.61.20.8
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constant filter which is a set correlation filter. In this way the left part eliminaæs the

small variances and the right part gives the relevant spatial information. From this
point of view we can make a less drastically pseudo reduced constant version of the

reduced constant filær by not eliminating the small variances, but by taking the left
part of the filter equal to the identity, trace or first eigenvalue filter. The non

eliminating approach illustrates the hybrid nature of the reduced constant filter more

clearly, because the set variance part is not approximated roughly, but presented

exactly. This kind of filter is called pseudo reduced constant, because a reduced

constant filter always involves a dimension reduction of the dat¿, which is not the

case for a pseudo reduced constant filter. we have already applied the principles of
the pseudo reduced constant filær in the definition of rhe informarion span I¡¡ (2.r7).

2.5 Continuous compound filters

A major drawback in the application of two-step hybrid methods is the arbitrariness of
tlre threshold for selecting principal components. There are many different methods ¡o

find a reasonable value for the threshold. This creates the problem ofchoosing the

appropriate selection method, maybe even different methods for different sets. It is
possible to approach this problem in another way by replacing the discreæ two-step
reduced constant filær by an one-step continuous filær that approximates the (pseudo)

reduced const¿nt filter without a threshold. For a good approximation we need some

nonlinear continuous function, that is close to one for high eigenvalues and rapidly

decreases to zero for very small eigenvalues. In other words high eigenvalues must

approximate the set correlation properly and low eigenvalues the set variance property

of the hybrid method. Two such continuous compound filters a¡e described in the

next sections. In section 2.5.1 we propose a multiset generalization of RR and derive

an appropriate ridge filær. This continuous compound ridge filær shows that Ridge

Regression (RR) is a weighæd hybrid method. In secrion 2.5.2 we define Fixed set
Component Analysis (FSCA) by specifying a quadratic first eigenvalue fîlter. This
method brings us close to the next chapter, because there we discuss the adjusæd

method of set component Analysis (scA) by applying a free quadratic filær that

results in the maximization of.the sum of squared conelations of adjusted set variates.
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2.5.1 Multiset Ridge Regression (MRR)

In Ridge Regression (Hoerl & Kennard, 1970, Golub & Van Loan, 1990, p.565) a
loss function minimizes for predictor set Hc and criterion variable h¿

RR: Loss(t6) = (ht - Hst6)'(h¿ - Hctc) * vçtç'ts (2.31)

with vs > 0.

We propose the following multiset generalization of RR for predictor sets c and one

unknown common laænt criærion variable x by minimizing

K
MRRp=1: Loss(x,tç) = > (x - H.t")'(x - Hctc) + vstç'tç, (2.32)

with x'x=l and vç 2 0 Vc.

To show the relation of MRR with MFCA we need a description of MRR with only
the x as unknown parameters. Therefore we want to find suboptimal values for the

MRR weights Ç, which are a function of x. Analogous to the preceding sections the

SVD for set c is given by Hc = PcÕcQ6', where Pç (n x pç) and Qc (mc x pà denote

orthonormal singular vector matrices and oc denotes a diagonal matrix withpc. non-
zero singular values in descending order. The MRR weights ta can be derived from
weights vc by tc = qrÕ6-lvs Vc. We insert Q6<Þ61vs for t¿ in (2.32) and compute a

conditional minimum for MRR¡=1 with x fixed by minimizing

Loss(x,cs,vú.) = (x -Psvs)'(x -Pcvc) +v¿v/ôlzvc t cc

= x'x - 2x'P¿v¿. * v6'v4 + vçvç'ûr?v, + c,

= x'x - 2x'Pçvs + v6'(f + vrù-]¡v, + cç

= SSe(G + rrarz¡-rt2pck - (r + ur@/¡ttztr¡+ q vc (2.33)

where SSQ@) denotes the sum of squares of the elements of M,
x denotes tlre fixed common latent variable x,

and cc,Ç¿ denotes the sum for all other fixed parameters.

The minimum of (2.33) is reached for



vç = (r+ rral2¡-ll2pr'o.

Afær insertion of QçÕal
(2.34) we minimize

MRRp=1: Loss(x) - x 'Ps(I + vrarz¡-rp"'x,

with x'x=l and v" > 0 Vc.

Afær minimization of (2.35) the optimal MRR variates a¡e

Hçtr= Pçv" = Pr(I + ural2¡-ll2pr'*.

From (2.35) we extracr the appropriat€ MFCA ridge filter for specifying Multiset
Ridge Regression,

MRR: oc(úò = U+vre?)-r Vc (2.37)

withvç>0Vc.

Because vc ) 0, we always h¿ve (x)'< (I + v6Õa-2)-1 < I, with 0 a column vector of
appropriate size with elements 0. For K=p=l and x equal to criterion variable h¿,
MRR is equal to ordinary ridge regression and the optimal RR variaæ is computed
with (2.36) afær inserting h¿ for x. The ridge filær in (2.37) contains a s€t correlarion
filter I added to a weighted set variance filær vrôr3.By substituting extreme values
for va we know the corresponding extreme fit functions. If v¿ is very large the
diagonal elemenrs of (r + ,rei2ft are armosr equal to a?rir and rherefore MRR is
almost equal to MPCA, with balancing constånts w¿ equal to v¿. If vc=O, MRR is
equal to MCCA. In figure 2.5 we give the ridge filær for v.-0, tdg, O?dZ, Q?, nd
spl, inorder to demonstrate the weighted hybrid narure of MRR graphically. The
rcpresentation of the horizont¿l axis is more general than in frgure 2.4, because the
eìgenvalue quotient gives the eigenvalues divided by the largest eigenvalue. For v.d)
the ridge filær is equal to the constant filær.
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(2.3s)

Vc (2.36)
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v6 for the MRR weights t¿ in (2.32) with va according to

K

el
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E Constant
c One ninth

o One third

+Oþ

t Thrice

0.00 0.25 0.50 0.75 1.00

Eigenvalue quotient

Figure 2.5 Ridge fílter.

As vç increases the curve transfoflns more and more into an oblique line that

represents a rescaled identity filær. In this way the ridge filær defines a whole series

of subfilters that ranges from set correlation to set variance. The extremes of this

range reveal the hybrid naturc of the ridge regression method. The curve of the one

ninth ridge subfilær bears much resemblance with the curve of the filær formulaæd in

the next section for Fixed Set Component Analysis (FSCA). The main difference in

the specifications of the filærs is that for the ridge filær we have a selection problem.

We have to choose the constants vc a priori or by some of the manifold data based

methods. This problem doe.s not occur for the FSCA method.

2.5.2 Fixed Set Component Analysís (FSCA)

In FSCA the term 'Fixed' indicaæs the fact that we actually use a fixed form of the

SCA filær discussed in the next chapær. We maximize (2.1) with a quadratic first
eigenvalue fùter

FSCA: a*@?)=r-(r -úO?*l'. vft (2.38)

Because fr¿ is the largest eigenvalue of iÞ|, we always have 00' s A7O¡7S I. The

quadratic first eigenvalue filter in (2.38) is a special (r-1) subfilær of the weighæd

hybrid filær I - v(I - A'*Ñ,ò2. This weighæd FSCA filær contains a weighæd set

variance filær v(I - úø7¡' subtracted from a set correlation filær I. By substituting

I t.o
G

o
èo
C)

Ë o.s
r¡.
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extreme values for vs we know the corresponding extreme fit functions. If v is very
large the weighted FscA filter transforms all diagonal elements of d¿ with values @l¿
to the value 1. All diagonal elemenrs of <Þ? smalle r than t*will be highly negarive
and the optimal solurion of x for weighted FSCA will avoid eigenvecrors with
smaller eigenvalues ú* &*.If v=o, weighæd FSCA is equal to MCGA. In fîgure
2.6 we represent the quadratic first eigenvalue filter to show how this filter
approximates the reduced constant fîlær by a very simple polynomial filær.

Ê Reduced constant

a Quadratic first eigenvalue

0.0
0.00 0.25 0.50 0.75 1.00

Eigenvalue quotient

Figure 2.6 Quadratic first eigenvalue filter.

It is clear that the approximation of the reduced constant filær is rather crude, but we
have to bear in mind that the location of the threshold is variable. We require for a

general approximation that the filtered eigenvalues are near one at the right side and go

down sæeply at the left side, like the curve of the one ninth ndge óubfilær. other
filærs could be defined, like growth curve or s-shape filters, but the simplicity of the
quadratic first eigenvalue filter makes it attractive.

The continuous compound filærs discussed previously approximate a set correlation
part for high eigenvalues and a set variance part for low eigenvalues. we are
inægrating two corresponding separate fit functions in a continuous way and therefore
dealing with a hybrid method. In rhe next two chapters we will discuss adjusted
methods that maximizÊ one fit function modified by set variance or set correlation
constraints.
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Chapter 3

SET CORRELATION

WITH SET VARIANCE CONSTRAINTS

set component Analysis is described from several points of view. (l) The method
inægraæs a set correlation ad a set variance part by rr:aximizing the sun of squared set
correlations and adjusting the set variates r+'ith set variance constaints. (2) SCA is
identical to Multiset ccA with propøtionality restrictions on the variable weights. (3)
By defining a free quadratic filter, scA is related with the filter theory formulated in
the previous chapter. we conclude this chapter by indicating relations with other
methods and presenting a simulation study of INDSCAL compared with scA. The
relation between INDSCAL and scA is esøblished by proposing and fitting a new
model, the INDRES t¡ødel.

Introduction

set component Analysis (Nierop, 1989, 1993) is an adjusted method. Ir maximizes
exactness of prediction with special constraints to improve stability. The main fit
function is the sum of squared set correlations, and the secondary set variance
constraint enables a local improvement on the variance accounted for.

Maximization and improvement are well-known in the context of multivariate
optimization problems. Very ofæn there exists no analytical method to find an optimal
solution. In that case a monotone convergent algorithm is constructed that improves
the value of some target function in successive steps until a local or global maximum
is reached' The improvement steps can be derived by several methods like partitioning
the function in several quadratic parts (Huygens principle), determination of the first
derivative, or majorization (de læeuw & Heiser, 1980). By applying this knowledge
it is possible to inægraæ two different functions by combining the maximization of a
main fit function with the improvement constraint of an adjusting function. How this
combination can be made is illustrated in section 3.1 for two functions: squared
canonical correlations and variance accounted for. The resulting method is Set
Component Analysis (SCA).
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In subsequent sections we will discuss some characæristics of SCA. In section 3.2

we explicitly show the relation between the variable weights and the structure

correlations. In section 3.3 we relaæ the SCA method to tlre filter framework outlined

in chapær 2. In section 3.4 we explain the relation of SCA with FSCA, MPCA,

MCCA and INDSCAL. The relation between INDSCAL aird SCA is established by

proposing and fitting the INDRES model. In the closing section we compare the

properties of INDSCAL and SCA in a simulation study.

3. 1 Set Component Analysis

For the construction of the SCA method we integrate the maximization of the sum of
squared canonical comelations with the itnprovemcnt of variance accounted for. For

the maximization of the sum of squared canonical correlations we use the multiset

MCCA method described n (2.20)

MCCA: Fii(X,21,,.,2k,..,2 K) = (*r'r(k)r)2,

with orthonormal laænt variables x¡ and unit normalized canonical variates zß)s.The

adjusting function for the improvement of variance accounted for is

VAF(zlt)i) = z &) s'IJkHk' z¡¡¡ s = z( U s'S kzß) s, VÈ,s (3.1)

where S&=HtH&'. For the improvement of (3.1) we take one step of the Power

Method (Wilkinson, 1965) and normalize to unit sum of squares

"lll, = s *rtt *t r@!t*t i s ¡,s ¡, | *¡ r)-r 
t2, VÈ,s (3.2)

and define Jtrlr*the MCCA canonicalvariate andttre adjusæd canonical uarraterlfj,
as the (SCA) set variate.In section 2.2.6we showed that the canonical variate must

be equal to

zl*), = P¿P¿'x5(x¡'P *P¡'x)-lt2 VÈ,s (3.3)

pK
.l=1Ic=l

Substitution of (3.3) in (3.2) gives the SCA set variate

z(k)s = S¡x¡(x¡'S¿S r*)-ll2 - V/c,s (3.4)
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The set variates can be conceived as a weighted projection of xs on to pt and the
canonical variates in (3.3) as an unweighæd projection. substitution of s6p¿Õ/p¿'
in (3.4) shows that the eigenvalues &o^"the projection weights. Rather than having
(3.a) as a side product, we can constrain the variaæs z¡¡ in the MccA fit function
(2.20) so that they satisfy (3.4). This is achieved by inserting (3.4) in (2.20) and
results in the SCA fit function that maximizes the sum of the squared set corelations

scA: Fit(xr) = 9, f,o?*r;s¿xs) = 9,,,5,,<*;rtr¡r, = åå ffi, (3.5)
^l=l¡t=l s=llc=l

where P(xs;SÈxs) denotes the correlation between x, and S¿xr,

,Xp = (x1,...,x¡,...,Xp) denote common latent variables with X'X=I
and z¡k)s = S¿x5(x¡'S¿S t*ì-llL denote the set variates with S¿=H¡fl¿, VÈ,s.

Figure 3,1 Improvemcnt of vøriance accountedfor.

In figure 3.1 we give a geometric construction of the SCA set variate derived from the
position of the MCCA canonical variate. The 2 dimensional case is sufficient to
illustrate the Power Method, because more dimensional cases can be described by
analogous successive plane rotations. All vectors in figure 3.1 are unit normalized.
we start with some known MccA canonical variate located in the plane of the

4t
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eigenvectors pa and pä wittr eigenvalues t, ú.The variance accounted for by some

SCA variate has a maximum fo, whenthe variate is pa and a minimum @fr, when the

variate is p¡. The position of the SCA variate in figure 3.1 is construcæd with the

intersection points ø and Þ. They are the intersection points of the MCCA variaæ and

the circles described by the radü Êo 
^O@fr, 

respectively. The intersection point c of a
vertical line through a and a horizont¿l line through Þ is located on the SCA variaæ

and therefore fixes its direction. It is clear that the variance accounted for by the SCA

variate is higher than the variance accounted for by the MCCA variate, because it is
closer to the maximum direction in this plane: pa. The construction method we have

applied is just one of the many methods for constructing an ellipse. The points c of
this ellipse can be found by varying the sørting position of the MCCA variaæ. It
should be noticed that the direction of the SCA variate is independent of the

normalization of the MCCA variate and the tot¿l sum of the eigenvalues. In other

words the SCA solution is scale free with respect to the normalization of sets.

3.2 Variable weights proportional to structure correlations

In this section we want to emphasize an interesting property of SCA compared to

MCCA. In both fit functions we maximize the sum of the squared correlations of the

unit normalized variates z¡¿,¡s with the common latent variables x¡. If we compare

SCA in (3.5) with MCCA in (2.20), the only difference we observe is the definition
of the weighted sum of variables zft)yFot SCA we have

z(k)s = s¿x¡(x¡'s¡s **r)-ll2

- Ht( H¡'x¡(x¡'S¿St*r)-ll2 ) = Id.kt&)s.

The SCA weights (t¡¡=H¿'x¡(xr'S¿St*r)-ll2 of the variables H¿ are for each set k
proportional to the structure correlations H¡'xs. In MCCA we do not have these

restrictions for the weights t¡¡,¡¡. From this point of view SCA can be defined as

MCCA with proportionality restrictions on the variable weights.This definition of
SCA is simpler than the first definition of SCA in the previous section.

Nevertheless we preferred ûo define SCA first as MCCA with local va¡iance
improvement constraints, because we understand the predictive properties of SCA
be$er with this definition.

V/c,s
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The proportionality restrictions on the variable weights facilitate the interpretation of
the weights and structure correlations in sCA. In MCCA the weights and structure
correlations of the same variables can diverge to a large extent, which makes a
consistent inærpretation difficult. In this case interpret¿tion is usually confined to the
structure conelations.

3.3 A filter view on SCA

In order to relate the scA method with the filter theory discussed in chapter 2, we
reformulate the fit function (3.5) by first inroducing regression weights and secondly
balancing factors. The concept of balancing is introduced because we also want to
show in section 3.4.2 that SCA can be conceived as maximizing weighæd variance
accounted for. Furthermore, the reforrnulated SCA fit function has a computational
advantage. It is simpler to derive an algorithm to find the SCA solution with this
alærnative loss function than with the formulation of (3.5), because the complicated
function of x¡ in the denominator will disappear. In chapter 6 we describe a monotone
convergent algorithm for SCA.

xs common latent variable

SCA vari/íe
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z¡¡¡sb¡Hs

Figure 3.2 Introdaction of regression weights.
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For each set,t the squared correlation between (unit normalized) x5 andz&)s is equal

to the squared length of the projection of x5 on ro zft)s. rn fîgure 3.2 this projected

vector is given by q*lrù¡¡¡r, with â¡¡,¡r=xs'z(k)s. This implies that instead of
maximizing for each set the squared projection length 1xr'z¡k¡ìz, we can also

maximize

xr'xr - (the squared distance of x¡ to the SCA variate),

or we can maximize

x5'P¿P¿'xs - (the squared distance of P¿P¿ks to the SCA variate).

In other words we have

SCA: Fit(x5,å1¿,¡¡) = É. 
j *r'*, - (xs - z(Ðsb&)ì'(xs- z(Hsb&)s)

s=lFl

pK
s=l¡t=1

In figure 3.2 this Pythagorean property can be verified. By fixing the X and setting

the first derivative equal to zero rüe find suboptimal regression weights ô¡¿,¡r. Ar *"
would expect we find î¡rls-;r'izk;sand afær substitution in (3.6) we obtain again the

sum of all squared projection lengths 1*r'r¡*)r)2.

In formula (3.4) we saw that zft¡¡is proportional to S¿x¡. Therefore by definition we

can replace zft¡s in (3.6) by S¿x¡ and the weights b¡*¡s by the reciprocal values of
balancing factors l"lt)s. Recapihrlating, the reformulated SCA method maximizes

SCA: Fit(xr,nl&)s) = L f, xsks - (x¡ - S¿x5w¡¿l¡s)'(xs - S¿xrw¡¿]r¡
elÞ1
pK

,rl&=1
(3.7)

where w(t)s,...,w(k)s,-..,w(K)s denote free balancing factors for set È and

dimension s,
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and the remaining paramet€rs are defined and normalized as usual. The balancing
factors wft)s in (3.7) are free in the sense that the optim^l urlt)r have to be found by
maximizing the SCA fit function.

The formulation of (3.7) shows that SCA finds some optimal transformarion of the
eigenvalues of each set & and therefore can be defined as a MFCA method by
specifying the appropriaæ filær. The MFCA filter for scA is afree quadratic filter,
which is defined for each ¡g1¡ å and each dimension s as

SCA: astr(ú) = r - (r - ú0, tr'tr)', (3.8)

where w(l)s,...,w(k)s,..,,w(K)s denote free balancing factors for set È and
dimension s.

Afær substitution of (3.8) in (2.1) we must realize that we have introduced in the
MFCA(X) function extra unknown parameters by incorporating the free balancing
facûors in the filærs.

3.4 Relations of SCA with other methods

SCA has many connections with other methods. The following sections elaborate on
relations with FSCA, MPCA, MCCA and INDSCAL. The reformularion of scA
with the Directed Correlations method and relations witl some pLS methods are
given in the last two sections of chapær 5.

3.4.1 Relartonwith FSCA

In section 2.5.2 on FSCA we fixed the balancing factors of SCA equal to t*. gv
fixing the x in (3.7) and setting the fi¡st derivative equal to zero we find suboptimal
balancing factors, which are a function of X. We denote these suboptimal balancing
factors with ri'¡t)s. The suboptimar balancing factors are equal to the reciprocal
regression weights

îv¡*)s = = Iuffi,,*= *#ib, v&' (3.e)

with t¡¿,¡s = HÈ'xs V,t,s.
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In other words the suboptimal balancing factors are equal to the variance of H¿
accounted for by the proportional regression weights t¡¿,¡¡=H¿'xs. The upper bound

of î,¡¡ç¡5is equal to the largest eigenvalue of matrix Õ|, which is the frst eigenvalue

&*.m section 2.5.2 onFSCA we fixed the balancing facrors equal to this upper

bound. The lower bound of ñ1*,¡, ir almost zero, because we have defined O? with
only non-zero eigenvalues of H¿. In summary, we have

0.*ux< &*. Vfr,s (3-10)

Analogous to the presentation of the quadratic first eigenvalue filter in figure 2.6 we

represent in figure 3.3 the free quadratic filter for frf*lr=}33*Êt¿ and for the upper

bound frOX=úr.

E Constant

. Quadratic frrst eigenvalue

c Quadratic one third value

-3.0
0.00 0.25 0.50 0.75 1.00

Eigenvalue quotient

Figure 3.3 Free quadratic fiIter of SCA.

Generally the filtered eigenvalue in figure 3.3 is maximal, when the eigenvalue
quotientis equal to frWNÊtt.
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3.4.2 Relation with variance accounted for and MpCA

As a general rule SCA gradually prevents the occunence of small variance accounted
for. This is achieved by dífferentìal weighting of p¿'x¡, the projection weights of x,
projected on to the subspaces P¿. For each set /c and dimension s we express the
variance accounted for VAF(X,k) as a product of the conelations of set variates and
the suboptimat balancing facrors î,¡¡¡ (3.9).By substituting (3.9) in (3.5), we obtain

vAF(x,k) = I p\*¡*r*¡r, V,t,s (3.11)

where p?*¡, = 1*r'z¡*¡r)2 and VAF(X,&) = tr X'S¿X.

If we want to pfevent small variances accounted for, we must not only maximize the
correlations of set variat es p?*¡n but we must also prevent small values for the
suboptimal balancing facrors i¡¡¡s. The latrer goal is pursued by differential
weighting of P¿'x¡, which are the projection weights of the latent variable x,
projecæd on to the subspaces P¿ spanned by the sets. The differential weights are
equal to the filtered eigenvalues given in (3.7). The available projection space of the
common latent variable x¡ for trigh û¡rts values is gradually reduced if ir¡¿,¡s gets

smaller, because the penalty for projecting on singular vectors with large singular
values is increasing fast. As we see in figure 3.3 for ã&), = }ßxfi¡rthe differential
weight for projection on fhe frst singular vector is already -3. For smaller values of
ûft¡, tttir differential weight decreases fasl

we cannot only produce (3.11) by combining (3.9) and (3.5), but also the equality
p,'rrí= xr'S¿xrir¡¿l,¡, VÈ,s. It shows how SCA maximizes weighted variance
accounted for. SCA can be formulaæd as a MpCA method by taking the balancing
constants of MPCA n (2.7) for set È and dimension s equal to the suboptimal
balancing facûors in (3.9). The balancing of SCA is closely relaæd to the balancing of
MPCAs in (2.19) wittr balancing constants equal to w* = I*l.If the efficient rank of a
matrix is equal to the number of variables m¡¡, the suboptimal balancing factors are
equalto I justas/I1.rtneefficientrankof amatrixgoestoitsminimumvalueof l,
the suboptimal balancing factors go to their maximum val.ue mb,which is equal to the
maximum of fiI. the difference between scA and MpcAs is that scA assesses the
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amount of superfluous inform¿tion for each set and dimension separately, whereas

MPCAS is doing this for each set independent of dimensions.

3.4.3 Relation with MCCA

The MCCA fit function gives the upper bounds for the SCA fit function, as we can

show by rewriting the second line of (3.7) for each set and dimension as

SC&r¡ = lt¿CCAlas - PEN(r)s, V&,s (3.12)

where MCCA1¡¡¡ = x¡'PtP¿'xs denotes the MCCA fit as defined in (2.22)

and PEN¡¿,¡s = xs'PtG - a?rrlx¡zpr'x5 defines a penalty function.

In fact we reformulat€d in (3.12) the SCA method as a hybrid method. Because

PEN¡¡;' 2 0, we always have 00'< I - (I - úorfll¡' < L The free quadratic filær in
(3.8) is a special (v=l) subfilter of the weighæd hybrid filter I - vtl - O?wfr1O2. Thi,
weighæd filter contains a weighæd set variance filær v(I - úo*tll¡'subtracted from

a set correlation filter I. By inserting the weighted hybrid SCA filær in (2.1) we

define the weighæd hybrid SCA fit function. By substituting extreme values for y we

know the corresponding extreme fit functions. If v is very large the weighæd hybrid

SCA filær transforms all diagonal elements of iÞ! with values frf*1, n the value 1 (see

section 3.4.1).All diagonal elements of <Þf smaller than ô¡¿,¡5 will be highly negative

and the optimal solution of X for weighæd hybrid SCA will avoid eigenvectors with

eigenvalues non equal b ûl,t)r. If r=0, weighæd hybrid SCA is equal to MCCA.

Geometrically the penalty is related with the size of the improvement step of the

MCCA variate needed to obtain a larger variance accounted for. This relation is valid

for each dimension s and set t separately, and is illustrated in figure 3.4 for
suboptimal balancing factors ô¡¿¡¡. Figure 3.4 is based upon figure 3.1. As in figure

3.1 we assume without loss of generality that the MCCA canonical variate is located

in the plane of the eigenvectors p4 md p¡ with eigenvalrrt fo, fi.fn" projection of
the common latent variate x¡ on the space of H¿ and therefore on the MCCA variaæ is

given by P¿P¿'x¡ The projection of xs on the SCA variate z(&,¡5 is given by

Stxsûlt)s, where ô1¿¡¡ is defined in (3.9). The lengths of the projected vectors are
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respectively MccÃfkh and scAY?¡ , and conespond ro the correlarions of x5 with
the MCCA and the SCA variate.

Figure 3.4 Geom¿tric illustration of penalty function.

Recapitulating, the adjusted method scA is a special (r-1) subfilær of the weighæd
hybrid scA method. For r=0, weighted hybrid scA is equal to MccA. on the orher
hand we must bear in mind that the weighted hybrid SCA method is generally not an
adjusæd method, because the original goal of maximizing the sum of squared set
correlations is only preserved in one special case.

3.4.4 Relntion with INDSCAL

First we describe the INDSCAL model and fit function and elaborate some of the
INDSCAL properries. secondly the relation berween INDSCAL and scA is
established by proposing and fitting a new model, the /I/DREJ madel.

The weighæd Euclidian three-way scaling model refened to as the INDSCAL model
was proposed independently by Bloxom (196g), Horan (1969) and carroll & chang
(1970). The INDSCAL model is formulaæd by weighting squared estimaæd distances
between objects. The INDSCAL model in scalar product form (Arabie, carroll &
DeSarbo, 1987) is described by
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St=XWrX'+E¿,

where S¿ denotes înxrnscalarproductmatrix,

XW¿X'=M¿ denotes fitted model parameters,

Chapter 3

vÈ (3.13)

(3.14)

and

x
\il¿
E¡

denotes unit orthonormalized dimensions (nqp ),
denotes apxp diagonal matrix with dimension weights w¡¿,¡s,

denotes a nry.mmatrix with residuals.

X:

The inærpretation of the matrices used in (3.13) can easily be embedded in the

notation of the preceding sections:

St: In the beginning of this chapter we defined S¿=H¿H¡', but in fact the matrix

S¿ does not necessarily have to be equal to HÈHÈ'. Without loss of
generality it can be any positive semi-definite matrix of suitable converted

dissimilarity or similarity measures.

The dimensions in the INDSCAL model do not have to be orthogonal.

Despiæ some loss of generality we use in this section the orthogonal version

of INDSCAL to show the relation with SCA. Kroonenberg (1983, p.118)

denotes this method as 'orthonormal INDSCAL', Kiers (1989, p.14) refers

to it by the acronym INDORT and gives an elaborate discussion on the

subject In most practical applications ttre optimal INDSCAL dimensions will
be near to orthogonality. See Arabie, Canoll & DeSarbo, 1987, page 36:

"The axes provided by INDSCAL generally turn out to be orthogonal or
nearly so". Therefore our shift from INDSCAL to INDORT will have no

major implications. For the one dimensional solution tlrere are certainly no

implications, because in that case the solutions are exactly equal.

The optimal dimension weights w&)sin the INDSCAL model are a measurc

of relative importance, just as the balancing factors of SCA in section 3.4.2.

The INDSCAL model is fitted in least squares sense by minimizing the loss function:

K

Wr:

INDSCAL:

and fitting the orthonormal INDSCAL model in the least squares sense comes down

üo minimizing the loss function

Loss(X,lV¿) =tr LEkEk,
bl
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INDORT: Loss(X,W¿) E¿E¡ - tr (XW¿X'-S¿XXWTX'-S¿)

(x¡w¡¿¡sx5'-S¿)(xsw¡¿,¡sxs'-S¿) + c, (3.1s)

where c denotes a constant with c = f (t-p)os?,
,t=l

with X'X=r. The transition to the last part of (3.15) with constant c added is due to
the orthogonality of x. Analogous to rhe procedure in section 3.4.1 we find
suboptimal dimension weights, which are a function of X. we denote these
suboptimal dimension weights with rú¡t)s. The suboptimal dimension weights are
equal to

íç&)s = xr'S¿x¡. Vt,s (3.16)

Substitution of the suboptimal dimension weights (3.16) in (3.15) reveals after minor
elaboration a very simple fit function. (See Kiers 19g9, p.43). It turns out that
minimization of (3.15) produces the same optimal X as maximization of

INDoRT: Fir(x) = åÉ, 
fr?r¡,= f f *,,s¿*r,ì,¡¿¡

(x¡'S¿x¡)2 (3.t7)

Domination by sets with low information span

we inserted the formulation xj.'s¿x¡iyl&)s in (3.17) to clarify a relation between
orthonormal INDSCAL and SCA. In section 3.4.2 theequality p,'tol, = xs's ¿xrir¡¿j,
vÈ,s, showed how scA maximizes weighted variance accounted for. In the same
way INDORT can be formulated as a MpcA method by taking the balancing
constants wft)s of MPCA in (2.7) for set ,t and dimension s equal to the reciprocal
suboptimal dimension weighS in (3.16), wf*¡s=wfll*The balancing of the INDORT
sets indicates that (orthonormal) INDSCAL solutions will be dominaæd by sets with a
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low infonnation span and a low efficíent rønk, if the sets are normalized to t¡e same

total sum of squares.
The infonnation span 1¿ and the efficient ra¡¡k are defined in section 2.2.5 beginning
with fomrula (2.17) and further.

A matrix H¿ with a low information span has much variance concentrated on only a

limiæd subspace. This subspace therefore attracts any solution space X, that seeks to

maximize the vAF and therefore even more the orthonormal INDSCAL x, that seeks

to maximize the squared VAF for each dimension. The SCA solution is not dominaæd

by sets with much redundant information and will be better balanced in this respect.

Simple structure with equal information span

There is another important aspecr in regard to the weighting of VAF. If the

information span of all sets, normalized to the same total sum of squares, is equal to

/¿=1, we have S¿=P¿p¿' Vt. Even in this case the orthonormal INDSCAL solution
will still emphasize some sets as much as possible in order to obt¿in a simple

structure. This tendency to exaggerate the differences between ttre sets is analogous to

the simple structure rotation of variables insæad of s¿ts. The quartimax fit function is
in this respect a special case of the INDORT¡¡ function in (3.17). The functions are

equal if each set h¿ consists only of one variable. This property explains why
INDSCAL tends to find a unique orientation of dimensions, even if K=1. The SCA
solution for I¡=l VÈ, is exactly equal balanced in the sense that in this case the

suboptimal balancing factors in (3.9) are equal to i¡gs=l Y k.

Residuals not orthogonal to common latent variables

We consider the INDSCAL model S* = M¿ * E¡ = XW¿X' + E¿, VÉ, as

formulated in (3.13). In analogy with the PCA model some users of the INDSCAL
program might erroneously think that at convergence we have strong orthogonality

between residuals E¡ and the dimensions given by X,

X'E¿ = [[' v¿ (3.18)

where 0 denotes a column vector of appropriaæ size with elements 0.
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However this is usually ¡let true and generany not possible, neither for the INDSCAL
model, nor for the orthonormal INDSCAL model, where X is required to satisfy
X'X=f. We will refer to this st¿tement as the residual rule for the INDSCAL models.
The residual rule will be proved later in this section. At convergence of the INDSCAL
program we do not have (3.18), but only the weak orthogonality

K

l=l
tr M¿E¿ = [. (3. l9)

The weak orthogonality of residuals can be an undesirable property, because it
implies that important information of s¿ relaæd to X can be left undeæcæd in the
residuals. The recovery of true INDSCAL dimensions will be less effective, if the
estimates M¿ give a distoræd image of the original matrix S¿. These distortions can
be understood by examining the orthonormal INDSCAL model. If we elaboraæ the
orthogonality restriction E¿Xd)0', we obtain

E¿X = (Sr - Mr)X = SrX - XW¿ = gQ'. vÈ (3.20)

The last equality in (3.20) implies rhar rhe resrricrion E¿X=00' is only valid if the
columns of stX are proportional to the respective columns of X. In figure 3.5 we
show geometrically for three columns of s¿ how the ideal projections on the space X
would be distorted by the multiset resrrictions of the INDSCAL model. The column
vectors of E¿ are clearly not perpendicular to INDSCAL dimensions x.

e(Ð3

[ ,,,

Figure 3.5 Distorted projecrtons of S¡¿on spaceX.
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If we are not satisfied with the weak orthogonality of residuals in the INDSCAL

model, we cannot improve orthogonality by applying other computational methods

(like De læeuw & Pruzansky, 1978) to fit the INDSCAL model. We have to adapt the

model for instance by penalizing non-orthogonality between the INDSCAL

dimensions and the residuals for each set /r. We call the resulting model the INDRES

model. The INDRES model in scalar product form is given by:

St = XW¡X' +

StPx = XW¿X'P¡ +

E¡ 
I,

E¿Px J

vÈ (3.2r)

where P¡ denotes an orthonormal basis of X.

and all other parameters have the same notation as for the INDSCAL model in (3.13).

The first line of the INDRES model specifies the INDSCAL model and the second

line penalizes non-orthogonality between the residuals E¿ and the INDSCAL

dimensions X. The dimensions in the INDRES model do not have to be orthogonal.

The orthonormal basis P¡ is introduced in order to allow for this possibility. Many

functions can be proposed to fit the INDRES model. One possibility is to minimize a

weighæd INDSCAL loss function

INDWEI: Loss(X,W¿) = tr (PxPx'-I)E¿E¿(P¡Px'-I) + v tr P¡P¡'E¿E¿P¡P¡'

K
- tr t (P¡P¡'S¿-S¿)'(P¡P¡'S¿-S¿) +

lÊl

K
, o 

È, 
(XIV¿X'-P¡Px'Sr)'(XlV¿X'-P¡P¡'S¿), (3.22)

where v denotes a balancing const¿nt.

For y=1, (3.22) gives a decomposition of the error E¿ in the INDSCAL loss function

(3.14). It is interesting to notice that the INDSCAL weights W¿ can only minimize

the error EtPx. For v=1, (3.22) also minimizes the error E¿ of the INDRES model

(3.2I). The second part of (3.22) is equal to vtrE¿Px'ErE¿P¡ and minimizes the

error E¿P¡ of the INDRES model. Therefore the parameters of the INDRES model

can be estimated by minimizing the INDSCAL loss function. More emphasis on

minimizing the error E¿P¡ can be given by minimizingþ.z2) with v>1.
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We will now confine ourselves within the scope of this section to define a fit function
for the INDRES model that gives a relation with SCA. Therefore we firsr impose the
resricûon Px=X, which implies X'X=f. With this restriction least squares fitting of
the INDRES model could involve the minimization of the product of two
subfunctions trl,¿E¿E¿ and t¡Itx'EtEtX. Because minimization of the second
subfunction trl¿X'E¡E¿x induces the orthogonalization of X and E¿, we could
insread of trlrErE,t just as well minimize (trl¿MtMr)-l = (trl¿x,M¿M¿x)-r.
The last equation is valid, because X'X=f. Due to the same orthogonality restriction
we can split X'E¿E¿X and X'M¿M¿X respectively in I¡xs'EtE¡x¡ and
I¡x¡'M¿M¿xs for each set,t and minimize the product (xs,E¿E¡x¡)(xs'M¿M¿x¡)-1
for each dimension separately. In this way orthogonality of X and E¿ is approximated
qlually for all dimensions. We propose to fît the orthonormal INDRES model in least
squares sense by minimizing the sum of tfie ratio's:
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INDRES: Loss(X,W¡) = åå '.ü¿E&I¡-,

subject to XX = I.

