
Optimizing hierarchical menus

a usage-based approach

Academisch proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof.dr. D.C. van den Boom

ten overstaan van een door het college

voor promoties ingestelde commissie, in het

openbaar te verdedigen in de Agnietenkapel

op donderdag 31 januari 2008, te 12:00 uur

door

Vera Hollink

geboren te Haarlem

Promotiecommissie:

Promotor: Prof. dr. B. J. Wielinga
Co-promotor: Dr. M. W. van Someren
Overige leden: Prof. dr. B. Berendt

Prof. dr. L. Hardman
Dr. E. M. A. G. van Dijk
Prof. dr. M. de Rijke
Prof. dr. S. Jones

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

SIKS dissertation series number 2008-03

The cover art is based on an illustration by Design Police.

Stellingen behorende bij het proefschrift:

Adjuvants in laboratory animals
evaluation of intmunostimulatingproperties and side effects ofFreund's
complete adjuvant and alternative adjuvants in immunization procedures

I. Voor het vaststellen van de bijwerkingen van adjuvantia in proefdieren,
is het van essentieel belang de pathologische veranderingen na
toediening te kwantificeren.

II. FCA veroorzaakt geen blijvend ernstig ongerief bij konijnen en muizen
als het wordt toegediend in overeenstemming met bestaande richtlijnen
(Veterinary Public Health Inspectorate, 1993).

III. Het is de vraag of de thans beschikbare klinische- en gedrags
parameters voor het bepalen van ongerief toereikend zijn om dit
ongerief objectief te beoordelen bij proefdieren.

IV. Experimentele resultaten lijken nauwelijks invloed te hebben op
vooringenomen standpunten.

V. Het human immunodeficiency virus (HIV) kan niet worden uitgeroeid
met behulp van combinatie therapie. Chun et al. 1997 Nature 387, 183-
188; Perélson et al. 1997Nature 387, 188-191.

VI. Van de beschikbare subsidies voor onderzoek naar alternatieven voor
dierproeven worden er te weinig toegekend aan onderzoek naar
verfijning van dierexperimenten.

VII. Dat enerzijds veel runderen worden afgemaakt in verband met de BSE
affaire en anderzijds de stier Herman in leven wordt gehouden,
suggereert dat de intrinsieke waarde van dieren afhangt van de reden
waarvoor ze worden gehouden.

VIII. Het begrip versnelling heeft een verwarrende betekenis bij het
bergopwaarts gaan per fiets.

IX. Ondanks discussies over de troonopvolging staat een ding vast: de
volgende koning van Nederland is een man.

X. Het feit dat tegenwoordig niet alleen kool- en pimpelmezen aan
pindaslingers hangen maar ook mussen is een bewijs dat interspecifiek
afkijken bestaat. NRC 15 februari 1997.

Marlies Leenaars, 25 juni 1997

Contents

Preface v

1 Introduction 1

1.1 Background . 1

1.2 Research questions . 4

1.3 Approach and outline . 5

2 The role of information gain in menu optimization 7

2.1 Introduction . 7

2.2 Related work . 9

2.3 Problem setting . 11

2.4 Study 1 . 13

2.5 Study 2 . 17

2.6 Study 3 . 28

2.7 Conclusions and discussion . 35

3 Navigation behavior models for link structure optimization 37

3.1 Introduction . 37

3.2 Navigation behavior models of link structure optimization methods . . . 39

3.3 A framework for navigation behavior models 44

3.4 Selecting navigation behavior models for hierarchical menus 53

3.5 Menu optimization . 64

3.6 Case study . 69

3.7 Conclusions and discussion . 75

4 Discovering stages in web navigation for problem-oriented navigation

support 79

4.1 Introduction . 79

4.2 The SeniorGezond site . 81

4.3 Related work . 84

4.4 The stage discovery algorithm . 86

iv Contents

4.5 Discovering stages for the SeniorGezond site 93
4.6 Discovering stages for a hardware comparison site 96
4.7 Analysis of the sensitivity of the method . 100
4.8 Building problem-oriented navigation structures 105
4.9 Conclusions and discussion . 109

5 A semi-automatic usage-based method for improving hyperlink descrip-

tions 111

5.1 Introduction . 111
5.2 Related work . 113
5.3 Problematic link descriptions . 114
5.4 Link description classification algorithm . 117
5.5 Evaluation . 125
5.6 Conclusions and discussion . 132

6 Conclusions 135

6.1 Main contributions . 135
6.2 Reflections on the research questions . 136
6.3 Discussion and future research . 141

A Example assignments from the stage discovery experiments 143

A.1 SeniorGezond (translated from Dutch) . 143
A.2 Hardware comparison site . 143

B Example assignments from the link description experiment 144

B.1 SeniorGezond (translated from Dutch) . 144
B.2 Reumanet (translated from Dutch) . 144
B.3 Leiden (translated from Dutch) . 144

Bibliography 145

Summary 155

Samenvatting 159

Preface

In the past four years there have been many moments at which I believed or even was
sure that I would never finish my Ph.D. The thesis that you are holding in your hands
suggests that somehow I did. Now I would like to thank all the people whose support,
advice, or efforts have helped to make this possible.

First of all, I am grateful to my supervisors Maarten van Someren and Bob Wie-
linga. Maarten, thank you for always taking the time to really think about my work.
I very much enjoyed your enthusiasm during our many long and deep discussions. I
am grateful to Bob for his detailed comments on my thesis and for providing me with
structure when I needed it. Bob, your optimism gave me the confidence that I would
be able to do it.

I really appreciated the collaboration with my colleagues from TNO and the LUMC.
Laurence Alpay, Nicole Ezendam, Marcel Hilgersom, Ton Rövekamp and Pieter Tous-
saint, your work provided me with an exciting example case for many parts of my
research. I also owe many thanks to all organizations who selflessly trusted us with
their log data. Without their cooperation I could not have done any of the evaluation
studies reported in this thesis. Furthermore, I wish to express my gratitude to the
Netherlands Organisation for Scientific Research (NWO), who funded this project.

One of the things I enjoyed most about my Ph.D. research was the warm and
inspiring environment provided by my colleagues at the HCS laboratory. I especially
want to mention my roommates Sophia, Viktor and Niels for making room 30 such a
pleasant place to work. The uncountable pieces of advice they gave me about more
and less important issues were absolutely indispensable for the success of this mission.
Jan, Jochem, Wouter and all others, thank you for the interesting lunch discussions.
Matthijs, thanks for putting things in perspective with a healthy dose of gossip.

I thank my friends Odile and Frendy for being happy for me when things went
well and providing the necessary distraction at less fortunate moments. I thank Karel,
Wil, Laura and Alistair for always having faith in me, even at times when I did not.
Moreover, I am grateful that time after time they were willing to proofread parts of this
thesis and participate in my experiments. Finally, I would like to thank Willem, who
supported all my decisions to abandon and to continue this project and who made me
feel I did not have to do it all alone.

vi Preface

Chapter 1

Introduction

1.1 Background

Nowadays many web sites consist of hundreds, thousands or even hundreds of thou-
sands of pages. Together these pages contain a wealth of information that can be used
to answer many different questions. However, at the same time the large number
of pages makes it difficult for users to find answers to their information needs, even
when they have found a web site that does contain the answers. To assist users in their
search, modern web sites offer a range of navigation means, such as in-text links and
site search engines. In this thesis we focus on one of the oldest and most frequently
used navigation means: hierarchical menus. In particular, we investigate how hierar-
chical menus can automatically be optimized in such a way that navigation becomes
as efficient as possible.

Hierarchical menus are navigation structures consisting of hierarchies of links.
Each link has a label that describes the content that can be reached by following the
link. Users read the descriptions of the available links to choose which links they will
open. When a link is selected, the content of the new page and the subitems of the
selected link are shown. Most menus contain content from one web site, but there are
exceptions. For instance, web directories such as Yahoo (Yahoo! Inc., 2007) and Dmoz
(Dmoz, 2007) can be seen as very large menus linking to content from many different
sites.

A great asset of hierarchical menus is that they do not require users to express their
information needs in the terminology of the web site. Users often have difficulties
specifying their information needs as free text, which makes it impossible to make
effective use of site search engines (Alpay et al., 2004). For these users menus are more
appropriate because menus make the available options visible. In this way, menus
allow users to recognize the relevant links instead of forcing them to recall keywords,
which reduces memory load (Molich and Nielsen, 1990; Nielsen, 1994). For the same
reason, menus form a good solution when users think of their problem in a different
vocabulary than the one used on the web site.

Menus can support various aspects of navigation. Most hierarchical menus are
aimed at users with specific information needs. These users visit the site with the goal

2 Chapter 1: Introduction

to find certain pieces of information. We call the set of pages that together provide
the best answer to a user’s information needs the user’s target pages. The goal of
menus aimed at this type of users is to allow the users fast and easy access to their
target pages. Ezendam et al. (2005) introduced menus for users with less articulate
information needs, who do not know exactly what information they are looking for.
The menus guide users step by step through the information on the site showing them
in which order they should read the available information. In the following, these
menus will be referred to as problem-oriented menus.

The navigational function of menus distinghuishes them from taxonomic hierar-
chies. Both structures comprise a hierarchy of categories. However, the relations in
a taxonomy represent important features of the world, while the links in a menu are
purely for navigation. This difference can lead to very different hierarchical structures.
For example, in the Dmoz directory (Dmoz, 2007) the two internet browsers ‘Firefox’
and ‘Charlotte’ can be found in the same directory (Computers: Software: Internet:
Clients: WWW: Browsers). This is conceptually logical, but not necessary efficient.
For instance, suppose that many users visit Dmoz to find information on ‘Firefox’ and
hardly anyone needs information on ‘Charlotte’. Then navigation can be made more
efficient by placing ‘Firefox’ at a higher position in the hierarchy than ‘Charlotte’, for
example, directly under ’Software’.

