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Chapter 1

INTEGRATION OF DIVERGENT AIMS
IN MULTIDIMENSIONAL ANALYSIS

The predictive value of multiset multivariate methods is related to the optimal
integration of two criteria: stability and exaciness. Based on strategies 10 combine
stable with exact prediction, we introduce a classification of hybrid and adjusted
multivariate methods. Some considerations on mathematical tools and presentation are
added. An outline of the structure of this monograph is provided,

Introduction

Prediction is an important goal in multivariate analysis. We presume that the
researcher has optimized measurements in such a way that they are representative and
reliable for the samples to be studied. Within this scope we pursue the formulation of
prediction methods that are siable and at the same time exact. Therefore we have to
find some optimal integration of these two more or less divergent aims. In this
monograph an approach is preferred in which stable and exact predictions are
integrated in a theoretically simple way, because that is believed to offer possibilities
for arriving at better predictions. Theoresically simple implies that the integrated
methods must be characterized by the fact that they maximize (or minimize) one scalar
function. (Without loss of generality the aliernative of minimizing will subsequently
be omitied.) In addition, the contributions of the building blocks of the fit function
that define stability or exactness should not be balanced by user defined weights or
weights determined by cross-validation. Such weighted fit functions introduce too
many additional degrees of freedom to be called simple here.

Most existing methods, which will be classified as hybrid methods are not simple
integrated. Sequential and cyclic hybrid methods do not maximize one fit function.
Sequential hybrid methods maximize several fit functions successively, while
utilizing optimal parameters of previously fitted models. An example is Principal
Component-Discriminant Analysis (Hoogerbrugge, Willig and Kistemaker, 1983),
where the predictor variables are first decomposed into principal components, after
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which only a few dominant components are used in a discriminant analysis. Cyclic
hybrid methods maximize several fit functions cyclically, while utilizing optimal
parameters of previously fitied models, until a stationary phase is reached. An
example is "Soft Modelling" introduced and advocated by Herman Wold (1982). This
type of modelling is often called "Partial Least Squares” or "PLS", which refers to the
partitioning of parameters in estimable subsets. Apart from sequential and cyclic
methods, many additive and multiplicative hybrid methods maximize one fit function,
but incorporate (exponential) weights to balance stability and exactness of prediction.
These weights are user defined or optimized by cross-validation. An example of an
additive hybrid method with a balancing weight is Ridge Regression (Hoerl &
Kennard, 1970).

In this monograph we pursue the construction of simple integrated methods. We
apply two guide-lines to achieve our goal. The first guide-line is to specialize stability
and exactness as much as possible in independent subfunctions, for example local
versus global functions. A local function is non zero only at a limited range of its
argument, while a global function maybe non zero everywhere. The second guide-
line is to incorporate special constrains for improving stability or exactness. Methods
with such constraints we call adjusted methods.

The working field of our simple integrated approach is the area of multiset analysis.
In multiset analysis we consider information from different sources collected in two
or more sets, where each set contains one or more variables. Sometimes the
information is available as a number of matrices with similarities or dissimilarities.
Apart from the construction of simple integrated methods, we aim at the description
of multiset methods in a comprehensive system, using new theoretical concepts such
as filters, reflected variable, directed correlation and secondary prediction.

In section 1.1 we relate stability and exaciness of prediction with corresponding
multivariate criteria, which are respectively set variance and set correlation. In the
context of optimizing stability and exactness of prediction we provide in section 1.2
more examples of hybrid methods and elaborate on the difference with adjusted
methods. In section 1.3 we introduce matrix algebra as a multidimensional tool for
condensing large amounts of information. In section 1.4 we make some comments on
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the relation between models and scalar fit functions and section 1.5 offers an
overview of the whole monograph.

1.1 Set variance and set correlation

In the multiset context we define multivariate prediction always between latent
variables corresponding to different sets of observed variables. Generally each latent
variable will be a linear combination of observed variables, so that they are not latent
in the sense that we cannot actually compute them, as is the case in certain branches
of factor analysis and LISREL modelling. The term latent only refers to the fact that
these variables are not directly observed. This definition of multivariate prediction is
without loss of generality, because prediction of one observed variable can be
achieved by defining a set of variables with only one variable. If a latent variable is
the weighted sum of one set of variables, we denote the latent variable by set variate.
The stability of a predictive set variate is expected to be highest if the predictive set
variate is as representative as possible for the corresponding set of observed predictor
variables. A classical siatistical measure for describing the dominant variation within a
set of variables is se variance. Set variance in this predictive context refers (o the total
variance of all predictor variables accounted for by the predictive set variate. Set
variance is the name used in this monograph for the "optimal weighting" criterion of
Principal Component Analysis (Gifi, 1990, chapter 3).

The exactness of prediction of a criterion set variate by a predictive set variate can be
quantified by the squared correlation. We refer to correlations between set variates of
different sets of observed variables as ser correlations. If the set correlation is 1 or -1
an exact prediction is possible. If the set correlation is 0, prediction is not possible.
Examples of set correlation criteria are Canonical Correlation Analysis (CCA) and
(Canonical) Discriminant Analysis (DA) (also called canonical variate analysis,
Gittins, 1985).

In the context of this monograph set variance describes variation within sets of
variables and set correlation describes relations berween sets of variables, Stability of
set variates and exactness of multivariate prediction can now be optimized by
combining set variance and set correlation criteria in one analysis,
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1.2 Hybrid and adjusted methods

We discern two main strategies for integrating the criteria of set variance and set
correlation. One strategy leads to hybrid methods and the other to adjusted methods.
In the next two sections we provide more examples of hybrid methods and elaborate
on the difference with adjusted methods. Section 1.2.3 shows how specialization in
hybrid methods changes the competitive parts in more complementary parts.

1.2.1 Hybrid methods use competitive subfunctions

Hybrid methods merge set variance and set correlation by joining their corresponding
fit functions in an additive, multiplicative, sequential or cyclic way. In principle all
participating fit functions are incorporated in an equivalent way. We give some more

examples.

A not very obvious example of an additive hybrid method is Redundancy Analysis
(RA) of Van den Wollenberg (1977). As will be shown in chapter 2, this method
uses a set variance measure for the criterion set and a set correlation measure for the
predictor set. The metric of sets gives an indication of the hybrid nature of RA (cf.
Meulman, 1986). In terms of the metric of sets we analyze the criterion set in the
Fuclidean meiric and the predictor set in the Mahalanobis metric. DeSarbo (1981)
formulates a weighted additive hybrid model on top of this by adding up RA and
CCA with weights specified by the user. Continuum Regression proposed by Stone
& Brooks (1990) is an example of a exponentially weighted multiplicative hybrid
model. As will be shown in chapter 5, a set correlation fit function is multiplied with
an exponentially weighted set variance fit function. Many sequential hybrid models
are formulated in two-step procedures by applying a set variance function in the first
step followed by a set correlation function in the second step. For instance, the
Principal Components regression method extracts some suitable number of
dimensions in the first step and applies regression in a second step. Hoogerbrugge,
Willig and Kistemaker (1983) describe such a procedure for Discriminant Analysis,
which is commonly used in chemomeirics.
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In hybrid methods all participating fit functions are incorporated in an equivalent way.
In this sense the contributing parts have to do the same job: optimizing a subfunction.
We conceive hybrid methods therefore as competitive methods.

1.2.2  Adjusted methods for a complementary approach

Adjusted methods combine set variance and set correlation criteria in such a way that
one main criterion is modified by constraints corresponding to other, secondary
criteria for improving stability or exactness. The adjustments can be, for example,
partialling out, improving or reflecting. Each adjustment will be carried out by
enforcing some kind of constraint, named after the effect of the adjustment. The
partialling out constraint implies forcing a secondary function to be equal to zero. It
nullifies all relations with external information that is known to be irrelevant. The
improving constraint locally improves a secondary adjusting function. The reflecting
constraint filters out irrelevant information as much as possible by using known
relevani external information as a mirror. Space restrictions, which force latent
variables to be in the space of some designated set of variables, can always be
simulated by extreme weighting in multiset hybrid models. Therefore these space
resirictions are not incorporated in the list of constraints for adjusted methods.

In adjusted methods we do not want different subfunctions to do the same jobina
competitive way, but to do different jobs in a complementary way. We achieve this
goal by maximizing one fit function modified by constraints of other secondary
models. Set variance and set correlation are simple integrated in adjusted methods. In
chapter 3 on Set Correlation with Set Variance Constraints, the emphasis is primarily
on maximizing squared correlations between set variates, and secondarily on locally
improving the variance accounted for by the set variates by some fixed improvement
step. So the main fit function is the sum of squared set correlations, and the
secondary set variance constraint enables a local improvement on the variance
accounted for. In chapter 4 on Set Variance with Set Correlation Constraints the
emphasis is primarily on maximizing the variance accounted for by predictive set
variates, and secondly on using the correlations with external set variates for
modifying the importance of the predictive set variates. As an example consider these
extremes: If the correlation is 1 or ~1, the importance of the predictive set variates
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remains unchanged; if the correlation is 0 the importance is 0. In fact, we maximize
the 'relevant variance accounted for' by filtering out irrelevant information as much as
possible. The main fit function is to maximize variance accounted for and the
secondary set correlation consiraint is o assess the relevance of the information. For
this purpose we formulate reflecting filters, which project variables on to a reference
set and then reflect these variables back to their own set.

1.2.3 Specialization in hybrid methods

Competitive hybrid methods can approximate the complementary property of adjusted
methods by an appropriate modification of the fit functions involved. In chapter 5 on
Directed Correlations and Partial Least Squares we formulate a multiplicative hybrid
method with a global and a local fit function. The global fit function is maximized
over all sets, and the optimal set variaic of all other sets can change if one of the
optimal set variates is changed. The local fit function gives in principle an optimum
for each set variate separately; the optimal set variates remain invariant under changes
of other sets. By this approach the maximization of the local fit function is focused
within sets and occupies a different niche from the global function, which maximizes
the relations between sets. Another example of specialization is to model the
projections of set variates in regions with moderate and high eigenvalues different
from projections in spurious regions with low eigenvalues.

1.3 Multidimensional geometry by matrix algebra

To integrate concise descriptions of within set structure with concise descriptions of
relations between sets we need some device for making concise descriptions. We
have chosen to make these descriptions with mairix algebra, which offers an
extension of the basic Euclidean geometry of two and three dimensions to n
dimensions. Although it is possible to work with matrix algebra without drawing any
geometric pictures, we like 1o keep in touch with basic Euclidean geometry. The
visual illustration and explanation of matrix theory can provide valuable ‘insights' and
therefore several drawings of variable structures have been added. Variables or
patierns can be geometrically represented by points or vectors (arrows) in a
multidimensional space. We emphasize that each point or vector in this space stands
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for a whole variable or pattern. An appropriate low-dimensional representation of
these points (for example in a plane) can reveal the structure of a set and/or the
relations between sets. It is also possible to infer predictions from one set to another.

1.4 Models and fit functions

Throughout this monograph we will very often describe a model or multivariate
technique by just giving the least squares function to fit the model. We opted for this
approach with the following considerations.

- In most loss functions the model is fitted by minimizing the residual error and
therefore the model can easily be derived from this function. If we do not confine
ourselves to least squares functions, it is possible for many functions to derive a
model and fit this model in another way. This viewpoint, however, will not be
elaborated.

- For well-known techniques like Principal Component Analysis or Multiset
Canonical Correlation Analysis it is possible to give two or maybe more models for
the same least squares fir function. For such dual techniques a fit function gives a
more precise description of its properties than just one model. A simple example of
this phenomenon is given by the correlation between two variables. If we take two
unit normalized variables, a fixed variable b and some space restricted latent
variable x both having zero mean, then the fit function for the (Pearson) correlation
is h'x. Maximizing h'x gives the same result for x as minimizing the loss
functions llh - xbl1% or llx - hall® with scalar weights b and a. The corresponding
models derived from these loss functions are respectively h=xb-ep, and x=ha-+e.
This makes our slight preference for fit functions plausible.

{.4.1 Noiation

Without loss of generality all variables are assumed to be centred and to have unit
sum of squares. For variable h this implies that h'1=0 and h'h=1, where 1 is a
vector with elements 1. With this convenient normalization the (Pearson) correlation
between two variables is denoted by the inner product, as we did in the previcus
section with h'x for the correlation between I and x. Geometrically the correlation
h'x gives the cosine of the angle between vector h and x.
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The optimal solution in p dimensions of several models is indeterminate, due to
rotational freedom. Most fit functions of the methods involved can be maximized by
an eigenvalue decomposition. Exceptions are Set Component Analysis and Nonlinear
Reflected Discriminant Analysis, for which an iterative algorithm is described in
chapter 6, and most of the PLS methods of chapter 5. We always implicitly assume
that the optimal solution in p dimensions is defined by taking the first p eigenvectors
with the eigenvalues arranged in descending order. By this choice, all solutions for
different numbers of dimensions are nested.

1.5 Qutline

In chapter 2 on Multiset Models we describe well-known multivariate methods by
defining filters that transform the eigenvalues. The basic method for this filter
approach is Multiset Filtered Component Analysis (MFCA). In chapter 2 and 3 the
filters are simple functions of the eigenvalues. In chapter 4 transition matrices are
incorporated in the filters, that modify the eigenvalues through projections. A
preliminary version of the theory in chapter 2 is presented in Nierop, 1989. The
structure of chapter 2 is guided by the construction of MV A methods with set
variance and set correlation constituents. In a section about one type of filter we
discuss methods like Multiset Principal Component Analysis (MPCA), which apply
only set variance filters, and methods like Multiset Canonical Correlation Analysis
(MCCA), which apply only set correlation filters. Two new MPCA methods are
formulated for balancing the set variance beiween sets, based on porential variance
accounted for and information span. In consecutive sections set variance and set
correlation are integrated in hybrid methods. These methods are hybrid and not
adjusted, because the integration is not with special constraints for improving stability
or exaciness. In a section about different types of filters we start with straightforward
additive hybrid methods without weights. Some sequential hybrid methods are
discussed in a section about discrete compound filters. Finally some weighted
additive hybrid methods are described in the last section about consinuous compound
filters. All compound filters apply the specialization of hybrid methods mentioned at
the end of section 1.2.3. Spurious regions with low eigenvalues are dominated by set
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variance modelling and regions with higher eigenvalues are dominated by set
correlation modelling.

In chapter 3 on Set Correlation with Set Variance Constraints we formulate the
adjusted method of Set Component Analysis (Nierop, 1989, 1993). The method is
related with the hybrid methods of chapter 2 by describing quadratic filters. Various
relations with other methods are discussed. For instance we show that maximizing
the SCA fit function gives the same resulis as fitting the INDSCAL model and
simultaneously penalizing non-orthogonality between the INDSCAL dimensions and
the residuals. The properties of INDSCAL and SCA are compared in a simulation
study.

In chapter 4 on Set Variance with Set Correlation Constraints or Reflected Variance
the principle of reflecting variance (Nierop, 1991) is elaborated by defining Reflected
Component Analysis (RCA) and Reflected Discriminant Analysis (RDA). It will be
shown theoretically how and under which conditions RDA can improve group
prediction compared to Discriminant Analysis (DA) and Principal Component -
Discriminant Analysis (PC-DA). In a simulation study theoretical results are
confirmed. Some multiset and nonlinear extensions are proposed.

In chapter 5 on Directed Correlations and Partial Least Squares a new multiplicative
hybrid method is formulated that maximizes the product of two complementary fit
functions, a local and a global MVA function. The local function gives a muliiset
alternative for maximizing variance accounted for. The global function maximizes the
sum of squared correlaiions as formulated in chapier 3. These adjusted correlations
are called directed correlations and are embedded in a multiset path analysis
framework utilizing primary and secondary predictions. The product function that
globally maximizes directed correlations and locally increases set variance as much as
possible is called Lifted Directed Correlations (LDC). LDC is able to describe many
existing MVA methods, hybrid and adjusted methods. It also reformulates some
cyclic hybrid methods as multiplicative hybrid methods. Examples of these cyclic
methods are basic Partial Least Squares (Wold, 1982), extended Partial Least Squares
(Lohmoller, 1989), Consensus PLS (Geladi, Martens, Martens, Kalvenes &
Esbensen, 1988), PLS1 regression (Stone & Brooks, 1990) and PLS Hierarchical
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Components (Lohmoller, 1989). Hitherto the PLS system was basically defined by
fitting several models cyclically. An overall maximization criterion was lacking.
Therefore it was classified as 'soft modelling'. With the LDC fit function the
appropriate maximization criterion is added to most of the PLS algorithms and
therefore PLS is turned into 'hard modelling'. Furthermore PLS variants with
theoretically better predictions can now be formulated, like in section 5.4.8 for the
asymmetric PLS2 regression method (Manne, 1987). Continuum regression (Sione
& Brooks, 1990) is reformulated as a weighted multplicative hybrid method. At the
end of chapter 5 adjusted methods like SCA of chapter 3 and reflected variance
methods of chapier 4 are formulated as special cases of directed correlations theory.

In chapter 6 we present two algorithms for non eigenvalue-eigenvector problems.
First a simultaneous and successive monotone convergent algorithm for Set
Component Analysis (chapter 3) is developed, where an interesting general
algorithmic subproblem is to maximize the set variance of different matrices by
corresponding orthogonal latent variables. Secondly we elaborate a monotone
convergent algorithm for Nonlinear Reflected Discriminant Analysis (chapter 4).

In chapter 7 we present analyses of real-life data using three methods developed in the
preceding chapters. For a psychometric application of Set Component Analysis
(chapter 3) we compare the SCA solution of the Miller-Nicely data with the
corresponding INDSCAL solution. Reflected Discriminant Analysis from chapter 4 is
applied on mass spectrometric barley tissue profiles and compared with results for
PC-DA. The barley tissue profiles are also analysed with Nonlinear Reflected
Discriminant Analysis.

Finally we have concluding remarks in chapter 8. Some methods and extensions in
the line of this monograph are indicated that might give useful analytic tools in the
future.



Chapter 2

A FILTER VIEW
ON MULTISET MODELS

Many Multivariate Analysis (MVA) methods are build up with set variance and set
correlation constituents. Our first aim is to show a variety of construction methods and
not an exhaustive inventory of methods. Two new meihods are proposed, based on
potential variance accounied for and information span. The last three main sections
show how set variance and set correlation can be integrated with competitive
subfunctions and therefore illustrate the concept of hybrid methods.

Introduction

We describe well-known multiset multivariate methods in a comprehensive system by
filtering the eigenvalues of sets of variables (Nierop, 1989). The approach is inspired
by Van de Geer (1986). All filters in this chapter apply simple functions to the
eigenvalues of the original data. In section 2.1 the basic method for filtering
eigenvalues is described as Multiset Filiered Component Analysis (MFCA). We
illustrate in the MFCA framework how space restrictions, which force latent variables
to be in the space of some designated set of variables, can be used for specific
prediction purposes. The global structure of this chapter is guided by the construction
of MV A methods with set variance and set correlation constituents. Local attention is
given to the balancing of set variance between sets.

In section 2.2 we discuss methods that define only one type of filter for all sets. In
section 2.2.1 we introduce Multiset Principal Component Analysis (MPCA), which
applies only set variance filters. Two new MPCA methods are formulated for
balancing the set variance between sets, based on porential variance accounted Jor
(section 2.2.4) and information span (section 2.2.5). A completely new approach of
balancing sets is offered in chapter 5 and denoted by multiset reciprocal PCA. RPCA
differs so much from the system of methods presented in this chapter that a separate
treatment is justified. The last 'one type of filter' method we describe is Multiset
Canonical Correlation Analysis (MCCA), defined only by ser correlation filters. We
show how to apply space restrictions in MCCA in order to obtain ordinary 2 seis
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CCA. In the consecuiive sections 2.3 to 2.5 set variance and set correlation are
integrated in hybrid methods. These methods are hybrid and not adjusted, because the
integration is without special constraints for improving stability or exactness. In
section 2.3 we give some examples of straightforward additive hybrid methods that
define a different iype of filter for different sets. Redundancy Analysis (Van den
Wollenberg, 1977) and multiset generalizations of RA are formulated by specifying
different types of filters in MFCA. Sequential hybrid methods very ofien are two-step
methods. The two-step methods are discussed in section 2.4 about discrete compound
Silters. In the last section about continuous compound filters we give weighted hybrid
methods like Multiset Ridge Regression (MRR) and Fixed Set Component Analysis
(FSCA) that approximate the complementary approach of adjusted methods
mentioned in chapter 1 the most. All compound filters apply the specialization of
hybrid methods mentioned at the end of section 1.2.3. Spurious regions with low
eigenvalues are dominated by set variance modelling and regions with higher
eigenvalues are dominated by set correlation modelling.

2.1 Multiset Filtered Component Analysis (MFCA)

We present Multiset Filtered Component Analysis as a tool box for constructing many
MVA methods. The MFCA method is additive with respect to the contribution of the
seis. Basic components are filters for each set which model the eigenvalue structure of
these seis. In this chapter the filters only consist of simple functions applied to the
cigenvalues.

Suppose the data to be analyzed are collected in the matrix H, partitioned into K sets:
H= (Hjy,...Hy,...Hg) with n rows (objects) and my, columns (variables) for set Hy.
We assume without loss of generality that the variables are cenired and have unit sum
of squares, so the columns have sum of squares equal to 1. These assumptions imply
that Hy'Hy, is a correlation mairix between the variables of set k. The Singular Value
Decomposition (SVD) for set k is given by Hy = Pr®rQr', where Py (r x py) and
Qu (my, % py) denote orthonormal singular vector matrices and @y, denotes a diagonal
matrix with px non-zero singular values in descending order (prSmy). So HpHy'=
Pk(I)%Pk' and the eigenvectors Py and the eigenvalues d)% of the symmetric matrix
HeH)' are equal to respectively the singular vectors Py and the squared non-zero
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singular values @y of Hy. For the analysis of HyHy' we only need Py, and @%, but
not Q. The eigenvectors Py can be interpreted as independent basic information
paiterns derived from the variables and the eigenvalues (i)% as information weights
assigned to these information patterns.

The additive fit function of Multiset Filtered Component Analysis is a function of
common latent variables X. It maximizes

K
MFCA: Fit(X) = 3 tr XPrQu@HPy'X, 2.1
k=1

with X'X=J, where Py is given by the SVD for set k, Hy = Pr®rQr', and where
Qk(@k) denotes a matrix with the filtered eigenvalues of set k. The filter Q maps the
values of some matrix A in a formal way into matrix §2(A). The filter is indexed with
k, so every set has its own filter .

We now derive particular methods by specifying the filters. We give some simple
examples and start with Multiset Principal Component Analysis (MPCA). The method
will be discussed in section 2.2.1 and is defined by a set variance filter

MPCA: Qp(®}) = dFwrl. 2.2)

As will be shown later on in section 2.2.1, substitution of this filter in (2.1) results in
(2.7). The loss function corresponding to (2.7) is called SUMPC A* by Kiers (1989,
p.15). All different types of MPCA formulated in section 2.2.1 will be described by
substituting different scalars wy in (2.2). The names of the corresponding ﬁlters are:
ideniity filter for we=1, trace filter for wy== tr@k, first eigenvalue filter for Wk"lﬁlk and
maxVAF filter for wy=3,p (bsk.

For Multiset Canonical Correlation Analysis (Carroll, 1968) to be discussed in section
2.2.6, we have a set correlation filter

MCCA: QU®Y) =1, (2.3)

where I is an identity matrix of appropriate size. Substitution of this constans filter in
(2.1) results later in formula (2.22) of section 2.2.6 about MCCA. By applying the
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constant filter we replace the Pythagorean distances between the rows of a certain set
by the Mahalanobis distances (Meulman, 1986).

For the description of Canonical Correlation Analysis (CCA) we have to add
subspace restrictions for predictor set ¢ to (2.3)

CCA: Qk(d)%) =L, with X =P P.X. for K=2 (24)

The canonical variates of set ¢ are given by the optimal X for ¢ =1 and ¢ =2. This is
explained in section 2.2.8.

Many other methods can be described with MECA by specifying filters, whether or
not in combination with subspace restrictions. In the next section we will first
elaborate more extensively on the subject of subspace restrictions.

2.1.1 Subspace restrictions for prediction

In general, subspace restrictions introduce an asymmmetry in the analysis concerning
the location of the common latent variables in one particular set. The motivation for
this asymmetry can be prediction; for instance, the prediction of one or more sets of
criterion variables by a linear combination of predictor variables. The common latent
variables of MFCA can only be expressed as a linear combination of predictor
variables, if the space spanned by the predictor set also includes the common latent
variables. For predictor set ¢ this is achieved by requiring X == P.P'X. The X are
sometimes labeled with ¢ in order to discriminate between the optimal solutions X(¢)
that we obtain after imposing subspace restrictions on different sets ¢. We use the
notation 'c' especially for subspace restrictions in order to avoid confusion with 'k’ in
subsequent sections, We give two examples of applying subspace restrictions for
prediction purposes.

The introduction of prediction in MCCA (2.3) is formulated as
CMOCA: O(®F) = I, with X =P P, 2.5)

where the upper left superscript ¢ of CMCCA indicates that we are dealing with a
subspace restriction on set ¢ in MCCA. By maximizing this fit funciion we find
common latent variables that are a linear combination of set ¢ and have the highest



A Filter View on Multiser Models 15

sum of squared canonical correlations with all other sets. In this case set ¢ is a
predictor set in a 'set variate' sense, because it maximizes the relations with the set
variates and not with the set variables in terms of variance accounted for. The
maximization of CMCCA for K =2 and ¢ = 1 or 2 gives the CCA solution, with the
canonical variates of set ¢ equal to X (). The two maximization problems lead in
principle to the same eigenvalue problem (section 2.2.8). If we know the prediction
for one set, we can easily derive from this solution the prediction for the other set.
For more than two sets we cannot reduce the K maximization problems for ¢ =
L,....K to one single eigenvalue problem. Each prediction problem has to be solved
by itself, unless some of the P, matrices occupy exactly the same space. In Gifi
(1990) a related version of CMCCA is used for multivariate analysis of variance.

In an analogous way we introduce prediction of set variables in MPCA (2.2) by
CMPCA: Qu@P) = Dfwi, with X = PP.'X, (2.6)

with a subspace restriction on predictor set ¢ in MPCA. By maximizing this fit
function for wy=1 Vk we find common latent variables that are a linear combination
of set ¢ and have the largest variance accounted for of all sets. For wy = (tr@%) Vik
we maximize the mean proportion of variance of all sets accounted for by the
predicior set. For two sets (2.6) is equal to Principal Covariates Regression as
proposed by De Jong & Kiers (1992) with o=wj and (1-00)=wy.

It is important to notice that subspace restrictions in an additive multiset method like
MFCA are also possible by introducing a very large weight w, in filter O of
predictor set ¢. In this way (2.6) can for instance be simulated with (2.2). Therefore
subspace restrictions add no essential new feature to the MFCA method. Nevertheless
they are convenient and in next sections we will find other examples of applying
subspace restrictions for prediction purposes.

2.2 One type of filter

In the following subsections we give examples of methods that define only one type
of filter for all sets, only set variance or only set correlation filiers. First we present
straightforward generalizations of Principal Component Analysis (PCA) for multiple
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sets (MPCA) by applying set variance filters and discuss in section 2.2.2 the upper
bounds for the variance accounted for under several conditions. These upper bounds
lead to the definition of potential variance accounted for and a corresponding
balancing of sets in section 2.2.4. In section 2.2.5 the information span is proposed
as a measure for assessing the efficiency of information transfer and the sets are
balanced with regard to this information span. Next Multiset Canonical Correlation
Analysis (MCCA) and ordinary 2 sets Canonical Correlation Analysis are defined
briefly. These methods apply set correlation filters. The relation of CCA with MCCA
and MFCA is established in section 2.2.8.

2.2.1 Muldiset Principal Component Analysis (MPCA)

A generalization of PCA for multiple sets is described by maximizing the following
function

MPCA: Fit() =t 3 wi XHHpX =tr 3 XPu@iw; )PLX
k==l k=1

=tr X'HD H'X = tr X Ppar(®FarDy)Ppart'X, QN

where  pXp = (%1,...,Xg...,%p) denote the common latent variables with X'X=I,

WiseeoysWhyeot s WE denote fixed balancing constants for set k,
wil 0 0
Dy = 0 wil 0 ;with I of
0 0 wgl appropriate size,

Ppari=(P1,...Pk,.... P k), where we use the notation 'pay’ to indicate a partitioned matrix,

@y 0 0
Dpagt = 0 by 0
0 ] L0}

The loss function corresponding to (2.7) is called SUMPCA* by Kiers (1989, p.15).
We point out that E’pm@ngpaﬁ' does not give the eigenvalue decomposition of
matrix HH', because Ppgy=(P1,...,Pg) is usnally not an orthonormal matrix. Only
the Py, are orthonormal for each set £ separately. As we saw in section 2.1 formula
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(2.2) substitution of this MPCA filter in (2.1) resulis in (2.7). The last past of both
lines in equation (2.7) is derived from the Singular Value Decomposition (SVD) of
each Hy, with Hy, = Pp®;Qy'. This part of (2.7) is added to get used to the idea that
the balancing of sets can also be described by a rescaling of the eigenvalues of these
sets. It shows that instead of maximizing the variance accounied for by X of the
partitioned matrix

B, = i i A Hgw ),

we can equivalenty maximize the variance accounted for of the pariitioned matrix
Pran®@parly * = (P10 1wi 2, i 2, Pragwit?).

As mentioned before the loss function corresponding to (2.7) is called SUMPCA* by
Kiers (1989, p.15). The application of balancing constants can for instance be found
in the sequential hybrid STATIS method developed by L'Hermier des Planies (1976)
(See also Kiers, 1989, p. 10). Because we are maximizing balanced variance
accounted for, we can relate the balancing constants wy, with the variance accounted
for. In the next sections we will first derive for each set separaiely the upper bounds
of the variance accounted for, then we describe some examples of balancing in MPCA
by defining several MPCA filters. All MPCA filters are conceived as ses varignce
filters.

2.2.2  Potential variance accounted for

Our rationale for the balancing of sets in MPCA is to control the maximum influence
of the sets on the solution with respect to their set variance. The influence of set k is
measured by the Variance Accounted For (VAF) by p common latent variables X. In
matrix formulation this VAF is equal to

VAF(X) = ir XHPHE'X = tr XPy0iPyX. (2.8)

Azt upper bound for (2.8) can be derived by Theorem 2 of Ten Berge (1983). This
theorem can be applied, because matrix X'Py, is a suborthonormal matrix with rank <
pand @% is a fixed diagonal matrix. A mairix is suborthonormal if it is a submatrix of
an orthonormal matrix. For X'Py, this orthonormal matrix can be constructed by
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adding to the columns of ¥ and Pp their (semi-)orthonormal complement and
multiplying the two (n x n) orthonormal matrices in an appropriate way. The
inequality resulting from Theorem 2 is in our case

p
ir XPOIPLX < 5 ¢ (2.9)
s=1

with the eigenvalues ¢%k arranged in descending order. The upper bound for set k of
the VAF in p dimensions is now given by the sum of the first p eigenvalues

p
maxVAF(p.k) = § ¢4, 2.10)
s=1

with the eigenvalues ¢%k arranged in descending order. We will refer to the value of
maxVAF(p,k) as the potential variance accounted for (potential VAF). It gives the
highest possible variance accounted for that can be found for set k in a p dimensional
solution. We now derive upper and lower bounds of maxVAF(p,k). The upper bound
is reached, if Hy is of deficient rank in the sense that the my-p smallest eigenvalues
are all egual to zero and maxVAF(p,k):tr(i)%mmk, The lower bound is reached if Hj
is orthonormal and therefore all eigenvalues are equal to 1. Under this condition the
my-p smallest eigenvalues are as large as possible, and maxVAF(p,k)=p.
Summarizing the results for set k with unit normalized variables the potential VAF
varies between

p S maxVAF(p,k) < my. 2.1D)

2.2.3 Different ways for defining balance among sets

We formulate some straightforward types of MPCA by fixing the balancing constants
wy in a simple way. In the next section we elaborate on the relation between balancing
sets and variance accounied for. The first type of analysis is MPCAi with wy=1 VL.
So the rescaled eigenvalues are identical to the original eigenvalues. After substitution
of wg=1 Vkin (2.7) we have to maximize

MPCAi: Fit(X) = or X'HH'X = tr X'Ppaﬁd)gaﬂ?part'xy (2.12)
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with X'X=I and notation according to (2.7). The type of set balancing presented
above amounts to maximizing the variance accounted for by X of the partitioned
matrix Ppan®par. The way the variables are grouped in sets has no influence on the
solution, because Ppaﬂ@%aﬂppm'zﬁﬂ'.

The second type of analysis in this section we call MPCAt with wy = (trti)%) Vk. In
this case the balancing constant is the frace of HyHy', which is equal to the sum of
the eigenvalues CI)% and equal to the sum of squares of Hy. With unit normalized
variables we have tr@% = my. In the format of (2.2) we maximize (2.1) with filter

MPCAL: Q@) = BF / 1D (2.13)

For MPCAt this amounts to maximizing the variance accounted for by X of the
partitioned matrices Ppu®paye (or H) after the sum of squares of each set is
normalized to 1. Geometrically this normalization is achieved by rescaling all
sumvectors Pr®x1 to sum of squares 1. Verifying this statement we have
]a’(i)kPk'Pk(i}kl:E'&i)% lztr(i)%, Vk. In figure 2.1 we show the implications of trace
balancing for set @ and b with each 16 variables.

A seta
Figure 2.1 Trace balancing in MPCAt.

The eigenvalues of set a are all chosen equal to 1 and the first two eigenvalues of b are
equal to 9 and 4. From the orthogonal rescaled matrix Patba(trfbg‘ )_1/:Z we have drawn
the two largest columnvectors denoted here by (mg,ng) in figure 2.1.A. The largest
columnvectors (mp,np) from Pbﬂbb(trtblz,)”i/z are drawn in figure 2.1.B. The contour
of the shaded ellipses can be used to construct for any vectors X the variance
accounted for. This will be elaborated in chapter 5 (see figure 5.1). The radius of the
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thick quarter-circles is equal to the length of the rescaled sumvectors Paii)ai(trtbg)"y 2
and E’bd)bl(trd)g%)"m. All samvectors rescaled by trace balancing lie on a hypersphere
with radius 1. The potential VAF for p=2 is .13 for set a and .81 for set b. Generally
we state that the trace balancing allows for great relative differences in poiential VAF,
especially when the number of dimensions p is small. Of course the MPCAt solutions
will generally be dominated by sets with large potential VAF. We choose MPCA¢ if
we want the mean proportion of variance accounted for by X as large as possible.

The third type of analysis is MPCAf with wy = qbzik k. The balancing constant in
(2.7) is now the first eigenvalue q}%k of HyHy', with the eigenvalues arranged in
descending order. We maximize (2.1) with filter

MPCAF: Qi@ = BF / ¢y, (2.14)

In figure 2.2 we show the implications of the first eigenvalue balancing by rescaling
set a and b appropriately.

ng

7

222

MW g)

A seta B set b
Figure 2.2 First eigenvalue balancing in MPCAY.

Figure 2.2 has the same design as figure 2.1 only the scaling is changed. The radius
of the thick quarter-circles is equal to the length of the largest columnvectors my, and
myp of respectively Pad)aq)fg and Pbibb(p'{%. The potential VAF for p=2 is 2.00 for set
a and 1.44 for set b. Generally we state that the first eigenvalue balancing allows for
small relative differences in potential VAF, especially when the number of dimensions
is very small. The relative differences between sets in potential VAF can increase
quickly, if the number of dimensions p increases.
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2.2.4 Balancing of sets related to variance accounted for

In the previous section we defined several types of set balancing. For the identical
balancing in MPCAI with wg=1 Vk, the potential VAF of set k is between p and my,
dependent on the structure of the rescaled variables ka-[;l/z as derived in (2.11). For
MPCAL this range is between p/my, and 1. We can find considerable differences in
potential VAF between sets, if the number of variables of sets is large compared to the
number of dimensions. From the potential variance point of view the appropriate
balancing for set k in (2.7) would be to take wi = maxVAF(p.k) Vk, as formulated in
(2.10), in order to obtain an equally balanced maximum influence of the sets on the
solution with respect to their set variance. The maxVAF balancing gives another type
of MPCA. We maximize (2.1) with filier

14
MPCAm: Q@Y = BF/ z o (2.15)
S

with p equal to the number of columns of X. In figure 2.3 with the same design as
for figure 2.1 we illustrate the maxVAF balancing by rescaling set a and b for p=2
dimensions (2.15).

A seta B setb
Figure 2.3 MaxVAF balancing in MPCAm.

The radius of the thick quarter-circles is equal to the length of the rescaled sumvectors
Pa®a1(¢1za+¢%a)_”2 and PpPpl (¢12b+¢%1,)NU 2 We have drawn the largest
columnvectors (mg,n,) and (mp,np) from respectively Paii)a(q‘)jza»{»mza)"“z and
Py®y(¢Tp+03) 7 in figure 2.3.A and 2.3.B. The potential VAF for p=2 is 100 for
set a and 1.00 for set b as could be expected.
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The balancing of both MPCA (2.13) and MPCAf (2.14) appears to be special cases
of MPCAm balancing. It only depends on the number of dimensions we want to
compute. For p equal to the maximum number of dimensions we find the equality
MPCAm = MPCAt and for p = 1 the equality MPCAm = MPCAS. The solutions of
MPCAm are not nested. (Solutions are nested if successive computation of p
dimensions always gives the same results as simultaneous computation of p
dimensions for all possible p.) This property can be seen as a drawback compared to
MPCAt and MPCACL. If one definitely wants to choose only between frace balancing
or first eigenvalue balancing, the number of dimensions of the solution compared to
the maximuim number of variables in a set has o be decisive.

An even more strict equality concept can be formulated by requiring an equal balance
of the influence of sets on each dimension with respect to set variance. In the case of
successive one dimensional solutions the MPCAm fit function can be adapted to this
concept by using deflation. After each successive step the original matrices Fy, are
replaced by their antiprojections on the previous dimensions of x;. The resulting X
will be orthogonal. In fact we apply first eigenvalue balancing, because in each step
there is only one dimension to find the maximum of

. p K , '
dMPCAT: Fi(X) = }:’1/{21 Xg P(k)s((b(zk)s /(P%(k)s)P(k)s g, (2.16)
S=iK=

where deflation enters this fit function by defining
HysH)s = Prys@fsP s = HeHy' = Profpy fors=1 Vk
HgsHes = Prgs®fsPius' = (I=x5.1%5.1 k)5 1H (k)51 B-%5.1%5.1")

e (I“Xs«lxs»l')P(k)s-ld)(%c)&1P(k)s»l'(ﬁ““xsmlxs«1')~ fors=2,...p Vk

In each successive dimension the datamairices Hyyr) change and therefore the singular
vectors and singular values of the sets also change.
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2.2.5 The information span of matrices

Instead of variance accounted for we can formulate another reasonable principle for
the balancing of sets by assessing the amouni of superfluous information. The
efficiency of information transfer can be called the information span.

The information span of a ser of variables is high if there is no superfluous or
spurious information. Geometrically this means that the variables are all orthogonal.
The information span of a set is low if all the variables of the set contain the same
information. We then have just my, replications of the same variable.