(3.23)

/- 
" 

"" 
"'"'' 

: "'",","'':"

lle¿xlll i

lFn¿'xrll

Figure 3.6 Apprortmafion of orthogonality between$¡andX.

In figure 3.6 we have redrawn column vector s¡t,¡2, from figure 3.5 as a
repres€ntative column vector of S¿. With the representative column vectors denoted
by s¿, m¿ and e¿ we want to show how the columns of E¿ are made as orthogonal as

x1
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possible to the columns of X and M¿ by minimizing for each dimension s and set &

Ihe sum of all quared projection lengths (e*xr)2 of the column vectors of E¿ divided

by the sanr of alt squarcd projection lengths (m*'xr)2 of the column vectors of M¿.

The INDRES loss in (3.23) can be elaborated as follows

pK -zINDRES: Loss(X,Wt)
,cl¡k=1

K

= ,, I Ë-srxwll)'(x-srxw;r),
k=l

(3.24)

with X'X=I. We take the first line of formula (3.7) for defining a corresponding

SCA loss function

SCA: Loss(X,W¿) = pK - SCAnt(xs,wlt)s)

K

= r, I (x-s¡xw[l¡'1x-s¡xw;l¡,
k=l

(3.2s)

with X'X=I. The relation with the loss function for INDRES tn (3.24) is obvious. If
the rows and columns of S¿ have zero mean minimization of the INDRES loss

function comes down to maximizing the sum of squared set correlations p2(xs;slxs)

between x¡ and S&xr over all ¡ and ft, as we can verify in (3.5).

We promised to prove the residual rule for the INDSCAL models. This rule states that

it is in general not possible to find INDSCAL dimensions X that are orthogonal to the

residuals E¿ Vfr, neither for the INDSCAL model, nor for the orthonormal

INDSCAL model, where X'X=I. If we prove this rule for the orthonormal

INDSCAL model, it is also valid for the general INDSCAL model, because the two

models have the same solution in the one dimensional case.

Proof: For the orthonormal INDSCAL model we know that the residual rule is only

violaæd if the INDRES loss in (3.23) and therefore the SCA loss in (3.25) is equal to

zero. This implies that the SCA fit must be equal to pK and that all squared set

correlations in (3.5) must be equal to 1. It also implies that all squared canonical

correlations of the MCCA method described in (2.20) must be equal to 1 for p
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dimensions, because the MCCA fit function gives the upper bound for the SCA fit
function, as we have shown in (3.r2). so perfect fit for the MCCA method is a
necessary' but usually not sufficient condition to violate the residual rule for the
INDSCAL models- It is clear that perfect canonical fit in p dimensions is a very
special case and will in general not occur, which proves the validity of our residual
rule. E

3.4.5 Summnry of INDSCAL and SCA properties

summarising rhe comparison between INDSCAL and scA we found that the
INDSCAL solurion is dominated by sets with low information span, that it has a
tendency to exaggerate the differences between the sets, that it is dependent on the
normalizations of S¿ and that it can leave distortions of the original data undeæcæd.
The SCA solution is more balanced in the weighting of sets, invariant under different
normalizations of S¿ and gives a more complete relation with the original data by
making the residuals as much as possible orthogonal to the xr. It can be expected that
this property improves the recovery of true INDSCAL dimensions. In the next section
3.5 we compare the INDSCAL and the scA solutions in a simulation study. In
chapter 7 the theoretical properties of scA and INDSCAL are confirmed in an
analysis of Miller-Nicely data.

3.5 Simulation study of INDSCAL compared with SCA

The main purpose of this section is to investigate if the SCA solution improves the
recovery of true INDSCAL dimensions. This improvement could be attained by
making the residuals as much as possible orthogonal to the recovered dimensions.

In order to compare the properties of INDSCAL and SCA we set up a little simulation
study with 6 individuals or sets and 20 stimuli. As we saw in the previous section
3-4-4,fitung of the orthonormal INDRES model leads to the SCA fit function. In this
study we suppose that each scalar product matrix s¿ is decomposed in a common part
of the orttronormal INDRES model

XW¿X'= Mt, (3.26)
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where X denotes unit orthonormalized dimensions (20x2),

W¿ denotes a 2x2 diagonal matrix witl common dimension weights

w(k)st

and a unique part of the orthonormal INDRES model

Y¿U¿Y¿', (3.27)

where Y¿ denotes unit orthonormalized dimensions (20x2),

U¡ denotes a2x2 diagon¿rl matrix with unique dimension weights t¡tts.

In the terminology of chapter 4 the true stimulus configuration
Sft=XWtX'+Y¿U¿Y¿' is an external decomposition, because X and Y¿ can usually

not be written as a linear combination of S¿. The true common stimulus configuration

XIV¡X' (3.26) has 2 dimensions X, for all 6 sets the same, and positive weights I{¿
on a circle with its centre in point (0,0). The true unique stimulus configuration

Y¿U¿Y¿' (3.27) has 2 dimensions and is orthogonal to all other true dimensions,

common or unique. The weights U¿ are chosen identical to the corresponding I{¡.
The common-to-total ratio of each true configuration È is defined by

n.. _ trWk
"'*- tr (W¿ + U*)' (3.28)

With CT-.o, we will refer to CT¡¡=a, Yk.

To each true stimulus configuration S¿ we add constructed error E¿

S¿ + E¿ = St + E.¿(W¿+Ut)Et' (3.2e)

We want to approximate the constructed configurations S¿+E¿ with recovered

dimensions iw*x'and residuah Èr,

S¿+Et=X\{rX +Et. (3.30)

The recovered dimensions are denoted by X and can be non orthogonal for the

INDSCAL model. It appeared to be most efficient in this simulation study to use a 2

dimensional INDORT solution (3.15) as starting configuration for computing the

INDSCAL solution. The recovered weights fr¿ for INDSCAL and SC|dimensions

are computed according to the INDSCAL procedure of Carroll & Chang (1970) for
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fixed x, because the optimal INDSCAL weights fv¿ minimize trr,tpx'E¿E¿p¡ç of
the INDRES model. This can be verified in (3.22) for y=1. For rhe scA dimensions
this implies that they can be derived from * using formula (3.16) of suboptimal
dimension weights. rffe varied the common-to-total ratio (3.2g), cT - r 0.7 0.4
0.2. The error level of & (3.29) was equal to the standard deviation of a unit
normalized random normal variable. we chose error level = 0 0.1 0.4 0.7 -For each
combination of cr and error level we computed four measures, y, ð, M and fr, for
1 50 construcæd configurations :

tr X'XX'XY=-
tr X'X

denotes the proportion of variance of the recovered dimensions i uccouoted for by
the true dimensions X. It measures the recovery of true stimulus dimensions with
rotational freedom. The following measure is the only distance measure. For perfect
recovery ôis zero.

a = frf&xxx-x)¡Uz (3.32)

denotes the square root of the mean squared difference between all true unit
orthonormalized and recovered unit normalized stimulus scores for p dimensions
(Maccallum, 1977).It measures the recovery of true stimulus dimensions with
unique directions. For the optimal arrangement of true and recovered dimensions with
r€spect to permutations and/or reflections of the dimensions, see MacCallum, 1977.
In the next two measures we use a centring operator J and we concatenate all possible
true interpoint stimulus distances befween row í and j orxw[/2, vi>j, and for all &
successively in vector d, and all conesponding recovered stimulus distances based on
*nvf in vectorâ.

M _ @'Jl)2 
^d'Jd.d'Jd

denotes the squared correlation between true and recovered distances across all
stimulus pairs and sets, normalized matrix conditional. [t measures the recovery of
tme interpoint distances and is also called the index of metric detenninacy (young,
r970).

(3.31)

(3.33)
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(3.34)
.. r¿'â12ffi=-*' d'd.d'd

denotes the squared coefficient of congruence between true and recoyered distances

across all stimulus pairs and sets, normalized matrix conditional. It measures the
recovery of true interpoint distances with the coefficient of congruence (Tucker,

19s1).

3-5.1 Results of simulation study

In the following øbles we present the mean values of the four above mentioned

recovery measures over 150 constructed configurations for each combination of CZ
(3.28) and error level. The INDSCAL and scA solurions are compured using the

same 150 constructed configurations.

Table 3.1 V: recovery of true stimalus dimcnsions

w ith rotati onal fr e e da m
Error

level CT: I
INDSCAL

0.7 0.4 0.2

SCA

| 0.7 0.4 0.2

0

0.1

0.4

0.7

111
0.98 0.97 0.85

0.90 0.90 0.44

0.84 0.82 0.33

11
0.98 0.97

0.93 0.92

0.89 0.87

11
0.97 0.96

0.91 0.87

0.84 0.79

0

0.01

0.05

0.07

we did some extra computation in order to find the cr value below which the

INDSCAL solution degenerates with zero error. This threshold was found at
cr=0.36.In table 3.2 the standard deviations of v in øble 3.1 are presented. For ô
and Mthe standard deviations will not be given.
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Table 3.2 Støndnrd deviartons of V.

Error

level CT: I
INDSCAL

0.7 0.4 0.2
SCA

0.7 0.4 0.2

0

0.1

0.4

o.7

0

0.01

0.04

0.04

000
0.01 0.01 0.19

0.03 0.03 0.24

0.05 0.06 0.19

0000
0.01 0.01 0.01 0.01

0.02 0.02 0.02 0.03

0.03 0.04 0.04 0.08

As we could expect are the standard deviations of V for the INDSCAL solutions
higher near the degeneration threshold CT4.36.

Table 3.3 õ: recovery of true stimulus dimznsíons

with mique directians (disønce m¿asure

Error

level CT: I

INDSCAL

0.7 0.4 0.2

SCA

0.7 0.4 0.2

0

0.1

0.4

o.7

r.41

1.35

1.29

1.27

000
0.16 0.t7 0.39

0.33 0.34 0.90

o.43 0.46 r.o2

000
0.16 0.18 0.19

0.28 0.31 0.32

0.35 0.38 0.43

0

0.21

0.38

0.52

Table 3.4 M: recovery of tnre interpoìnt disttmces,

index af m¿tríc

Error

level CT.. I
INDSCAL

0.7 0.4 0.2

SCA

0.7 0.4 0.2
0

0.1

0.4

0.7

11
0.88 0.88

0.62 0.59

0.40 0.39

10
0.66 0

0.t4 0.01

0.05 0.01

tlll
0.87 0.86 0.86 0.84

0.67 0.64 0.64 0.54

0.50 0.51 0.47 0.34
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Table 3.5
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fr: recovery of tnre interpoint dßtunces,

squared coe.fficient of congruence.

Error TNDSCAL

level CT: I 0.7 0.4 0.2

SCA

r 0.7 0.4 0.2

0

0.1

0.4

0.7

1

0.86

0.s0

0.40

0.17

0.17

0.2r

0.22

11
0.97 0.97

0.88 0.87

0.78 0.78

11
0.97 0.96

0.90 0.89

0.83 0.84

11
0.96 0.95

0.89 0.84

0.82 0.74

3.5.2 Conclusions

The properties of INDSCAL and SCA are evaluated with an exploratory simulation
study. The results for SCA are promising. The SCA fit function almost always gives

a better reconstruction both of the true stimulus dimensions, including its unique
directions, and of the true inærpoint distances. It is remarkable that the improvement
can also be significant if there is no unique part in the true stimulus configuration.
These values can be found in the left-hand columns of t¿bles 3. 1, 3.3, 3.4 and 3.5 for
CT=|. The 'no unique part'improvement is due to the fact that the SCA fit function
minimizes mainly the error projected on to the recovered common dimensions. This
projection reduces the effect of the error on the solution. Another interesting result is

found in the first row of the.tables 3.1,3.3,3.4 and 3.5 with error leveld). Because

it is dominaæd by the true unique stimulus configurations of the sets, the INDSCAL
solution is seen to degeneraæ. In the SCA solution these true unique stimulus
configurations are incorporated in the error, because they have zero projections on to

the recovered dimensions. As the number of dimensions for the SCA solution is
raised above the dimensionality of the true common stimulus configuration the true

unique stimulus configurations emerge in badly fitting dimensions.



Chapter 4

SET VARIANCE TVITH SET CORRELATTON
CONSTRAINTS OR REFLECTED VARIANCE

In chapter 3 the adjusted method of set component Analysis was fomrulated from
several points of view. we repeat this approach for Reflected variance nethads. (l)
The Reflected variance methods integrate a set variance and a s€t correlation part by
maximizing the variance accounted for by set variates and adjusting the s€t vafiat€s
with set correlation constraints. (2) The Reflecæd variance methods project variables
from one set on to another set, project these variables back and then cõmpuæ principal
components of the reflected variables. (3) By defining reflecting filærs, Reftecæd
variance methods a¡e related with the filær tbeory formulated in chapær 2. The
principle of reflected variables is elaborated by &fning Refuaed hmponcnt Analysis
(RCA) andReflected Dßqimírunt Analys¡s (RDA). It will be shown theorerica[y úow
and under which conditions RDA can improve group prediction compared to
Discriminant Analysis (DA) and principal component - Discriminanr Anarysis (pc-
DA). In a simulation study theor€ticål results are confi¡med. Some multiset and
nonlineü extensions are proposed.

Introduction

In chapter 3 we combin ed one fit funcrton with the constraint of an adjusting function.
The fit function was the sum of squared canonical correlations and the adjusting
function was improving variance accounted for. In this chapær the roles of the
functions are interchanged and one function slightly changed: We maximize variance
accounted for and improve the squared canonical conelations (not the srrn of squared
canonical correlations). This slight change of correlation function alreády indicaæs
that we are always dealing in this chapær with rwo sets of variables. There are only
two additive multiset extensions.

From the geometrical point of view we are maximizing reflected variance (Nierop,
1991) accounted for. Reflected means that we look at the variables through the mirror
of other relevant external information and in this way filær out irrelevant information.
Therefore the constraint ofthe adjusting 'squared canonical correlations'function is
c allú r efl e c ting c on s tr ain t.
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The integration of set correlation and set variance follows the same lines as in the

previous chapter. The basic method is Reflected Component Analysìs (RCA). The

relation with the filter theory in chapter 2 is given in section 4.2. Reflected
Discriminant Analysis (RDA) is formulated in section 4.3 as a special case of RCA

and it will serve as an illustrative method for this chapûer. kì RDA the external mirror

mentioned above consists of information about the group design. RDA will be

compared with linear Discriminant Analysis (DA) and Principal Component -

Discriminant Analysis (PC-DA) and it will be shown theoretically how and under

which conditions RDA can improve group prediction. The improvement can

theoretically also be expected in relation to other shrunken estimators in DA like

Campbell (1980), because here the discriminant weights a¡e estimated by ridge

regression procedures. Both PC-DA and ridge regression are hybrid methods based

on compound filærs described in chapter 2. The reduced constant PC-DA filær is a

discrete compound filter of a sequential hybrid method and the ridge fíIter is a

continuous compound filær of a weighæd hybrid method. We will confine ourselves

to PC-DA being represent¿tive for hybrid methods with a compound filær. In section

4.5 we give some variations on reflecting the variance. In 4.5.1 we discuss Reflecæd

Redundancy Analysis and two multiset extensions are briefly discussed in 4.5.2. We

give Multiset Reflected Image Analysis (MRIA) and Multiset Reflected Component

Analysis (MRCA). Section 4.5.3 givas nonlinear extensions of the reflected variance

methods. It is shown why nonlinear reflected variance methods make new fields of
application readily accessible.

4.1 Reflected Component Analysis (RCA)

In this chapter we have two sets of variables, the external variables Hg, with

orthonormal basis U and the variables H, with singular value decomposition

H=PÕQ', selecting only non-zero singular values. We term U the mirror matrix. U

can be equal to Hu in the form of some orthonormal design matrix or extracted from

external variables Hu. We have latent va¡iables X, which are a linear combination of
the variables H.

For the construction of the basic adjusted method of this chapter, Reflected

Component Analysis (RCA), we integrate the maximization of variance accounted for
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with the ímprovemenr of squared canonical conelations. Latent va¡iables X, that best
account for the variance of the variables H, can be obtained by maximizing

Fit(X) = t¡ X'HH'X = tr X'SX, (4.1)

65

with XX=I and HH'=S. For the improvement of squared canonical correlations
be¡¡¡een X and HU we use one of the CCA fit functions. Formulaæd in the format of
MCCA (2.25) we have

IMCCA: Fit(vr) = tr Vl'Vl + Y1'P1'P2P2'PIVI

with X1¡¡'X11¡=V1'V1=¡, and V1=p1'f,(l). Omitting the constant term V1,V1=1, ¡þe
lIr¿CCe fìt function translaæd in the two sets notation of this chapær is

V'P'UU'PV=X'PP'UU'PP'X,

with x'x=v'v=r, and v=P'X. If one of the sets has only one variable, the
canonical conelation is equal to the multiple conelation of this va¡iable with the ottrer
set. For the improvement of each of the squared multiple correlations of the latent
variables X with the external variables Hg we take one sæp of the power Method
(wilkinson, 1965) for matrix PP'uu'PP'. Thereforc the resulting reflected latent
variables

PP'UU'PP'X = FTJiFX, (4.2)

with lP = PP' and TJ = UU', all have higher squared multiple correlations with the

external variables Hu than their respective original variables X. Noæ that reflection is
not conceived in the sense that we change the sign of vectors, but as a double
projection. The reflected latent variables (4.2) are inserted for the original laænt
variables x in (4.1) and we obtain the Reflecæd component Analysis (RCA) fit
function

RCA: Fir(X) = tr X'IFtISIIPX, (4.3)

with XX=L Because P defines the orthonormal space of H we have trSÞS.
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Insæad of improving the squared multiple correlations of the latent variables X with
the extemal va¡iables Hg we can also improve the squared multiple correlations of the

variables H with these external variables. Therefore the resulting reflectedvariables

PP'UU'PP'H = PP'UU'H = IFIJH, (4.4)

.;r'*

"û-fr

all have higher squared multiple correlations with the external variables Hu than their
respective original variables H. The va¡iables in the space of H are projected on ûo the

mirror space U, which gives the mirror variables lUH. The mirror variables are then
projecæd back on to the space of H, which gives the reflecæd variables. The rank of
the reflecæd variables is never higher than the rank of u. The size of the images of
the variables after reflection by the mirror matrix u is influenced by the angle of
reflection. This is illustraæd in figure 4.1 for two different reflection angles.

Minor variable Variable

Variable
Reflecæd variable

Reflecæd va¡iable H-spacê

-space

Figure 4.1 Reflectìng variables under different angles.

It is important to bear in mind that the 'reflected variable' and the 'variable' are

usually not exactly on the same line, but that they are both in the space p of H.
Insertion of the reflected variables (4.4) for the original variables H in (4.1) gives

again the RCA fit function (4.3). From the geometric projections in figure 4.1 we can

infer that the RCA solution can also be found by maximizing the variance of the
mirror variables IUH accounted for by laænt variables X in the space of H.

4.2 
^ 

filter view on RCA

The relation of RCA with the filær theory formulated in chapter 2 is given by defining

the reflecting filær
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at (ú)= P¿'u¿u¿'P¿ @rtP ¡'u ¡tJ ¡'p ¡.
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(4.5)RVAR

For the RCA method (4.3) we insert (4.5) with t=l and U1=[J in (2.1). In secrion
4.5-2 we shall formulate two other murtiset generarizations of RCA.

4.3 Discriminant methods

Reflected Discriminant Analysis (RDA) is formulared as a special case of RCA (4.3).
The RDA method will be elaboraæd extensively. In RDA the external mirror matrix U
of RCA is specified as an orthonormal group design matrix. RDA will be compared
with ottrer discriminant methods like linear Discriminant Analysis (DA) and principal

component - Discriminant Analysis (pc-DA). The effecriveness of group prediction
is assessed with the stability and exactness of group prediction and it is shown
theoretically how and under which conditions RDA can improve group prediction.

The comparison between discriminant methods is greatly facilit¿æd by an object-wise
formulation of the methods with explicit latent variables. To enable this object-wise
formulation we first give in section 4.3.1 a definition of Between-\vithin
decomposition of variables. In sections 4.3.2 to 4.3.5 we give a description of the
following discriminant methods:

Model Abbreviation Section
Discriminant Analysis

Canonical Va¡iate Analysis

Principal Component - Discriminant Analysis

Reflecæd Discriminant

DA

CVA

PC-DA

RDA

4.3.2

4.3.3

4.3.4

4.3.5

A summary t¿ble with theoretical discussion of properties is provided in section
4.3.6. Two theoretically interesting special cases of RDA are present€d in section
4.3-7.In section 4.4 it is shown in a simulation study ttrat the theoretical properties of
the discriminant methods can be demonstrated wittr simulated data-
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4.3. I External decomposition: the Between-Within decomposition

The comparison between discriminant methods is simplifîed by an object-wise
formulation of the methods with explicit latent variables. As a preliminary step we

first give a definition of interrul decomposirton of the variables H:

H=Hl +H2, (4.6)

wittt PP'H1 = fl1,
PP'H2 - H2

and H2'H1 = Q.

Following previous notation the matrix P is derived from the SVD H=P<ÞQ', but any

other orthonormal basis would also be suitable. The Eckart-Young decomposition is

an example of inærnal decomposition. It always gives orthogonal submatrices within
the orthonormal basis P of H. The decomposition is internal, because the orthogonal

submatrices H1 and H2 can always be expressed as linear combinations of the

variables H. The sum of the rank of H1 and tbe rank H2 is always equal to the rank
of H. In frgure 4.2 we show an example of inærnal decomposition of H with nvo
variables m and n. After substitution of these variables in (4.6) we obtain H - (m,n)

= (m1,n1) + (m2,n2).

m1 nl

Figure 4.2 Intemal decotnposìtion ofH= (m,n).

I

H1-space
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We observe in figure 4.2 that the decomposing parts H1 = (m1,nt) and HZ =
(mz,nz) remain in the space of H, which is a plane in this example with two
variables. within this plane H1 and H2 occupy mutually exclusive subspaces, which
are in figure 4.2two orthogonal lines.

TIte external decomposition of the variables H is less restricted than the internal
decomposition and is defined by

H=Hl+H2, (4.7)

with H2'H1 = Q.

The decomposition is external, because the orthogonal submatrices H1 and H2 can

nat always be expressed as linear combinations of the variables H. In figure 4.3 we
show an example of external decomposition of H with two variables m and n. After
substitution of these variables in (4.7) we obtain the same decomposition formula as

for figure 4.2,H - (m,n) = (mt,nt) + (m2,n2).

H2-space

Im H-space ,,i
I

I

H1-space

Figure 4.3 External decomposition ofV = (m,n).

The difference with figure 4.2 is that in figure 4.3 H1 and Hz are nor restricted to be

in the space of H. They can be located in mutually orthogonal spaces outside the H-
space. The sum of the rank of H1 and the rank H2 can be greater than the rank of H.

69



70 Clapter 4

In figure 4.2 the spaces of H1 and H2 were two orthogonal lines, in figure 4.3 they

are two orthogonal planes.

The Between-Within decomposition is an example of external decomposition of H by

using

G the (nxg) orthogonal group indicator matrix for n objects and g

groups, with G'G=D, a diagonal matrix with group frequencies,

and the projector

G = G(G'G)-lG'= GD-lG'.

T\e Between-Within decomposition of the variables H is given and elaboraæd with a

SVD of the two orthogonal submatrices

H = GH + (I-G)H
.=Hg+Htt,

= PnÕ¡Qn' + PwÕwQw'

= PgPg'H + P¡¡rP¡¡r'H

(4.8)

(4.9)

with GH = Hn = PnÕnQB'= PBPB'H,

and H'G'(I - G)H = HB'H1al = PB'Prry = 0, but Eq[ necessarily with

PP'HB = HB,
and PP'H¡, = Hw.

Equation Hn=PnPn'H holds, because Ps'H¡'{. The inærpretation of the matrices

Hs and H¡¡' is very straightforward. In matrix Hs the elements of the variables H are

replaced by their group meanq whereas matrix H1¡, gives the deviations of the groups

means. In the sequel we will denote the newly defined matrices as

Matrix Refened to as

Hs Benveen-variables

Hw Witlin-variables

Ps between-variables space

P1al within-variables space
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It is important to bear in mind that the four above mentioned matrices can usually gqf
be expressed as linear combinations of the variables H, as is illustrated in figure 4.3.
After subscript substitution l=B and 2=rv we have a geometric example of the
Between-Within decomposition with Hg = (mB,nB), Htry = (mw,nw), pn=HB_
space and Pw=Hw-space.

The Between-within decomposition of the variables H (4.9) including its
orthogonality resfiction implies for the variance-covariance marix

7l

H'H = H¡'H¡
T=B

a.
QÕ'Q' = Qn<Þíen'

= H'PgPg'H

+ Hw'Hw =
+W=

,,

+ QwÕiQw' =
+ H'PyPgr'H, (4.10)

where T = H'H denotes the total variance_covariance matrix,
B = H'pBpB'H denotes the between group var._cov. matrix,

and W = H'PwPw'H denotes the within group var._cov. matrix.

With the theory developed so far we know that variants of discriminant analysis based
only on the analysis of B (or rescaled B) usually result in optimizing linear
combinations outside the space of H. Although in a second sæp the optimal variable
weights are very ofæn applied to the variables of H, these linear combinations of H
are not optimized in the first place to predict group membership. Therefore these
factors will generally be less discriminating. see for instance the method of
Discriminant Principal components Analysis (DpcA) proposed by yendle & Macfie
(1e89).

4.3 -2 Linear Dßcriminant Analysß

Linear Discriminant Analysis (Fisher, 1936) or canonical variaæ Anarysis (Maxwell,
1977,p.97) maximizes the variance accounted for of between group variance divided
by within group variance. Although linear Discriminant Analysis (DA) and Canonical
Variaæ Analysis (CVA) are often formulaæd as identical methods, we define DA and
cvA in this monograph slightly different with respect to scaling paramet€rs. For DA
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we maximize the ratio of. between to within sum of squares for g groups on composite

variaæs and for CVA we maximize the ratio of between to totel sum of squares.

The fit function for DA is reformulaæd object-wise with latent variables Ha5 by

substituting for B and W the matrices found in (4.10)

(4.11)

wherc 
^Ãp 

= à1,...,às,...1àp, denote the discriminant weights forp dimensions

in descending order as for the value of
DAsw(ar).

After maximization of Fitgy(A) with normalization A'WA=I gives HA the

discriminant space with between to withín normalization. The optimal discriminant

weights a¡ are the paramet€rs of the discriminant functions Ha¡. As mentioned by

Maxwell (1977, p.98), the rank of the full discriminant space can be reduced.

4. 3. 3 Canonical Vartate Analysß

Gittins (1985) showed that the DA solution can also be found by maximizing the BÆ

ratio insæad of the B/TV ratio. Only the normalization of the discriminant space IIA is
somewhat different. Maximizing the B/T ratio he called Canonical Variaæ Analysis

(CVA). For each dimension the squared canonical correlation between the variable

space P and the between-variables space Ps is maximized. The fit function for CVA

is reformulated object-wise with laænt variables Has by substituting for B and T the

matrices found in (4.10)

P as'Bas - {, as'H'PnPn'HasDAsw: Fitsw(A) = I
-, a¡'Wa¡ - s-Ál as'H'P1ryP1ry'Has '

cvAsa: Fitgr(A)= $ "'',n:"t - { as'H'bPs'Has

-, ar'Ta, - -¿, a¡'H'Ha¡ (4.12)

where mÃp = t17...,àe..,,rp, denote the discriminant weights forp dimensions

in descending order as for the value of
CVAnr(as).

In addition we reformulaæ (4.t2) by using the orthonormal basis P of H. By

inserting Pv¡ for Ha5 we obtain
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CVAsa: Fitgfry) = ¡¡ V'P'PBPB'PV,

73

(4.13)

wittr V'P'PV = V'V = I, for the unit orthonormalized discriminant space

PV = HA.

The unit orthonorrralized discriminant space is given by pv and the correlations with
this D-space (sometimes cålled D-factor loadings) are given by H'pv=e<Þv. These
loadings are mostly non-orthogonal. A compleæ solution of Discriminant Analysis,
where V is a square matrix with V'V = VV'= I, gives a decomposition of the
datâmatrix H in the unit orthonomlalized discriminant space and the D-factor loadings:

H = PVV'rÞQ,= (PVXQOV)'. (4.14)

At this point we can mould the least squares fit functions of DA and CVA in the form
of a model

Pn = PVAp'+ E (4.15)

where Ap denotes the loadings of the columns of Ps on the unit orthonormalized
discriminant space PV. So both DA and cvA give an optimum prediction of the
between-variables space P¡ in least squares sense.

4-3.4 Principal Component - Discriminant Analysis

h Principal component - Discriminant Analysis (pc-DA) a DA is performed not on
the original variables H, but on a reduced rank matix of H. This reduced rank matrix
is constructed by taking the firstp principal components of a pcA solution (4.1).

rc'AØ) is maximal for optimal z=Pp, where pp are the firstp left singular vectors
from the SVD H - PÕQ', with Õ in descending order andpo'po=Z'Z=\. As for the
choice of p Yendle & Macfîe (1989, page 595) give many resrs for deærmining the
dimensionality of the space produced by pCA. The choice of rank in the dimension
reduction step introduces in fact ân extra analysis step with its own problems, which
we will not discuss here. The reduced rank matrix of H is given by

zz'H (4.16)

In order to describe the PC-DA model in the same way as we did for the DA model in
(4.15) we need a Between-within decomposition of zz'H. The decomposition is
made by first decomposing Z = Pp ð we did for H in (4.9),
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z 
: ffit""; r rTîå"; (4,7,

With (4.17) the required Between-V/ithin decomposition of the reduced rank matrix

ZZ'IIcaneasily be made

ZZ'H = KçKr'ZZ'IJ + Kw¡Kw¡'ZZ'IJ. (4.18)

The fit function of PC-DA is obøined by replacing Pn in (4.13) by Ks:

PC-DA: Fit(V) = tt V'P'KBKn'PV (4.19)

with V'V = I.

The corresponding PC-DA model is

K3=PVAx'+E (4.20)

where A¡¡ denotes the loadings of the columns of K3 on the unit orthonormalized

discriminant space PV.

4.3. 5 Reflected Discrimùtant Analysis

Reflecæd Discriminant Analysis ßDA) maximizes the following fit function:

RDA: Fit(V) = t¡ V'P'HBHg'PV (4.21)

with V'V = I.

The corresponding RDA model is

H3=PVAH'+E (4.22)

where A¡¡ denotes the loadings of the between-variables Hs on the unit

orthonormalized discriminant space PV. RDA optimizes the prediction of the

between-variables H3 in least squares sense, whereas DA optimizes the prediction of

tlre between-variables space Ps.

To show that (4.21) maximizes reflected variance we substitute G (4.8) for lJ in

(4.4). The reflecæd variables in discriminant context are given by
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(4.23)IPGH = FHs.

Searching for a discriminant space PV, that best accounts for the variance of the
reflecæd variables, we obtain the RDA fit function (4.21)

RDA: Fit(V) = tr V'P'(PP'H3)(H''PP')pV - tr V'p'HsHs'pV.

The maximum rank unit orthonormalized discriminant space pv. of the RDA
solution, is always a rotåtion of the maximum rank unit orthonormalized discriminant
space PV¿ of a comparable DA solution, if H¡¡' is non-singular. In matrix notation we
state that PV¡ = PVdC, with C'C=CC'=I.

Proof. we exclude cases with singular H¡¡,, because in that case the DA solution
degenerates. The optimal unit orthonormalized v¡ of the RDA solution (4.21) are
equal to the left singular vectors of p'Hs=p'puÕsen' and equal to the left singular
vectors of P'P3Õ3, because Qn'Qn=f. We compute the optimal unit
orthonormalized v¿ of the DA solution by maximizing (a.13) and they are equal to the
left singular vectors of P'Ps. The left singular vectors v, and y¿ are an orthonormal
basis for bothP'PslÞsøndp'ps, because Õs is a diagonal matrix with diagonal
values >0. This implies that PV. =pVñ, with C'C=CC'=L E

If the optimal DA discriminant space pv¿ exists, the optimal c for computing v¡ wittr
Y¿c are equal to the eigenvectors of v¿'p'HsHn'pv¿. In this way the optimal DA
discriminant space is rotated in RDA in such a way that the group or'between,
variance accounted for by the successive optimal RDA variaæs is decreasing. We can
expect that ttre stabitity of group prediction will also decrease.

4.3.6 Sunurury of models and expected propertíes

In t¿ble 4.1 we give a summary of the discriminant models and fit functions of the
preceding sections. The PCA model is also included, because it is needed as a first
sæp in the sequential hybrid PC-DA model.

The summary table 4.1 makes it easy to compare the different discriminant methods.
We discuss two theoretical properties which are indirectly related to the effectiveness
of group prediction. The first property is exactness of group prediction by filæring
out irrelevant 'witlin'information, and the second one is stability of group prediction
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by avoiding solutions in spurious regions, i.e.

accounted for.

Table 4.1 Summary of discriminant models.

Cløpter 4

solutions with very small variance

Name Model Fit function

DA(CVA)

(PCA)

PC-DA

RDA

Pn = PVAp'+ E

Hs +Hy =ZA'+E
Ks = PVAx'+ E

Hn = PVAn'+ E

tr V'P'PsPs'PV

tr Z'(HsHs'+H¡yHç")Z
tr V'P'K3Ks'PV

tr V'P'H3H3'PV =,,

tr V'P'PnÕiPs'PV

with H = POQ' =HB*Hw,
H3'IIB = B,
Hs = P¡Õ¡Qs',
Z = ZB,+Zvt,withZ'Z=\

and Zs = KsÀs[,s'.

If we look at the exactness of group prediction by filæring out irrelevant 'within'

information DA, PC-DA and RDA all seem to predict only group or'between'

information. But if we look at the frst PCA sæp of the PC-DA solution we see that in

making the reduced rank matrix the PCA solution Z çan capitalize on within
information if the within variance comprises a subsøntial part of the total va¡iance. To

make this clear we replaced the matrix H in table 4.1 by the orthogonal decomposition

Hn + Hw. So on the whole, exactness of group prediction is not optimal for PC-DA.

The stability of group prediction by avoiding spurious regions is only effective if the

method in some way capitalizes on the variance of H. In other words the method has

to be dependent on the scaling of the variables. This is the case for PC-DA. RDA

even capitalizes on the variance of the relevant between part of H, but DA turns out

badly in this respect, because it is independent of scale and not interested in variance

whatsoever.



Set Variance with Set Correlation Constaints or Reflected Variance 77

DA PC.DA

Exactness of group prcdiction:

In t¿ble 4.2 we give a summary of the effectiveness of group prediction that can be
theoretically expected with respect to exactness and stability of group prediction.
From this summary we can expect RDA to have more effective group prediction
comparcd to DA andPC-DA

4.3.7 Six special cases of RDA

six theoretically interesting special cases of RDA are presented, because they show
the intricate integration of set correlation and set variance in RDA. The six cases ar€:
The linear independence case for the variables, where the variables of H are not
correlated. The complete rank case for the variables, where ,Ha has n non-zero
eigenvalues. The 2 group and the n group case. Thep=l andp=g-1 case.

The linear independence case for the variables

RDA gives the same solution as linear DA if all variables are linear independent and
have the same normalization.

Proof- In the linear independent case we have H=cP and without loss of generality
we take c=1. From (4.9) we have the equality Hn=pnps'H. Substitution in (4.21)
gives

RDA: Fit(V) = tr V'P'PBP3'HH'PsPs'PV (4.24)

with V'V = f.