Menus that are well-suited to the needs of the user population can effectively facil-
itate the users’ navigation processes. However, when the hierarchical structure or the
link descriptions of a menu do not match the users’ needs, navigation becomes inef-
ficient. The structure of the hierarchy determines how much navigation is needed to
reach certain targets. Menus that are not well-structured (for instance, because popu-
lar targets are located deep in the hierarchy) require users to make many navigation
steps. When the descriptions of the links are not correctly interpreted by the users,
users cannot predict which links will lead to their target information. This results in
navigation errors, which increases navigation time.

Developing high quality menus is a non-trivial task. Web designers often do not
know exactly who their users will be and for what purpose they will visit the site.
Moreover, it is not clear how characteristics of the user population should be translated
to properties of a menu. On top of that, user populations as well as contents of web
sites tend to change, so that over time even initially well-designed menus often become
less efficient.

Human-computer interaction (HCI) research has yielded guidelines for developing
hierarchical menus. For example, according to the ISO standard for interaction design
(ISO, 2002) menu items that have great importance should be placed first in a menu.
Several general HCI principles also apply to menus, including the ten design princi-
ples of Nielsen (1994). One of these principles recommends, for instance, that link
descriptions are stated in terms that are familiar to the users. Such guidelines provide
the minimal conditions to which a menu must comply, but they are often too generic
to decide which of a number of alternative menus is best. Also, they do not account
for specific properties of a user population, such as the time that users need to make a
selection.

Instead of aiming to create optimal menus in advance, various authors have pro-

1.1. Background 3

posed algorithms to improve hierarchical menus on the basis of usage data that is
collected over time. These algorithms analyze the log files of a site and on the basis of
this analysis predict which adaptations to a menu will make it more efficient. One of
the earliest of these algorithms was developed by Witten et al. (1984). It optimizes the
index of a digital phonebook using the access frequencies of the phonenumbers. Later
algorithms for optimization of hierarchical link structures are, for example, presented
by Fisher et al. (1990), Smyth and Cotter (2003) and Wang et al. (2006).

Automatic menu optimization is part of the broader research area of adaptive web
sites. Adaptive web sites are web sites ‘that automatically improve their organization

and presentation by learning from user access patterns’ (Perkowitz and Etzioni, 1997,
p. 16). Menu optimization has the same goal, but concentrates entirely on the sites’
menus. Systems that optimize menus by adding extra links to the menus are related
to recommender systems. Recommender systems select a number of items that they
believe to be interesting for a user. When these items are presented in the form of lists
of links, these links can be seen as dynamically created menus.

We make a distinction between fully and semi-automatic menu optimization meth-
ods. Fully automatic methods adapt a menu structure without human interference.
They do not require human effort which means that they can be applied frequently.
Some methods even adapt menus to the personal needs of a user while the user is
navigating the site. This type of adaptation is called personalization or customization
(Perkowitz and Etzioni, 2000). A disadvantage of fully automatic methods is that they
can damage a menu when they make mistakes. Therefore, in practice, fully automatic
algorithms are only allowed to make small non-destructive changes, such as adding
shortcut links. Semi-automatic menu adaptation methods compute useful adaptations,
but do not implement them autonomously. A webmaster reviews the adaptations and
implements the ones he (or she) finds acceptable. Because all adaptations are checked,
semi-automatic methods can be used to make drastic changes to a menu or even com-
pletely restructure a menu.

Most adaptation methods receive the usage data they need from web servers,
which collect these data in the form of log files. Log files contain data about the
requests that users made to the server, such as the time of the request, the requested
page and the user’s IP address. In principle, log data suffice to determine which se-
quences of pages users have visited on the site, but there are several reasons why
these sequences are not always 100% accurate (Cooley et al., 1999; Pierrakos et al.,
2003). For instance, due to browser caching, repeated requests for the same page are
sometimes not recorded. At the same time, automatic refreshes result in requests that
are not initiated by a user. Moreover, web crawlers create navigation traces that are
not always distinguishable from human traces. The effect of this is that most web log
data is very noisy. Another problem with web log data is that it shows only which
pages a user has visited, but not the reasons why he or she visited these pages. This
complicates menu optimization, as it is hard to determine how well a menu supports
a user’s navigation process when we do not know the purpose of the navigation.

To overcome these problems, some menu adaptation methods require additional
data besides standard log data. For example, some methods ask users to explicitly
specify their goals or to indicate at the end of their search whether they have found

4 Chapter 1: Introduction

what they needed (e.g. Joachims et al., 1997). The main drawback of these methods
is that users are often not willing to share this information (Perkowitz and Etzioni,
2000). Another type of additional data is information about the content of the site. For
example, the WUM method (Spiliopoulou and Pohle, 2001) requires that the pages of
the site are divided into categories that represent the various functions that pages can
fulfill on a site. The algorithm presented in Wang et al. (2006) makes use of product
categories. Creating these types of categories requires manual labor. Moreover, the
categorization schemes are generally domain specific.

In this thesis we focus on domain-independent methods for improving hierarchical
menus. The methods are very generally applicable, because they use only log data that
is generally available and do not pose any restrictions on the contents of the pages.
We identify a number of shortcomings of existing methods that optimize menu struc-
tures and present new strategies to overcome these problems. In addition, we address
novel tasks, such as automatically creating problem-oriented menus and improving
descriptions of links.

1.2 Research questions

The main focus of this thesis are methods to automatically improve hierarchical menus.
The general research question that we will address is:

How can we automatically or semi-automatically adapt hierarchical menus

of web sites in such a way that the users of the sites can fulfill their informa-

tion needs more efficiently?

We refine this general question in four more specific questions. As explained be-
fore, the goal of most hierarchical menus is to allow users to reach their target infor-
mation efficiently. The first question addresses the structure of this type of menus:

1. How can we adapt the structure of hierarchical menus in such a way

that they become maximally efficient for their user populations?

The assumptions that are made about the way users navigate the site have a large
influence on the outcome of optimization algorithms. Thus, before we can optimize
the efficiency of a menu structure, we need to know which assumptions are valid.
In other words, we need to understand how efficiency is determined by the charac-
teristics of a menu and its users. We call a model that describes these relations a
navigation behavior model. Finding the most accurate navigation behavior model for a
user population is the topic of the second research question:

2. Which characteristics of user populations must be included in a navi-

gation behavior model to predict the efficiency of hierarchical menus?

As discussed, problem-oriented menus help users to read pages in the right order.
Until now these menus were created manually by experts. We ask ourselves how this
process can be automated:

1.3. Approach and outline 5

3. How can we automatically create problem-oriented menus?

When users follow incorrect paths through a menu, they have to make extra nav-
igation steps to reach their goals. This increases navigation time and can lead to
frustration with the site. Therefore, the last question that we will answer is:

4. How can we reduce the number of navigation mistakes in hierarchical

menus?

1.3 Approach and outline

In Chapters 2 and 3 we research the optimization of a menu’s efficiency (research
question 1). In Chapter 2 we focus on the optimization of one important aspect of
efficiency: the number of navigation steps that users need to make to reach their target
information. We identify a fundamental shortcoming of frequently used optimization
methods that prevents them from minimizing the number of navigation steps. We
explore several methods to overcome this problem. Simulation experiments and user
studies are used to assess the effects of the presented methods.

One finding of the studies in Chapter 2 is that the presented methods are only
adequate in very limited settings. For example, they are insufficient when besides
the optimized menu structure also other navigation means are available. Moreover,
other factors besides the number of navigation steps may play a role in navigation
efficiency, such as the number of items in a menu. Therefore, in Chapter 3, we move
to a more profound approach based on a complete model of user navigation in hi-
erarchical menus. To answer research question 2 we perform a literature study and
collect the factors that are explicitly or implicitly used to predict efficiency. The factors
are placed in a framework that shows the relations between the various factors in a
structured way. In addition, we provide a procedure to measure the influence of each
of the factors on the efficiency of a given menu. In the second part of Chapter 3 we
return to research question 1. We present a method to find a menu that optimizes the
various factors. The outcomes of this method are evaluated by means of case studies.

In Chapter 4 we answer research question 3. We propose a method to deter-
mine the preferred reading order from log data. The output of this method is used to
automatically construct problem-oriented navigation menus. The method is applied
to the SeniorGezond site (SeniorGezond, 2007) which provides a problem-oriented
menu created by experts (Ezendam et al., 2005). Evaluation is done by comparing the
structure created by our method to the actual organization of the site. Additionally,
the method is applied to a site that does not yet offer a problem-oriented navigation
menu.

Chapters 2 to 4 all deal with structural properties of menu hierarchies. In Chap-
ter 5 we will treat the optimization of link descriptions. In this chapter we address
research question 4: reducing navigation errors. We hypothesize that users choose
links on the basis of the descriptions of the available links. If this hypothesis holds,
navigation errors can be attacked by improving descriptions that cause confusion. We
present a method that analyzes log files and determines the locations in a menu where

6 Chapter 1: Introduction

users frequently make mistakes. For each location it determines the main type of the
mistakes and provides a number of possible solutions. To evaluate the method, we
ask experts to judge the value of the analyses. The effects of the improvements on the
number of navigation errors are demonstrated in a user experiment.

In the last chapter we review our main conclusions and look back at the four
research questions. In addition, we discuss limitations and advantages of our approach
and explore directions for future research.

Chapter 2

The role of information gain in menu

optimization

In this chapter we explore methods to minimize the number of steps users

need to make to reach their target information. We identify a serious short-

coming of existing methods that under certain circumstances prevents them

from minimizing the number of steps. At each step these methods focus on

maximizing the probability of guiding a user to a target directly. We show

why this sometimes leads to suboptimal results and present an alternative

method based on information theory. We report on three studies that explore

possibilities to apply this method in various settings.

The first study is based on a paper authored by M. W. van Someren, V.