We gain an insight in the information span of a matrix by studying the eigenvalue
structure of a matrix. We presume that the researcher has collected the data in such a
way that all the variables of one set are possible candidates to describe some relation
with other sets or with some latent variable. All the variables contain reliable
information of equal importance and therefore we set the information weight of each
variable equal to one, equal to the scaling of unit normalized variables. With these
assumptions and normalizations the eigenvalues indicate the information weight of the
eigenvectors (information parterns). If an eigenvalue (information weight) is greater
than 1, the information of the corresponding eigenvecior (information pattern) is
supported 0o much by the variables with respect to the efficiency of information
transfer. It indicates that there is a replication or gradual resemblance between some
variables. The part of the eigenvalue that is greater than 1 is actually referring to
superfluous information. If an eigenvalue is smaller than 1, the information of the
corresponding eigenvector is not supported enough by the variables. In the extreme
case the eigenvalue (information weight) is close to zero and the information of the
corresponding eigenvector (information patiern) is very spurious. Summarizing we
can construct a measure for information span of a matrix by adding up the non-
superfluous part of the eigenvalues by taking 1 as an upper cut off value and dividing
this by the sum of all eigenvalues. We describe the information span I of set Hy with
my unit normalized variables by

my .
Iy = Zli(qﬁ‘fk), vk (2.17)
3

with
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{ 163 = Qxdbmy! for Qg < 1 } W .
17 = Qimic" for Ok > 1
where the rank quotient O is defined by
mk 2
Ok = E;IQ(W), Vk (2.18)
fe=
with
2 2
{ 0(#f0) =0 for ¢ = 0 } Vi
2 -1 2 v s
Q (i) = my for ¢y > 0

where ¢y, denote the diagonal elements of @y, defined by the complete full rank SVD
Hy = Pp@pQy'. The rank quotient O is incorporated in the information span Iz in
order to correct for matrices Hy, of deficient rank that have for instance less rows than
columns. By adding many variables to a set one can artificially blow up spurious
information patterns to have a 'stable’ information weight =1. Usually this kind of
stabilization is misleading, but if one is sure that all the added variables are very
reliable, the correction can of course be omitted by setting Oy=1, V& (2.18).

The definition of information span for unit normalized variables results in an upper
bound of fp = 1, if there is no superfluous information, and a lower bound of Iy =
mEl, if we have my, replications of the same variable. The rank of Hy, is given by
Opmy. The efficient rank of Hy, is defined by Ipmy, if desired rounded off to the
nearest integer. In chapter 7 the efficient rank will be computed for real-life examples.

By now we can formulate a balancing of MPCA based on the principle of information
span. We formulate MPCAs by specifying the appropriate information span filter

MPCAS: QUBY)= DY, VE (2.19)

which has to be substituted in (2.1). The same balancing is achieved by taking the
balancing constants of MPCA in (2.7) equal to wy, = IEI. If the variables of all sets are
unit normalized, we can say that in MPCAs the sets are weighted by their efficient
rank.
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The effects of the balancing in MPCAs for the extreme cases of I appeal to common
sense. If there is no superfluous information, there is no change in the weight of the
set. If all the variables of the set are exactly equal, the set contributes to the solution as
if it has only one unit normalized variable. In this way the sets are balanced by the
diversity of their information patterns. In the preceding sections the emphasis was
more on the information weights and less on the diversity of the information patterns.
The balancing of sets by the trace of the eigenvalues in formula (2.13) is an example
of focussing only on the quantity of information. The first eigenvalue and maxVAF
balancing give an intermediate approach, because they partly include the variation of
the eigenvalue structure. In some simple eigenvalue structure cases they give the same
results as the information span balancing.

The techniques formulated by moulding MPCA emphasize an equally balanced
influence on the solution with respect to set variance, but they do not affect the
correlations of set variates. With set variates we denote linear combinations of set
variables. In the next section we will discuss a technique that balances the influence
on the solution only with respect to set correlation.

2.2.6 Multiset Canonical Correlasion Analysis (MCCA)

In MCCA as formulated by Carroll (1968) we maximize squared correlations between
canonical variates and p common latent variables

. px
MCCA: Fit(X,Z 1, 2 Zg) = 5 5 (Rs'2(s)% (2.20)
s=1k=1
where 5 Xp = (x1,...,% $ove-Xp) denote the common latent variables
with X'X =],

and Zidp = @k)1se - Z(k)ss. - Z(k)p)  denote the unit normalized canonical
variates for set & and dimension s,

with  zgr)s = Hrbr)s = Pr@rQr't)s = Prviys,
and Z(k)s 2(k)s = Yys HHrtr)s = v)sPrPrvir)s = vik)s' Vs = 1. Vik,s

As in the preceding sections the SVD for set k is given by Hy, = Pr®pQy', where Py
(n x pr) and Qg (my x px) denote orthonormal singular vector matrices and &y
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denotes a diagonal matrix with py non-zero singular values in descending order. The
canonical weighis {)s can be derived from the weights V(k)s bY tk)s = Qkﬁifkwlwk s
Vk,s. Originally Carroll (1968) also incorporated weights for the sets as we have
done in MPCA, but we have omitted them in MCCA.

To show the relation of MCCA with MFCA we need a description of MCCA with
only the X as unknown parameters. Therefore we want to find suboptimal values for
the canonical variates z)s, which are a function of x. We substitute Zikys = Prvip)s
with vr)s'V)s =1 Vks in (2.20) and compute a conditional maximum for (2.20)
with X fixed by maximizing

Fit(zs.cisVib)s) = &sPrvis)® + (s, Vs (2.21)
where  xg denotes the fixed common latent variable x;,
and ck)s  denotes the sum for all other fixed parameters. Vk,s

By applying the Cauchy-Schwarz inequality on the non fixed parameters of (2.21) we
know that (X,S'Pk%’(k)g)zg(V(k)S'V(k)s)(xS'E)kPk'xs) = (g PrPr'sy). A maximuom for
(2.21) is reached if (xs'Pw(k)s)z = (' PrPr'xs) and therefore Vik)s =
Pr'ss(xs PrPr'xs)-1/2. With this equality we simplify (2.20) by inserting the
suboptimal values PrPy'xs(xs'PrPr'xs)-1/2 for zp)s

p K
MCCA: Fit(X) = § 3 (xsPrPpx(xsPrPyxs)~1/2)%
s=1k=1

K
iy XPrPrX =t X'PpariPpare X, (2.22)
k=1

with X'X =1 and the matrices P} collected in one partitioned matrix
Ppar=(P1,....P k). As we saw in section 2.1 formula (2.3) substitution of this
constant filter in (2.1) results in (2.22). The constant filter is a set correlation filier,

2.2.7 Canonical Correlation Analysis (CCA)

Ordinary 2-sets CCA is usually not defined in terms of the common latent variables
X. Rather we simply maximize the sum of the canonical correlations between the
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canonical variates of two sets. Using exactly the same notation as in the previous
section this can be expressed as the maximization of

p
CCA:  FiuZy,Zy)= 3 Zi(r)'2(r) = Wt Zy'Zy = tvr Vi'P1'PyVy, (2.23)
s=1

with Ly =HpTy = ProyQi'Ty = PrVy
and Ly = TrHpyHp Ty = VPPV = V'V = L fork=12

The solution for Vi and V3 can be found by taking respectively the p principal left
and right singular veciors of matrix P1'Py. The singular values give the canonical
correlations.

2.2.8 Relation berween CCA and MCCA

We can derive CCA from MCCA (and MFCA) by imposing subspace restrictions on
the common latent variables X. We want the solution X to be in the subspace
associated with He, spanned by the orthonormal basis P (see section 2.1.1). In other
words we require

X = P.PX, (2.24)

The same restriction is obtained if we require X = PV and therefore V, = P,
because P P, = L

The latent variables X, restricted to be in some specific set ¢, are denoted by X(¢).
Insertion for X of respectively X)) =P1Vy and X(2) = P2V in (2.22) for K =2
results in the maximization of two different functions:

IMCCA: Fit(Vy) =tr V1'Vy + ViP1PaPy'P1Vy
2MCCA: Fit(Vy) = & Va'Vo + Vo PP PPV s, (2.25)

with respectively X(1)'X(1)=V1'V1=I for IMCCA, and X)X 2)=V2'V=I for
2MCCA. The formulation of (2.25) is consistent with the formulation of CMCCA. in
(2.5). The optimal solutions for Vi and V7 can be found by taking the p principal
eigenvectors of respectively matrix Pi'PyPPy and P2'P1P1'Py. These
eigenvectors are equal to respectively the p principal left and right singular veciors of
mairix P1'Py, which we recognize from (2.23). The eigenvalues of Py'PoP,'Py and
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Py'P1P1'P7 are equal to the squared singular values of P1'P; and therefore equal to
the squared canonical correlations. For K=2 the solutions of both ¢MCCA and CCA
are nested and the relation between the fit functions of CMCCA and CCA is given
dimensionwise by CMCCAF“::H(CCAFR)Q. The canonical variates of set 1 are given
by the optimal X(1) and the canonical variates of set 2 by the optimal X(2), because
Xy=Z1=P1V1 and X(2)=Zy=P2V7, see (2.23).

2.3 Different types of filter

In the preceding sections we applied always the same filter for all sets. Only subspace
restrictions introduced some asymimetry in the analysis. We now describe another
kind of asymmetry in the analysis by combining different types of filters in one
analysis. A set correlation filter is assigned to one set or group of sets and a set
variance filter is assigned to another set or group of sets. In this way we introduce
several additive hybrid methods. First we formulate Redundancy Analysis as an
example with two sets. Next we give some generalizations of Redundancy Analysis
for multiple sets.

2.3.1 Redundancy Analysis (RA)

The technical formulation of Redundancy Analysis (RA) can be found in Anderson
(1951), who defined the model by imposing linear restrictions on regression
coefficients or in other words by reducing the rank of the regression matrix. The
model is also called the Reduced Rank Regression model. For a recent overview see
Van der Leeden (1990). We begin with a description of Redundancy Analysis and
subsequently we show how RA can be conceived of as a two set MFCA. with
different filters.

In RA as defined by Anderson (1951) we maximize the variance of the criterion set
that is accounted for by the canonical variates of the predictor set. Some authors
(e.g..Van den Wollenberg, 1977) divide the variance accounted for by the number of
criterion variables, which are also referred to as criteria. For each dimension r of the
solution the variance accounted for is called the redundancy of the criteria. The sum of
the redundancies is called the overall redundancy. We indicate the predictor set with ¢
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and the criterion set with k and maximize the overall redundancy of the criteria as
follows

RA:  Fit(Zy)

]

) , ,
2 Mys = tr Ze'HEHE'Z
s=1

tr VP PrdiPy PV, (2.26)

where Zo=HT; = PcD:Q T, =PV,
denote the canonical variates of the predictor set ¢ with ZiZe =V ' Vo=1,
Hy, = Pr®Qr' denotes the SVD of the criterion set k

and 77?k)s is the redundancy of the my criteria for dimension s.

By specifying the filters and subspace restrictions we formulate RA as a two sets
MFCA and maximize for predictor set ¢ and criterion set k

CRA: Qu(DF) = BF
Q@2 = I, with X = P,P,'X. for K=2 (2.27)

In this way we denote the use of different filters in one analysis accompanied by
subspace restrictions.

We still have to show that (2.27) does the same job as the ordinary formulation of
RA. We substitute (2.27) with P.'X =V in (2.1) and compare it with (2.26). We
obtain the equality ‘RAgj=p+R Apy. Therefore maximization of these two functions
gives the same optimal canonical variates for the predictor set.

The top filter in (2.27) is an identity filter and represents the set variance part of this
additive hybrid method. The bottom filter is a constant filter and represents the set
correlation part. As indicated in section 2.1.1 the subspace restriction in CRA (2.27)
can be simulated by introducing a very large weight in the filter of predictor set c.

2.3.2 Multiset Redundancy Analysis (MRA)

Generalizations of RA for multiple sets can be formulated by combining two different
types of filters in the following way



30 » Chapter 2

-1
MRA: QDY) = Bfwi
QC(KI)%) = §, with X, = PP X, Vk=c (2.28)
where ¢ denotes the predictor set and
WiseresWhyeoth WE denote fixed balancing constants
for criterion set k Vkc¢

With this function we maximize the variance of the criterion sets that is accounted for
by linear combinations of the predictor set. The choice of the balancing constants is
discussed exiensively in section 2.2.1.

2.3.3 Multiset MIMIC method (MMIMIC)

The Muliiple effect Indicators for Multiple Caunses (MIMIC) model (Hauser &
Goldberger, 1971) is basically a two sets model, where one set of variables, the input
set, influences another set of variables, the output set. Other names for the input
variables are exogenous or independent variables and for the output variables
endogenous or dependent variables. The influence of the input set on the output set is
mediated by unobserved latent variables.

We define the MIMIC method geheralizcd for multiple sets. In addition we give the fit
function for the ordinary MIMIC method, which is a special two seis case. The
Moultiset MIMIC (MMIMIC) method resembles the MRA method. The subspace
restrictions are omitted compared to MRA and there are several input sets instead of
one predictor set. We obtain '

MMIMIC: Q@Y = Dfwy.  for [=1,..L,
QU@ =1, k=(+1),.. KL<k (2.29)
where 1,...,0...,L denote the input sets and
WLadoeeosWhyeoto WK denote fixed balancing constants for output set k.

With this method we mediate the influence of the input sets on the output sets by
common latent variables X. For wy=1 Vk the MMIMIC method is one of the
generalizations of RA for multiple sets suggesied by Van de Geer (1984).
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The ordinary MIMIC solution is found by inserting filter (2.29) with L =1, K =2
and wy = 1 in (2.1). We maximize for input set ¢ and output set &

MIMIC: Fit(X) = tr XPP.X + tr X'PyOiP,'X. (2.30)

The MIMIC fit function is the same as the reformulated reduced rank regression
function described by De Leeuw & Bijleveld (1987) and Bijleveld (1989). In fact they
create a family of solutions by introducing a weight 2 for input set ¢, ir @2
XPcPc'X. For the limiting case =0 they prove that (2.30) is equal to principal
component analysis of the output variables, which can be easily verified by omitting
the left part in (2.30). In this way the set correlation part disappears and only the set
variance part remains. For a-o0 they prove that (2.30) is equal to RA, which can be
understood by realizing that the left part has an absolute maximum of p if the common
latent variables are in the space of the input variables, so if X=P/P,'X. After
insertion of X=P P X=P,V, for X we recognize in the right part of (2.30) the
formulation of RA in (2.26). In Van der Burg (1988) method (2.30) is described in a
comparable way as a two sets generalization of RA by releasing the subspace
resirictions of the RA predictor set.

2.4 Discrete compound filters

In this section we discuss the possibility of constructing compound filters by
combining two filters in one, separated by a threshold value. We show how reduced
rank preprocessing steps can be incorporated in the analysis by applying this kind of
filters. The concept is illusirated by elaboraiing the practice of replacing a set of
variables by an approximation of lower rank in a first step, followed by an analysis of
this reduced rank approximation in a second step. Usually these methods are two-step
hybrid methods fitting a set variance function in the first step and a sez correlation
function in the second step. In chapter 1 we classified these methods as sequential
hybrid methods.

2.4.1 Two-step hybrid methods

Two-step hybrid methods usually combine reduced rank preprocessing with CCA or
from CCA derived methods, like Discriminant Analysis (See Gittins, 1985). The
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purpose is to eliminate the possibility of finding CCA solutions with very small
variance accounted for by the canonical variates. This is achieved by literally
eliminating from each set the part of the information that projects on singular vectors
with small singular values. In other words, we are reducing the rank of the set k by
replacing Hy = Py @ Q' by Br = Pr®:Q)', where @y, denotes a diagonal matrix
equal to dy ,but with singular values below a certain threshold value made equal to
zero. After this preprocessing step CCA is performed in a second step on the matrices

Hy.

1.5
8 ®  Identity
=3 8
“Tg‘ 10k G Heduced constant
8 ®  First sigenvalue
[
'
HoO05F

0.0 5 B remnl, PYVE SN U SN YR SO NN TP S 1

0.0 0.4 0.8 1.2 1.6

Eigenvalues
Figure 2.4 Reduced constant filter.

The two step hybrid method for CCA described above can be compressed in one
MFECA step by filtering the eigenvalues of set k in such a way that all eigenvalues
below a certain threshold become equal to zero and above this threshold become equal
to one. The resulting filter is represented in figure 2.4 as the reduced constant filter,
together with the identity filter and the first eigenvalue filter. For the definitions of the
. last two filters see (2.2) and (2.3). The eigenvalues are on the horizontal axis and the
filiered eigenvalues are on the vertical axis. The identity filter is given by a sloping
line with an arbitrary chosen largest eigenvalue of 1.6. The reduced constant filter
consists of two parts, separated by a threshold. In figure 2.4 we took a value for the
threshold of 0,33x¢%, Eigenvalues beneath this threshold are transformed to 0 and
above this threshold to 1. The left part in the filter of this hybrid method approximates
the identity filter which is a set variance filter, and the right part is equal to the
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constant filter which is a set correlation filter. In this way the lefi part eliminates the
small variances and the right part gives the relevant spatial information. From this
point of view we can make a less drastically pseudo reduced constant version of the
reduced constant filter by not eliminating the small variances, but by taking the left
part of the filter equal to the identity, trace or first eigenvalue filter. The non
eliminating approach illustrates the hybrid nature of the reduced constant filter more
clearly, because the set variance part is not approximated roughly, but presented
exactly. This kind of filter is called pseudo reduced constant, because a reduced
constant filier always involves a dimension reduction of the data, which is not the
case for a pseudo reduced constant filter. We have already applied the principles of
the pseudo reduced constant filter in the definition of the information span fi (2.17).

2.5 Continuous compound filters

A major drawback in the application of two-step hybrid methods is the arbitrariness of
the threshold for selecring principal components. There are many different methods to
find a reasonable value for the threshold. This creates the problem of choosing the
appropriate selection method, maybe even different methods for different sets. It is
possible to approach this problem in another way by replacing the discrete two-step
reduced constant filter by an one-step continuous filter that approximates the (pseudo)
reduced constant filter without a threshold. For a good approximation we need some
nonlinear continuous function, that is close to one for high eigenvalues and rapidly
decreases 1o zero for very small eigenvalues. In other words high eigenvalues must
approximate the set correlation property and low eigenvalues the set variance property
of the hybrid method. Two such continuous compound filters are described in the
next sections. In section 2.5.1 we propose a multiset generalization of RR and derive
an appropriate ridge filter. This continuous compound ridge filter shows that Ridge
Regression (RR) is a weighted hybrid method. In section 2.5.2 we define Fixed Set
Component Analysis (FSCA) by specifying a quadratic first eigenvalue filter. This
method brings us close to the next chapter, because there we discuss the adjusted
method of Set Component Analysis (SCA) by applying a free quadratic filter that
results in the maximization of the sum of squared correlations of adjusted set variates.
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2.5.1 Multiser Ridge Regression (MRR)

In Ridge Regression (Hoerl & Kennard, 1970, Golub & Van Loan, 1990, p.565) a
loss function minimizes for predictor set H, and criterion variable Iy

RR: IJOSS(&C) =z (hk - Egcﬁc)'(hk - Hcﬁc) + Vcﬁc't(; (2‘,31)
with Ve 2 0.
We propose the following multiset generalization of RR for predictor sets ¢ and one

unknown common latent criterion variable x by minimizing

K
MRRpﬁl: LOSS(X,@(’-) = El (X e E‘Ec@c)'(x et HCtC) + Vcﬁc'tc.) (2.,32)
C=

with x'v=1 and v, 2 0 V.

To show the relation of MRR with MFCA we need a description of MRR with only
the x as unknown parameters. Therefore we want to find suboptimal values for the
MRR weights t;, which are a function of x. Analogous to the preceding sections the
SVD for set ¢ is given by H = Pc®.Q¢', where P (1 x pc) and Q¢ (m¢ x pe) denote
orthonormal singular vector matrices and @, denotes a diagonal matrix with p, non-
zero singular values in descending order. The MRR weights ¢, can be derived from
weights ve by t; = Qc@glvc Ve, We insert Q@ lvc for t; in (2.32) and compute a
conditional minimum for MRRp..1 with x fixed by minimizing

Loss(x,60,¢) = (x =~ Peve)'(x - Pove) + vcvc'ﬁbgzvc + ¢c
=x"% -~ 2xPove + ve've + vcvc'(;’b;zvc + ¢
=xX'% - 2x'Peve + vo'(@ + vcii}zz)vc + ¢
= SSQUI + v @ 5 - (14 v @79 P v)r g Ve (233)

where  SSQ(M) denotes the sum of squares of the elements of M,
% denotes the fixed common latent variable %,
and Coole denotes the sum for all other fixed parameters.

The minimum of (2.33) is reached for
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ve = (4@ Pp oy, Ve (2.34)

After insertion of Q @, 1vc for the MRR weights t. in (2.32) with V¢ according to
(2.34) we minimize

K e
MRRp-1: Loss(x) = 3 x Pe(l + vo®7 ) 1P 'x, (2.35)
=1

with x'x=1 and v, 2 0 V.
After minimization of (2.35) the optimal MRR variates are
Hete = Peve = Po( + v @52 V2P k. Ve (2.36)

From (2.35) we extract the appropriate MFCA ridge filter for specifying Muliiset
Ridge Regression,

MRR: QU®2) = (L + v, D! Ve (237)
with ve 2 0 Ve.

Because ve 2 0, we always have 00' < (I + vc()b;‘z)w1 < ¥, with 0 a column vector of
appropriate size with elements 0. For K=p=1 and x equal to criterion variable Iy,
MRR is equal to ordinary ridge regression and the optimal RR variate is computed
with (2.36) after inserting hy, for x. The ridge filter in (2.37) contains a set correlation
filter I added to a weighted set variance filter vc(bgz By substituting extreme values
for v, we know the correspondmg extreme fit functions. If ve is very large the
diagonal elements of (I + v, @, ) are almost equal to &DC Ve and therefore MRR is
almost equal to MPCA, with balancing constants w, equal to vc If vc-wO MRR is
equal to MCCA. In figure 2.5 we give the ridge filter for vg=0, ¢1C/9 ¢1c/3 ¢1C and
3¢10 in order to demonstrate the weighted hybrid nature of MRR graphically. The
representation of the horizontal axis is more general than in figure 2.4, because the
eigenvalue quotient gives the eigenvalues divided by the largest eigenvalue. For v =0
the ridge filter is equal 1o the constant filter.
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Figure 2.5 Ridge filter.

As v increases the curve transforms more and more into an oblique line that
represents a rescaled identity filter. In this way the ridge filter defines a whole series
of subfiliers that ranges from set correlation to set variance. The extremes of this
range reveal the hybrid nature of the ridge regression method. The curve of the one
ninth ridge subfilter bears much resemblance with the curve of the filter formulated in
the next section for Fixed Set Component Analysis (FSCA). The main difference in
the specifications of the filters is that for the ridge filter we have a selection problem.
We have to choose the constants ve a priori or by some of the manifold data based
methods. This problem does not occur for the FSCA method.

2.5.2 Fixed Set Component Analysis (FSCA)

In FSCA the term TFixed' indicates the fact that we actvally use a fixed form of the
SCA filter discussed in the next chapter. We maximize (2.1) with a quadraric first

eigenvalue filter
,, 2 2 2.2
FSCA. 1@ =1~ (0 - DLg1y)”. Vi (2.38)

Because (ﬁ%k is the largest eigenvalue of &D%, we always have 00' < @%4)}% <L The
guadratic first eigenvalue filter in (2.38) is a special (v=1) subfilter of the weighted
hybrid filter ¥ - v( - d)%qﬂ%)z, This weighted FSCA filter contains a weighted set
variance filter v( - (I)%gb]%)z subtracted from a set correlation filter L. By substituting
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extreme values for v we know the corresponding extreme fit functions. If v is very
large the weighted FSCA filter transforms all diagonal elements of (D% with values (i’%k
to the value 1. All diagonal elements of d)% smaller than q)%k will be highly negative
and the optimal solution of X for weighted FSCA will avoid eigenveciors with
smaller eigenvalues than ¢’%k~ If v=0, weighted FSCA is equal to MCCA. In figure
2.6 we represent the quadratic first eigenvalue filter to show how this filter
approximates the reduced constant filter by a very simple polynomial filter.

n
Reduced constant
o
% 1.0 @ Quadratic first eigenvalue
: :
20
@
:g 0.5 =
ix
0.0 ! I S W W0 AU S N S A T T T A T
0.00 0.25 0.50 0.75 1.00

Eigenvalue guotient
Figure 2.6 Quadratic first eigenvalue filter.

It is clear that the approximation of the reduced constant filter is rather crude, but we
have to bear in mind that the location of the threshold is variable. We require for a
general approximation that the filtered eigenvalues are near one at the right side and go
down steeply at the left side, like the curve of the one ninth ridge subfilter. Other
filters could be defined, like growth curve or S-shape filters, but the simplicity of the
quadratic first eigenvalue filter makes it attractive.

The continuous compound filters discussed previously approximate a set correlation
part for high eigenvalues and a set variance part for low eigenvalues. We are
integrating two corresponding separate fit functions in a continuous way and therefore
dealing with a hybrid method. In the next two chapters we will discuss adjusted
methods that maximize one fit function modified by set variance or set correlation
constraints.
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SET CORRELATION
WITH SET VARIANCE CONSTRAINTS

Set Component Analysis is described from several points of view. (1) The method
integrates a set correlation and a set variance part by maximizing the sum of squared set
correlations and adjusting the set variates with set variance constraints. (2) SCA is
identical to Multiset CCA with proportionality restrictions on the variable weights. (3)
By defining a free quadratic filter, SCA is related with the filter theory formulated in
the previous chapter. We conclude this chapter by indicating relations with other
methods and presenting a simulation study of INDSCAL compared with SCA. The
selation between INDSCAL and SCA is established by proposing and fitting a new
model, the INDRES model.

Introduction

Set Component Analysis (Nierop, 1989, 1993) is an adjusted method. It maximizes
exactness of prediction with special constraints to improve stability. The main fit
function is the sum of squared set correlations, and the secondary set variance
constraint enables a local improvement on the variance accounted for.

Maximization and improvement are well-known in the context of multivariate
optimization problems. Very often there exists no analytical method to find an optimal
solution. In that case a monotone convergent algorithm is constructed that improves
the value of some target function in successive steps uniil a local or global maximum
is reached. The improvement steps can be derived by several methods like partitioning
the function in several quadratic parts (Huygens principle), determination of the first
derivative, or majorization (de Leeuw & Heiser, 1980). By applying this knowledge
it is possible to integrate two different functions by combining the maximization of a
main fit function with the improvement constraint of an adjusting function. How this
combination can be made is illusirated in section 3.1 for two functions: squared
canonical correlations and variance accounted for. The resulting method is Set
Component Analysis (SCA).
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In subsequent sections we will discuss some characteristics of SCA. In section 3.2
we explicitly show the relation beiween the variable weights and the structure
correlations. In section 3.3 we relate the SCA method to the filter framework outlined
in chapter 2. In section 3.4 we explain the relation of SCA with FSCA, MPCA,
MCCA and INDSCAL. The relation between INDSCAL and SCA is established by
proposing and fitting the INDRES model. In the closing section we compare the
properties of INDSCAL and SCA in a simulation study.

3.1 Set Component Analysis

For the construction of the SCA method we integrate the maximization of the sum of
squared canonical correlations with the improvement of variance accounted for. For
the maximization of the sum of squared canonical correlations we use the multiset
MCCA method described in (2.20)

. p K
MCCA: Fit(X,Z1, Zho Z) = 3, 3, (x5'%(1)s)%
S=lk=]
with orthonormal latent variables xg and unit normalized canonical variates z)s. The
adjusting function for the improvement of variance accounted for is
VAF(z()s) = zk)s HiHr'Z(k)s = 2ek)s'Skz(r)s, Vks (3.1)

where Sp=HpH}' For the improvement of (3.1) we take one step of the Power
Method (Wilkinson, 1965) and normalize to unit sum of squares

1 i i -
zgz)sszZ(k)s(Z(k)s ngkZ(tk)s) 12 Vks (3.2)

and define zt(k)s as the MCCA canonical variate and the adjusied canonical variate zﬁz)ls
as the (SCA) set variaze. In section 2.2.6 we showed that the canonical variate must
be equal to

ka)s = PrPr'xs(xs PrPr'xs) 112, Vks (3.3)
Substitution of (3.3) in (3.2) gives the SCA set variate

Z()s = Sixs(xsStSixs) V2. Vs (3.4)
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The set variates can be conceived as a weighted projection of x5 on to Py and the
canonical variates in (3.3) as an unwelghted projection. Substitution of Sk-PkCDkPk
in (3.4) shows that the eigenvalues @k are the projection weights. Rather than having
(3.4) as a side product, we can constrain the variates Zy in the MCCA fit function
(2.20) so that they satisfy (3.4). This is achieved by inserting (3.4) in (2.20) and
results in the SCA fit function that maximizes the sura of the squared set correlations
¢ K
SCA:  Fit(xy) = élkglp?xs;skm = é:lkgl (xs'z(ays)” = Sg : %ﬁg%% 3.5)
where  Pxs:Srxs) denotes the correlation between xg and Spx;,
nXp = (x1,...,% SoveesXp) denote common latent variables with X'"X=]
and Z(k)s = Skxs(xs'SkSsz)"llz denote the set variates with Sp=HiH;' VL,s.

Ap,
MCCA variate

SCA vatiate

%

A

=t

Figure 3.1 Improvement of variance accounted Jor.

In figure 3.1 we give a geometric construction of the SCA set variate derived from the
position of the MCCA canonical variate. The 2 dimensional case is sufficient to
illustrate the Power Method, because more dimensional cases can be described by
analogous successive plane rotations. All vectors in figure 3.1 are unit normalized.
We start with some known MCCA canonical variate located in the plane of the
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eigenvectors p, and pp with eigenvalues q)g > (b%. The variance accounted for by some
SCA variate has a2 maximum ¢§, when the variate is p, and a minimum (])%, when the
variate is pp. The position of the SCA variate in figure 3.1 is constructed with the
intersection points ¢ and b. They are the intersection points of the MCCA variate and
the circles described by the radii (D(% and (b%g respectively. The intersection point ¢ of a
vertical line through g and a horizontal line through b is located on the SCA variate
and therefore fixes its direction. It is clear that the variance accounted for by the SCA
variate is higher than the variance accounted for by the MCCA variate, because it is
closer to the maximum direction in this plane: pg. The construction method we have
applied is just one of the many methods for constructing an ellipse. The points ¢ of
this ellipse can be found by varying the starting position of the MCCA variate. It
should be noticed that the direction of the SCA variate is independent of the
normalization of the MCCA variate and the total sum of the eigenvalues. In other
words the SCA solution is scale free with respect to the normalization of sets.

3.2 Variable weights proportional to structure correlations

In this section we want to emphasize an interesting property of SCA compared to
MCCA. In both fit functions we maximize the sum of the squared correlations of the
unit normalized variates z(x); with the common latent variables x;. If we compare
SCA in (3.5) with MCCA in (2.20), the only difference we observe is the definition
of the weighted sum of variables zg)s. For SCA we have

Z(k)s = Srxs(xs'SS lcxs)wl/2

= Hp{ Hy'%s(x5'SiSpxs) 2} = Hetgps. Vs

The SCA weights t()s=Hyxs(xs'StSixs) "2 of the variables Hy, are for each set k
proportional to the strocture correlations Hy'xg. In MCCA we do not have these
restrictions for the weights ¢(g)s. From this point of view SCA can be defined as
MCCA with proportionality restrictions on the variable weights. This definition of

SCA is simpler than the first definition of SCA in the previous section.
Nevertheless we preferred to define SCA first as MCCA with local variance
improvement constraints, because we understand the predictive properties of SCA
better with this definition.
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The proportionality restrictions on the variable weights facilitate the interpretation of
the weights and structure correlations in SCA. In MCCA the weights and structure
correlations of the same variables can diverge to a large extent, which makes a
consistent interpretation difficult. In this case interpretation is usually confined to the
structure correlations.

3.3 A filter view on SCA

In order to relate the SCA method with the filter theory discussed in chapter 2, we
reformulate the fit function (3.5) by first introducing regression weights and secondly
balancing factors. The concept of balancing is introduced because we also want to
show in section 3.4.2 that SCA can be conceived as maximizing weighted variance
accounted for. Furthermore, the reformulated SCA fit function has a computational
advantage. It is simpler to derive an algorithm to find the SCA solution with this
alternative loss function than with the formulation of (3.5), because the complicated
function of xy in the denominator will disappear. In chapter 6 we describe a monotone
convergent algorithm for SCA.

Xg common latent variable

,, : . SCA varigte

Figure 3.2 Introduction of regression weights.
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For each set k the squared correlation between (unit normalized) xg and z)s is equal
to the squared length of the projection of x; on to zg)s. In figure 3.2 this projected
vector is given by Z(k)sg(k)s, with l;(k)smxs'z(k)s. This implies that instead of
maximizing for each set the squared projection length (xs‘Z(k)s)z, we can also
maximize

Xs'%s ~ (the squared distance of x; to the SCA variate),
of we can maximize
x5 PrPr'xs - (the squared distance of PpPy'xs 1o the SCA variate).

In other words we have

. p K 1, 1]
SCA: Flt(xmb(k)s) = Zlkxl Ky'Kg~ (X5~ z(k)sb(k)s) (x5~ Z(k)sb(k)s)
S=1K=

p K
= 3 Zl XsPrPr'xs - PrPr'xs ~ 2k)sb)s) PrPr'ss ~ 2k)sb(rys).  (3.6)
S K=

In figure 3.2 this Pythagorean property can be verified. By fixing the X and setting
the first derivative equal to zero we find suboptimal regression weights I;(k) 5. As we
would expect we find I;(k 15=Ks'Z(k)s and after substitution in (3.6) we obtain again the
sum of all squared projection lengihs (XS'Z(k)s)Z.

In formula (3.4) we saw that z(x)s is proportional to Sgx;. Therefore by definition we
can replace zy)s in (3.6) by Spxy and the weights be)s by the reciprocal values of
balancing factors w(g)s. Recapitulating, the reformulated SCA method maximizes

i

p K 1 “’1 ] “‘1
2 2 RyXg— (Xg ~ Spxewik)s)' (X5 ~ Spxsw(k)s)
s=1k=1

SCA:  Fit(xs,w(k)s)

]

p K 2 -1 205
2. 2 XPp{Il- - w1 Pr'xy, 3.7
o Yo

where  w()g....Wk)s...-W(k)s denote free balancing factors for set k and
dimension s,
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and the remaining parameters are defined and normalized as usual. The balancing
factors wg)s in (3.7) are free in the sense that the optimal w(r)s have to be found by
maximizing the SCA fit function.

The formulation of (3.7) shows that SCA finds some optimal transformation of the
eigenvalues of each set k and therefore can be defined as a MECA method by
specifying the appropriate filter. The MECA filter for SCA is a Jree quadratic filter,
which is defined for each set k and each dimension s as

SCA: Q5@ = I~ (1- i), (3.8)

where W(l)s--sW(k)s»....W(K)s denote free balancing factors for set % and
dimension s.

After substitution of (3.8) in (2.1) we must realize that we have introduced in the
MFCA(X) function extra unknown parameters by incorporating the free balancing
factors in the filters.

3.4 Relations of SCA with other methods

SCA has many connections with other methods. The following sections elaborate on
relations with FSCA, MPCA, MCCA and INDSCAL. The reformulation of SCA
with the Directed Correlations method and relations with some PLS methods are
given in the last two sections of chapter 5.

3.4.1 Relation with FSCA

In section 2.5.2 on FSCA we fixed the balancing factors of SCA equal to ¢%k. By
fixing the X in (3.7) and setting the first derivative equal to zero we find suboptimal
balancing factors, which are a function of X. We denote these suboptimal balancing
factors with wg)s. The suboptimal balancing factors are equal to the reciprocal
regression weights

t 3 ¥ ] 2 1
Xs'SkSexs _ tr)sHrBrt)s s QePEQu ¢ x)s

Xs'Skxs T tw)strgs torts Vs (3.9)

W(k)s =

with tg)s = Hy'xs Vk,s.
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In other words the suboptimal balancing factors are equal to the variance of Hy
accounted for by the proportional regression weights ¢(x)s=Hy'xs. The upper bound
of fp(k )s is equal to the largest eigenvalue of matrix @%, which is the first eigenvalue
¢%k~ In section 2.5.2 on FSCA we fixed the balancing factors equal to this upper
bound. The lower bound of ﬁ’(k)s is almost zero, because we have defined (I)% with

only non-zero eigenvalues of Hy. In summary, we have
0 < ws < 0. Vks (3.10)
Analogous to the presentation of the quadratic first eigenvalue filter in figure 2.6 we

represent in figure 3.3 the free quadraric filter for ﬁ/(k ) S:0,33x¢%k and for the upper
bound ﬁ/(k )smq)%k.

1.0 £
3 0.0 8 Constant
% @  Quadratic first eigenvalue
&“‘:: ©®  Quadratic one third value
=1s)
& !
‘é -1.0 -
ﬁ

2.0

W0 B OO S YU S SO WO Y BT 3

0.00 0.25 0.50 0.75 1.00
Eigenvalue quotient

Figure 3.3 Free quadratic filter of SCA.

Generally the filiered eigenvalue in figure 3.3 is maximal, when the eigenvalue

quotient is equal to ﬁz(k )s/(,b%k,
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3.4.2  Relation with variance accounted for and MPCA

As a general rule SCA gradually prevents the occurrence of small variance accounted
for. This is achieved by differential weighting of Py'xs, the projection weights of x;
projected on to the subspaces P. For each set k and dimension s we express the
variance accounted for VAF(X,k) as a product of the correlations of set variates and
the suboptimal balancing factors Q/(k )5 (3.9). By substituting (3.9) in (3.5), we obtain

14 N
VAF(X k) = le(zk)SW(k 5 Vks (3.11)
==

where pligs = (k5'z(1)s)” and VAF(XE) = tr X'SpX.

If we want to prevent small variances accounted for, we must not only maximize the
correlations of set variates p(?‘k)s, but we must also prevent small values for the
suboptimal balancing faciors sjv(k)s, The latter goal is pursued by differential
weighting of Pr'xg, which are the projection weights of the latent variable X
projected on to the subspaces Py, spanned by the sets. The differential weights are
equal to the filtered eigenvalues given in (3.7). The available projection space of the
common latent variable %, for high Qz(k)s values is gradually reduced if ﬁ/(k)s gets
smaller, because the penalty for projecting on singular vectors with large singular
values is increasing fast. As we see in figure 3.3 for v?/(k) 5 = O.%xaﬁ%k the differential
weight for projection on the first singular vector is already ~3. For smaller values of
{1\/(;@) s this differential weight decreases fast,

We cannot only produce (3.11) by combining (3.9) and (3.5), but also the equality
p(k)s = XKy SszW(};)g Vik,s. It shows how SCA maximizes weighted variance
accounted for. SCA can be formulated as a MPCA method by taking the balancing
constants of MPCA in (2.7) for set k and dimension s equal o the suboptimal
balancing factors in (3.9). The balancing of SCA is closely related to the balancing of
MPCAs in (2.19) with balancing constants equal to wy, = I};E If the efficient rank of a
matrix is equal o thé‘i number of variables my, the suboptimal balancing factors are
equal to 1 just as Isc If the efficient rank of a mairix goes to its minimum value of 1,
the suboptimal bgﬂancmg? factors go to their maximum value my, which is equal to the
maximum of Ik The difference between SCA and MPCAs is that SCA assesses the
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amount of superfluous information for each set and dimension separately, whereas
MPCAs is doing this for each set independent of dimensions.