After substituting H=P maximizing (4.24) boils down to finding the first p
eigenvectors of P'PsPs'PP'P¡Pn'P, which is equal to the first p eigenvectors of
P'PsPs'P. These eigenvectors also give the solution for the maximization of DA in

RDA

(4.13).
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In general we can say that the RDA and DA solution are equal if all variables are

uncorrelated and have the same normalization and that these solutions can diverge

more if therc is more linear dependence between the predictor variables, but this is not

necessary.

The complete rank case for the variables

RDA gives the same solution as a PCA of the between variables H¡, if nlJo-has n

non-zero eigenvalues (only possible if m2n). This implies that all within group

variances in the discriminant space PV of formula (4.2I) are zero and that the linear

DA solution is degeneraæd.

Proof.In the complete rank cÍNe we have PP'= lF = I. As we saw in section 4.3.5

the reflected variables in discriminant context are given by FGH = IFH3 Ø.23).In
this section it was also shown that RDA maximizes reflecæd variance accounted for
by the discriminant space PV. In the complete rank case after substitution of IF = I in
(4.23) this comes down to maximizing the variance of the between variables Hg
accounted for by an unrestrict€d discriminant space PV. E

The (nxrz) datamatrix H has in many applications of DA many more columns than

rows and in that case the SVD H = PÕQ'has usually an orthonormal singular vector

matrix P (nxp) with p=n or, if the columns of H have zero mean, p=n-l non-zero

singular values. In the n-l case the columns of P in formula (4.23) can without loss

of generality also be compleæd with an extra column to a full square orthonormal

matrix, because in the n-l ca.se the columns of IPGH are the result of two consecutive

projections of H on spaces that fully contain the vector with elements 1 and therefore

the columns of IPGH also have zero mean.

The 2 group and the n group case

Forg=!, RDA gives the same solution as linear DA.

Proof. For g=2 Hs has always rank one and can be writæn as h3. This implies that

hn=pn and in table 4.1 we can verify that the models and fit functions of RDA and

DA become identical.
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For g=¿, RDA gives the same solution as pCA.

Proof. For g=¿ we have G = r (4.8). In this case tåe reflected variables are given by
IFGH = H (4.23)' Because RDA maximizes reflected variance accounted for by the
discriminant space PV, it will in this case maximize tr v'p'HH'pv, which is the fit
function for PCA.

The p=1 and p=g-l case

Forp=g-l the optimal RDA discriminant space, is always a rot¿tion of a comparable
optimal DA discriminant space, if Hy is non-singular. The optimal DA discriminant
space is rotåted in such a way that the group or'betwe€n,variance account€d for by
the successive optimal RDA variaæs is decreasing. We can expect ttrat the stability of
group prediction will also decrease for the respective RDA variaæs.

Proof. Because the maximum rank of Hs is g-1, the maximum rank for the optimal
RDA and DA discriminant space we will always be g-1. Therefore we know that for
p=9-l the discriminant space of RDA and DA has maximum rank. For this condition
ttre previous statement is proved at the end of section 4.3.5. E

For p-l we can expect that the stability of RDA group prediction will increase
compared to DA group prediction if the number of groups g increases. This statement
can be derived from the previous 'p=g-l,statemenl

4.4 Simulation study of discriminant methods

The theoretical properties of the discriminant methods derived in section 4.3.6 and
4.3.7 can be investigated with simulaæd data. If the properties have predictive value
RDA must generally give betær group predicrions rhan both DA and pc-DA. In the
complete rank case for the variables a comparison between RDA and DA is not
possible, because the DA solution degenerates. In chapter 7 we give a real-life
example of a complete rank case for the variables. The previous section indicates an
increasing stability of RDA group prediction compared to DA, if the number of
groups increases and if the RDA solution is of reduced rank. Therefore we decided to
explore the predictive properties of DA, pc-DA and RDA for 5 groups G=5) and 2

79
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dimensions þ=2). Of course this limited simulation study needs to be extended in the

future.

In section 4.4.1 we discuss the construction of the artificial data, containing a true

between-group configuration, a true within-group configuration and an error part. In
4.4.2 we give some measures of recovery of the true between-group configuration

and in 4.4.3 the results are present€d. The expecæd differences in group prediction

are verified by calculating the leaving-one-out effor rate for DA, PC-DA and RDA.

4.4. 1 Construction of anificial dan

The artificial dat¿ H¿¡¡ are decomposed in three parts, a true between-group

configuration, a Eue within-group configuration and an error parl

For the construction of the true object configuration we rewrite the Between-Within

decomposition in (4.9) as follows

H=PnÕnQn'+P¡yÕyQs''
= (PsiD3,Pq,ÕwXQ¡',Qw'). (4.2s)

By taking the matrix (P3Õs,Pç,Õw), with Q3'Q¡=I and Qw'Qw=I, as our true

object configuration insæad of H we can separate the between and the within part

nicely in different latent variables. In this way we can control the distribution of the

error over the between-variables space Ps and the within-variables space Ps'. We can

use (P3Õs,PwÕw) for our simulation study, because we still have the equality
(PsÕ3,P¡,ÕwXPnÕn,PwÕw)'=HH', with trHH' = üÕ3 + ttOT = trT = trB +

trW. From (P¡Õ¡,PwÕw) we can derive a lower bound for the number of variables

m of H, because m>(H)ra*>((Pn)ran¡.,(Pw)ranÐma*, with (H)ra¡* giving the rank of
H and (¿,å)mar giving the maximum value of ¿ and b.

By adding error E¡ and Ep to respectively Ps and P1¡, we have set up the following

decomposition of the artificial data:

Ifart= (PsÕs,PyÕw) +E= (PsÕ¡,Pyéw) + (E¡Os,E¡yÕç') (4.26)

Note that generally the error can not be simulated by omitting E and changing the
values of ô6 and Õy. The error can only be simulated this way if the rank of H¿¡1 is
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¿-1, because the maximum rank of pg is g-l and the maximum ra¡k of py is n-
8+1.

For H¿r1 we chose 40 objects and 5 groups, with 8 objects in each group. The true
between-group configuration psÕs had 4 latent variables with weights <Þ]
proportional to 5, 4, 2, and l. This gave a moderate gap between the second and third
eigenvalue. The true within-group configuration pwÕw had also 4latent variablesI
with weights <Þf,y proportional to 5, 4,2, and 1. Therefore the minimum number of
variables is 4.

Two factors were systematically changed during the construction of the artificial data
IJaft (4.26). This were the Berween-to-total ratio BT and the error level. The
Between-to-total ratio

8l

Br=tf,Ë= ûo3
r (Õ28 + ol,)'

(4.27)

had the values BT = I 0.4 0.2 0.1. The diagonal matrices.Õs and Õw in (4.26)
were computed as follows: Õs=¡¡124,ri. anã rÞs=(l-BT)t"Õr*, *r,"r" oL i,
a diagonal simulation matrix with eigenvalues 5, 4, 2, and l. The error level for E¡
and Ep is equal to the standard deviation of a unit normalized random normal
variable. we chose error level = 0 0.1 0.4 0.7 . For each combination of BT and
error level we computed three reconstruction measures for 150 artificial
configurations' Each of the 150 configurations was constructed with a different error.
The three reconstruction measur€s are given in the following section.

4.4.2 Measures of recovery

In the simulation study we explored only reduced rank predictions and comput€d 2
dimensional solutions. The recovery measures were all adapted to this restriction by
dividing each fit measure by the upper bound for two dimensions. ln this way we
defined a set correlation DA measure DA2, a set variance measure v2, anda reflected
variance me¿ìsure RV2. Successively

oez :lrJlIlI¡'eY, (4.28)
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denotes the variance of the orthonormal basis Ps of the true between-group

configuration accounted for by the discriminant space PV, divided by the upper

bound for a 2 dimensional solution. DA2 ndicaæs the exactness of group prediction.

t,^ tr V'P'HH'PV tr V'P'(H¡H3'+H¡yHç")PVv¿=-----T:----r:-=7,
Qi+0í Ûi+Qí

(4.2e)

(4.30)

denotes the variance of the true object configuration (PnÐ,PwÕw) accounæd for by

the discriminant space PV, divided by the upper bound for a 2 dimensional solution.

0í and fi denoæ the largest two eigenvalues of H'H=T. V2 indiczæs the søbility of
group prediction.

nrz =IIJ*Ë¡Ë¡ÏIt, * þ3,

denotes tle variance of the true between-group configuration PsÕs accounted for by

the latent variates, divided by their upper bound for a2 dimensional soluúon. 6r and
1

fi2 denote the largest two eigenvalues of Hs'Hs=$. RV2 is a simple inægrated

measure for the exÍptness and stability of group prediction.

For each constructed configuration lJafi($.26) we computed a DA solution, a PC-DA

solution and a RDA solution. The three measures mentioned above are comput€d for

each solution. The reduced rank matrix for PC-DA was made by skipping all

components of H¿¡1 with eigenvalues smaller than one eighth of the total variance of
the true object configuration (Psós,Pç'rÞ¡'), which is tr(Oñ + Oív).

4.4.3 Results

In the following three tables we present the mean values of the recovery measures

DA2 (4.28), V2 (4.29) and RV2 (4.30) over 150 construcæd configurations for each

combination of BT and error level. The DA, PC-DA and RDA solutions are computed

using the same 150 constructed configurations.
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Table 4.3 DA2: recovery of the orthonormalbasisPsof
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the true between-

n=150

Error level

Betrveen-to-total ratio BI
I 0.4 0.2 0.1

0.1

4.4

0.7

PC-DA:
RDA:

DA
PC.DA:

RDA:

DA
PC-DA:

RDA
DA

PC-DA:
RDA:

I
1

I
0.94
0.93
0.92

0.82
0.80
0.77

0.73
0.72

I
1

I
0.95
0.88
0.93

0.84
0.73
0.79

0.76
0.66
0.71

0
I

0.9s
0.03
0.93

0.84
0.19
0.79

0.76
0.33

1

0
1

0.9s
0.02
0.93

0.84
0.05
0.80

0.76
0.09
0.71

The results for DA2 in table 4.3 show that, as expected from section 4.3.6, the
solutions of PC-DA degenerate if the proportion of within variance becomes to large.

In that case the solution capitalizes on the within variance in the dimension reduction
sæp. The differences between DA and RDA are never larger than 5Vo with respect to
the DAZ function and of course always higher for DA because it maximizes (4.13).

n=150

Error level

Benveen-to-toøl ratio Bl
0.10.20.4

0.1

o.4

DA
PC-DA:

RDA:

DA
PC.DA:

RDA:

DA
PC-DA:

RDA:

DA
PC-DA:

i
I

0.61
0.74
0.91

0.54
0.62
0.72

0.48
0.50

0.67
0.67

0.42
0.61
0.61

0.38
0.50
0.50

0.34
0.43

o.g¿
0.25

0.16
0.70
o.23

0.14
o.49
0.19

0.14
o.32

0.84
0.11

0.07
0.73
0.10

0.07
0.57
0.08

0.07
0.43

60 0
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In t¿ble 4.4 it is shown without doubt that the PC-DA solurion capitalizes on the
within variance in the dimension reduction step. As for the comparison of DA and

RDA we find, as expected from section 4.3.6,that the variance accounted for is
remarkably higher for the RDA solution, although the DA function is not much lower
(Table 4.3). This could be expected because RDA avoids spurious regions, whereas

DA is indifferent with respect to variance accounted for. This is also the reason why
the DA solutions for error level zero are not uniquely defined. There are many
solutions possible with a perfect fit for one specific constructed configuration.

Table 4.5 the true between-

n=150 Betrveen-to-total ratio BZ

Error level 0.10.20.4
DA

PC-DA: I
I

0.63
0.88
o.92

0.s6
0.71
0.74

0.50
0.61
0.63

RDA: 1

DA 0.61
PC-DA: 0.74

RDA: 0.91

DA 0.54
PC-DA: 0.62

RDA 0.72

DA 0.48
PC-DA: 0.50

00
l1

0.62 0.63
0.03 0.01
0.92 0.92

0.56 0.55
0.18 0.03
0.73 0.70

0.51 0.s0
0.32 0.06
0.62 0.-58

1

0.1

0.4

0.7
RDA: 0.60

In RDA the betweæn variance is predicæd (4.22).In table 4.5 RDA clearly predicts

the B matrix betær than both DA and PC-DA. The expected improvement of group

prediction can be verified by calculating a measure of misclassifîcation of group

prediction independent of the discriminant method. We have chosen for this purpose

the læaving-one-out (L-o-o) error rate for the reduced rank group prediction with
two dimensional discriminant space

I'oo2=ffi (4.31)

The L-O-O error rate is calculated by omitting one object from the raw data prior to

the discriminant analysis, projecting the object into the resulting discriminant space,

computing the dist¿nces to the group centroids, and finally classifying the object with
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respect to the minimum distance. This is repeated for all objects in the raw data, and
the L-O-O error rate is given by the fraction of these objects that are misclassified.
The discriminant space is scaled dimensionwise with the square root of the
eigenvalues maximizing (4.11) and for RDA with the square root of the eigenvalues
maximizing (4.21) (see Maxwell, 1977, p.99). The Loo2 error rat€s (4.31) are
computed for the same 150 constructed confîgurations as for table 4.3, 4.4 and 4.5.
For each cell in table 4.6 we give the m¿an value of the 150 computed Loo2 enor
rates.

Between-to- total ratio BI
Error level I 0.4 0.2 0.1

85

0.1 t2 0.11
0.97
0.05

0.34
0.92
0.30

0.44
0.89
0.46

Generally prediction is better for low error levels. The most striking differences
between DA and RDA in table 4.6 are found on the 0.1 error level. RDA group
prediction is better than PC-DA and DA prediction, even for BT4.r,were the within
matrix W is far from singular. We give the standard deviations for the 0.1 enor level.

Table 4.7 Søndard deviations of lOO2 for 0.1 error level.

n=150 Between-to-total ratio Bf

0.1

0.4

o.7

DA
PC.DA:

RDA:

DA
PC-DA:

RDA:

DA
PC-DA:

0.09
0.0s

0.29
0.28
0.26

0.40
0.39

0.r2
0.06

0.33
0.34
0.3r
0.45
0.43

0.96
0.0s

0.3s
0.85
0.31

0.44
0.75

44

Error level 0.4 0.2 0.1
õm
0.03
0.04

0.07
DA
DA:
DA:

PC-0.1
0.09
0.030.1r

0.04

To give a more detailed impression of the differences between DA and RDA, we
show in figure 4.4 the frequency distribution of IOO2 (4.31) for the 150 consrructed
configurations with BT=1 and with 0.1 error level. The error rates have a discreæ
distribution, because the artificial data have only 40 objects.
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Figure 4.4 Frequency distribution of LOO2 for DA and RDA.

To investigate on the pairwise difference in group prediction between DA and RDA
for the same 150 constructed configurations with BI=1 and with 0.1 error level, we

show in figure 4.5 the frequency distribution of the error raæ of DA minus the error

raæ of RDA

Frequency value

Figure 4.5 Frequency distribution of LOO2 for DA minus RDA.
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l,OO2 dtffercnce values of DA minus RDA in figure 4.5 greater than zero indicate that
RDA prcdicts betær than DA. The reverse is true for values smaller than zero. There
is only one constructed configuration of the 150 where DA performs clearly better
than RDA. In this case the correctly classified percenrage is 30vo higher for DA
compared with RDA. From the total distribution in figure 4.5 it is obvious that RDA
generally gave a higher percentage corr€ct classification than DA.

Summarising the results of our simulation study we rely most on the differences
found with the Leaving-one-out method. The L-o-o error rates presented above
indicate that RDA gives a betær group prediction than pc-DA and DA for 5 groups
and 2 dimensions, especially for small amounts of random error.

4.5 Some variations on reflecting variance

The principle of reflecting variance can be used to formulate a variety of new
methods, but it is not yet clear which extensions have practical use. In section 4.5.1
we offer a two sets example and in 4.5.2 some multiset examples. A promising
extension seems to be the int¡oduction of nonlinear transformations for the variables
in the reflecæd variance methods. In section 4.5.3 nonlinear extensions in the line of
Gifi (1990) are discussed and illustraæd wittr Reflecæd Dscriminanr Analysis.

4.5.1 Reflected Redundancy Anatysis (RRA)

Reflecæd Redundancy Analysis forpredictor set c and criærion set k
RRA: Fit(X) = trX'lPclPtSatr¿trçX +X'lFçS¿lFaX, (4.32)

with X'X=r. The second term on the right-hand side of equation (4.32) gives the
Redundancy Analysis fit function as discussed in section 2.3.1 with sÈ=H¿Hr'for
criterion set,t and IFcX - Zc =IJcTc for predictor set c. The left part of (4.32) gives
the RCA fit function as given in (4.3) with S"=g,lpt=(J and IF"=lp. This part
ensures that the predictor space X is indirectly related to the variance of tle predictor
set c and thereby can ståbilize the solution.
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4.5.2 Multiset Reflected Variance

We give two examples of multiset reflected variance. The first one is Multiset
Refl ecæd Image Analysis:

K
MRIA: Fit(X) =t, j w[l X'F-¿Sft']P-ÈX, (4.33)

È=l

with X'X = I,

where nXp = (x1,...,x¡,...,Xp) denote the common latent variables,

w1,...,wk,...,wK denote fixed balancing constånts for set È.

F_¿ denotes the projector on to the space spanned by

all sets with exception of /c.

This method is relaæd to Generalized Image Analysis (GIA) proposed by Van de

Geer (1986) with respect to the defrnition of unique variances for each set In GIA the

variables H¿ of each set È are decomposed extemally in a unique part (I-IP-¿)H¿ and

a non unique part F-¿H¿. (For exærnal decomposition, see (4.7) and further.) GIA
maximizes the variance of all H¿ accounted for by x, divided by the variance of the

unique parts (I-P*XI* accounted for by x. MRIA maximizes the variance of the non

unique parts P-¡H¿ accounted for by x. The balancing constants w¿ emphasize the

necessity of an appropriaæ normalization of the sets (see chapær 2). The second

example of multiset reflected variance in the same notation is Multiset Reflected

Component Analysis:

MRCA: Fit(X,Z¡)= ü f w¡rt z¡'xx'S¿'XX'Z¿, (4.34)
¡b=l

with X'X = I and Z¡'Z¡ = I, VÈ,

where Z¡ = (z¡k¡1,.,2(ft)s,.,2(þp) denote the unit orthonormalized variaæs for set È

and dimension J, so Z*=H*ì¡*.

In some practical applications it might be inæresting to take the dimensionality of X
somewhat higher than the dimensionality of Z¡.
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4.5.3 Nonlinear Reflected Vari¿nce

All reflecæd variance methods presented in this chapter can be reformulated in such a
way that nonlinear transformations of the variables are optimized. In Gifi (1990) a
general framework is given for such an operation. Three general types of discrete
nonlinear transformations are distinguished: no transformation, monotone
transformation and preserving category membership fansformation. The type of
tansformation is indicated by the scaling level of the variable, respectively numerical,
ordinal and nominal.

The term 'scaling level' is replacing the misleading term 'measu¡ement level' and is
proposed by Van der l¡r¡s (1992) as more appropriate.

usually the scaling level can be chosen for each variable separately, which gives the
researcher sometimes a small classifîcation problem prior to the analysis. Continuous
nonlinear transformations can for inst¿nce be realized by the appliance or fuzzy
coding (see also van Rijckevorsel, 1987 or Ramsay, lggg). we will show in this
section that the extension of reflected variance methods with nonlinear
transformations opens new fields of application, hitherto not easy to explore with
nonlinear MVA æchniques.

We discuss and illusrate the implementation of nonlinear transformations in reflected
va¡iance methods on the basis of the mostelaborated mettrod of this chapær: Reflected
Discriminant Analysis. Nonlinear Reflecæd Discriminant Analysis (NRDA) will be
compared with the nonlinear version of Discriminant Analysis proposed in Gifi
(1990) with the acronym CRIMINALS. we give a slightly deviating definition of
Nonlinear Discriminant Analysis (NDA) to link up with the subsequent definition of
NRDA. In our notation NDA maximizes CVASI (4.13) with a different specification
for Ps.

NDA: Fi(V) = tr V'P'P3P3'PV, (4.3s)

with V'P'PV=V'V=I, for the unit orthonormalized discriminant space

PV=F(H)4,

where F(H) denotes the nonlinear transformed values of H,
P denores the orrhonormal basis of F(H), wirh F(H)=p@e,,

and Ps denotes rhe orrhonormal basis of GF(H)=F(H)3, see (4.g),
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with F(H)u = PnÕnQn'.

In other words the variables H are optimally transformed on their user specified

scaling level in such a way that Discriminant Analysis of the transformed variables

F(H) gives maximal discrimination with (4.13). The definition of (4.35) seems ro

allow only single transformations for the variables [f=(h1,...,h¿,...,hK), i.e. the

transformations are equal for all p dimensions of PV. Nevertheless we can

incorporate, for insiance, a multiple nominal scaling level for variable ft in the analysis

by expanding the daømatrix H in the following way:

H = (Ht,...,Hft,...,HK),

with H& = h¿ forsinglevariables,

and H* = JGrD*-ll2 for multiple nominal variables,

(4.36)

where G¿ denotes an orthogonal category indicator matrix

J = I - 1(1'1)-11' denotesacentingoperaûor.

The orthonormal matrix H¿ is in deviations from the mean by the centring operatorJ.

For the 'transformation' of tle multiple nominal variables we define F(H¿)=I¡¿. 1¡¡t
non standard incorporation of multiple nominal variables in NDA (a.35) is necessary

to make the step towards a comparable reflected variance method less complicated

with respect to the definition of an orthonormal basis for F(H). With NDA we have

only one transformed datamatrix F(H) for all dimensions, whereas the Gifi
CRIMINALS definition would give different transformed dat¿matrices for each

dimension in ttre case of multiple variables.

The nonlinear version of RDA (NRDA) maximizes RDA (4.21) with another

specification of the between variables.

NRDA: Fit(V) = tr V'P'F(H)¡F(H)B'PV (4.37)

wittr V'V=I, for the unit orthonormalized discriminant space PY = F(Ð4,

wherc F(H)n denotes GF(H), which are the between-variables of F(H).

In other words the variables H are optimally transformed on their user specified

scaling level in such a way that Reflecæd Discriminant Analysis of the transformed



Set Variance wíth Set Conelation Constraints or Reflected Variance

variables F(H) gives maximal discrimination with the RDA fir funcrion (4.21). The
above mentioned incorporation of multiple nominal variables (4.3ó) simplifies the
definition of the orthonormal basis P of the transformed variables F(rr).

The merits of NRDA compared with NDA can be assessed in the theoretical
framework of this chapær. In the complete rank case described in section 4.3.7 the
DA solutions are not uniquely defined. This situation for instance occurs when the

datamatrix H has many more columns than rows. with NDA the non unique
solutions will occur even more frequently due to the increase in degrees of freedom.
The category expansion for multiple nominal scaling level (4.36) illustrates the
possibility of a drastic increase in rank. A nonlinear version of pC-DA for the
complete rank case would be maximizing in the fîrst sæp a non adequate fit function
as outlined in section 4.3.6. NRDA on the contrary is able to handle the complete
rank case without the above mentioned disadvantages. It can find optimal
transformations of the variables for separating different groups in many practical
situations where NDA breaks down. In chapter 6 we provide an algorithm for
computing an optimal NRDA solution. In chapter 7 we give a real-life application of
NRDA.

Summarising this chapter we developed a theoretical framework for reflecæd variance
methods. we have shown that RDA can improve group prediction compared to DA
and PC-DA. Nonlinear prediction in the Gifi (1990) framework with a relatively large
number of variables is now possible with NRDA. The same properties are expected
for other reflected variance methods like RCA and nonlinear RCA. This has to be
explored in future research.
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Chapter 5

DIRECTED CORRELATTONS AND

In this chapter a new multiplicative hybrid method is forurulated that maximizes the
product of two complementa¡y fit functions, a local and a global MVA function. The
local function gives a multiset alternative for maximizing variance accounted for. The
global function maximizes correlations as formulated in chapter 3. These adjusted
correlations ae ølled directed conela.tions and are embedded in a multiset path analysis
framework utilizing primary and secondary predictions. The product function that
globatly maximizes di¡ected correlations and locally inc¡eases set variance as much as
possible is called Lifted Directed Correlations (IÐC). LDC is able to describe many
existing MVA methods, hybrid and adjusted methods. It gives one fit function for
cyclic hybrid methods like the basic and extended Parrial tæast Squares (PLS) method
of path modelling, Consensus PLS and PLS Hiera¡chical Components.

Introduction

Defining a product of two functions is also applied in a method called projection

pursuit. By definition, projection pursuit searches an optimal projection by
maximizing (or minimizing) a certain objective function or projection index. For an

overviewof projectionpursuitseeHuber, 1985.Friedman&Tukey (L974) describe

a projection index, which is a product of a local and a global function. The

discrimination of local versus global is formulated by defîning local functions

sensitive for local groups of objects versus a global function influenced by all objects

in an equal way. In this monograph the concept of a global and local function is

always conceived within the context of multiset analysis. A global fit function is
maximized over all sets interrelated and the (sub.)solution for other sets can change if
one of the sets is changed, while a local fit function gives in principle a maximum for
each set separately, invariant under changes of other sets.

In section 5.1 two different formulations are given of multiset Local Reciprocal PCA
(LRPCO and LRPCV) together with Global Reciprocal PCA (GRPCA). The
properties of the global version give an impression of the properties of the local

versions in a hybrid context. In GRPCA the solution can never be dominated by one
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set with ¿ very high variance accounted for because each set is required to have some

substantial contribution to the solution for each successive dimension. In section 5.2

we describe the global ñt function of Direcæd Correlations (DC). Therefore we first
give an introduction to the SUMCOR fit function and to the concept of a condensed or
tangent variaæ.

Section 5.3 combines the local function of section 5.1 (LRPCV) and the global

function of 5.2 (DC) in one product function called Lifæd Directed Correlations
(LDC). The properties of LRPCV incorporated in LDC are discussed. In order to

extend the range of methods that can be described with LDC, we introduce the

concept of primary prediction and regression variate. we show how LDC can be used

to fit path models with primary and secondary predictions. A general algorithm is
presented for LDC in section 5.3.6. With this algorithm we can show the relations of
LDC with many other methods. These relations are established by comparing the

algorithmic flow. Especially for PLS methods this is a necessary approach, because

they are usually only defined by linear equations and not by an overall fit function.

In section 5.4.1 relations of LDC with many other methods are discussed. At the

same time we give for all methods LDC path diagrams and show how to turn these

path diagrams into specific LDC fit functions. In this way we offer a criterion for
Wold's basic PLS method of Soft Modelling (Wold, 1982) and rhe exrended basic

PLS method proposed by Lohmöller (1989) as Larenr Variable Path modelling.

Despiæ the lack of a 'hard' scalar criærion the PLS system of path modelling has been

used for many years, especially by chemometricians. It offers many statistical

advantages compared with other path modelling systems like Lisrel (see Fornell &
Bookstein, 1982). With the LDC fit function the 'soft' PLS system is made 'hard'

and maybe this will give the method a greater impact. We think this will add a

valuable instrument to the data-analysis tool-box for many researchers.

Apart from the general PLS system of path modelling we elaborate on some specific

PLS methods in more detail. We give the LDC formulation of Consensus pLS

proposed by Geladi & Martens (1988), the PLS Hierarchical Components method

(Wold, 1982), the PLSI regression method with a PLS1 continuum extension of
[-orber, Wangen & Kowalski (1987) and the relation with Continuum Regression
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proposed by Stone & Brooks (1990). The reflecæd variance methods of chapter 4 can

also be brought within the LDC framework and from the corresponding LDC path
models arises an interesting two sets PLS method. Last but not least we show ttrat Set

component Analysis of chapær 3 is an example of a DC path model. we conclude

this chapter in section 5.5 wiûr a theoretical comparison of LDC and DC.

5. 1 Global and local formulation of reciprocal PCA

We define a global version of reciprocal PCA followed by a local version. In that
manner this section provides us with a simple example of a global and local MVA fit
function. At the same time the global version gives an impression of the properties of
the local version in a hybrid contexl Furthermore, we apply deflation as int¡oduced in
section 2.2.4 n order to guarant€e a substantial contribution to the solutionfor each

dimension.

A global formulation of reciprocal PCA for multiple sets is described by maximizing
the following global reciprocal PCA fit function

95

GRPCA: Fit(x)

where x

Slt)s = St

S ¡t;s = (I-x¡-1 x5-1')S ¡¿,¡s-,¡ (I-xs-lxs-l')

(5.1)

fors=l, VÉ

fors=2,...,p. V&

I
= { *'* '

å iSk.

denotes the common laænt variable.

successive dimensions can be computed by deflating the matrices s¿ according to

The emphasis of the GRPCA solution is not so much on maximizing the total variance

accounted for, but on avoiding for each set,t a very low variance accounted for. Each

set,t is required to have some substantial conuibution to the solution.

A local formulation of reciprocal PCA for multiple sets is achieved by introducing in
(5.1) for each set the local unit normalized linear combinations zk=Hktkinsæad of
x. The local reciprocal PCA fit function should then be
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(s.2)

(s.3)

where Z = (21,...,2k,,,,,z,K) denote the unitnormalized setvariates,

with zk=IJktk and z¡r'z¡r=1, VÈ

and t' = (tl',... ,tk' ,,,.,tK') denotes a vector with I*m* variable weights,

For reasons to be explained in section 5.3.4 we describe another slightly different

version of local reciprocal PCA. In (5.2) we have in fact an object-wise LRPCQ

formulation when we look at the variance of H¿ accounted for by z¿. In the following

variable-wise LRPCY formulation we look at the variance of H¿ account€d for by t¿.

1

t't'LRPCV: Fit(t) = 5 tk'tk
È_tti-îftrktk

with the same notation and normalization as for (5.2). Therefore z¡'IJ¡'IJ¡z¡=\,
VÈ.

Successive dimensions in (5.2) and (5.3) can be computed by locally deflating the

matrices H¿ according to

H¿&;s = Ht

H¡t)s = (l-z 
¡¡¿¡ 5-12 ¡¡)s-l')H ¡¿¡¡-1

fors = 1,

for s = 2,...,p. vÈ (5.4)

The deflation is local, because zlt)s-l is specific for each set separately, while x¡-1 in
the deflation for (5.1) is the same for all sets. Due to (5.4) we will always find

orthogonal variates in successive dimensions.

The solution of LRPCO and LRPCV is also local for t, because t defines different

variates z¿ for each set, whereas the solution of this variates is ¡gtr relaæd to the

content of the other sets. Analogous to the properties of GRPCA we can expect that

the LRPCO and LRPCV fit functions, put in a global context in a hybrid method,

introduce for the hybrid solution the tendency never to be dominaæd by one set with a

very high variance accounted for and to have some substantial contribution of each set

to the solution for each dimension. Maximization of (5.2) and (5.3) with (5.4) makes
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zft)s eetJal to the eigenvectors of S¿ with the largest p eigenvalues in descending
order. By combining the local MVA functions with a global fit function we can obtain
less trivial solutions. In section 5.2we discuss a very good candidate formaking
such a hybrid method.

Finally, regarding the difference between global and local MVA functions, it is
important to notice that having in principle different variates for each set is a
necessary, but not sufficient, condition for a MVA function to be local. Crucial for a

MVA function to be local is the property of having in principle independent solutions

for each set. If there is some slight inænelation we are already dealing with a global
MVA function.

5.2 The adjusted method of Directed Correlations

The global fit function ro be combined in this chaprer with LRpcv is the Direcæd
Correlations (DC) fit function. The adjusted method of Directed Correlations is build
up analogous to the SCA method in chapter 3. We integrate set correlation and set

variance. Therefore we maximize a weighted sum of set correlations between pairs of
adjusæd set variates. The sum of set correlations is the SUMCOR frt function (Horst,

1961) and the set variates with improved variance accounted for are called coldersed
variates.In section 5.2.1 and 5.2.2 we inrroduce respecrively the suMCoR fit
function and condensed variates. In section 5.2.3 we construct the Directed
Correlations fit function by joining the preceding two secrions.

5.2.1 The SUMCOR fit function

The suMCoR fit function as described by Horst (1961) maximizes the sum of the

correlations benveen all possible combinations of set variates

KK
SUMCOR:Fit(Z) = > Ez¡'z¡= I'R1,

lçll=l
(s.5)

where /, = (z 1,,..,2k,...,2 K) denote the unit normalized set variates,

with z¡ = IJ¡t¡¡, VÈ
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denotes a column vector of appropriate size with

elements 1,

denotes a (rKx¡Q symmetric correlation matrix.

(s.6)

1

and R = Z'Z

Local deflation is according to (5.4). SUMCOR(t) would be an alternative

formulation for indicating the unknown parameters of (5.5). Although we have

different variates for each set and local deflation, SUMCOR is a global fit function,

because (5.5) is maximized over all seÍs intenelated and the solutions for variates of
other sets can change if one of the sets is changed. Before constructing the Directed

Correlations fit function by multiplying the elements of R in (5.5) with weights we

need to explain the concepts ofcondensed variates and secondary prediction.

5.2. 2 Condense d variate for s e condnry pre dicrton

In principle the condensed variate is equal to the improved set variate defined by
(3.4). Without the indices for the dimensions we obtain zÈ=S&x(x'SftS¿*)-ll2.

Applied to the correlations in (5.5) we have three adjustedconelations,

z ¡' z¡= 7 | $ ¡r2 ¡(z I S ¡rS ¡z ¡)- 
| I 2,

z ¡' z ¡= z ¡' $ ¡2 ¡(z ¡'S ¡S ¡z ¡)-l 
| 2,

or (z¡ç'S¡S¡z¡ç)-ll2z¡'S¡S¡z¡(zfS¡S¡z¡)-l12

The adjusæd correlations are called directed correlatiow. The adjusting set variate we

call the pivot variate and the adjusted variaæ we call the cond¿nsed variate. The third

directed correlation in (5.6) is in fact adjusting in two directions. Therefore the set

variates a¡e in this case both pivot and condensed variates. In that case we refer to the

set variates as condensed variates. The pivot and condensed variates are linear

combinations of respectively the pivat set of variables and the condensed set of
variables. The condensed variate z¡a and matrices IR, which contain directed

correlations, will always be indicated in outline. The properties of the condensed

variaæ are now elaboraæd.

A condensed variate is a linear combination of a set of variables that can condense tlp
set variance information in such a way that it can replace the whole set with respect to

some pivot variable. The spatial position of the condensed variate is such that the
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variance of all the variables of the condensed set accounæd for by some pivot variate

is exactly the same as the variance of the condensed variate accounted for by the same

pivot variable. For this equality to be valid we require that the variable weights of the

condensed variate are unit normalized. The process of predicting variables through an

condensed variate we call secondary prediction.

Figure 5.1 Pivot variate x and condensedvariate z¡¿.

In figure 5.1 we give a geometric example of an pivot variate x and a condensed

variate z¡¡for aset H¿ with rank two. In this example the pivot variate x is located in

the plane of the singular vectors pa and p¡ of H¿=(po,p¡)Õ¿Q¡' with singular values

Qa > Qr. The construction of the condensed va¡iaæ is made on top of figure 3.1 of

chapær 3, where an ellipse through the eigenvalue s t nl ú**drawn. To facilitate

the inuoduction of condensed and pivot variables at a later stage we extend matrices

and vectors with subscripts t. We call a variaæ H¿t¿ with unit normalized variable

weights, t*'t'-l Vk, a unit weights variate. All possible unit weights variates form a

hyperellipse and in our simple rank two example this is an ordinary ellipse through

the singular values Qa and @¡. If we take some fixed pivot variate x in any direction

then the variance of H¿ accounted for by x is given by the squared length of the

largest projection of the hyperellipse on to this pivot variate x. There is exactly one

point where the hyperplane orthogonal to the pivot variate x touches the hyperellipse.
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The line from the origin through this tangent point determines the unit normalized
condensed variate z¿. In other words, geometrically the condensed variaæ can also be
called the tangent variate. We now show the relation between the v¿riance of the unit
weights condensed variate accounted for by the pivot variate x and the variance of H¿
accounted for by x.