Hollink and S. ten Hagen, published in Web Mining: From Web to Semantic

Web, Proceedings of the First European Web Mining Forum (Van Someren

et al., 2004). The second study, which is co-authored by M. W. van Someren,

S. ten Hagen and B. J. Wielinga, is based on papers presented at the Work-

shop on Intelligent Techniques for Web Personalization (Hollink et al., 2005b)

and the Sixth Dutch-Belgian Information Retrieval Workshop (Hollink and

Van Someren, 2006). The third study is co-authored by M. W. van Someren,

S. ten Hagen, M. C. Hilgersom and T. J. M. Rövekamp and was presented

at the Workshop on Intelligent Techniques for Web Personalization (Hollink

et al., 2007a).

2.1 Introduction

The World Wide Web has made large amounts of information publically available.
However, most of this information is not relevant for most users. As a result, users
experience more and more difficulties to find the information they need among the
overwhelming quantities of uninteresting information. Adaptive web sites aim to solve
these problems by pointing users to the information that is interesting for them. In
contrast to search engines, these systems are part of a web site and help a user to find
information within this site.

8 Chapter 2: The role of information gain in menu optimization

In this chapter we address adaptive web sites that provide online navigation assis-
tance by dynamically adding hyperlinks to the static menus of the web pages that a
user is visiting. The links shown in a static menu are created by the developers of the
site and look the same each time a page is visited. When a user requests a page, the
menu adaptation system adds some dynamically created links to the static menu links
that are already present on the page. In the next step, the user chooses one of the links
(a static or dynamic link) and the system again adds some links to the requested page.
When a site does not provide a static menu, a menu adaptation system determines
completely which menu links are available to the users. In this case, menu adaptation
reduces to menu generation.

When a person searches a web site to find specific information, there is a set of
pages which together provide the best answer to his or her information needs. We refer
to the pages in this set as the user’s target pages. The goal of a menu adaptation system
is to help the user to reach his target pages as fast as possible. In this Chapter, we
assume that navigation time is determined only by the number of clicks the user needs
to make. In other words, the adaptation component needs to minimize the number of
clicks between the user’s entry point and his target pages. Once the menu adaptation
system knows a user’s goal, it can show a direct link to the target information allowing
the user to reach his goal in one click. The challenge for these systems is thus to find
out as fast as possible what the user’s goal is.

In theory, a menu adaptation system can make all pages of a site available in one
step by showing links to all pages on the site’s entry page. However, this solution does
not help the users very much as presenting too many links on a page increases the
effort needed to select the best link. Therefore, we fix the number of links that are
added to each page as is done by most systems (e.g Symeonidis et al., 2006; Pazzani
and Billsus, 2002; Zhang and Iyengar, 2002).

Menu adaptation systems estimate the probability that a user is interested in each
page of a site using, for instance, the pages that the user has visited previously or
the content of the pages. On the basis of this information the system selects links
that are added to the page that the user has requested. Most systems maximize the
probability of leading the user to a target page directly by always adding the links with
the highest probability of being the user’s target (e.g. Balabanović, 1997; Burke, 2002;
Lekakos and Giaglis, 2007). Throughout this paper this strategy will be referred to as
the greedy strategy.

Although the greedy strategy does maximize the probability of showing a link to
a target page at each step in the navigation process, it does not necessarily minimize
the length of the path to the target pages. A better strategy is to actively try to learn
the user’s interests, i.e. show those links that provide most information. Compare this
to binary search: if we want to determine a number between 1 and 100, the optimal
strategy is not to start guessing ‘Is it 37?’, but to cut the range of possible numbers in
two by asking ‘Is it higher than 50?’.

A menu adaptation system cannot ask a user questions directly, but it can use
the added links to gain information about the user’s targets. When a user opens a
link, this selection provides information about the user’s targets. In particular, it tells
the adaptation system that with high probability the user perceived the selected link

2.2. Related work 9

as closer related to his targets than the links that were not selected. Not all link
selections are equally informative: selections that point at interests that the system
was not yet aware of give more information than selections that only confirm the
system’s knowledge about the user. A menu adaptation system can actively try to
maximize the amount of information that it gains in each step by adding the links that
will provide most information about the user.

Information theory prescribes that the most informative question is the one that
divides the set of possible target items into sets with equal probability mass. For
instance, in the number example, the probability of the set of numbers higher than
50 is equal to the probability of the set of numbers lower than 50 (assuming that the
numbers have uniform a priori probabilities). Therefore, ‘Is it higher than 50?’ is
a maximally informative question. On average maximally informative questions will
lead you to the target number as fast as possible. In the same vein, a maximally
informative set of links is a set that divides the set of pages of a site into parts with
equal probability of containing the user’s targets. Showing these links to the user will
on average result in minimal path lengths.

In this chapter we report on three studies that explore possibilities to divide page
sets by adding links to menus. We experiment with three methods that rely on various
premises. The first method assumes that the pages of a site can be scaled along one
dimension in such a way that users prefer pages that are on the scale closer to their
targets over pages at larger distance. This method uses the scale to determine which
links will provide most information. The second method does not require such a rigid
structure, but assumes the pages are labeled with keywords. The third method com-
putes distances between pages and adds links that are at large distance of each other.
In the three studies the methods are evaluated and the advantages and limitations of
the methods are assessed. We compare each of the methods to the greedy approach
and discuss the added value of the methods in theory and in practice.

The rest of this chapter is organized as follows. Section 2.2 discusses related work.
In Section 2.3 we describe the problem setting. The three experimental studies are
presented in Sections 2.4, 2.5 and 2.6. The last section summarizes the lessons we
have learned and discusses implications for further research.

2.2 Related work

As stated in the introduction, the majority of the menu adaptation systems always adds
links to the pages that they believe to be most interesting for the user. These system
include, for instance, Lieberman (1995), Balabanović (1997), Burke (2002), Zhang
and Iyengar (2002), Smyth and Cotter (2003), Adda et al. (2005), Symeonidis et al.
(2006) and Lekakos and Giaglis (2007). A few non-greedy selection strategies have
been proposed, most of which are based on the idea that a set of links that are added
to a menu must not contain too similar items. In this section we give an overview
of these strategies. In addition, we discuss several methods for tasks that are closely
related to menu adaptation.

Various non-greedy methods have been proposed in the context of recommender

10 Chapter 2: The role of information gain in menu optimization

systems. Recommender systems are very similar to the menu adaptation systems dis-
cussed in this chapter as both types of systems provide users with a number of links
with the aim to improve navigation efficiency. Smyth and McClave (2001) argue that
diversity is an important property of a recommendation set. They provide a metric
to compute diversity and a number of selection strategies that enhance diversity. In
Bradley and Smyth (2001) these strategies are refined. They evaluate the effects of
the selection strategies on the diversity of recommendations and the computational
costs of the selection. The effects on user navigation are not assessed. Ziegler et al.
(2005) provide another diversity measure based on the distance between items in a
taxonomy. A linear combination of page probability and diversity is used to select rec-
ommendations. The method is evaluated in a survey among users of an online book
site. This survey shows that users like the lists of recommendations that are selected
in this way better than the lists that are selected on the basis of page probability alone.
Again, the evaluation does not address the effects of diversity on navigation. Bala-
banović (1998) proposes to recommend pages of which the interest of the user is least
certain. Simulation experiments show that this strategy can help a recommender to
learn the users’ interests faster, especially when users have complex interest patterns.

The benefits of diverse page sets is also researched in the context of critiquing.
Instead of just selecting a link to an item, with critiquing users provide feedback in the
form of statements like ‘I want something like this item, but the value of attribute X
must be more Y’. McGinty and Smyth (2003) show with simulation experiments that
in this setting the diversity enhancing strategy from Smyth and McClave (2001) can
lead to shorter navigation paths than a strategy that always selects the most probable
links. However, in user experiments increased diversity made navigation paths longer
(McCarthy et al., 2005). The ExpertClerk critiquing system (Shimazu, 2002) ensures
diversity by showing links to items with various attributes. No experiments were done
regarding the efficiency of this diversity enhancing strategy.

Other application areas in which users’ clicks are said to be minimized are the
automatic construction of web directories and the automatic clustering of web search
results. In both areas large sets of web pages are clustered to allow users to browse
through the information more efficiently. Web directories are static hierarchies of
clusters of a selected set of web documents. Web search result clustering happens
online after a search engine has retrieved a set of documents matching a user’s query
(e.g. Zamir and Etzioni, 1999; Osdin et al., 2002; Hearst and Pedersen, 1996). In
these areas the clusters are formed in such a way that the documents in a cluster are
closely related in terms of content or usage. To our knowledge no attempts have been
made to optimize the clusters from an information theoretic perspective.

Witten et al. (1984) automatically create hierarchical menus that function as in-
dexes for digital phonebooks. The menus contain links that refer to segments of the
alphabet (e.g. ‘Adda-Bradley’, ‘Burke-Cramer’). They use the entropy of the access
probabilities of the names to select the segments that minimize the lengths of the
user’s paths. A limitation of their method is that it can only be used in domains in
which users know the names of the searched items in advance so that they can choose
the appropriate segments. This excludes situations in which users only know the topics
of their search and not the exact titles of their target pages.

2.3. Problem setting 11

Golovchinsky (1997) presents a method to add in-text links to documents retrieved
by a search engine. When the links are clicked the words around the anchor term are
used to expand the search query and retrieve a new set of documents. The inverse
document frequency (idf) of terms is used to find terms that ‘discriminate well among

documents in a collection’ (Golovchinsky, 1997, p. 70). Terms with a high idf score
occur in very few documents. As a consequence, when the links that are created in
this way are clicked, they provide much information about the user’s targets. How-
ever, these links also have a low probability of being clicked so that on average they do
not lead to a high information gain. Another difference between Golovchinsky’s ap-
proach and the ones presented in this chapter, is that Golovchinsky chooses the links
independently. In other words, he chooses the set of best scoring links instead of the
best scoring set of links. This can lead to redundant links when multiple links point to
(almost) the same set of documents.