3.4.3 Relation with MCCA

The MCCA fit function gives the upper bounds for the SCA fit function, as we can
show by rewriting the second line of (3.7) for each set and dimension as

SCA(r)s = MCCAr)s - PENr)s, Vs (3.12)

where MCCA)s = x5 PrlPr'xs denotes the MCCA fit as defined in (2.22)
and PEN)s = % Pr(L - @%w(mkl)s)zﬁﬁk'xs defines a penalty function.

In fact we reformulated in (3.12) the SCA method as a hybrid method. Because
PEN(g)s = 0, we always have §0' < ¥ - (I - (D%w?kl)s)z < 1. The free quadratic filter in
(3.8) is a special (v=1) subfilter of the weighted hybrid filter I - v(I - B9, This
weighted filter contains a weighted set variance filter v(I - @%w?}g) S)z subtracted from
a set correlation filter §. By inserting the weighted hybrid SCA filter in (2.1) we
define the weighted hybrid SCA fit function. By substituting extreme values for v we
know the corresponding extreme fit functions. I v is very large the weighted hybrid
SCA filier transforms all diagonal elements of (i)%} with values v?z(k)s to the value 1 (see
section 3.4.1). All diagonal elements of KI)% smaller than v?z(k )s will be highly negative
and the optimal solution of X for weighted hybrid SCA will avoid eigenvectors with
eigenvalues non equal to v?/(k)sa If v=0, weighted hybrid SCA is equal to MCCA.

Geometrically the penalty is related with the size of the improvement step of the
MCCA variate needed to obtain a larger variance accounted for. This relation is valid
for each dimension s and set k separately, and is illustrated in figure 3.4 for
suboptimal balancing factors ;;)(k)& Figure 3.4 is based upon figure 3.1. As in figure
3.1 we assume without loss of generality that the MCCA canonical variate is located
in the plane of the eigenvectors pg and pp with eigenvalues ¢§ > d)]%. The projection of
the common latent variate xg on the space of Hy and therefore on the MCCA variate is
given by PrPy'xs The projection of x5 on the SCA variate z)s is given by
Six sﬁz(k)s, where ﬁz(k)s is defined in (3.9). The lengths of the projected vectors are
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respectively MCC&(%S and SCAI(%S » and correspond to the correlations of x; with
the MCCA and the SCA variate.

Y pb
MCCA variate
PPy % . @Q&s SCA variate 7
{\) ‘% A ]
5)?& Spx SWk)s
&
S
had
%C/
>B,

Figure 3.4 Geometric illustration of penalty Junction.

Recapitulating, the adjusted method SCA is a special (v=1) subfilter of the weighted
hybrid SCA method. For v=0, weighted hybrid SCA is equal to MCCA. On the other
hand we must bear in mind that the weighted hybrid SCA method is generally not an
adjusted method, because the original goal of maximizing the sum of squared set
correlations is only preserved in one special case.

3.4.4 Relation with INDSCAL

First we describe the INDSCAL model and fit function and elaborate some of the
INDSCAL properties. Secondly the relation between INDSCAL and SCA is
established by proposing and fitting a new model, the INDRES model.

The weighted Buclidian three-way scaling model referred to as the INDSCAL model
was proposed independently by Bloxom (1968), Horan (1969) and Carroll & Chang
(1970). The INDSCAL model is formulated by weighting squared estimated distances
between objects. The INDSCAL model in scalar product form (Arabie, Carroll &
DeSarbo, 1987) is described by
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where

and

Chapter 3
Sp = XWpX' + Eyg, vk (3.13)
Sy denotes a mxm scalar product matrix,
XWX =My denotes fittled model parameters,
X denotes unit orthonormalized dimensions (i ),
Wi denotes a pxp diagonal matrix with dimension weights wyg)s,
Ep denotes a mxm matrix with residuals.

The interpretation of the matrices used in (3.13) can easily be embedded in the

notation of the preceding sections:

Sp:

In the beginning of this chapter we defined Sp=HpHy', but in fact the matrix
Si does not necessarily have to be equal to HpH,'. Without loss of
generality it can be any positive semi-definite matrix of snitable converted
dissimilarity or similarity measures.

The dimensions in the INDSCAL model do not have to be orthogonal.
Despite some loss of generality we use in this section the orthogonal version
of INDSCAL to show the relation with SCA. Kroonenberg (1983, p.118)
denotes this method as 'orthonormal INDSCAL', Kiers (1989, p.14) refers
to it by the acronym INDORT and gives an elaborate discussion on the
subject. In most practical applications the optimal INDSCAL dimensions will
be near to orthogonality. See Arabie, Cairoll & DeSarbo, 1987, page 36:
“The axes provided by INDSCAL generally turn out to be orthogonal or
nearly so”. Therefore our shift from INDSCAL to INDORT will have no
major implications. For the one dimensional solution there are certainly no
implications, because in that case the solutions are exactly equal.

The opiimal dimension weights wy)s in the INDSCAL model are a measure
of relative importance, just as the balancing factors of SCA in section 3.4.2.

The INDSCAL model is fitted in least squares sense by minimizing the loss function:

K
INDSCAL: Loss(X,Wp) =tr 3 EiEyp, (3.14)
k=]

and fitting the orthonormal INDSCAL model in the least squares sense comes down

to minimizing the loss function
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K K
INDORT: Loss(X,Wp) =tr 3 EEp=tr 3, (XWpX'-Sp)(XWX'-Sp)
k=1 k=1
p K
=0 3 (XsW(k)sks'=Sp) (Xsw(k)sxs-Si) + ¢, (3.15)
s=1k=1
X y
where ¢ denotes a constant with ¢ = 3, (1-p)tr S%,
k=1

with X'X=I. The transition to the last part of (3.15) with constant ¢ added is due to
the orthogonality of X. Analogous to the procedure in section 3.4.1 we find
suboptimal dimension weights, which are a function of X. We denote these
suboptimal dimension weights with w()s. The suboptimal dimension weights are
equal to

Wk)s = Ks'Spxy. Vks (3.16)

Substitution of the suboptimal dimension weights (3.16) in (3.15) reveals after minor
elaboration a very simple fit function. (See Kiers 1989, p.43). It turns out that
minimization of (3.15) produces the same optimal X as maximization of

. K p K .
INDORT: Fit(X) = z S wihs=3 3 Xs'SpxsWik)s
s=1ks=1 s=lk=1
X 2
E Z: (xs'Spxgs)”. G3.17
sk

Domination by sets with low information span

We inserted the formulation xs'Sixswr)s in (3.17) to clarify a relation between
orthonormal INDSCAL and SCA. In section 3.4.2 the equality p(zk)s = Xg'Spx Sﬁ;(“kl)s
Vk,s, showed how SCA maximizes weighted variance accounted for. In the same
way INDORT can be formulated as a MPCA method by taking the balancing
constants wg)s of MPCA in (2.7) for set k and dlmensmn s equal to the reciprocal
suboptimal dimension weights in (3.16), W(k)smW(k) s. The balancing of the INDORT
sets indicates that (orthonormal) INDSCAL solutions will be dominated by sets with a
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low information span and a low efficient rank, if the sets are normalized 1o the same

total suimn of squares.
The information span I and the efficient rank are defined in section 2.2.5 beginning
with formula (2.17) and further.

A matrix Hy with a low information span has much variance concentrated on only a
limited subspace. This subspace therefore attracts any solution space X, that seeks o
maximize the VAF and therefore even more the orthonormal INDSCAL X, that seeks
to maximize the squared VAF for each dimension. The SCA solution is not dominated
by sets with much redundant information and will be better balanced in this respect.

Simple structure with equal information span

There is another important aspect in regard to the weighiing of VAF. If the
information span of all sets, normalized to the same total sum of squares, is equal to
Ii=1, we have Sp=PyP;' Vk. Even in this case the orthonormal INDSCAL solution
will still emphasize some sets as much as possible in order to obtain a simple
structare. This tendency to exaggerate the differences between the sets is analogous to
the simple structure rotation of variables instead of sess. The quartimax fit function is
in this respect a special case of the INDORTg; function in (3.17). The functions are
equal if each set hg consists only of one variable. This property explains why
INDSCAL tends to find a unique orientation of dimensions, even if K=1. The SCA
solution for Iy=1 V&, is exactly equal balanced in the sense that in this case the
suboptimal balancing factors in (3.9) are equal to ﬁz(k 5=l Vi

Residuals not orthogonal to common latent variables

We consider the INDSCAL model Sp =My + Ep = X W X'+ Ep, V&, as
formulated in (3.13). In analogy with the PCA model some users of the INDSCAL
program might erroneously think that at convergence we have strong orthogonality
between residuals Ky and the dimensions given by X,

XEp=00" Vk (3.18)

where @  denotes a column vector of appropriate size with elements 0.
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However this is usually not true and generally not possible, neither for the INDSCAL
model, nor for the orthonormal INDSCAL model, where X is required to satisfy
X'X=I. We will refer to this statement as the residual rule for the INDSCAL models.
The residual rule will be proved later in this section. At convergence of the INDSCAL
program we do not have (3.18), but only the weak orthogonality

K
k%l tr M;Ep = 0. (3.19)

The weak orthogonality of residuals can be an undesirable property, because it
implies that important information of Sy, related to X can be left undetecied in the
residuals. The recovery of true INDSCAL dimensions will be less effective, if the
estimates M give a distorted image of the original matrix Sg. These distortions can
be understood by examining the orthonormal INDSCAL model. If we elaborate the
orthogonality restriction ExX=00', we obtain

ExX =S -MpX = §;X - XW; = 00", Yk (3.20)

The last equality in (3.20) implies that the restriction ErX=00"is only valid if the
columns of S§X are proportional to the respective columns of X. In figure 3.5 we
show geometrically for three columns of S how the ideal projections on the space X
would be distorted by the multiset restrictions of the INDSCAL model. The column
vectors of By, are clearly not perpendicular to INDSCAL dimensions X.

Figure 3.5 Distorted projections of Sy on space X.
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If we are not satisfied with the weak orthogonality of residuals in the INDSCAL
model, we cannot improve orthogonality by applying other computational methods
(like De Leeuw & Pruzansky, 1978) to fit the INDSCAL model. We have to adapt the
model for instance by penalizing non-orthogonality between the INDSCAL
dimensions and the residuals for each set k. We call the resulting model the INDRES
model. The INDRES model in scalar product form is given by:
Sk = XWpx'  + Eg
{ } Yk (3.21)
SiPx = HWpXPx + EpPx

where Pygx  denotes an orthonormal basis of X.
and all other parameters have the same notation as for the INDSCAL model in (3.13).

The first line of the INDRES model specifies the INDSCAL model and the second
line penalizes non-orthogonality between the residuals Ep and the INDSCAL
dimensions X. The dimensions in the INDRES model do not have to be orthogonal.
The orthonormal basis Py is introduced in order to allow for this possibility. Many
functions can be proposed to fit the INDRES model. One possibility is to minimize a
weighted INDSCAL loss function

INDWEIL Loss(X,Wp) = tr (Px?x'mI)EkEk(Pxpx'wg) + v ir PxPy'ELE PPy

K

= {r kEI PxPx'Sp-Sp)'PxPx'Sp-Sp) +
K

vir . (XWX -PxPy'S) (XWX -PgPx'Sy), (3.22)
k=1

where v denotes a balancing constant.

For v=1, (3.22) gives a decomposition of the error Ey, in the INDSCAL loss function
(3.14). 1t is interesting to notice that the INDSCAL weights Wy, can only minimize
the error EpPx. For v=1, (3.22) also minimizes the error By of the INDRES model
(3.21). The second part of (3.22) is equal to vird Py ExErPy and minimizes the
error Ep Py of the INDRES model. Therefore the parametiers of the INDRES model
can be estimated by minimizing the INDSCAL loss function. More emphasis on
minimizing the error EpPx can be given by minimizing (3.22) with v>1.
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We will now confine ourselves within the scope of this section to define a fit function
for the INDRES model that gives a relation with SCA. Therefore we first irmpose the
restriction Px=X, which implies X'X=I. With this restriction least squares fitting of
the INDRES model could involve the minimization of the product of two
subfunctions trYpErEr and XX EpErX. Because minimization of the second
subfunction 23X EyErX induces the orthogonalization of X and Ey, we could
instead of uZ B Ey just as well minimize (rSeMpMy) ™ = (X MEMEX)™.
The last equation is valid, because X'X=1. Due 1o the same orthogonality restriction
we can split X'E¢E X and X'M ;M X respectively in 2ex'ExErx, and
Zusxs ™MpMpx for each set k and minimize the product (x5 ErErxs) (x5 MpMx s)"1
for each dimension separately. In this way orthogonality of X and Ey is approximated
equally for all dimensions. We propose to fit the orthonormal INDRES model in Jeast
squares sense by minimizing the sum of the raiio's;

2K g EE
. =5y Ky Bop Ry
INDRES: L()SS(X,W;C) wpoed XSkakasg (3,23)

subject 0 X'X = L.

Iy %y 1l
Figure 3.6 Approximation of orthogonality between Ey and X.

In figure 3.6 we have redrawn column vector $(k)2, from figure 3.5 as a
representative column vector of S, With the representative column vectors denoted
by s, my, and e we want to show how the columns of Ey are made as orthogonal as
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possible to the columns of X and My by minimizing for each dimension s and set k
the sum of all squared projection lengths (ex'x5)? of the column vectors of Ey, divided
by the sum of all squared projection lengths (my'x5)2 of the column vectors of My.

The INDRES loss in (3.23) can be elaborated as follows

INDRES: Loss(X, W)

» K m
Eikzl Xs'(XsW(k)sKs'““Sk)(XsW(k)sxs'“'gk)'xsw(kz)s
S=) K=

K

tr 2, (X-SpX WD) (X-SiXWih), (3.24)
k=21

i

with X'¥=I. We take the first line of formula (3.7) for defining a corresponding
SCA loss function

i

SCA:  Loss(X,Wp) PK ~ SCAg(xs.w(k)s)

it

K
ir 2, (X-SpX Wil (X-Si X Wib), (3.25)
k=1

with X'X=1. The relation with the loss function for INDRES in (3.24) is obvious. If
the rows and columns of §y have zero mean minimization of the INDRES loss
function comes down to maximizing the sum of squared set correlations ﬁixs;ﬁk)(s)
between xg and Syxg over all s and &, as we can verify in (3.5).

We promised to prove the residual rule for the INDSCAL models. This rule states that
it is in general not possible to find INDSCAL dimensions X that are orthogonal to the
residuals Ey Vk, neither for the INDSCAL model, nor for the orthonormal
INDSCAL model, where X'X=1. If we prove this rule for the orthonormal
INDSCAL model, it is also valid for the general INDSCAL model, because the two
models have the same solution in the one dimensional case.

Proof: For the orthonormal INDSCAL model we know that the residual rule is only
violated if the INDRES loss in (3.23) and sherefore the SCA loss in (3.25) is equal to
zero. This implies that the SCA fit must be equal o pK and that all squared set
correlations in (3.5) must be equal to 1. It also implies that all squared canonical
correlations of the MCCA method described in (2.20) must be equal to 1 for p
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dimensions, because the MCCA fit function gives the upper bound for the SCA fit
function, as we have shown in (3.12). So perfect fit for the MCCA method is a
necessary, but usnally not sufficient condition to violate the residual rule for the
INDSCAL models. It is clear that perfect canonical fit in p dimensions is a very
special case and will in general not occur, which proves the validity of our residual
rule. §]

3.4.5 Summary of INDSCAL and SCA properiies

Summarising the comparison between INDSCAL and SCA we found that the
INDSCAL solution is dominated by sets with low information spar, that it has a
tendency to exaggerate the differences between the sets, that it is dependent on the
normalizations of Sy and that it can leave distortions of the original data undetected.
The SCA solution is more balanced in the weighting of sets, invariant under different
normalizations of Sy and gives a more complete relation with the original data by
making the residuals as much as possible orthogonal to the x 5. Tt can be expected that
this properiy improves the recovery of true INDSCAL dimensions. In the next section
3.5 we compare the INDSCAL and the SCA solutions in a simulation study. In
chapter 7 the theoretical properties of SCA and INDSCAL are confirmed in an
analysis of Miller-Nicely data.

3.5 Simulation study of INDSCAL compared with SCA

The main purpose of this section is to investigate if the SCA solution improves the
recovery of true INDSCAL dimensions. This improvement could be attained by
making the residuals as much as possible orthogonal to the recovered dimensions.

In order to compare the properties of INDSCAL and SCA we set up a litde simulation
study with 6 individuals or sets and 20 stimuli. As we saw in the previous section
3.4.4, fitting of the orthonormal INDRES model leads to the SCA fit function. In this
study we suppose that each scalar product matrix Sy, is decomposed in a common part
of the orthonormal INDRES model

XWeX' = My, (3.26)
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where X denotes unit orthonormalized dimensions (20x2),
Wy, denotes a 2x2 diagonal matrix with common dimension weights
W(k)s»

and a unique part of the orthonormal INDRES model

YUYy (3.27)
where ¥y denotes unit orthonormalized dimensions (20x2),
Up denotes a 2x2 diagonal matrix with unique dimension weights ug)s.

In the terminology of chapter 4 the true stimulus configuration
Sp=XWpX'+YUpYy' is an external decorposition, because X and Yy can usually
not be writien as a linear combination of Sg. The true common stimulus configuration
XWX' (3.26) has 2 dimensions X, for all 6 sets the same, and positive weights Wy,
on a circle with its centre in point (0,0). The true unique stimulus configuration
YrUrYy' (3.27) has 2 dimensions and is orthogonal to all other true dimensions,
common or unique. The weights Uy are chosen identical to the corresponding Wp.
The common-to-total ratio of each true configuration k is defined by

tr Wi

Cly = Wi+ O (3.28)
With CT=qa, we will refer to CTy=a, Vk.
To each true stimulus configuration Sg we add constructed ervor Fy

Sk + Egp = Sp + Ex(Wr+ UpEy'. (3.29)

We want to approximate the constructed configurations Sp+Ey with recovered
dimensions X WrX' and residuals Ep,

S+ Ep = f?gﬁfk,‘?g + gEk, (3.30)

The recovered dimensions are denoted by X and can be non orthogonal for the
INDSCAL model. It appeared to be most efficient in this simulation study to use a 2
dimensional INDORT solution (3.15) as starting configuration for computing the
INDSCAL solution. The recovered weiglhts Wk for INDSCAL and SCA. dimensions
are computed according to the INDSCAL procedure of Carroll & Chang (1970) for
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fixed X, because the optimal INDSCAL weights Wk minimize tr2pPx'ErErPx of
the INDRES model. This can be verified in (3.22) for v=1. For the SCA dimensions
this implies that they can be derived from X using formula (3.16) of suboptimal
dimension weights. We varied the common-to-total ratio (3.28), CT=1 0.7 04
0.2. The error level of Ey (3.29) was equal to the standard deviation of a unit
normalized random normal variable. We chose error level =0 0.1 0.4 0.7. For each
combination of CT and error level we computed four measures, V, §, M and #2, for
150 constructed configurations:
_ XXX

V MY S
ir X'X

(331
denotes the proportion of variance of the recovered dimensions X accounted for by
the true dimensions X. It measures the recovery of true stimulus dimensions with
rotational freedom. The following measure is the only distance measure. For perfect
recovery & is zero.
Ar G-XY(X-X)1n
6= ¢ D )

(3.32)

denotes the square root of the mean squared difference between all true unit
orthonormalized and recovered unit normalized stimulus scores for p dimensions
(MacCallum, 1977). It measures the recovery of true stimulus dimensions with
unique directions. For the optimal arrangement of true and recovered dimensions with
respect to permutations and/or reflections of the dimensions, see MacCallum, 1977.
In the next iwo measures we use a centring operator J and we concatenate all possible
true interpoint stimulus distances between row 7 and Jjof XW?Z? Vi=j, and for all k
successively in vector d, and all corresponding recovered stimulus distances based on
ﬁ‘@’}c& in vector d.
@y

o (dId)” 3
d'Jda.dya (3:33)

denotes the squared correlation between true and recovered distances across all
stimulus pairs and sets, normalized matrix conditional. It measures the recovery of
true interpoint distances and is also called the index of metric determinacy (Young,
1970).
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2
d'd .
p=0d (3.34)
d'd.d'd
denotes the squared coefficient of congruence between true and recovered distances
across all stimulus pairs and sets, normalized matrix conditional. It measures the

recovery of true interpoint distances with the coefficient of congruence (Tucker,
1951).

3.5.1 Resulis of simulation siudy

In the following tables we present the mean values of the four above mentioned
recovery measures over 150 constructed configurations for each combination of CT'
(3.28) and error level. The INDSCAL and SCA solutions are computed using the
same 150 constructed configurations.

Table 3.1 V: recovery of true stimulus dimensions
with rotational freedom.

Error INDSCAL SCA

level CT: 107 04 02 107 04 02
0 1 1 1 0 1111
0.1 0.98 0.97 0.85 0.01 0.98 0.97 0.97 0.96
0.4 0.90 0.90 0.44 0.05 0.93 092 091 0.87
0.7 0.84 0.82 0.33 0.07 0.89 0.87 0.84 0.79

We did some extra computation in order to find the CT value below which the
INDSCAL solution degenerates with zero error. This threshold was found at
C7=0.36. In table 3.2 the standard deviations of V in table 3.1 are presented. For §
and M the standard deviations will not be given.
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Table 3.2 Standard deviations of V.
Error INDSCAL SCA
level CT: 1 0.7 04 0.2 1 0.7 04 0.2
0 0 0 0 0 0 0 0 0
0.1 0.01 0.01 0.19 0.01 0.01 0.01 0.01 0.01
0.4 0.03 0.03 0.24 0.04 0.02 0.02 0.02 0.03
0.7 0.05 0.06 0.19 0.04 0.03 0.04 0.04 0.08

As we could expect are the standard deviations of V for the INDSCAL solutions
higher near the degeneration threshold C7:0.36.

Table 3.3 &: recovery of true stimulus dimensions
with unique directions (distance measure).
Error INDSCAL SCA
level CT: 1 0.7 04 0.2 1 0.7 04 02
0 0 0 0 141 0 0 0 0
0.1 0.16 0.17 0.39 1.35 0.16 0.18 0.19 0.21
0.4 0.33 0.34 090 1.29 0.28 031 0.32 0.38
0.7 0.43 046 1.02 1.27 0.35 0.38 0.43 0.52
Table 3.4 M: recovery of true interpoint distances,
index of mesric determinacy.
Error INDSCAL SCA
level CT: 1 0.7 04 0.2 1 0.7 04 0.2
0 1 1 1 0 i 1 1 1
0.1 0.88 0.88 0.66 ¢ 0.87 0.86 0.86 0.84
0.4 0.62 0.59 0.14 0.01 0.67 0.64 0.64 0.54

0.7 0.40 0.39 0.05 0.01 0.50 0.51 047 0.34
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Table 3.5 @ recovery of true interpoint distances,
squared coefficient of congruence.
Error INDSCAL SCA
level CT: 1 07 04 0.2 1 07 04 0.2
0 1 1 I 0.17 1 1 1 1

0.1 0.97 0.97 0.86 0.17 097 096 0.96 0.95
0.4 0.88 0.87 0.50 0.21 0.90 0.89 0.89 0.84
0.7 0.78 0.78 0.40 0.22 0.83 0.84 0.82 0.74

3.5.2 Conclusions

The properties of INDSCAL and SCA are evaluated with an exploratory simulation
study. The results for SCA are promising. The SCA fit function almost always gives
a better reconstruction both of the true stimulus dimensions, including its unique
directions, and of the true interpoint distances. It is remarkable that the improvement
can also be significant if there is no unique part in the true stimulus configuration.
These values can be found in the lefi-hand columns of tables 3.1, 3.3, 3.4 and 3.5 for
CT=1. The 'no unique part' improvement is due to the fact that the SCA fit function
minimizes mainly the error projected on o the recovered common dimensions. This
projection reduces the effect of the error on the solution. Another interesting result is
found in the first row of the tables 3.1, 3.3, 3.4 and 3.5 with error level=0. Because
it is dominated by the true unique stimulus configurations of the sets, the INDSCAL
solution is seen to degenerate. In the SCA solution these true unique stimulus
configurations are incorporated in the error, because they have zero projections on to
the recovered dimensions. As the number of dimensions for the SCA solution is
raised above the dimensionality of the true common stimulus configuration the true
unique stimulus configurations emerge in badly fitting dimensions.



Chapter 4

SET VARIANCE WITH SET CORRELATION
CONSTRAINTS OR REFLECTED VARIANCE

In chapter 3 the adjusted method of Set Component Analysis was formulated from
several poinis of view. We repeat this approach for Reflecied Variance methods. (1)
The Reflected Variance methods integrate a set variance and a set correlation part by
maximizing the variance accounted for by set variates and adjusting the set variates
with set correlation consiraings. (2) The Reflected Variance methods project variables
from one set on to another set, project these variables back and then compute principal
components of the reflected variables. (3) By defining reflecting filters, Reflected
Variance methods are related with the filter theory formulated in chapter 2. The
principle of reflected variables is elaborated by defining Reflected Componens Analysis
(RCA) and Reflected Discriminant Analysis (RDA). It will be shown theoretically how
and under which conditions RDA can improve group prediction compared to
Discriminant Analysis (IDA) and Principal Component - Discriminant Analysis (PC-
DA). In a simulation study theoretical results are confirmed. Some multiset and
nonlinear extensions are proposed.

Introduction

In chapter 3 we combined one fir fiunction with the constraint of an adjusting function.
The fit function was the sum of squared canonical correlations and the adjusting
function was improving variance accounted for. In this chapter the roles of the
functions are interchanged and one function slightly changed: We maximize variance
accounted for and improve the squared canonical correlations (not the sum of squared
canonical correlations). This slight change of correlation function already indicates
that we are always dealing in this chapter with two sets of variables. There are only
two additive multiset extensions.

From the geometrical point of view we are maximizing reflected variance (Nierop,
1991) accounted for. Reflected means that we look at the variables through the mirror
of other relevant external information and in this way filter out irrelevant information.
Therefore the constraint of the adjusting 'squared canonical correlations' function is
called reflecting conswraint,
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The integration of set correlation and set variance follows the same lines as in the
previous chapter. The basic method is Reflected Component Analysis (RCA). The
relation with the filter theory in chapter 2 is given in section 4.2. Reflected
Discriminant Analysis (RDA) is formulated in section 4.3 as a special case of RCA
and it will serve as an illustrative method for this chapter. In RDA the external mirror
mentioned above consists of information about the group design. RDA will be
compared with linear Discriminant Analysis (IDA) and Principal Component -
Discriminant Analysis (PC-DA) and it will be shown theoretically how and under
which conditions RDA can improve group prediction. The improvement can
theoretically also be expected in relation to other shrunken estimators in DA like
Campbell (1980), because here the discriminant weights are estimated by ridge
regression procedures. Both PC-DA and ridge regression are hybrid methods based
on compound filters described in chapter 2. The reduced consiant PC-DA filter is
discrete compound filier of a sequential hybrid method and the ridge filrer is a
continuous compound filter of a weighted hybrid method. We will confine ourselves
to PC-DA being representative for hybrid methods with a compound filter. In section
4.5 we give some variations on reflecting the variance. In 4.5.1 we discuss Reflected
Redundancy Analysis and two multiset extensions are briefly discussed in 4.5.2. We
give Multiset Reflected Image Analysis (MRIA) and Multiset Reflected Component
Analysis (MRCA). Section 4.5.3 gives nonlincar extensions of the reflected variance
methods. It is shown why nonlinear reflected variance methods make new fields of
application readily accessible.

4.1 Reflected Component Analysis (RCA)

In this chapter we have two sets of variables, the external variables Hy, with
orthonormal basis U and the variables H, with singular value decomposition
H=P®Q)', selecting only non-zero singular values, We term U the mirror matrix, U
can be equal to Hy in the form of some orthonormal design matrix or extracted from
external variables Hy. We have latent variables X, which are a linear combination of
the variables H.

For the construction of the basic adjusted method of this chapter, Reflected
Component Analysis (RCA), we integrate the maximization of variance accounted for
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with the improvement of squared canonical correlations. Latent variables X, that best
account for the variance of the variables H, can be obtained by maximizing

Fit(X) = r X'HH'X = tr X'SX, (4.1)

with X'X=1 and HH'=8. For the improvement of squared canonical correlations
between X and Hyy we use one of the CCA fit functions. Formulated in the format of
MCCA (2.25) we have

MCCA: Fi(V) =1 V1'Vy + V1P PP PV

¥ “th Ky Kay=V1'Vi=l, and V1=P1"%(1). Omitting the constant term V1'Vi=I, the

“A fit function transiaied in the two sets notation of this chapier is

I RPYV=X"PPUUPPY,

sm—“;

, and V=P, If one of the sets has only one variable, the

wnical correlation is equal to the multiple correlation of this variable with the other
set, For the i impmvemexn of each of the &quam& mumme cmreédmm of the latent

= PUPK,

o
EN

)

fand U = UWU', all have higher squared muliiple correlations wiih the

nal variables Hyj than their respective original variables X. Note that reflection is

bles X in (4.1) and we obtain the Reflected Component Analvsis sﬁ{(“A) fif

ion

(X) = r X'PUSUPK, (4.3)

with X'X=1. Because P defines the orthonormal space of H we have PSIP=S,
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Instead of improving the squared multiple correlations of the latent variables X with
the external variables Hy we can also improve the squared multiple correlations of the
variables H with these external variables. Therefore the resulting reflected variables

PPUUPPH =PPUUH = PUH, 4.4)

all have higher squared multiple correlations with the external variables Hiy than their
respective original variables H. The variables in the space of H are projected on o the
mirror space U, which gives the mirror variables UH. The mirror variables are then
projecied back on to the space of H, which gives the reflected variables. The rank of
the reflected variables is never higher than the rank of U. The size of the images of
the variables after reflection by the mirror matrix U is influenced by the angle of
reflection. This is illustrated in figure 4.1 for two different reflection angles.

% Mirror variablei«-- = Variable
.%‘5@ %“"Q" = Variable \\\ - Reflected variable
sfﬁ N : N E.
’Q U\Q " Refiected variable N H -space
\\: H -space \\:
N N

Figure 4.1 Reflecting variables under different angles.

It is important to bear in mind that the ‘reflected variable' and the 'variable' are
usually not exacily on the same line, but that they are both in the space P of H.
Insertion of the reflected variables (4.4) for the original variables H in (4.1) gives
again the RCA fit function (4.3). From the geometric projections in figure 4.1 we can
infer that the RCA solution can also be found by maximizing the variance of the
mirror variables UH accounied for by latent variables X in the space of FL

4.2 A filter view on RCA

The relation of RCA with the filier theory formulated in chapter 2 is given by defining
the reflecting filter
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RVAR: Qk(d)%): E’k'UkUk'PkQ)/%Pk'UkUk'Pk, (4.5)

For the RCA method (4.3) we insert (4.5) with k=1 and U1=U in 2.1). In section
4.5.2 we shall formulate two other multiset generalizations of RCA.

4.3 Discriminant methods

Reflected Discriminant Analysis (RDA) is formulated as a special case of RCA (4.3).
The RDA method will be elaborated extensively. In RDA the external mirror matrix U
of RCA is specified as an orthonormal group design matrix. RDA will be compared
with other discriminant methods like linear Discriminant Analysis (DA) and Principal
Component - Discriminant Analysis (PC-DA). The effectiveness of group prediction
is assessed with the stability and exactness of group prediction and it is shown
theoretically how and under which conditions RDA can improve group prediction.

The comparison between discriminant methods is greatly facilitated by an object-wise
formulation of the methods with explicit latent variables. To enable this object-wise
formulation we first give in section 4.3.1 a definition of Between-Within
decomposition of variables. In sections 4.3.2 to 4.3.5 we give a description of the
following discriminant methods:

Model Abbreviation Section
Discriminant Analysis DA 4.3.2
Canonical Variate Analysis CVA 4.3.3
Principal Component - Discriminant Analysis PC-DA 4.3.4
Reflected Discriminant Analysis RDA 4.3.5

A summary table with theoretical discussion of properties is provided in section
4.3.6. Two theoretically interesting special cases of RDA are presented in section
4.3.7. In section 4.4 it is shown in a simulation study that the theoretical properties of
the discriminant methods can be demonstrated with simulated data.
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4.3.1 External decomposition: the Between-Within decomposition

The comparison between discriminant methods is simplified by an object-wise
formulation of the methods with explicit latent variables. As a preliminary step we
first give a definition of internal decomposition of the variables H:

H o= H1 + Ho, (4.6}

with PPH1 = Hy,
PPHy =Hy
and Ho'Hy = 0.

Following previous notation the matrix P is derived from the SVD H=P®(Q)', but any
other orthonormal basis wouid also be suitable. The Eckart-Young decomposition is
an exarple of internal decomposition. It always gives orthogonal submatrices within
the orthonormal basis P of H. The decomposition is internal, because the orthogonal
submatrices H1 and Hy can always be expressed as linear combinations of the
variables H. The sum of the rank of Hy and the rank Hy is always equal to the rank
of H. In figure 4.2 we show an exampie of internal decomposition of I with two
variables m and m. Afier substitution of these variables in (4.6) we obtain F = (m,n)
= (my,m1) + (m,n7).

[ Hj-space

P
Wzgﬁ%’ ................ - T EiwspaC@ ;".

e 4 5

Ey-space

Figure 4.2 Internal decomposition of H = (m ,n).
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We observe in figure 4.2 that the decomposing parts H1 = (my,n1) and Hy =
(m,n7) remain in the space of H, which is a plane in this example with two
variables. Within this plane Hy and Hy occupy mutually exclusive subspaces, which
are in figure 4.2 two orthogonal lines.

The external decomposition of the variables H is less restricted than the internal
decomposition and is defined by

H = H1 + Hy, 4.7
with Hp'Hy = 0.

The decomposition is external, because the orthogonal submatrices Hq and H» can
not always be expressed as linear combinations of the variables H. In figure 4.3 we
show an example of external decomposition of H with two variables m and n. After
substitution of these variables in (4.7) we obtain the same decomposition formula as
for figure 4.2, H = (ma,n) = (my,m1) + (mo,n)).

Hyspaciif

S EER

Figure 4.3 External decomposition of H = (m ,n).

The difference with figure 4.2 is that in figure 4.3 Hy and Hy are not restricted to be
in the space of HL. They can be located in mutually orthogonal spaces outside the H-
space. The sum of the rank of Hj and the rank iy can be greater than the rank of F1.
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In figure 4.2 the spaces of Hy and Hy were two orthogonal lines, in figure 4.3 they
are two orthogonal planes.

The Between-Within decomposition is an example of external decomposition of H by

using

G the (nxg) orthogonal group indicator matrix for n objects and g
groups, with G'G=D, a diagonal matrix with group frequencies,

and the projector
G -GG6) ¢ =6pg. (4.8)

The Between-Within decomposition of the variables H is given and elaborated with a
SVD of ihe two orthogonal submatrices

H = GH o+ (I-0G)H
= Hy + Hw
= Pp®pQp' +  PwOwQw'
= PpPp'H + PwPw'H (4.9)

with GH = HB = PBQDBQB'? P@?B'H,
and H'G'H ~ G)H = Hp'Hw = Pp'Pw = 0, but not necessarily with

PPHy = Hp,
and  PP'Hyw = Hy.

Equation Hp=PgPp'H holds, because Py Hw=0. The interpretation of the matrices
Hpy and Hw is very straightforward. In matrix Hy the elements of the variables H are
replaced by their group means, whereas matrix Hyy gives the deviations of the groups
means. In the sequel we will denote the newly defined matrices as

Matrix Referred to as

Hp Between-variables

Hyw Within-variables

Py between-variables space

Pw within-variables space




Set Variance with Ser Correlation Constrainis or Reflected Variance 71

It is important to bear in mind that the four above mentioned matrices can usually not
be expressed as linear combinations of the variables H, as is illustrated in figure 4.3.
After subscript substitution 1=B and 2=W we have a geometric example of the
Between-Within decomposition with Hy = (mp,np), Hw = (mw,nw), Pp=Hp-
space and Pw=Hyy-space.

The Between-Within decomposition of the variables H (4.9) including its
orthogonality restriction implies for the variance-covariance matrix

H'H = HB'HB + Hw'ﬁw =
T =z B pe W E=
2 1} 2 L} 2 1
QP Q =  QpdpQp + QwOwQw =
= HPpPprH o+ HPwPw'H, (4.10)
where T = H'H denotes the total variance-covariance matrix,
B = H'PgPp'H denotes the between group var.-cov. matrix,

and W =HPwPw'H denotes the within group var.-cov. matrix,

With the theory developed so far we know that variants of discriminant analysis based
only on the analysis of B (or rescaled B) usually result in optimizing linear
combinations outside the space of FL. Although in a second step the optimal variable
weights are very ofien applied to the variables of H, these linear combinations of H
are not optimized in the first place to predict group membership. Therefore these
factors will generally be less discriminating. See for instance the method of
Discriminant Principal Components Analysis (DPCA) proposed by Yendle & Macfie
(1989).

4.3.2  Linear Discriminont Analysis

Linear Discriminant Analysis (Fisher, 1936) or Canonical Variate Analysis (Maxwell,
1977, p.97) maximizes the variance accounted for of between group variance divided
by within group variance. Although linear Discriminant Analysis (DA) and Canonical
Variate Analysis (CVA) are often formulated as identical methods, we define DA and
CVA in this monograph slightly different with respect to scaling parameiters. For DA
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we maximize the ratio of between to within sum of squares for g groups on composite
variates and for CVA we maximize the ratio of berween to total sum of squares.

The fit function for DA is reformulated object-wise with latent variables Hag by
substituting for B and W the matrices found in (4.10)

. . _ 2 as'BﬁS » 14 ﬁS.H'EEBPB'EﬁﬁS
DABW. FltBW{A) = %1 as'WﬁS = gﬁ &S'H'P‘VPW'HQS s (4»}.1)

where A p = aj,...ag...8p,  denote the discriminant weights for p dimensions
in descending order as for the value of
DApw(ag).

After maximization of Fitgw(A) with normalization A'WA =¥ gives HA the
discriminant space with between to within normalization. The optimal discriminant
weights ay are the parameters of the discriminant functions Hag. As mentioned by
Maxwell (1977, p.98), the rank of the full discriminant space can be reduced.

4.3.3 Canonical Variate Analysis

Gittins (1985) showed that the DA solution can also be found by maximizing the B/T
ratio instead of the B/W ratio. Only the normalization of the discrirninant space HA is
somewhat different. Maximizing the B/T ratio he called Canonical Variate Analysis
(CV A). For each dimension the squared canonical correlation between the variable
space P and the between-variables space Py is maximized. The fit function for CVA
is reformulated object-wise with latent variables Hag by substituting for B and T the
matrices found in (4.10)

. Ba P oa  HPyPy'Ha
CVAg FitgT(A) = z} ﬁg zl ﬁ»ag;;g»—%swi (4.12)
o= §== L

where  php = ag,....a5....8p  denote the discriminant weights for p dimensions
in descending order as for the value of
CVAg1(ag).

In addition we reformulate (4.12) by using the orthonormal basis P of H. By
inserting Pvy for Hag we obtain
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CVApy: Fitgr(V) = r VP'PPy'PV, (4.13)
with VPPV =V'V =1, for the unit orthonormalized discriminant space
PV =HA.