We emphasize that the variance accounted for is defined by the squared sum of the
projections of the variables or va¡iates on û0 x and not by øking the squared length of
some vector on the outer ellipse in figure 5.1.

Definition 5.1. The variance of condensed (or tangent) variate H¿t¿ with unit
normalized variable weights accounted for by the pivot variate x and the variance of
Ifu accounted for by x are exactly the same.

Existence and uniquen¿ss. First we find the largest projection of the hyperellipse
described by the unit weights variates H¿t¿ on to the pivot variate x. This implies that
we have to maximize x'H¿t¿ for fixed pivot variate x with x'x=l and free parameters
t¿ with restriction t¿'t¿=l vÉ. By applying the cauchy-schwarz inequality on rhe
non fixed paramet€rs of x'H¿t¿ we know that (x'H¿t¿)2<(x's¿x)(t¿'t¿)-(x's¿x).
The maximum of x'H¿t¿ is ¡eached if (x'H¡t¿)2=(x's¿x) and therefore the optimal
value for tft=Ht'x(x's k*)-112. The unit weights condensed (tangent) variate is
known by substituting the optimal value for t¿ in the unit weights variate II¡t¿ and we
obtain s¿x(x's¿x)-1l2. In figur" 5.1 we see that the unit weights condensed variate
S¿x(x'S¿x)-rl2 is really a tangent variate. The variance of this variate accounted for
by the pivot variate x is (x'S¿x(x'S¿x¡-lþ2=¡'S¿x, which is equal to the variance
of H¿ accounæd for by x. The direction of the condensed va¡iaæ is uniquely defined
by the projection of x on to H¿, which is p¿p¿'x, and the set variance structure of
H¿. E

For fixed pivot variate x the condensed variate with unit weights normalization is a
good candidate for replacing all variables of set É. The unit normalized condensed
variate zrstx(x'S¿S kx)-ll2 withz¡'z¡r=l V/c, (see figure 5.1), has also a unique
di¡ection related to the projection ofthe pivot variaæ x and the set variance structure
of H¿. The condensing property of the condensed variate is invariant of the sign of
vector s¿x(x's¿s¿x)-ll2 üñ therefore zFts¿x(x's tå**)-ltz is to be preferred in
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this respect. In the next section we introduce the condensed variates z¿ in the
SUMCOR fit function in order to obtain Directed Correlations.

5.2.3 Direct¿d Conelations

By combining the theory of section 5.2.1 and 5.2.2 we change the ordinary pearson

correlations in the SUMCOR fit function into 'directed'conelations. A directed
correlation is a Pea¡son conelation between pivot and condensed variates as specified

in section 5.2.2.The correlations a¡e called 'directed', because the condensed variate

is an inærmediaæ variate of some set of variables in such a way ttrat the pivot variate

can predict the variables by predicting a properly normalized condensed variate. We
already referred to this as secondary prediction. There is a prediction path possible

from pivot variate passing through the condensed variate and ending with the set of
variables. In section 5.3.3 on path diagrams we will give more details.

The dual nature of direcæd correlations implies that each variate can have two roles.

The same variate can be an pivot variate and it can be a condensed variaæ.
Or a regression variate, which is a condensed variate of an orthonornral set of variables,
see section 5.3.2.

'We refer to this phenomenon by saying that a variate can be in pivot or in condensed
(c.q. regression) mode. Another aspect of the dual nature of direcæd correlations is
that a variate can be the pivot variate of many different condensed variates, but that a
variate can be in principle only the condensed variaæ of several pivot variates if the
projections of the pivot variates on the condensed set have exactly the same direction.

The last stat€ment is true because the condensed variaæ of a certain set of condensed

variables is uniquely defined by the by the direction of these projecæd pivot variares.

In practice this will usually not occur. If one wishes to have a condensed variate

based on many sets, this can be achieved by øking a linear combination of several set

variates and using this linear combination as pivot variate. As a result the condensed

variate is indirectly determined by several (sub-) pivot variates. with this slightly
extended concept of pivot va¡iates we can now construct the one dimensional Direct€d

Correlations fit function by adapting (5.5) as follows

KK
DC: Fi(Z,W) = I I wp¡z¡'z¡= l'(lR*W)l

lc=l l=l
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(s.7)
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where R = Z'Z denotes a (KxK) symmetric correlation matrix

with direcæd conelations,

Z = (21,...,2k,...,2K) denote unit normalized pivot variates,
z¡¿=H¡t¡, with a subset VÈ

Z = (21,...,2k,,,.,2K) denoting condensed variates,

zk = lskzk*((s¿zt*)'s*z **)-112, Vke Jp,
K

zk*= 2wklzl,
l=l

where W

and J¿ the index set of Z with condensed variates,

denotes a matrix with weights or function values

wH and with diagonal elements equal to zero,

WDi"g=0.

denotes a binary matrix with the design patærn of
non-zero (1) and zero (0) weights of W,

denotes the Hadamard (elemennvise) product.

Woeslgr¡

If appropriate the sum of squares of the weights W have to be normalized to a
constant value, tr W'W=c. Successive dimensions can be computed by locally

deflating the matrices Ht according to (5.4) or by user specification. We have to

emphasize that z¡, and z¡ are just the same variates in different modes. The variaæ z¿

is in pivot mode and z¿ is in condensed mode. Therefore DC(t,\il) would be a more

efficient, but less clear formulation for indicating the unknown parameters of (5.7).

The essential mathematical difference between z¡, and z¿ is found in the weighæd

determination of the condensed variate z¿ by the pivot variaæs 21,...,21,...,2K

zk = lskzk*((stz¿"*)'stz kù-|12, VkeJ¡¿,
K

with zk*= 2wklzl,
EI

and J¿ the index set of condensed variates, (5.8)

ll w¡ç¡+w¡¡ç for one combination of (,t,1), then reversion of the role of z¡ and zk can

already give a different result for the determination of the condensed variate in (5.8).

Restriction (YkeJ¡,the index set of condensed variaæs) implies that the condensed

variate È is only well defined if there is at least one non-zero element in row k of the

weight matrix 1{. Using the more efficient parameter formulation with DC(t,W) as

suggested above and the same notation, DC in (5.7) can be written as
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DC: Fit(t,W) = 1'(lR*W)1,
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(5.e)

where t' = (tl',... ,tk' ,...,tK') denotes a vector withå*m* variable weights.

By now we have formulated the Directed Correlations fit function. The function is

equal to a weighæd sum of direcæd correlations. DC is a local fit function if we

requine the matrix W to be diagonal. We always choose the matrix W with lryDiug{,
otherwise than diagonal and therefore can conceive and apply DC as a global fit
function.

5.3 Lifted Directed Correlations

Afær all the preparations in the preceding sections we can now elaborate on a product

function that can describe a wide variety of methods. The function is Lifæd Directed

Correlations and it is constructed in section 5.3.1 by globally maximizing the direcæd

correlations of (5.9) and locally raising or lifting the variance as much as possible

with LRPCV (5.3). The properties of LRPCV incorporared in LDC are discussed in

section 5.3.4.

In section 5.3.2 we introduce the regression mode as a third mode next to condensed

and pivot mode, because it extends the range of methods that can be described with
LDc (5.10). we also introduce the concepr of primary prediction. In section 5.3.3 we

show how LDC can be used to fit path models with primary and secondary

predictions and many weighting modes for the variates. We describe these weighting

modes consisting of different types of weights (like proportional function weights)

and different weighting functions.

Although we discuss all algorithms of this monograph in chapter 6, we make an

exception for LDC in section 5.3.6. The reason for this special treatment is that we

want to discuss in section 5.4 the relations of LDC with other methods. These

relations are given by comparing the algorithmic flow. Especially for most pLS

methods this is a necessary approach, because they are usually only defined by linear

equations and not by an overall fit function. In order to derive linear equations and an

algorithm for LDC we first reformulaæ LDC in section 5.3.5.
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5.3. 1 Combining gl.obal DC with local IRPCV

The Lifæd Directed Correlations fit funcrion is given by the product of DC (5.9) and

LRPCV (5.3)

LDC: Fir(t,w) - 1'(R'*w)l

ttK-l ' (5.10)

and J¿ the index set of Z with condensed variates,

denotes a matrix with weights or function values

w¿¡ and with diagonal elements equal to zero,

WDiag=0,

denotes the binary design patærn of W.

where R -- Z'Z denot€s a (KxK) symmetric conelation matrix

with direcæd correlations,

Z = (21,...,2k,...,2K) denote unit normalized pivot variates,
zk = Hft¿, with a subset VÈ

Z = (21,...,2k,...,2K) denoting condensed variates,

zk = xs lztc*KSlz* *)'slrr*)-rt2, Vke J¡,
K

zk*= 2 wklzl,
l=l

where W

Woqsicn

where t' = (tl',...,tk',...,tK') denotes avector with Xpzt variable weights,

nf =P*QïQ/, where a in this context is short for c¿ Vt

If appropriate the sum of squares of the weights lV have to be normalized to a

constant value, tr W'W=c. Local deflation is according to (5.4) or user specified.

Constant K adjusts the normalization of LDC to the normalization of DC, as will be

explained in section 5.3.2.

In fact we introduced the superscnpt axfor the condensed and pivot mode variables

Itff =l¡Offq¿', with Ht = P/ÞtQ¿'as usual. For convenience and without loss of
generality we defined ø¿ also for set t with only pivot mode variables. For

convenience, because it offers an uniform treatment of pivot and condensed mode

variables. Without loss of generality, because the pivot variates are in principle only

restricted to be in the space of the corresponding variables and therefore invariant

under nonsingular transfonnations within sets. In section 5.3.2 we will explain how

ø¿ gives the possibility of inroducing a special mode, namely the regression mode.
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5.3.2 The regression modefor primary prediction

The regression mode is introduced next to the condensed and pivot mode, because it
extends the range of methods that can be described with LDC (5.10). We also

introduce the concept of primary prediction. For c¿=l we obtain the condensed

variates z*=tS&x(x'S kSk*)-112, as described in section 5.2.2 and the condensed

variates in (5.8) specified for multiple pivot variables. For d*=0 we have the

regression mode and regression variates. In that 
"u." 

I{=p¡q¿' and SP=P¿P¿'. So

the matrix H¿ is replaced by an orthonormal basis HP and S¿ is replaced by the

projector P¿Q¿'Q¡P¿'=P¡P¿'. Any other orthonormal basis would also be fine, but

H$ simplifies the notation compared to n[. Geometrically this means that in figure

5-1 the ellipse is replaced by a circle and in the general case the hyperellipse is

replaced by a hypersphere. The tångent variate is now found by simply projecting x
on to the space of H¿. The multiple regression weights of P¿ for predicting x are

(P¿'PÈ)-lP¿'x=P¿'x. The resulting regression variates are

z¡=áp*po'l*rx'PpP¡'x)-ll2 and for multiple pivot variates

r05

Y ke J¡¿,

K
wittt zk*= 2wklzl,

l=l
and J¡ the index set of condensed variaæs, (5.11)

In PLS literature (see section 5.4.1) the condensed mode (ø¿=1) is called ModeA,

outwards dirpcted, or factor mode and the regression mode (ar{) is called ModeB,

inwards directed, or regression mode. In section 5.2.2 we called the process of
predicting variables through an intermediate variate secondary prediction. The
condensed mode in LDC (5.10) results in secondary prediction, because the variance

of the sets accounted for by the pivot variates is lifæd locally as much as possible by

LRPCV. This is shown in the section 5.3.4. The prediction is direcæd from the pivot

variates towards the variables of the condensed set. The regression mode in LDC
(5.11) resulæ in what we call primary prediction In this mode the prediction direction

is reversed. The regression variates predict as well as possible the (weighæd sums of
the) pivot variates. If we fit a path model with only primary predictions for all
variates, then t't=K and consequently we obtain the same results for DC and LDC.

z* = ts9zt*((S9zr*)'s9 rk*)-rt2,
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5.3.3 Path models andweighting modz

Recursive and non-recursive path models can be fitted with Lifted Directed

Correlations. In section 5.4 we will give many examples. In this section we give

some general principles and possibilities. For fining a path model with LDC we need

a path diagram which specifies the (hypothetical) design and mode of the relations

between the set variables and latent variates, and the design and mode of the weighted

sum of pivot variates.

For each relntion between variates and their corresponding set variables we must first

specify which variables are linked to which variates (PLS outer design matrix).

Secondly the kind of prediction has to be chosen by specifying the mode of the

variates. For primary prediction we have the regression mode with a¡=0 (PLS mode

A) and for secondary prediction the condensed mode with ø¿=l (PLS mode B). A
condensed variate in LDC predicts the set variables and is at the same time being

predicæd by an pivot variate.

x ___-4,r?rftn

Figure 5.2 LDC path diagramfor pivot variate x and condensed vøriate z¡r.

Figure 5.2 gives a prototype of the arrow configuration around a condensed variate

z¿ for set H¿ with three variables h¡t;I, h¡*¡zand h¡r,¡t. The right hand diagram gives

a mort abst¡act cont¡acted illustration of tlre left hand diagram.

A regression variate in LDC predicts the pivot variaæ and is a linear sum of the

variables of the corresponding set

h¡pr

h¡tc)z

htÐz

zk+x ---r-'-'+
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x ____<_ "odw

Figure 5.3 LDC path diagramfor pivot variøte x and regressionvariate z¡r.

Figure 5.3 gives a prototype of the arrows around a regression variate z¡ with z

contracted illustration on the analogy of figure 5.2. From this point on we will use

only diagrams with contracted illustrations.

The weight matrix \{ is a combination of a weight matrix WDesign and a weight

mode. The design for the weighted sums of the pivot variates is summarised in the

rows of matrix WDesign. Figure 5.4 gives an example of the LDC arrow

configuration a¡ound a condensed variate with two pivot variaæs x1 and x2.

xl- .

xZ"

Figure 5.4 Condensed variate z¡¿with pivot variates x1andx2.

The binary matrix lYDesign is more or less equivalent with the command design

matrix in PLS and it specifies in principle the pattern of adjacent latent variables in the

path model with non-zero (1) and zero (0) weights. As for the kind of prediction

between the variaæs special modes are defined for the weighæd sums of the pivot

vari¿tes. The mode of the weights is defined by the type of weight and its function.

We discem three type of weights: the fixed weights, the proportional function weights

and the function weights. The fixed weights are parameters that always remain

constant. The proportional function weights are proportional to the values of a
multivariate weight function. The optimal proportional function weights remain

proportional to their corresponding weight function value if the fit function is
maximized with these weights fixed. The optimal solution can be found by

t07

x ----{- zk+

h(r¡

h(*)z

h¡ø3
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normalizing the sum of squares of the weights, (tr w'w) to some constant value. The

function weights are equal to thefu weight function value.

Several functions can be chosen for the proportional function weights and function
weights. The combinations of weight function and type of weight result in many

different weighting modes. All PLs methods we have studied used proportional
function weights. In the Basic PLS method described by wold only one weight
function and therefore one weighting mode is used for w. In the Extended pLS

method Lohmöller adds two other weight functions and discerns three 'inner
weighting modes'. They will be discussed in section 5.4.1.

usually the weight design matrix wDesign is the same for all p successive

dimensions, but in principle a different design can be chosen for the respective

dimensions. Finally we mention the possibility of defining an ancillary set of larent

variates as if they are manifest variables. For this ancillary set a condensed or
regression variate can be established.

5.3.4 Properties of LRPCV incorporated in LDC

In section 5.1 we presented an object-wise LRPCO and a variable-wise LRpcv
formulation of local reciprocal PCA. The properties of the local function LRPCV are

influenced by the symbiosis with global DC in LDC. we will now examine the

properties of incorporated LRPCY. In LRPCO we looked at the variance of H¿
accounted for by unit normalized variates z¿. In LRPCV we looked at the variance of
H¿ accounted for by variable weights t¿. In incorporated LRpcv we add to this last
property that we look at the variance of H¿ accounted for by variates somewhere

between the condensed variates z¡ and the weighæd sums z&* (5.8) of the pivot
variates 21,.. .,z,1,.. .,2K. By maximizing locally the variance of HÈ accounted for by
variable weights t¿ we also enlarge the variance accounted for by the weighted sum of
the pivot variates. Formulated mathematically we state that

Fitlppgg (z¿ *)<Fit¡ppsv(z¿ ¡)SFit¡¡p co(z*),

where Fi6p¡'ço@kù stands for

(s.13)
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LRPCO: Fit(z¿¡) = V+.,rk_,
r-'z¡a"S¡çz¡a

A z¡*'s¡¿z¡r' '\-
f_rz¡¡*'S¡S¡rz¡¡

109

(s.12)

with notation as usual. In fact we already make (5.2) global by replacing the local
variates z¿ by the weighted sums zt*. The definition of LRpco(z¿) is similar.
F4uation (5.13) needs some further explorarion.

In our investigation of the properties of incorporated LRPcv we assume that all
variates are of dual nature. This means that all variates are in pivot mode and in
condensed (or regression) mode. This assumption applies for all methods discussed

in this monograph. The restriction z¡ig¡2r¡((S¿z¿¡)'S¿z **)-ll2 in (5.10) implies
for the variable weights tk*=J.Idk'zk*((S¿z¿1)'S¿z **)-112. Substitution of these

weights in LRPCV (5.3) gives an impression of incorporated LRPCV

LRPCVT Fit(zt"t) - (5.14)

with notation as usual. By applying the cauchy-Schwarz inequality on z¿1's¡z¿1 we
know that (z¡ *'S ¡z¡ *)z 3(z¿*'S¿S¿z¿* ) (zk *' z t *) and therefore

z¡1'S¡¡z¡ç¡ - zk*'zk*
æ$Srz*- s zriFrzn

Combining inequality (5.15) with (5.12) and (5.14) we conclude that

Fit¡ppçg(z¿*) S Fit¡p¡rçv(zk*).

A parallel procedure for LRPCO (5.2), with insertion of H¿t¿ for z¡, and LRpCV
(5.3) by applying the Cauchy-Schwarz inequality on t¿¡'H¿'H¿t¿¡ leads to the

inequality

Fit¡ppçy(z¿1) I Fit¡ppçs(z¿). (s.17)

Joining (5.16) with (5.17) we obtain the surplus properry of incorporared LRpcv
described in (5. l3).

(s.1s)

(5.16)
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5.3.5 LDC revised

We confine ourselves to find a fitting procedure for LDC where all pivot variates are

also condensed variates. The index set of condensed variates J¿=l,...,¿,,.,,K.
Almost all methods discussed before in this monograph and all basic and many

extended PLS methods can be fitted with the derived algorithm. The one dimensional

LDC fit function (5.10) is first reformulated for æchnical reasons into

LDC: Fit(t,W,Dv) =# = V, (s.1 8)

with f,f = l¡d)yt,

t'Dyt = t't
ftHt'H¿tt = 1, Vk

where ¡' = (t1',..., tk' ,...,tK') denotes the partitioned variable weights of B,

B = K(H.'H.¡*\il"*t denotes a weighæd variance-covariance matrix,

.H = (H I,...,IdL,...,Hft) comprising all involved variables for K sets,

Ht = H f =PtôfQt', whercøinthiscontextisshortformodeø¿ Vk

w¡ext

B¡r¡ = fl¡'H ¡w¡¡,

w

denotes l{ extended blockwise in such a way that

for row block & and column block l, vk,l
denotes a matrix with weights or function values

w¿¡ and with diagonal elements equal to zero,

WDiag=0,

vllmt 0 0

0 vklm* 0

0 0 vKlmr

If appropriate the sum of squares of the weights W have to be normalized to a

constånt value, tr W'lV=c. Local deflation is according to (5.4) or user specified, As

for the normalization of t it is important to notice that t has an explicit strong

normalization Q'.[f¿'fl.¿t¿=l, V&, and at the same time an implicit weak normalization

(t't)-1. We call this a strong-weak normalization. The introduction of auxiliary matrix

Du with weights v¿ in the LDC restrictions makes it always possible to find an

optimal solution that satisfies this rigid srong-weak normalization. Without matrix Dy

and Dv
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this is usually not possible. The relation of (5.18) with (5.10) can be made explicit by

realizing that t¿Ht'H ltl = zk'zl denotes the directed correlation between unit
normalized condensed variate z¡andpivotvariate z¡. Constant Kin (5.10) is included

in matrix B in (5.18).

Equation z* = !Slz**(Sfztcù'Sfz**)-112 = tsrzr*((S kzk*)'S.kzk*)-1l2, in 15.10¡

for the condensed variates, is in (5.18) incorporaæd in the restrictions

$f=t/Dyt and trlltHttt=l, and is redundant.

- Restrictio¡ 1=¿lnulnt implies z¡ = f{¡t¡= Il¿Br*t(vrtl)-1,
with B*,* = (B¿1,...,8 kt,...,BkK).

- Restriction tfil¡ft¡t¡=l for the column blocks implies z¡=$.¡¡z¡¡(v¡ty¡-t, and

finally restriction t¡|l¿fl¿t¿=l for the row blocks implies equation zk =
ÊS.rzt*((S.tz **)'5.*z**)-ll2 with the t dependent on the sign of (v¡ry). Ofcourre

the restrictions for the row and column blocks a¡e one and the same. They are

presented sequentially only to simplify the derivation.

The condition (VfreJ¿) for the weighted sum Zf* in (5.10) is not found in (5.18),

because we confined ourselves to find a fitting procedure for path models where all
pivot variates are also condensed variates.

5.3.6 Algoritltttt

In this section we elaborate an algorithm for LDC in several optimization steps. First

we derive optimization sæps forfxed weights \il followed by additional equations

for proportional function weights W. We end up with some remarks onfunction
weights.

For fixed weights V[¡ we derive steps to find optimal t and Dv for fit function (5.18).

If there were no strong normalizations (trllt'Httrl, VÈ) on t and no auxiliary

matrix Dy, the optimization problem would be to find a maximum for (t'Bt)(t't)-1,

with restriction Bt=Vt. For fixed weights this maximum attained if t is the right-hand

eigenvector of matrix B with the largest eigenvalue. We explain this statement with a

short intermezzo on Eigenvalue Decomposition of some nondefective square

asymmeEic matrix A.

I1l
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The Eigenvalue Decomposition of some nondefective $quare asynmetric matrix A
(Golub & Van Loan, 1990, p.338) is given by

A = UÂU-I,

wbere U

with diag(U'U)=I,
_t

(u ')'
ãd^

where

(5.1e)

denote the right-hand eigenvectors,

denoæ the left-har¡d eigenvectors,

denotes a diagonal matix with eigenvalues.

The right-hand and left-hand eigenvectors of A are usually not orthogonal (Wilkinson,

1965). If A is symmefic we have U'U=I, and U l=U'. 
Linear equations for the right-

hand eigenvectors of marix A a¡e

Atright = Vtright,
and for the left-hand eigenvectors

t¡e¡¡'A = t/tleft'.
The eigenvalues are given at stationary points by

^ tsdiatrrc&_ttellll!þfr
v= 

^(A) 
= 6ññ= =tb:f,rlñ,

and they satisfy the equation h-{¡¡Il+. Maximization of r¿=(t'At)(t'r)-1, with

rest¡iction At=ryt is anotber fomrulation for finding the largest eigenvalue of A with
corresponding right-hand eigenvector t. Rest¡iction trf=l¡rt can be omitted if we

maximize

- t'C¡AtY=^(A)=Tc1r' (5.20)

C¡ = 1U-l¡'1U-l¡ denotesthevariance-covariancemat¡ixofthe

left-hand eigenvecrors (U-l)' of A.

Matrix C¡ is symmetric and matrix C¡A is atso symmetric. Restriction At=V/t is

incorporated inplicitly in (5.20), because the stationary equations are equal to this
restriction. With substitution A=B in the previous exposition on eigenvalue

decomposition it is obvious why the optimization problem to find a maximum for
(t'Btxt't)-1, with only rest¡iction Bt=r/t, is solved by taking for t the right-hand
eigenvector u¡¡¿¡¡ of matrix B with the largest eigenvalue ima*(B),

If A is p.s.d. the right-hand eigenvector umaj( with largest eigenvalue ,l¡¡¿* can be

found with the Power Method by

Att 1 ti'A'Ati ,-712 - ri+t (s.2t\

If we want to apply the Power Method generally we have to substitute A=B+cI in
(5.21), with some estimate for c>-À,¡¡nç¡¡ in order to make matrix A positive (semi-)
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definite. This method works if all eigenvalues of B are distinct. It still works if marix
B has a large multiple eigenvalue and is similar to a diagonal matrix, although in that

case the solution is not unique. If the Jordan canonical form of matrix B is not

diagonal the Power Method does not work and other methods have to be used. For

algorithm (5.21) the implicit weak normalization (t't)-l is temporarily changed into

the explicit weak normalization t't=l. In general with procedure (5.21) t converges to

u¡¡¿¡ ând V to Lmax, We must emphasize that although the Power Method is

monotone convergent with respect to (5.20), it is not always monotone convergent

with respect to VÊ(tt'Ati(tt'ti-1. The reason for this phenomenon is thar restriction

At=t/t is violaæd during the iteration process and that it is only satisfied after

convergence is reached. Therefore intermediaæ values of r¡=1ti'Att¡(tt't)-l are only
feasible if t is an eigenvector of A.

We proceed further with the maximization of (5.18) for fixed weights W wirå srong
normalizations and auxiliary matrix Dy. In other words we have the optimization

problem to find a maximum for r¿=(t'Btxt't)-1, with restrictions DllBt=r¡t,
t'Dyt=t't and (tt'Ht'Htt¿=1, Vt). The parameters v¿ in Dy give extra freedom in

order to be able to satisfy the strong restrictions on t.

According to (5.20) we can also maximize

113

(s.22)

with restrictions t'Dvt=t't and (ttH¿'Hfttt=l, V¿).

Applying principles of alærnating least squares we maximize r¿with t and Dy fixed in

turn. Correspondingly restrictions t'Drt=t't and (tt.H¿'H¿t¿=1, VÈ) also have to be

relaxed in turn, because all restrictions can only be satisfied after convergence is

reached.

For fixed W and Dy we find a maximum for (5.22), by taking for t the right-hand

eigenvector ua¡¿¡¡ of matrix Orln wittr the largest eigenvalue Âü¡axtnuls). For the

Power Method we have to substitute A=DvlB+cI in (5.21), with an estimate for c in
such away that c2-.i,¡¡¡ntoulnl and therefore matrix A is positive (semi-) defîniæ. A
good sørting value for Dy fixed is to take v&=1, VÉ. It gives a global maximum for
(5.18) without strong normalizations on t. After the fixed W and Dy optimization step

^ _t t'c1¡;rg¡DylBt
ry = ,LlprrB) = rcõfr;, ,
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the strong normalization of t has to be assessed in the next step and if necessary

adjusæd.

For fixed \{ and t we find an optimal Dy in such an way that restrictions t'Drt=t't
and (ttIIt'H tctrI,Vk) are satisfied. Afær the previous optimization step we have

satisfied equality Dulnt=y4. This equality can be partitioned and transformed in K
equalities

HtB¿*t = \tvtrfl*t*, VÈ

witlt Bt* = (Btl,...,Bt/,..,,8¿tr).

Applying thereupon restriction ttI.I¿'H¿tt = 1 results in

d¿(t) = Vvk = (t'Br*'HÈ'H.rBr*t)l/2sign(trfltHrBt*t),

or d¡(t) = Vvk = tt'HtflrB¿*t, V¿

with sign(r) denoting the sign of .x.

In mat¡ix notation we have the equalities

f oal
I tal = u,D, I' (s'23)

with D(t) =

dr(t)Inr 0 0

0 d¿(t)I¿¡ 0

0 0 û¡(t)I¿¡

D(O =

d1(t)Ia1 0 0

0 d¡a$)r¡¡¡, 0

0 0 ùy(t)l¡;x

d¿(t) = (t'B r *'H È'H ¿Br*t) 
l/2sign(ft 

Ifu 'HrBr*t),
and d¡(t) = tr'Hr'HrBr*t.

Finally by applying subsequently t'Dyt=t'D(t)t\ìl=t'tand t'Drt=t'D(t)tvl l-t't,
we obtain the required formulas for an optimal Dy
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Dv = D(t)#h,

or Dy = D(t)#h.
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(s.24)

(5.2s)

ln summary, the optimal t and Dy for maximizing (5.18) with fixed weights \ü can

be found by alærnaæly taking for t the right-hand eigenvector u¡6¡ of matrix DllB
with the largest eigenvalue lnnaxO;lnl and for Du the function values of (5.24) or
(5.25). Another straûegy is to perform only one step of the Power Method (5.21)

corrected with some constant 
">-X^in(urln¡ 

and then to update Dy. The fîrst
procedure is usually converging very fast. The second procedure can only be

competitive in consuming CPU time, if an estimate for c is chosen, large enough to

make matrix A positive (semi-)definiæ during all iærations. A lower bound for c can

be found, because restriction t'Dyt=t't is satisfied after each sæp of the power

Method. For Ømin we have D ulBt^¡o=Wmintmin, which implies
t¡1¡¡'Bt¡¡¡¡=yrotlnt¡¡i¡'Dyt¡¡i¡=V/mintmin'tm¡¡ and therefore a lower bound for r¿ also

gives an estimate for c in this context. One possible estimate for c is

6 = -Âmin(.5x8+8,) 2 -rlmin = - 
t13$33

(s.26)

A third procedure can be defined by constructing the positive semi-definiæ matrix

B=B+cI, with c2-larin(.5x8+B'). Substitution ofB in (5.26) always gives a positive

or zero value for Wm¡. A simple attractive algorithm results if we substitute.B insæad

of B in (5.23) and (5.24), and subsequently substitufþ (5.24) in A=Dy1.B and A in
(5.2I). For future comparison with the basic PLS algorithm we have chosen to

substitute (5.2Ð nd not (5.25). The total iærarion process with fixed weights W
reduces now to

D(tj)-1Bt' = ti*1, (5.27)

wherc P(t) denotes D(t) in (5.23) with B replaced by.B=B+cI,

with c>-.hr¡n(.5x8+8,).

Convergence is reached if l-tt'tt*l1ti'riri+1',i+1¡-1/2 is sufficiently close to zero.

Algorithm (5.27) for the strong-weak normalized t is only slightly modifred compæed

to the Power Method for the weak normalized t. Generally we expect to find a global
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maximum for (5.18), especially if we take the optimal t from (5.21) with A=B as a
stafting point t0 for (5.27).If the Power Method is not feasible we have to rely on
other methods for computing the largest eigenvalue and conesponding eigenvectors.

Having established linear equations and an algorithm for (5.18) for fixed weightsw
we will now consider the necessary modifications for proportionalfunction weights

IV. lVe simply have to add an extra step in the alærnating least squares algorithm
described so far. For t fixed we have ûo maximize (5.10), rewritten as

LDC: Fit(w) =I9g)1= c'vec(\il), (s.28)
t'tK'

where c = vec((t't)-1rn) denotes matrix (t't)-l/<lR strung out to a vector,

with vec(w)'vec(w)-l'wDesignl. Maximization of (5.28) is equivalent to
minimizing the residual variance e'e,'where e+-vec(w) for unrestricted w or some

appropriate nonlinear transformation of rv. (see Gifi, 1990, page 529 and Kruskal
&carroll, 1969.) For being proportional func[ion weights the weights \il are

restricæd to be proportional to the values of the multivariaæ weight function$(t),

14r = pF(t).

One example of such a weight function is F(t)=R*WDesign, where the weights are

proportional to the direcæd correlations or equal to zero, according to the design of
the weights. With this weight function maximization of (5.28) gives the same resulr

as for unrestricted W. Summarising the estimation of the proportional function
weights we have to add the following sæp in the alærnating least squares algorithm
described so fa¡

W= (s.2e)

Equality (5.29) has to be alærnared with (5.27) or an equivalent eigenvecror sæp in
order to obtain an algorithm for (5.18) with proportional function weights. For this

algorithm we do not expect to find always a global maximum.

rro(ffiffiJ/'z



Directed Conelations ond Partíal I¿ast Sqwres

In the beginning of this section we promised some remarks on function weights.

Until now we have not est¿blished a general algorithm for function weights. The only
MVA method we have encountercd that fits a path model with function weights is the

SCA method of chapær 3. For this special case we have developed an atgorithm. All
other MVA methods can be described with fixed function weights or proportional

function weights.

5.4 Relations of LDC with other methods

In section 5.4.L a short introduction to Wold's basic PLS method of Lohmöller
(1989) is translated into our notation. Thereafter we give tle corresponding basic PLS

algorithm in section 5.4.2 and show the relation with LDC in section 5.4.3. In section

5.4.5 the extended PLS method proposed by Lohmöller (1989) is brought within the

LDC framework. Section 5.4.6 gives the LDC formulation of consensus pLS

proposed by Geladi & Martens (1988) and also gives an equivalent 'variance

accounted for'criterion that is fitæd by the consensus PLS algorithm. section 5.4.7

elaborates the PLSI regression method and Continuum Regression proposed by
Stone & Brooks (1990). The reflecæd variance methods of chapter 4 are discussed in

section 5.4.8 and from the corresponding LDC path models arises an interesting two

sets PLS method. l¿st but not least we show in section 5.4.9 that Set Component

Analysis of chapter 3 is an example of fitting a DC path model with real function

weights. Some LDC extensions of the SCA path model are formulated, like the pLS

Hie rar chi c al Componenß method.

5.4.1 Wold's basic mcthod of So[t Modelling

Herman Wold (1982) has int¡oduced a type of modelling with latent variables which

he calls "Soft Modelling". The name indicates that this sort of model building applies

when the theoretical knowledge is scarce and stringent distributional assumptions are

not applicable. Lohmöller (1989) calls this method the "basic Partial Iæast Squares

method". As no single criterion had been established ?artial læast Squares' or'PLS'
refers to the partitioning of parameærs in estimable subsets.

117
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In order to avoid an overflow of new symbols for readers used to PLS not¿tion, we

will present only the esrtmntedPLS models in our notation.

Variables. A soft model involves manifest variables (MV's) and latent variables

(LV's) related by linear equations. The MV's (directly observed, observables,

indicators) are partitioned into non-overlapping subsets of K blocks H¡ with m¡
manifest variables, each block being indicative of one LV or variate z¿. According to

Lohmöller all involved variables and variates can be treated as deviations of means

without loss of generality.

Inner model or structural model. The variates Z=(21,...,2k,.,.,2y) are

assumed to be interconnected by one or more linear relations. The basic method

requires the variates to form a recursive path model (a causal chain),

Z=Zlt*Ea, (s.30)

where l=(a1,...,a¿,...,a,K) denote regression weights or path coefficients,

E¡ denote residual variables,

with (E¡'Z)9¡¡6i¿t=Q, all offdiagonal values of E.¡'Z equal to zero.

The design maüix Anesign of a recursive path model is subdiagonal.

Outer model or measurement model. T\e m¡s manifest variables H¿ are

assumed to be generated as a linear function of its variaæ z¡¿ and the outer residual

variables E¿,

IJk=zkck'*Et,

where ck

E¿

with E¿?¡=Q.

(5.31)

denotes a vector with mt loadings for set,t,

denote residual variables for set k,

\ileight relations. As a vehicle for the estimation of the model parameters, the

variates z¿ are estimated as weighæd aggregates of ttreir indicators,

z¡ = IJ¡t¡, (5.32)
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where t*
with z¡'z¡r=1.

denotes a vector with m¿ variable weights,

The weights are estimated by least squares methods in two different versions. In the

first version (called mode A, outwards directed, or factor mode) the manifest

variables H¿ are regressed on an instrumental variaæ z** (the so-called inside
approximation)

u9

IJk=zk*tk¡'+E¿*,

where tk*
Ek*

with E¿a'z¿*=Q.

z¡¡¡=II¡t¡1 *€ft*,

where tk*
ek*

with ek*'zk*=Q.