Dasgupta et al. (2002) discuss the problem of selecting a set of items for which
a user will be asked to provide a rating. The ratings are used to find a user profile
that matches the interests of the current user. They give an optimal worst-case upper
bound for the number of ratings needed. An algorithm is presented that minimizes the
number of ratings needed to find a matching profile by selecting items that discrimi-
nate well between user groups. The item selection task is related to menu adaptation
as in both cases one has to select the items that provide most information about the
users’ interests. However, item selection is a simpler task as it does not require that
the selected items are also interesting for the user.

2.3 Problem setting

In the next sections we present three studies in which we investigate possibilities to
optimize menu adaptation in various settings. The goal of the first study is to demon-
strate the potential of page set division strategies. Simulation experiments are per-
formed in a highly restricted setting. In addition, in this setting we investigate the
effects of incorrect assumptions about the probability distribution of the target pages.
In the second study we move to a more realistic setting in which some of the restric-
tions of the first study are relaxed. In a user experiment we demonstrate the effects
of page set division on the navigation of human users. Moreover, we study the effects
of the amount of navigation mistakes that users make by means of simulations exper-
iments. In the last study we apply page set division to a real web site in actual use.
This study examines the benefits of page set division for real users in a situation in
which the menu adaptation system needs to compete with static navigation means.

In this section we discuss the various dimensions of the experimental setting. The
features of the settings that are used in the three studies are summarized in Table 2.1.
Below we discuss each feature in detail.

The first dimension concerns the targets of the users. Menu adaptation methods
can assume that users search for exactly one page or that a user’s target information
can be spread over multiple pages. In the first study, we use a simple method that does
not accommodate for multiple targets. This means that with this method users have

12 Chapter 2: The role of information gain in menu optimization

Study Targets Navigation Other navigation Structure
mistakes means

1 single no no uni-dimensional scale
2 multiple yes no keywords
3 multiple yes yes page distances

Table 2.1: Features of the settings that are used in the three studies.

to start a new search for each target. The second and third studies use more advanced
methods that take the users’ previous targets into account when selecting links so that
later targets can be found more efficiently.

The second dimension are the navigation mistakes of the users. The first method
assumes that users never make choices that do not match their targets. The other two
methods allow for the possibility that users sometimes make navigation mistakes.

Third, in a natural setting menu adaptation systems function besides other navi-
gation means such as static menus and site search engines. In this case the quality of
the menu adaptation system depends not only on the quality of the links it adds, but
also on the novelty of these links compared to the links offered by the other naviga-
tion means. Moreover, in this setting users can choose to ignore the added links and
use other navigation means so that the ‘questions’ posed by the added links remain
unanswered. In the first two studies we aim to measure the quality of the added links
independently of the other navigation means. Therefore, we use a setting in which the
added links form the only way a user can navigate through a site. In other words, the
links are added to an empty menu. In the last experiment we study menu adaptation
systems in a more realistic setting.

In all studies we assume that the a priori probability distribution over the target
pages is known in advance. For each page of the site, the adaptation system knows
how likely it is that the user is looking for the page when no information about the user
has been collected yet. Usually, a priori probabilities can be estimated on the basis of
the access frequencies of the pages that are recorded in the server logs of web sites. In
these cases, the a priori probabilities reflect the popularity of the pages. When no log
files are available, a uniform distribution can be used. In the first study, we examine
the effects of incorrect assumptions about the probability distribution on the results of
menu adaptation.

To be able to make inferences about the users’ preferences beyond the pages that
the user has visited, the methods exploit structures in the set of pages of the site. For
instance, the third method uses distances between the pages that reflect the probability
that a page will be a target provided that another page is clicked. The type of structure
that is used forms a key element of the methods and determines how page set division
is performed. The structures will be discusses in detail in the following sections.

2.4. Study 1 13

2.4 Study 1

In this study we demonstrate the working of page set division in a very restricted
setting in which the use of information theory is very natural. In any step in the
interaction, the menu adaptation system selects exactly two links that are shown to
the user. The user has to select one of these links because no other links are available.
The system adds two new links to the requested page and shows the page with the
links to the user. The interaction continues until the user reaches his target page.

The method presented in this section relies on page structures called preference
scales. It assumes that the pages of the site can be scaled onto one dimension, in such
a way that a user prefers pages that are on the scale closer to his target over pages
at larger distances. This situation is comparable to a game in which one person has a
number between 1 and 100 in mind and another person needs to determine the target
number by asking questions like ‘Is the target closer to a or to b?’. The first person can
answer these questions because the numbers are naturally ordered on a scale from 1
to 100.

One-dimensional scales can be constructed from a set of preference statements.
Suppose that we extract from log data a number of preference indications of a user,
such as that he prefers page a over page b and page c over page d. From these data we
can construct a preference ordering over the pages of the site. When such orderings
are constructed for a number of users, it may be possible to unite the orderings into
one one-dimensional scale.

For example, suppose a site about holiday destinations has five pages: France,
Spain, Morocco, Denmark and Norway. Two users have indicated their preferences, which
are shown in Table 2.2. Even though the users have very different preferences, both
sets of preferences comply with the scale that is shown in Figure 2.1. The target of
user 1 is Denmark. The target of user 2 is Spain. The scale is such that both users prefer
pages closer to their targets over pages further away.

Various methods have been developed to construct scales from preferences. For
an overview see Coombs (1964). It is not always possible to construct a perfect scale
that reflects the preferences of all users. Most methods introduce a ‘stress’-factor that

User 1 User 2

Denmark ¡ France Spain ¡ Morocco
Denmark ¡ Norway Morocco ¡ Denmark
France ¡ Spain Spain ¡ France
Norway ¡ Morocco France ¡ Norway

Table 2.2: Example preferences of two users. x ¡ y stands for ‘prefers x over y ’.

Norway Denmark France Spain Morocco

Figure 2.1: Example of a one-dimensional page scale.

14 Chapter 2: The role of information gain in menu optimization

indicates the proportion of the preferences that are not consistent with the scale. In
the rest of this section we will assume the scales are stress-free.

2.4.1 Method

The scale makes it possible to draw conclusions from links that are clicked by a user.
When a user chooses link a from the available links a and b, the system infers that the
user’s target is closer to a than to b. Therefore, all pages that are closer to b than to a

are eliminated as possible targets, i.e. their probabilities are reduced to 0.

The greedy method always shows the two links with the highest probability of
being the user’s target. This means that the system has the largest probability of
leading the user to his target directly. However, when the target is not among the
added links, the system can sometimes eliminate only a small portion of the pages.
For instance, suppose that a greedy system playing the number game suspects that the
user has a preference for higher numbers. In the first step it shows links to numbers 99

and 100. When the user selects 99 (and 99 is not his target), the only numbers that can
be eliminated as potential targets are 99 and 100. In the next step the system shows
98 and 97, etc. In the worst case, the greedy system needs k{2 steps to determine the
user’s target, where k is the number of pages on the site.

A more efficient way to determine a user’s target, is to actively maximize the por-
tion of the links that can be eliminated at each step by using a form of binary search.
At each step we select two links that divide the scale into two parts, in such a way
that both sides have equal probability of containing the user’s target. To find two links
that divide the scale in this way, we first determine the center of probability mass: the
point on the scale such that the sums of the probabilities of the pages on each site of
the point are equal. Then, we find two links on the scale that are on either side and
at equal distance from the center of probability mass. When these links are shown to
the user, we can be sure that in each step we eliminate fifty percent of the probabil-
ity mass. In the number example, the center of probability mass is initially located
at 50.5 (when probabilities are uniform). The scale dividing system shows two num-
bers at equal distance from 50.5, such as 20 and 81. When the user selects 20, all
numbers above 50.5 are eliminated. In the next step the center lies at 25.5 and the
system shows, for instance, 10 and 41. With uniform page probabilities, this method
determines a user’s target in no more than log2pkq steps.

There can be many pairs of links that are at equal distance from the center of prob-
ability mass. To increase the probability of a direct hit, we choose the pair containing
the link with the highest probability of being the user’s target. Alternatively, one could
choose links at large distance from each other so that users can easily discriminate
between them.

Complexity

Computational complexity is a major issue for menu adaptation methods because the
links must be selected while the user is waiting for his page. In theory, all possible
interaction sequences can be computed in advance, but in most applications this is

2.4. Study 1 15

not tractable as the number of possible sequences is exponential in the length of the
sequences.

Updating page probabilities requires the methods to determine for each page
whether it is closer to the page that the user has selected or to the page that the
user has not selected. By making use of the page scale this can be done in at most
Op2kq steps, where k is the number of pages on the site. The greedy method can
select the pages with the highest probability by going through the page probabilities
once. As a result, the total time complexity of the greedy method is Op3kq. The scale
division method can find the center of probability mass by adding up the probabili-
ties of the pages on the scale until they add up to 0.5. In the worst case this takes
Opkq time. Finding the page with the highest probability and its counterpart takes
another two passes through the page scale. In total, the time complexity is Op4kq.
Both methods keep the current page probabilities of each user in memory so that the
space complexity is Opukq, where u is the maximum number of users that visit the site
simultaneously. In conclusion, the time and space complexity of both methods scale
linear with the number of pages of the site, which makes them scalable and efficient.

2.4.2 Experiments

We demonstrate the effectiveness of scale division in a series of simulation experi-
ments. The scale division method is compared to the greedy method using various
probability distributions of targets. In addition, we study the effects of incorrect as-
sumptions about the probability distributions.

We created an artificial site with 32 pages. Four probability distributions over the
pages are considered: decreasing, triangular, uniform and peaked. The distributions
are shown in Figure 2.2

In the first set of experiments, we draw 5000 pages from each of the probability
distributions. For each page we simulated a user session in which the page was the
user’s target. Each session was repeated two times: once with a greedy system and
once with a scale dividing system. Both systems knew the probability distribution that
was used. In all sessions the preference scale was perfect and simulated users did not
make navigation mistakes. This means that the users always selected the links that
were closest to their targets.

We counted the number of navigation steps of the simulated users. The results of
the experiments are shown in the top four rows of Table 2.3. With the decreasing,
triangular and uniform distributions the scale division strategy was on average more
efficient than the greedy strategy. Only when the distribution was extremely peaked,
the greedy method was faster. With all distributions the scale dividing system had a
much better worst case performance. This shows that scale division provides better
assistance to users with uncommon targets.