The unit orthonormalized discriminant space is given by PV and the correlations with
this D-space (sometimes called D-factor loadings) are given by H'PV=Q®V. These
loadings are mostly non-orthogonal. A complete solution of Discriminant Analysis,
where V is a square matrix with V'V = VV' = §, gives a decomposition of the
datamatrix ¥ in the unit orthonormalized discriminant space and the D-factor loadings:

H = PVYV'RQ' = (PVHQDV). (4.14)

At this point we can mould the least squares fit functions of DA and CV A in the form
of a model

Pp=PVAp + K (4.15)

where Ap denotes the loadings of the columns of Py on the unit orthonormalized
discriminant space PV. So both DA and CVA give an optimum prediction of the
between-variables space Py in least squares sense.

4.3.4  Principal Component - Discriminant Analysis

In Principal Component - Discriminant Analysis (PC-DA) a DA is performed not on
the original variables H, but on a reduced rank matrix of ¥. This reduced rank matrix
is constructed by taking the first p principal components of a PCA solution 4.1).
PCA(Z) is maximal for optimal Z = Py, where Py are the first p left singular vectors
from the SVD H = POQ', with ® in descending order and Pp'?p:ﬁ'ﬁmi. As for the
choice of p Yendle & Macfie (1989, page 595) give many tests for determining the
dimensionality of the space produced by PCA. The choice of rank in the dimension
reduction step introduces in fact an extra analysis step with its own problems, which
we will not discuss here. The reduced rank matrix of Hl is given by

ZZH (4.16)

In order to describe the PC-DA model in the same way as we did for the DA model in
(4.15) we need a Between-Within decomposition of ZZ'H. The decomposition is
made by first decomposing Z = Py as we did for H in (4.9),
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Z = ZB 4 ZW
@ KpAglp' + KwAwLw'
= KBKB'Z + KwKw'Z, (4917)

With (4.17) the required Beiween-Within decomposition of the reduced rank matrix
ZZH can easily be made

ZZH = KpKgZZH + KwKwZZ'H. (4.18)
The fit function of PC-DA is obtained by replacing Pg in (4.13) by Kg:
PCDA: Fit(V) = tr VP'KgKpPV (4.19)
with V'V=1L
The corresponding PC-DA model is

Kp =PVAg' +E (4.20)
where Ag denotes the loadings of the columns of Kg on the unit orthonormalized
discriminant space PV.
4.3.5 Reflected Discrininant Analysis
Reflected Discriminant Analysis (RDA) maximizes the following fit function:
RDA:  Fig(V) = tr VP HgHpPV 4.21)
with V'V=1L
The corresponding RDA model is

Hp =PVAE + B (4.22)

where Ay denotes the loadings of the between-variables Hp on the unit
orthonormalized discriminant space PV. RDA optimizes the prediction of the
between-variables Hy in least squares sense, whereas DA optimizes the prediction of
the between-variables space Pg.

To show that (4.21) maximizes reflected variance we substitute G (4.8) for U in
(4.4). The reflected variables in discriminant context are given by
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PGH = PHp. (4.23)

Searching for a discriminant space PV, that best accounts for the variance of the
reflected variables, we obtain the RDA fit function 4.21)

RDA:  Fit(V) = tr VP'(PPHp)(Hy'PPPV = 1r VPHgHpPV.

The maximum rank unit orthonormalized discriminant space PV, of the RDA
solution, is always a rotation of the maximum rank unit orthonormalized discriminant
space PV of a comparable DA solution, if Hyy is non-singular. In matrix notation we
state that PV, = PV4C, with C'C=CC'=1.

Proof. We exclude cases with singular Hyy, because in that case the DA solution
degenerates. The optimal unit orthonormalized V, of the RDA solution (4.21) are
equal to the left singular vectors of P'Hp=PPp®pQp' and equal to the left singular
vectors of P'Pr®y, because Qp'Qp=I. We compute the optimal unit
orthonormalized Vy of the DA solution by maximizing (4.13) and they are equal to the
left singular vectors of P'Py. The left singular vectors Vyand Vg are an orthonormal
basis for both P'Pgdy and P'Py, because Py is a diagonal matrix with diagonal
values >0. This implies that PV, = PV,4C, with C'C=CC'=L. o

If the optimal DA discriminant space PV exists, the optimal C for computing V, with
VgC are equal to the eigenveciors of VyP'HgHy'PV,. In this way the optimal DA
discriminant space is rotated in RDA in such a way that the group or ‘between’
variance accounted for by the successive optimal RDA variates is decreasing, We can
expect that the stability of group prediction will also decrease.

4.3.6 Summary of models and expected properties

In table 4.1 we give a summary of the discriminant models and fit functions of the
preceding sections. The PCA model is also included, because it is needed as a first
step in the sequential hybrid PC-DA model.

The summary table 4.1 makes it easy to compare the different discriminant methods.
We discuss two theoretical properties which are indirectly related to the effectiveness
of group prediction. The first property is exactness of group prediction by filtering
out irrelevant 'within' information, and the second one is stability of group prediction
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by avoiding solutions in spurious regions, i.e. solutions with very small variance
accounted for.

Table 4.1 Swummary of discriminant models.

Name Model Fit function
DA(CVA) Pp=PVAp' + E ir VP PgPpPV
(PCA) Hp+Hw=ZA"+E tr Z'(HpHy' +HwHw "7
PC-DA Kp=PVAK'+ E tr VP'KpgKaPV
RDA Hy =PVAg + E tr VP HgHR PV =

2
tr VP'Pa®pPyP V

with H = POG  =Hp+ Hw,
Hyg'Hpg = B,
Hp = Pp®pQy,
Z = g+ Ly, with Z'Z =1,
and Ly = KgAglp'

If we look at the exaciness of group prediction by filtering out irrelevant 'within'
information DA, PC-DA and RDA all seem to predict only group or ‘between'
information. But if we look at the first PCA step of the PC-DA solution we see that in
making the reduced rank matrix the PCA solution Z can capitalize on within
information if the within variance comprises a substantial part of the total variance. To
make this clear we replaced the matrix H in table 4.1 by the orthogonal decomposition
Hig + Hw. So on the whole, exactness of group prediction is not optimal for PC-DA.

The stability of group prediction by avoiding spurious regions is only effective if the
method in some way capitalizes on the variance of H. In other words the method has
to be dependent on the scaling of the variables. This is the case for PC-DA. RDA
even capitalizes on the variance of the relevant between part of H, but DA turns out
badly in this respect, because it is independent of scale and not interested in variance
whatsoever.
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Table 4.2 Effectiveness of group prediction.

DA PC-DA RDA

Exactness of group prediction: 4 - +

Stability of group prediction: - + +

In table 4.2 we give a summary of the effectiveness of group prediction that can be
theoretically expected with respect to exactness and stability of group prediction.
From this summary we can expect RDA to have more effective group prediction
cormpared to DA and PC-DA.

4.3.7 Six special cases of RDA

Six theoretically interesting special cases of RDA are presented, because they show
the intricate integration of set correlation and set variance in RDA. The six cases are:
The linear independence case for the variables, where the variables of H are not
correlated. The complete rank case for the variables, where nHm has » non-zero
eigenvalues. The 2 group and the » group case. The p=1 and p=g-1 case.

The linear independence case for the variables

RDA gives the same solution as linear DA if all variables are linear independent and
have the same normalization.

Proof. In the linear independent case we have H=cP and without loss of generality
we take c=1. From (4.9) we have the equality Hp=PyPp'H. Substitution in (4.21)

gives
RDA:  Fi(V) = tr VP PPy HH PEr'P Y (4.24)
with V'V =1

After substituting H=P maximizing (4.24) boils down to finding the first p
eigenvectors of P'PgPg PP PRPyP, which is equal to the first p eigenvectors of
PPpPp'P. These eigenvectors also give the solution for the maximization of DA in
(4.13). o
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In general we can say that the RDA and DA solution are equal if all variables are
uncorrelated and have the same normalization and that these solutions can diverge
more if there is more linear dependence between the predictor variables, but this is not
Necessary.

The complete rank case for the variables

RDA gives the same solution as a PCA of the between variables Hg, if ;M has »
non-zero eigenvalues (only possible if mzn). This implies that all within group
variances in the discriminant space PV of formula (4.21) are zero and that the linear
DA solution is degenerated.

Proof. In the complete rank case we have PP'= P = L. As we saw in section 4.3.5
the reflected variables in discriminant context are given by PGH = PHp (4.23). In
this section it was also shown that RDA maximizes reflected variance accounted for
by the discriminant space PV. In the complete rank case after substitution of P=1in
(4.23) this comes down to maxireizing the variance of the between variables Hyg
accounted for by an unrestricted discriminant space PV. 1]

The (nxm) datamatrix H has in many applications of DA many more columns than
rows and in that case the SVD H = P®Q' has usually an orthonormal singular vector
matrix P (nxp) with p=n or, if the columns of H have zero mean, p=n-1 non-zero
singular values. In the n-1 case the columns of P in formula (4.23) can without loss
of generality also be completed with an extra column to 2 full square orthonormal
matrix, because in the -1 case the columns of PGH are the result of two consecutive
projections of H on spaces that fully contain the vector with elements 1 and therefore
the columns of PGH also have zero mean.

The 2 group and the n group case

For g=2, RDA gives the same solution as linear DA.

Proof. For g=2 Hy has always rank one and can be written as hg. This implies that
hip=pp and in table 4.1 we can verify that the models and fit functions of RDA and
DA become identical. i
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For g=n, RDA gives the same solution as PCA.

Proof. For g=n we have G =1 (4.8). In this case the reflected variables are given by
PGH = H (4.23). Because RDA maximizes reflected variance accounted for by the
discriminant space PV, it will in this case maximize tr VIP'HH'PV, which is the fit
function for PCA.,

The p=1 and p=g-1 case

For p=g-1 the optimal RDA discriminant space, is always a rotation of a comparable
optimal DA discriminant space, if Hy is non-singular. The optimal DA discriminant
space is rotated in such a way that the group or ‘between' variance accounted for by
the successive optimal RDA variates is decreasing. We can expect that the stability of
group prediction will also decrease for the respective RDA variates.

Prooj. Because the maximum rank of Hg is g~1, the maximum rank for the optimal
RDA and DA discriminant space we will always be g-1. Therefore we know that for
p=g-1 the discriminant space of RDA and DA has maximum rank. For this condition
the previous statement is proved at the end of section 4.3.5. i

For p=1 we can expect that the stability of RDA group prediction will increase
compared to DA group prediction if the number of groups g increases. This statement
can be derived from the previous 'p=g~1' statement.

4.4 Simulation study of discriminant methods

The theoretical properties of the discriminant methods derived in section 4.3.6 and
4.3.7 can be investigated with simulated data. If the propetties have predictive value
RIDDA must generally give better group predictions than both DA and PC-DA. In the
complete rank case for the variables a comparison between RDA and DA is not
possible, because the DA solution degenerates. In chapter 7 we give a real-life
example of a complete rank case for the variables. The previous section indicates an
increasing stability of RDA group prediction compared to DA, if the number of
groups increases and if the RDA solution is of reduced rank. Therefore we decided to
explore the predictive properties of DA, PC-DA and RDA for 5 groups (g=5) and 2
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dimensions (p=2). Of course this limited simulation study needs to be extended in the
futore.

In section 4.4.1 we discuss the construction of the artificial data, coniaining a true
between-group configuration, a true within-group configuration and an error part. In
4.4.2 we give some measures of recovery of the true between-group configuration
and in 4.4.3 the resulis are presenied. The expected differences in group prediction
are verified by calculating the leaving-one-out error rate for DA, PC-DA and RDA.

4.4.1 Construction of artificial dasa

The artificial data Hay are decomposed in three parts, a true between-group
configuration, a true within-group configuration and an error part.

For the construction of the true object configuration we rewrite the Between-Within
decomposition in (4.9) as follows

H = PpPpQy' + Pw®wQw'
= (Pp@p, Pwdw)(Qp'.Qw"). (4.25)

By taking the matrix (Pp®p Pw®w), with Qp'Qp=I and Qw'Qw=I, as our true
object configuration instead of H we can separate the between and the within part
nicely in different latent variables. In this way we can control the distribution of the
error over the between-variables space Py and the within-variables space Pw. We can
use (Pp®p,Pw®w) for our simulation study, because we still have the equality
PpPp,PwOw)(Pp®p, Pwdw)=HH' with tHH' = tr@% + tr@%v = T = uB +
trW. From (Pp@p,Pw®w) we can derive a lower bound for the number of variables
m of H, because m2(H)rank2((Pg)rank, Pw)rank)max, with (H)gank giving the rank of
H and (a,b)max giving the maximum value of @ and b.

By adding error Ep and E,, to respectively Py and Py we have set up the following
decomposition of the artificial data;

Harr = PpPp.Pw@w) + E = (Pp®p, Pwdw) + (EpdypEyOw) (4.26)

Note that generally the error can not be simulated by omitting E and changing the
values of &g and @y, The error can only be simulated this way if the rank of Hgyy is
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#-1, because the maximum rank of Py is g~1 and the maximum rank of Pyy is n-
g+1.

For Har, we chose 40 objects and 5 groups, with 8 objects in each group. The true
between-group configuration Pg®dy had 4 latent variables with weights @y
proportional t0 5, 4, 2, and 1. This gave a moderate gap between the second and third
eigenvalue. The true within-group configuration Pyw®y, had also 4 latent variables
with weights @w proportional o 5, 4, 2, and 1. Therefore the minimum number of
variables is 4.

Two factors were systematically changed during the construction of the artificial data
Har (4.26). This were the Between-to-total ratio BT and the error level. The
Between-to-total ratio

' B tr (132
BT = L2 = L E— (4.27)

" 2 2
T @k 0l

had the values BT =1 04 0.2 0.1. The diagonal mamces Dy and Dy in (4.26)
were computed as follows: Op=BT “Dgy, and Byy=(1~ BT) Dgip, where Bgyy is
a diagonal simulation matrix with cigenvalues 5, 4, 2, and 1. The error level for Ep
and Ky, is equal to the standard deviation of a unit normalized random normal
variable. We chose error level =0 0.1 0.4 0.7. For each combination of BT and
error level we computed three reconstruction measures for 150 artificial
configurations. Each of the 150 configurations was constructed with a different error.
'The three reconstruction measures are given in the following section.

4.4.2 Measures of recovery

In the simulation study we explored only reduced rank predictions and computed 2
dimensional solutions. The recovery measures were all adapted to this restriction by
dividing each fit measure by the upper bound for two dimensions. In this way we
defined a set correlation DA measure DA2, a set variance measure V2, and a reflected
variance measure RV2. Successively

pa2 =2V zﬁpﬁ ry (4.28)
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denotes the variance of the orthonormal basis Py of the true between-group
configuration accounted for by the discriminant space PV, divided by the upper
bound for a 2 dimensional solution. DAZ2 indicates the exactness of group prediction.

frV E” HH PV ti’ \% 3 (HEHB +HWHW )PV
¢1 + ¢z ¢1 + ¢2

V2 = (4.29)

denotes the variance of the true object configuration (Pp®p,Pw®w) accounted for by

the discriminant space PV, divided by the upper bound for a 2 dimensional solution.

l?% and ¢§ denote the largest two eigenvalues of H'H=T. V2 indicates the stability of

group prediction.

u Ve HBHB'PV
¢%m + %3 2

RV2 = (4.30)

denotes the variance of the irue between-group configuration Pp®y accounted for by
the latent variates, divided by their upper bound for a 2 dimensional solution. d)gm and
¢%2 denote the largest two eigenvalues of HyHp=B. RV2 is a simple integrated
measure for the exactness and stability of group prediction.

For each constructed configuration Hgy (4.26) we computed a DA solution, a PC-DA
solution and a RDA solution. The three measures mentioned above are computed for
each solution. The reduced rank matrix for PC-DA was made by skipping all
components of Haet with eigenvalues smaller than one eigh%h of the total variance of
the true object configuration (Py®p, Pwdw), which is tr(Dp + D).

4.4.3 Resulss

In the following three tables we present the mean values of the recovery measures
DA2 (4.28), V2 (4.29) and RV2 (4.30) over 150 constructed configurations for each
combination of BT and error level. The DA, PC-DA and RDA solutions are computed
using the same 150 constructed configurations.
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Table 4.3 DAZ2: recovery of the orthonormal basis Py of
the true between-group configuration Pp®y,.

=]

Frror level 1 0.4 0.2 0.1
DA: 1 i 1 1
0 BC-DA: 1 1 0 0
RDA: 1 1 1 1
DA: 0.94 0.95 0.95 0.95
0.1 PC-DA.: 0.93 0.88 0.03 0.02
RDA: 0.92 0.93 0.93 0.93
DA: 0.82 0.84 0.84 0.84
0.4 PC-DA: 0.80 0.73 0.19 0.05
RDA: 0.77 0.79 0.79 0.80
DA: 0.73 0.76 0.76 0.76
0.7 PC-DA: 0.72 0.66 0.33 0.09
RDA: 0.69 0.71 0.72 0.71

The resulis for DA2 in table 4.3 show that, as expecied from section 4.3.6, the
solutions of PC-DA degenerate if the proportion of within variance becomes o large.
In that case the solution capitalizes on the within variance in the dimension reduction
step. The differences between DA and RDA are never larger than 5% with respect o
the DAZ function and of course always higher for DA because it maximizes (4.13).

Table 4.4 V2: recovery of the true configuration Pg®p, Pyw®ywy.
=150 fwee tal rati
Ervor level 1 0.4 0.2 0.1
DA: - - - -
0 PC-DA. 1 0.67 0.94 0.84
RDA.: 1 0.67 0.25 0.11
DA: 0.61 0.42 0.16 0.07
0.1 PC-DA: 0.74 0.61 0.70 0.73
RIDA: 0.91 0.61 0.23 0.10
DA 0.54 0.38 0.14 0.07
0.4 PC-DA. 0.62 0.50 0.49 0.57
RDA: 0.72 0.50 0.19 0.08
DA: 0.48 0.34 0.14 0.07
0.7 PC-DA.: 0.50 0.43 0.32 0.43

RDA: 0.60 0.43 0.17 0.08
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In table 4.4 it is shown without doubt that the PC-DA solution capitalizes on the
within variance in the dimension reduction step. As for the comparison of DA and
RDA we find, as expected from section 4.3.6, that the variance accounied for is
remarkably higher for the RDA solution, although the DA function is not much lower
(Table 4.3). This could be expected because RDA avoids spurious regions, whereas
DA is indifferent with respect to variance accounted for. This is also the reason why
the DA solutions for error level zero are not uniquely defined. There are many
solutions possible with a perfect fit for one specific constructed configuration.

Table 4.5 RV2: recovery of the true between-group configuration Pgy.

n=150 Between-to-iotal ratio BT
Error level 1 0.4 0.2 0.1
DA: - - - -
0 PC-DA: 1 1 0 0
RDA: 1 1 1 1
DA: 0.61 0.63 0.62 0.63
0.1 PC-DA: 0.74 0.88 0.03 0.01
RDA: 0.91 0.92 0.92 0.92
DA: 0.54 0.56 0.56 0.55
0.4 PC-DA: 0.62 0.71 0.18 0.03
RDA: 0.72 0.74 0.73 0.70
DA: 0.48 0.50 0.51 0.50
0.7 PC-DA: 0.50 0.61 0.32 0.06
RDA: .60 0.63 0.62 0.58

In RDA the between variance is predicted (4.22). In table 4.5 RDA clearly predicis
the B matrix betier than both DA and PC-DA. The expected improvement of group
prediction can be verified by calculating a measure of misclassification of group
prediction independent of the discriminant method. We have chosen for this purpose
the Leaving-One-Out (L-0-0) error rate for the reduced rank group prediction with
two dimensional discriminant space

_ _ misclassified objects
Looz = total number of objects’

(4.31)

The L-0-O error rate is calculated by omitting one object from the raw data prior o
the discriminant analysis, projecting the object into the resulting discriminant space,
computing the distances to the group centroids, and finally classifying the object with
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respect to the minimum distance. This is repeated for all objects in the raw data, and
the L-O-O error rate is given by the fraction of these objects that are misclassified.
The discriminant space is scaled dimensionwise with the square root of the
eigenvalues maximizing (4.11) and for RDA with the square root of the eigenvalues
maximizing (4.21) (see Maxwell, 1977, p.99). The LOO2 error raies (4.31) are
computed for the same 150 constructed configurations as for table 4.3, 4.4 and 4.5,
For each cell in table 4.6 we give the mean value of the 150 computed LOO2 ervor
rates.

Table 4.6 Mean LOO2: measure of misclassification of group prediction,

n=150 Between-to-total ratio BT

Error level 1 0.4 0.2 0.1
DA: 0.10 0.12 0.13 0.11

0.1 PC-DA: 0.09 0.12 0.96 0.97
RDA: 0.05 0.06 0.05 0.05

DA: 0.29 0.33 0.35 0.34

0.4 PC-DA: 0.28 0.34 0.85 0.92
RDA: 0.26 0.31 0.31 0.30

DA: 0.40 0.45 0.44 0.44

0.7 PC-DA: 0.39 0.43 0.75 0.89
RDA: 0.40 0.44 0.43 0.46

Generally prediction is better for low error levels. The most striking differences
between DA and RDA in table 4.6 are found on the 0.1 error level. RDA group
prediction is better than PC-DA and DA prediction, even for BT=0.1, were the within
matrix W is far from singular. We give the standard deviations for the 0.1 error level.

Table 4.7 Standard deviations of LoQO?2 for 0.1 error level.
n= Betwee ‘
Error level 1 0.4 0.2 0.1
DA: 0.08 0.08 0.09 0.08
0.1 PC-DA: 0.07 0.11 0.03 0.03
RDA,; 0.05 0.04 0.04 0.04

To give a more detailed impression of the differences between DA and RDA, we
show in figure 4.4 the frequency distribution of LOO2 (4.31) for the 150 constructed
configurations with BT=1 and with 0.1 error level. The error rates have a discrete
distribution, because the artificial data have only 40 objects.
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Figure 4.4 Frequency distribusion of LOO2 for DA and RDA.

To investigate on the pairwise difference in group prediction between DA and RDA
for the same 150 constructed configurations with BT=1 and with 0.1 error level, we
show in figure 4.5 the frequency distribution of the error rate of DA minus the error
rate of RDA,
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Figure 4.5 Frequency distribution of LOO2 for DA minus RDA.
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LOO2 difference values of DA minus RDA in figure 4.5 greater than zero indicate that
RDA predicts better than DA. The reverse is true for values smalier than zero. There
is only one constructed configuration of the 150 where DA performs clearly betier
than RDA. In this case the correctly classified percentage is 30% higher for DA
compared with RDA. From the total distribution in figure 4.5 it is obvious that RDA
generally gave a higher percentage correct classification than DA.

Summarising the results of our simulation study we rely most on the differences
found with the Leaving-One-Out method. The L-O-O error rates presented above
indicaie that RDA gives a better group prediction than PC-DA and DA for 5 groups
and 2 dimensions, especially for small amounts of random error.

4.5 Some variations on reflecting variance

The principle of reflecting variance can be used to formulate a variety of new
methods, but it is not yet clear which extensions have practical use. In section 4.5.1
we offer a two sets example and in 4.5.2 some muliiset examples. A promising
extension seems (o be the introduction of nonlinear transformations for the variables
in the reflected variance methods. In section 4.5.3 nonlinear extensions in the line of
Gifi (1990) are discussed and illustrated with Reflected Discriminant Analysis.

4.5.1 Reflected Redundancy Analysis (RRA)
Reflected Redundancy Analysis for predictor set ¢ and criierion set &
RRA:  Fit(X) = & X'PePpScPrlPeX + X'TPpSpPoX, {4.32)

with X'"X=I. The second term on the right-hand side of equation (4.32) gives the
Redundancy Analysis fit function as discussed in section 2.3.1 with Sp=HpHy' for
criterion set k and IPeX = Z, = H T, for predictor set ¢, The left part of (4.32) gives
the RCA fit function as given in (4.3) with §.=8, Pp=U and Po=P. This part
ensures that the predictor space X is indirectly related to the variance of the predictor
set ¢ and thereby can stabilize the solution,
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4.5.2 Multiset Reflected Variance

We give two examples of multiset reflected variance. The first one is Multiset
Reflected Image Analysis:

K
MRIA: Fit(X) =t 3 w};l XP_pSp'PX, (4.33)
k=1

with ¥ =1,

where  Xp = (%1,...,Xg,...,Xp) denote the common latent variables,
WiseorsWheoo s WE denote fixed balancing constants for set k.
Py denoctes the projector on to the space spanned by

all sets with exception of k.

This method is related to Generalized Image Analysis (GIA) proposed by Van de
Geer (1986) with respect io the definition of unique variances for each set. In GIA the
variables Hy, of each set k are decomposed externally in a unique part (i-P_p)Hy, and
a non unique part P_gHy. (For external decomposition, see (4.7) and further.) GIA
maximizes the variance of all Hy, accounted for by %, divided by the variance of the
unique paris (3-P.x)Hy accounted for by x. MRIA maximizes the variance of the non
unique parts P_Hy accounted for by x. The balancing constants wy emphasize the
necessity of an appropriate normalization of the sets (see chapter 2). The second
example of multiset reflected variance in the same notation is Multiset Reflected
Component Analysis:

K
MRCA: Fit(X,Zp)=1t&r 3 WEl Zy XX 'SpXX Ly, (4.34)
k=1

with  X'¥X =1 and Z;'Z; = I, V&,

where  Zj = (Z(k)1,-,%(k)s»2(k)p) denote the unit orthonormalized variates for set &
and dimension s, s0 Zy = HpArp.

In some practical applications it might be interesting to take the dimensionality of ¥
somewhat higher than the dimensionality of Z.
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4.5.3 Nonlinear Reflected Variance

All reflecied variance methods presented in this chapter can be reformulated in such a
way that nonlinear transformations of the variables are optimized. In Gifi (1990) a
general framework is given for such an operation. Three general types of discrete
nonlinear transformations are distinguished: no transformation, monotone
transformation and preserving category membership transformation. The type of
transformation is indicated by the scaling level of the variable, respectively numerical,

ordinal and nominal,
The term 'scaling level' is replacing the misleading term 'measurement level' and is
proposed by Van der Lans (1992) as more appropriate.

Usually the scaling level can be chosen for each variable separately, which gives the
researcher sometimes a small classification problem prior to the analysis. Continuous
nonlinear transformations can for instance be realized by the appliance of fuzzy
coding (see also Van Rijckevorsel, 1987 or Ramsay, 1988). We will show in this
section that the extension of reflected variance methods with nonlinear
transformations opens new fields of application, hitherto not easy to explore with
nonlinear MV A techniques.

We discuss and illustrate the implementation of nonlinear transformations in reflected
variance methods on the basis of the most elaborated method of this chapter: Reflected
Discriminant Analysis. Nonlinear Reflected Discriminant Analysis (NRDA) will be
compared with the nonlinear version of Discriminant Analysis proposed in Gifi
(1990) with the acronym CRIMINALS. We give a slightly deviating definition of
Nonlinear Discriminant Analysis (NDA) to link up with the subsequent definition of
NRDA. In our notation NDA maximizes CVAgT (4. 13) with a different specification
for P B

NDA:  Fit(V) = t&r VIPPpPy'PV, {4.35)

with VPPV=YV'V=I, for the unit orthonormalized discrimainani space
PV=FIDA,

where F(H)  denotes the nonlinear transformed values of H,
P denotes the orthonormal basis of F(H), with FH)=PoQ',
and P denotes the orthonormal basis of GF(H)=F(H)p, see (4.8),
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with F(H)p = Pp®pQp'.

In other words the variables H are optimally transformed on their user specified
scaling level in such a way that Discriminant Analysis of the transformed variables
W(H) gives maximal discrimination with (4.13). The definition of (4.35) seems o
allow only single transformations for the variables H=(h1,....hy,....hg), ie. the
transformations are equal for all p dimensions of PV. Nevertheless we can
incorporate, for instance, a multiple nominal scaling level for variable £ in the analysis
by expanding the datamatrix H in the following way:

H=~E,... H..  Hg), (4.36)
with Hpy = hy for single variables,
and Hy =JG;D k_1/2 for multiple nominal variables,
where Gy denotes an orthogonal category indicator matrix
J=1-10'1)"1 denotes a centring operator.

The orthonormal mairix Hy, is in deviations from the mean by the centring operator J.
For the ‘transformation’ of the multiple nominal variables we define F(Hj)=H;. This
non standard incorporation of multiple nominal variables in NDA (4.35) is necessary
to make the step towards a comparable reflected variance method less complicated
with respect to the definition of an orthonormal basis for F(H). With NDA we have
only one iransformed datamatrix F(H) for all dimensions, whereas the Gifi
CRIMINALS definition would give different transformed datamatrices for each
dimension in the case of multiple variables.

The nonlinear version of RDA (NRDA) maximizes RDA (4.21) with another
specification of the between variables.

NEDA: Fit(V) = tr VPF(H)gFH)p' PV 4.37)
with V'V=I, for the unit orthonormalized discriminant space PV = F(HDA,

where F(H)p denotes GF(H), which are the between-variables of F(E).

In other words the variables H are optimally transformed on their user specified
scaling level in such a way that Reflected Discriminant Analysis of the transformed
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variables F(H) gives maximal discrimination with the RDA fit function (4.21). The
above mentioned incorporation of multiple nominal variables (4.36) simplifies the
definition of the orthonormal basis P of the transformed variables FED.

The merits of NRDA compared with NDA can be assessed in the theoretical
framework of this chapter. In the complete rank case described in section 4.3.7 the
DA solutions are not uniquely defined. This situation for instance occurs when the
datamatrix H has many more columns than rows. With NDA the non unique
solutions will occur even more frequently due to the increase in degrees of freedom.
The category expansion for multiple nominal scaling level (4.36) illustrates the
possibility of a drastic increase in rank. A nonlinear version of PC-DA for the
complete rank case would be maximizing in the first step a non adequate fit function
as outlined in section 4.3.6. NRDA on the contrary is able to handle the complete
rank case without the above mentioned disadvantages. It can find optimal
transformations of the variables for separating different groups in many practical
situations where NDA breaks down. In chapter 6 we provide an algorithm for
computing an optimal NRDA solution. In chapter 7 we give a real-life application of
NRDA.

Summarising this chapter we developed a theoretical framework for reflected variance
methods. We have shown that RDA can improve group prediction compared to DA
and PC-DA. Nonlinear prediction in the Gifi (1990) framework with a relatively large
number of variables is now possible with NRDA. The same properties are expected
for other reflected variance methods like RCA and noulinear RCA. This has to be
explored in future research.






Chapter 5

DIRECTED CORRELATIONS AND
PARTIAL LEAST SQUARES

In this chapter a new multiplicative hybrid method is formulated that maximizes the
product of two complementary fit functions, a local and a global MV A funciion. The
local function gives a multiset alternative for maximizing variance accounted for. The
global function maximizes correlations as formulated in chapter 3. These adjusted
correlations are called directed correlations and are embedded in a multiset path analysis
framework utilizing primary and secondary predictions. The product function that
globally maxinizes directed correlations and locally increases set variance as much as
possible is called Lifted Directed Correlations (LDC). LDC is able to describe many
existing MVA methods, hybrid and adjusted methods. It gives one fit function for
cyclic hybrid methods like the basic and extended Partial Least Squares (PLS) method
of path modelling, Consensus PLS and PLS Hierarchical Components.

Introduction

Defining a product of two functions is also applied in a method called projection
pursuit. By definition, projection pursuit searches an optimal projection by
maximizing (or minimizing) a certain objective function or projection index. For an
overview of projection pursuit see Huber, 1985. Friedman & Tukey (1974) describe
a projection index, which is a product of a local and a global function. The
discrimination of local versus global is formulated by defining local functions
sensitive for local groups of objects versus a global function influenced by all objects
in an equal way. In this monograph the concept of a global and local function is
always conceived within the context of multiset analysis. A global fit function is
maximized over all sets interrelated and the (sub-)solution for other sets can change if
one of the sets is changed, while a local fit function gives in principle a maximum for
each set separately, invariant under changes of other sets.

In section 5.1 two different formulations are given of multiset Local Reciprocal PCA
(LRPCO and LRPCV) together with Global Reciprocal PCA (GRPCA). The
properties of the global version give an impression of the properties of the local
versions in a hybrid context. In GRPCA the solution can never be dominated by one
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set with a very high variance accounted for because each set is required to have some
substantial contribution to the sclution for each successive dimension. In section 5.2
we describe the global fit function of Directed Correlations (DC). Therefore we first
give an introduction to the SUMCOR fit function and to the concept of a condensed or
tangent variate.

Section 5.3 combines the local function of section 5.1 (LRPCV) and the global
function of 5.2 (DC) in one product function called Lifted Direcied Correlations
(LDC). The properties of LRPCV incorporated in LDC are discussed. In order to
exiend the range of methods that can be described with LDC, we introduce the
concept of primary prediciion and regression variate. We show how LDC can be nsed
io fit path models with primary and secondary predictions. A general algorithm is
presented for LDC in section 5.3.6. With this algorithm we can show the relations of
LDC with many other methods. These relations are established by comparing the
algorithmic flow. Especially for PLS methods this is a necessary approach, because
they are usually only defined by linear equations and not by an overall fit function.

In section 5.4.1 relations of LDC with many other methods are discussed. At the
same time we give for all methods LIDC path diagrams and show how to turn these
path diagrams into specific LDC fit functions. In this way we offer a criterion for
Wold's basic PLS method of Soft Modelling (Wold, 1982) and the extended basic
PLS method proposed by Lohmoller (1989) as Latent Variable Path modelling.
Despite the lack of a 'hard’ scalar criterion the PLS system of path modelling has been
used for many years, especially by chemometricians. It offers many statistical
advantages compared with other path modelling systems like Lisrel (see Fornell &
Bookstein, 1982). With the LDC fit function the 'soft' PLS system is made 'hard'
and maybe this will give the method a greater impact. We think this will add a
valuable instrument o the data-analysis tool-box for many researchers.

Apart from the general PLS sysiem of path modelling we elaborate on some specific
PLS methods in more detail. We give the LDC formulation of Consensus PLS
proposed by Geladi & Mariens (1988), the PLS Hierarchical Components method
(Wold, 1982), the PLS! regression method with a PLS1 continuum extension of
Lorber, Wangen & Kowalski (1987) and the relation with Continuum Regression
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proposed by Stone & Brooks (1990). The reflected variance methods of chapter 4 can
also be brought within the LDC framework and from the corresponding LDC path
models arises an interesting two sets PLS method. Last but not least we show that Set
Component Analysis of chapter 3 is an example of a DC path model. We conclude
this chapter in section 5.5 with a theoretical comparison of LDC and DC.

5.1 Global and local formulation of reciprocal PCA

We define a global version of reciprocal PCA followed by a local version. In that
manner this section provides us with a simple example of a global and local MVA fit
function. At the same time the global version gives an impression of the properties of
the local version in a hybrid context. Furthermore, we apply deflation as introduced in
section 2.2.4 in order to guarantee a substantial contribution to the solution for each
dimension.

A global formulation of reciprocal PCA for multiple sets is described by maximizing
the following global reciprocal PCA fit function

GRPCA: Fit(x) = 5\ (5.1)
& ox'y
E A,
Parl s 'Srx
where X denotes the common latent variable.

Successive dimensions can be computed by deflating the matrices $y, according to
S(k)s = S fors =1, Yk
Ste)s = (b-xg1%5-108 ()51 (F%5-1%5-1") fors = 2,...,p. Yk

The emphasis of the GRPCA solution is not so much on maximizing the total variance
accounted for, but on avoiding for each set k a very low variance accounted for, Each
set k is required to have some substantial contribution to the solution.

A local formulation of reciprocal PCA for multiple sets is achieved by introducing in
(5.1) for each set the local unit normalized linear combinations zy, = Fiyty, instead of
x. The local reciprocal PCA fit function should then be
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LRPCO: Fit(Z) = b |, (52)
Lk 2k

oy Zk'SkZk

where Z = (z1,...,2L,...,2k) denote the unit normalized set variates,
with zp=Hpty and zp'zp=1, Yk
and £ = (t1',....8,....tx") denotes a vector with X gmy variable weights,

For reasons to be explained in section 5.3.4 we describe another slightly different
version of local reciprocal PCA. In (5.2) we have in fact an objeci-wise LRPCQ
formulation when we look at the variance of Hy, accounted for by z. In the following
variable-wise LRPCY formulation we ook at the variance of Hy accounted for by .

. 1 1
LRPCV: Fit(t) = X = T (5.3)

Z W;Qi_ift_lfmm-
= ty Hy Hpty

with the same notation and normalization as for (5.2). Therefore zyHpHyzp=1,
k.

Successive dimensions in (5.2) and (5.3) can be computed by locally deflating the
mairices Hy according to

Hk)s = Hy fors =1,
H)s = T-2(k)s-12(k)s-1 YV (k)51 for s = 2,....p. Vk (54)

The deflation is local, because z)s—1 is specific for each set separately, while x;..j in
the deflation for (5.1) is the same for all sets. Due to (5.4) we will always find
orthogonal variates in successive dimensions.

The solution of LRPCO and LRPCYV is also local for t, because t defines different
variates zy for each set, whereas the solution of this variates is not related 1o the
content of the other sets. Analogous to the properties of GRPCA we can expect that
the LRPCQO and LRPCYV fit functions, put in a global context in a hybrid method,
introduce for the hybrid solution the tendency never to be dominated by one set with a
very high variance accounted for and to have some substantial contribution of each set
to the solution for each dimension. Maximization of (5.2) and (5.3) with (5.4) makes
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z(k)s equal to the eigenvectors of Sy with the largest p eigenvalues in descending
order. By combining the local MV A functions with a global fit function we can obtain
less trivial solutions. In section 5.2 we discuss a very good candidate for making
such a hybrid method.

Finally, regarding the difference beiween global and local MV A functions, it is
important to notice that having in principle different variates for each set is a
necessary, but not sufficient, condition for a MV A function to be local. Crucial for a
MVA function to be local is the property of having in principle independent solutions
for each set. If there is some slight interrelation we are already dealing with a global
MVA function.

5.2 The adjusted method of Directed Correlations

The global fit function to be combined in this chapter with LRPCV is the Directed
Correlations (DC) fit function. The adjusted method of Directed Correlations is build
up analogous to the SCA method in chapter 3. We integrate set correlation and set
variance. Therefore we maximize a weighted sum of set correlations between pairs of
adjusted set variates. The sum of set correlations is the SUMCOR fit function (Horst,
1961) and the set variates with improved variance accounted for are called condensed
variates. In section 5.2.1 and 5.2.2 we introduce respectively the SUMCOR fit
function and condensed variates. In section 5.2.3 we construct the Directed
Correlations fit function by joining the preceding two sections.

5.2.1 The SUMCOR fit function

The SUMCOR fit function as described by Horst (1961) maximizes the sum of the
correlations between all possible combinations of set variates

K K
SUMCOR: Fi(Z) = ¥ § zp'z; = 1'R1, (5.5)
k=] fel

where Z = (z1,...,2k,...,2x)  denote the unit normalized set variaies,
with  zp = Htg, Yk
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1 denotes a column vector of appropriate size with
elements 1,
and R=2"Z denotes a (KxK) symmetric correlation matrix.

Local deflation is according to (5.4). SUMCOR(t) would be an alternative
formulation for indicating the unknown parameters of (5.5). Although we have
different variates for each set and local deflation, SUMCOR is a global fit function,
because (5.5) is maximized over all seis interrelated and the solutions for variates of
other sets can change if one of the sets is changed. Before constructing the Directed
Correlations fit function by multiplying the elements of R in (5.5) with weighis we
need to explain the concepts of condensed variates and secondary prediction.