(5.33)

denotes a vector with m¿ regression weights,

denote residual variables for set È,

(5.34)

denotes a vector with m¿ regression weights,

denote a residual variable for set È,

and the variances of the outer residuals Ee* in (5.33) are minimized for unknown t¿1.

In the second version (called mode B, inwards direcæd, or regression mode) the

instrumental variate z¿¡ is regressed on the manifest variables H¿

The weights * in (5.32) are rescaled versions of the provisional weights tÈ* and

provide thatz¡ in (5.32) is unit normalized.

5.4.2 The basic PIS algorithm

The algorithm for estimating the unknowns of the models proceeds in three søges. In

the first two stages the variables H¿ and variates zt are centred. In the third stage the

variate means and the location parameters are estimated. Stage three will not be

discussed here, because we omitted without loss of generality the means and location

parameters in the definition of the estimaæd models in section 5.4.1.

Before specifying the basic PLS algorithm, the subdiagonal path design matrix

ADesign constructed from a recursive path model has to be completed with an upper-

diagonal part in a command design matrix Woesign with a corresponding command



120 Clapter 5

diagram. The term command design matrix has no explicit rcference to PLS literature,

but the command diagram is extensively discussed by Bookstein (1982). The

command design matrix is implicitly defined by the choice of several optimization

operators. We will show this in section 5.4.4. Lohmöller (1989) calls the command

or weight matrix W the 'inner weight matrix', but he does not cleady emphasize the

difference between the command design matrix lYDesign and the subdiagonal path

design matrix ADesign. Knowing Woesign the PLS algorithm for the basic method of
soft modelling is given by

Stagel: Iterative estimation of weights t¿ and variaæs z¡. Starting at Step 4, repeat

Sæps I to 4 until convergence is obtained.

Step l. Inner weights

Compuæ W = WDesign*RSign,

where Xsign denotes a matrix with the signs of the elements of X,
and R = Z'Z conelations between the variates Z=(21,...,2¡,...,2K).

Step 2. lnside approximation

Compute z**= f wkpl.
Þl

Step 3. Outer weights. Solve for tÈ* in (5.33) or (5.34)

Hk = zk*tk*' + E,t*, for set k in mode A
zk* =IJktk* + €ft*, forsetÈinmodeB

Step 4. Outside approximation

Compute zk = Hktk = HÈtt*((Ht t**)'Id.*t**)-rl2 .

Stage2: Estimation of path coefficients A and loadings c¡ by minimizing in least

squares sense the error ofrespectively (5.30) and (5.31).

We consider Stagel as most essential for the basic PLS algorithm and therefore

classify basic PLS as a cyclic hybrid method. Cyclic hybrid methods maximize

several fit functions cyclically, while utilizjng optimal parameters of previously fitæd

models, until a st¿tionary pha.se is reached.
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5 .4.3 Basic PLS a special case of IDC

Having specified the basic PLS algorithm in section 5.4.2,we can now establish the

relation with the LDC algorithm of section 5.3.ó. In PLS stage I the variaæs zk are

computed and all other PLS parameters can easily be derived from this solution.
Therefore we will compare the basic PLS algorithm with the LDC algorithm with
respect to tïe computation of the variates z¿ in stage l.

First we simplify the basic PLS algorithm. The variables H¿ for the regression mode

B in Step 3 can be replaced without loss of generality by the orthonormal basis

9=PtQt'. Only the weights tt* will change, but not the conesponding variaæ z¿ in
Sæp 4. Step 3 can now be reduced to

Step 3. Outer weights. Solve for t¿*

Hl =z¡ç¡t¡¡' * E¿*,

Subsequently Step 2, 3 and 4 can now be reduced to

(s.35)

(s.3ó)

(s.37)

denotes a matrix with the absolute values of X,

denotes a diagonal matrix as defined in (5.23).

12t

with a¿-l for mode A,

ø¿=0 for mode B.

zr = S lz**(Slz**)'Sfrtù-1t2,

K
wittt zk*= Zwklzl,

l=l
dk=I for mode A and ø¿=0 for mode B.

Substituting in (5.35) equalityS¿zr*=H¿Br*ì from section 5.3.5, with H* = Hl,
and premultiplying both sides with II-/ we obrain an algorithm for basic pLS for
finding an optimal t and therefore optimal variates z¡=,H*tk This algorithm consist of
two steps

Step 1. Inner weights

Compute 1ry = WDesiBn*RSign.

Step 2. Variable weights

Compuæ n(t5n-trnti = ti*1,

where XA¡s

and D(t)
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Because the sign of D(t¿) in (5.37) is compensated in (5.36) by the sign of the

correlations R, we are allowed to replace (5.37) by

Compute D(tt¡-l3r; = ti*1, (5.38)

In summary, the algorithm for basic PLS can be reduced to alæmating between (5.36)

and (5.38). Aniving at this point we can make a comparison with the LDC algorithm.

This algorithm consist of alærnating between (5.29) and (5.27). Formula (5.29) is

equal to (5.36), if we define the weight function F(t) by

F(t) = WDesign*RSign. (s.3e)

Formula (5.27) is equal to (5.38), if Âmin(.Sxn+n1)0. Then for cd) we have B=8.
Therefore the basic PLS algorithm uses in principle the Power Method on a matrix

that can have negative eigenvalues. In this situation the Power Method usually

converges to the eigenvector with the largest absolute eigenvalue, positive or

negative.

Because the LDC algorithm converges to a maximum for (5.18), the basic PLS

algorithm will also converge to a maximum if Âmin(.SxB+B) st¿ys great€r than or
equal to zero during the iæration process. The PLS algorithm will also converge to a

maximum if Â6¿x1.5*g.'g'¡ stals much larger in absolute value than l^io(.s*n*s')
during the iteration process. If lmin(.Sxn+¡1 is more or less equal to åmax(.5x8+8,)

the basic PLS algorithm might not converge to an optimal solution. If ,â¡¡¡¡1.5*¡ag1 is

much larger in absolute value than it*(.srn*n) the basic PLS algorithm will simply

switch the signs of the weights W in (5.36) and proceed to find a maximum wirh

l^o(.So*"'¡ much larger in absolute value than Â-in(.S*¡*n). Therefore the basic

PLS algorithm will generally find a maximum for LDC (5.10) with weight funcrion
(5.39) substituted

bPLS: Fir(r) = 
jîtsr-rt,

(s.40)

denotes a (KxK) symmetric correlation matrix

with direcæd conelations,

denotes a matrix with the absoluæ values of X.

where R=Z'Z

X¡¡s
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In some special cases the PLS algorithm will nor converge, because it is not using the

Power Method in a proper way. Nevertheless the basic PLS algorithm generally finds

a global maximum for (5.40) due to the sign switching of the weights W described

above. The LDC algorithm always finds a local or global maximum. By computing

maximum solutions starting with several feasible non-sign-similar W's we usually

find the global and one or mor€ local maxima for the basic PLS fit function (5.40).

Two matrices W1 and Wz are sign-similar if they can be made equal by changing the

signs of rows and corresponding columns. So W1-DW2D, where D is a diagonal

matrix with diagonal elements I or -1. In other words two matrices defined by (5.36)

are sign-similar if they can be made equal by sign transformations of the variates.

Therefore a group of 6 sign similar weight matrices W leads to g maxima of (5.40),

that differ only with respect to the sign of the variates. We call this a sign-similar

solution of bPLS. The matrices W are feasible if they do not violate the restrictions

imposed by the weight function, which is (5.39) for bPLS. Observing this weight

function we know for instånce that weights matrices W are not feasible, if w¡¡-w¡i
for some elements. The number c of feasible non-sign-similar W's defines the

number c of sign-similar solutions of bPLS. Therefore we need c feasible non-sign-

similar starting values for W in order to be sure to find the global maximum with the

LDC algorithm. In a case of three sets, where for instance all non-diagonal elements

¿ìre non-zero, c=2. In the case of two sets PLS (K=2) we have c=1, and we always

find two equal global maxima, which only differ with respect to the sign of the

variates z1 and 22. Generally we state that we will find with the LDC algorithm only

global maxima with different signs of variates, if all feasible W's are sign-similar

(c=1). From this st¿tement we deduce on the other hand that the bPLS algorithm will
always find a global maximum for the LDC fit function, if all possible W's are sign-

similar (c=1) and Wsign=WDesign*RSign.

5.4.4 The command dcsign matrix

The command design matrix WDesign is implicitly defined by the choice of several

optimization operators. Sometimes ancillary blocks are added in the command

diagram. Booksæin (1982) describes six operators, called mode A to F. By applying

the basic PLS fit function (5.40) we will show how all these optimization operators

t23
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can be fitæd with LDC path models. In our terminology the optimization operators or
Opr operators define the construction of the condensed and regression variates. The
Opt commutd has the general form of

zk = O ptx(H¡¿,Z¡,,.,,z,1), (5.41)

where z¿ denotes the condensed or regression variate with variables H¡ and zj,...,zt
denote one or more pivot variates. X denotes the mode of the opt command. In the
case of a two sets path model (K=2) we have only one pivot variate in (5.41). In this
case we can choose between two opt commands, opt¡ or optg. The pLS path
diagram in figure 5.5 can therefore be fitæd with three command diagrams given in
figure 5.6.4 to 5.6.C.

"> zt4rr{^,,

Figure 5.5 PLS path dìagram for two sets.

oPts 
>zl-22

opts

A

Ootr,
zl< 22

opts

B

Ootr.

-g>zlt zz
opte,

c
Figure 5.6 P¿S command diagrams for two sets.

In frgure 5.7.4 to 5.7.c we give the corresponding LDC path diagrams with primary
(ør{) and secondary (øt=l) predictions according to the prototypes in respectively
figure 5.3 and 5.2.
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5,7.4 CCA

5.7.8 R.4

"> zt4#rr{g,

"> zt1+tr{r,

H> q+*+rr{^,

125

5.7.C PLS2

Figure 5.7 LDC path diagrams for two sets.

The fourth combination of Opt¡ and Optg would be to reverse the direction of the

arrows in 5.7.8 in order to 'predict' the regression variate of set 2 with the condensed

variate of set L This paradoxical combination is omitæd, because at least primary or

secondary prediction must be on line with the chosen flow of prediction. The pLS

path design matrix ADesign (5.30) for the path model in figure 5.5 is

Aoe,srgn (s.42)

and the command design matrix Wnesign for all diagrams in frgure 5.5, 5.6 and 5.7 is

Woosign (s.43)

From the LDC path diagrams we can easily derive direcæd correlations matrices IR.

The rows of these matrices always give the condensed or regression variates and the

columns the pivot variates. The condensed variates with ø¿=l will always be

indicated in outtrine and the regression variates with ø¿{ in bold. For figure 5.7.4
the conesponding direcæd correlations matrix R with the desired design is

0 0

I 0

0 I
1 0
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(s.44)

(s.45)

IR,r.Wpes¡g¡ =
0 z1'zj

22'z'1. 0

0 zl'22

z2'zl 0

For figure 5.7.8 the corresponding matrix is

JR*W¡es¡g¡ =

and for figure 5.7.C

IRr,Wpgs¡g¡ =
0 zl'22

22'zl 0
(s.46)

Maximizing the bPLS fit function (5.40) for (5.44), (5.45) and (5.46) we find rwo
equal global maxima, which only differ with respect to the sign of the variaæs of set 1

and 2. The bPLS solutions for (5.44), (5.45) and (5.a0 can be linked to solurions of
well-known MVA methods (Lohmöller, 1989, p.110). For (5.44) the bpLS solurion
is equal to a one dimensional cCA solution (2.23) with canonical variates z1 and z2

and canonical correlation z1'22. For (5.45) the bPLS solution is equal to a one

dimensional solution of the Principal Predictor model, where the canonical variate of
the predictor set is equal to z1 and the variate of the criæria is equal to z2.whenz2is
omitted we have the RA solution (2.26) and also Fortier's simult¿neous linear
prediction (Fortier, 1966). For (5.46) the bPLS solution is equal to a one dimensional

solution of rucker's (1958) Interbattery Factor model. In chemometrics the

corresponding asymmetric deflation algorithm is usually called the PLS2 method
(Manne, 1987). The predictor variable z1 is usually called the column vector of scores

(tt) for the independent block X, and z2 the scores (u1) for the dependent block y
(Geladi & Kowalski, 1986).

In the case of three or more sets path models Bookstein (1982) describes four
additional operators, ca.lled optç to optp. From his geometrical description, which
we found more consistent than the command diagrams, we have distiled the

projections for all operators in table 5.1.
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Table 5.1 Oprtmizarton operators for PI^S.

t27

zk = optA(Hk,zr) = si"r*((sl"r*)'sizr*)-ll2,
zk = optB(Hk,zl) = sP"t*((sflz¡*)'sflr¡*¡-l/2,

zr = Optc(Hy,z¡,...,2t) = S*zr*((Slz¡*)'Slz¡*)-ll2,

zr = Opto(H¡,23,...,21) = Sfrr-((Sflzt*)'Sfl"t*)-ll2,

with z¡* = 21,

with z¡* = 2¡,

with zk,r. = (z¡,...,21)1,

with z¡x = (z¡,...,21)1,

with z* = Opt4(Hç,,rfld¡, *ith H'," = (z;,...,21),

zk = OptE(IJy,z¡,...,z;t)

= Optg(H¡,2*),
zk = OptF(Hy,zi,..,,zl)

= optg(H¡,2,n), with z* = optB(Hw,"Pld), *ith H* = (z;,...,2¡).

In fact Bookstein defines for mode C and D not the sums (2j,...,2¿)1, but the means
-tz¡¡= (l'l) '(z¡,...,2¡)1. Due to the normalization of z¿ this makes no difference.

For Optg and Optp an ancillary set of variates is defined as if they are manifest

variables Hh,. It is clear that all operators can be brought in the general format of
(5.35) and (5.40) with a proper definition of W¡es¡g¡.

We give an example with three sets to show how the mode C to F operators can be

incorporated in the bPLS fit function (5.40). The PLS path diagram in figure 5.8 can

for instance be fitæd with three PLS command diagrams given in figure 5.9.4 to
5.9.C, comprising respectively mode C, mode D and mode F.

">,t\r"r{n,
"r- rr/

Figure 5.E PLS path diagram for three sets.
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Yr="'
Çîf=".f *{
ht'/ ,tr'

A PLS mode C operator B P¿.ç nndc D operator C PIS modc F operaør
Figure 5.9 P¿.S commnnd diagrams for three sets.

The working area of mode F is outlined in figure 5.9.C. In figure 5.10.4 to 5.10.C

we give the LDC path diagrams with primary and secondary predictions. The LDC
path configurations for respectively mode c, mode D and mode F operators are

outlined.

5.10.4 Mode C nri,t,

5.10.8 Mode D "rds,

5.10.C Mode F :-. F
lo- l.),rtT IJz,

Figure 5.10 LDC path diagrams for three sets.
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The mode C configuration outlined in figure 5.10.4 is equal ro figure 5.4, which
gave an example of the LDC arrow configuration around a condensed variate with
two pivot variates. In figure 5.9.C and 5.10.c we find an ancillary ser of variates,

H4-(21,22), with regression variate 24. In mode E this would be a condensed variaæ

v.4 (we f,rgure 5. 1 1.C). The PLS path design marrix Aoesisn (5.30) for the path model

in figure 5.8 is

ADesign (s.47)

and the command design matrix WDesign for all diagrams in figure 5.9.4, 5.9.8,
5.10.4 and 5.10.8 is

I{oesign (s.48)

For figure 5.10.4 the corresponding direcæd correlations matrix lR with the desired

design is

0 0 zl'23

0 0 22'23

23'zl 23'zz 0

(5.4e)

t29

lR*WDesign =

For figure 5.10.8 the

IR*lYDesign

The command design

matrix is

0 0 zl'23

0 0 22'23

z1'21 z3'22 0

(5.50)

matrix Woesign for the diagrams in figure 5.9.C and 5.10.C is

0 0 0

0 0 0

I 1 0

0 0 I

0 0 1

I I 0

0 0 I 0

0 0 1 0

0 0 0 I

0 0 I 0

lVDesign (s.51)
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and the corresponding direcæd correlations matrix lR with the desired design for
figure 5.10.C is

0 0 zl'23 0

0 0 zr'27 0

0 0 0 z?'z,4

0 0 z4'23 0

(s.52)

At convergence of the bPLS solution z3 and za will be the canonical variates of a one

dimensional CCA solution (5.44) with canonical correlation z3'24. By studying the

arrow diagram of figure 5.10.C we could for instance decide that our LDC path

model would be betær approximaæd by changing the primary prediction of z4by z3

into a secondary prediction of z4 by z¿. In this way tve can make a mode F as drawn

in figure 5.11.4.

IR*\üDesign =

5.11.4 Mode F' io--;'r{n,

H- 4<
",{n,

,1r,
5.11.8 Mode D

5.11.C Mode E -++HÙ"

Figure S.ll LDC path diagrams for three sets, continuation.
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The corresponding direcæd correlations matrix lR. with the desired design would be

0 0 zl'23 0

0 0 z2'23 0

0 0 0 23'24

0 0 z4'23 0

lR*WDesign = (s.53)

To demonstrate the properties of the optimization operator OptB of table 5.1, we

reverse the arrows in the PLS path diagram in figure 5.8. Now z3 is predicting both

z1 and 22. In this case usually Opto or Optg are included in the command diagram.

Optpis already incorporated in figure 5.9.8 and 5.10.8. An inælligible alternative for

the LDC configuration in figure 5.10.8 could be to change the combination of mode

D with the primary prediction of z3 by z1 and z2 rnto mode D with the secondary

prediction of z1 and z2by 4. This alærnative is illustrated in figure 5.f l.B. In figure

5.11.C Optg is incorporated in a LDC diagram. The corresponding directed

correlations matrix R with the desired design is

lR*\üDesign =

0 0 zl'23 0

0 0 z2'23 0

0 0 0 z3'24

0 0 24'23 0

(5.s4)

At convergence of the bPLS solution variate 3 and 4 will be equal to a one

dimensional solution of the Principal Predictor model (5.45), where z3 is canonical

variate of the predictor set and z4 the variaæ of the criæria-

5.4. 5 Latent variable path rnodelling: extended PIS t¡t¿tlnd

In this section ttre extended PLS method proposed by Lohmöller (1989) is brought

within the LDC framework. Lohmöller designates the methods presentÊd with the

general name'l¿tent Variable Path' methods (LVP methods).

The extensions of LVP modelling compared to basic PLS path modelling are:

- The relaxation of the basic PLS restriction that the variables must be partitioned

into non-overlapping sets of variables.
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- The possibility to compute methods with more than one dimension for each set,
with three different onhogonality restricrtons on the variates. These restrictions are
different from the common deflation procedure used in basic pLS.

- The addition of ¡vo extra weight fmctions for the proportional function weights.

As for the overlapping sets of variables in LVp modelling, we remark that this
overlap is also possible wirh LDC path models.

As for the three different orthogonnlity restictions, this option can be realized in LDC
path models by copying whole sets of variables and imposing orthogonality
restrictions on tåe variates. For the computåtion of this orthogonality pattern
according to an orthogonality design specified by the user, we can use the 'pattor'
rot¿tion procedure developed by Lohmöller (1989, page 43). Lohmöller remarks that
this patterned orthogonalization can interfere with the main pLS procedure by
destroying in each iteration cycle the improvement made by the main procedure and
thus blocking tåe convergence. Maybe this inærference is due to the improper use of
the Power Method in the basic PLS algorithm and will therefore not occur in the LDC
algorithm.

The last LVP exænsion simply implies the specification of the extraweightfunctions
in LDC. we repeat that in PLS only proportional function weights are applied,
described by multivariaæ weight functions. The proportional function weights are
combined with several weight functions into inner weighting modes (see section
5.3.3). In the basic PLS method described by wold only one weight function (5.39)
and therefore one weighting mode is used for w. In the Extended pLS method
Lohmöller (1989, page 42) adds two other weight functions and discerns three 'inner
weighting modes' or 'weighting schemes'. These weighting schemes arc the path
weighting scheme, the centroidweighting scheme, andthefactor weighting scheme.
The centroid weighting scheme uses the basic pLS weight funcrion (5.39). The factor
weighting scheme uses the following weight funcrion

F(t) = W¡ss¡g¡*lR. (s.ss)

The path weighting scheme uses in fact a combination of üwo weight functions. These
are weight function (5.55) and the following weight function



with the regression weight A according to (5.30). For the path weighting scheme we
have the weight function
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F(t) = Wpes¡g¡*A,

F(t) = WDesign(R)*lR. + W¡ss¡gn(A¡*A,

with \{Design(JR) + I{Design(A) = WDesign,

where WDesign(R),

and Woesign(A),

t33

(s.56)

(s.57)

denotes the design for elements weighted

according to (5.55),

denotes the design for elements weighted

according to (5.56).

In PLS ærminology the weights of the MVA weight funcrions (5.39), (5.55), (5.56)

and (5.57) are respectively based on the centroid, the principal component, the
multiple regression and the MIMIC variable (Lohmöller 1989, page 40). The MIMIC
method is described in chapær 2.

Like (5.39) for basic PLS all additional defined weight functions for LVP modelling
result in proportional function weights w for LDC, that are normalized according to
(5.29).In LvP modelling the weights are always defined as w = F(t). Although the

optimal solution for the variat€s z¿ is the same for LDC and LVp modelling, this
definition suggests that the weights are real function weights and obscures the fact
that they are proportional. with a simple two sets path model one can easily verify
that the two sets LVP solution cannot be influenced by the choice of the weight
function, whereas this would definiæly be the case if the weights W are real function
weights. Furthermorc it has been found that the choice of inner weighting modes has

only little influence on the results when tl¡e model is a realistic one (Noonan & Wold,
1982). These results are not so surprising ifone realizes that PLS uses proportional
function weights. Real function values might differentiaæ the results much more with
respect ¡o the different weighting modes.
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5.4.6 Three-way Consensus PLS

In Martens & Maræns (1986), the family of PLS mode A methods is classified in two

main groups to suit different analytical situations. These groups are predictiye and

correlative PLS. Among the predictive PLS algorithms they mention PLS2 (see

formula (5.46) in section 5.4.4 and further) and PLS1 (see secrion 5.4.7).

Concerning the correlative PLS methods they only discuss three-way Consensus PLS

(CPLS). We will first give the estimated model and algorithm of CPLS proposed by

Geladi, Martens, Martens, Kalvenes & Esbensen (1988), translated into our not¿tion

and normalization. The LDC formulation is possible by defining an appropriaæ

weight function. Furthermore we give two alternative 'variance accounted for criæria

that are frtæd by the consensus PLS algorithm.

Models used:

Consensus model:The m¡ manifest variables H¿ are assumed to be generated as a

linear function of the consensr¡s variate x and the residual variables Ec,

H = xc' * 8", (5.5S)

where c' = (cl',..,c,t',..,cK') denotes a vector with Epru loadings,

ck denotes a vector with m¿ loadings for set È,

Ec denote residual variables for all sets.

Modclfor each set: The variables H¿ are assumed ùo be generated as a linear function

of variaæ z¡ and the residual variables E¡,

H¡ = 7¡rc¡' + E¡, (5.59)

where zk denotes a non-normalized version of variate z¿,

E¿ denote residual variables for set &.

Contribution of each variate zÈ to consensus scores x,

x = 7¿.a, (s.60)

where Z = (21,..,ak,..,AK),

and a denote consensus block weights by regression of

Z on the consensus scores x.
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The loadings c¿ for (5.58) and (5.59) are equal, as well as trre non-normalized
variates.z¿ in (5.59) and the columns of Z in (5.60). with our normalization x'x=1
and z¡'z¡¡l VÈ, the CPLS iærative algorithm is as follows:

Select some starting values for consensus scores x. For each factor, perform Sæps I
to7:

Step 1. Solve for cr in (5.58)

V&ComPute ct = Ht'x,

Step 2. Convergence ? go to Sæp 7

Step 3. Solve for¡¿ in (5.59)

ComPute 7¡ = H¡c¡(ctr'ct)-l. VÈ

Step 4. Solve for a

Z=xa'+Ea,
Step 5. x = Z.a((7,a)'7"a¡-rt2. (5.60)

Step 6. Return to Step I

Step 7. Residuals from (5.58)

Ec=H-xc',
Use the residuals E" as H in the next consensus dimension.

sæp 1 to 3 of the cPLS algorithm can by substitution be shortened to one step:

Compuæ ãr = S¿x(x'Sr*)-l, VÈ (5.61)

Afær substitution of (5.61) in Sæp 4 this implies for rhe consensus block weighrs a
that a=u, a vector with elements 1. Now the whole CPLS algorithm can be reduced

to:

Compuæ * = ¡f S¿*(x'S¿x)-l = Zw((Zw)'Zn)-rt2, (5.62)
,t=1

wherc / = ((!¿S ¿x (x'Srx)- 1)'I¿S¿x(x'S¿x) -t 
)-t 

t2,

/. = (21,,,,,2k,.,,,2K) wift zÈ = SÈx(x'S¿S¿x)-l/2,
and w'= (1y1,... ,wk,...,wK) with w¡ = (x'z¡)-l .

135
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\nr{"*

Figure 5.12 IDC path diagram for Consensus Plß.

The GPLS algorithm (5.62) is also obtained if we fit the LDC path model in figure

5.r2 by substituting proportional funcrion weights (5.29) with the following weight
function

F(t) = WDesign*lRRecip. (5.63)

wherc XRecip denotes a matrix with the reciprocal values of X,
which implies that X*Xgsç¡p is a matrix with
elements 1.

For figure 5.12 the corresponding direcæd correlations matrix lR with the desired

design is

IR,rWDesign =

0 x'zl x'zk x'zK

zl'x 0 0 0

zk'x 0 0 0

zK'x 0 0 0

(s.64)

wherc x = H.0t0 = HøtO denotes a regression variate with ø6=Q, se

Ho=pe',
and z¡ = fl¡¿t¡¡ = nf Uc, denote condensed va¡iates with a¿=1, V¿

witlt H = (H.0,...,HI,...,HÈ,...,H,f)

= 1H0,...,H1,...,H1,...,H[¡ = 1tt0,u1¡ = 1pq',poe').

If we take lR*\il¡ss¡g¡¡ equal to (5.64), with K equal to the total number of condensed

variates, the LDC formulation of the CPLS fit function is elaboraæd to

GPLS: Fit(x) - 2K(K+l)

t't(K-l f e'tù-')t''
È=1
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2K6+I)

t37

(5.65)

(l.å$$-J s{t f 6'n¡)-2)ttz

where substitution of (5.ó3) and (5.29) in (5.10) has given tlis rarher complicaæd

function, despiæ the simplification due to R*F(t)=lR*VY¡res¡gn*lRR.scip=lV¡sr¡rr.

Because all feasible l{'s are sign-similar and WSign=WDesign*RSign,
(RSign=(Rnecip)Sign, see section 5.4.3), we elaborate an algorithm for CPLS (5.65)

along the lines of the bPLS algorithm. The bPLS algorithm can for this purpose be

defined by alternating between (5.35) and inner weights (5.36). For the CPLS

algorithm we only have to replace (5.36) by (5.63). After substitution of the

appropriaæ matrices in (5.35) we obtain the computation of (5.62) parallel with the

computation of z¡- S¡x(x'S¡S¿x)-ll2,Vk. The possible solutions with this bPLS

like algorithm are two equal global maxima, which only differ with respect to the sign

of the variates x and 21,...,2k,...,2K as a group. Therefore the CPLS solution in

LDC fonnat and the solution of the reformulaæd original CPLS algorithm (5.62) are

equal. Only sign reversal might occur.

After substitution of the appropriate matrices in the (relatively simple) LDC fir
function we obtain a rather complicaæd CPLS fit function (5.65). We give rwo other

less complicated fit functions, CPLSz and CPLS3, that lead to the same CPLS

algorithm and the same solution. The second fit function for consensus PLS uses

proportional weights w¿ with weight function f(x)

K
CPLS2: Fit(x¡ = I x'S¿xw¿,

lc=l

where (w1,,..,w¡,..,,wy)
with w

f(x)'

"fr(x)

(s.66)

=TÍr

= f(x) (f(x)'f(x))-1l2,

= "fi 
(x),...,/r(x),... Jr(x),

- (x'S¿x)-1.

The third fit function for consensus PLS is
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K
CPLS3: Fit(x) = E (x'S¿x)€,

lel

with s>0 and e-+0.

Chapter 5

(5.67)

Maximization of (5.66) and (5.67) leads to the same algorithm for CPLS as found in
(5.62). We will not elaborate on this in detail. Finally we remark that Geladi,

Martens, Martens, Kalvenes & Esbensen (1988) suggest that alternative CpLS

algorithms can be envisioned. These algorithms can also be brought in the LDC
framework, but they will not be discussed here.

5.4.7 PISI regression and extensions

The general PLS1 mode A algorithm is actually a special case of the basic pLS

method presented in section 5.4.1 and 5.4.2. Therefore it is also a special case of the

LDC method, as we showed in section 5.4.3. Nevertheless we will discuss the LDC
formulation of PLS1 regression in detail. It gives the opportunity to incorporate a

PLSI exænsion of L¡rber, Wangen & Kowalski (1987) in the LDC framework. We
also indicate relations with continuum Regression proposed by Stone & Brooks
(1eeO).

The LDC path diagram forPLS1 regression with a rankp decomposition of the

predicør set H1, is given in figure 5.13.

">i'r-....

">Ç"t'zY*hY
Figure 5.13 LDC path diagranfor PLSI regression.

In this figure we find an ancillary set of variates, Hw =(21,...,2s,...,2p), with
regression variate z¡y. Ancillary sets have been introduced in section 5.4.4. The

dependent unit normalized variable hy is conceived as a set wittr only one variable.

Therefore the regression variate zy is always equal to this variable, zy=hy. The
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predictor set Hl produces by deflation orthonoûnal condensed variates
(21,.,.,2s,.,.,2p) on the analogy of (5.4)

139

(5.68)

For figure 5.13 the conesponding PLS1 directed correlations matrix R with the

desired design is

R*\ilDesign = (s.6e)

where the sequence of the rows and columns of R is zl,.,.rzpt zy and zy,.

The correlation zr'zy, in position (3,4) is added in this design in order to satisfy the

restriction of section 5.3.5 ttrat all pivot variates have to be condensed (or regression)

variates. This implies that (W¡q5¡gnl)È#O, VÈ. Insæad we could have added z1'zy¡ in
position (3,1) or other correlations in row 3. We also could have defined z, to be a

condensed variate. All these options do not change the final solution, because h,
contains only one variable and therefore zs'2, is fîxed Vs. If we t¿ke lR*WDesign

equal to (5.69), with K equal to the tot¿l number of involved variates, the LDC
formulation of the PLS I fit function is elaboraæd to

Hs=Hl

Hr = (I-25-1zs-l')Hs-l

fors=1,

for s = 2,...,p.

0 0 ZI,ZV 0

0 0 zntzu 0

0 0 0 zvtz*

0 0 zw'zt 0

p
2(zy¡'zy)Aas + I (z¡'zy)abs

¡ LJ ¡. r ru1l/t --
t'tK-1

(s.70)

Because all feasible W's are sign-similar and \ilg¡g¡=Wpes¡g¡*R5ign, s€e section

5.4.3), we will always find a maximum for (5.70) with the bPLS algorithm. The

global maximum is reached after one iteration, starting with zr=hr. The PLS1

algorithm resulting from (5.70) is:

St¿rt with zy=hy
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Step 1. Compute zs=Sszy(zy'SrSrzy)-1l2,

with deflation according ro (5.68).

Step 2. Compute z* = Sy,zy(zr'S*S*ry)-112,

Clapter 5

Vs

with orthonormal H¡y = (2y,...,25,,..,2p).

The optimal rank of p is usually assessed via some data-based statistical procedure.

One can for instance use cross-validation to calculaæ a predicæd residual error sum of
squares (PRESS).

The extension of Lorber, wangen & Kowalski (1987) can now be defined through a

minor adaptation of the LDC fit function. In LDC the constant a¿ is restricted to have

two values, dk=l for condensed variates and a¿=Q for regression variates. Lorber
c.s. restrict the ø1 of the predictor variables Hf to be in a continuum ranging from 0
¡s oo. (In their norarion ø1 is n.) They show that for dl=O, we have ordinary least

squares regression, for a1=1, we have PLSI regression and for ø1=oo, we have

Principal Component Regression (PcR). In an example the optimal combination ofp
and ø1 is assessed with PRESS.

In continuum Regression proposed by stone & Brooks (1990) a similar idea is
elaboraæd. They also describe a continuum from oLS regression, pLSl regression to

PCR for respectively 1..;0, L and oo, see page 243 of Stone & Brooks, 1990. A
selection function is maximized to find the successive variates of
Hs = (21,...,2s,.,.,2p) as an alternative for Sæp I in the previous pLSl algorithm.
These variates are not condensed variates as in PLSI. In our notation and
normalization the direction of the variaæs z5 is found by maximizing

CR: Fit(ts) =#, (s.71)

where Z5 = H5t¡, Vs

with zs'zs = l.

Successive variates of H¡y are found by deflating the predictor set H1 according to
(5.68), with z5 replaced by zs. In a final srep one has to perform Sæp 2 of the pLSl

algorithm, with zs replaced by 25. In the normalization of stone & Brooks (1990)
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t¡'t =1, and selection function (5.71) is defined as T(t¡)=(25'zy)2(ts,Hs'Hrtr)r1.
originally T(t5) is multiplied with the const¿nt 1ry'ry)ll2,but this term can be left out

without loss of generality, because the selection function (5.71) is maximized. The

equality T(tr){R(ts) can be shown by making t}re explicit normalizarion of t¡ in T(t )
implicit, followed by shifting to the explicit norinalizatiotrzs'zr=1.

If we try to describe the compleæ CR method with the LDC fit function (5.10), we

see that CR cannot exactly be formulaæd as a LDC method. Nevertheless the selection

function of CR (5.71) is also a product of a global correlation fit function and a local
reciprocal PCA fit function, LRPcv (5.3). The constanr 7 regulates the relative

importance of the correlation and the PCA part. The cR selection function can

therefore be classified as a Lifæd Conelation fit function.

In summary, we have presented two continuum regression methods, continuum
PLS1 proposed by Lorber, Wangen & Kowalski (1987) and CR proposed by Stone

& Brooks (1990). If the continuum parameters ø1 and Tare equal to 0, 1 and oo, both

methods produce respectively a solution equal to oLS regression, PLS1 regression

and PCR. continuum PLS1 can be frtæd with a LDC fit function with relaxed ø. cR
is closely relaæd to LDC with respect to the CR selection function.

5.4. 8 Reflected variance mßthods and PIß2

The reflecæd variance methods RCA and RDA of chaprer 4 are fitted with a LDC path

model. First we will give an exposition of the LDC formulation of these reflected

variance methods and subsequently we will show that the corresponding LDC
algorithm leads to the same solutions. Some minor changes to the LDC reflected

variance path models produce an inæresting alternative for RCA, RDA and for pLS2.

In LDC notation the one dimensional RCA fir function RCA(X) = rr X'IF[JS(I]FX,
(4.3), is given by

L4t

RCA: Fit(21) = "r'S9SrS9"r,
where H1

wittt H1H1'= $1

denote the predictor variables H in (4.3),

= S, in (4.3),

(s.72)
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21 = H Îtt denotes the latent variable x,
with Hftl = sln?tl = IFx, in (4.3),

and z,1'zz1 = 1,

H2

H9

denote the extemal variables HU in (4.3),

denotes the orthonormal mirror matrix U,

Clwpter 5

with ff!ff!' = 5ro = iU, in (4.3).

For the RDA fit function we can also use (5.72) by changing the definirion of S!=g,
into S!=G=GD-lG', (4.8). with tïe Power Method we define an iterative algorithm

for finding the optimal ztin(5.72).

Starting with some arbitrary z1 iterate until convergence:

Compuæ zt = Ísflslsrs9rr =¡sfsfs3s!r1, (s.73)

where f = ((sPs!srs!zr)'s|s!s ß|2rt)-rtz,
H3 = Hl,

and H¿ = HZ.