In the second set of experiments, the menu adaptation systems had incorrect as-
sumptions about the distribution of the targets. For instance, in one experiment the
systems worked with a decreasing distribution (Figure 2.2(a)), while the actual distri-
bution of the targets was peaked (Figure 2.2(d)). Again, we simulated 5000 users per
configuration and measured the numbers of steps needed by the greedy and the scale

16 Chapter 2: The role of information gain in menu optimization

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5 10 15 20 25 30

P
ro

b
ab

il
it

y

Page number on preference scale

(a) Decreasing

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5 10 15 20 25 30

P
ro

b
ab

il
it

y

Page number on preference scale

(b) Triangular

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5 10 15 20 25 30

P
ro

b
ab

il
it

y

Page number on preference scale

(c) Uniform

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5 10 15 20 25 30

P
ro

b
ab

il
it

y

Page number on preference scale

(d) Peaked

Figure 2.2: Probability distributions over the 32 pages of the artificial site. The vertical axes
represents the probability of being a user’s target. The horizontal axes shows the 32 pages
ordered according to the preference scale.

dividing systems. As can be seen in Table 2.3, for all assumed and real distributions
the scale dividing system needed on average less steps than the greedy system. The
scale dividing system also had the best worst case performance. These findings show
that the scale division method is less sensitive to inaccuracies in the assumptions about
the probability distribution.

2.4.3 Lessons learned

In our experiments page set division considerably reduced the number of navigation
steps needed to determine a user’s target compared to the greedy strategy. Moreover,
page set division proved more robust against incorrect assumptions about the page
probabilities. These findings show that adding links to the pages with the highest
probability of being the users target is not always optimal. This is an important re-
sult as the greedy strategy is a very common strategy among systems that adapt link
structures.

2.5. Study 2 17

Number of steps

Probability distribution Greedy Scale division

Real Assumed Average Worst case Average Worst case

Decreasing Decreasing 4.07 17 2.73 8
Triangular Triangular 2.74 10 2.65 8
Uniform Uniform 4.79 17 4.44 6
Peaked Peaked 1.60 17 1.78 6

Decreasing Triangular 3.58 10 2.94 8
Decreasing Uniform 2.97 17 2.77 6
Decreasing Peaked 2.89 17 2.77 6
Triangular Decreasing 5.00 17 2.73 8
Triangular Uniform 2.90 17 2.68 6
Triangular Peaked 2.84 17 2.77 6
Uniform Decreasing 9.50 17 4.91 8
Uniform Triangular 6.00 10 4.97 8
Uniform Peaked 4.69 17 4.59 6
Peaked Decreasing 3.00 17 1.87 8
Peaked Triangular 2.20 10 1.79 8
Peaked Uniform 1.91 17 1.88 6

Table 2.3: The numbers of steps that simulated users needed to reach their target pages with
various assumed and real target page distributions. Best scores are shown in bold.

In the limited setting that was used in our experiments the scale division method
worked very well, but loosening the restrictions of the setting will cause several prob-
lems. First, if the scale does not perfectly reflect the preferences of all users, the system
will sometimes draw incorrect conclusions about a user’s target. The system has no
means to recover from these mistakes as pages are eliminated as possible targets for
the rest of the session. As a result, users may never reach their targets. A similar
problem occurs if users make navigation mistakes (not always click the links that are
closest to their targets). Like imperfect scales, these mistakes can cause the system to
eliminate target pages. In real applications, these problems are likely to occur as user
preferences and navigation are seldom completely regular.

2.5 Study 2

In this section we present a method to divide page sets that is less sensitive to irregular-
ities in user navigation than the scale division method. Moreover, this method exploits
information about a user’s previous targets to help him find future targets more effi-
ciently. We call this method the information gain method as it directly maximizes the
information that is gained in each step of the navigation process.

Instead of depending on a one-dimensional preference scale, the information gain
method makes use of keywords that connect sets of pages. The keywords are used to
‘question’ the user about the topic of his search. For example, the information gain
method can show a link named ‘Pages related to dizziness’. When the user selects
this link, the system learns that the user’s target is most likely related to the keyword

18 Chapter 2: The role of information gain in menu optimization

‘dizziness’.

The experimental setting that is used in this section is such that users view at
each step either a navigation page or a content page. Navigation pages contain a
menu with a fixed number of links and no other links or content. It is the task of the
menu adaptation system to choose which links are included in the menu. A menu
link is either a link to a content page or a link to another navigation page. Links
to content pages have the name of the page as anchor. Links to navigation pages
have anchors of the form ‘Pages related to keyword’, where keyword is some keyword.
Because the system can show only a limited number of links, it can happen that none
of the presented links is related to the user’s targets. Therefore, the last menu link is
always named ‘None of the above’. This link points to a new navigation page. Content
pages contain only content and two links: ‘I am done’ and ‘I want to search more
information’. When a user clicks ‘I want to search more information’, he is taken to a
navigation page. If he clicks ‘I am done’ the interaction ends.

To interpret a click on ’Pages related to keyword’ the menu adaptation system needs
to know which pages are related to the keyword. We assume that the pages are an-
notated with keyword meta tags which describe their contents. The keywords might
be added by hand by a webmaster or extracted automatically. In Section 2.5.2 is ex-
plained how we annotated the pages that we used for evaluation.

2.5.1 Method

The greedy method is employed in the same way as in Section 2.4. In the first step
of the interaction, it shows the n links with the highest a priori probability of being
a target, where n is the number of links that can be added in each step. If the user
clicks ‘None of the above’, the greedy method shows the next most probable links. The
greedy method never shows keyword links as keyword links lead to navigation pages
and, therefore, have zero probability of leading the user directly to a target.

At a high level the information gain method resembles the scale division method. It
uses page probabilities to find the most informative sets of links. When a user chooses
a link, the probabilities of the pages are updated. However, the use of keywords
instead of a preference scale changes the way in which these two steps are performed.
Below, we first describe how the information gain method updates page probabilities
and subsequently how it selects links.

Updating page probabilities

Clicks on keywords are used to update the page probabilities. For instance, if the user
clicks a link named ‘Pages related to dizziness’ the system increases the probability
of all pages annotated with the term ‘dizziness’ and decreases the probability of the
other pages. The information gain method thus decreases the probabilities of pages
which are not annotated with the chosen keyword, but does not set their probabilities
to zero. In other words, pages are never completely eliminated as potential targets.
This makes the method robust against inaccuracies in the keyword annotations and

2.5. Study 2 19

navigation mistakes of the users. To compute how much the probabilities must be
adjusted when a user clicks a link, we make the following definitions:

• cw is the fact that the user clicks on the link ‘Pages related to w’.

• aw is the set of pages annotated with keyword w.

• aw is the set of pages not annotated with keyword w.

• Pipdq is the estimation made in interaction step i of the probability that page d

is a target for the user.

The probability that one of the user’s target pages is annotated with keyword w,
Pipawq, is given by:

Pipawq � ¸tdPawu Pipdq
When a user clicks on a keyword w, the probability of the pages annotated with w

must be increased such that:

Pi�1pawq � Pipaw|cwq
Because it is hard to estimate the value of Pipaw|cwq directly, we make use of Bayes’

rule:

Pipaw|cwq � Pipcw |awqPipawq
Pipcw |awqPipawq� Pipcw |awqPipawq

We do not have information about the quality of the individual keywords. There-
fore, we assume that the probability that a user clicks on a keyword provided that
one of his targets is annotated with the keyword is the same for all keywords and in
all navigation steps. The probability of clicking keywords that do not appear in the
annotation of the target pages (‘incorrect’ keywords) is also assumed to be constant.
We represent these probabilities by constants that we name respectively pc|a and pc|a.
In Section 2.5.2 it is explained how we estimate the values of these constants.

With these definitions we can compute how much the probabilities of the pages
annotated with keyword w must be changed when w is clicked:

Pi�1pdq � Pipdq
Pipawq � pc|a Pipawq

pc|a Pipawq� pc|a Pipawq if d P aw

The page probabilities of the other pages are decreased to make sure that the new
page probabilities add up to one.

After the update, it holds that Pi�1pawq � Pipaw |cwq. Moreover, we can prove that
the probabilities of the pages annotated with w are always increased and the proba-
bilities of the other pages are always decreased:�d P aw : Pi�1pdq ¡ Pipdq iff pc|a ¡ pc|a (2.1)�d P aw : Pi�1pdq Pipdq iff pc|a ¡ pc|a (2.2)�d P aw : Pi�1pdq ¡ 0 iff pc|a ¡ 0 (2.3)

20 Chapter 2: The role of information gain in menu optimization

The conditions in inequalities 2.1 and 2.2 require that the probability that a user
clicks a keyword is larger when one of his targets is annotated with the keyword than
when none of his targets is annotated with the keyword. It is natural to assume that
this is indeed the case. The last inequality states that the page probabilities of pages
that are not annotated with the clicked keyword are never set to zero, except when
we assume that users do never click incorrect keywords.

A similar update is performed when a user clicks ‘None of the above’. In this
case we increase the probability of all pages that are not annotated with any of the
presented keywords and we decrease the probability of the other pages. We make
use of two constants: p0|0 and p0|0. p0|0 represents the probability that a user clicks
‘None of the above’ when indeed none of the keyword that were shown appears in
the annotation of his target pages. p0|0 is the probability that a user clicks ‘None of
the above’ while in fact some of the keywords that were shown appear in his targets’
annotations.

Until now we assumed that the same target page probability distribution was used
for each user and each target. When a target had been found and the user indicated
that he wanted to search more information, all target probabilities were reset and a
new search was started. We will compare this method to a method that uses infor-
mation about a user’s previous targets to personalize the probability distribution. This
form of personalization draws on the premise that the targets in one user session are
often related. When a user has reached a target, the a priori probabilities of pages that
are similar to the target are increased and the a priori probabilities of dissimilar pages
are decreased. The personalized probability distribution is used as starting point for
the search for the user’s next target. We call the information gain method which uses
this form of personalization the personalized information gain method. The same form
of personalization can be incorporated in the greedy method, resulting in the person-

alized greedy method. For details on the personalization procedure, see Hollink et al.
(2005b).