5.2.2 Condensed variate for secondary prediction

In principle the condensed variate is equal to the improved set variate defined by

(3.4). Without the indices for the dimensions we obtain zp=Sx(x'SSx) %
Applied to the correlations in (5.5) we have three adjusted correlations,

2l wg=2 Sz SiS k),

2 zi='S (e S 1S ) M2,
or  (u'SSm) PurSSenaiSiSe) (5.6)

The adjusted correlations are called directed correlations. The adjusiing set variate we
call the pivot variate and the adjusted variate we call the condensed variate. The third
directed correlation in (5.6) is in fact adjusting in two directions. Therefore the set
variates are in this case both pivot and condensed variates. In that case we refer to the
set variates as condensed variates. The pivot and condensed variates are linear
combinations of respectively the pivor set of variables and the condensed set of
variables. The condensed variate zp and matrices R, which contain directed
correlations, will always be indicated in outline. The properties of the condensed
variate are now elaborated.

A condensed variate is a linear combination of a set of variables that can condense the
set variance information in such a way that it can replace the whole set with respect to
some pivot variable. The spatial position of the condensed variate is such that the
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variance of all the variables of the condensed set accounted for by some pivot variate
is exactly the same as the variance of the condensed variate accounted for by the same
pivot variable, For this equality to be valid we require that the variable weights of the
condensed variate are unit normalized. The process of predicting variables through an
condensed variate we call secondary prediction.

A K)b
Pivot variate x

Condensed variate z,
oy xS’
Sk X(X'Skx)muz

oy

G\t .y

Figure 5.1 Pivot variate % and condensed variase zy.

In figure 5.1 we give a geometric example of an pivot variate x and a condensed
variate z; for a set Hy with rank two. In this example the pivot variate x is located in
the plane of the singular vectors pg and pp of Hy=(pa,pp)PpQr' with singular values
¢, > ¢p. The construction of the condensed variate is made on top of figure 3.1 of
chapter 3, where an ellipse through the eigenvalues @% and c,?)% was drawn. To facilitate
the introduction of condensed and pivot variables at a later stage we extend matrices
and vectors with subscripts k. We call a variate Hyty with unit normalized variable
weights, t'tz=1 Yk, a unit weights variate. All possible unit weights variaies form a
hyperellipse and in our simple rank two example this is an ordinary ellipse through
the singular values ¢, and ¢@p. If we take some fixed pivot variate x in any direction
then the variance of Hy accounted for by x is given by the squared length of the
largest projection of the hyperellipse on to this pivot variate x. There is exactly one
point where the hyperplane orthogonal to the pivot variate x touches the hyperellipse.
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The line from the origin through this tangent point determines the unit normalized
condensed variate z;. In other words, geometrically the condensed variate can also be
called the tangent variate. We now show the relation between the variance of the unit
weights condensed variate accounted for by the pivot variate x and the variance of Hy

accounted for by x.
We emphasize that the variance accounted for is defined by the squared sum of the
projections of the variables or variates on 1o x and not by taking the squared length of
some vector on the outer ellipse in figure 5.1.

Definition 5.1. The variance of condensed (or tangent) variate Htr with unit
normalized variable weights accounted for by the pivot variate x and the variance of
Hy accounted for by x are exactly the same.

Existence and uniqueness. First we find the largest projection of the hyperellipse
described by the unit weights variates Hyty, on to the pivot variate x. This implies that
we have to maximize x'Hy$y, for fixed pivot variate x with x'x=1 and free parameters
ty with restriction tx'tz=1 Vk. By applying the Cauchy-Schwarz inequality on the
non fixed parameters of x'Hyty we know that (X'Hk%k)zﬂ(x'skx)(‘ik'ﬁk)ﬁ(x'Skx),,
The maximum of x'Hyt is reached if (x'Hktk)Zz(x'Skx) and therefore the optimal
value for tszk'x(x'gkx)ml/z. The unit weights condensed (tangent) variate is
known by substituting the optimal value for t in the unit weights variate Hyty, and we
obtain Skx(x'Skx)mUZ. In figure 5.1 we see that the unit weights condensed variate
Skx(x'Skx)wl/ 2 s really a tangent variate. The variance of this variate accounted for

by the pivot variate x is (X‘SkX(x'SkX)“‘l/z)z

=x"Sgx, which is equal to the variance
of Hy accounied for by x. The direction of the condensed variate is uniquely defined
by the projection of x on to Hy, which is PyPy'x, and the set variance structure of

Hyp. a

For fixed pivot variate x the condensed variate with unit weights normalization is a
good candidate for replacing all variables of set k. The unit normalized condensed
variate zkmSkx(x'SkSkx)“l/z with zp'zg=1 Yk, (see figure 5.1), has also a unique
direction related to the projection of the pivot variate x and the set variance siructure
of Hy. The condensing property of the condensed variate is invariant of the sign of
vector Skx(x'SkSkx)_llz and therefore zkzz%:Skx(x'SkSkx)wl/ % s 10 be preferred in
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this respect. In the next section we introduce the condensed variates zx in the
SUMCOR fit function in order to obtain Directed Correlations.

5.2.3 Directed Correlations

By combining the theory of section 5.2.1 and 5.2.2 we change the ordinary Pearson
correlations in the SUMCOR fit function into 'directed’ correlations. A directed
correlation is a Pearson correlation between pivot and condensed variates as specified
in section 5.2.2. The correlations are called 'directed’, because the condensed variate
is an intermediate variate of some set of variables in such a way that the pivot variate
can predict the variables by predicting a properly normalized condensed variate, We
already referred to this as secondary prediction. There is a prediction path possible
from pivot variate passing through the condensed variate and ending with the set of
variables. In section 5.3.3 on path diagrams we will give more details.

The dual nature of directed correlations implies that each variate can have two roles.

The same variate can be an pivot variate and it can be a condensed variate.
Or a regression variate, which is a condensed variate of an orthonormal set of variables,
see section 5.3.2.

We refer to this phenomenon by saying that a variate can be in pivot or in condensed
(c.g. regression) mode. Another aspect of the dual nature of directed correlations is
that a variate can be the pivot variate of many different condensed variates, but that a
variaie can be in principle only the condensed variate of several pivot variates if the
projections of the pivot variates on the condensed set have exactly the same direction.
The last statement is true because the condensed variate of a certain set of condensed
variables is uniquely defined by the by the direction of these projected pivot variates.
In practice this will usually not occur. If one wishes to have a condensed variate
based on many sets, this can be achieved by taking a linear combination of several set
variates and using this lincar combination as pivot variate. As a result the condensed
variate is indirectly determined by several (sub-) pivot variates. With this slightly
extended concept of pivot variates we can now construct the one dimensional Directed
Correlations fit function by adapting (5.5) as follows

K K
DC: Fil(Z,W) =3 3 wizp'z; = 1'(R«W)1 (5.7)
=]
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where R =2Z'Z denotes a (KxK) symmetric correlation matrix
with directed correlations,
Z = (21,...,25,...,2g) denote unit normalized pivot variates,

zy = Hpty, with a subset Yk

Z = (Z1,...sZk,...,2K)  denoting condensed variates,

2k = TSz a((Stzpe) Sizns) s Vke Iy,

Bl = lg% WEIZ], and Jy the index set of Z with condensed variates,

where W denotes a matrix with weights or function values

wyy and with diagonal elements equal o zero,
Wpiag=0.

Wpesign denotes a binary matrix with the design pattern of
non-zero (1) and zero (0) weights of W,

* denotes the Hadamard (elementwise) product.

If appropriate the sum of squares of the weights W have to be normalized 10 a
constant value, ir W'W=c. Successive dimensions can be computed by locally
deflating the matrices Hy according to (5.4) or by user specification. We have to
emphasize that z; and zy are just the same variates in different modes. The variate zy,
is in pivot mode and zy is in condensed mode. Therefore DC(t, W) would be a more
efficient, but less clear formulation for indicating the unknown parameters of (5.7).
The essential mathematical difference between zy and zy is found in the weighied
determination of the condensed variate 7y by the pivot variaes 21,...,25,....2g

2t = £z ((Skzre) Sears) 2, Vke J,

K
with Zhs = 3 WEIZ], and Jy, the index set of condensed variates, (5.8)

If wrpswik for one combination of (k,f), then reversion of the role of z and z; can
already give a different result for the determination of the condensed variaie in (5.8).
Restriction (Vke Ji, the index set of condensed variates) implies that the condensed
variate k is only well defined if there is at least one non-zero element in row k of the
weight matrix W. Using the more efficient parameter formulation with DC(t,W) as
suggested above and the same notation, DC in (5.7) can be written as
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DC: Fit(e, W) = 1'(R«W)1, (5.9)
where t'= (t1',....4',...,tg") denotes a vector with Y gmy variable weights.

By now we have formulated the Directed Correlations fit function. The function is
equal to a weighted sum of directed correlations. DC is a local fit function if we
require the matrix W to be diagonal. We always choose the matrix W with Whiag=0,
otherwise than diagonal and therefore can conceive and apply DC as a global fit
function.

5.3 Lifted Directed Correlations

After all the preparations in the preceding sections we can now elaborate on a product
function that can describe a wide variety of methods. The function is Lifted Directed
Correlations and it is constructed in section 5.3.1 by globally maximizing the directed
correlations of (5.9) and locally raising or lifting the variance as much as possible
with LRPCV (5.3). The properties of LRPCV incorporated in LDC are discussed in
section 5.3.4,

In section 5.3.2 we introduce the regression mode as a third mode next to condensed
and pivot mode, because it extends the range of methods that can be described with
LDC (5.10). We also introduce the concept of primary prediction. In section 5.3.3 we
show how LDC can be used to fit path models with primary and secondary
predictions and many weighting modes for the variates. We describe these weighting
modes consisting of different types of weights (like proportional function weights)
and different weighting functions.

Although we discuss all algorithms of this monograph in chapter 6, we make an
exception for LDC in section 5.3.6. The reason for this special treatment is that we
want to discuss in section 5.4 the relations of LDC with other methods. These
relations are given by comparing the algorithmic flow. Especially for most PLS
methods this is a necessary approach, because they are usually only defined by linear
equations and not by an overall fit function. In order to derive linear equations and an
algorithm for LDC we first reformulate LDC in section 5.3.5.
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5.3.1 Combining global DC with local LRPCYV

The Lifted Directed Correlations fit function is given by the product of DC (5.9) and
LRPCV (5.3)
T'(R+«W)1

LDC:  Fit(e, W) = -
t'tK

) (5.10)

where R =7Z'Z denotes a (KxK) symmetric correlation matrix
with directed correlations,

Z ={(z1,...,2k,...,28g) denote unit normalized pivot variates,

zx = H Y, with a subset Vk

Z = (z1,...,2k,...,2g)  denoting condensed variates,

zk = £8 Parn(SFern) S farn) %, Vke Jp,

K
Zhs = 3, WERIZ], and Jy the index set of Z with condensed variates,
where W denotes a matrix with weights or function values

wiy and with diagonal elements equal to zero,
WDiag“;()s

Wpesign denotes the binary design paitern of W.

where t' = (t1',...,8',...,tg") denotes a vector with Jgmy variable weights,
HY = E’k(b%(} kS where « in this context is short for oy Yk

If appropriate the sum of squares of the weights W have to be normalized to a
constant value, ir W'W=c. Local deflation is according to (5.4) or user specified.
Constant K adjusts the normalization of LDC to the normalization of DC, as will be
explained in section 5.3.2.

In fact we introduced the superscript og for the condensed and pivot mode variables
HY = P@Z‘th with Hy = Py®pQy' as usual. For convenience and without loss of
generality we defined oy also for set k with only pivot mode variables. For
convenience, because it offers an uniform treatment of pivot and condensed mode
variables. Without Joss of generality, because the pivot variates are in principle only
restricted to be in the space of the corresponding variables and therefore invariant
under nonsingular transformations within sets. In section 5.3.2 we will explain how
oy, gives the possibility of introducing a special mode, namely the regression mode.
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5.3.2 The regression mode for primary prediction

The regression mode is introduced next to the condensed and pivot mode, because it
extends the range of methods that can be described with LDC (5.10). We also
iniroduce the concept of primary prediction. For agp=1 we obtain the condensed
variates kaigkx(x'SkSkx)muz, as described in section 5.2.2 and the condensed
variates in (5.8) specified for multiple pivot variables. For og=0 we have the
regression mode and regression variates. In that case Hngka' and ngpkm: So
the mairix Hy is replaced by an orthonormal basis Hg and Sg is replaced by the
projector PrQr'QrPy'=PrPr". Any other orthonormal basis would also be fine, but
Hg simplifies the notation compared 1o H}O Geometrically this means that in figure
5.1 the ellipse is replaced by a circle and in the general case the hyperellipse is
replaced by a hypersphere. The tangent variate is now found by simply projecting x
on to the space of Hy. The multiple regression weights of Py for predicting x are
(PrPr) 'Pp'x=Py'x. The resulting regression variates are

:zkm:tpk?k'x(X'E?’kg”k'x)mllz and for multiple pivot variates
zt = 8 Paa((SPana) SR 2, Viee Jg,
K
with e = 9 WEIEB], and Jy the index set of condensed variates, (5.11)

In PLS literature (see section 5.4.1) the condensed mode (op=1) is called ModeA,
outwards directed, or factor mode and the regression mode (0g=0) is called ModeB,
inwards directed, or regression mode. In section 5.2.2 we called the process of
predicting variables through an intermediate variate secondary prediction. The
condensed mode in LDC (5.10) results in secondary prediction, because the variance
of the seis accounted for by the pivot variates is lifted locally as much as possible by
LRPCV. This is shown in the section 5.3.4. The prediction is directed from the pivot
variates towards the variables of the condensed set. The regression mode in LDC
(5.11) results in what we call primary prediction. In this mode the prediction direction
is reversed. The regression variates predict as well as possible the (weighted sums of
the) pivot variates. If we fit a path model with only primary predictions for all
variates, then ¢'t=K and consequently we obtain the same resulis for DC and LDC.
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5.3.3 Path models and weighting mode

Recursive and non-recursive path models can be fitted with Lifted Directed
Correlations. In section 5.4 we will give many examples. In this section we give
some general principles and possibilities. For fitting a path model with LDC we need
a path diagram which specifies the (hypothetical) design and mode of the relations
between the set variables and latent variates, and the design and mode of the weighted
sum of pivot variates.

For each relation berween variases and their corresponding set variables we must first
specify which variables are linked to which variates (PLS outer design matrix).
Secondly the kind of prediction has to be chosen by specifying the mode of the
variates. For primary prediction we have the regression mode with og=0 (PLS mode
A) and for secondary prediction the condensed mode with og=1 (PLS mode B). A
condensed variate in LDC predicts the set variables and is at the same time being
predicted by an pivot variate.

LI
s
Xmmmwzkmm»&h(k)z X““”wzkwﬁk
by

Figure 5.2 LDC path diagram for pivot variate x and condensed variate z,.

Figure 5.2 gives a prototype of the arrow configuration around a condensed variate
zx, for set Hy, with three variables )1, bz and hgy)1. The right hand diagram gives
a more abstract contracted illustration of the left hand diagram.

A regression variate in LDC predicts the pivot variate and is a linear sum of the
variables of the corresponding set.
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Figure 5.3 LDC path diagram for pivot variate x and regression variate zy.

Figure 5.3 gives a prototype of the arrows around a regression variate zj with a
contracted illustration on the analogy of figure 5.2. From this point on we will use
only diagrams with contracted illustrations.

The weight matrix W is a combination of a weight matrix Wpegign and a weight
mode. The design for the weighted sums of the pivot variates is summarised in the
rows of matrix W pegign. Figure 5.4 gives an example of the LDC arrow
configuration around a condensed variate with two pivot variates xj and xo.

X1 .
U <
- ﬂ ZRM,Q,EEIC

Xy~

Figure 5.4 Condensed variate 7y, with pivot variates %y and %7.

The binary matrix Wiesign i8 more or less equivalent with the command design
matrix in PLS and it specifies in principle the pattern of adjacent latent variables in the
path model with non-zero (1) and zero (0) weights. As for the kind of prediction
between the variates special modes are defined for the weighted sums of the pivot
variates. The mode of the weights is defined by the type of weight and its function.
We discern three type of weights: the fixed weights, the proportional function weights
and the function weights. The fixed weights are parameters that always remain
constant. The proportional function weights are proportional to the values of a
multivariate weight function. The optimal proportional function weights remain
proportional to their corresponding weight function value if the fit function is
maximized with these weights fixed. The optimal solution can be found by
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normalizing the sum of squares of the weighis, (tr W'W) to some constant value. The
Junction weighis are equal to their weight function value.

Several functions can be chosen for the proportional function weights and function
weights. The combinations of weight function and type of weight result in many
different weighting modes. All PLS methods we have studied used proportional
function weights. In the Basic PLS method described by Wold only one weight
function and therefore one weighting mode is used for W. In the Extended PLS
method Lohmoller adds two other weight functions and discerns three 'inner
weighting modes'. They will be discussed in section 5.4.1.

Usually the weight design matrix W pegjgn is the same for all p successive
dimensions, but in principle a different design can be chosen for the respective
dimensions. Finally we mention the possibility of defining an ancillary set of latent
variates as if they are manifest variables. For this ancillary set a condensed or
regression variate can be established.

5.3.4 Properiies of LRPCV incorporated in LDC

In section 5.1 we presented an object-wise LRPCO and a variable-wise LRPCV
formulation of local reciprocal PCA. The properties of the local function LRPCV are
influenced by the symbiosis with global DC in LDC. We will now examine the
properties of incorporated LRPCV. In LRPCO we looked at the variance of Hy
accounted for by unit normalized variates zy. In LRPCV we looked at the variance of
Hy, accounted for by variable weights . In incorporated LRPCV we add to this last
property that we look at the variance of Hy, accounted for by variates somewhere
between the condensed variates zyp and the weighted sums zy (5.8) of the pivot
variates zy,...,z},...,zg. By maximizing locally the variance of Hy accounted for by
variable weights ¢ we also enlarge the variance accounted for by the weighted sum of
the pivot variates. Formulated mathematically we state that

Fity ppco(zr)<Fit gpev(zi)SFit rpco(zr), (5.13)

where Fity gpco(zes) stands for
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LRPCO: Fit(zjs) =5 Zi T
* *

r=1 Zk*'Ska;

(5.12)

with notation as usual. In fact we already make (5.2) global by replacing the local
variates zy by the weighted sums zys. The definition of LRPCO(zy) is similar.
Equation (5.13) needs some further exploration.

In our investigation of the properiies of incorporated LRPCV we assume that all
variates are of dual nature. This means that all variates are in pivot mode and in
condensed (or regression) mode. This assumption applies for all methods discussed
in this monograph. The restriction zk:ﬁgkzk*((Skzk*)'Skzk*)“w in (5.10) implies
for the variable weights &k*ziﬁk'zk*((gkzk*)'Skzk*)“ll 2. Substitution of these
weights in LRPCV (5.3) gives an impression of incorporated LRPCV
1
K aps'Spais
k=1 Zh'SESpzgs

LRPCV: Fit(zy,) = (6.14)

with notation as usual. By applying the Cauchy-Schwarz inequality on zys'Syzy. we
know that (zk*'Skzk*)zs(zk*'SkSkzk*)(zk*'zk*) and therefore

Ths'SkZks Zhw'Bha

Zhw SESKZEs T Zp'SpEps (5.15)
Combining inequality (5.15) with (5.12) and (5.14) we conclude that
Fitp Rpco(2k+) < Fitrpcy (Zs)- (5.16)

A parallel procedure for LRPCO (5.2), with insertion of Ht; for zx, and LRPCV
(5.3) by applying the Cauchy-Schwarz inequality on tg'Hy'Hitz« leads to the
inequality '

Fitp gpcv(zrs) € Fitprpco(zy). (5.17)

Joining (5.16) with (5.17) we obtain the surplus property of incorporated LRPCV
described in (5.13).
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5.3.5 LDC revised

We confine ourselves to find a fitting procedure for LDC where all pivot variates are
also condensed variates. The index set of condensed variates Jp=1,...,k,....K.
Almost all methods discussed before in this monograph and all basic and many
extended PLS methods can be fitted with the derived algorithm. The one dimensional
LDC fit function (5.10) is first reformulated for technical reasons inio

LDC:  Fit(t,W,D,) = %?i—B—@ = v, (5.18)
Wit.h Bt = WD\lts

Dyt = t't

S HErty = 1, Vk

where ¢ = (81',...,4",....,tx") denotes the partitioned variable weighis of B,
B = K( H_'H,)*Wm denotes a weighted variance-covariance matrix,
H=H (f,.‘,.,Hg,”wH%) comprising all involved variables for K sets,
Hr=H f;? = Prd %Qk'v where ¢ in this context is short for mode o Vi

we denotes W extended blockwise in such a way that
B = Hy'Hwel, for row block k and column block |, Vil
W - denotes a matrix with weights or function values
wyy and with diagonal elements equal to zero,
WDiagﬁos
vilmy 0 0
and Dy = 0 Vikmy 0
0 0 Vg

If appropriate the sum of squares of the weights W have to be normalized to a
constant value, r W'W=c, Local deflation is according to (5.4) or user specified. As
for the normalization of t it is important to notice that ¢ has an explicit strong
normalization & H Bl ptz=1, Vk, and at the same time an implicit weak normalization
(t‘t)wl., We call this a strong-weak normalization, The introduction of auxiliary matrix
Dy with weights v in the LDC restrictions makes it always possible to find an
optimal solution that satisfies this rigid strong-weak normalization, Without matrix I,
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this is usually not possible. The relation of (5.18) with (5.10) can be made explicit by
realizing that §HpH L = z1'z; denotes the directed correlation between unit
normalized condensed variate z and pivot variate z;. Constant X in (5.10) is included
in matrix B in (5.18).

2 0 (5.10)

Bquation zg = 28 ¥zx((SF214)'S Fars) % = £S1za((Skzhs) Sazis)
for the condensed variates, is in (5.18) incorporated in the restrictions
Bt=yDyt and tyHy'Hrtr=1, and is redundant.

- Restriction s;::w'ln";lm implies zg = Hty = Kikﬁk*&(vkw)"l,
with Bre = (Bri,....Brn....Bry).

- Restriction ¢/ Hti=1 for the column blocks implies z = ﬁkzk*(vkw)wl, and
finally restriction tyHrHrtr=1 for the row blocks implies equation zj =
iﬁkzk*((ﬁkzm)‘S;kzk*)wllz with the + dependent on the sign of (vyy). Of course
the restrictions for the row and column blocks are one and the same. They are
presented sequentially only to simplify the derivation.

The condition (Vke Ji) for the weighted sum zg. in (5.10) is not found in (5.18),

because we confined ourselves to find a fitting procedure for path models where all

pivot variates are also condensed variates.

5.3.6 Algorithm

In this section we elaborate an algorithm for LDC in several optimization steps. First
we derive optimization steps for fixed weights W followed by additional equations
for proportional function weights W. We end up with some remarks on function
weights.

For fixed weights W we derive steps to find optimal ¢ and Iy, for fit function (5.18).

If there were no strong normalizations (4 Hrtr=1, VE) on t and no auxiliary
matrix Dy, the optimization problem would be to find a maxirmum for (&‘Bt)(@'@)mlg
with restriction Bt=yt . For fixed weights this maximum attained if ¢ is the right-hand
eigenvector of matrix B with the largest eigenvalue. We explain this statement with a
short intermezzo on Eigenvalue Decomposition of some nondefective square

asymmetric matrix A,
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The Eigenvalue Decomposition of some nondefective square asymmetric matrix A

(Golub & Van Loan, 1990, p.338) is given by
i

A=UAU ', (5.19)
where U denoie the right-hand eigenvectors,
with diag(U'U)=l,

(Uhl)’ denote the lefi-hand eigenvectors,
and A denotes a diagonal matrix with eigenvalues.

The right-hand and lefi-hand eigenvectors of A are usually not orthogonal (Wilkinson,
1965). If A is symmetric we have U'Us=l, and lexU'. Linear equations for the right-
hand eigenvectors of matrix A are

Atright = Wright,
and for the left-hand eigenvectors

tefi'A = wiiefr.
The eigenvalues are given at stationary poinis by

= A an = ightAtrighe  tlefiAtieft
V=AY = it Yefttef,
right YWight left teft

and they satisfy the equation |A~A¢4)Tl=0. Maximization of y=(¢AtXE't) ", with
restriction At=wyt is another formulation for finding the largest eigenvalue of A with
corresponding right-hand eigenvector t. Restriction At=wt can be omitted if we

maximize
t'CpAt
¥=Aa) = “@CAMM , (5.20)
where Cp = (U—l)'(U‘l) denotes the variance-covariance mattix of the

lefi-hand eigenvectors (U L)' of A.

Matrix Cpa is symmetric and matrix CAA is also symmetric. Restriction At=yt is
incorporated implicitly in (3.20), because the stationary equations are equal to this
restriction. With substitution A=B in the previous exposition on eigenvalue
decomposition it is obvious why the optimization problem to find a maxiinum for
(t’Bt)(m)_l, with only restriction Bt=yt, is solved by taking for ¢ the right-hand
eigenvecior umax of matrix B with the largest eigenvalue Amax(B)-

If A is p.s.d. the right-hand eigenvector umax with largest eigenvalue Amax can be
found with the Power Method by

A (At V2 o il (5.21)

If we want to apply the Power Method generally we have to substitute A=B+cl in

(5.21), with some estimate for c2-Amings) in order to make matrix A positive (semi-)
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definite. This method works if all eigenvalues of B are distinct. It still works if matrix
B has a large multiple eigenvalue and is similar to a diagonal matrix, although in that
case the solution is not unique. If the Jordan canonical form of mairix B is not
diagonal the Power Method does not work and other methods have to be used. For
algorithim (5.21) the implicit weak normalization (ﬁ:‘ﬁ)m1 is temporarily changed into
the explicit weak normalization 't=1. In general with procedure (5.21) ¢ converges to
Umax and ¥ to Amax. We must emphasize that although the Power Method is
monoione convergent with respect to (5.20), it is not always monotone convergent
with respect to w::(iti'&ﬁi)(ti'ti)ml. The reason for this phenomenon is that restriction
At=wy is violated during the iteration process and that it is only satisfied after
convergence is reached. Therefore intermediate values of wm(ti‘AEi)(ti‘&i)ml are only
feasible if ¢ is an eigenvector of A.

We proceed further with the maximization of (5.18) for fixed weights W wirh strong
normalizations and auxiliary matrix Dy. In other words we have the optimization
problem to find a maximum for wz:(ﬁ'B@)(E'&)ml, with restrictions D“;jimxm,
tDyt=t't and (G Hyte=1, VE). The parameters vy in Dy give exira freedom in
order to be able to satisfy the strong restrictions on .

According to (5.20) we can also maximize
Q'C(D;lﬂ)ﬁ);lﬁ&
¢'C (D;lgg)ﬁ

with restrictions tDyt=t't and (& i Hptp=1, VE).

Applying principles of alternating least squares we maximize w with ¢ and Dy fixed in
turn. Correspondingly restrictions t'1D,t=8't and (4 HyHty=1, V) also have to be
relaxed in turn, because all restrictions can only be satisfied after convergence is
reached,

For fixed W and Dy, we find a maximum for (5.22), by taking for ¢ the right-hand
eigenvector Wyay of matrix D;IB with the largest eigenvalue ﬁlmax(@f‘;lg), For the
Power Method we have to substitute A:“»D;IB4°CK in (5.21), with an estimate for ¢ in
such away that CZ“?mlin(n;]B) and therefore matrix A is positive (semi-) definite. A
good starting value for Dy, fixed is to take vp=1, Vk. It gives a global maximum for
(5.18) without strong normalizations on t. After the fixed W and Dy, optimization step
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the strong normalization of ¢ has to be assessed in the next step and if necessary

adjusted.

For fixed W and ¢ we find an optimal Dy in such an way that restrictions ¢'Dyt=t't
and (4 HyHpty=1, VE) are satisfied. After the previous optimization step we have
satisfied equality B;Rmzw& This equality can be partitioned and transformed in K

equalities
HiBr«t = yvikixts,
with Bire= Bri,....Brn....Brp).
() = yvi = (Bt B HiBist) sign(oeHy HiBad),
or dr(t) = wvp = 'y HEBr.L,
with  sign(x) denoting the sign of x.
In matrix notation we have the equalities

{D@) =y, }

D) = v,
dy (€))L 0 0
with D(t) = 0 Ap() Ly, 0 »
0 0 dr(OLng
d1(8) Ly 0 0
D(t) = 0 Br(6) Ly, 0 )
0 0 |dx©Ing

d(t) = (OB B HaBrat) sign (G BB 1),
and dr(t) = tp H Bt

Vk

VE

(5.23)

Finally by applying subsequently t'Dvé:z&'D(&)twmla:t'& and tDyt=tD()ty  =t't,

we obtain the required formulas for an optimal Dy,
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Dy = m(g)g,—é%m, (5.24)
t't
or Dy = D(t)%w (5.25)

In summary, the optimal ¢ and Dy for maximizing (5.18) with fixed weights W can
be found by alternately taking for ¢ the right-hand eigenvector umay of matrix DCIB
with the largest eigenvalue &nax(g);lﬂ) and for Dy, the function values of (5.24) or
(5.25). Another strategy is to perform only one step of the Power Method (5.21)
corrected with some constant C?L“‘Aqnin(n—\;lﬁ) and then to update Dy. The first
procedure is usually converging very fast. The second procedure can only be
competitive in consuming CPU time, if an estimate for ¢ is chosen, large enough to
make matrix A positive (semi-)definite during all iterations. A lower bound for ¢ can
be found, because resiriction t'Dyt=t't is satisfied after each step of the Power
Method. For Wwpin we have D {,NIBﬁ;mmzwmintmm, which implies
tmin Btmin=Wmintmin Dybmin=Vmintmin'tmin and therefore a lower bound for y also
gives an estimate for ¢ in this context. One possible estimate for ¢ is

¢ = ~Amin( 5xB+B" 2 ~Vmin = - t‘%ﬁ%ﬁ% (5.26)
A third procedure can be defined by constructing the positive semi-definite matrix
B=B+cl, with c2-Amin sxp+p). Substitution of B in (5.26) always gives a positive
or zero value for Wmin. A simple attractive algorithm results if we substitute B instead
of B in (5.23) and (5.24), and subsequently substituie (5.24) in AnB};lﬁB and A in
(5.21). For future comparison with the basic PLS algorithm we have chosen to
substitute (5.24) and not (5.25). The total iteration process with fixed weights W

reduces now to
pE) 1B’ = ¢ (5.27)
where (%) denotes D(¢) in (5.23) with B replaced by B=B+cl,
Wlth CZ_A’I’!UD(,SXB+B')°

Convergence is reached if lwii’tiﬂ(ti'tiﬁ:”1'¢i+1)”1/2 is sufficiently close to zero.
Algorithm (5.27) for the strong-weak normalized ¢ is only slightly modified compared
to the Power Method for the weak normalized t. Generally we expect to find a global
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maximum for (5.18), especially if we take the optimal ¢ from (5.21) with A=B as a
starting point ¥ for (5.27). If the Power Method is not feasible we have to rely on
other methods for computing the largest eigenvalue and corresponding eigenveciors.

Having established linear equations and an algorithm for (5.18) for fixed weights W
we will now consider the necessary modifications for proportional function weights
W. We simply have to add an exira step in the alternating least squares algorithm
described so far. For ¢ fixed we have o maximize (5.10), rewritten as

'R 1
e Fi(W) m—fw’*?) = ¢'vec(W), (5.28)
t'tK
where ¢ = vec((¢') ' KR) denotes matrix (¢'t) KR strung out to a vector,

with vec(W)'vcc(W)xB'WDesignﬁ,. Maximization of (5.28) is equivalent to
minimizing the residual variance e'e, where e=c-vec(W) for unrestricted W or some
appropriate nonlinear transformation of W. (See Gifi, 1990, page 529 and Kruskal
&Carroll, 1969.) For being proportional function weights the weights W are
restricted to be proportional to the values of the multivariate weight function F(¢),

W = BE(t).

One example of such a weight function is F(8)=R+«Wpegsign, where the weights are
proportional to the directed correlations or equal to zero, according to the design of
the weights. Wiih this weight function maximization of (5.28) gives the same result
as for unrestricted W. Summarising the estimation of the proportional function
weights we have to add the following step in the aliernating least squares algorithm
described so far

1'W e on 1312 -
W= F(g)fﬁ,(e%%%w) @ (5.29)
Equality (5.29) has to be alternated with (5.27) or an equivalent eigenvector step in
order to obtain an algorithm for (5.18) with proportional function weights. For this

algorithm we do not expect to find always a global maximum.
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In the beginning of this section we promised some remarks on function weights.
Uniil now we have not established a general algorithm for function weights. The only
MVA method we have encountered that fits a path model with function weights is the
SCA method of chapter 3. For this special case we have developed an algorithm. All
other MV A methods can be described with fixed function weights or proportional
function weights.

5.4 Relations of LDC with other methods

In section 5.4.1 a short introduction to Wold's basic PLS method of Lohmdller
(1989) is translaied into our notation. Thereafter we give the corresponding basic PLS
algorithm in section 5.4.2 and show the relation with LDC in section 5.4.3. In section
5.4.5 the extended PLS method proposed by Lohméller (1989) is brought within the
LDC framework. Section 5.4.6 gives the LDC formulation of consensus PLS
proposed by Geladi & Martens (1988) and also gives an equivalent 'variance
accounted for' criterion that is fitted by the consensus PLS algorithm. Section 5.4.7
elaborates the PLSI regression method and Continuum Regression proposed by
Stone & Brooks (1990). The reflected variance methods of chapter 4 are discussed in
section 5.4.8 and from the corresponding LDC path models arises an interesting two
sets PLS method. Last but not least we show in section 5.4.9 that Ser Component
Analysis of chapter 3 is an example of fitting a DC path model with real function
weights. Some LDC extensions of the SCA path model are formulated, like the PLS
Hierarchical Components method.

5.4.1 Wold's basic method of Soft Modelling

Herman Wold (1982) has introduced a type of modelling with latent variables which
he calls "Soft Modelling". The name indicates that this sort of model building applies
when the theoretical knowledge is scarce and stringent distributional assumptions are
not applicable. Lohméller (1989) calls this method the "basic Partial Least Squares
method". As no single criterion had been established 'Partial Least Squares' or ‘PLS'
refers 10 the partitioning of parameters in estimable subsets.
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In order to avoid an overflow of new symbols for readers used to PLS notation, we
will present only the esiimated PLS models in our notation,

Variables. A soft model involves manifest variables (MV's) and latent variables
(LV’s) related by linear equations. The MV's (directly observed, observables,
indicators) are partitioned into non-overlapping subsets of K blocks Hy, with my,
manifest variables, each block being indicative of one LV or variate z;. According to
Lohmoller all involved variables and variates can be treated as deviations of means
without loss of generality.

Inner model or structural model. The variates Z=(z1,...,2y,...,2F) are
assumed o be interconnected by one or more linear relations. The basic method
requires the variates to form a recursive path model (a cavsal chain),

Z =2ZA +Ea, (5.30)
where A=(a1,...,8%...,8%) denote regression weights or path coefficients,
Ea denote residual variables,
with (EA'ZYoftdiag=0, all offdiagonal values of E4'Z equal to zero.

The design mairix Apegign of a recursive path model is subdiagonal.

Outer model or measurement model. The my manifest variables Hy are
assumed to be generated as a linear function of its variate zx and the outer residual
variables Eg,

Hy = zpep' + Ep, (5.3
where ¢ denotes a vector with my, loadings for set k,

Ey denote residual variables for set &,
with Er'zp=0.

Weight relations. As a vehicle for the estimation of the model parameters, the
variates zx, are estimated as weighted aggregates of their indicators,

zy = Hpty, (5.32)
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where denotes a vector with my, variable weighis,

with zy'zp=1.

The weights are estimated by least squares methods in two different versions. In the
first version (called mode A, outwards directed, or facior mode) the manifest
variables Hp are regressed on an instrumental variate zp,. (the so-called inside

approximation)

Eik = Zk*@k;g' + Ek*, (533)
where & denotes a vector with iy, regression weights,

Era denote residual variables for set k,

with Ek*'Zk*m{}»

and the variances of the outer residuals Ey., in (5.33) are minimized for unknown tz..
In the second version (called mode B, inwards directed, or regression mode) the
instrumental variate zy, is regressed on the manifest variables Hy

Zpe = Hptps + e, (5.34)
where  tps denotes a vector with my, regression weights,
ey denote 2 residual variable for set k,

with  eg'zz.=0,.

The weights t in (5.32) are rescaled versions of the provisional weights tz. and
provide that 2z in (5.32) is unit normalized.

5.4.2 The basic PLS algorithm

The algorithm for estimating the unknowns of the models proceeds in three stages. In
the first two stages the variables Hy and variates z are centred. In the third stage the
variate means and the location parameters are estimated. Stage three will not be
discussed here, because we omitted without loss of generality the means and location
parameters in the definition of the estimated models in section 5.4.1.

Before specifying the basic PLS algorithm, the subdiagonal path design matrix
ADesign constructed from a recursive path model has to be completed with an upper-
diagonal part in a cornmand design matrix Whesign with a corresponding command
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diagram. The term command design matrix has no explicit reference to PLS literature,
but the command diagram is extensively discussed by Bookstein (1982). The
command design mairix is implicitly defined by the choice of several optimization
operators. We will show this in section 5.4.4. Lohmdller (1989) calls the command
or weight matrix W the 'inner weight matrix', but he does not clearly emphasize the
difference between the command design matrix Wpesign and the subdiagonal path
design matrix Apegign. Knowing Wpesign the PLS algorithm for the basic method of
soft modelling is given by

Stagel: Iterative estimation of weights ¢y and variates zx. Starting at Step 4, repeat
Steps 1 to 4 until convergence is obtained.

Step 1. Inner weights
Compute W = Wpesign*RSign,

where Xsign denotes a matrix with the signs of the elements of X,
and R = Z'Z. correlations between the variates Z=(z1,...,2,...,.28).
Step 2. Inside approximation

K
Compute zg. = ¥ wyz).
=1

Step 3. Outer weights. Solve for 6. in (5.33) or (5.34)
Hyp = apstrs’ + B, for set k in mode A
Zhs = Hptpe + s, for set k in mode B

Step 4. Outside approximation

Compute 7 = Hyty = Hytpo (Bgtr) Hytp) 2,

Stage2: Estimation of path coefficients A and loadings ¢ by minimizing in least
squares sense the error of respectively (5.30) and (5.31).

We consider Stagel as most essential for the basic PLS algorithm and therefore
classify basic PLS as a cyclic hybrid method. Cyclic hybrid methods maximize
several fit functions cyclically, while utilizing optimal parameters of previously fitted
models, until a stationary phase is reached.
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5.4.3 Basic PLS a special case of LDC

Having specified the basic PLS algorithm in section 5.4.2, we can now establish the
relation with the LIDC algorithm of section 5.3.6. In PLS stage 1 the variates z; are
computed and all other PLS parameters can easily be derived from this solution.
Therefore we will compare the basic PLS algorithm with the LDC algorithm with
respect to the computation of the variates #y in stage 1.

First we simplify the basic PLS algorithm. The variables Hy, for the regression mode
B in Step 3 can be replaced without loss of generality by the orthonormal basis
H%&Pfc@kl Only the weights s will change, but not the corresponding variate zy in
Step 4. Step 3 can now be reduced to
Step 3. Outer weights. Solve for .
H%’ = Bhalrs + B, with og=1 for mode A,
=0 for mode B.
Subsequently Step 2, 3 and 4 can now be reduced to

ap = S Fupa((SFare)'s Faps) V2, (5.35)

X
with  zZpe = 3 wpzy,

og=1 for mode A and o3=0 for mode B.