The LDC counterpart of (5.72) we call RCA¡pç. As stated before RCA¡¡g
automatically comprises RDA¡p6. Consisænt with the norarion in (5.73) with

duplicaæ sets 3 and 4 we draw a LDC path diagram for RCAI¡ç in figure 5.14.4.

<19'",{",
Figure 5.14.4 LDC path diøgramfor Reflected Component Analysis.

The corresponding RCArnc direcæd conelations matrix R with the desired design is

0 zr'22 0 0

0 0 22'23 0

0 0 0 z3'24

za'21 0 0 0

R*Woesign = (s.74)
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substituting (5.74) and the bPLS weight funcrion (5.39) in (5.10) and taking into
account the proportionality restrictions for condensed and regression variates, we
obtain the RCAl¡g fitfunction

RCAlnc: Fit(t) _@z'S|lzùtt2+(zz'S9zz)tt2+(zlzq)ms+(zt'S2zt)1t2 (s.7s)_1
t'tK '

We emphasi ze that 122'Slz2)lD is equal ûo (21'22)65s with restriction

, t =s? rz(, z'sl rz)- 
| t 2 

.

If we omit this restriction and take (zlzz)Absinstead of (22'Slz2)t/2, we are fiuing
another path model. with the LDC algorithm we find a global maximum for (5.75)

with optimal t . Knowing the optimal zt=Hltl we can derive the optimal values for
the other three variates with the updating equations of the bpLS algorithm. These

equations are for (5.75)

z4 = sSzr(zr's8z t)-rt2(rq'rt)siso

z3 = S3z4(24'S3S3r4¡-ll21r3'ra)sign
(s.76)

t43

22=
zl=

S$4 @ 3'Slzt)- 
| t 2 (r¡ nz) si eo

S !22 (z 2'S f z z)- 
| t2 (, t' rz) siso

By subsequent substitution of all equarions in (5.76) we have for z1 (5.73), bur now
wittt

,f = t((s 9s9s rs8"r)'sÎs9s rs9"r)-rl2

This elaboration of the RCA¡¡ç algorithm implies that maximization of RCA(21)
(5.72) and RCA¡¡ç (5.75) leads to the same optimal solurion for z1 apart from sign
rpversion.

An inælligible LDC alternative for RCA (and RDA) is to change ttre LDC path

diagram for RCAI¡ç in figure 5.14.4 into the path diagram in fîgure 5.14.8.
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Figure 5.14.8 LDC path diagram for RCAstm.

In this way zt still predicts a weighæd sum of the variables H2 relaæd to the variance

structure of H1=[I3. We call this simplified RCA method RCAsim. If we additionally

want the RCAsim solution of z1 to be relaæd to the variance structure of H2, we

change the RCAsim diagram in figure 5.14.8 further into the path diagram in figure

5.14.C.

Figure 5.14.C LDC path diagram for p752nulti.

We call this method p¡52multi. PLS2, because it is the goal of the PLS2 method

(Manne, 1987) to predict with a predictor variable z1 a weighæd sum of dependent

variables H2 relaæd to both the variance structure of H2 and the variance structure of
the independent variables H1, (see figure 5.7.C and further in section 5.4.4). The

superscript 'multi' s's add, because z1 can only be relaæd to the variance of H1 if H2

has more than one variable and a rank higher than one. For the rank one case
pl52multi is equal to ordinary least squares regression. We expect p¡52multi to have

betær predictive properties than PLS2 in a multivariate setting, because the secondary

prediction of z2 in PLS2 is replaced by a primary prediction ¡n p¡52multi. ys¡
p¡52multi remains stable for essential multivariate problems, because then it is also

relaæd to the variance structure of both sets. The Pls2mutti solution can easily be

derived from the ordinary PLS2 solution. By subsequent substitution of all PLS2 and

\- '--
-.'22---,Í12

/i""-ILI

\,1,/
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p¡52multi algorithmic equations, as we did in (5.76) for RCA¡¡ç, we have

respectively for z1 @LS2)

z1 = f S1S2z1,

where /= t((SrSZ zù'StSzzù-r|2.

and for zlmulti @Ls2mutti¡

(s.77)

145

(s.78)z lmulti = ¡ S fS25 3z rmulti =.¡g !S2S 1z1multi,

where 
"f = t((S fs2Stzlmulti¡'SfS2Slzlmulti¡-1/2.

The optimal zl and zlmulti are found by repeating (5.77) and (5.78) iæratively until
convergence is reached. Because S1S!=51 we know by combinin g (5.77) and (5.78)

that z1=ts121multi((glzlmulti)'stzlmulti¡-t|Z. The plS2multi sslu¡ie¡ is related to
the optimal PLS2 solution by zlmultiS?Szzr((SlSz u¡'Sls2r¡-rtz.

5.4.9 Set Component Analysis and Pl,S Hierarchical Componenß

Last but not least in section 5.4 about relations of LDC with other methods, we

discuss the scA method of chapter 3 as an example of a DC path model with real

function weights. Some LDC extensions of the SCA method are formulated, like the

PLS Hierarchical Components.

The one dimensional scA fit funcrion (3.5) of chapær 3 translated into the

ærminology of this chapter is defined by the sum of the squared direcæd correlations

between pivot variate x and condensed variates z¡r, where x is the pivot variaæ for all
K sets

SCA: Fit(x) = x'ZZ'x,

where Z = (21,...,2k,...,2K) denote the unit norrnalized condensed variates,

with zt = S¿x(x'SÉ¿x)-1l2.

The corresponding DC path diagram with secondary predictions is given in figure

5.15.A.



146 Chapter 5

(s.7e)
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Figure 5.15.4 DC path diagram for Set Component Anølysis.

The path diagram for SCA has to be fitæd with the DC fit function (5.7) using real

function weights and weight function (5.55). After subsriturion of
IV=F(t)=Woesign*lR. in (5.7), we have the equality SCA(x) =

SCA¡ç: Fit(t,W) = u'(lR*lR *\{Design)u,

with

lR*IVDesign = (5.80)

where x = Hoto = Høt¡ denotes a regression variate with ø¡=e, ss

Ho=pe',
and zk = H.ktk = ldftf.ll*, denote condensed variates with a¿=1, Vfr

= S¿x(x'SrS kx)-112,

wiút H = (H.0,...,H1,...,H&,...,Hr)

= 1H0,...,H1,...,H1,...,H[¡ = 1n0,ut) - (pe,,pÕe').

The condensed variates zk are exactly as introduced in section 5.2.2. For more

dimensional solutions, there are no orthogonal restrictions on z¿, only on x. If all
prediction arrows in figure 5.15"4 are primary the condensed variaæs z¿ in (5.80) are

replaced by the regression variates z¡ and we obtain in (5.79) a DC fit function for
MCCA (see section 2.2.6).

The optimal SCA¡ç parameters can be found wittr an algorithm described in chapær

6. The SCA path model can also be fitted with the LDC fit function. We cannot use

the LDC algorithm of section 5.3.6 for this purpose, because we confined ourselves

0 0 0 0

zl'x 0 0 0

zk'x 0 0 0

zK'x 0 0 0
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to find a fitting procedure for LDC with fixed or proportional function weights and

with (w¡res¡gn1)rt0, vl. By adding simple extensions to the SCA method we can use

the LDC algorithm for proportional function weights.

One simple extension to the SCA method would be to impose a subspace restriction

on x (see section 2.r.1). Figure 5.15.8 gives a path diagram of this extended path

model.
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Figure 5.15.8 DC path diøgramfor SCA with subspace restriction.

The subspace restriction P¿P¿'x can easily be imposed on x, by the following
specification of lR'r,Wpes¡g¡

IR*\il¡,ss¡g¡ =

0 0 x'zk 0

zl'x 0 0 0

zk'x 0 0 0

zK'x 0 0 0

(s.81)

For (5.81) we can compute a LDC solution with proportional function weights with
the LDC algorithm of section 5.3.6, because we have (Woesignl)¡+O, V/. For a more
dimensional solution we can apply the Pattor rotation procedure developed by
Lohmöller (see section 5.4.5).

Another simple extension of the SCA method would be a symmetric formulation of
the design woesign. The symmetric formulation is visualised in the path diagram in
figure 5.12. In this figure primary prediction arows are added compared to figure
5.15.4. Fitting this path diagram with LDC or wirh Dc (5.79) would imply for
IR*WDesign a specification according to (5.64) and for x the restriction
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(s.82)x = zw ((zw )'zw ¡-l 
tz - zz'x((x'zz'zz' x)-l 12,

where Z=(21,...,2k,...,2K) with

and w'= (ltl,... rwk,,.,,wK) with

-'12zft=S¿x(x'StS¿x)' ,

wk = zk'x.

The additional restriction on x will in principle lead to a different solution for the

symmetric formulation of SCA¡ç. If we fit the modified path diagram in figure 5.12

with proportional function weights and weight function (5.55) the LDC formulation

gives a PLS Hierarchical Components (HC) algorithm with factor weighting scheme,

general factor x in mode B and special factors z¿ in mode A (Lohmöller, 1989, page

131). We refer to this algorithm as the HCscl algorithm. By changing the directions

of the arrows in figure 5.12 all other modes of Hierarchical Components methods can

be specified with LDC path diagram and fitæd with the LDC fit function. This can be

proven along the same lines as we did for Consensus PLS in section 5.4.6 and will
not be elaborated here. The HC5ç¡ algorithm is given by iæratively repeating (5.82).

The same algorithm is obtained by fitting with the bPLS fit function (5.40) the

hierarchical path diagram in figure 5.15.C.

-'/"{n'H> \*<
Figure 5.15.C Alternative path diagram for HCgç¡ method.

Pivot variate x predicts primary and secondary the condensed variate x of the

ancillary set of condensed variates Z. At convergence the optimal x is equal to x and

equal to the frrst principal component of Z.

Summarising, we formulated in this section SCA as a DC path model with real

function weights and some LDC exænsions of the SCA method, like the PLS

Hierarchical Components method. Finally we remark that this HC method has an

inæresting relation with another PLS method: The only difference in the LDC
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formulation of the HC method and Consensus PLS is the definition of their respective
weight functions (5.55) and (5.63).

5.5 Comparison of LDC and DC

we expect that fitting path models with LDC and DC very ofren gives the same
tesults, because they both have the same severe restrictions on the directions of the
variates z¡.If the solutions a¡e different it is possible that the DC solution gives a
betær prediction of the variables than the LDC solution and is still acceptably stable.
The directed correlations will probably be higher and therefore so will the prediction.
The LRPCV fit (5.3) will probably be not so much lower that it seriously affecrs
stability. The SCA method in chapter 3 gives an indication for this tendency of DC to
maintain stability. It would be inæresting to investigate DC variants of LDC methods
like PLS2 and PLSI. on the other hand we expect that the predictive power of path
models can be increased not so much by the choice between LDC and DC, but more
drastically by the formulation of adequate path models, like for instance the path
model o¡ p¡52multi insæad of ordinary pLS2 in section 5.4.8. From a practical point
of view the choice for the LDC fit function is more likely, because we developed an

algorithm for LDC that can handle a wide variety of path models. For DC such a
general algorithm is not yet available.
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ALGORITHMS

we present two algorithms for non eigenvalue-eigenvector problems. First a
simultaneous and successive monotone convergent algorithm for Set component
Analysis (chæær 3) is developed, where an int€resting general algoritbmic subproblem
is to maximize the variance of different matrices accounted for by corresponding
orthogonal latont variables. Secondly we elaborate a monotone convergent algorithm
for Nonlinear Reflecæd Discriminant Analysis (chapter 4).

Introduction

The optimal parameters for almost all methods in this monograph can be estimaæd by
solving an eigenvalue-eigenvector problem. In computing practice numerous

algorithms are available to the researcher for executing the job. The methods
previously presented which cannot be estimated in this way are SCA (chapær 3),
NRDA (chapter 4) , Dc and LDC (chapter 5). The atgorithmic aspecrs of DC and

LDC are already treat€d in chapær 5 for reasons mentioned there. An algorithm for
SCA is elaborated in section 6.1 and for NRDA in secrion 6.2.

6.1 Computation of the SCA method

For the maximization of the SCA fit function (3.5) we use the reformulation of this
function as given in (3.7)

scA: Fit(xs,Ì"(¿)s) = L i xr'xs- (x¡-S¿x5w[]s)'(x,- S¿xsw¡¡]r¡
.l=l¡t=1

pK
= i t x¡'p¿{I - $- a?wa})r)2}p¿'*r,

s=lÞ1

where w(l)s,...,w(k)s,...,w(K)s denote free balancing factors for set * and dimension

s and the remaining parameters are defined as usual.

The maximization of (3.7) is simpler than (3.5), because there is no complicated
function of x¡ in the denominator.



r52 Cløpter 6

6.1.1 Simultaneous SCA solution

For the simultaneo¡¿s SCA solution we maximize (3.7). The qualificarion

simulta¡eous is needed to distinguish this solution from the successive solution. This

solution first maximizes (3.'l) for one dimension x1. A second dimension x2 then

must be determined such that it maximizes (3.7) with X1,2'X1,2=l and x1 fixed. We

proceed this way until p dimensions of X are computed, while keeping all previous

dimensions fixed. By this procedure we introduce a hierarchical ordering of the

successive dimensions in terms of maximizing the SCA fit function. The

simultaneous solution has in principle no restrictions in terms of fixing previous

dimensions. Therefore the simultaneous SCA solution cannot have a maximum less

than the maximum of tlre successive solution. On the other hand the fit of the first

dimension of tle successive SCA solution is always greater than or equal to the fit of
any separate dimension of the simultaneous solution.

The iterative ALS algorithm for simultaneous SCA consist of two alærnating main

sæps.In the first main step the balancing factors w¡k¡s,Vk,s, are updaæd for given

X. In the second main step the X are updated for given wß)sby applying an iterative

sub-algorithm. This algorithm is obtained by modifying a procedure described by Ten

Berge (1986, 1988) for maximizing the Maxbet function. The first step is specified in

section 6.1.2 and the second sæp in 6.1.3.

6.1.2 Balancingfacørs

The optimal balancing factors wß)s for all sets are updaæd in the first main sæp. By

fixing the X in (3.7) and setting the frst derivative equal to zero we find suboptimal

balancing factors, which are a function of X. We denote these suboptimal balancing

facûors with ri¡¿,¡5. The suboptimal balancing factors are given in (3.9)

,î,... - xs'S¿Stxs - tft)s'Hk'Hktkts- t{t¡r'Q*@?Qt'tltrs
tv(K)s - x5'S¡xs t¡tç¡s'túÐs QÐs't4Ðs '

with t¡¿¡5 = Ht'xs, VÈ,s.

V/c,s
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For the first main step the updates for the optimal balancing factors w¡¿,¡s with X fixed
are specified in (3.9). The updaæs for X with fixed optimal balancing facrors wlk)s

are specified in ttre next section.

6.1.3 The variance of different matrices accountedfor simaltaneously

The general problem we have to solve in the second main step is to maximize the

variance of different matrices accounted for by corresponding orthogonal latent
variables. In this particular case we maximize (3.7) with wß)s = i.,1¿.¡s (3.9). The

resulting function is /(X) - Iscs, with lsc¡ constant and

p

"f(X) = ) xs'B¡x5
.l=l

(6.1)

where nXp = (x1,...,xs,...,xp) denote the common laænt variables with X'X=I

153

Vs
K t^-r .

Bs = csl + L Pr{I- (t- ôi¡w¡g)'lP¡'
þ1

Clr..,'Cgr...rCp denote constant scalars.

Maximization of /(X) - Iscs gives the same results for X as maximization of /(X).
we maximize.f(x), because the c5 are chosen in such a way that the corresponding

matrices Br are positive semi-definiæ as will be explained later. An appropriaæ choice

for each c¡ is the negative of the smallest eigenvalue of
IrP¿{ I - (I - O?;tal)à2!k', in anorher notation written as

-Âmin(IrPe{ I - (I - ó2kîv¿)ù2 P ù.
We developed an iterative sub-algorithm for increasing f(X) in (6.1) monotonely,

with matrices 85 symmetric positive semi-definiæ vs. This algorithm, which is an

adapøtion of a procedure described by Ten Berge (1986), can be construcred in rhe

following way.

Theorem 6.1. For arbitrary starting matrix X satisfying X'X=f, consider the SVD

(81x1,...,Bsx¡,...,Bpxp) = MYN', (6.2)
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where M (nxp) and N (p"p) denote orthonormal singular vector matrices and v
denotes a diagonal matrix with p singular values. Let the matrix X be updated by
setting

X4 = MN'.

Following Ten Berge (1986), which is analogous to the case K=1, we now have

(6.3)

/(xu) > .f(x), (6.4)

which implies that (6.3) increases J(X) monotonely.

Proof.Yenfrcation of (6.4) is possible in two steps by defining the auxiliary function

îtz> *

with xs fixed Vs and z'z=r. The constrained maximum of (6.5) is att¿ined for z =
X4 given by (6.3), cf. Green (1969). Hence we have

^p
Í(Z) = l,_zs'B5x¡ = tr Z'(Blxl,...,BsXr,...,Bpxp),

,s=l

î(x') > f(x).

In the second step we apply the Cauchy-schwarz inequality

Î(x') = f *!'nr*,=trytr,y
,l=l

- ( $, xr'Br* ,¡r\!x!'nr*!¡trz = ¡1Xu¡rt2¡1y¡1t2,,r1 ,¡=1

where yu = çnl2*1,...,n'!2*!,..,,s!2*þ)
y = qBlzx1,...,Bt/2*r,...,8'/'*ù.

(6.s)

(6.6)

(6.7)

we can apply the cauchy-Schwarz inequality, because the matrices Bs are positive
semi-definiæ and therefore can be written âs B¡ = BI'B'!', where n]/2 is the unique
positive semi-definiæ square root of B¡. This is why convergence of the algorithm
presented here is guamnt€ed only if the matrices B¡ are positive semi-deñniæ.
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Finally we combine the inequalities (6.6) and (6.7) into one sequence of connected

inequalities /(X) < Î(X') < ¡11¡u¡rtz¡1y¡1/2, w¡is¡ implies f (X)ttz < f6a¡trz rr¿
completes the proof of (6.4).

A necessary and sufficient condition for convergence

cannot be improved if and only if (6.4) holds as an

combining (6.2) and (6.3)

(81x1,...,85x5,...,Bpxp) = X(NYN') = XÂ, (6.8)

that (6.8) is a necessaryfor certain positive semi-definite matrix Â. It follows
condition for a global maximum of f(X).

6.1.4 The algorithmfor simultaneous SCA

In the initialization sæps of the algorithm for simultaneous scA we can choose any

arbitrary stårting matrix X0. Nevertheless convergence is fasær if we stârt with a

reasonable guess. We fix the balancing factors (3.9) for all dimensions to their
maximum value Q!¡¡, which is the largest eigenvalue of H¿'H¿. Afær substitution in
(3.7) we compute the optimal x0. For convenience, in the final step we rcarrange the

dimensions of X in such a way that the scA function is decreasing. The complete

algorithm for simultaneous SCA can be summarized as follows.

Initializ¿¡is¡¡

Step 1. Compute SVD H¿ = P¿ÕrQ¿'
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E

can be derived. That is, X
equality, and therefore by

V&

Step 2. CompuæEigenVD f P*{r- e-a2¡þ\fl'lpr'=K^K'
k=l

Step 3. Set X0 = nKp = (k1,...,ks,...,kp)

lterations:

step 4. compute wtLts= 
*i'pÉfpt'*!
x!'P¿ofn¿'x!

Vfr,S
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Step 5. Compuæ ¿} = I p*{I - A- ú@&¡rl-t)t}p*,
Þl

Chapter 6

Vs

Vs

V.s

Step 6. Compuæ ci = -i,¡oin(Bj)

Step 7. Compuûe ni = 
"3r 

* Bi

Step 8. Compuæ 3t= 1ni*!,...,ni*i,...,n|*i)

step 9. compute 
"i+l 

- Bt6t'gi-tlz

Step 10. Evaluare ScA(x'+l) = $ 1*i*t'n l*ît - "il,l=l

If SCAlxt*l) - SCA(X) > c, for some small value e,

then go to Step 4.

Termination:

Step 11. Rearrange dimensions SCe(xi+l) > SCe(x'il) > SCelxi+l¡

Step 8 and 9 can be repeated in inner iterations many times for updating X as shown
in section 6.1.3. we do not have general recommendations for optimal tuning. For
the simultaneous SCA solution we have in general no rotational freedom as can be

found in simultaneous formulations of methods like pcA, ccA or Multiset ccA
(Canoll, 1968). Rotational freedom is guaranteed if O? = I, V&, because in that
special case w(ft)s=l, V,t¡ and SCA comes down to the same thing as MCCA.

6.1.5 Computational short cuts

Although an appropriaæ choice for the constant scalar c¡ in Sæp 6 is the negative of
the smallest eigenvalue of 81, we can define another estimate of c¡ that is
computationally less demanding. we call this estimate ãs and it has c, as an lower
bound. In this way the matrices Br in sæp 7 will always be positive semi-definiæ.

The or em 6.2. The estimate

^Kã, = i -(0,{l - o - o?rñrú,),})o,,o,
k=l

(6.e)
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where (þ¡¡ gives the minimum value of the two elements between the brackets,

has cs = -â-in6") as a lower bound.

In order to verify Theorem 6.2, cs( âs, Vs, we check the validity of the following
three equations

cs = -Âmin(Es) < -Â^in(&¿lr),
K

k=7

gives the minimum eigenvalue of the matrix

between the brackets"

= Pr{ r - G - a?îvîkr)r)2 } Pr',

=I,ùÐs,

(6.13)

-Âmin(&r)s) < -(I - U - ô2k;,&r)r)2)o,in,

and (r - (r - úùartÈ'l^tn = (0,{l - (t - O?rùt}tr)21)^in.

where l-ioQ

\*t'
DJ

and 0min gives ttre minimum vallue of all the elements of the

matrix or string between the brackets.

Proof (6.10). By expanding (6.10) âs cs = -imin(Es) = -Âmin(Irår)s) I Ir
X-io(Elt)r), we have to prove that â¡¡i¡(l¿!¡¿¡r) ) IrÂ,lrrin@lt¡). Therefore we
introduce in the following equation the functions g(x) and gdx)

KKK
g(x) = x'!rx = x'(I Elt)s)x = I x'e'¿;¡x = I g¿(x),

k=l tr-l lc=l

with x'x = l. Obviously we have

g(x)>2^io(E)=g(y)

and gÈ(x) > Âmin(Blr)s) = gÈ(y&), vk (6.14)

with x'x = y'y = y&'yÈ =1, V&. The vectors y and y¿ denote the eigenvectors

corresponding to the smallest eigenvalues of respectively !5 and &or. w" substitute
y in (6.13) and in the second term of (6.14) and obtain respecrively g(y) = Ergt(y)
and g¿(y) > gr(yr). Combining these equations inro g(y) > l¿g¡(y¿) gives
ÂminëË¡tlr) > Itå^io@fO¡) and therefore completes the proof of (6.10). E

Vs (6.10)

VÈ,s (6.11)

VÈ,s (6.12)

Vfr,S

Vs
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Proof (6.11). In order to verify (6.11) we substitute ge(yt) as defined in (6.13) and

(6.r4)

l-in0Lr¿lr) = gdye) = yr'&r)sv¿

= yr'P¿{I - (I - Af,î,¡¡t¡r¡2¡Yk'yk+yk'YtÀoE*'y¿

= yr'(Pr,P¿)^?¿;r(Pr,P-r)'yr,

Ek

and &Ot

V,t,s (6.15)

where 
^0

denotes a matrix of appropriate size with only

zero elements,

is the orthonormal complement of P¿, so that

(Pt,&)'(Pr,&)=(Pt,&)(Pt,P¿)'=In, VÈ

denotes a diagonal (nxn) matrix containing the

(p**p*) marrix {I - (I - @?î,¿)à21in its upper

left corner and zeros elsewhere. V/c,s

In fact (6.15) ent¿ils a full eigenvalue decomposition of &t)r with all eigenvectors

(P¿,P*) and corresponding eigenvalues on the diagonal of &t)r. This implies that the

smallest eigenvalue of D¡t)s is equal to the minimum diagonal value of À¡¿¡¡. We

summarize our results as Lnin(El¿)r¡ = (diag(À¡r;s))min ) (Àl¿)¡)min. The i¡equality
in the previous sequence only occurs if all diagonal elements of &tlr are greater than

zero. In that special c¿¡se we have (diag(Àß)s))nin > 0 = (r\t)s)^in and we know that

the number of columns of P¿ is at least equal to the number of rows, (p*>t). The

definition of z\¡¿,¡¡ in (6.15) implies that (Â,¡¡¡¡)¡1in = (I - U- A7î,ak\s)2)min and

therefore completes the proof of (6.11).

Prool (6.12). The proof for (6.12) is given by first replacing this equation of matrix

functions by an equation of scalar functions with arguments @2 and w. Without loss

of generality we omit the subscripts È and s in order to simplify notation and

reformulate (6.12) as

(0,{t - 0- Ê*-r)2})*in = (0,{t - Q- &o*-r)2})o¡n, (6.16)
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with osÊ<d,oand0< *3&o,
where Ê denotes the possible values of the

159

diagonal

and

The boundaries

functions{1-(1

elements of Õ], with ffi¿,. equal to the maximum

value of @2,

denotes the possible values of the corresponding

balancing factors ûr¡¿,¡s.

for w can easily be verified in (3.9). We evaluate in detail the

- Ê* tfl and { I - 0 - tarw-t)'} in (6.16) for the cases @2<w

for Cx,f<w<ql,u

and {1-(l -Ê"ru;'¡'}<{t- e-Êw-t)21<t rorlswcfsfr,"'. 6.n)

o<{1-Q-Ê,\21<t
and Ê>w and obt¿in

The first term does not contain a function with ffi¿.¡¡, because for CF :f<w1dax we

have only one possible value for w, when Ê=tu, namely *=Olr *. This implies

tlrat the function { 1 - (1 - t ¡¡.r-r)2l can only be equal to 1 in the case f<w. The

lower bounds in (6.17) imply that (6.16) and tlerefore (6.12) is always valid. E

Summarising the previous exposé we can now replace Sæp 6 by

step 6. compute c! = -(0,{ I - (1 - A?*@r!rl\'})o,,n. Vs

Another computational short cut for the simultaneous SCA algorithm in section 6.1.4

concerns the size of the P¿ and B, matrices, especially when n>>L¡m¡. The P¡
matrices are (nxp¡r) and therefore all the B, matrices are (nxn). Manipulations with
these matrices make much greater demands on computer time if n is large compared to

some fixed total number of variables åxryc. Asimple remedy for this phenomenon is

offered by adding or changing the following sæps of the SCA algorithm in section

6.1.4

Step 0. Compuæ SVD H - POQ'

Step 1. Compute SVD (P'H*) = PrÕ¿Qr' V&
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Step 12. Compute ¡i+2 = P¡i+l VÈ

For the SVD H=(H1,..,Hft,..,HK)=POQ' we have the orthonormal singular vector
matrices P (nxP) and Q (ùlcm*xP) corresponding to non-zero singular values in
diagonal matrix rÞ (PxP), with PSItmt. The only purpose of Step 0 is to find a
description of the space of H by an orthonormal basis P with a number of columns p
equal to the rank of H. Therefore any other (fasær) technique for finding such a space

would be acceptable. Take for instance the complete orthogonal factorization of H
(see e.g. Gill, Murray & Wright, 1981, page 39). As a result of Sæps 0 and 1 the size

of the P¿ matrices in the iterarion st€ps now is reduced to (Pxp¿) and the size of the

Br matrices to (PxP). In Step 12 we represent the solution in the original n-
dimensional orthonormal basis insæad of the auxiliary P-dimensional orthonormal

basis.

6.1.6 Successive SCA solution

In successive scA, ttre fit function formulated in (3.5) and (3.7) is maximized in
successive steps for each dimension s. In other words for s = 1,...,p we maximize

SCAsu: Fit(x¡,w¡¿,¡¡) = x¡'AsP¿{ I - Q - Af,w ¡¡t¡r¡2 ¡ P¿'A r*r, (ó.18)

with As=I fors=l
As = (I - Xs-lXs-l') for s = 2,.,,,p , with X¡-1 = (xI,...,xs-l).

This fit function is to be prefened to the simultaneous SCA fit function if we are

interested in the highest possible fit for the first dimension and not in the highest
possible fit for allp dimensions simultaneously. An alternative for (6.18) would be

deflation, i.e. taking the antiprojection on the previous dimensions for each set H¡¿)g

K

bl

H¡¿¡s = HÈ

H¡k)s = (I-x¡-1xs-1')H¡t;s-r.

fors= I

for s = 2,...,p

Vfr

VK

and computing new eigenvecfors P¡t,ts and eigenvalues o¡2¿,¡rror each successive

dimension. In principle this will lead to other solutions tlan maximization of (6.18).

The solution for the deflation method can be found by computing p times a one

dimensional simultaneous solution for each successive group of K matrices Hlt)s.
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6.1.7 The algorithmfor successive SCA

The p -dimensional solution of x for successive SCA is essentially obtained by
computingp times a one dimensional simula¡eous solution. The only difference with
this one dimensional simultaneous solution is that we have to add the antiprojection
matrices As as defined in (6.18). The resulting algorithm for successive scA is as

follows.

Initialization:

Step 1. Compute SVD H¿ =P@fþ*Q*' Vk

Step 2. CompureEigenVD.f_ pr*lr{r - <t- úrc?*12¡v¡ur,= KÀK,
k=l

Step 3. Set s = I and X0 = nKp =(k1,...,ks,...,kp)

Iterations:

step 4. compuæ wrLts= 
ti'prt''ÕÍprt"'ti
*;,fr*rrOþffi Vk

step 5. compute &i = f_ plr,rs{r - I - ú*W&t)-r)2}ptr),
l=l

Step 6. Compuæ cl = -ir¡in(E!)

Step 7. Compute n3 = riI* &T

Step 8. Compuæ ti = nlxi

Step 9. Compuæ xtfl = 5t16i'6r¡-t/2

Step 10. Evaluate sCesulxi+l¡ = ri*l'B ir*Tl - "i
If SCAsu(xi+l) - SCAru(*i) t t fo, some small value e,

then go to Sæp 4.

Step 11. Computes=s+1
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If s >p then stop.

Step 12. Compute P¡t)s = (I - X¡-1Xs-1)Pß)1, VÈ

with X¡-1 - (x1,...,xs-l)

Go to Step 4.

Step 8 and 9 for updating x¡ can be repeated in inner iterations many times as in the

simult¿neous algorithm of section 6.1.4.

6.1.8 Computational short cuts revised

The computational short cuts described in section 6.1.5 can also be applied to the

successive SCA algorithm. We only need to make a minor adaptation in verifying

Theorem 6.2, because the meaning of BlÐr changes from

&,t), = Pr{ r - <t - a?øtll¡2¡P¿' in section 6.1.5

into ts¡È)s = Prtlr{I - l- ú*ø&lr)-l)2}Plr)r'in this section.

VÈ,S

VÈ,S

The proof of (ó.10) remains valid if we substitute JB¡¡,¡5 forQ¿)s. For (6.11) this is

not so obvious, because the equations in (6.15) no longer hold. Therefore it remains

to prove that

V/c,s (6.20)

fors=l
for s = 2,...,p,with X¡-1 = (x1,...,x¡-1).

VÈ,s (6.19)

Proof. From Step 12 in section 6. 1 .7 we derive the relation between lE¡¿,¡5 and [¡¿.¡s:

Â.in(lBtr)s) > (r - (r - o?ãrhìz¡^r^.

lBl&;s = As&r)sAs,

with As = I
As=(I-Xs-tXs-l')

Using the definition in (6.14) we have l-in([tr¡) = ylÈ)s'D{Ðsy(,t)¡ and l^in(tslr)s)

- ylt)^r'ts1È)sYlt)s, where the vectors YlÈ)¡ and Y(t)s denote the eigenvectors

conesponding to the smallest eigenvalues of respectively Bl*ls and lBlt)s, V,t¡.
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When (I - (I - A?*&rÈ2)min = 0, we know from (6.11) that Âmin(Blr)s) =
yft)s'Bl4sy(k)s > 0. Because E¡ft)r is positive semi-definite, we have z'D1k¡sz > 0 for

any other vector z and therefore yl¿)s'As$/,t)sAsylÐs = â6in0El¿)r) > 0.

When (I - U - A\w&\J2)rtn < 0 and Âmin(ts6)s) > 0, (6.19) is obviously true.

when (r - (r - a\fral)ò\min ( 0 and i.m¡¡@¡¿)s) < 0, we also have Ànin(E{r)s) <

0, because in this case å¡1¡¡(þ,t)s) = 0 - g - A7î,akl)r)2)¡1io. In other words we

must now verify Â¡¡¡¡(ts1¿,¡¡) 2 Â.io@¡¿lr). In general we have for any projector

matrix As = AsAs and for any unit normalized vector z, 0 1 z' Asz < 1. Multiplying

VlÈ)s'AsY(&)s S I with the negative value y¡t¡sts¡t)sYl,t)s we obøin

1y¡¿,¡r'ts¡r)rv(r)sXy(r)s'A¡y(,r)¡) ) y(&)üts le)ry(fth

and therefore

y(r)rtsr¿hyro,=r__*lËm.

Furthermore for vector Asylt)s(Vlt)s' A ry &) r)-l 
12 we have,

y @ ;Etk) sy (¿1. < X&-@!/d-'VGÀ - vlt)s'ts(k¡rvl&¡r
' - Ylt)r'Arv¡*,, 

- = V;¡-fËf' v/r's (6'22)

Combining (6.2I) and (6.22) into y1¿¡sts¡Hsy(k)s2y&)r'WÐsy(r)s we have

compleæd our proof for (6.19). E

6.2 Computation of the NRDA method

Before we develop in section 6.2.1 and 6.2.2 an algorithm for the maximization of
the NRDA fit function (4.37) we first refonnulaæ this function. To simplify notation

we will write F for F(H). Instead of maximizing in (4.37) the variance of the

columns of P'Fs accounted for by V, we can also maximize the variance of the rows

of P'F6 accounted for by the orthonormal basis C. In other words we can maximize

the fit function tr C'F3'PP'F3C instead of tr V'P'F3F6'PV. The optimal

discriminant space PV of (4.37) for fixed F is found by the eigenvalue

decomposition of P'FsFs'P, which produces eigenvectors V. V is also defined by
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the equivalent eigenvalue decomposition of F¡'pp'FB=FB'pp'pp'Fn. The
discriminant space is derived from the matrix C with the firstp eigenvectors by unit
normalizing PP'FnC. Next we decompose the projection of the mirror variaæs FsC
back on to space P in two parts. In figure 6.r the pythagorean decomposition is
illustrated for one variate Fc, mirror variate Fgc and reflecæd variate pp'Fsc=Fn.

Mirror variate Fpc
Variaæ Fc

G-space Reflecæd variate Fn

Figure 6.1 Pythagorean decomposition of reflected variate Fn.

The small triangle in figure 6.1 shows the pythagorean decomposition of Fn into
Fnc-(Fnc-FN), with Fn orthogonal to (Fsc-FN). The resulring fit function is

NRDA: Fit(C,N) = tr C'F3'PP'F¡C

= tr C'F3'FBC - (FNC - FN)'(FNC - FN)

= tr 2N'F'GFC - N'F'FN

= tr 2N'BC - N'TN, (6.23)

with C'C = I,

where F is shorthand for F(H)
and denotes the nonlinear transformed values of H,
denotes the variable weights of the transformed variables F,
denotes the orthonormal basis of F, with F=pÕe',
denotes GF, which are the between-variables of F,

denotes the non normalized discriminant space,

denotes the between group variance-covariance matrix, FB'FB,

denotes the toal variance-covariance matrix, F'F.

c
P

Fg

FN
B

T
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6. 2. I M aximization of r eþrnwlate d N RDA fit function

The maximization of NRDA (6.23) proceeds in two main alternating sreps. First the
parameters C and N are estimated with F fixed and in the next main step F is
estimated with c and N fîxed. The two steps are repeated until convergence is
reached.