Selecting informative link sets

At each step the information gain method chooses n links from the available keywords
and links to content pages. During the selection it treats links to content pages the
same as keywords: it considers content links as keywords that are associated with
exactly one page.

The information gain measure (Quinlan, 1986) is used to estimate the information
that is gained by showing a set of links. This approach is similar to the one followed
in Witten et al. (1984) (see Section 2.2). However, the use of keywords instead of
segments of the alphabet makes our approach suitable for users who do not know the
exact titles of their target pages.

The information gain of a question is the difference between the number of bits of
information needed to determine the target before and after asking the question. The
expected information gain, IG, of a set of added links L is given by:

IGpLq � HpPq�ΣtlPLup Pplq �HpP|lq q

2.5. Study 2 21

Here P is the current probability distribution over the set of pages D and HpPq gives
the entropy of P. HpP|lq is the entropy of the probability distribution after link l has
been chosen. HpPq is given by:

HpPq � �ΣtdPDup Ppdq logpPpdqq q
Ideally, the information gain method would always select the set of links with the

highest expected information gain. Unfortunately, computing the information gain of
all possible link sets is not always tractable. If k is the number of pages on the site,
w is the number of available keywords and n is the number of links that are added in
each step, then the number of possible link sets is pk�w

n
q. Since the computation must

be done online while the user is waiting for his page, heuristics are needed to reduce
the number of link sets which are considered.

As a first filter we throw out keywords with a very small probability of being cho-
sen. If a keyword is associated with only one page it is obviously better to provide
a direct link to the page than to show the keyword. Therefore, we compute for each
keyword the probability that a target page is annotated with the keyword and throw
out all keywords with a probability smaller than the average page probability. Further-
more, if it is almost certain that the target is related to some keyword, then clicking
this keyword does not provide much new information. For this reason, keywords with
very large probabilities are also filtered out.

In a pilot study we compared two heuristics for finding the best link set among
the links that remain after filtering (Hollink et al., 2005b). The heuristic that proved
most effective uses a form of hill climbing. First, it computes the information gain
of all individual links. The n links with the highest information gain are used as
start set. Then, one link from the start set is exchanged for another link. If this
results in a set with a higher information gain the change is pertained; otherwise it is
undone. This exchange process is repeated until no more changes can be tried or until
a maximum number of steps is reached. The resulting set of links is presented to the
user. Like all hill-climbing methods, this heuristic can converge to a local maximum,
but experiments show that in practice it finds good sets of links.

Complexity

Updating the page probabilities consists of two steps: computing aw for the clicked
keyword w (or a0) and computing the new page probabilities. aw is computed as the
sum of the probabilities of the pages annotated with keyword a. This takes Opkq time,
where k is the number of pages on the site. Computing the new page probabilities
requires another Opkq time.

For the computation of the information gain of one link set L, the algorithm first
computes the probability of each link in L. It adds up the probabilities of the pages
annotated with the link’s keyword, which can be done in Opkq time. Then, for each
link l in L, it computes HpP|lq, which takes another pass through all page probabilities.
HpPq is not computed as this term is equal for all link sets and does not influence the
relative ordering of the link sets. In total, computing the information gain of a link set
L takes Op2k|L|q time.

22 Chapter 2: The role of information gain in menu optimization

The heuristic prescribes that we compute the information gain of all individual
keywords and page links: Op2pw�kqkq, where w is the number of available keywords.
The link exchange process (part two of the heuristic) requires the computation of the
information gain of link sets of size n for a maximum of i steps, where n is the number
of added links per page and i is a parameter that defines the maximum number of
steps. This takes Op2iknq time.

In total, the time complexity of the information gain method is:

Op2k� 2kw� 2k2 � 2iknq
Thus, computation time is linear in the number of keywords and the number of added
links per page and quadratic in the number of pages of the site. This means that the
method is efficient for moderately sized sites, but can become intractable for very large
sites. The parameter that determines the maximum number of exchange steps (i) can
be used to reduce computation time to a certain extent.

Memory requirements are small. The algorithm stores the associations between
pages and keywords and for each visitor the current page probabilities. As a result,
space requirements are Opkw � kuq, where u is the maximum number of users who
visit the site simultaneously.

2.5.2 Experiments

The information gain method was evaluated in three experiments. The first exper-
iment was a simulation experiment. This experiment compared the greedy and the
information gain methods when simulated users performed a number of search tasks.
In addition, we compared the information gain method with another menu adapta-
tion method that also made use of keyword links, but not information gain. In the
second experiment we studied the effects of navigation mistakes on the efficiency of
the various methods. In the third experiment we evaluated the real world value of the
methods by asking human users to perform the search tasks.

Experimental set-up

We evaluated the menu adaptation strategies on the combined set of pages of two
Dutch web sites for elderly people: the SeniorGezond site (SeniorGezond, 2007) and
the Reumanet site (Reumanet, 2007). Both sites were developed by The Netherlands
Organization for Applied Scientific Research (TNO) in cooperation with domain spe-
cialists from the Leiden University Medical Center. SeniorGezond contains informa-
tion about the prevention of falling accidents. Reumanet contains information about
rheumatism. The sites are mainly focused on elderly and volunteers in the care for
elderly. The sites have very similar structures: they consist of a set of short texts de-
scribing a particular problem or product and a hierarchically structured navigation
menu. The menu provides information about the relations between the pages, but
each text is written in such a way that it can also be understood in isolation.

From all pages of the two sites we removed the navigation menu and all in-text
links. Fifteen texts that were in almost the same form present on both sites were

2.5. Study 2 23

mapped onto one page. After this mapping 221 unique pages remained, each consist-
ing of a title and some flat text.

Server logs of five months were used to estimate the a prior page probabilities.
First, the log data were preprocessed. The sessions of individual users were restored
with the method described in Cooley et al. (1999). All requests coming from the
same IP address and the same browser were attributed to one user. When a user was
inactive for more than 30 minutes, a new session was started. In addition, the agent
fields were used to remove sessions of bots. The access frequencies of the pages in the
cleaned logs were used as basis for the page probabilities.

We annotated the pages with a number of keywords by means of a hand made
domain-specific ontology consisting of 800 terms or phrases and a broader term -
narrower term hierarchical relation. We counted for each text and each term in the
ontology the evidence that the term was a keyword for the text: the number of times
the term or one of its descendants appeared in the text. We annotated pages with
all terms with an evidence of at least 2. The domain-specific ontology was created
by hand because there was no ontology available for the domain and many of the
domain-specific keywords were not in the Dutch version of WordNet (Vossen, 1998).
On average each page was associated with 7.7 keywords, with the minimum number
of keywords being 1 and the maximum 30.

The quality of the keywords was evaluated in a survey. We had 10 participants read
12 texts and answer 85 questions about these texts. In each question the participants
had to choose the word that fitted the text best among 4 keywords or answer that
none of the words was appropriate for the text. We found that on average in 60% of
the 85 questions the keyword from the page’s annotation (the ‘correct keyword’) was
chosen. In 36% of the questions the participants chose ‘None of the above’ and in 4%
of the questions the participants chose a keyword that was not in the annotation of
the page (an ‘incorrect keyword’).

We used the figures found in the survey to set the parameters of the information
gain method (see Section 2.5.1). The probability that a user clicks on a correct key-
word when there is one, pc|a, was set equal to the fraction of the questions in which
the correct keyword was chosen (0.60). We approximated the probability that an in-
correct keyword is clicked as 1

3
�0.04� 0.013 because there were 3 incorrect keywords

in our multiple choice questions. Assuming this probability is independent of the pres-
ence of a correct keyword, pc|a was also set to 0.013. In the survey, the probability of
choosing ‘None of the above’ when there was a correct keyword, p0|0, was 0.36. The
probability of clicking ‘None of the above’ when there is no correct keyword, p0|0, is
set to 1� p4 � 0.013q � 0.95 because this is the same as not clicking one of the four
incorrect keywords. Table 2.4 summarizes the probabilities.

We defined 12 search tasks. Each task consisted of a short description of a specific
problem of an elderly person. The users had to search all pages related to the problem.
The topics of the tasks were chosen after consultation of the creators of the sites. We
tried to choose problems that were realistic in the domain to get a realistic simulation
of the sites’ users. For the simulation we defined by hand which pages were in the
target sets for the tasks. The tasks had between 2 and 12 target pages with an average
of 6.1 target pages. An example of a task description is shown in Figure 2.3.

24 Chapter 2: The role of information gain in menu optimization

Parameter Value

pc|a 0.60
pc|a 0.013
p0|0 0.95
p0|0 0.36

Table 2.4: Parameter settings used for updating the page probabilities.

The information gain method and the greedy method were implemented in menu
adaptation systems that provided access to the web pages described above. For both
methods a personalized and a non-personalized version were created (for details see
Hollink et al. (2005b)). This resulted in four menu adaptation systems: a greedy sys-
tem, a personalized greedy system, an information gain system and a personalized
information gain system. The systems provided links while the (simulated) users per-
formed the search tasks. In each navigation step the systems provided four links, in
addition to the ‘None of the above’ link.

Task: glasses and contact lenses

You have difficulty reading and you think you might need glasses. Find as much infor-
mation as possible on (buying) glasses and contact lenses.

Target pages: Optician.htm
Seeing+and+hearing.htm

Figure 2.3: Translated example task with target pages. The target pages were not visible to the
participants.

Simulated search without navigation mistakes

In the first experiment we evaluated the menu adaptation methods on simulated user
behavior. Each simulated user had a set of pages which were his target pages. The
target sets corresponded to the targets of each of the 12 search tasks. The simulated
users never went to content pages which were not in their target set and when a
link to a target page was available they always went there directly. When no links
to target pages were available and a keyword from the target pages’ annotations was
shown, they clicked on the keyword. When also no relevant keywords were shown,
they clicked ‘None of the above’.