Substituting in (5.35) equality yngk*n?E'ﬁngk;ﬁ from section 5.3.5, with Hy = H$,
and premultiplying both sides with Ji7' we obtain an algorithm for basic PLS for
finding an optimal t and therefore optimal variates z;=Fipt;. This algorithm consist of

WO SEps

Step 1. Inner weights

Compute W = Wiegign*Rsign. (5.36)
Step 2. Variable weights

Compute D() B¢’ = ¢+, (5.37)
where X Abs denotes a matrix with the absolute values of X,

and EE(Ei) denotes a diagonal matrix as defined in (5.23).
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Because the sign of B)(ﬁ:i) in (5.37) is compensated in (5.36) by the sign of the
correlations R, we are allowed to replace (5.37) by

Compute D(¢)~1B¢’ = ¢+, (5.38)

In summary, the algorithm for basic PLS can be reduced to alternating between (5.36)
and (5.38). Arriving at this point we can make a comparison with the LDC algorithm.
This algorithm consist of alternating between (5.29) and (5.27). Formula (5.29) is
equal to (5.36), if we define the weight function F(¢) by

F(t) = Wpesign*Rsign. (5.39)

Formula (5.27) is equal to (5.38), if /’me(ﬁmm)ao, Then for ¢=0 we have B=B.
Therefore the basic PLS algorithm uses in principle the Power Method on a matrix
that can have negative eigenvalues. In this situation the Power Method usually
converges to the eigenvector with the largest absolute eigenvalue, positive or
negative.

Because the LDC algorithm converges to a maximum for (5.18), the basic PLS
algorithm will also converge to a maximum if Amin( 5xp+p) Stays greater than or
equal to zero during the iteration process. The PLS algorithm will also converge (0 a
maximum if Amax(sxp+B" Stays much larger in absolute value than Amin( 5xB+B")
during the iteration process. If Amin( 5xp+11) is more or less equal to Amax( 5xm+1")
the basic PLS algorithm might not converge to an optimal solution. If Amin( 5xp+p) 15
much larger in absolute value than Amax( 5xp.11) the basic PLS algorithm will simply
switch the signs of the weights W in (5.36) and proceed to find a maximum with
Amax( 5xp+B’) Much larger in absolute value than Amin( 5xp+BY)- Therefore the basic
PLS algorithm will generally find a maximum for LDC (5.10) with weight function
(5.39) substituted

'(RAbS*WD@sign)l

i
bPLS:  Fit(t) = =
1274

(5.40)
where R=Z'Z denotes a (KxK) symmetric correlation matrix
with directed cosrelations,
Xanps denotes a matrix with the absolute values of X.
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In some special cases the PLS algorithm will not converge, because it is not using the
Power Method in a proper way. Nevertheless the basic PLS algorithm generally finds
a global maximum for (5.40) due to the sign switching of the weights W described
above. The LDC algorithm always {inds a local or global maximum. By computing
maximum solutions starting with several feasible non-sign-similar W's we usually
find the global and one or more local maxima for the basic PLS fit function (5.40).
Two matrices W1 and W7 are sign-similar if they can be made equal by changing the
signs of rows and corresponding columns. So Wi=DW,ID, where I is a diagonal
matrix with diagonal elements 1 or -1. In other words two matrices defined by (5.36)
are sign-similar if they can be made equal by sign transformations of the variates.
Therefore a group of g sign similar weight matrices W leads to g maxima of (5.40),
that differ only with respect to the sign of the variates. We call this a sign-similar
solation of bPLS. The matrices W are feasible if they do not violate the resirictions
imposed by the weight function, which is (5.39) for bPLS. Observing this weight
function we know for instance that weights matrices W are not feasible, if wj=wj;
for some elements. The number ¢ of feasible non-sign-similar W's defines the
number ¢ of sign-similar solutions of bPLS. Therefore we need ¢ feasible non-sign-
similar stariing values for W in order to be sure to find the global maximum with the
LDC algorithm. In a case of three sets, where for instance all non-diagonal elements
are non-zero, ¢=2. In the case of two sets PLS (K=2) we have c=1, and we always
find two equal global maxima, which only differ with respect to the sign of the
variates z1 and z. Generally we state that we will find with the LDC algorithm only
global maxima with different signs of variaies, if all feasible W's are sign-similar
(c=1). From this statement we deduce on the other hand that the bPLS algorithm will
always find a global maximum for the LDC fit function, if all possible W's are sign-
similar (¢=1) and Wgjgn=Wpesign*RSign.

5.4.4 The command design maprix

The command design matrix Wpegign is implicitly defined by the choice of several
optimization operators. Sometimes ancillary blocks are added in the command
diagram. Bookstein (1982) describes six operators, called mode A to F. By applying
the basic PLS fit function (5.40) we will show how all these optimization operators
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can be fitted with LDC path models. In our terminology the optimization Operators or
Opt operators define the construction of the condensed and regression variates. The
Opt command has the general form of

zg = Oprx (Hp,zj,...,2), (5.41)

where z) denotes the condensed or regression variate with variables iy and Zj,...,2]
denote one or more pivot variates. X denotes the mode of the Opr command. In the
case of a two sets path model (K=2) we have only one pivot variate in (5.41). In this
case we can choose between two Opt commands, Opia or Optg. The PLS path
diagram in figure 5.5 can therefore be fitted with three command diagrams given in
figure 5.6.A to0 5.6.C.

R -
H, "

- A B Zz::% E.‘gz

Figure 5.5 PLS path diagram for two sets.

0N _Opia e
Zl@mmﬁz Zl@m_mwm Zz Zl@mWWZZ
Opty Opip Opip,

A B C

Figure 5.6 PLS command diagrams for two sets.

In figure 5.7.A 10 5.7.C we give the corresponding LDC path diagrams with primary
(o=0) and secondary (og=1) predictions according to the prototypes in respectively
figure 5.3 and 5.2.
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57.A CCA

57.B RA

5.7.C PLS2

Figure 5.7 LDC path diagrams for two sets.
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The fourth combination of Opra and Opig would be to reverse the direction of the

arrows in 5.7.B in order to "predict’ the regression variate of set 2 with the condensed

variate of set 1. This paradoxical combination is omitted, because at least primary or

secondary prediction must be on line with the chosen flow of prediction. The PLS

path design matrix ADesign (5.30) for the path model in figure 5.5 is

ADesign =

0

0

0

) (5.42)

and the command design matrix Wpegign for all diagrams in figure 5.5, 5.6 and 5.7 is

WDesign &=

0

1

0

(5.43)

From the LDC path diagrams we can easily derive directed correlations matrices R.

The rows of these matrices always give the condensed or regression variates and the

columns the pivot variates. The condensed variates with ag=1 will always be

indicated in outline and the regression variates with 0g=0 in bold. For figure 5.7.A

the corresponding direcied correlations matrix R with the desired design is
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0 AR Y)
R*WDCSign = 2)'71 0 . (5.44)

For figure 5.7.B the corresponding mairix is

0 | zizy
R+Wpegign = 221 0 , (5.45)
and for figure 5.7.C
0 zy'zy .
R"‘VVDesign = 251 0 . (5.46)

Maximizing the bPLS fit function (5.40) for (5.44), (5.45) and (5.46) we find two
equal global maxima, which only differ with respect to the sign of the variates of set 1
and 2. The bPLS solutions for (5.44), (5.45) and (5.46) can be linked to solutions of
well-known MVA methods (Lohmoller, 1989, p.110). For (5.44) the bPLS solution
is equal to a one dimensional CCA solution (2.23) with canonical variates z1 and z)
and canonical correlation zj'zy. For (5.45) the bPLS solution is equal to a one
dimensional solution of the Principal Predictor model, where the canonical variate of
the predictor set is equal to z1 and the variate of the criteria is equal to zy. When zy is
omitted we have the RA solution (2.26) and also Foriier's simultaneous linear
prediction (Fortier, 1966). For (5.46) the bPLS solution is equal to a one dimensional
solution of Tucker's (1958) Interbattery Factor model. In chemometrics the
corresponding asymmetric deflation algorithm is usually called the PLS2 method
(Manne, 1987). The predictor variable 27 is usually called the column vector of scores
(¢1) for the independent block X, and 2z the scores (uy) for the dependent block ¥
(Geladi & Kowalski, 1986).

In the case of three or more sets path models Bookstein (1982) describes four
additional operators, called Opic to Opip. From his geometrical description, which
we found more consistent than the command diagrams, we have distiled the
projections for all operators in table 5.1,
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Table 5.1 Optimization operators for PLS.

1/2
1/2

zx = Opta(Hy,zp) = k?k*((&{zw Sklkv) with zyy = 7|,

zx = Optg(Hy.zp = Skzkﬂ((skzﬁw) Skzk*) with zy. = 7y,

zx = Optc(Hy,zj,....21) = Sk?k*((‘?kzkvﬂ Skzz«;*) V2 with zp = (..., 211,
zx = Optp(Hy,z;,...,21) = 8 D zice (P21 S Daics) 1/2 with zps = (2j,...,2D)1,
7y = Optp(Hyg.zj,....21)

= Optp (Hy,2zw), with zy, = Opta(Hy,z8 %), with Hy = (z,...,2),
zx = Optp(Hy,2,....21)

= Opip (Hy,zy), with zy, = Optp(Hy,z0°), with Hy, = (zi,...,2).

In fact Bookstein defines for mode C and D not the surs (zj,...,z7)1, but the means
Zhy = (R‘E)mi(z],m,zl)ie Due to the normalization of zy this makes no difference.
For Opip and Opry an ancillary set of variates is defined as if they are manifest
variables Hy. It is clear that all operators can be brought in the general format of
(5.35) and (5.40) with a proper definition of Wpegign.

We give an example with three sets to show how the mode C to F operators can be
incorporated in the bPLS fit function (5.40). The PLS path diagram in figure 5.8 can
for instance be fitted with three PLS command diagrams given in figure 5.9.A to0
5.9.C, comprising respectively mode C, mode D and mode F.

i
M % 3 ”H3
i M
Hy 7y~

Figure 5.8 PLS path diagram for three sets.
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A PLS mode C operator

B PLS mode D operator

Figure 5.9 PLS command diagrams for three sets.

C PLS mode F operaior

The working area of mode F is outlined in figure 5.9.C. In figure 5.10.A t0 5.10.C

we give the LDC path diagrams with primary and secondary predictions. The L.DC

path configurations for respectively mode C, mode D and mode F operators are

outlined.

5.10.A Mode C

5.10.B Mode D

5.10.C Mode F

T e,
E«EWW% Zz/’y -ww -
HLB Zl\
<?4wma& @m:m« Zg Mﬁ’wﬁ:g
Hy - w”

Figure 5.10 LDC path diagrams for three sets.
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The mode C configuration outlined in figure 5.10.A is equal to figure 5.4, which
gave an example of the LDC arrow configuration around a condensed variate with
two pivot variates. In figare 5.9.C and 5.10.C we find an ancillary set of variates,
Ha=(z1,2)), with regression variate z4. In mode B this would be a condensed variate
z4 {see figure 5.11.C). The PLS path design matrix ADesign (5.30) for the path model
in figure 5.8 is

0 0 0
ADesign = g 0 0 ) (5.47)
0

and the command design matrix W Design for all diagrams in figure 5.9.A, 5.9.B,
5.10.A and 5.10.8 is

0 0 1
Wpesign = 0 0 1 . (5.48)
0

For figure 5.10.A the corresponding directed correlations matrix R with the desired
design is

0 0 | z1'z3
RsWpegign = 0 0 23'z3 . (5.49)
z3'ey | 23'z) 0

For figure 5.10.B the corresponding matrix is

0 0 z1'24
R*Vybchgn == O 0 ZZ'%g . (5"50)
3%y | 2329 0

‘The command design matrix Wyesign for the diagrams in figure 5.9.C and 5.10.C is

0

Woesign = (5.5D

S Io IO @
[eo 3 Rew Bl Haw Bl R
b T L et | et
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and the corresponding directed correlations matrix R with the desired design for

figure 5.10.C is

R*WDesign =

0 0 z21'23 0
0 0 %53 ]
0 0 0 %3'%4
0 0 Z4'23 0

(5.52)

At convergence of the bPLS solution z3 and z4 will be the canonical variates of a one

dimensional CCA solution (5.44) with canonical correlation z3'z4. By studying the
arrow diagram of figure 5.10.C we could for instance decide that our LDC path

model would be better approximated by changing the primary prediction of z4 by z3

into a secondary prediction of z3 by z4. In this way we can make a mode F' as drawn

in figure 5.11.A.

5.11.A Mode F'

5131.B Mode D

511.C Mode E

H,
!Mw Zl\\ﬁ
<Z4w¢% m:;% ng:% Eﬁg
T,
H ey
aw zy
S
fﬁ Zlmﬁl
Hy > Zs<
———— \& 7 WM&"""@H
”’“’M 2
el

Cﬁm e — ‘@

©

~a

M
Z ) M%%E’E 2

Figure 5.11 LDC path diagrams for three sets, continuation.
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The corresponding directed correlations matrix R with the desired design would be

0 0 z1'23 0
0 0 29" 0
R*WDesign = 2.3 ; (5.53)
0 0 0 Z3 %4
0 0 24'75 0

To demonstrate the properties of the optimization operator Oprg of table 5.1, we
reverse the arrows in the PLS path diagram in figure 5.8. Now z3 is predicting both
z1 and zo. In this case usually Optp or Oprg are included in the command diagram.
Opip is already incorporated in figure 5.9.8 and 5.10.B. An intelligible aliernative for
the LDC configuration in figure 5.10.B could be to change the combination of mode
D with the primary prediction of z3 by z1 and z3 into mode D with the secondary
prediction of z1 and 23 by z3. This alternative is illustrated in fignre 5.11.B. In figure
5.11.C Opeg is incorporated in a LDC diagram. The corresponding directed
correlations matrix R with the desired design is

0 0 z1'23 0
_ 0 0 z)'23 0 i
R‘*"WDesflgn = ; (5.54)
0 0 0 Z3'Z4
0 0 z4'23 0

At convergence of the bPLS solution variate 3 and 4 will be equal to a one
dimensional solution of the Principal Predictor model (5.45), where z3 is canonical
variate of the predictor set and z4 the variate of the criteria.

5.4.5 Latent variable path modelling: extended PLS method

In this section the extended PLS method proposed by Lohmoller (1989) is brought
within the LDC framework. Lohmoller designates the methods presented with the
general name 'Laient Variable Path' methods (LVP methods).

The extensions of LVP modelling compared to basic PLS path modelling are:
- The relaxation of the basic PLS restriction that the variables must be partitioned
into non-overlapping sets of variables.
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- The possibility to compute methods with more than one dimension for each set,
with three different orthogonality restrictions on the variates. These restrictions are
different from the common deflation procedure used in basic PLS.

- The addition of two extra weight functions for the proportional function weights.

As for the overlapping sets of variables in LVP modelling, we remark that this
overlap is also possible with LDC path models.

As for the three different orthogonality restrictions, this option can be realized in LDC
path models by copying whole sets of variables and imposing orthogonality
restrictions on the variates. For the computation of this orthogonality pattern
according to an orthogonality design specified by the user, we can use the 'Patior’
rotation procedure developed by Lohmdller (1989, page 43). Lohméller remarks that
this patterned orthogonalization can interfere with the main PLS procedure by
destroying in each iteration cycle the improvement made by the main procedure and
thus blocking the convergence. Maybe this interference is due to the improper use of
the Power Method in the basic PLS algorithm and will therefore not occur in the LDC
algorithn.

The last LVP extension simply implies the specification of the extra weight functions
in L.DC. We repeat that in PLS only proportional function weights are applied,
described by multivariate weight functions. The proportional function weights are
combined with several weight functions into inner weighting modes (see section
5.3.3). In the basic PLS method described by Wold only one weight funciion (5.39)
and therefore one weighting mode is used for W. In the Extended PLS method
Lohrm&ller (1989, page 42) adds two other weight functions and discerns three ‘inner
weighting modes' or 'weighting schemes'. These weighting schemes are the parh
weighting scherme, the centroid weighting scheme, and the factor weighting scherme.,
The ceniroid weighting scheme uses the basic PLS weight function (5.39). The factor
weighting scheme uses the following weight function

F(¢) = WpesignR. (5.55)

The path weighting scheme uses in fact a combination of two weight functions. These
are weight function (5.55) and the following weight function
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F(t) = WDesign*As (5.56)

with the regression weight A according to (5.30). For the path weighting scheme we
have the weight function

F(t) = WD@:sign(R)*R + WDesign(A)*A9 (5.57)

with Whesign(R) + WDesign(A) = WDesign,

where Whesign(R) denotes the design for elemenis weighted
according to (5.55),
and Whesign(A) denotes the design for elements weighted

according to (5.56).

In PLS terminology the weights of the MVA weight functions (5.39), (5.55), (5.56)
and (5.57) are respectively based on the centroid, the principal component, the
multiple regression and the MIMIC variable (Lohméller 1989, page 40). The MIMIC
method is described in chapter 2.

Like (5.39) for basic PLS all additional defined weight functions for LVP modelling
result in proportional function weights W for LDC, that are normalized according to
(5.29). In LVP modelling the weights are always defined as W = F(¢). Although the
optimal solution for the variates z, is the same for LDC and LVP modelling, this
definition suggests that the weights are real function weights and obscures the fact
that they are proportional. With a simple two sets path model one can easily verify
that the two sets LVP solution cannot be influenced by the choice of the weight
function, whereas this would definitely be the case if the weights W are real function
weights. Furthermore it has been found that the choice of inner weighting modes has
only litle influence on the results when the model is a realistic one (Noonan & Wold,
1982). These results are not so surprising if one realizes that PLS uses proportional
function weights. Real function values might differentiate the results much more with
respect to the different weighting modes.
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5.4.6 Three-way Consensus PLS

In Mariens & Martens (1986), the family of PLS mode A methods is classified in two
main groups to suit different analytical situations. These groups are predictive and
correlative PLS. Among the predictive PLS algorithms they mention PLS2 (see
formula (5.46) in section 5.4.4 and further) and PLS1 (see section 5.4.7).
Concerning the correlative PLS methods they only discuss three-way Consensus PLS
(CPLS). We will first give the estimated model and algorithm of CPLS proposed by
Geladi, Martens, Martens, Kalvenes & Esbensen (1988), translaied into our notation
and normalization. The LDC formulation is possible by defining an appropriate
weight function. Furthermore we give two aliernative 'variance accounted for' criteria
that are fitted by the consensus PLS algorithm.

Models used:
Consensus model: The my manifest variables Hy are assumed to be generated as a
linear function of the consensus variate x and the residual variables Ee,

H = xc' + Ee, (5.58)

where ¢’ = (ei',..,¢r',..,cx') denotes a vector with Y pmy, loadings,
Cr " denotes a vector with my, loadings for set k,
Ee denote residual variables for all sets.

Model for each set: The variables Hy, are assumed to be generated as a linear function
of variate z; and the residual variables ¥y,

Hy = arer' + Ey, (5.59)
where  zr denotes a non-normalized version of variate zy,
Ex denote residual variables for set k.

Congribution of each variate zj, 10 CONSENSUs SCOYES X,
X = Za, (5.60)

where  Z = (Z1,...2%k. .. %K)»
and a denote consensus block weights by regression of
Z, on the consensus scores x.
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The loadings ¢y for (5.58) and (5.59) are equal, as well as the non-normalized
variates z; in (5.59) and the columns of 7 in (5.60). With our normalization x'x=1
and zp'zp=1 Vk, the CPLS iterative algorithm is as follows:

Select some starting values for consensus scores x. For each factor, perform Steps 1
to7:
Step 1. Solve for ¢ in (5.58)
Compute ¢ = Hp's, Yk
Step 2. Convergence ? go to Step 7
Step 3. Solve for gz in (5.59)
Compute 7 = H;{@k(ck'«:k)wl., Vk
Step 4. Solve for a
Zi=x8"+ Ky,
Step 5. x = Za((Za) Za) . (5.60)
Step 6. Return to Step 1
Step 7. Residuals from (5.58)
Ee=H - xe',
Use the residuals E¢ as H in the next consensus dimension.
Step 110 3 of the CPLS algorithm can by substitution be shortened to one step:
Compute zj = Skx(x'gkx)wly Yk (5.61)

After substitution of (5.61) in Step 4 this implies for the consensus block weights a
that a=u, a vector with elements 1. Now the whole CPLS algorithm can be reduced
00
K -1 , 172

Compute % = fk%lgkx(x'gkx) = Zw{(Zw)dw) , (5.62)
where  f= (CiSix(x'Six) ) S Spx ('S )" H 2,

7 = (21,0 2k, ZK) with 2 = Spx(x'SSpx) 2,
and WS (W sWhy oo, WE) with  wp = (x'zk)ml,
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Figure 5,12 LDC path diagram for Consensus PLS.

The CPLS algorithm (5.62) is also obtained if we fit the LDC path model in figure
5.12 by substituting proportional function weights (5.29) with the following weight
function

F(t) = Wpesign*RRecip- (5.63)

where  Xpecip denotes a matrix with the reciprocal values of X,
which implies that X+Xpecip is a matrix with
elements 1.

For figure 5.12 the corresponding directed correlations maitrix R with the desired

design is
0 x'zy | ®'z) | %'zg
ReWpegign = z;i g g g , (5.64)
ZK'X 0 0 0
where % = FHgtg = H%o denotes a regression variate with ag=0, so
u=pqQ’,
and zp = Hetr = H%tk ,  denote condensed variates with og=1, Yk

with H = (H'Ow4-9Eilvv~'9Hk9'-'?H-K)
=@ ui,. H,. 8h=m@" 1) = @Q PO

If we take R« Wpesign equal to (5.64), with K equal to the total number of condensed
variates, the LDC formulation of the CPLS fit function is elaborated to

2K(K+1)

CPLS: Fit(x) = %

' ~1 1 -2 1/2

UK Y (') %)
k=1



Directed Correlations and Partial Least Squares 137

2K(K+1)
= 5.65
K (x'2p)” .

K ’

; ~1 ~2,1/2

A+ 3 =K " 3 (x'z) 7)
Pt -2 ] k

where substitution of (5.63) and (5.29) in (5.10) has given this rather complicated
function, despite the simplification due to RaF(£)=R+ Wpesign*RRecip=WDesign-

Because all feasible W's are sign-similar and W gjgn=W Design*R Sign,
(Rsign=(Rpecip)sign, see section 5.4.3), we elaborate an algorithm for CPLS (5.65)
along the lines of the bPLS algorithm. The bPLS algorithm can for this purpose be
defined by alternating between (5.35) and inner weights (5.36). For the CPLS
algorithin we only have to replace (5.36) by (5.63). Afier substitution of the
appropriate matrices in (5.35) we obtain the computation of (5.62) parallel with the
computation of zp = ,ﬁkx(x'Skgkx)ﬂ’/Z, Vk. The possible solutions with this bPLS
like algorithm are two equal global maxima, which only differ with respect to the sign
of the variates x and z3,....2¢,....2x as a group. Therefore the CPLS solution in
LI3C format and the solution of the reformulated original CPLS algorithm (5.62) are
equal. Only sign reversal might cccur.

After substitution of the appropriate matrices in the (relatively simple) LDC fit
function we obtain a rather complicated CPLS fit function (5.65). We give two other
less complicated fit functions, CPLS; and CPLS3, that lead to the same CPLS
algorithim and the same solution. The second fit funciion for consensus PLS uses
proportional weights wi with weight function f(x)

4

CPLSy: Fit(x) = 3 x'Spxwy, (5.66)
f=1
where  (Wi,...,Wk,...,WE) = W',
with = f(x) (F)'Fx) M2,
f(x)' = f1(8) o of k(8,0 R (),
Silx) = (x'Sx)

The third fit function for consensus PLS is
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K .
CPLS3: Fit(x) = 3 (x'Syx)°, (5.67)
k=1

with e>0 and 0.

Maximization of (5.66) and (5.67) leads to the same algorithm for CPLS as found in
(5.62). We will not elaborate on this in detail. Finally we remark that Geladi,
Martens, Mariens, Kalvenes & Esbensen (1988) suggest that alternative CPLS
algorithms can be envisioned. These algorithms can also be brought in the LDC
framework, but they will not be discussed here.

5.4.7 PLSI regression and extensions

The general PLS1 mode A algorithm is actually a special case of the basic PLS
method presented in section 5.4.1 and 5.4.2. Therefore it is also a special case of the
LDC method, as we showed in section 5.4.3. Nevertheless we will discuss the LDC
formulation of PLS1 regression in detail. It gives the opportunity to incorporate a
PLS1 extension of Lorber, Wangen & Kowalski (1987) in the LDC framework, We
also indicate relations with Continuum Regression proposed by Stone & Brooks
(1990).

The LDC path diagram for PLS1 regression with a rank p decomposition of the
predictor set Hiy, is given in figure 5.13.

H?ﬂw\‘ ,’/Zl

p Jy ‘W\
Boyymmipe = = .,.:“‘ Zy@wwhy

g T "

B p

N
~
Y

»
-
-

Figure 513 LDC path diagram for PLSI regression.

In this figure we find an ancillary set of variates, H, = (Z15+0 255000 0Zp), With
regression variate zy. Ancillary sets have been introduced in section 5.4.4. The
dependent unit normalized variable hy is conceived as a set with only one variable.
Therefore the regression variate zy is always equal to this variable, zy=hy. The
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predicior set Hj produces by deflation orthonormal condensed variates
(z1,...,Zs,...,Zp) Ont the analogy of (5.4)

Hy=H;q fors=1,
Hy = (251251 H 1 fors =2,...p. (5.68)

For figure 5.13 the corresponding PLS1 directed correlations matrix R with the
desirved design is

0 0 Zl'Zy 0
0 0 | zpz 0
ReWpesign = ; ; 1’0 Y - , (5.69)
y 2w
0 0 Zw'Zy 0

where the sequence of the rows and columns of R is z,...,Zp, zy and zy,.

The correlation zy'zy, in position (3,4) is added in this design in order to satisfy the
restriction of section 5.3.5 that all pivot variates have to be condensed (or regression)
variates. This implies that (Wpesign1)¢#0, Vk. Instead we could have added z;'z,, in
position (3,1) or other correlations in row 3. We also could have defined zy to be a
condensed variate, All these options do not change the final solution, because hy
contains only one variable and therefore zs'zy is fixed Vs. If we take R«Wpesign
equal to (5.69), with K equal to the total number of involved variates, the LDC
formulation of the PLS1 fit function is elaborated to

14
2(2w'2y) Aps + El(zs'zy)Abs
Su=

PLS1:  Fit(t) = (5.70)

£k
Because all feasible W's are sign-similar and W sign=Wpesign*Rgign, see section
5.4.3), we will always find a maximum for (5.70) with the bPLS algorithm. The
global maximum is reached after one iteration, starting with zy=hy. The PLS1
algorithm resulting from (5.70) is:
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Step 1. Compute z; = SS‘Zy(Zy'SsSSZy)wUzs Vs
with deflation according to (5.68).

Step 2 Compute ZW = Swzy(Zy'SwSWZy)_l/z,

with orthonormal Hi, = (21,00 0sZss0 -, Zp).

The optimal rank of p is usually assessed via some data-based statistical procedure.
One can for instance use cross-validation to calculate a predicted residual error sum of
squares (PRESS).

The extension of Lorber, Wangen & Kowalski (1987) can now be defined through a
minor adaptation of the LDC fit function. In LDC the constant oy, is restricted to have
two values, og=1 for condensed variates and og=0 for regression variates. Lorber
c.s. testrict the ¢ of the predictor variables H‘f to be in a continuum ranging from 0
0 ©o. (In their notation ¢y is n.) They show that for «1=0, we have ordinary least
squares regression, for =1, we have PLS1 regression and for ¢j=00, we have
Principal Component Regression (PCR). In an example the optimal combination of p
and oy is assessed with PRESS.

In Continuum Regression proposed by Stone & Brooks (1990) a similar idea is
elaborated. They also describe a continuum from OLS regression, PLS1 regression to
PCR for respectively ¥=0, 1 and co, see page 243 of Stone & Brooks, 1990. A
selection function is maximized to find the successive variates of
Hy = (21,...,25,...,2Zp) as an alternative for Step 1 in the previous PLS1 algorithm.
These variates are not condensed variates as in PLSL. In our notaiion and
normalization the direction of the variates z; is found by maximizing

A
CR:  Fit(ty) m;%w% .71
t5'ts
where zg = Hgtg, Vs

with ZS'?‘S = ],

Successive variates of Hy, are found by deflating the predictor set Hy according to
(5.68), with z; replaced by z. In a final step one has to perform Step 2 of the PLS1
algorithm, with zg replaced by z,. In the normalization of Stone & Brooks (1990)
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ts'¢s=1, and selection function (5.71) is defined as T(ts)=(z s'zy)z(tS'H sH sts)')"wl°
Originally T(ty) is multiplied with the constant (zy'zy) 1/29 but this term can be left out
without loss of generality, because the selection function (5.71) is maximized. The
equality T(tg)=CR(ts) can be shown by making the explicit normalization of tgin T(t;)
mmplicit, followed by shifting to the explicit normalization z;'zs=1.

If we try to describe the complete CR method with the LDC fit function (5.10), we
see that CR cannot exactly be formulated as a LDC method. Nevertheless the selection
function of CR (5.71) is also a product of a global correlation fit function and a local
reciprocal PCA fit function, LRPCV (5.3). The constant 7y regulates the relative
importance of the correlation and the PCA part. The CR selection function can
therefore be classified as a Lifted Correlation fit function.

In summary, we have presented two continuum regression methods, continuum
PLS1 proposed by Lorber, Wangen & Kowalski (1987) and CR proposed by Stone
& Brooks (1990). If the continuum parameters @1 and yare equal t0 0, 1 and oo, both
methods produce respectively a solution equal to OLS regression, PLS1 regression
and PCR. Continuum PLS1 can be fitied with a LDC fit function with relaxed o CR
is closely related to LDC with respect to the CR selection function.

5.4.8 Reflected variance methods and PLS2

The reflected variance methods RCA and RDA of chapter 4 are fitted with a LDC path
model. First we will give an exposition of the LDC formulation of these reflected
variance methods and subsequently we will show that the corresponding LDC
algorithm leads to the same solutions. Some minor changes to the LDC reflected
variance path models produce an interesting alternative for RCA, RDA and for PLS2.

In LDC notation the one dimensional RCA fit funciion RCA(X) = tr X PUSUPX,
(4.3), is given by
RCA:  Fit(zq) = 21'89818%z1, (5.72)

where Hj denote the predictor variables H in (4.3),
with  HiHi' =83 = §,in (4.3),
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z1 = H 9&1 denotes the latent variable x,
with  HYt; = s Puy = Px,in (4.3),
and zi'z1 = 1,
Hy denote the external variables Hy in (4.3),
H(Q) denotes the orthonormal mirror matiix U,
with  HIHY =7 =U,in (4.3).

For the RDA fit functmn we can also use (5.72) by changing the definition of Sz U,
into Sz—G GD G‘ (4.8). With the Power Method we define an iterative algorithm
for finding the optimal zy in (5.72).

Starting with some arbitrary z; iterate until convergence:

Compute zj = 18 $3818%2; = 15059548921, (5.73)
where f = ((57598189z1)s089518%21)7172,
Hiy = H;i,

and Hys = Ho.

The LDC counterpart of (5.72) we call RCALpc. As stated before RCALpe
automatically comprises RDAj pe. Consistent with the notation in (5.73) with
duplicate sets 3 and 4 we draw a LDC path diagram for RCAy e in figure 5.14.A.

4
(\\1354@ Hy %&\ Zzﬁﬁﬁz
: ﬂ“

Zy

Figure 5.14.A LDC path diagram for Reflecited Component Analysis.

The corresponding RCAj pe directed correlations matrix R with the desired design is

0 Z]'2) 0 0
0 0 2223 0

ReWpesign = 5 5 5 a7 (5.74)
74'21 0 0 0
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Substituting (5.74) and the bPLS weight function (5.39) in (5.10) and taking into
account the proportionality restrictions for condensed and regression variates, we
obtain the RCA; poe fit function

172

L0 172 0 12 0
. 2812 +(24'857 +(z3'z +(21'8S4%
RCAL pe: Fit(t) _(2p'S12)) "+(23'S323) ,g 3'24) Aps+(z1'Sa21)
tiK

. (5.75)

We emphasize that (zg'S?zz)llz is equal to (21'22) Abg With restriction
21=8 2 (208 02) 7.

If we omit this restriction and take (£1'zy) A instead of (22'8922)1/29 we are fitting

another path model. With the LDC algorithm we find a global maximum for (5.75)

with optimal ¢ . Knowing the optimal z1=Hjt; we can derive the optimal values for

the other three variates with the updating equations of the bPLS algorithm. These

equations are for (5.75)

0 0. =112,

z4 = Saz1(z1'Sazy) “(24'21)Sign
. -2,

z3 = 8324(24'S38324) ' 7(23'24)Sign (5.76)
) 0 @O =12, .
zy = 5223(23'82z3) (22'23)Sign

0 w0 =172,
zy = 5122(22'8122) " (21'22)8ign

By subsequent substitution of all equations in (5.76) we have for zy (5.73), but now
with

= +((5789518921)s989818921) 2
This elaboration of the RCAyppc algorithm implies that maximization of RCA(z1)

(5.72) and RCAy e (5.75) leads to the same optimal solution for z1 apart from sign
reversion.

An intelligible LDC alternative for RCA (and RDA) is to change the LDC path
diagram for RCAppc in figure 5.14.A into the path diagram in figure 5.14.B.
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Figure 5.14.B LDC path diagram for RCASi™,

In this way 2y still predicis a weighted sum of the variables Hy related to the variance
structure of Hyj=H3. We call this simplified RCA method RCASI™, If we additionally
want the RCASIM golution of zj to be related to the variance structure of Hy, we
change the RCASIM diagram in figure 5.14.B further into the path diagram in figure
5.14.C.

Figure 5.14.C LDC path diagram for PLS2multi,

We call this method PLS2multi, PLS2, because it is the goal of the PLS2 method
(Manne, 1987) to predict with a predictor variable zj a weighted sum of dependent
variables Hy related to both the variance structure of Hy and the variance structure of
the independent variables Hy, (see figure 5.7.C and further in section 5.4.4). The
superscript MUl we add, because z) can only be related to the variance of Hy if Hy
has more than one variable and a rank higher than one. For the rank one case
PLS2multi ig equal to ordinary least squares regression. We expect PLS2multi 1o have
better predictive properties than PLS52 in a multivariate setting, because the secondary
prediction of zp in PLS2 is replaced by a primary prediction in PLS2mult Yet
PLS2multi remains stable for essential multivariate problems, because then it is also
related to the variance siructure of both sets. The PLS2™ulti solution can easily be
derived from the ordinary PLS2 solution. By subsequent substitution of all PLS2 and
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PLS2multi glgorithmic equations, as we did in (5.76) for RCALDe, we have
respectively for zy (PLS2)

“1 = f 818221, (5.77)
where f= i((glgzm)'SISzzl)"llz_
and for zymult (pg g mulii)

zymulti = £ 808,57 multi = 105,67 malti (5.78)
where f = %((S {528 zmulti) 585§ 2 muliy 12,

The optimal zy and 2™l are found by repeating (5.77) and (5.78) iteratively until
convergence is reached. Because S nggl we know by corbining (5.77) and (5.78)
that z1=+8 zyuli((§ j@jmﬂm)’S1z1m“m)“1/2. The PLS2multi golution is related to
the optimal PLSZ solution by z;m0i=898,2, (898 021)'8 98,2112,

5.4.9 Set Component Analysis and PLS Hierarchical Components

Last but not least in section 5.4 about relations of LDC with other methods, we
discuss the SCA method of chapter 3 as an example of a DC path model with real
function weights. Some LDC extensions of the SCA method are formulated, like the
PLS Hierarchical Components.

The one dimensional SCA fit function (3.5) of chapter 3 translated into the
terminology of this chapter is defined by the sum of the squared directed correlations
hetween pivot variate & and condensed variates zg, where x is the pivot variate for all
K sets

SCA: Fit(z) = x'Z2%Z'%,

where Z = (%1,...,2k...,25) denote the unit normalized condensed variates,

with 7 = §;¢X(x‘§k§kx)w1/2.

The corresponding DC path diagram with secondary predictions is given in figure
5.15.A.
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Figure 5.15.A DC path diagram for Set Component Analysis.

The path diagram for SCA has to be fitted with the DC fit function (5.7) using real
function weights and weight function (5.55). After substitution of
W=F(t)=Wpesign+R in (5.7), we have the equality SCA(x) =

SCApc: Fit(t, W) = uw'(R«R«Wpegign)u, (5.79)
with

0 0 0 0
zy1'x O 0 0

R«Wesi = 5.80

Design 1'% 0 0 0 ( )
ZK'% 0 0 0

where x = Hgto = H%p denotes a regression variate with eg=0, so

HOmPQ‘, .
and zp = Hpty = H %tk ,  denote condensed variates with og=1, vk

= Spx(x'SpSpx) V2,
with B = (Ho.....H ... Hp,.... g
=@ ul. 6 Hh =@ HY = PO PO,

The condensed variates zj are exactly as introduced in section 5.2.2. For more
dimensional solutions, there are no orthogonal resirictions on z, only on x. If all
prediction arrows in figure 5.15.A are primary the condensed variates zp in (5.80) are
replaced by the regression variates zg and we obiain in (5.79) a DC fit function for
MCCA (see section 2.2.6).

The optimal SCApc parameters can be found with an algorithm described in chapter
6. The SCA path model can also be fitted with the LDC fit function. We cannot use
the LDC algorithm of section 5.3.6 for this purpose, because we confined ourselves
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to find a fitting procedure for LDC with fixed or proportional function weights and
with (Wpesign1)#0, V1. By adding simple extensions to the SCA method we can use
the LDC algorithm for proportional function weighis.

One simple extension to the SCA method would be to impose a subspace restriction
on x (see section 2.1.1). Figure 5.15.B gives a path diagram of this extended path
model.

Figure 5.15.8 DC path diagram for SCA with subspace restriction.

The subspace restriction PpPy'x can easily be imposed on x, by the following
specification of R«Wpesign

0 0 X'Zf 0

‘ zZ1'x 0 0 0
R*‘Vvl)esign = % 0 0 0 (5.81)

Zg'% 0 0 0

For (5.81) we can compute a LDC solution with proportional function weights with
the LDC algorithm of section 5.3.6, because we have (Wpesign 10, V1. For a more
dimensional solation we can apply the Patior rotation procedure developed by
Lohmoller (see section 5.4.5).

Another simple extension of the SCA method would be a symmetric formulation of
the design Wiegign. The symmetric formulation is visualised in the path diagram in
figure 5.12. In this figure primary prediction arrows are added compared to figure
5.15.A. Fitting this path diagram with LDC or with DC (5.79) would imply for
R+«Wpesign a specification according to (5.64) and for x the restriction
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x = Zw(@Zw)Zw) Y= zzw(xz2'ZZ'%) "V, (5.82)
where  Z = (Z1,...,Zk,...,ZK) with  zp = Skx(x'SkSkx)muz,
and W' (Wl,eeo s Whyeoo s WEK) with Wi = ZE'X.