Estimation of C and N with F fixed.

We compute the singular value decomposition p'Fs=l(¡tr', with non-zero À in
descending order and singular vectors K'K=L'L=f. For ap dimensional solution we
have C=Lp, where Lp arc the firstp singular vectors, and N=eÕ-tKo^A,o, *ith
F=POQ'.

The corresponding discriminant space pv=FA in (4.3?) for fixed F is given by
PV=PKp. This implies for the reflected variates pp'Fsc=FN, that they are a
rescaling of the discriminant space PP'F3C=pKpAp=pVÀO=F¡¡p. For the
discriminant weights A we have A=NÂ-I.

Estimation of F with C and N fixed.

The estimation of F proceeds variable-wise. Successively all variables of F are

updated. If the variable is numerical or multiple nominal the estimation for variable ,t
is skipped (see section 4.5.3). we maximize NRDA (6.23) with all paramerers fixed
except one variable f¿ of F. The remaining K-l variables are fixed and gathered in
matrix F-¿. with F+, c and N fixed we rewrite (6.23) in two steps into a simpler
form with respect to variable f¿.

NRDA: Fi(fÐ = tr 2N-¿'F-¿'GF-¿C-¿

+ 2(f¿'Gf¿n k'ck + ft'GF_tC_¿n¿ + f¿'GF_tN_tcr)

- tr N_¿'F_È'F_tN_È - f¿,f¿n¿'n¡ - 2f¿,F_¿N_¿n¿, (6.24)

with 1¡'1¡ = l.

where F-¿ denotes matrix F with column t deleæd,

ck denotes a column vector with row k of matrix C,
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C-¡ denotes matrix C with row,t deleted,

nt denotes a column veÆtor with row ,t of matrix N,

N-¿ denotes matrix N with row t deleæd.

rWe decompose the term f¿'Gf¿=f¿'@@¡¿ into two parts by projecting variable f¿ on

to the group space GD-l/2 as we did for the projection of the mirror variates FsC on

ûo space P.

Mirror variable Gyo ariable f¡

G-space

Figure 6,2 Pythagorean decomposition of mirror variable Gy¡.

In figure 6.2 the Pythagorean decomposition f¿'Gf¿=f¡'f¿-(f6Gy¿)'(f6Gy¿) is

illustrated for variable f¡ and mirror variable Gf¿=çyO. By adding parameter yk we

rewrite (6.24) nto

NRDA: Fit(f¡,y¡) = 2ft'{GF-t(C-rnt + N-¿c¿) - F-¿N-¡n¿}

+ 2(21¡'Gy¿ - y¿'Dy¿)n¡'c¿

+ tr N-¿'F-¿'(2GF-¿C-t - F-tN-*) - r,t'rt, (6.2s)

with f¡'f¿ = l,

where yÈ denotes weights for the orthogonal group indicator matix G.

For f fixed maximizing NRDA(f¡,y¿) comes down to maximizing 2l¡'Gy¡-
y&'Dyk. This optimization problem is equivalent to minimizing (fr-Gyr)'(lrGy*),
with f¿'f¿-l, which reaches a minimum for y¿=D-lç'¡*.
For y& fixed maximizing NRDA(f¿,y¿) is equivalent to minimizing the residual

variance e¿'e¿, where e¿= ft-(GF-t(C-¿n¡+N-¡c¿)+2Gy¿n¿'c¿-F-¿N-¿n¿) and f¿

gives the appropriaæ nonlinear transformation of variable ht. (See Gifi, 1990, page
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529 and Kruskal &Carroll, 1969.) In section 4.5.3 various transformations are

mentioned.

6.2.2 The algorithmfor NRDA

Summarising in this section the preceding elaborations we define an algorithm for the

maximization of the NRDA fir funcrion (4.37).

Initialization:

Step 1. Expand [f=(h1,...,h¿,...,h^K)

into H-(H1,...,HÈ,...,Hr), see (4.36),

' with H& = h& forsingle variables,

and H* = JG*Dt-ll2 for multiple nominal variables.

Step 2. Set F=H, f=1, and Àå-l=0.

Iterations:

Step 3. Compuæ SVD F=PÕQ'.

Step 4. Compute SVD P'GF=K^L'.

Step 5. Compuæ C=Lp, where Lp are the fîrstp singular vectors.

Step 6. Compute N=eo-lKp^ji.

Step 7. If (rr^å - tofri l) > ¿, for some small e, rhen sûop.

Step 8. Minimize e¿'e¿ for single non-numerical vars, VÈ successive,

with u¿=rþ1c1r -*(C-*ntc+ N-¿cfl+2fi-ln¡'c¿)-F-¿N-rnr),
where f¡ gives the appropriaæ unit normalized nonlinear transformation

of variable h¿ and F_¿ is updaæd before all successive steps.

Step 9. Set, i=i+l and go to Sæp 3.

The parameter y¿ derived from the maximization of (6.25) is incorporated in Step I in
the 'old'nonlinear transformation ti-l of variable h¿.

t67





Chapter 7

EXAMPLES

We present analyses of realJife data using three methods developed in the preceding
chapærs. For a psychometric application of Set Component Analysis (chapter 3) we
compare the SCA solution of the Miller-Nicely rlaø *¡1¡ the corresponding INDSCAL
solution. Reflected Discriminant Analysis from chapter 4 is applied on mass
specromeric barley tissue profiles and compared with results for PC-DA. The barley
tissue profiles are also analysed with Nonlinear Reflected Discriminant Analysis.

fntroduction

Although a wide range of methods have been presented in the preceding chapters we

give only a modest number of real-life applications. Several considerations lead to this

approach. Many methods which have been discussed are well-known, and although

there was up to now no overall criærion for the PLS methods, all these methods have

already been applied for many years. For the'new'methods like SCA and RDA we

already gave a fairly diverse impression of their properties by simulation studies. The

number of new methods that can be generaæd with DC or LDC (chapær 5) is so large

that a separate future treatment of corresponding applications is justified. For the

moment we confine ourselves to present in the next three main sections real-life
examples for respectively ScA, RDA and NRDA. The analyses in this chapter were

performed by programming all involved methods in APL (A Programming
language).

7.1 SCA and INDSCAL on psychometric Miller-Nicely data

In Soli & Arabie (1979) the utility of phonetic features versus acoustic properties for
describing perceptual relations among speech sounds was evaluated with a

multidimensional scaling analysis of the consonant confusions data of Miller & Nicely
(1955). A general review of the many analyses this classic dataset has supporæd is

given by Shepard (1987). In section 7.1.1we inrroduce the experimental data. In
section 7.I.2 we present some details on transformation, normalization and
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symmetrization applied by Soli & A¡abie. The computed INDSCAL solution is briefly

discussed. In section '1.I.3 the SCA solution is presenæd and compared to INDSCAL

results.

7.1.1 EryerimenøIdnø

The data from Miller & Nicely's experiment consist of full 16x16 matrices C¿ of
identifrcation confusions between 16 consonant phonemes obtained in K=17 different

lisæning conditions. Four subjects lisæned while a fifth subject served as a speaker,

reading lists of consonant-vowel syllables formed by pairing the consonants /p, t, k,

f, 0, s, f, b, d, g, v, a, z, Ç, Ír, n/ with the vowel tat. (The phonemes løt, il\, lð1, and

lÇl are respectively pronounced as in tl¡in, såawl, that, Zivago and the vowel /a/ as in

f¿ther.) The subjects rotated as speakers and listeners within each experimental

condition È. The listeners recorded the consonant they had heard after each syllable

was spoken. The consonants are classified by phoneme features in five groups shown

in table 7.1.

Table 7.1 Phoneme.feanres of 16 consonants.

Stops Fricatives Nasals

Voiceless lp, çkl lf,0, s,ll
Voiced lb, d, gl lv,à, z,U lm,nl

Tlne 17 experimental lisæning conditions are summarized in table 7.2 and may be

classified under three general headings. First were the noise-masking conditions, in

which only the signal-to-noise (S/t{) ratio changed. The S/1.{ ratio was manipulated

by varying the amplitude of random noise which had been low-pass filæred at 6500

Hz. Second were the low-pass conditions, in which a constant S/1.{ ratio of 12 dB

was maintained while the speech was low-pass filæred at the cuûofffrequencies given

in t¿ble 7.2. T:he final conditions were high-pass, in which the same constant S/1.[

ratio of 12 dB was again maintained while the speech channel was high-pass filæred

at the cutoff frequencies also given in t¿ble 7.2.For each condition we computed the

efficient rarfr- I¡m¡ç of the INDSCAL scalar product matrix according to (2.17). The

efficient rank gives an indication of the efficiency of information transfer by

estimating the number of reliable dimensions. By adding more noise or by narrowing
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the filær bandwidth the efficient rank gradually goes down. Only the efficient rank of
N6 is rema¡kably high. The mean efficient rank over all conditions is 5.6 and the

minimum is 4. Therefore the computation of a four dimensional solution is advisable,

if one wants to find as many reliable dimensions as possible which are common to all

conditions.

Table 7,2 Listeninq conditions.

Efficient Speech-to-noise
Condition heading Label Rank /trnr ratio (dB) Bandwidth (Hz)

NlL1 7.8 L2 200-ó500
6.0
5.5
4.7
4.I
7.2

6.2
5.9
5.5
5.4
5.3
4.0

5.9
5.4
6.0
5.6
4.I

7.1.2 INDSCAL analysis

Soli & Arabie (1979) employed the INDSCAL method and program with the original

daø C¡log tansformed ûo enhance consistency with the linear INDSCAL model. The

actual normalization and symmetrization applied by Soli & Arabie were recovercd in

steps. With the Appendix of Arabie & Soli (1982) and Shepard, (1972) we

reconstructed the formula for deriving from the original confusion data C¿ the

t71

N2
Noise masking N3

N4
N5
N6

L¿HI
L3

l,ow-pass filtering IA
L5
L6
L7

H2
H3

High-pass filæring H4
H5
H6

6
0

200-6500
200-6500
200-6500
200-6500
200-6s00

200-5000
200-2500
zffi-1200
200-600
200-400
200-300

1000-5mo
2000-5000
2500-5000
3000-5000
45m-s(m

4
-12
-18

t2
12
12
L2
T2
t2

t2
t2
T2
t2
12

INDSCAL input similarity matrices V¿.

(vr)i= to,or t,"G#ffi+ 0.001) (7.1)
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where (C*)U, denote the elements of the confusion matrix C¿,

(Vr)u denote the elements of the INDSCAL input similarity matrices V¿.

The (7.1) log transformation of the Miller-Nicely data was verified in Appendix A of
Arabie, Canoll & DeSarbo (1987), where some of the log transformed values are

lisæd. The scalar products matrices S¿ were derived from the similarity matrices V¿

by the following formula.

Sk = -llzl(c¿(11'-I) - Y *)2J (7.2)

where J denotps the centring matrix (I - 1(1'1)-11'),

ck denotes the maximum of (-V¿)¡ - (-Vr);l - (Y¡)¡¡,Vi,j,I.

The additive constant c¿ gives an estimate o¡ 1¡e smnllest constant approximating
satisfaction of the triangle inequality d¡¡4¡+d¡¡, Va¡,/, with d¡¡=cy+(-V¡)¡¡. The
additive constant method applied in INDSCAL is described in Torgerson (1958, pp.
276-277). The resulting scalar product matrices S¿ have large positive eigenvalues.
The small eigenvalues a¡e disfibuted about zero and are assumed to be 'error'
dimensions.

The derived scalar products matrices Q.2) were analysed matrix conditional, which is

the default option in the INDSCAL program. Therefore these matrices were multiplied

by a normalizing constant required to set the sum of squares for each matrix S¿ equal

to unity. So 5¿=$¡65 tñl¿)-rlL,VÈ. The INDSCAL dimensions and weights for the

unit normalized matrices S¿ were computed according to the INDSCAL procedure of
Carroll & Chang (1970). Our results are nearly equal to the results presented in Soli

& Arabie (1979). On the basis of inærpretability and only slight increments in the

INDSCAL fit for dimension five and six they decided to choose the four dimensional

solution as most appropriaæ for describing the perceptual relationships between the

16 consonants. This is in agrcement with the 'four dimension' advice in section 7.1.1

based on the efficient rank. We shall refer to the INDSCAL solution of Soli & Arabie

as the original solution. Arabie, Carroll & DeSarbo (1987) also report slight

differences in their 1987 reanalysis compared to the original solution computed in

1976 and suggest this is probably due to the use of different hardware. Their

reanalysed proportion of variance accounted for was 0.ó907 for the four dimensional

INDSCAL solution and equal to our computed totâl proportion of VAF. The original

value was 0.6922.
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The toøl proportion of VAF for scala¡ product matrices s¿ according to Anbie,
Carroll & DeSarbo (1987) is computed by

VAFptop = | -

K
I trlxw¿x'-S¿)(X\ü¿X'-s¿)

¿=1
(7.3)

trS ¿S ¿

The proportion of VAF for each matrix S¿ is computed by restricting the summation
in the numerator and denominator to appìy only to data from each single source.

Nevertheless they presented the original figures in order to maintain consistency with
earlier published accounts. we present our figures in table 7.3.A and 7.6.A, mainty
because the proportions of VAF by each dimension are not at all like the values
originally presented. Due to these differences dimension 3 and 4 are interchanged.

Table 7.3 JNDSCAL and SCA weights and oroportion of vøriance accounted.for

A.:Our four dim INDSCAL solution B:Four din SCA solutionFiltffI-aæl 4.1 4.2 4.3 4.4 VAFr,roo 4.1 4.2 4.3 4.4 VAFrlro,.

N1L1 0.3ó 0.41 0.26 0.43 0.59
N2 0.4ó 0.54 0.25 0.39 0.75N3 0.51 0.56 0.20 0.37 0.81
N4 0.60 0.54 0.17 0.19 0.77
N5 0.73 0.43 0.19 0.20 0.84
N6 0.49 0.41 0.10 0.15 0.47

L2H1 0.40 0.55 0.27 0.,!0 O.74L3 0.45 0.53 0.24 0.42 0.77rA 0.54 0.52 0.10 0.33 0.72L5 0.52 0.59 0.13 0.28 0.76tÁ 0.69 0.41 0.16 0.22 0.77L7 0.65 0.52 0.0s 0.08 0.76

112 0.32 0.37 0.38 0.45 0.63H3 0.37 0.15 0.55 0.29 0.57H4 0.25 0.21 0.56 0.29 0.54H5 0.19 0.10 0.69 0.25 0.62H6 0.06 0.08 0.77 0.12 0.63

\ve computed the vÁFprop dimension-wise by substitutin! xsl,r/(t)sxs instead of
XW¿X'in (7.3) for each dimension s separately, where w(k)s gives the appropriaæ
diagonal value of w¿. The four vAFprop by dimension do not sum to the total of
0.69, because the dimensions are not orthogonal. To obtain the sequence of the
original solution the four dimensions labeled by their vAFpropshould be permuøæd

to 0.26 0.22 0.r0 and 0.15. In the original published table soli & Arabie gave the

K

l=l

0.48 0.37 0.32 0.29 0.55
0.64 0.36 0.37 0.34 0.79
0.7r 0.35 0.35 0.26 0.82
0.78 0.29 0.32 O.tl 0.81
0.76 0.32 0.37 0.07 0.83
0.5r 0.18 0.42 0.14 0.49

0.55 0.39 0.45 0.29 0.74
0.59 0.39 0.44 0.28 0.77
0.66 0.25 0.42 0.25 0.74
0.69 0.27 0.41 0.25 0.78
0.68 0.25 0.38 0.20 0.7t
0.76 0.10 0.35 0.r4 0.t3
0.48 0.51 0.17 0.30 0.61
0.34 0.55 0.18 0.09 0.46
0.28 0.59 0.16 0.2s 0.51
0.16 0.61 0.16 0.24 0.48
0.06 0.59 0.07 0.28 0.43

0.26 0.22 0.15 0.10 0.69 0.33 0.16 0.11 0.06 0.66
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values 0.33 0.13 0.16 and 0.07. These VAFprop values are rather misleadingly
derived from the total VÁFprop of lower dimensional solutions. In table 7.4.A we
give the original V.AFprop witl increments up to a 6 dimensional solution. In table

7.4.8 we give our conesponding reanalysed results.

T able 7 .4 I N D S CAL .frt Íor di.ffer ent dimensionalitie s.

Ã:Original INDSCAL solutions B:Our INDSCAL solutions
Dimensionality yáFprop Increr¡ent yáFprop Increment

I,
3
4
5

0.33
0.46
0.62
0.69
0.73

0.13
0.16
0.07
0.04

0.34
0.50
0.62
0.69
0.74
0.77

0.1ó
0.12
0.07
0.0s

The most striking difference is ttre fit of the two dimensional INDSCAL solutions. In
the original analysis the iteration process is stopped too early compared to our

reanalysed results. Apart from this minor practical error the matching of the values of
table7.4.A to the corresponding dimensions of the original four dimensional solution

is theoretically dubious. We illustraæ this in table 7.5 where correlations are given

between the dimensions of our 1,2 (dim. 2.1and2.2) and 3 (dim. 3.I,3.2 and 3.3)

dimensional INDSCAL solution with our 4 dimensional INDSCAL and SCA

solution. Redundant zeros are left out in this table.

Table 7.5 Correbrtons with .four dimensíonal INDSCAL and SCA solution.

INDSCAL
Dimensions

A.:Our four din INDSCAL solution
4.t 4.2 4.3 4.4

BtFour dim SCA solution
4.1 4.2 4.3 4.4

1

2.1
., .,

3.1
3.2

-0.84 0.74 -0.03 -0.07
-0.84 0.75 4.01 -0.09
0.18 0.r1 0.91 -0.59
0.99 4.32 0.06 0.13
-0.2t r 0.04 0.04

-0.03 -0.01 0.M
-0.01 0 0.04
0.98 0.03 0.03
0.08 0.49 -0.02
0.07 0.7 0.05
0.98 -0.07 0.02

I
I

-0.02
-0.86
0.71
03.3 0.11 0.06 0.92 -0.61

First we observe in t¿ble 7.5.4 that our four dimensional solution gives the same

sequence of dimension 3 and 4, if we use the correlations with the three dimensional

solution as a criterion ûo classify the fourth dimension. In the original Soli & Arabie

solution our third dimension is classified as the fourth dimension. Secondly the

correlations with the one and two dimensional solution in table 7.5 show that the
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unique orientation of the INDSCAL dimensions is not consistent over comparable

solutions, because it is dependent on the dimensionality of the solution. Therefore the

VAF values presented in able 7.4 should not be substituted in table 7.3.

Table 7.6 INDSCAL and SCA consonant dimensions.

t75

Consonants
A:Our four dim. INDSCAL solution

4.t 4.2 4.3 4.4
B:Four dim SCA solution
4.t 4.2 4.3 4.4

lpl 0.275 -0.304 -0.151
Itl 0.317 -0.289 -0.057
tkt 0.283 -0.329 -0.097
tft 0.255 -0.w7 -0.il0
tgt 0.248 -0.050 -0.185
lsl 0.U5 0.021 0.2M
tJt 0.195 -0.089 0.713
tbt -0.107 0.180 -0.n2
N -0.098 0.265 -0.159
lgl -0.131 0.307 -0.119
lvl -0.160 0.232 -0.732
Dl -0.137 0.269 -0.116
lz,l -0.123 0.342 0.068
tu -0.180 0.199 0.490
lml -0.432 -0.338 -0.M2
lnl -0.449 -0.321 4.087

-0.089
-0.236
-0.198
0.359
0.267
0.098

-0.001
0.395

-0.386
4.276
0.355
0.153

-0.165
-0.335
0.120

-0.061

-0.357 -0.089
-0.362 0.078
-0.3ó3 0.017
-0.230 -0.270
-0.207 -0.178
-0.174 0.238
-0.200 0.507
0.135 -0.376
0.u5 0.126
0.275 0.104
0.198 -0.303
0.250 -0.173
0.292 0.134
0.281 0.4&
0.090 -0.192
0.r28 -0.089

-0.94 -0.255
-0.001 -0.414
-0.113 -0.34ó
0.171 0.t29
0.189 0.180
0.193 0.442
-0.017 0.468
0.19ó 0.134
0.075 -0.t?A
0.131 -0.r08
0.163 O.OO{
0.158 -0.073
0.159 -0.1s0
-0.M5 -0.237
-0.572 0.194
-0.645 0.096

The INDSCAL dimensions in t¿ble 7.6.A are displayed graphically in figure 7.1 and

the corresponding weights from table 7.3 in figure 7.2. Dimension 3 and 4 are

presented in the same orientation as the original publication in order to facilit¿te a

visual comparison.
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Figure 7.1 INDSCAL dimensions mapping consonants of Miller-Nicely data.
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We give a summary extracted from Arabie, Carroll & DeSarbo (1987) of the

inærpretation of the four dimensions. For readers not familiar with phonetics it is
useful to know that the vocal tract resonates at overtone frequencies. These resonant

frequencies are known as the formants.

"The first dimension of the object space appears to specify the æmporal relationship
between onset of periodic formant resonance and the initiation of broadly disperseil
acoustic energy. An attempt to capture this generality led Soli & Arabie to select the
abbreviated label 'periodicity/burst order'. In choosing a label for the second
dimension, the perceptual weights for this dimension in all lisæning conditions were
also examined (see Table 7.3 and figure 7.2). The pattern of weights implied that the
second dimension specified spectral changes in the lower portion of the speech
spectrum that are excited by relatively large amounts of acoustic energy,
corresponding to 'frst formant transitions', which becomes the label for the second
dimension-
The fourth dimension of figure 7.1 seems to specify the shape of voiced second
formant transitions in the syllables, and resembles the dimension in Wish's analysis
labeled 'second formant transitions'. That label has been retained in the current
analysis. The arrangement of the phonemes on the third dimension corresponds quite
well to the amount of spectrally dispersed acoustic energy locaæd below 5 kHz in the
speech spectrum. Because of this correspondence, the dimension has been given the
label'spectral dispersion'.
Perhaps the most succinct summary of this object space is to note that acoustic
properties rather than phonetic features gave the most interpretable account of the
dimensions. This conclusion differs from previous analyses and runs counter to
traditional theorizing by some phoneticians. "
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Figure 7.2 INDSCALweights mappingfiIter conditions of Miller-Nicely data:

The INDSCAL weights in figure 7.2 reveal a simple structure as generally predicæd

in chapær 3. Some filær conditions load high and others very low on the respective
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dimensions, but there is no gradual transition of the weights from one dimension to
another for instance in the form of a quarter circle. According to many introductions
in INDSCAL theory this differential weighting is an attractive feature of the model. In
chapter 3 we also argued that INDSCAL solutions will be dominaæd by sets with a

low efficient rank, if the sets are normalized to the same totål sum of squares. The

correlation between the efficient ranks in table7.2 and the VÁFprop's for the listening

conditions in table 7.3.4 is -0.53, which is really far from zero and confirms the

theoretical results.

7.1.3 SCA analysis

The consonant dimensions of the scA solution are listed in table 7.6.8 and

graphically displayed in figure 7.3. The weights for the scA dimensions are

computed according to the INDSCAL procedure of Carroll & Chang (1970) and

referred to as scA weights. The scA weights are listed in table 7.3.8 and

graphically displayed in figure 7.5. An impression of the maæhing berween the scA
and INDSCAL consonant space ß given by the canonical correlations between these

two sets with four variables. The canonical correlations 0.999, 0.997,0.996 and

O.771 indicaæ an almost complete overlap in three dimensions. Table ?.5 shows that

the orienøtion of the SCA dimensions differs from the four dimensional INDSCAL
solution. The orientation of the first two SCA dimensions is more or less equal to the

two dimensional INDSCAL solution and therefore clearly different from the

orientation of the first two dimensions of the four dimensional INDSCAL solution.
The inærpret¿tion of the SCA consonant dimensions changes considerably due to the

different orientation within the INDSCAL space and some change outside this space.

The first SCA dimension in figure 7.3 separates the voiceless (unvoiced) consonants

from the voiced consonants as can be verified in table 7.1 and is labeled 'voicing'.

Four of the five phonetic groups in table 7.I are separated by the first SCA
dimension. only the voiced stops and the voiced fricatives are not distinguished.

For the interpretation of the second dimension we provide some additional
information. The most widely used set of symbols for phonetic transcription is that of
the Inæmational Phonetic Association (IPA).
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Figure 7.3 SCA dimensions mapping consonants of Miller-Nicely data.

From the IPA chart given in the Encyclopaedia Britannica (15th edition, 1984) we

extracted the classification of the 16 involved consonant phonemes. The extracted

chart is given in tzble7.7.

Table 7.7 Phoneme .features of 16 consonants.

Place of
articulation

Voiceless Voiceless
stops fricatives

Voiced Voiced
stops fricatives

Velar

Palato alveolar

Alveolar

Dental

I¿bio-dental

Bilabial

We split the IPA 'dental and alveolar' group in a 'dental! and an 'alveolar' group

according to supplemental information in the Encyclopaedia Britannica. The place of
articulation is ordered from back (velar) to front (bilabial). The columns are ordered in

such a way to facilit¿æ a comparison with the first t\¡/o SCA dimensions in figure 7.3.

The second dimension separates 'back'consonants from 'front' consonants and is

labeled 'place of articulation'. Above -0.89 we find velar, palato alveolar and alveolar

consonants and below -0.89 we find dent¿l,labio-dental and bilabial consonants. The

place of articulation of all fricatives (Table 7.7) is perfectly ordered by the second
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SCA dimension. The same holds perfectly for the nasals, but not perfectly for the

stops. The velar articulation points are located slightly too much to the front.

Apparently the velar and alveolar stops are not discriminated with this place of

articulation dimension.

The third SCA dimension separates nasal consonants from oral consonants and is

labeled 'cavity'. We could also have used the label 'nasality', but this label inærferes

too much with the phonetic meaning of nasality and the conesponding ordering of
consonants.

The fourth SCA dimension (SCfu) can be quite well predicæd with a quadratic

function of the first dimension and is labeled by'voicing modulation'. The conelation

between SCA¿ and G6.392xSCA]+.+OZ"SCAT+0.400) is 0.908. We plotted the

first and fourth dimension in figure 7.4.4 to show the functional relation visually.

The inærpretation of the 'voicing modulation' dimension is not univocal. It can be an

artefact of analyzing nonlinear data v/ith a linear æchnique or it can be that listeners

are apparently able to discriminaæ neutral voicing from extreme voicing. Anyway the

voiceless fricatives are sepÍ¡rat€d extra from the other consonants by this functional

relation. It is interesting to notice that the four dimensional INDSCAL solution also

contained this functional relation, but less pronounced. To show the relation we

predicæd the SCAI and the SCA¿ from the INDSCAL space with multiple linear

regression. The mulúple correlations were respectively 0.999 and 0.785.
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we obtained the consonant dimensions IND5ç41 and INDSç64 and plotted these
INDSCAL approximations of the first and the fourth SCA dimension in figure 7.4.8.
The correlation between IND5çaa and (5.524xIND!ça1-0.352xIND5çar+0.346)

is 0.761. We remark that optimization of the orientation of the first and the fourth
dimension with respect to a quadratic relation might improve the conelation for both
SCA and IND5ça. Secondly the prediction of the fourth dimension by the first
dimension can be improved by applying other simple nonlinear functions in figure
7.4. For instance a separate linear regression for the voiced and the voiceless

consonants results in correlations 0.962 and 0.754 between true and predicæd fourth
dimension for respectively SCA and IND5¡6.
Summarizing, the SCA consonant dimensions can satisfactorily be interpreted with
phonetic features, conüary to the interpretation of the original INDSCAL dimensions
with acoustic properties by Soli & Arabie.

The scA weights in figure 7.5 show a nice gradual transition for the first two
dimensions in the form of a quarter circle and offer an almost ideal example of
differential weighting of dimensions. Generally high-pass filæring conditions result in
betær than average discrimination of place of articulation and worse than average

discrimination of voicing. This tendency is reversed for low-pass filtering and noise
masking conditions. The same transition not compared to average discrimination but
by measuring relative discrimination can be observed for voicing modulation and

cavity. In t¿ble 7.8 the weight ratio's for dimensions ll2 and3l4 are computed.

Table 7.E WeiNht ratio's .for dimensíon I divided by 2 and 3 divided by 4.

Filtet l.ahel 1/^ 3/4 Filter Lah"r r/2 1/4 Filt"r I 
"h"r r/n 1/4

NlLl 1.28 1.10 L2Ht 1.41 1.56 t12 0.94 0.59N2 1.78 t.07
N3 2.06 1.34
N4 2.72 2.87
N5 2.38 5.36
N6 2.78 2.95

L3 1.50 t.57
u 2.Ø l.1t
L5 2.58 7.67
t-6 2.æ 1.8ó
L7 7.69 2.49

m 0.62 2.02
H4 0.47 0.62
H5 0.26 0.67
H6 0.11 0.26

All noise masking and low-pass filæring conditions discriminaæ better on dimension
1 and 3 compared to respectively dimension 2 and 4 than the high-pass filtering
conditions except for H3(3/4). Low-pass frlæring and noise masking tend to increase
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gradually the discrimination of dimension I and 3 compared to respectively dimension

3 and 4. For high-pass filtering this tendency is reversed.
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Figure 7.5 SCA weights nnpping filter condirtons of Miller-Nicely data.

In summary the analysis of the Miller-Nicely data with INDSCAL and SCA seems to

confirm the theoretical expectations.

- The orientation of the SCA dimensions appears simpler to interpret than the
INDSCAL orientation. Although this could be expected, because SCA eliminates

as much as possible the unique components in the lisæning conditions, it remains

to be seen in future if this property is repeated for other realJife examples.

- The configuration of the scA weights shows a gradual transition from one

dimension to another and approximates more to the concept of differential
weighting of dimensions. The INDSCAL weights are more grouped in bundles as

is usual for simple structure configurations.

- The SCA solution is not dominated by sets with low efficient rank The correlation

between the VAFprçp and the efficient rank for all lisæning conditions is -0.26. For
the INDSCAL solution this correlation is -0.53, which implies relatively high
loadings for lisæning conditions with low efficient rank.

7.2 RDA and PC-DA on mass spectrometric barley tissue profiles

In Tas, Angelino, [¿ vos & van der Greef (1991) barley tissue profiles are analysed

with PC-DA, which is frequently applied in chemomerrics to pyrolysis profiles.
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þrolysis stands for the thermal degradation of usual complex (bio)chemical systems

like micro-organisms, cells, cell walls, food, soil, plant materials, fossil deposits,

body fluids and tissues.

In section 7.2.I we introduce the experimental data. In section 7.2.2 the PC-DA

solution is presented. Next the barley tissue profiles are analyzed with RDA in section

7.2.3.We also provide Leaving-One-Out (L-O-O) error raæs (4.31) to compare

group prediction of RDA with PC-DA.

7.2.1 Eryerimcntnldntn

Six tissue elements (husk, aleurone, endosperm, scutellum, radicle and coleoptil)

were prepared from the barley variety Triumph. Samples were obtained at the

beginning of the malting process from starting material (day 0), after four days of

germination (day 4) and after six days of germination and subsequent kilning (day 7).

B,-DCVMS (pyrolysis-direct chemical ionization/mass spectrometry) was performed

with the number of MS measurements on each tissue sample lisæd in table 7.9.

Table7.9 Number of MS measurements onbarley rtssue santples.

Seed Native 4th day of Afærkilning
particle barlev germination (7ù day)

Husk 3

Aleurone 6* 3

Endosperm 3 3

Scuællum 3 3

Radicle

Coleoptil 3 6* 6*
n=3 for each cell, cells marked with an asærisk (*) re sampled twicq n=6

The 60 measured spectra were normalized to total ion current to corrcct for differences

in sample size. The resulting patterns were reduced to subsets of 235 variables, the

highest Fisher weights being the selection criærion. Finally the 235 variables were

transformed to unit normalized variables in deviations from their mean. We refer to

the rows of the resultin g ñx235 matrix as the barley tissue profiIes-

The Between-to-Total ruuo BT (4.27) of ¡he barley tissue profiles for the six tissue

groups is 0.26. It should be noticed thar BT was more or less maximized in the

3

3

3

3

3
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preprocessing step, where variables with the highest Fisher weights were selected

(Fisher, 1936). We computed the efficient rank Im of the barley tissue profiles

according to (2.17). The efficient rank is Im=I7.4, which is close to the total number

of 17 measured cells in t¿ble 7.9.

7.2.2 Principal Cotnponent - Discriminant Analysis

To explore the differences in MS pattern behveen the six tissue elements the 60 barley

tissue profiles are partitioned in¡o six groups. Differences in sampling time are

neglected. For the final PC-DA solution the 6Ox235 matrix was first reduced with
PCA to rank 9. Next the DA solution was computed in a second sæp. We refer to the

resulting solution as the PC9-DA solution, because of the rank 9 reduction in the first

step. The 60 objects in the PC9-DA discriminant space are plotæd in figure 7.6,

where the objects are labeled by the first letær of thei¡ group tissue name.
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The loadings are given in figure 7.7. Only loadings outside a circle with radius 0.5

are displayed. We will not elaborate on the interpretation of the mass numbers. Our

first two PC9-DA dimensions rotated 45 degrees are consisrent with the PC-DA

results of Tas, Angelino, La Vos & van der Greef (1991). They considered the

replicates as groups (20 groups, see table 7.9) and reduced the spectra to subsets of
57 variables.
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7 .2.3 Reflected Discriminant Analysis

The discriminant space of the RDA solurion is graphically dispþed in figure 7.g.

Endospenn

Coleootil
Radicle

Scuællum
Husk

Aler¡rone

4.2 0 0.2
Dimension I Dimension 3

Figure 7.E RDA discriminant space mapping 60 barley tissue profiIes.

The within-group variance has compleæly vanished and therefore all objects within
one group are positioned exactly on one group poinL The first RDA dimension is
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very similar to the first PC9-DA dimension. The loadings for the first two dimensions

are given in figure 7.9. only loadings outside a circle with radius 0.5 are displayed.
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Figure 7.9 RDA discriminant space mapping barley loadings.

Although the RDA results simplify remarkably compared to PC-DA, this does not

imply that group prediction is also improved. Therefore we have computed L-O-O
elror rates (4.31) for assessing prediction in several dimensions for both PC-DA and

RDA. The L-O-O error rate is a measure of misclassification of group predicúon. In
øble 7.10 we prcsent five criæria for comparing PC-DA, RDA and NRDA solurions.

NRDA results will be discussed in section 7.3. The first column in table 7.10 gives

the number of dimensions of the discriminant space. The second column gives the

squared canonical correlation fuO=v¡'P'P¡Pg'Pvs between each dimension s of
the discriminant space PV and the corresponding projection on the group space. The

squared correlations fçy¡ ur" the diagonal values of V'P'P3P3'PV in CVAgI
(4.13). The other four criæria are the proportion of variance accounted for, vAFprop,

the proportion of reflecæd variance accounted for, RVAFprop, the L-O-O error rate for
6 groups, LOO6 and the L-O-O error rate for 5 groups computed with the 6 group

solutions, LOOí, where radicle and coleoptil are merged to one group. It is
inæresting to realize that the Between-to-Total ratio BT (4.27) gives an upper bound
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for RVAFproo with RvAFprop<BT. The upper bound can for instånce be reached in
the complete rank case as has been formulaæd in section 4.3.7.Be*ause the barley

tissue profiles are a complete rank case, the upper bound of 0.26 is reached with five
dimensions.

Table 7.10 A comparison of PC9-DA, RDA and NRDA solutions.