All search tasks were performed 25 times. Table 2.5 gives the average number of
clicks the users needed to reach their targets. The table shows that the information
gain methods led to significantly1 lower numbers of clicks than the greedy methods.

1In the simulation experiments significance is computed with a one-tailed paired t-test with a confidence
level of 0.95.

2.5. Study 2 25

This holds for both the personalized and the non-personalized versions of the meth-
ods. Personalization significantly improved the performance of the greedy and the
information gain method. With personalization the difference between the two meth-
ods is smaller, but the information gain method is still 49% faster.

We compared the information gain method to a third menu adaptation method
to determine whether the advantage of the information gain method resulted from
the use of information gain or from the use of keywords. This clustering method
made use of keyword links, but did not select them on the basis of information gain.
Instead, it used a conventional clustering algorithm based on page distances to group
the potential targets under a common link (for details see Hollink and Van Someren
(2006)). No personalized version of the clustering method was created because the
clustering method does not use the target page probabilities. The clustering method
needed significantly more steps than the information gain method as can be seen in
Table 2.5. This shows that the good performance of the information gain method can
at least in part be attributed to the use of information gain for selecting keywords.

Method No. steps

Greedy 27.7
Personalized greedy 9.0
Information gain 8.2
Personalized information gain 4.6
Clustering 15.1

Table 2.5: The average number of steps of simulated users without navigation mistakes.

Navigation mistakes

Miller and Remington (2004) showed that clicks on links that do not lead to a user’s
target can have a strong negative influence on navigation times. In the next experi-
ment we evaluated the effects of navigation mistakes on the efficiency of the various
menu adaptation methods.

We compared simulated ‘perfect’ users that always chose the correct categories
with ‘imperfect’ users who sometimes made navigation mistakes. In this setting nav-
igation mistakes are clicks on keywords that were not in the annotation of the users
target pages. These mistakes occur when users disagree with the developer of the web
site about the relevance of keywords.

Navigation mistakes were simulated by adding random mistakes to the behavior of
the simulated users. Presented keyword that were not in the target pages’ annotations,
had a probability of εw of being clicked. When there was a keyword from the pages’
annotations there was a probability of ε0 that the user clicked ‘None of the above’.

We varied the amount of navigation mistakes and measured the effect on the per-
formance of the various menu adaptation methods. The results are presented in Fig-
ure 2.4. In this figure mistake level 1 correspond to the values found in the keyword
evaluation survey: εw � 0.013 and ε0 � 0.36. For the other mistake levels these

26 Chapter 2: The role of information gain in menu optimization

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2

N
u
m

b
er

 o
f

st
ep

s

Mistake level

Clustering
Information gain

Personalized information gain

Figure 2.4: The average number of steps of simulated users with various mistake levels.

values were multiplied by the mistake level. The efficiency of the greedy methods
is not shown. These methods do not use keywords and therefore are insensitive to
the types of mistakes that were added. Figure 2.4 shows that the efficiency of the
clustering and the information gain methods decreased rapidly when the users made
more mistakes. At the highest mistake levels the path lengths became even longer
than the path lengths of the greedy method. At all mistake levels the information gain
method outperformed the clustering method. However, the influence of the type of
the menu adaptation method appeared to be smaller than the influence of the amount
of incorrect choices.

Human search

We compared the information gain method and the greedy method in a user experi-
ment. Thirteen participants were asked to perform the 12 search tasks. The partici-
pants got only the topics of the tasks and not the sets of target pages. Every participant
was assisted by two menu adaptation systems, by one during the first 6 tasks and by
another during the next 6 tasks. The order of the tasks and the methods was varied
over the participants. We measured the number of clicks the participants needed to
find the targets and the number of relevant pages that they found.

Table 2.6 shows the results of the user experiment. Users assisted by the infor-
mation gain methods needed significantly2 less steps to reach the targets than users
assisted by greedy methods. Personalization significantly reduced the number of steps
of both the greedy and the information gain method.

The participants did not always understand the keywords that were presented by
the information gain methods. 17% of the keyword links that were clicked were not
in the target pages’ annotations. In 7% of the cases in which ‘None of the above’ was
clicked, there actually was a relevant link among the presented links. Because of these

2In the user experiment significance is computed with a one tailed t-test with a confidence level of 0.95.

2.5. Study 2 27

Method No. steps No. targets

Greedy 17.8 0.9
Personalized Greedy 9.8 1.7
Information gain 11.1 1.5
Personalized information gain 6.9 1.4

Table 2.6: The average number of steps that human users needed to reach a target and the
average number of targets that they found per task.

‘mistakes’ the paths of the participants were longer than the path lengths measured
in the simulation experiments (Table 2.5). However, our results show that even with
these large amounts of mistakes maximizing information gain can be effective.

We did not find large differences between the numbers of target pages that were
found. The only significant result was that users found more targets when assisted by
the personalized greedy method than when assisted by the greedy method. Probably
users of the greedy system were temped to give up when they saw that they would
have to go through the same lists of links again. With all methods the users found
very few targets: on average only 26% of the targets was found. Most likely this
is a consequence of the limited interface. Many participants reported that they had
trouble judging how many relevant pages the site contained because the interface did
not provide an overview of the contents of the site. This problem is less likely to occur
on real sites, where besides links added by the menu adaptation system also other
navigation means are present.

2.5.3 Lessons learned

The experiments show that adding links that maximize information gain can signifi-
cantly reduce the length of the paths to the users’ target pages compared to a greedy
approach. In contrast to the scale division method, the information gain method is not
only effective in noise free domains, but also when used by real users who make con-
siderable amounts of navigation mistakes. The information gain and greedy methods
were tested on two probability distributions: a personalized and a non-personalized
version. On both distributions the information gain method outperformed the greedy
method. This confirms the conclusion from Section 2.5 that the advantage of page set
division is independent of the probability distribution.

Simulation experiments demonstrated that the effect of navigation mistakes was
much larger than the method that was used to select links. Navigation mistakes occur
when users cannot predict which pages are connected to which keywords. Conse-
quently, the success of the information gain method strongly depends on the quality
and the availability of keywords. This suggest that information gain is a useful crite-
rion to choose between links with equally good keywords, but that the highest priority
must be to given to finding links with high quality keywords.

28 Chapter 2: The role of information gain in menu optimization

2.6 Study 3

In this section we study the effects of page set division on navigation of real web users.
A menu adaptation system based on page set division is incorporated in an existing
web site. Compared to the previous two studies, this setting poses several challenges.
First, the web site offers several other navigation means, including static menus, in-
text links and a site search engine. Consequently, users can choose to ignore the links
added by the menu adaptation system and navigate via other navigation means. This
means that the added links must not only be informative when clicked, but also invite
users to choose them. Moreover, the adaptation system must be careful not to show
too many links that are not close to the users’ targets. Too many irrelevant links can
cause users to feel that the system is not useful and discard the added links for the rest
of the session (Cramer et al., 2006). The second challenge is that the web site does
not allow keyword links, which excludes the information gain method proposed in
Section 2.5. Finally, the web site requires that the menu adaptation system generates
links within 0.2 seconds. If computation takes longer, the page is shown to the user
without added links. Thus, in this setting it is even more important that the page set
division method is computationally efficient.

When keyword links are not possible and pages cannot be scaled reliably onto one-
dimension, another structure is needed to make inferences about the users’ targets.
The method presented in this section uses distances between pages. The distances
reflect the similarities and dissimilarities between pages. Closely related pages are at
short distance of each other, while very different pages are at large distance of each
other. Henceforth this method will be referred to as the distance-based method.

When a site has been online for some time, distances between pages can be com-
puted from the frequencies of the pages in the site’s log files. The distance between
two pages is the inverse of their conditional probability:

Distancepp, qq� |Sessionsppq||SessionsppqX Sessionspqq|
Here p and q are pages and Distancepp, qq is the distance from p to q. Sessionsppq is the
set of user sessions in which p occurs. When two pages have never occurred together
in a session, their distance is set on a value that is larger than any distance between
two pages. Note that this measure is not symmetrical so that it is not a distance
measure in the mathematical sense: the distance from p to q is not necessarily equal
to the distance from q to p. We do not require symmetry because interest in page p

can be a good indication for interest in page q, while the reverse is not true. When no
log files are available content-based distances can be used, for example, based on the
overlap between the terms occurring on the pages.

2.6.1 Method

Updating page probabilities

When a user selects a link (either static or added by the adaptation system), the
distance-based method infers that the user is probably more interested in the selected

2.6. Study 3 29

link than in the (other) added links. This knowledge is incorporated in the target page
probabilities. For each page p, the method looks up the distance from the selected
page to page p and the distance from the added links to page p. Probabilities of pages
that are closer to the selected page than to any of the added links are increased. Prob-
abilities of pages closer to an added link that was not selected are decreased. This
process is illustrated in Figure 2.5. The probability of the selected page itself is de-
creased because the user has already seen this page. The probabilities of the pages
that were added but not selected are decreased because the user has seen these links
and decided not to click them.

Figure 2.5: Update of the target page probabilities. The dots represent pages. The circle is
the page that the user has selected and the squares are the pages that are added by the menu
adaptation system. The probabilities of the pages in the gray area are increased because they
are closer to the selected page than to any of the added pages that were not selected. The
probabilities of the pages in the white area are decreased.