The additional restriction on x will in principle lead to a different solution for the
symmetric formulation of SCApge. If we fit the modified path diagram in figure 5.12
with proportional function weights and weight function (5.55) the LDC formulation
gives a PLS Hierarchical Components (HC) algorithm with facter weighting scheme,
general factor x in mode B and special factors zx in mode A (Lohmd&ller, 1989, page
131). We refer to this algorithm as the HCgca algorithm. By changing the directions
of the arrows in figure 5.12 all other modes of Hierarchical Components methods can
be specified with LDC path diagram and fitted with the LDC fit function. This can be
proven along the same lines as we did for Consensus PLS in section 5.4.6 and will
not be elaborated here. The HCga algorithm is given by iteratively repeating (5.82).
The same algorithm is obtained by fitting with the bPLS fit function (5.40) the
hierarchical path diagram in figure 5.15.C.

Figure 5.18.C Alternative path diagram for HCsca method.

Pivot variate % predicts primary and secondary the condensed variate x of the
ancillary set of condensed variates Z.. At convergence the optimal x is equal to x and
equal to the first principal component of Z.

Summarising, we formulated in this section SCA as a DC path model with real
function weights and some LDC extensions of the SCA method, like the PLS
Hierarchical Components method. Finally we remark that this HC method has an
interesting relation with another PLS method: The only difference in the LDC
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formulation of the HC method and Consensus PLS is the definition of their respective
weight functions (5.55) and (5.63).

5.5 Comparison of LDC and DC

We expect that fitting path models with LDC and DC very often gives the same
results, because they both have the same severe restrictions on the directions of the
variates zg. If the solutions are different it is possible that the DC solution gives a
better prediction of the variables than the LDC solution and is still acceptably stable.
The directed correlations will probably be higher and therefore so will the prediction.
The LRPCV fit (5.3) will probably be not so much lower that it seriously affects
stability. The SCA method in chapter 3 gives an indication for this tendency of DC 10
maintain stability. It would be interesting to investigate DC variants of LDC methods
like PLS2 and PLS1. On the other hand we expect that the predictive power of path
models can be increased not so much by the choice between LDC and DC, but more
drastically by the formulation of adequate path models, like for instance the path
model of PLS2Multl insiead of ordinary PLS2 in section 5.4.8. From a practical point
of view the choice for the LDC fit function is more likely, because we developed an
algorithm for LDC that can handle a wide variety of path models. For DC such a
general algorithm is not yet available.






Chapter 6

ALGORITHMS

We present two algorithms for non eigenvalue-eigenvector problems. First a
simultaneous and successive monotone convergent algorithm for Set Component
Analysis (chapter 3) is developed, where an interesting general algorithmiic subproblem
is to maximize the variance of different matrices accounted for by corresponding
orthogonal fatent variables. Secondly we elaborate a monotone convergent algorithm
for Nonlinear Reflected Discriminant Analysis (chapter 4).

Introduction

The optirnal parameters for almost all methods in this monograph can be estimated by
solving an eigenvalue-eigenvector problem. In computing practice numerous
algorithms are available to the researcher for executing the job. The methods
previously presented which cannot be estimated in this way are SCA (chapter 3),
NRDA (chapter 4) , DC and LDC (chapter 5). The algorithmic aspects of DC and
LDC are already wreated in chapter 5 for reasons mentioned there. An algorithm for
SCA is elaborated in section 6.1 and for NRDA in section 6.2,

6.1 Computation of the SCA method

For the maximization of the SCA fit function (3.5) we use the reformulation of this

funciion as given in (3.7)

i

2 '4 g [ - [ -
SCA:  Fit(xg,wir)s) 2. 2 KgXg - (%g - Skxsw(k]).s) (x5 -~ S}151"65‘*'1/(k1)s)
8=

11

it

p K I BT

2 2 xgPr{l- (1~ Bpwi)” 1Py,

skl

where w(i)s,....Wk)s.....w(K)s denote free balancing factors for set k and dimension
s and the remaining parameters are defined as usual.

The maximization of (3.7) is simpler than (3.5), because there is no complicated
function of x; in the denominator.
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6.1.1 Simultaneous SCA solution

For the simultaneous SCA solution we maximize (3.7). The qualification
simultaneous is needed to distinguish this solution from the successive solution. This
solution first maximizes (3.7) for one dimension xi. A second dimension x, then
must be determined such that it maximizes (3.7) with X1 2% 1 9=1 and x1 fixed. We
proceed this way until p dimensions of X are computed, while keeping all previous
dimensions fixed. By this procedure we introduce a hierarchical ordering of the
successive dimensions in terms of maximizing the SCA fit function. The
simultaneous solution has in principle no restrictions in terms of fixing previous
dimensions. Therefore the simultaneous SCA solution cannot have a maximum less
than the maximum of the successive solution. On the other hand the fit of the first
dimension of the successive SCA solution is always greater than or equal to the fit of
any separate dimension of the simultaneous solution.

The iterative ALS algorithm for simultaneous SCA consist of two alternating main
steps. In the first main step the balancing factors wr)s, Vk,s, are updated for given
X. In the second main step the X are updated for given wg)s by applying an iterative
sub-algorithm. This algorithm is obtained by modifying a procedure described by Ten
Berge (1986, 1988) for maximizing the Maxbet function. The first step is specified in
section 6.1.2 and the second step in 6.1.3.

6.1.2 Balancing factors

The optimal balancing factors w)s for all sets are updated in the first main step. By
fixing the X in (3.7) and setting the first derivative equal to zero we find suboptimal
balancing factors, which are a function of X, We denote these suboptimal balancing
factors with Q)(k)s,, The suboptimal balancing factors are given in (3.9)

1} ¥ ¥ t 2 f,
xySiSixs . taosHrHgt)s . b5 QuPrQr'tr)s
Xs'Spxg Ek)s'bk)s k)s'tik)s

V:’(k)s = , YVk,s

with tx)s = Hy'xs, Vk,s.
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For the first main step the updates for the optimal balancing factors wyy)s with X fixed
are specified in (3.9). The updates for X with fixed optimal balancing factors wg)s
are specified in the next section.

6.1.3 The variance of different matrices accounted for simultaneously

The general problem we have to solve in the second main step is (o maximize the
variance of different matrices accounted for by corresponding orthogonal latent
variables. In this particular case we maximize (3.7) with W(k)s = Q/(k)s (3.9). The
resulting function is f(X) - 255, with Y cg constant and

P
FOO = 2 xByxs (6.1)

szl

where ¥y = (%1,...,%5....%p)  denocte the common latent variables with X'X=]
P 3 4

K V IAS] D
By=cgh+ 3 Pr{l-0~ D)) 1Py Vs
k=1
ClseeerCaoeresCp denote constani scalars.

Maximization of f(X) - 2sc; gives the same results for X as maximization of £(X).
We maximize f(X), because the ¢y are chosen in such a way that the corresponding
matrices By are positive semi-definite as will be explained later. An appropriate choice
for each ¢y is the negative of the smallest eigenvalue of
PRl -~ %ﬁz{}él)s)z}ﬁxk‘y in another notation written as
~Anin(EaPrL T~ (- Opwi) ) Pe).

We developed an iterative sub-algorithm for increasing f(X) in (6.1) monotonely,
with matrices By symmetric positive semi-definite Vs. This algorithm, which is an
adaptation of a procedure described by Ten Berge (1986), can be constructed in the
following way.

Theorem 6.1. For arbitrary starting matrix ¥ satisfying X'X=l, cousider the SVD

(B}Xl,MG,BSXS’MWEBI)X‘D) = MWN‘., (602)
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where M (nxp) and N (pxp) denote orthonormal singular vector matrices and ¥
denotes a diagonal matrix with p singular values. Let the matrix X be updated by
setting
X" = MN". (6.3)
Following Ten Berge (1986), which is analogous to the case K=1, we now have
Fx") 2 £, (6.4)
which implies that (6.3) increases f(X) monotonely.

Proof. Verification of (6.4) is possible in two steps by defining the auxiliary function

A

f(Z) as

~

14 ;
f(Z) = X]ZS'Bsxs = {t Z'<Bles-“?BSXSa'“?BPXp)v (().,5)
5=

with x; fixed Vs and Z'Z=I. The consirained maximum of (6.5) is attained for Z =
X" given by (6.3), cf. Green (1969). Hence we have
FX® 2 £(X). (6.6)

In the second step we apply the Cauchy-Schwarz inequality

A, p
FEXY = SaiBos =0 Y'Y € (0 YOVYH120r V'Y)I2 =

s=1
Lo 120 & g 172 U122 :
*(Xlxsﬁsxs) ();15&535'%5) = fEZFEK)Z, (6.7)
b §=
where Y = (E%/zxtf,,‘,.,Bfg/zx?,..,,ﬁ};,/zx?})

172 1/2 1/2
Y = (Bl Xl,.”,Bs Xs,.,w.)Bp Xp).,

We can apply the Cauchy-Schwarz inequality, because the matrices By are positive
semi-definite and therefore can be written as By = E%QB ]}g/ 2, where Bgl 2 is the unique
positive semi-definite square root of By. This is why convergence of the algorithm

presented here is guaranteed only if the matrices By are positive semi-definite.



Algorithms 155

Finally we combine the inequalities (6.6) and (6.7) into one sequence of connected
inequalities £(X) < f(X") £ fF(X")12£(X)1/2, which implies F(X)V2 < £(X")1/2 and
completes the proof of (6.4). a

A necessary and sufficient condition for convergence can be derived. That is, X
cannot be improved if and only if (6.4) holds as an equality, and therefore by
combining (6.2) and (6.3)

B1%1,....BsXg,....Bpxp) = X(NPN') = XA, (6.8)

for certain positive semi-definite matrix A. It follows that (6.8) is a necessary
condition for a global maximum of f(X).

6.1.4 The algorithm for simultaneous SCA

In the initialization steps of the algorithm for simultaneous SCA we can choose any
arbitrary starting matrix %%, Nevertheless convergence is faster if we start with a
reasonable guess. We fix the balancing factors (3.9) for all dimensions to their
maximum value ¢12k, which is the largest eigenvalue of HyHy. After substitution in
(3.7) we compute the optimal x°. For convenience, in the final step we rearrange the
dimensions of X in such a way that the SCA function is decreasing. The complete
algorithm for simultaneous SCA can be summarized as follows.

Initialization:

Step 1. Compute SVD Hy, = P @Oy Yk

K
Step 2. Compute EigenVD ¥ Pi{I~ (I - ®F /of0) Py = KAK'
k=1

Step 3. SetX° =Ky = (k1.0 kg, Kp)
Iterations:
xé'?k®§Pk'X§

F R Vk,s
x5 Pr®rPr'xs

Step 4. Compuie w&)s =
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. K .
Step 5. Compute Bt = 3. Pe{I- (- ®fw(lys) H*1 Py Vs
k=1
Step 6.  Compute cé = -ﬂmm@f;) Vs
Step 7. Compute Bé = céE o+ _gfg Vs

Step 8. Compute B = (Bﬁ‘xi,.o.,Béxé,a..,Béxﬁ)

Step 9. Compute X! = giip)1/?

. p . . . N
Step 10.  Evaluaie SCAX™ ) = § 1B ixf1 - o)
sz}
If SCACX™ Y - SCAKY) > &, for some small value &,
then go to Step 4.
Termination;

Step 1. Rearrange dimensions SCA("") = SCAG ) = SCAR)

Step 8 and 9 can be repeated in inner iterations many times for updating X as shown
in section 6.1.3. We do not have general recommendations for optimal tuning. For
the simulianeous SCA solution we have in general no rotational freedom as can be
found in simultaneous formulations of methods like PCA, CCA or Multiset CCA
(Carroll, 1968). Rotational freedom is guaranteed if @% =1, Vk, because in that
special case wy)s=1, Vk,s and SCA comes down to the same thing as MCCA.

6.1.5 Computational short cuts

Although an appropriate choice for the constant scalar ¢y in Step 6 is the negative of
the smallest eigenvalue of ;iBg'g we can define another estimate of ¢ that is
computationally less demanding. We call this estimate ¢g and it has ¢, as an lower
bound. In this way the matrices By in Step 7 will always be positive semi-definite.

Theorem 6.2. The estimate

~ K RN :
cs = 3, ~(0{1-(1~ Sewr)9)” Pmin (6.9)



Algorithms 157

where  Omin gives the minimum value of the two elements between the brackets,
has ¢5 = ~Amin(Bs) as a lower bound.

In order to verify Theorem 6.2, ¢y < ¢5, Vs, we check the validity of the following
thiee equations

K
cs = ~Amin(By) = kzl ~AminB(k)s), Vs  (6.10)
" 25=1.2
“’An1i11(f}§;{k)s) S-(I-(I- ‘DkW(k)s) Jmin, Vk,s (6.11)
and (£~ - Opwi dmin = O.41 - (1 - pZv 9> Dimin. Vks (6.12)
where  Apin0 gives the minimum eigenvalue of the matrix
between the brackets,
2 \
Bys =Pr{l- I~ q)kW(kl)s)z}Pk , Vik,s
By = 2rBk)s» Vs
and Omin gives the minimum value of alf the elements of the

matrix or string between the brackets.

Proof (6.10). By expanding (6.10) as ¢5 = -Amin(Bs) = ~Amin(ZxByr)s) £ T
Amin(Bx)s), we have to prove that Ain(ZiBk)s) = 2k Amin(B(k)s). Therefore we
introduce in the following equation the functions g(x) and gp(x)

K X K
g(x) = x'Bsx = X'(kEIEBL(k)s)X = kEIX'B;(k)sX = kZI gr(x), (6.13)

with x'x = 1. Obviously we have

g(x) 2 Anin(Bs) = g(y)
and  gk(x) Z AminByrys) = gr(yr), Vi (6.14)

with x'x = y'y = yi'yx =1, Vk. The vectors y and y; denote the eigenvectors
corresponding to the smallest eigenvalues of respectively B and Byr)s. We substitute
y in (6.13) and in the second term of (6.14) and obtain respectively g(y) = Trgr(y)

and gr(y) = gr(yr). Combining these equations into g(y) = Trgr(yr) gives
Amin(aBr)s) 2 ZrAminBr)s) and therefore completes the proof of (6.10).
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Proof (6.11). In order to verify (6.11) we substitute gr(yz) as defined in (6.13) and
(6.14)

AminBerys) = ge(yr) = Y B)syr

. 251 2y s \ .
=y Pr{l - (L - Ppwr)) 1 Pryr + y'PrAoPr'yE

= y¥ (PLPOAGs(PLEL Vi, Vks (6.15)
where Ag denotes a matrix of appropriate size with only

zero elements,

Pr is the orthonormal complement of Py, so that
Pr.lr)' PrEy) = PPy =l  Vk
and A)s denotes a diagonal (nxn) matrix containing the

(prxpr) matrix (I - (L - ®Fwb9?} in its upper
left corner and zeros elsewhere. Vk,s

In fact (6.15) entails a full eigenvalue decomposition of Byr)s with all eigenvectors
(Pr.Lr) and corresponding eigenvalues on the diagonal of Ag)s. This implies that the
smallest eigenvalue of Byx)s is equal to the minimum diagonal value of Ag)s. We
summarize our results as Apin(Bx)s) = (diag(A)s)min 2 Ak)s)min- The inequality
in the previous sequence only occurs if all diagonal elements of A)s are greater than
zero. In that special case we have (diag(A)s)min > 0 = (A@)s)min and we know that
the nomber of columns of Py is at least equal to the number of rows, (pr=n). The
definition of Ay in (6.15) implies that (Ags)min = (& - (I - ®FW b9 Imin and
therefore compleies the proof of (6.11).

Proof (6.12). The proof for (6.12) is given by first replacing this equation of matrix
functions by an equation of scalar functions with arguments ¢2 and w. Without loss
of generality we omit the subscripts k and s in order to simplify notation and
reformulate (6.12) as

©,{1 = (1 - 6" Dimin = 041 - (1 = v D* Dinin, (6.16)
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with 05 ¢°< ¢2ax and 0 S w < Py,

where ¢2 denotes the possible values of the diagonal
elements of @% with @%ax equal to the maximum
value of (pz,

and w denotes the possible values of the corresponding

balancing factors wg)s.

The boundaries for w can easily be verified in (3.9). We evaluate in dctail the
functions {1 - (1 - ¢"w %} and {1 - (1 ~ p2axw )7} in (6.16) for the cases ¢p<w

and ¢2>w and obtain
0<{l-(1-¢*wH <1 for 0S°<w< o
and  {1-(1-¢haw DS {1-0-¢Pw ) <1 for Osweg’<play. (6.17)

The first term does not contain a function thh %% because for O<¢ <w<¢max we
have only one possible value for w, when q> m(ﬁmax, namely ws (l}max This implies
that the function {1 - {1~ ¢»maxw 1)2} can only be equal to 1 in the case ¢ <w. The
lower bounds in (6.17) imply that (6.16) and therefore (6.12) is always valid.

Summarising the previous exposé we can now replace Siep 6 by

Siep 6. Compute b =-0,{1 - (1 - ¢fe0w(ys ™ Donin. Vs

Another computational short cut for the simultaneous SCA algorithm in section 6.1.4
concerns the size of the P and By matrices, especially when n=s3 pmy. The By
mairices are {nxpy) and therefore all the By matrices are (nxn). Manipulations with
these matrices make much greater demands on computer time if » is large compared to
some fixed total number of variables 3 pmy. A simple remedy for this phenomenon is
offered by adding or changing the following steps of the SCA algorithm in section
6.1.4

Step 0. Compute SVD H = PO’

Step 1. Compute SVD (P'Hy) = Pp@pQp Vk
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Step 12. Compute X2 = pxit+l Vk

For the SVD H=(Hj,..,Hg,...Hg)=P®Q' we have the orthonormal singular vector
matrices P (nxP) and Q (ZpmpxP) corresponding to non-zero singular values in
diagonal matrix @ (PxP), with P<Xpmy. The only purpose of Step 0 is to find a
description of the space of H by an orthonormal basis P with a number of columns P
equal to the rank of H. Therefore any other (faster) technique for finding such a space
would be acceptable. Take for instance the complete orthogonal factorization of H
(see e.g. Gill, Murray & Wright, 1981, page 39). As a result of Steps 0 and 1 the size
of the P matrices in the iteration steps now is reduced to (Pxpy) and the size of the
By matrices to (PxP). In Step 12 we represent the solution in the original n-
dirnensional orthonormal basis instead of the anxiliary P-dimensional orthonormal
basis.

6.1.6 Successive SCA solution

In successive SCA, the fit function formulated in (3.5) and (3.7) is maximized in
successive steps for each dimension s. In other words for s = 1,...,p we maximize

K e "
sCAsu: Fit(xgwis) = kzl xsAgPL{I = (1 - B ?  PL'A sxs, (6.18)
with A=l fors=1
Ag = (I~ X51%s1) fors=2,...p , with ¥g.1 = (X1,...,%5.1).

This fit function is to be preferred to the simultaneous SCA fit function if we are
interested in the highest possible fit for the first dimension and not in the highest
possible fit for all p dimensions simultaneously. An alternative for (6.18) would be
deflation, i.e. taking the antiprojection on the previous dimensions for each set Hx)s

Hr)s = Hg fors=1 Yk
Hpys = (T2 1%5-1YH (k)51 fors=2,..p Yk

and computing new eigenvectors Pr)s and eigenvalues @)(Zk)sf(}r each successive
dimension. In principle this will lead to other solutions than maximization of (6.18).
The solution for the deflation method can be found by computing p times a one
dimensional simulianeous solution for each successive group of K matrices Hyp)s.
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6.1.7 The algorithm for successive SCA

The p -dimensional solution of X for successive SCA is essentially obtained by
computing p times a one dimensional simultaneous solution. The only difference with
this one dimensional simultaneous solution is that we have to add the antiprojection
matrices Ay as defined in (6.18). The resulting algorithm for successive SCA is as
follows.

Initialization:

Step 1. Compute SVD Hy = P)1 G Qx' Vi

K ,
Step 2. Compute BigenVD ¥, Py {1 - (1~ 0% /g7 } Py’ = KAK'
k=1

Step 3. Sets=1and X' = 1K) = (k1,0 kg,o k)
Iterations:

Xs }?’(k)s@kF(L)s Xs
X p(k)s@’kp(k)s Xg

Step 4. Compute W(éz)s = Vk

K .
Step 5. Compute By = kill Peystl- (§~®%(W(§c)s) 1)2}?(1‘{)5

Step 6.  Compute ci = —~-Amm(§§§)
Step 7. Compute Bjn s céli»{- ngfg

Step 8. Compute b= Béxé

Step 9. Compute x5 = b'(b"p’y
Step 10. Ewvaluate SCAsu(x';"l) . H'Bg i+1 ~c§

If SCASU(K?}‘) %CAsu(xs) > &, for some small value g,
then go 1o Step 4.

Step 11. Compute s =5+ 1
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If s = p then stop.

Step 12, Compute Per)s = (I~ X 1%5.1)Pw)1, Vk
with X1 = (X1ee0oXg1)

Go to Step 4.
Step 8 and 9 for updating x; can be repeated in inner iterations many times as in the
simultaneous algorithm of section 6.1.4,
6.1.8 Compusational short cuis revised

The compntational short cuts described in section 6.1.5 can also be applied to the
successive SCA algorithm. We only need to make a minor adaptation in verifying
Theorem 6.2, because the meaning of By)s changes from

Bous = Pl - (- @Fwo® 1Py in section 6.1.5 Vs
o Bys = Prys{I - 0 - DFw(hy D21 in this section. Vs

The proof of (6.10) remains valid if we substitute Bg)s for Beg)s. For (6.11) this is
not so obvious, because the equations in (6.15) no longer hold. Therefore it remains
to prove that

E 2~-1.2 .
Azmin(lg(k)s) 2 (X~ (I~ Piwk)d Imin- Vks (6.19)
Proof. From Step 12 in section 6.1.7 we derive the relation between By)s and Be)s
Brys = AsBi)shs, Vks (6.20)

with Ag=1 fors=1
Ag= I~ Xe1Xs1) fors =2,....p , with X1 = (X1,...,%5.1).

Using the definition in (6.14) we have AninBr)s) = YsBir)syt)s and AminBr)s)
= y(r)s Br)sy (k)s.» where the vectors yk)s and yer)s denote the eigenvectors
corresponding to the smallest eigenvalues of respectively Byy)s and By)s, Vk.s.
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When (I - (I~ @%@@%)Z)min = 0, we know from (6.11) that Anin(Byx)s) =
Y(t)s Bir)sy)s 2 0. Because Byx)s is positive semi-definite, we have zBx)sz = 0 for
any other vector z and therefore yx)s'AsBk)shsy(k)s = AminBr)s) = 0.

When (I - (X - @009 ) min < 0 and Amin(Br)s) = 0, (6.19) is obviously true.

When (I - (I - ®FWi9Dmin < 0 and AminBes) < 0, we also have AminBys) <
0, because in this case Amin(Bx)s) = - T -~ @%ﬁ/ﬁ})s)z)mm, In other words we
must now verify Amin(B)s) = AminByr)s). In general we have for any projector
matrix Ag = AgAg and for any unit normalized vector z, 0 < z'Agz < 1. Multiplying
Ykyshsyrys S 1 with the negative value y)s Br)sy(r)s we obtain

5 k)sBr)sY k) (k)s Bsykys) 2 Yk)sBrsy (k)s Vik,s

and therefore

< j)jks'Bksykq

. . ‘ . vk, 6.21
Y(k)s B (k)sY (k)s Vik)s AsY(k)s P

Furthermore for vector Asyms(Y)s Asy(k )s)'l/ % we have,

Yk)sAsBshsyiks  Jk)sBr)sy(k)s ‘
s 1 Y 3 \7'!{,,3
V(s AsY(k)s Yk)s AsY(k)s

Vs Ber)sy ks S (6.22)

Combining (6.21) and (6.22) into y)sBk)sy(x)s 2 ¥(k)s'Buk)sy(k)s we have
completed our proof for (6.19). i

6.2 Computation of the NRDA method

Before we develop in section 6.2.1 and 6.2.2 an algorithm for the maximization of
the NRDA fit function (4.37) we first reformulate this function. To simplify notation
we will write F for F(H). Instead of maximizing in (4.37) the variance of the
columns of P'Fy accounted for by V, we can also maximize the variance of the rows
of P'Fy accounted for by the orthonormal basis C. In other words we can maximize
the fit function r C'F'PP'F»C instead of ir VP FFp'PV. The optimal
discriminant space PV of (4.37) for fixed F is found by the eigenvalue
decomposition of P'FpFpP, which produces eigenvectors V. V is also defined by
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the equivalent eigenvalue decomposition of FePPFp=Fg'PPPP'Fg. The
discriminant space is derived from the matrix C with the first p eigenvectors by unit
normalizing PP'FgC. Next we decompose the projection of the mirror variates FgC
back on to space P in two parts. In figure 6.1 the Pythagorean decomposition is

Chaprer 6

illustrated for one variate Fe, mirror variate Fge and reflected variate PPFge=Fn.

£
=
S
<
E
=
5]
)
=

G -space

- Variate Fe

"Reflectied variate Fn

SIIIIIII IS4

Figure 6.1 Pythagorean decomposition of reflected variate Fi.

The small triangle in figure 6.1 shows the Pythagorean decomposition of Fn into

FpC~(FpC-FN), with Fn orthogonal to (FgC-FN). The resulting fit function is

NRDA: Fig(C,N)

with

where

it

r CFRPPFRC
= ir CFgFC - (FpC -~ FN)'(FpC - FN)

= i 2NF'GFC - NFFN

= & 2NBC -~ N'TN, (6.23)

CC=1,

F

C

is shorthand for F(H)

and denotes the nonlinear transformed values of H,

denotes the variable weights of the transformed variables F,
denotes the orthonormal basis of F, with F=P®()',

denotes GF, which are the between-variables of |,

denotes the non normalized discriminant space,

denotes the between group variance-covariance matrix, Fg'Fp,
denotes the total variance-covariance matrix, F'F.
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6.2.1 Maximization of reformulated NRDA fit function

The maximization of NRDA (6.23) proceeds in two main alternating steps. First the
parameters C and N are estimated with F fixed and in the next main step F is
estimated with C and N fixed. The two steps are repeated until convergence is
reached.

Estimation of € and N with ¥ fixed.

We compute the singular value decomposition P'Fp=KAL', with non-zero A in
descending order and singular vectors K'K=L'L=L For a p dimensional solution we
have C=Lp, where LLp are the first p singular vectors, and N:Q@)—IKPAI;, with
F=Po®Q"

The corresponding discriminant space PV=FA in (4.37) for fixed F is given by
PV=PKp. This implies for the reflected variates PP'FgC=FN, that they are a
rescaling of the discriminant space PPFpC=PKpAp=PVAp=FAA,. For the
discriminant weights A we have A=NA"",

Estimation of F with C and N fixed,

The estimation of F proceeds variable-wise. Successively all variables of F are
updated. If the variable is numerical or multiple nominal the estimation for variable k
is skipped (see section 4.5.3). We maximize NRDA (6.23) with all parameters fixed
except one variable £ of F. The remaining K-1 variables are fixed and gathered in
matrix F_p. With F_, C and N fixed we rewrite (6.23) in two steps into a simpler
form with respect to variable fy.

NRDA: Fit(f) =tr 2N 'F_'GF_;C_;

+ 2(8'Gyng'cr + £ GF 4 C_pny + £f'GF 4N _cp)

= NpF oy FoNog - fi'fimg'ng ~ 20'F 4 N_gng, (6.24)
with  fi'fy = 1.

where F.p denotes matrix § with column £ deleted,
cr denotes a column vector with row k of matrix C,
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C_x denotes matrix C with row k deleted,
ny denotes a column vector with row k of matrix N,
N_x denotes matrix N with row k deleted.

We decompose the term £'Gf=f;' GGy, into two parts by projeciing variable f; on
to the group space GD 2 a5 we did for the projection of the mirror variates FgC on
to space P.

Mirror variable Gyk """"""""""""""" Variable f;,

G-space

Figure 6.2 Pythagorean decomposition of mirror variable Gyy,.

In figure 6.2 the Pythagorean decomposition fi'Gfy=f}'fr-(Fr-Gyp) (Er-Gyy) is
illustrated for variable f and mirror variable Gfy=Gyy. By adding parameter yj, we
rewrite (6.24) into

NRDA:  Fit(fr,yx) = 28 {GF_x(C_pnyp + N_yeg) - FpN_gng}

+ 2Q28'Gyr - yr'Dyr)ny'er
i Nop'Fop' QOF 3 Clp ~ FopN_p) - np'ng, (6.25)

with  £'fy = 1,
where  yp denotes weights for the orthogonal group indicator matrix G.

For fx fixed maximizing NRDA(fz,yz) comes down to maximizing 2f3'Gyp—
yr'Dyk. This optimization problem is equivalent to minimizing (f-Gyp)' E-Gyp),
with £;'€x=1, which reaches a minimum for ykm@mlﬂ‘fk.

For yp fixed maximizing NRDA(fr,yr) is equivalent to minimizing the residual
variance ep'er, where ep=fp-(GEF_ (€ pinp+N_pep)+2Gypng'ep-F _pN_pog) and i
gives the appropriate nonlinear transformation of variable hy. (See Gifi, 1990, page
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529 and Kruskal &Carroll, 1969.) In section 4.5.3 various transformations are
mentioned.
6.2.2 The aigorithm for NRDA

Swmmarising in this section the preceding elaborations we define an algorithm for the
maximization of the NRDA fit function (4.37).

Initialization:

Step 1. Eapand H=(hi,....by,...hg)

nto He=(H . Hy,. L H g, see (4.36),
with He=hy for single variables,
and Hy = 3Gy % for multiple nominal variables.

Step 2. Set F=H, i=1, and A5 =0,
Tterations:
Step 3. Compute SVD F=P®Q".
Step 4. Compute SVD P'OF=KAL'
Step 5. Compute C=Lp, where Ly are the first p singular vectors.
Step 6. Compute Nm@@umlﬁ*&p/&é,
Step7. ¥ (trA;; - trAi;' 1) > &, for some small &, then stop.
Step 8. Minimize eg'ey for single non-numerical vars, VE successive,

with er=fi-{ G(F_p(C_pnp + N_ger)+28% ﬁm&‘@k)mﬁwngmggm&} ,
where % gives the appropriate unit normalized nonlinear transformation
of variable by and F.y is updated before all successive steps.

Step 8. Set, i=i+1 and go to Step 3.

The parameter yy derived from the maximization of (6.25) is incorporated in Step 8 in
the 'old' nonlinear transformation é’?l of variable hg.
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EXAMPLES

We present analyses of real-life data using three methods developed in the preceding
chapters. For a psychometric application of Set Component Analysis (chapter 3) we
compare the SCA solution of the Miller-Nicely daia with the corresponding INDSCAL
solution. Reflected Discriminant Analysis from chapter 4 is applied on mass
spectrometric barley tissue profiles and compared with resulis for PC-DA. The barley
tissue profiles are also analysed with Nonlinear Reflected Discriminant Analysis.

Introduction

Although a wide range of methods have been presented in the preceding chapters we
give only a modest number of real-Jife applications. Several considerations lead to this
approach. Many methods which have been discussed are well-known, and althongh
there was up to now no overall criterion for the PLS methods, all these methods have
already been applied for many years. For the new' methods like SCA and RDA we
already gave a fairly diverse impression of their properties by simulation studies. The
number of new methods that can be generated with DC or LDC (chapter 5) is so large
that a separate future treatment of corresponding applications is justified. For the
moment we confine ourselves to present in the next three main sections real-life
examples for respectively SCA, RDA and NRDA. The analyses in this chapter were
performed by programming all involved methods in APL (A Programming
Language).

7.1 SCA and INDSCAL on psychometric Millex-Nicely data

In Soli & Arabie (1979) the utility of phonetic features versus acoustic properties for
describing perceptual relations among speech sounds was evaluated with a
multidimensional scaling analysis of the consonant confusions data of Miller & Nicely
(1955). A general review of the many analyses this classic dataset has supported is
given by Shepard (1987). In section 7.1.1 we introduce the experimental data. In
section 7.1.2 we present some details on transformation, normalization and
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symmeitrization applied by Soli & Arabie. The computed INDSCAL solution is briefly
discussed. In section 7.1.3 the SCA solution is presented and compared to INDSCAL
resuits.

7.1.1  Experimental dara

The data from Miller & Nicely's experiment consist of full 16x16 matrices Cy, of
identification confusions between 16 consonant phonemes obtained in K=17 different
listening conditions. Four subjects listened while a fifth subject served as a speaker,
reading lists of consonant-vowel syllables formed by pairing the consonanis /p, t, k,
£0,s ), b,d, g, v, d, z, £, m, nf with the vowel /o/. (The phonemes /8/, 1, 1, and
/L) are respectively pronounced as in shin, shawl, that, Zhivago and the vowel /a/ as in
father.) The subjects rotated as speakers and listeners within each experimental
condition k. The listeners recorded the consonant they had heard after each syllable
was spoken. The consonants are classified by phoneme features in five groups shown
in table 7.1.

Table 7.1 Phoneme features of 16 consonanis.

Stops Fricatives Nasals
Voiceless Ip, t. k/ i, 8,5
Voiced /b, d, of v, 0,2t/ /i, o/

The 17 experimental listening conditions are summarized in table 7.2 and may be
classified under three general headings. First were the noise-masking conditions, in
which only the signal-to-noise (S/N) ratio changed. The $/N ratio was manipulated
by varying the amplitade of random noise which had been low-pass filtered at 6500
Hz. Second were the low-pass conditions, in which a constant S/N ratio of 12 dB
was maintained while the speech was low-pass filtered at the cutoff frequencies given
in table 7.2. The final conditions were high-pass, in which the same constant S/N
ratio of 12 dB was again maintained while the speech channel was high-pass filiered
at the cutoff frequencies also given in table 7.2. For each condition we computed the
efficient rank Iy, of the INDSCAL scalar product matrix according to (2.17). The
efficient rank gives an indication of the efficiency of information transfer by
estimating the number of reliable dimensions. By adding more noise or by narrowing
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the filter bandwidth the efficient rank gradually goes down. Only the efficient rank of
N6 is remarkably high. The mean efficient rank over all conditions is 5.6 and the
minimum is 4. Therefore the computation of a four dimensional solution is advisable,
if one wants to find as many reliable dimensions as possible which are common to all
conditions,

Table 7.2 Listening conditions.

Efficient  Speech-to-noise

Condition heading Label Rank fymy, ratio (dB) Bandwidth (Hz)

NIL1 7.8 12 200-6500

N2 6.0 6 200-6500

Noise masking N3 5.5 0 200-6500
N4 4.7 ~6 200-6500

N5 4.1 -12 200-6500

N6 7.2 -18 200-6500

L2H1 6.2 12 200-5000

L3 5.9 12 200-2500

Low-pass filtering L4 5.5 12 200-1200

L5 5.4 12 200-600

L6 5.3 12 200-400

L7 4.0 12 200-300
H2 5.9 12 1600-5000
H3 5.4 12 2000-5000
High-pass filtering H4 6.0 12 2560-5000
H5 5.6 12 3000-5000
Hé6 4.1 12 4500-5000

7.1.2 INDSCAL analysis

Soli & Arabie (1979) employed the INDSCAL method and program with the original
data Cy, log transformed to enhance consistency with the linear INDSCAL model. The
actual normalization and symmetrization applicd by Soli & Arabie were recovered in
steps. With the Appendix of Arabie & Soli (1982) and Shepard (1972) we
reconstructed the formula for deriving from the original confusion data €y the
INDSCAL input similarity matrices V.

Vi) = Ptog (Wﬁ + 0.001) (7.1)
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where (Cp)jj, denote the elements of the confusion matrix Cy,
(Vp)ij  denote the elements of the INDSCAL input similarity matrices V.

The (7.1) log transformation of the Miller-Nicely data was verified in Appendix A of
Arabie, Carroll & DeSarbo (1987), where some of the log transformed values are
listed. The scalar products mairices S were derived from the similarity matrices Vi
by the following formula.

Sp=-1/2F(cp(11-L) - Vk)zj (7.2)
where J denotes the centring matrix (I ~ i(i'i)mli‘),
CL denotes the maximuam of (~Vy)ij~ V)i - Vi), Vijl.

The additive constant ¢ gives an estimate of the smallest constant approximating
satisfaction of the wiangle inequality djjsdij+dyj, Vijl, with dij=cp+(-V)jj. The
additive constant method applied in INDSCAL is described in Torgerson (1958, pp.
276-277). The resulting scalar product matrices Sy have large positive eigenvalues.
The small eigenvalues are distributed about zero and are assmmned to be 'error’
dimensions.

The derived scalar products matrices (7.2) were analysed matrix conditional, which is
the defanlt option in the INDSCAL program. Therefore these matrices were multiplied
by & normalizing constant reguired to set the sam of squares for each matrix Sy equal
to unity. So SkmSK(KI‘SkSk)MI/Z, Vk. The INDSCAL dimensions and weights for the
unit nonmalized matrices Sg were computed according to the INDSCAL procedure of
Carroll & Chang (1970). Our results are nearly equal o the results presented in Soli
& Arabie (1979). On the basis of interpretability and only slight increments in the
INDSCAL fit for dimension five and six they decided to choose the four dimensional
solution as most appropriate for describing the perceptual relationships between the
16 consonants. This is in agreement with the 'four dimension' advice in section 7.1.1
based on the efficient rank. We shall refer to the INDSCAL solution of Soli & Arabie
as the original solution. Arabie, Carroll & DeSarbo (1987) also report slight
differences in their 1987 reanalysis compared to the original solution computed in
1976 and suggest this is probably due to the use of different hardware. Their
reanalysed proportion of variance accounted for was 0.6907 for the four dimensional
INDSCAL solution and equal to onr computed total proportion of VAF. The original
value was 0.6922,
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The total proportion of VAF for scalar product matrices Sy according to Arabie,
Carroll & DeSarbo (1987) is computed by

K
S (XWX -Sp)(XWpX'-Sp)
k=1
VAFprop = 1~ = . (1.3)
3 uSrSk
k=1

The proportion of VAF for each matrix Sy, is computed by restricting the summation

in the numerator and denominator to app“iy only to data from each single source.
Nevertheless they presented the original figures in order to maintain consistency with
earlier published accounts. We present our figures in table 7.3.A and 7.6.A, mainly
because the proportions of VAF by each dimension are not at all like the values
originally presenied. Due to these differences dimension 3 and 4 are interchanged.