Number of
dimensions Ê"uo

LOO6 LOOS
VAForoD RVAForon error Ête error rate

1 PCg-DA
1 RDA
I NRDA
2 PCg-DA
2 RDA
2 NRDA
3 PCg-DA
3 RDA
3 NRDA
4 PCg-DA
4 RDA
4 NRDA
5 PCg-DA
5 RDA
5 NRDA

0.96
1.00
1.00

0.92
1.00
1.00

0.78
1.00
1.00

0.11
1.00
1.00

0.03
1.00
1.00

0.r4
0.15
0.21

0.21
0.20
0.30

0.26
0.24
437
0.32
0.25
0.40

0.37
0.26
0.42

0.13
0.15
0.21

0.19
0.20
0.30

0.22
0.24
0.37

0.22
0.25
0.40

0.22
0.26
4.42

0.37
0.38
0.38
o.22
0.2s
0.25
0.23
o.22
0.08
0.23
0.15
0.r2
0.23
0.13
o.r2

0.28
0.22
0.33
0.13
0.12
0.20
0.13
0.05
0.02

o.t2
0.07
0.07
0.12
0.05
0.03

The squared correlations pêva for each dimension show that the fourth and fifth
PC9-DA dimension have almost no discriminating power between groups, whereas

the RDA solution discriminates perfectly and completely nullifies within-group
variance. The lowest error rate of Loo6 is 0.09 higher for PC9-DA than for RDA.
The difference is 0.07 for LOOS. These values are consistent with the results for low
error levels of the simulation study in chapter 4 (see table 4.6). Prediction with pC9-

DA is not substantially improved by using more than trvo discriminant dimensions.

With RDA all dimensions are exploited to separate specific groups. It is remarkable

that for each extra dimension the prediction is improved, especially if we consider the

very small proportion of vAF (0.01) for dimension 4 and 5. For instance t}re

improvement of 0.07 for LOO6 in RDA prediction from three to four dimensions is

mainly caused by the separation of radicle and coleoptil (see figure 7.8, dimension 4).

This separation is not achieved by PC-DA (see figure 7.6).
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In summary the analysis of the barley tissue profiles with PC-DA and RDA seems to

conf,rm the theoretical expectations.

- Predictìon with RDA compared to PC-DA is consistent with the results for low
error levels of the simulation study in chapter 4 (see øble 4.6).

- The RDA results simplify compared to PC-DA due to filtering our of within
information.

An interesting property of RDA revealed by the analysis of the barley tissue profiles is

that RDA is able to improve prediction with relatively small proportions of VAFup to

the last dimension inclusive.

7.3 NRDA on barley tissue profiles

In this section we investigate the properties of Nonlinear Reflected Discriminant

Analysis (NRDA) applied on the barley data described in section 7.2.L and analysed

in the previous section with PC-DA and RDA. We selecæd isotone transformations

for the variables of the barley tissue profiles. With isotone transformations of
variables not only the order of object values is preserved, but also the increase or

decrease has to remain consistent. The Between-to-Total ratio BT (4.27) of the

isotone transformed barley tissue profiles is0.42, which is much higher than the non

transformed value of 0.26.
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consequently the vAF 
'''op 

in table 7.10 reaches for NRDA a higher maximum than
for RDA. The efficient span does not change norably from Im=!1.4 to Im=r6.9.The
discriminant space of the NRDA solurion is graphically displayed in figure 7.10. The
solution is similar to the RDA solution in figure 7.8. A salient difference is the

domination of the first two NRDA dimensions by husk and endosperm, whereas

these two tissues disappear in the last three dimensions. In the RDA solution husk

and endospenn contribute substantially to the third dimension. The loadings of the

isotone transformed variables on to the first two NRDA dimensions are given in
figure 7.11. Only loadings outside a circle with radius 0.5 are displayed. The cluster
with loadings -0.673 0.728 contains mass numbers 72,97,101, 103, 110, 111 and

126. The complementary cluster with loadings 0.673 -0.728 contains 130, 163, 170,

172, r92, 194 and 222. The squared multiple correlation of all the isorone

transformed variables of these two clusters with the first two NRDA dimensions is
0.98.

-l -0.5 0 0.5 I
Dimension I

Figure 7.11 NRDA discriminant space mapping loadings of transþrmcd vars.

For mass number 110 and 181 we will show how the variables are transformed. In
frgure 7 .12 we display the isotone transformations of the objects for mass number

110. The objects are labeled by the first letter of their group tissue name. The 'non
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transformed values' give the not isotone transformed objects of the unit normalized
variable in deviation from the mean as defined at the end of section 1.2.r and the
'transformed values' give the corresponding optimal isotone transformations
computed with NRDA.
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Figure 7.12 NRDA transþrmations for mass number lI0.

The small gap between husk and all otìer tissues is widened by the NRDA
transformation. The low inænsities for husk become even lower by the isotonic
transformation. The non transformed values of the other variables (72,97,101, 103,

111 and 126) in the cluster with loadings -0.673 0.728 arc somewhar different, bur
tle isotone transformed values are exactly the same as for number 110. The
complementary cluster witl mass numbers 130, 163, I70,172,lg2,I94 and 222
has exactly the same isotone transformation with the sign reversed and the 6 husk
measurements are perfectly discriminated towards the positive side with prominent
intensities. In figure 7.13 we illustrate the isotonic transformation for mass number
181. Endosperm is clearly separated from the other tissues by the isotone
transformations. Only one transformed value of endosperm is inærmediate, because

this endosperm value was originally lower than a coleoptil value. The examples above

show how the optimal transformations exaggerate differences in order between
groups. This makes it easy to find some clear boundaries between groups of tissue
with respect to profiles of mass intensities.
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Figure 7.13 NRDA transþrmations for mass number 181-

We investigated NRDA prediction by computing L-O-O enor rates (4.31) for the

NRDA solutions. The NRDA L-O-O error rate is calculaæd by omitting one object

from the raw data prior to NRDA. The transformed value of the omitted objects are

computed by neighbour quantification.For neighbour c quantification c objects with

the closest value ùo the value.of the omitæd object in the raw dat¿ are selected for each

variable separately. The mean of the corresponding isotone transformed values of

these closest values is assigned to the omitted object as the transformed value of the

omitæd object for this variable. The substituæd transformed object is projecæd into

the NRDA discriminant space and classified to the closest group mean. This is

repeated for all objects in the raw data, and the L-O-O error rate is given by the

fraction of objects that are misclassified. We emphasize that by this procedure the

isotone transformation of the remaining objects is independent of the the omitted

object. We apply neighbour 9 quantification on the barley tissue profiles with c equal

to the mean number of group objects minus one. The resulting NRDA L-O-O error

rates are lisæd in øble 7.10. Prediction is betær with NRDA than with RDA,0.05 for

LOO6 and 0.03 for LOOS. The minimum NRDA error rate for LOO6 and IOO5 is

reached with three dimensions. Here the most striking improvement of 0.14

compared ûo RDA is scored for I'O06.

More research is needed on the optimal neighbour c quantification. For neighbour I

quantification we obtain a smallest value of 0.15 for LOO6 and of 0.07 for LOOí.
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Examplcs

Prediction is only slightly worse t¡an RDA prediction, which is an indication for the
robustrtess of the NRDA procedure. Application of neighbour c=g-l quantification on

the barley tissue profiles with c equal to the number of group objects minus one,
might improve NRDA prediction even further.

In summary the analysis of the barley tissue profiles with RDA and NRDA seems to
give promising results.

- Mæcimum prediction is betær with NRDA than with RDA,
- NRDA has a more efficient predictive capacity with a smaller number of

discriminating dimensions.

- The optimal transformations exaggerate differences in order between groups,

which make it easy to find some clear boundaries between groups of tissue with
respect to profiles of mass intensities.
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Chapter 8

CONCLUSIONS

In this monograph the inægration of multiset MVA methods has been achieved in
several ways. In chapær 2 multiset MVA methods are described in a comprehensive
filter system of methods by filtering the eigenvalues of rhe sers. Hybrid MVA
methods are placed in this system by combining different types of filær or by defining
compound filters. In chapter 3 and 4 adjusted methods are formulated with
corresponding filærs. The inægration approach of direcæd correlations in chapter 5

defines a wider scope of methods than the fîlter system. The equivalence of
algorithms produced by wold's basic pLS method of Soft modelling (wold, 19g2)
and algorithms produced by the maximization of specific LDC path models illustrates
the extended range of methods. Many relaæd pLS algorithms can be derived from a
corresponding fit function by specifying an appropriare LDc path model. The
elaboration of the filær system in chapter 2 and direcæd correlations in 5 is illustrated
with a selection of most characteristic methods. An exhaustive treatment of all
possible methods is not pursued. For inst¿nce the relation of LDC with some three
mode PLS algorithms still has to be studied. In the next sections we evaluate some
results in more detail and outline future prospects.

8. I Efficient rank

Embedded in the filær theory of chapær 2 we elaboraæd on ideas about the efficiency
of information transfer by defining the information span with a corresponding
measur€ for efficient rank. The efficient rank seems to give a reasonable estimate of
the number of stable dimensions. ln chapær 7 the efficient rank of the Miller-Nicely
data was in agreement with the number of inærpretable dimensions mentioned in
previous publications about these data. Furthermore, the efficient rank of barley tissue
profiles was consistent with tle measurement design. A comparative study with other
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real-life daø and other rank measures will be necessary for extensively assessing the

properties of efficient rank.

E.2 Adjusted methods

In chapter 3 on Set Correlation with Set Variance Constraints we formulaæd the

adjusæd method of Set Component Analysis (SCA) and in chapter 4 on Set Variance

with Set Correlation Coistraints the Reflecæd Variance methods. In SCA the

emphasis was primarily on maximizing the sum of squared correlations between set

variates and secondly on improving variance accounted for. In Reflected Variance

methods the emphasis was primarily on maximizing variance accounted for and

secondly on improving squared canonical correlations. Theoretically and practically

SCA was compared with INDSCAL. Reflecæd Discriminant Analysis (RDA) was

compared with two other forms of discriminant analysis. The results indicaæ that the

secondary improving constraint dominates the properties of the adjusæd methods.

More specifically SCA provides even a more adequate estimate of the true common

dimensions of the INDSCAL model than the INDSCAL procedure of Canoll &
Chang (1970). Other theoretical properties of SCA and INDSCAL are confrrmed in

chapter 7. For instance the SCA dimension weights of the Miller-Nicely data

approximate more to the concept of differential weighting of dimensions than the

INDSCAL weights. It is very convenient that the SCA solution is also simpler to

interpret, but only further investigations of other data can give conclusive results.

Chapær 4 shows how the rank reducing step in PC-DA can capitalize on the wrong

information and how DA can capitalize on spurious regions. RDA does not have these

drawbacks. A simulation study and a real-life analysis of barley tissue profiles

confirm the better predictive capacities of RDA. Nonlinear extension of RDA provides

new possibilities in group analysis. Datasets which could not be analysed with
Nonlinear Discriminant Analysis (Gifi, 1990) can now be analysed with NRDA. The

benefits of nonlinea¡ transformations are illustrated with an example in chapær 7.

Isotone transformations of barley tissue profiles computed with NRDA tend to

emphasize boundaries between groups by exaggerating differences in order. By

compensating the increase of freedom with neighbour quantification, group prediction

is even improved compared ûo RDA.
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E.3 Set Variance with Set Variance Constraints

Insæad of integrating Set Correlation with set Variance Constaints (chapær 3) or Set

Variance with Set Correlation Constraints (chapter 4) we can also integrate Set

Variance with Set Variance Constraints or Set Correlation with Set Correlation
Constraints. We did not elaborate on these combinations in the respective chapters,

but at this point like ûo confine ourselves to giving one example of such a method. An
attractive fit function for a two sets Set Variance with Set Variance Constraints
adjusted method would be to maximize tzlslnsllzzz, referred to as Double
Variance Analysis (DVA). DVA is attactive because it summarizes the fit functions of
two complemenråry adjusted merhods, t¡ zr'sl/2szs ll2z1 nd t z2,sll2s1sllzzz
in one function with ttre same optimal solutions. Thep dimensional DVA solution for
21 and 22 is equal to the first p singular vecrors of sllzsllz with the corresponding

singular values in descending order. DVA therefore shows dual features comparable
with Principal component Analysis. The PCA solution has matching principal
components and loadings for one set of variables, whereas the DVA solution has

matching principal components for two sets.

8.4 Future prospects

The promising results for the nonlinea¡ extension (Gifi, 1990) of RDA indicaæ that it
would be inæresting to investigate nonlinear extensions for SCA and LDC (including
PLS) as well. common scale transformations as developed by van der Lans (rggz)
can add useful features to the nonlinear extensions by restricting the degrees of
freedom. The fitting of reflected variance methods with a corresponding LDC path
model has lead to a PLS2 variant wittr theoreticatly better predictive capacities than the

usual PLS2 method for essential multivariaæ problems. Practical æsting of theory is
needed. A useful generalization of the INDRES model is expecred by substituting the

approximation of s¿ with xw¿x' by the approximarion of H¿ with XW¿y', where
the number of variables for each set H¿ must be the same. The multiset
decomposition with this model might provide a more adequate decomposition of K
sets than the GANDECOMP procedure of carroll & chang (1970), because fitting the

INDRES model with SCA in chapter 3 improved the estimation of true common

195
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dimensions of the INDSCAL model compared CI the INDSCAL procedure of caroll
& chang (1970). other methods for fitting the INDRES model might even further
improve results. Finally we mention that Reflecæd component Analysis can be

adapted for performing a clusær analysis. For this purpose we have to Ítssume ttrat the

minor matrix U defines some unknown group space. The ideal group classification
for some fixed number of groups is given by the global RCA maximum for unknown
group space and unknown reflected discriminant space.



References

Anderson, T.W. (1951). Estimating linear restrictions on regression coefficients for
multivariate normal distributions. Annals of Mathemntical Statistics,22,327-
351.

Arabie, P., & Soli, s.D. (1982). The interface between the types of regression and
methods of collecting proximity data In R.G. Golledge & J.N. Rþner @d.),
Proximity and-preference. Problems in the multidim¿nsional analysis of large
data sets (pp. 90- I 15). Minneapolis:University of Minnesota press.

Arabie, P., Carroll, J.D., & DeSarbo, W.S. (1987). Three-way scaling and
clusæring. Sage University Paper series on Quantitative ApplicationsTn the
Social Sciences (Series no. 07-065). Beverly Hills: Sage Pubns.

Bennett, J.H. (1974). collected papers of R.A. Fisher. university of Adelaide,
South Australia: Coudrey Offset Press.

Bijleveld, c.J.H. (1989). Exploratory linear dynatnic systems anølysis. Leiden:
DSWO Press, Leiden University.

Bloxom, B. (1968). Individual dffirences in multidim¿nsionnl scaling. (ETs RM 68-
45.) Princeton, New Jersey: Educational Testing Service.

Bookstein, F.L. (1982). The geometric meaning of soft modelling, with some
generalizations. In K.G. Jöreskog & H. wold (Ed.), systems uinder indirect
observation. Part II (pp.55-74). Amsterdam: Norttr Holland.

Campbell, N.A. (1980). Shrunken estimators in discriminant and canonical variate
analysis. Applied Statistics, 29, 5-14.

Carroll, J.D. (1968). A generalization of canonical correlation analysis to three or
more sets of variables. Proceedings of the 76th annual convention of the
American P sy cholo gical Association, 3, 227 -228.

carroll, J.D., & chang, J.-J. (1970). Analysis of individual differences in
multidimensional scaling via an n-way generalization of "Eckart-young"
decompositi or. P sychomcnika, 3 5, 283-3L9.

de Jong, S., & Kiers, H.A.L. (1992). Principal covariates regression. part I.
Theory. Chemomctrics and Intelligent Laboratory Systems, 14,155-164.

de læeuw, J., & Bijleveld, c.J.H. (1987). Fitting reduced rank regression nndels by
alternating lea.st squøres. (Report RR-87-05.) Iæiden: university of tæiden,
Deparrnent of Data Theory.

de [-eeuw, J., & Heiser, w.J. (1980). Multidimensional scaling with restrictions on
th-e-configuration. In P.R. Krishnaiah (Ed.), Multivariate analysis v (pp. 501-
522). Amsærdam: North-Holland.

de Leeuw, J., & Pruzansky, S. (1978). A new computational method
weighæd euclidian distance model P sychomctrikn, 4 3, 47 g -490.

Fisher, R.A. (1936). The use of multiple measurements on taxonomic
Annals of Eugenics, 7, 179-188.

to fit the

problems.

Fornell, c-, & Bookstein F.L. (1982). Two structural equation models: LISREL and
PLS applied to consumer exit-voice theory. Journal of Markertng Research, 19,
440-452.

Fortier, J.J. (1966). simultaneous linear prediction Psychometrika, 31,369-381.
Friedman, J.H., & Tukey, J.W. (1974). A projection pursuit algorithm for

exploratory data analysis . IEEE Transactions on Computers, C-2 j, 88 1 -890.



198 References

Geladi, P., & Kowalski, B.R. (1986). Partial least-squares regression: a tutorial.
Anaþrtca Chimica Acta, I85,1-I7.

Geladi, P., Martens, H., Martens, M., Kalvenes, S., & Esbensen, K. (1988).
Multivariate comparison of laboratory measurements. In P. TØrboll (Ed.),
Symposiurn i anvendt statistik, København, 25-27 januar (pp. 15-30).
Danmarks edb-cenær for forskning og uddannelse.

Gifi, A. (1990). Nonlinear multivariate analysis. Cichester: Wiley.
Gill, P.E., Murray, W., & Wright, M.H. (1981). Practìcal optimization London:

Academic Press,Inc.
Gittins, R. (1985). Canonical analysis, a review with applications in ecology. Berlin:

Springer-Verlag.
Golub, G.H., & van Loan, C.F. (1990). Matrix cotnpatations. Baltimore: John

Hopkins University Press.
Gower, J.C. (1992). The geometry of matrices. In S. Schach & G. Trenkler (Ed.),

Data anølysis and statistical inference: Festschrift in honour of Prof. Dr.
Friedhelm Eicker (pp. 547-566). Köln: Verlag Josef Eul.

Green, B.F. (1969). Best linear composites with a specified structure.
P sy chomc trika, 3 4, 301-318.

Hall, P. (1927). The distribution of means for samples of size N drawn from a
population in which the variaæ takes between 0 and 1, all such values being
equally probable. Biometrika, I 9, 240-245.

Hauser, R.M., & Goldberger, A.S. (1971). The treatment of unobservable variables
in path analysis. In H.L. Costner (Ed.), Sociologícal Methodology (pp. 81-
117). San Francisco: Jossey-Bass.

Hoerl, 4.E., & Kennard, W. (1970). Ridge regression: biased estimation for non-
orthogonal problems. Technometrícs, 12, 55-6'1.

Hoogerbrugge, R., Willig, S.J., & Kistemaker, P:G. (1983). Discriminant analysis
by double stage principal component analsysis. Anaþrtcal Chemistry, 55,
tTtL-L712.

Horan, C.B. (1969). Multidimensional scaling: combining observations when
individuals have different perceptual structures. Psychometril<n, 34,139-1,65.

Horst, P. (1961). Relations amoung m sets of measures. Psychomctrika, 26,129-
r49.

Huber, P.J. (1985). Projection pursuil The Annals of Startstics, 13,435-475.
Kiers, H.A.L. (1989). Three-way methods for the analysis of qualitative and

quantiøtive two-way data.Lniden: DSWO Press, l.eiden University.
Kroonenberg, P.M. (1983). Three-nøde principal component anøIysis: theory and

applications. Iæiden: DSWO Press, Leiden University.
Kruskal, J.8., & Carroll, J.D. (1969). Geometrical models and badness-of-fit

functions. In P.R. Krishnaiah (Ed.), Multivariate Anølysis, Vol. II (pp.639-
671). New York: Academic Press.

L'Hermier des Plantes, H. (1976). Stucturation des tableaux à trois indices de Ia
startsfiques. Thèse de 3ème cycle, Université Montpelier tr.

Lohmöller, J.-8. (1989). lntent variable path rrcdelling with parrtd least squares"
Heidelberg: Physica-Verlag.



References

Lorber, 4., wangen, L.E., & Kowalski, B.R. (1987). A theoretical foundation for
the PLS algorithm. Journal of Chemon ctrics, I, lg-31.

Maccallum, R.c., & cornelius,_8..T. (1977). A Monte carlo inverstigation of
recovery of structure by ALSCAL Psychamttrika, 42,40I-429.

Manne, R. (1987). Analysis of two partialJeast-squares algorithms for multivariate
calibration che mom¿tics and Intelli gent laboraøry-systems, 2, lg7 -lg7 .

Martens, M., & Martens, H. (1986). partial least squares regression. In J. piggott
(H.), statistical procedures infood research (pp. 293-359). Inndon: plõlier
Applied Science.

Maxwell, A.E. (1977). Multivariate Analysis in Behavioral Research. London:
Chapman and Hall.

Meulman, J.J. (1986). A distance approach ta nonlinear multivariate analysis. tæiden:
DSWO Press, Leiden University.

Miller, G"4., & Nicely, P.E (1955). An analysis of perceptual confusions amoung
some English consonants. J. Acoust. Soc. Am., 27,338-352.

Nierop, A.F.M. (1989). Generalized set-component analysis: A toolboxfor maltiple
sets analysis. (Report RR-89-04.) Iæiden: univenity of læiden, Dèpartmeni of
DataTheory.

Nierop, A.F.M. (1993). The INDRES model: an INDSCAL model with residuals
oryhogonal to INDSCAL dimensions. In R. Steyer, K.F. Wender & K.F.
widaman (Ed.),llo_geeþgs of the Tth European Meeting of the psychom¿tric
Soc.ie!t_(pp: ry6-3?0). Stuttgart and New york Gustav Fishêr Verlig.

Nierop. A.F.M. (1991). Reflecæd Variables: their use in discriminant analjsis. Third
Confer enc e _of the International F ede ration of Ctass ifi cation 

- 

S o cie ties,
Edinburgh, Scotland, August 6-9, 1991.

Noonan, R., & wold, H. (1982). PLS path modelling with indirectly observed
variables: a comparison of alærnative estimates foi the laænt variaúb. In K.G.
Jö,reskog & H. wold _(Ed.), sysrems under indirect observation. part II (pp.
75-94). Amsterdam: North Holland.

Ramsay, J.O. (1988). Monotone regression splines in action Statistical Science, 3,
425-461.

shepard, R.N. (1972). Psychological represent¿tion of speech sounds. In E.E.
David, Jr. & P.B. Denes (Ed.), Human conunanicatiois: a unified view (pp.
67-113). New York MacGraw Hill.

Shepard, RN. (1987). George MIler's daø and the birth of methods for representing
cognitive structures. In w. Hirst (Ed.), Giving birth to cognitive icience: Ã,

_ Ígyscn i¡for George A. Miller 0. New york cambridge uñiversiry press.
soli, s.D., & Arabie, P. (1979). Auditory versus phonetiCaccounts of observed

confusions between consonant phonemes. l. Acoust. Soc. Am, 66,46-59-
stone, M., & Brooks, R.J. (1990). continuum regression: cross-validated

sequentially constructed prediction embracing ordinary least squares, partial
l_east squares and_princlq{ components regression. Journar- of the'Royat
Statistical Society B, 52, 237 -269.

Tas, A.C-., Ang_elino, S.A.G.F, La Vos, G.F., & van der Greef, J. (1991). Data
analysis of pyrolysis-mass spectrometric profiles generated with soft ionization



References

detection: application to barley tissue profiles. Journal of Analytical and Applied
Pyrolysis, 20,73-85.

ten Berge, J.M.F. (1983). A generalization of K¡istofs theorem on the trace of
certain matrix products. Psy chometrika, 48, 5I9 -523.

ten Berge, J.M.F. (1986). A general solution for the Maxbet problem. In J. de
IÆeuw, W. J. Heiser, J. Meulman & F. Critchley (Ed.), Multidinznsional data
analysis (pp. 81-87). [.eiden: DSWO Press, Leiden University.

ten Berge, J.M.F. (1988). Generalized approaches to the Maxbet problem and the
Maxdiff problem, with applications to canonical correlations. Psychometrika,
53,487-494.

Torgerson, W.S. (1958). Theory and mcthods of scøling. New York: Wiley.
Tucker, L.R. (1951). A methodfor synthesis of factor analytic studies. (Personnel

Research Section Report No. 984.) Washington, D.C.: Department of the
Army.

Tucker, L.R. (1958). An inter-batt€ry method of factor analysis. Psychometrika, 23,
1 1 1-136.

van de Geer, J.P. (1984). Linea¡ relations among K sets of va¡iables. Psychometrikn,
49,79-94.

van de Geer, J.P. (1986). Introduction to linear maltivariate data analysis. Leiden:
DSWO Press, Leiden University.

van den Wollenberg, A.L. (1977). Redundancy analysis an alternative for canonical
conelation analysis. P sy chometrika, 42, zül -2I9.

van der Burg, E. (1988). Nonlinear canonicøl correløtion and some related
techniques. Leiden: DSWO Press, Leiden University.

van der Lans, I.A. (1992). Nonlinear multivariate anølysis for multiattribute
preference daø.læiden: DSWO Press, l,eiden Univenity.

van der Leeden, R. (1990). Reduced rank regression with structured residuals.
læiden: DSWO Press, Iæiden University.

van Rijckevorsel, J.L.A. (1987). The application oîÍuzzy coding and horseshoes in
multiple correspondcnce analysß. Iæiden: DSWO Press, læiden University.

Wilkinson, J.H. (1965). The algebraic eigenvalue problem Oxford: University
Press.

Wold, H. (1982). Soft modelling: the basic design and some extensions. In K.G.
Jöreskog & H. Wold (Ed.), Sysrerns under indirect observation. Part II (pp. 1-

54). Amsærdam: North Holland.
Yendle, P.W., & Macfie, H,J.H. (1989). Discriminant principal components

analysis. Joumal of Chemometrics, 3,589-600.
Young, F.W. (1970). Nonmetric multidimensional scaling: recovery of metric

information P sy chometrtka, 3 5, 455-473.



Summary

In chapter I on Integration of divergent aims in Multidimensional Analysis the
predictive value of multiset multivariate methods is relaæd to the optimal inægration of
two criteria: stability and exactness. Ståbility of prediction is linked to set variance and
exactness of prediction is linked to set correlation. Based on strategies to combine
stable with exact prediction, we introduce a classification of hybrid and adjusted
multivariate methods. Some considerations on mathematical tools and presentation are
added. An outline of the structure of this monograph is provided.

In chapær 2 onA Filter View on Multiset Models weillustrate that many Multivariate
Analysis (MVA) methods are build up with set variance and set correlation
constituents. Our first aim is to show a variety of construction methods and not an
exhaustive inventory of methods. Two new methods are proposed, based on potential
variance accountedfor and information span. The last three main sections show how
set variance and set conelation can be integrated with competitive subfunctions and
therefore illustrate the concept of hybrid methods.

In chapter 3 on Set Correlation with Set Vøriance Constraints we describe Set
Component Analysis from several points of view. (l) The method int€grates a set
correlation and a set variance part by maximizing the sum of squared set correlations
and adjusting the set variates with set variance constraints. (2) SCA is identical to
Multiset ccA with proportionality restrictions on the variable weights. (3) By
defining a free quadratic filter, SCA is related with the filter theory formulated in
chapær 2' We conclude this chapter by indicating relations with other methods and
presenting a simulation study of INDSCAL compared with SCA. The relation
between INDSCAL and SCA is established by proposing and fitting a new model, the
INDRES model.

In chapter 4 on Set Variance with Set Correlation Constraints or Reflected Variance
we introduce Reflected variance methods also from several points of view. (1) The
Reflected Variance methods integrate a set variance and a set correlation part by
maximizing the variance accounted for by set variates and adjusting the set variates
with set correlation constraints. (2) The Reflected Variance methods project variables
from one set on to another set, project these variables back and then compute principal
components of the reflected variables. (3) By defining reflecting filters, Reflecæd
variance methods are related with the filter theory formulated in chapter 2. The
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principle of reflected variables is elaborated by defining Reflected Component

Analysis (RCA) and Reflected Discriminant Analysis (RDA). It will be shown

theoretically how and under which conditions RDA can improve group prediction

compared to Discriminant Analysis (DA) and Principal Component - Discriminant

Analysis (PC-DA). In a simulation study theoretical results are confirmed. Some

multiset and nonlinear extensions are proposed.

In chapær 5 on Directed Conelations and Partial l¿ast Squøres a new multiplicative

hybrid method is formulaæd that maximizes the product of two complementary fit
functions, a local and a global MVA function. The local function gives a multiset

alærnative for maximizing variance accounted for. The global function maximizes

conelations as formulaæd in chapter 3. These adjusæd conelations are called directed

correlartons and are embedded in a multiset path analysis framework unhzngprimary

and secondary predictions. The product function that globally maximizes directed

correlations and locally increases set variance as much as possible is called Lifæd

Directed Correlations (LDC). LDC is able to describe many existing MVA methods,

hybrid and adjusæd methods. It gives one fit function for cyclic hybrid methods like

the basic and extended Partial Least Squares (PLS) method of path modelling,

Consensus PLS and PLS Hierarchical Components.

In chapær 6 on Algoríthtns we present two algorithms for non eigenvalue-eigenvector

problems, First a simultaneous and successive monotone convergent algorithm for

Set Component Analysis (chapter 3) is developed, where an interesting general

algorithmic subproblem is to maximize the variance of different matrices accounted

for by corresponding orthogonal laænt variables. Secondly we elaborate a monotone

convergent algorithm for Nonlinear Reflected Discriminant Analysis (chapær 4).

In chapter 7 on ExampleJ we present analyses of real-life data using three methods

developed in the preceding chapters. For a psychometric application of Set

Component Analysis (chapær 3) we compare the SCA solution of the Miller-Nicely

data lvith the corresponding INDSCAL solution. Reflecæd Discriminant Analysis

from chapter 4 is applied on mass specrometric barley tissue profiles and compared

with results for PC-DA. The barþ tissue profiles are also analysed with Nonlinear

Reflecæd Discriminant Analysis.

Finally we draw our conclusions in chapær 8.



Author Index

Anderson,23

Arabie, 49, 17L, 172,173,176

Bijleveld,3l

Bloxom,49

Bookstein, L20, I23, 126

Campbell,64

Carroll, 13,25,49, 58, 156,172,

177,194,195, 196

De Jong, 15

De [..eeuw, 31,39,54
DeSarbo,4

Fisher,7l, 183

Fornell,94

Fortier, 126

Friedman,93

Geladi, 9,126,134, 138

Gifi, 3, 15, 97, gg, 91, 116, 166,

194, 195

Gill, 160

Gittins,3,3I,72
Golub, 34,lI2
Green, 154

Hauser,30

Hoerl,2,34
Hoogerbrugge, 1,4
Horan,49

Horst, 97

Huber,93

Kiers, 13, 16, 17,50, 51

Kroonenberg,50

Kruskal, 116,167

L'Hermier des Plantes, 17

Lohmöller, 9, I0,94, lI7, 120, 126,

I3l, L32,133, l4g
Lorber,94, 138, t40, l4l
MacCallum,59

Manne, 10,144

Martens, 134

Maxwell, 7I,72,85
Meulman,4, 14

Miller,169

Nierop, 8, 9, 11, 39,63
Noonan, 133

Ramsay,89

Shepard, 169, I7l
Soli, 169, I7L,172
Stone,4,9, 10,95, 117, 138, 140, L4I
Tas, 181,183

Ten Berge, 17, I52, 153, 154

Torgerson, 172

Tucker, 60,126

Van de Geer, 11, 30, 88

Van den Wollenberg, 4,12,28
Van der Burg, 31

Van derLans,89, 195

Van der læeden, 28

Van Rijckevorsel, 89

Wilkinson, 112

Wold, H., 2,9,94, I\7, I93
Yendle,71,73

Young,59





Curriculum Vitae

Dré Nierop werd geboren op 29 maart 1954 te Læiden. Van 1966 tÐt lgT1bezocht hij
het Bonaventura college in L¡iden en voltooide daar zijn Gymnasium ß opleiding.
vervolgens ging hij biologie sruderen aan de Rijksuniversiæit æ læiden. In 1976
behaalde hij het Kandidaatsexamen en in 1981 het Doctoraal examen met hoofdvak
morfologie en bijvakken datatheorie (I.s.m. het Rijksmuseum van Natuurlijke
Historie te Leiden), milieukunde en onderwijskunde. van l9g0 tot l9g1 was hij
studentassistent voor halve dagen bij de Vakgroep Datatheorie, Fakulteit Sociale
Wetenschappen, Rijksuniversiteit tæiden. In 1983 was hij aangesteld als assistent
onderzoeker bij het Max Planck Instituut te Nijmegen. In het kader van een
taalpsychologisch onderzoek naar de relatie tussen denken en taalproduktie
analyseerde hij het gebruik van stopwoorden. van 1984 tot 19g6 was hij aangesæld

als onderzoeksmedewerker en toegevoegd onderzoeker op een ZWo (nu N\tro)
project bij de vakgroep onnvikkelingspsychologie, Fakulæit sociale wetenschappen,
Rijksuniversiteit Leiden. In het kader van een gedragsonderzoek analyseerde hij het
ontwikkelingsverloop in de interactie patronen bij verzorgers met pri}ilrelbare en niet-
prikkelbare babies. van 1985 tot 1987 was hij als onderzoeker betrokken bij een
project voor de ontwikkeling van Taalscreeningsinstrumenten voor Drie- tot
Zesjarigen bij de vakgroep ontwikkelingspsychologie, Rijksuniversiteit Leiden,
gesubsidieerd door het Praeventiefonds te 's-Gravenhage. Tijdens deze periode was
hij op een gelijksoortig project werkzaam voor het Nederlands Instituut voor het Dove
en Slechthorende Kind te Amsterdam. van 1986 ror l9g7 begeleidde hij als
onderzoeker voor het Nederlands Astmafonds te Leusden een project over het
ziekteverloop bij CARA patienten in samenwerking met het St. Antonius Ziekenhuis
te Nieuwegein, de DSWO en de vakgroep Datatheorie, Rijksuniversiteit læiden. van
1987 tot 1992 was hij als assisrenr in opleiding aangesreld bij de Vakgroep
Datatheorie, Fakulæit Sociale wetenschappen, Rijksuniversiteit L€iden . y anaf 1992
is hij door het Centrum voor Bio-Farmaceutische Weænschappen, Rijksuniversiteit
Iæiden aangesteld als onderzoeker op een innovatieproject patroonherkenning bij
TNo - Voeding, Afdeling structuuropheldering en Instrumenrele Analyse rETßisL





Errata

- The upper part ofpøge 35 mustbe

v6 - (r + vrÕr2Llp"'x. yc (2.34)

Afær insertion of Q"rÞ"lva for the MRR weights ts in (2.32) with va according ro
(2.34)we ¡qqðrmtæ

K -.-1MRRp=1: Et(x) = > x'P"(I + vaÕ¿') 'P6'x, (2.35)
æl

with x'x=l and u6 > 0 Vc.

After maxim:iZaÉqq of (2.35) the optimal MRR variates are

Hctc = Psyç = Pc(I + v"Õr2flPr'x. vc (2.36)

- Somc traces must be add¿d:

On page 27 informuln 2.25

Y 1'P1'P2P2'P yY 1 and V2'P2'P1P1'P 2Y 2 b e c ome

tr V1'P1'P2P2'P1Vl and tr V2'P2'P1P1'PzY z.

On page 55 in line 9

X'E¿E¿X and XM¿M¡X must be qX'E¡B,¡¡X and E X'M¿M¿X.

On page 65 inforrrula lucct
V1'P1'P2P2'P1Y 1 becomes tr V1'P1'PzPZ'P¡Y t and three lines down
V'P'UU'PV=X'PP'UU'PP'X must be tr V'P'UU'PV=!! X'pp'UU'pp'X.

- On page I 12 after fonnula (5.19) delete 'usually' and add 'Only'
The right-hand and left-harid eigenvectors of A are rrsüdly not orthogonal (Wilkinson,

1965).g!ryif A is symmetric we have U'U=I, ¿¡¡¿ U-l=g'.