Table 7.3 INDSCAL and SCA weights and proportion of variance accounted for

A:Our four dim. INDSCAL solurion B:Four dim. SCA solution
Filter Label 41 42 43 44 VAFprop 41 42 43 44 VAFpop
NiIL1 036 041 026 043 0.59 048 037 032 0.29 0.55
N2 046 054 025 0.39 0.75 0.64 036 037 0.34 0.79
N3 051 0.56 020 0.37 0.81 0.71 035 035 026 0.82
N4 0.60 054 0.17 0.19 0.77 078 029 032 0.11 0.81
N5 073 043 0.19 020 0.84 076 0.32 037 0.07 0.83
N6 049 041 0.10 0.15 047 0.51 0.18 042 0.14 0.49
L2H1 040 0.55 027 040 0.74 0.55 0.39 045 0.29 0.74
L3 045 0.53 0.24 042 0.77 0.59 0.39 044 0.28 0.77
L4 0.54 052 0.10 033 0.72 0.66 0.25 042 0.25 0.74
L5 0.52 0.59 0.13 0.28 0.76 0.69 027 041 0.25 0.78
Ls 0.69 041 0.i16 0.22 0.77 0.68 0.25 038 0.20 0.71
L7 0.65 0.52 005 0.08 0.76 076 0.10 035 0.14 0.73
H2 032 037 0.38 045 0.63 048 0.51 017 0.30 0.61
H3 037 0.15 055 0.29 0.57 0.34 055 0.18 0.09 0.46
H4 025 021 056 0.29 0.54 0.28 0.59 0.16 0.25 0.51
HS 0.19 0.10 0.69 0.25 0.62 0.16 0.61 0.16 0.24 0.48
H6 006 0.08 077 012 063 0.06 059 0.07 0.28 0.43
VAFprop 026 022 0.15 0.10 0.69 0.33 0.16 0.11 0.06 0.66

We computed the VAFpmp dimension-wise by substituting XsW(k)sXs instead of
XWX'in (7.3) for each dimension s separately, where W(k)s gives the appropriate
diagonal value of Wp. The four VAFpmp by dimension do not sum to the total of
0.69, because the dimensions are not orthogonal. To obtain the sequence of the
original solution the four dimensions labeled by their VAFprop should be permutated
t0 0.26 0.22 0.10 and 0.15. In the original published table Soli & Arabic gave the
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values 0.33 0.13 0.16 and 0.07. These VAFprop values are rather misleadingly
derived from the total VAFprop of lower dimensional solutions. In table 7.4.A we
give the original VAFprop with increments up to a 6 dimensional solution. In table
7.4.B we give our corresponding reanalysed resulis.

Table 7.4 INDSCAL fit for different dimensionalities.

A:Original INDSCAL solutions B:Our INDSCAL solutions
Dimensionality VAFpeop  Increment VAFprop  Increment

1 0.33 0.34

2 0.46 0.13 0.50 0.16
3 0.62 0.16 0.62 0.12
4 0.69 0.07 0.69 0.07
5 0.73 0.04 0.74 0.05
6 0.77 0.04 0.71 0.03

The most striking difference is the fit of the two dimensional INDSCAL solutions. In
the original analysis the iteration process is stopped too early compared o our
reanalysed results. Apart from this minor practical error the maiching of the values of
table 7.4.A to the corresponding dimensions of the original four dimensional solution
is theoretically dubious. We illustrate this in table 7.5 where correlations are given
between the dimensions of our 1, 2 (dim. 2.1 and 2.2) and 3 (dim. 3.1, 3.2 and 3.3)
dimensional INDSCAL solution with our 4 dimensional INDSCAL and SCA
solution. Redundant zeros are left out in this table.

Table 7.5 Correlations with four dimensional INDSCAL and SCA solution.

INDSCAL A:Our four dim. INDSCAL solution B:Four dim. SCA solution
Dimensions 4.1 4.2 43 4.4 4.1 4.2 4.3 4.4
1 084 074 003 -007 1 003 001 0.04
2.1 084 095 001 -0.09 1 -0.01 0 0.04
2.2 0.18 011 091 -059 -0.02 098 0.03 003
3.1 09¢ 032 006 0.13 -0.86 008 049 002
3.2 021 1 004 0.04 071 007 07 0.08
3.3 011 006 092 061 0 098 -0.07 002

First we observe in table 7.5.A that our four dimensional solution gives the same
sequence of dimension 3 and 4, if we use the corvelations with the three dimensional
solution as a criterion fo classify the fourth dimension. In the original Soli & Arabie
solution our third dimension is classified as the fourth dimension. Secondly the
correlations with the one and two dimensional solution in table 7.5 show that the
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anigue orientation of the INDSCAL dimensions is not consistent over comparable
solutions, because it is dependent on the dimensionality of the solution. Therefore the
VAF values presented in table 7.4 should not be substitated in table 7.3,

Table 7.6 INDSCAL and SCA consonant dimensions.

A:Our four dim. INDSCAL solution B:Four dim. SCA solution
Consonanis 4.1 4.2 43 4.4 4.1 4.2 4.3 4.4
ol 0275 -0304 -0.151 -0.089 -0.357 -0.089 -0.044 -0.255
W 0.317 -0.289 -0.057 -0.236 0362 0.078 -0.001 -0414
Tkl 0.283 -0329 -0.097 -0.198 -0.363 0.017 -0.113 -0.346
i 0.255 -0.097 -0.110 0.359 <0.230 -0.270 0171 0.129
18/ 0.248 0050 -0.185 0.267 0207 -0.178 0.189 0.180
/sl 0.245 0.021 0.206 0.098 0174 0238 0.193 0.442
i 0.195 -0.089 0.713 -0.001 <0.200 0.507 -0.017 0.468
o/ -0.107 0.180 -0.202 0.395 0.135 -0.376  0.196 0.134
fal 0.098 0265 -0.159 -0.386 0.245 0.126 0.075 -0.124
g/ 0.131 0307 -0.119 -0.276 0275 0.104 0131 -0.108
Wi 0160 0232 -0.132 0.355 0.198 <0303 0.163 0.064
1o/ <0.137 0.269 -0.116 0.153 0.250 -0.173  0.158 -0.073
2l 0.123  0.342  0.068 -0.165 0.292 0.134 0.159 -0.150
1t/ -0.180  0.199 0490 -0.335 0.281 0.464 -0.045 -0.237
fm/ <0.432 -0.338 0062 0.120 0.090 -0.192 -0.572 0.194
m/ 0.449 0321 0087 -0.061 0.128 -0.080 -0.645 0.09

The INDSCAL dimensions in table 7.6.A are displayed graphically in figure 7.1 and
the corresponding weights from table 7.3 in figure 7.2. Dimension 3 and 4 are
presented in the same orientation as the original publication in order to facilitate a
visual comparison,
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Figure 7.1 INDSCAL dimensions mapping consonants of Miller-Nicely data.



176 Chaprer 7

We give a summary extracted from Arabie, Carroll & DeSarbo (1987) of the
interpretaiion of the four dimensions. For readers not familiar with phonetics it is
useful to know that the vocal iract resonates at overtone frequencies. These resonant
frequencies are known as the formants.

"The first dimension of the object space appears to specify the temporal relationship
between onset of periodic formant resonance and the initiation of broadly dispersed
acoustic energy. An attempt to capture this generality led Soli & Arabie to select the
abbreviated label 'periodicity/burst order’. In choosing a label for the second
dirmension, the perceptual weights for this dimension in all listening conditions were
also examined (see Table 7.3 and figare 7.2). The patiern of weights implied that the
second dimension specified spectral changes in the lower portion of the speech
spectrum that are excited by relatively large amounts of acoustic energy,
corresponding to 'first formant transitions', which becomes the label for the second
dimension.

The fourth dimension of figure 7.1 seems to specify the shape of voiced second
formant transitions in the syllables, and resembles the dimension in Wish's analysis
labeled 'second formant transitions’. That label has been retained in the current
analysis. The arrangementi of the phonemes on the third dimension corresponds quiie
well to the amount of spectrally dispersed acoustic energy located below 5 kHz in the
speech spectrum. Because of this correspondence, the dimension has been given the
label 'spectral dispersion'.

Perhaps the most succinct summary of this object space is to note that acoustic
properties rather than phonetic features gave the most interpretable account of the
dimensions. This conclusion differs from previous analyses and runs counter to
traditional theorizing by some phoneticians."
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Figure 7.2 INDSCAL weighis mapping filter conditions of Miller-Nicely data.

The INDSCAL weights in figare 7.2 reveal a simple structure as generally predicted
in chapter 3. Some filter conditions load high and others very low on the respective
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dimensions, but there is no gradual transition of the weights from one dimension to
another for instance in the form of a quarter circle. According to many introductions
in INDSCAL theory this differential weighting is an atiractive feature of the model. In
chapter 3 we also argued that INDSCAL solutions will be dominated by sets with a
low efficient rank, if the sets are normalized to the same total sum of squares. The
correlation between the efficient ranks in table 7.2 and the VA Fprop's for the listening
conditions in table 7.3.A is -0.53, which is really far from zero and confirms the
theoretical results.

7.1.3 SCA analysis

The consonant dimensions of the SCA solution are listed in table 7.6.B and
graphically displayed in figure 7.3. The weights for the SCA dimensions are
computed according to the INDSCAL procedure of Carroll & Chang (1970) and
referred to as SCA weights. The SCA weights are listed in table 7.3.8 and
graphically displayed in figure 7.5. An impression of the maiching between the SCA
and INDSCAL consonant space is given by the canonical correlations between these
two sets with four variables. The canonical correlations 0.999, 0.997, 0.996 and
0.771 indicate an almost complete overlap in three dimensions. Table 7.5 shows that
the orientation of the SCA dimensions differs from the four dimensional INDSCAL
solution. The orientation of the first two SCA dimensions is more or less equal to the
two dimensional INDSCAL solution and therefore clearly different from the
orientation of the first two dimensions of the four dimensional INDSCAL solution,
The interpretation of the SCA consonant dimensions changes considerably due to the
different orientation within the INDSCAL space and some change outside this space.

The first SCA dimension in figure 7.3 separates the voiceless (unvoiced) consonants
from the voiced consonants as can be verified in table 7.1 and is labeled 'voicing',
Four of the five phonetic groups in table 7.1 are separated by the first SCA
dimension. Only the voiced stops and the voiced fricatives are not distinguished.

For the interpreiation of the second dimension we provide some additional
information. The most widely used set of symbols for phonetic transcription is that of
the International Phonetic Association (IPA).
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Figure 7.3 SCA dimensions mapping consonanis of Miller-Nicely data.

From the IPA chart given in the Encyclopaedia Britannica (15%® edition, 1984) we
extracted the classification of the 16 involved consonant phonemes. The extracted

chart is given in table 7.7.

Table 7.7 Phoneme features of 16 consonants.

Place of Voiceless  Voiceless Voiced Voiced
articulation stops fricatives Nasals Stops fricatives
Velar k/ g/
Palato alveolar ik 1t/
Alveolar i /s o/ fdf fz/
Dental 16/ Iof
Labio-dental il 7
Bilabial /pl fm/ b/

We split the IPA ‘dental and alveolar’ group in a 'dental’ and an ‘alveolar’ group
according to supplemental information in the Encyclopaedia Britannica. The place of
articulation is ordered from back (velar) to front (bilabial). The columns are ordered in
such a way to facilitate a comparison with the first two SCA dimensions in figure 7.3.
The second dimension separates 'back' consonants from 'front' consonants and is
labeled 'place of articulation'. Above -0.89 we find velar, palato alveolar and alveolar
consonants and below -0.89 we find dental, labio-dental and bilabial consonants. The
place of articulation of all fricatives (Table 7.7) is perfectly ordered by the second
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SCA dimension. The same holds perfectly for the nasals, but not perfectly for the
stops. The velar articulation points are located slightly too much to the front.
Apparently the velar and alveolar stops are not discriminated with this place of
articulation dimension.

The third SCA dimension separates nasal consonants from oral consonants and is
labeled 'cavity'. We could also have used the label 'nasality', but this label interferes
too much with the phonetic meaning of nasality and the corresponding ordering of
consonants.

The fourth SCA dimension (SCA4) can be quite well predicted with a quadratic
function of the first dimension and is labeled by 'voicing modulation’. The correlation
between SCA4 and (--6,392><SCA%~06407><SCA1+0.400) is 0.908. We plotied the
first and fourth dimension in figure 7.4.A to show the functional relation visually.
The interpretation of the 'voicing modulation' dimension is not univocal. It can be an
artefact of analyzing nonlinear data with a linear technique or it can be that lisieners
are apparently able to discriminate neutral voicing from extreme voicing. Anyway the
voiceless fricatives are separated exira from the other consonants by this functional
relation. I is interesting to notice that the four dimensional INDSCAL solution also
contained this functional relation, but less pronounced. To show the relation we
predicted the SCA1 and the SCA4 from the INDSCAL space with muliiple linear
regression. The multiple correlations were respectively 0.999 and 0.785.
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Figure 7.4 Dimension 1 and 4 mapping consonants of Miller-Nicely data.
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We obtained the consonant dimensions INDgca1 and INDsca4 and plotied these
INDSCAL approximations of the first and the fourth SCA dimension in figure 7.4.B.
The correlation between INDgra4 and («5°§24XIND§CA1-O.352><INDSC A1+0.346)
is 0.761. We remark that optimization of the orientation of the first and the fourth
dimension with respect to a quadratic relation might improve the correlation for both
SCA and INDgca. Secondly the prediction of the fourth dimension by the first
dimension can be improved by applying other simple nonlinear functions in figure
7.4. For instance a separate linear regression for the voiced and the voiceless
consonants results in correlations 0.962 and 0.754 between true and predicted fourth
dimension for respectively SCA and INDgeA.

Summarizing, the SCA consonant dimensions can satisfactorily be interpreted with
phonetic features, contrary to the interpretation of the original INDSCAL dimensions
with acoustic properties by Soli & Arabie.

The SCA weighis in figure 7.5 show a nice gradual transition for the first two
dimensions in the form of a quarter circle and offer an almost ideal example of
differential weighting of dimensions. Generally high-pass filtering conditions result in
better than average discrimination of place of articulation and worse than average
discrimination of voicing. This tendency is reversed for low-pass filtering and noise
masking conditions. The same transition not compared to average discrimination but
by measuring relative discrimination can be observed for voicing modulation and
cavity. In table 7.8 the weigh ratio’s for dimensions 1/2 and 3/4 are computed.

Table 7.8 Weight ratio’s for dimension 1 divided by 2 and 3 divided by 4.

Filter Label 1/2  3/4 Filter Label 1/2 3[4 Filter Label _1/2 . .3/4
NIL1 1.28 1.10 LZHY 141 1.56 H2 094 059
N2 1.78 1.07 L3 1.50  1.57 H3 062 2.02
N3 206 134 L4 264 171 H4 047 062
N4 2772 2.87 LS 2.58 167 HS 0.26 0.67
NS 2.38 5.36 L6 2.68 1.86 H6 0.11 0.26
NG 2.78 295 L7 769 249

All noise masking and low-pass filtering conditions discriminate better on dimension
1 and 3 compared to respectively dimension 2 and 4 than the high-pass filtering
conditions except for H3(3/4). Low-pass filtering and noise masking tend to increase
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gradually the discrimination of dimension 1 and 3 corapared to respectively dimension

3 and 4. For high-pass filtering this tendency is reversed.

Dimension 2: Place of articulation

0.5

Dimension 4: Voicing modulation

0.5

Dimension 1; Voicing Dimension 3: Cavity

Figure 7.5 SCA weighis mapping filter conditions of Miller-Nicely dara.

In summary the analysis of the Miller-Nicely data with INDSCAL and SCA seems to
confirm the theoretical expectations.

The orientation of the SCA dimensions appears simpler to interpret than the
INDSCAL orientation. Although this could be expected, because SCA eliminates
as much as possible the unique components in the listening conditions, it remains
to be seen in future if this property is repeated for other real-life examples.

‘The configuration of the SCA weights shows a gradual transition from one
dimension to another and approximates more to the concept of differential
weighting of dimensions. The INDSCAL weights are more grouped in bundles as
is usual for simple structure configurations.

The SCA solution is not dominated by sets with low efficient rank. The correlation
between the VA Fpeop and the efficient rank for all listening conditions is -0.26. For
the INDSCAL solution this correlation is -0.53, which implies relatively high
loadings for listening conditions with low efficient rank.

7.2 RDA and PC-DA on mass spectrometric barley tissue profiles

In Tas, Angelino, La Vos & van der Greef (1991) barley tissue profiles are analysed

with PC-DA, which is frequently applied in chemometrics to pyrolysis profiles.
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Pyrolysis stands for the thermal degradation of usual complex (bio)chemical systems
like micro-organisms, cells, cell walls, food, soil, plant materials, fossil deposits,
body fluids and tissues.

In section 7.2.1 we introduce the experimental data. In section 7.2.2 the PC-DA
solution is presented. Next the barley tissue profiles are analyzed with RDA in section
7.2.3. We also provide Leaving-One-Out (L-0-O) error rates (4.31) to compare
group prediction of RDA with PC-DA.

7.2.1 Experimental doa

Six tissue elements (husk, aleurone, endosperm, scutellum, radicle and coleoptil)
were prepared from the barley variety Trinmph. Samples were obtained at the
beginning of the malting process from starting material (day 0), after four days of
germination (day 4) and after six days of germination and subsequent kilning (day 7).
Py-DCI/MS (pyrolysis-direct chemical ionization/mass spectromeiry) was performed
with the number of MS measurements on each tissue sample listed in table 7.9,

Table 7.9 Number of MS measurements on barley tissue samples.

Seed Native 4th day of Afier kilning
particle barley germination (7t day)
Husk 3 0 3
Aleurone 6" 3 3
Endosperm 3 3 3
Scutelluin 3 3 3
Radicle 3 3 3
Coleoptil 3 6" 6"

n=3 for each cell, cells marked with an asterisk (¥) are sampled twice: n=6

The 60 measured spectra were normalized to total ion cusrent to correct for differences
in sample size. The resulting patterns were reduced to subsets of 235 variables, the
highest Fisher weights being the selection criterion. Finally the 235 variables were
transformed to unit normalized variables in deviations from their mean. We refer to
the rows of the resulting 60x235 matrix as the barley tissue profiles.

The Between-to-Total ratio BT (4.27) of the barley tissue profiles for the six tissue
groups is 0.26. It should be noticed that BT was more or less maximized in the
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preprocessing step, where variables with the highest Fisher weights were selected
(Fisher, 1936). We computed the efficient rank Jm of the barley tissue profiles
according io (2.17). The efficient rank is fm=17.4, which is close to the total number
of 17 measured cells in table 7.9,

7.2.2  Principal Component - Discriminant Analysis

To explore the differences in MS patiern between the six tissue elements the 60 barley
tissue profiles are partitioned into six groups. Differences in sampling time are
neglected. For the final PC-DA solution the 60x235 matrix was first reduced with
PCA to rank 9. Next the DA solution was computed in a second step. We refer to the
resulting solution as the PC9-DA solution, because of the rank 9 reduction in the first
step. The 60 objects in the PC9-DA discriminant space are plotted in figure 7.6,
where the objects are labeled by the fivst letter of their group tissue name.
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Figure 7.6 PCO-DA discriminant space mapping 60 barley tissue profiles.

The loadings are given in figure 7.7, Only loadings outside a circle with radins 0.5
are displayed. We will not elaborate on the interpretation of the mass numbers. Our
first two PCO-DA dimensions rotated 45 degrees are consistent with the PC-DA
resuits of Tas, Angelino, La Vos & van der Greef (1991). They considered the
replicates as groups (20 groups, see table 7.9) and reduced the spectra to subsets of
57 variables.



184

Chapter 7
0.9 T o7
. 1690 798
0.6
] 15,
o 135
o~
g opi6
1
g 78
g 176
A i
194 1
132
356 150
| 192
"0-9 ¥ L] ¥ ¥ B ¥ L] ¥ L} B ¥ 1] [ 1] ! L] ¥ ¥ ¥
-1 -0.5 0 0.5 1

Dimension 1

Figure 7.7 PC9-DA discriminant space mapping barley loadings.

7.2.3 Reflected Discriminant Analysis

The discriminant space of the RDA solution is graphically displayed in figure 7.8.
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Figure 7.8 RDA discriminant space mapping 60 barley tissue profiles.

The within-group variance has completely vanished and therefore all objects within
one group are positioned exactly on one group point. The first RDA dimension is
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very similar to the first PC9-DA dimension. The loadings for the first two dimensions
are given in figure 7.9. Only loadings outside a circle with radius 0.5 are displayed.
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Figure 7.9 RDA discriminant space mapping barley loadings.

Although the RDA results simplify remarkably compared to PC-DA, this does not
imply that group prediction is also improved. Therefore we have computed L-0-O
error rates (4.31) for assessing prediction in several dimensions for both PC-DA and
RDA. The L-0-O error rate is a measure of misclassification of gronp prediction. In
table 7.10 we present five criteria for comparing PC-DA, RDA and NRDA solutions.
NRDA results will be discussed in section 7.3. The first column in table 7.10 gives
the number of dimensions of the discriminant space. The second column gives the
squared canonical correlation p%EVA = v P'PgPpPv, between each dimension s of
the discriminant space PV and the corresponding projection on the group space. The
squared correlations p%VA are the diagonal values of VP'PyPRPV in CVAsT
{4.13). The other four criteria are the proportion of variance accounted for, VA Fyrop,
the proportion of reflected variance accounted for, RVAFyp, the L-0-O error rate for
6 groups, LOOG and the L-0-0 error rate for 5 groups computed with the 6 group
solutions, LOOS, where radicle and coleoptil are merged to one group. It is
interesting to realize that the Between-to-Total ratio BT (4.27) gives an upper bound
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for RVAFyrop with RVAFpeop<BT. The upper bound can for instance be reached in
the complete rank case as has been formulated in section 4.3.7. Because the barley
tissue profiles are a complete rank case, the upper bound of 0.26 is reached with five
dimensions.

Table 7.10 A comparison of PC9-DA, RDA and NRDA solutions.

Number of ) LOO6 LOOS

dimensions p("':jv A VAFprop  RVAFpeop error rate  eiror rate
1 PCY9-DA 0.96 0.14 0.13 0.37 0.28
1 RDA 1.00 0.15 0.15 0.38 (.22
1 NRDA 1.00 0.21 0.21 0.38 0.33
2 PC9-DA 0.92 0.21 0.19 0.22 0.13
2 RDA 1.00 0.20 0.20 0.25 0.12
2 NRDA 1.00 0.30 0.30 0.25 0.20
3 PCY9-DA 0.78 0.26 0.22 0.23 0.13
3 RDA 1.00 0.24 0.24 0.22 0.05
3 NRDA 1.00 0.37 0.37 0.08 0.02
4  PCO-DA 0.11 0.32 0.22 0.23 0.12
4 RDA 1.00 0.25 0.25 0.15 0.07
4 NRDA 1.00 0.40 0.40 0.12 0.07
5 PCO-DA 0.03 0.37 0.22 0.23 0.12
5 RDA 1.00 0.26 0.26 0.13 (.05
5 NRDA 1.00 0.42 0.42 0.12 0.03

The squared correlations p%VA for each dimension show that the fourth and fifth
PC9-DA dimension have almost no discriminating power between groups, whereas
the RDA solution discriminates perfectly and completely nullifies within-group
variance. The lowest error rate of LOO6 is 0.09 higher for PC9-DA than for RDA.
The difference is 0.07 for LOOS. These values are consistent with the results for low
error levels of the simulation study in chapter 4 (see table 4.6). Prediction with PC9-
DA is not substantially improved by using more than two discriminant dimensions.
With RDA all dimensions are exploited to separate specific groups. It is remarkable
that for each extra dimension the prediction is improved, especially if we consider the
very small proportion of VAF (0.01) for dimension 4 and 5. For instance the
improvement of 0.07 for LOO6 in RDA prediction from three to four dimensions is
mainly caused by the separation of radicle and coleoptil (see figure 7.8, dimension 4).
This separation is not achieved by PC-DA (see figure 7.6).
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In summary the analysis of the barley tissue profiles with PC-DA and RDA seems to

confirm the theoretical expectations.

- Prediction with RDA compared to PC-IDA is consistent with the results for low
error levels of the simulation study in chapter 4 (see table 4.6).

- The RDA results simplify compared to PC-DA due to filiering out of within
information,

An interesting property of RDA revealed by the analysis of the barley tissue profiles is
that RDA is able to improve prediction with relatively small proportions of VAF up to
the last dimension inclusive.

7.3 NRDA on barley tissue profiles

In this section we investigate the properties of Nonlinear Reflected Discriminant
Analysis (NRDA) applied on the barley data described in section 7.2.1 and analysed
in the previous section with PC-DA and RDA., We selected isotone transformations
for the variables of the barley tissue profiles. With isotone transformations of
variables not only the order of object values is preserved, but also the increase or
decrease has to remain consistent. The Between-to-Total ratio BT (4.27) of the
isotone transformed barley tissue profiles is 0.42, which is much higher than the non
transformed value of 0.26.
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Figure 7.10 NRDA discriminans space mapping 60 barley tissue profiles.



188 Chapter 7

Consequently the VAF prop in table 7.10 reaches for NRDA a higher maximum than
for RDA. The efficient span does not change notably from Jm=17.4 io Im=16.9. The
discriminant space of the NRDA solution is graphically displayed in figure 7.10. The
solution is similar to the RDA solution in figure 7.8. A salient difference is the
domination of the first two NRDA dimensions by husk and endosperm, whereas
these two tissues disappear in the last three dimensions. In the RDA solution husk
and endosperm contribute substantially to the third dimension. The loadings of the
isotone transformed variables on to the first two NRDA dimensions are given in
figure 7.11. Only loadings outside a circle with radius 0.5 are displayed. The cluster
with loadings -0.673 0.728 contains mass numbers 72, 97, 101, 103, 110, 111 and
126. The complementary cluster with loadings 0.673 -0.728 contains 130, 163, 170,
172, 192, 194 and 222. The squared muliiple correlation of all the isotone
transformed variables of these two clusters with the first two NRDA dimensions is
0.98.
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Figure 7,11 NRDA discriminant space mopping loadings of transformed vars.

For mass number 110 and 181 we will show how the variables are transformed. In
figure 7.12 we display the isotone transformations of the objects for mass number
110. The objects are labeled by the first letter of their group tissue name. The non



Examples 189

transformed values' give the not isotone transformed objects of the unit normalized
variable in deviation from the mean as defined at the end of section 7.2.1 and the
‘transformed values' give the corresponding optimal isotone transformations
computed with NRDA.
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Figure 7.12 NRDA transformations for mass number 110,

The small gap between husk and all other tissues is widened by the NRDA
transformation. The low intensities for husk become even lower by the isotonic
transformation. The non transformed values of the other variables (72,97, 101, 103,
111 and 126) in the cluster with loadings -0.673 0.728 are somewhat different, but
the isotone transformed values are exactly the same as for number 110, The
complementary cluster with mass numbers 130, 163, 170, 172, 192, 194 and 222
has exactly the same isotone transformation with the sign reversed and the 6 husk
measurements are perfectly discriminated towards the positive side with prominent
intensities. In figure 7.13 we illusirate the isotonic transformation for mass number
181. Endosperm is clearly separated from the other tissues by the isotone
transformations. Only one transformed value of endosperm is intermediate, because
this endosperm value was originally lower than a coleoptil value. The examples above
show how the optimal transformations exaggerate differences in order between
groups. This makes it easy to find some clear boundaries between groups of tissue
with respect to profiles of mass intensities,
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Figure 7.13 NRDA transformations for mass number 181.

We investigated NRDA prediction by computing L-O-O error rates (4.31) for the
NRDA solutions. The NRDA L-O-0O error rate is calculated by omitting one object
from the raw data prior to NRDA. The transformed value of the omitted objects are
computed by neighbour quantification. For neighbour ¢ quantification ¢ objects with
the closest value to the value of the omitied object in the raw data are selected for each
variable separately. The mean of the corresponding isotone transformed values of
these closest values is assigned 1o the omitted object as the transformed value of the
omitted object for this variable. The substituted transformed object is projected into
the NRDA discriminant space and classified to the closest group mean. This is
repeated for all objects in the raw data, and the L-O-O error rate is given by the
fraction of objects that are misclassified. We emphasize that by this procedure the
isotone transformation of the remaining objects is independent of the the omitied
object. We apply neighbour 9 quantification on the barley tissue profiles with ¢ equal
10 the mean number of group objects minus one. The resulting NRDA L-O-O error
rates are listed in table 7.10. Prediction is better with NRDA than with RDA, 0.05 for
LOOG and 0.03 for LOOS. The minimum NRDA error rate for LOOG and LOOS is
reached with three dimensions. Here the most striking improvement of 0.14
compared to RDA is scored for LOUG.

More research is needed on the optimal neighbour ¢ quantification. For neighbour 1
quantification we obtain a smallest value of 0.15 for LOOG6 and of 0.07 for LOOS.
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Prediction is only slightly worse than RDA prediction, which is an indication for the
robustness of the NRDA procedure. Application of neighbour c=g-1 quantification on
the barley tissue profiles with ¢ equal to the number of group objects minus one,
might improve NEDA prediction even further.

In summary the analysis of the barley tissue profiles with RDA and NRDA seems to

give promising results.
Maximum prediction is better with NRDA than with RDA,

- NRDA has a more efficient predictive capacity with a smaller number of
discriminating dimensions.

- The optimal transformations exaggerate differences in order between groups,
which make it easy to find some clear boundaries between groups of tissue with
respect to profiles of mass intensities.






Chapter 8

CONCLUSIONS

In this monograph the integration of multiset MVA methods has been achieved in
several ways. In chapter 2 multiset MV A methods are described in a comprehensive
filter system of methods by filiering the eigenvalues of the sets. Hybrid MVA
methods are placed in this system by combining different types of filter or by defining
compound filters. In chapter 3 and 4 adjusted methods are formulated with
corresponding filters. The integration approach of directed correlations in chapter 5
defines a wider scope of methods than the filter system. The equivalence of
algorithms produced by Wold's basic PLS method of Soft modelling (Wold, 1982)
and algorithms produced by the maximization of specific LDC path models illustrates
the extended range of methods. Many related PLS algorithis can be derived from a
corresponding fit function by specifying an appropriate LDC path model. The
elaboration of the filter system in chapter 2 and directed correlations in 5 is illustrated
with a selection of most characteristic methods. An exhaustive treatment of all
possible methods is not pursued. For instance the relation of LDC with some three
mode PLS algorithms still has to be studied. In the next sections we evaluate some
results in more detail and outline future prospects.

8.1 Efficient rank

Ermbedded in the filter theory of chapter 2 we elaborated on ideas about the efficiency
of information transfer by defining the information span with a corresponding
measure for efficient rank. The efficient rank seems to give a reasonable estimate of
the number of stable dimensions. In chapter 7 the efficient rank of the Milles-Nicely
data was in agreement with the number of interpretable dimensions mentioned in
previous publications about these data. Furthermore, the efficient rank of barley tissue
profiles was consistent with the measurement design. A comparative study with other
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real-life data and other rank measures will be necessary for extensively assessing the
properties of efficient rank.

8.2 Adjusted methods

In chapter 3 on Set Correlation with Set Variance Constraints we formulated the
adjusted method of Set Component Analysis (SCA) and in chapter 4 on Set Vartance
with Set Correlation Constraints the Reflected Variance methods. In SCA the
emphasis was primarily on maximizing the sum of squared correlations between set
variates and secondly on improving variance accounted for. In Reflected Variance
methods the emphasis was primarily on maximizing variance accounted for and
secondly on improving squared canonical correlations. Theoretically and practically
SCA was compared with INDSCAL. Reflected Discrirninant Analysis (RDA) was
compared with two other forms of discriminant analysis. The results indicate that the
secondary improving constraint dominates the properties of the adjusted methods.
More specifically SCA provides even a more adequate estimate of the true common
dimensions of the INDSCAL model than the INDSCAL procedure of Carroll &
Chang (1970). Other theoretical properties of SCA and INDSCAL are confirmed in
chapter 7. For instance the SCA dimension weights of the Miller-Nicely data
approximate more to the concept of differential weighting of dimensions than the
INDSCAL weights. It is very convenient that the SCA solution is also simpler to
interpret, but only farther investigations of other data can give conclusive resulis.
Chapter 4 shows how the rank reducing step in PC-DA can capitalize on the wrong
information and how DA can capitalize on spurious regions. RDA does not have these
drawbacks. A simulation study and a real-life analysis of barley tissue profiles
confirm the better predictive capacities of RIDA. Nonlinear extension of RDA provides
new possibilities in group analysis. Datasets which could not be analysed with
Nonlinear Discriminant Analysis (Gifi, 1990) can now be analysed with NRDA. The
benefits of nonlinear transformations are illustrated with an example in chapter 7.
Isotone transformations of barley tissue profiles compuied with NRDA tend 1o
emphasize boundaries between groups by exaggerating differences in order. By
compensating the increase of freedom with neighbour quantification, group prediction
is even improved compared to RDA,
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8.3 Set Variance with Set Variance Constraints

Instead of integrating Set Correlation with Set Variance Constraints (chapter 3) or Set
Variance with Set Correlation Constraints (chapter 4) we can also integrate Set
Variance with Set Variance Constraints or Set Correlation with Set Correlation
Constraints. We did not elaborate on these combinations in the respective chapters,
but at this point like to confine ourselves to giving one example of such a method. An
attractive fit function for a two sets Set Variance with Set Variance Constraints
adjusted method would be to maximize tr ng%/ZS%&ZL referred to as Double
Variance Analysis (DVA). DVA is attractive because it summarizes the fit functions of
two complementary adjusted methods, tr Z}'S%/ZSQS% /221 and r Zz‘gélzglgé/ 222
in one function with the same optimal solutions. The p dimensional DVA solution for
Zy and Z is equal to the first p singular vectors of S%QS&Q with the corresponding
singular values in descending order. DVA therefore shows dual features comparable
with Principal Component Analysis. The PCA solution has matching principal
components and loadings for one set of variables, whereas the DV A solution has

matching principal components for two sets.

8.4 Future prospects

The promising results for the nonlinear extension (Gifi, 1990) of RDA indicate that it
would be interesting to investigate nonlinear extensions for SCA and LDC (including
PL5) as well. Common scale transformations as developed by Van der Lans (1992)
can add useful features to the nonlinear extensions by restricting the degrees of
freedom. The fitting of reflected variance methods with a corresponding LDC path
model has lead to a PLS2 variant with theoretically better predictive capacities than the
usual PLS2 method for essential multivariate problems. Practical testing of theory is
needed. A useful generalization of the INDRES model is expected by substituting the
approximation of Sy with XWX by the approximation of Hy with XW,Y", where
the number of variables for each set Hjy must be the same. The multiset
decomposition with this model might provide a more adequate decomposition of K
sets than the CANDECOMP procedure of Carroll & Chang (1970), because fitting the
INDRES model with SCA in chapter 3 improved the estimation of true common
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dimensions of the INDSCAL model compared to the INDSCAL procedure of Carroll
& Chang (1970). Other methods for fitting the INDRES model might even further
improve results. Finally we mention that Reflected Component Analysis can be
adapted for performing a cluster analysis. For this purpose we have to assume that the
mirror mairix U defines some unknown group space. The ideal group classification
for some fixed number of groups is given by the global RCA maximum for unknown
group space and unknown reflected discriminant space,
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Summary

In chapter 1 on Integration of divergent aims in Multidimensional Analysis the
predictive value of multiset multivariate methods is related to the optimal integration of
two criteria: stability and exactness. Stability of prediction is linked to sef variance and
exactness of prediction is linked to sez correlation. Based on strategies to combine
stable with exact prediction, we introduce a classification of hybrid and adjusted
multivariate methods. Some considerations on mathematical tools and presentation are
added. An ontline of the structure of this monograph is provided.

In chapter 2 on A Filter View on Multiset Models we illustrate that many Multivariate
Analysis (MVA) methods are build up with set variance and set correlation
constituents. Our first aim is to show a variety of construction methods and not an
exhaustive inventory of methods. Two new methods are proposed, based on potential
variance accounted for and information span. The last three main sections show how
set variance and set correlation can be integrated with competitive subfunctions and
therefore illustrate the concept of hybrid methods.

Iu chapter 3 on Set Correlarion with Set Variance Constrainis we describe Ser
Component Analysis from several points of view. (1) The method integrates a set
correlation and a set variance part by maximizing the sum of squared set correlations
and adjusting the set variates with set variance constraints. (2) SCA is identical to
Multiset CCA with proportionality restrictions on the variable weights. (3) By
defining a free guadratic filter, SCA is related with the filter theory formulated in
chapter 2. We conclude this chapter by indicating relations with other methods and
presenting a simulation study of INDSCAL compared with SCA. The relation
between INDSCAL and SCA is established by proposing and fitting a new model, the
INDRES model.

In chapter 4 on Ser Variance with Set Correlation Constrainis or Reflected Variance
we introduce Reflected Variance methods also from several points of view. (1) The
Reflected Variance methods integrate a set variance and a set correlation part by
maximizing the variance accounted for by set variates and adjusting the set variates
with set correlation constraints. (2) The Reflected Variance methods project variables
from one set on to another set, project these variables back and then compute principal
components of the reflected variables. (3) By defining reflecting filters, Reflected
Variance methods are related with the filter theory formulated in chapter 2. The
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principle of reflected variables is elaborated by defining Reflected Component
Analysis (RCA) and Reflected Discriminant Analysis (RDA). It will be shown
theoretically how and under which conditions RIDDA can improve group prediction
compared to Discriminant Analysis (DA) and Principal Component - Discriminant
Analysis (PC-DA). In a simulation study theoretical results are confirmed. Some
multiset and nonlinear extensions are proposed.

In chapter 5 on Directed Correlations and Partial Least Sguares a new multiplicative
hybrid method is formulated that maximizes the product of two complementary fit
functions, a local and a global MV A function. The local function gives a multiset
alternative for maximizing variance accounied for. The global function maximizes
correlations as formulated in chapter 3. These adjusted correlations are called direcred
correlations and are embedded in a multiset path analysis framework utilizing primary
and secondary predictions. The product function that globally maximizes directed
correlations and locally increases set variance as much as possible is called Lifted
Directed Correlations (LIDC). LIXC is able to describe many existing MV A methods,
hybrid and adjusted methods. It gives one fit function for cyclic hybrid methods like
the basic and extended Partial Least Squares (PLS) method of path modeiling,
Consensus PLS and PLS Hierarchical Components.

In chapter 6 on Algorithms we present two algorithms for non eigenvalue-eigenvector
problems. First a simultaneous and successive monotone convergent algorithm for
Set Component Analysis (chapter 3) is developed, where an interesiing general
algorithmic subproblem is to maximize the variance of different matrices accounted
for by corresponding orthogonal latent variables. Secondly we elaborate a monotone
convergent algorithm for Nonlinear Reflected Discriminant Analysis (chapter 4).

In chapter 7 on Examples we present analyses of real-life data using three methods
developed in the preceding chapters. For a psychometric application of Set
Component Analysis (chapter 3) we compare the SCA solution of the Miller-Nicely
data with the corresponding INDSCAL solniion. Reflected Discriminant Analysis
from chapter 4 is applied on mass spectrometric barley tissue profiles and compared
with results for PC-DA. The barley tissue profiles are also analysed with Nonlinear
Reflected Discriminant Analysis.

Finally we draw our conclusions in chapter 8.
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Errata

- The upper part of page 35 must be
ve = @+v® ' Pox. Ve (2.34)

After insertion of Q &, lvc for the MRR weights t in (2.32) with v, according to
(2.34) we maximize

K 2
MRR,-: Fit(x) = 3, x Pe(l + vo@ ) P, (2.35)
- c=1

with x'x=1 and v, 20 Vec.

After maximization of (2.35) the optimal MRR variates are

Hete = Pove= Po(l +ve®g [P, Ve (2.36)

- Some traces must be added:

On page 27 in formula 2.25
ViP1 PPy’ P11V and Vo'Py'P1P1"PoV ) become
EViP1'PoP PV and it Vo'P2'P1P1'P2V ).

On page 55 in line 9
X'EpErX and X'M M X must be i X'ExErX and tr X'MpMpX.

On page 65 in formula IMCCA

V1P1'P2P2'P1V1 becomes i Vi'P1'P2P2'P1V1 and three lines down
VPUUPV=XPPUUPPX must be t VP'UUPV=ir X'PPUUPP'X.
- On page 112 after formula (5.19) delete 'usually' and add 'Only’

The right-band and left-hand eigenvectors of A are usually not orthogonal (Wilkinson,
1965). Only if A is symmetric we have U'U=I, and U '=U".