Like the information gain method, the distance-based method decreases probabil-
ities, but does not entirely eliminate pages as possible targets. If, in navigation step i,
Pippq is the probability that page p is the user’s target, then the probability in step i�1

becomes:

Pi�1ppq�$''''''&''''''% Pippq�δother if p � sel ected and p R L

and �l P L : Distancepl , pq¡ Distancepsel ected, pq
Pippq�δother if p � sel ected and p R L

and Dl P L : Distancepl , pq¤ Distancepsel ected, pq
Pippq�δshown if p � sel ected and p P L

Pippq�δselected if p � sel ected

Here L is the set of links that were added to the menu in the previous step and sel ected

is the page that the user has requested. δother , δshown and δselected are parameters. After
all probabilities have been updated, the probabilities are normalized by adding or
subtracting the same amount to all probabilities. This mechanism does not prevent
the probabilities from exceeding 1 or becoming lower than 0. Therefore, these values
are not really probabilities, but more ‘ interest values’. However, to keep terminology
consistent with the first two studies, we will still refer to these values as probabilities.

Table 2.7 shows the parameter values that are used in the experiments in Sec-
tion 2.6.2. The values are chosen in such a way that more certain knowledge leads to
larger changes in page probabilities. We are certain that the user has already seen the

30 Chapter 2: The role of information gain in menu optimization

selected page and thus that this is not a very interesting link anymore. Therefore, the
value of the selected page is reduced most. The (other) pages that have been shown
to the user are not clicked. This is a fairly strong indication that the user found the
selected page more interesting than the (other) added pages. However, the user may
find the other added pages interesting as well. Therefore, their probabilities are re-
duced less strongly than the value of the selected page. The remaining pages are not
shown and their update is based on the distances between the pages. As this evidence
is weak, their probabilities are changed only a small amount. The absolute values
of the parameters correspond to the speed of the adaptation. When high values are
used, the system adapts quickly to the behavior of the user. As a result, after only a
few navigation steps the system bases its links mainly on the pages that the user has
visited. Low parameter values make the adaptation slower so that the influence of the
initial probability values lasts longer. The parameter values in Table 2.7 are based on
the above considerations and some small offline experiments. The performance of the
method can probably be improved by using parameter values that are optimized for a
site’s user population.

Parameter Value

δother 1.0
δshown 2.0
δselected 3.0

Table 2.7: Parameter values used in the SeniorGezond experiment.

Selecting diverse link sets

When the page probabilities have been updated, the distance-based method chooses
the links that are added to the page that the user has selected. The user already has
access to the links in the static menu of the page that he is visiting so that there is no
reason to add these links once more. Therefore, as a first filter the method removes
links that are already visible.

Next, the distance-based method selects pages with a reasonably high probabil-
ity. This decreases the probability that the user finds the links totally irrelevant and
loses his interest in the dynamically added links. All pages with a probability above
a threshold are marked as candidate pages. As threshold we can use a fixed value or
the average of the current page probabilities, but these thresholds often select too few
or too many pages. Instead, we chose to use a threshold that is based on the median
page probability. This threshold causes the method to select more pages when there
are many pages with high probabilities and less pages when there are less pages with
high probabilities.

To get maximal information gain, the set of links that are shown to the user should
be spread as much as possible over the information space. Finding the set of pages
that are at maximal distance of each other is computationally very expensive. Instead,
we use an incremental method that is much more efficient (see the discussion on

2.6. Study 3 31

complexity below). The first link that is added is a link to the candidate page with
the highest probability. The second link points to the candidate page at the largest
distance from the first page. The third link points to the candidate at the largest total
distance to the first two pages, etc.

Complexity

For the update of the probability of a page p, the system needs to look up the distance
between p and the page that the user has selected and the distance between p and
each of the added links. When all values are updated, the system goes through the
probabilities once more for normalization. Therefore, the time complexity of the up-
date is Opkpn�1q� kq, where k is the number of pages of the site and n is the number
of links that are added to each page.

For the computation of the threshold value used to select candidates, the system
has to look at all page probabilities once, which takes Opkq time. Then, candidates
are selected by comparing the probabilities of all pages to the threshold, which again
takes Opkq time. The first link that is added can be found by scanning the values of
all candidates: Opcq, where c is the number of candidate pages. In the worst case all
pages are selected as candidates so that c � k. To select the other links, we need to
look up the distance between the candidates and the links selected so far. The time
needed for the selection is Op°i�n�1

i�1
ikq, which is equal to Op0.5n2k� 0.5nkq.

The time complexity of the total menu adaptation process is:

Op0.5n2k� 0.5nk� 5kq
Thus, time is linear in the size of the site (k), which means that the distance-based
method scales very well to larger sites. The time is quadratic in the number of links
that is added to each page (n). For all practical applications this is no problem as
this number is usually quite small (typically between 1 and 20). In the experiments
described below, the system almost always generated links within 0.2 seconds.

The memory requirements of the distance-based method are also moderate. At
all times it needs to store the distances between the pages and the initial probability
values. In addition, it stores the current probabilities of ongoing sessions. As a result,
the space complexity is no more than Opk2�k�ukq, where u is the maximum number
of users that visit the site simultaneously.

2.6.2 Experiment

The distance-based menu adaptation method is tested online on the SeniorGezond site
(SeniorGezond, 2007), which was described in Section 2.5.2. When the web site was
launched it included a manually created menu adaptation system. In our experiment
this system served as a baseline to which we compare the distance-based method. The
manually created system showed its links in a small box at the top of the static menu.
The box could contain maximally three links at the time. The links were presented
in the form of recommendations, suggestions for pages that might interest the user.

32 Chapter 2: The role of information gain in menu optimization

A screenshot of the SeniorGezond site is shown in Figure 2.6. Figure 2.7 shows an
enlargement of the recommendation box.

The manually created system based its recommendations on three information
sources. First, static relations between the contents of pages were established by
experts. When a user viewed a page, related pages were marked as possible rec-
ommendations. The second source was the information provided by a questionnaire.
The questionnaire asked users questions about their personal circumstances and de-
termined which pages were relevant on the basis of the user’s answers. The relevant
pages were possible recommendations in later navigation steps. When the user en-
tered a query in the site search engine, this information was used as the third informa-
tion source. When the user opened one of the search results, the other search results
were no longer visible. As these results could still be interesting, they were included
in the list of links that could be shown in the recommendation box. A relevance score
was assigned to the possible recommendations and the most relevant recommenda-

Figure 2.6: A screenshot of the SeniorGezond site. The dynamically added links are shown in the
recommendation box in the upper left corner of the page (see Figure 2.7).

2.6. Study 3 33

Figure 2.7: The recommendation box of the SeniorGezond web site. ‘Tip! kijk ook bij’ is Dutch
for ‘Recommendation! Look also at’.

tions were shown to the user. In this sense, the manually created system implemented
a greedy method.

Server logs from August 2004 to September 2006 were used to compute page
distances and a priori page probabilities needed for the distance-based method. The
distance-based method was implemented in a system that could show links in the
recommendation box.

For two and a half months the baseline system and the distance-based system ran
simultaneously on the SeniorGezond site. Half of the visitors received links from the
distance-based system and the other visitors received links from the baseline system.
Users were randomly assigned to one of the systems and kept the same system for the
duration of the session. The links of both systems looked the same and were placed in
the same recommendation box. As a result, users did not know how their links were
generated. In fact, they didn’t even know there was more than one system.

Results

As a first indication of the users’ interest in the added links, we look at the number
of times the users clicked on links added by either system. The two systems were
assigned to almost equal numbers of users. The distance-based system was used to
generate links in 8278 sessions, while the baseline system generated links in 8444
sessions (see Table 2.8). However, if we look at the number of times a user clicked
a link added by each of the systems, we see a large difference. The distance-based
links were clicked 220 times in 115 sessions. The baseline links were clicked only 25
times in 20 sessions. These differences are significant3. Moreover, users who clicked a
distance-based link were more inclined to visit another recommended link in the same
session.

The percentage of clicks on recommended links is small for both systems. Most
likely, the reason for this is that the site offers many other navigation means, includ-
ing an extensive static menu. With these navigation means most users can find the
information they need quite easily (Alpay et al., 2007).

In the following, we assess the influence of the systems on the time that users
needed to find their target information. Determining the exact times is difficult be-

3Significance is tested with a two-tailed z-test at a significance level of 0.98.

34 Chapter 2: The role of information gain in menu optimization

Method

Measure Baseline Distance-based

No. sessions 8444 8278
No. clicks on DALs 25 220
No. sessions with clicks on DALs 20 115
Average no. clicks per session 21.6 13.9
Click on DAL is last click 25% 33%
Average reading time DALs (seconds) 156.6 24.2
Average reading time non-DALs (seconds) 73.3 37.9

Table 2.8: Comparison of the results of the distance-based and the baseline system. ‘DAL(s)’ is
short for ‘dynamically added links(s)’.

cause we do not know whether users found the information they were searching for.
However, the session statistics give a general impression of the efficiency of the navi-
gation. One indication of efficiency is the number of clicks in the sessions. As visible
in Table 2.8, sessions in which users clicked on a distance-based link consisted on av-
erage of 13.9 clicks. Sessions in which the baseline links were clicked had on average
21.6 clicks. This difference is significant4 and suggests that the distance-based system
is more effective in reducing navigation time.

In various studies the assumption is made that a user stops searching when his
information needs are answered so that the last page of a session is the user’s target
page (e.g. Anderson et al., 2001). If we look at the position in the sessions of the clicks
on added links, we see that 33% of the clicks on distance-based links were the last
clicks of a session. When the clicks on added links would have occurred at random
positions in the sessions, only 16% would have ended a session. This difference is
significant3. The clicks on baseline links were in 25% of the cases the last clicks, which
is not significantly less than the distance-based system, but also not significantly more
than random. These results suggest that both systems often showed links to target
pages and thus helped users to reach their targets faster. However, an alternative
explanation can be that people who had already finished their search decided to take
a look at the recommended links.

Another indication of the users’ interest in the recommended links is the time they
spent reading the pages that they reached through these links. In Table 2.8 we see
that users spent on average 24.2 seconds on a distance-based link and 156.6 seconds
on a baseline link, which is a significant4 difference. This suggests that many of the
distance-based links were not as interesting as they seemed so that users left the pages
early. However, an alternative explanation for the short reading times arises from
the comparison between the sessions of users who clicked distance-based links and
the sessions of users who clicked baseline links. This analysis shows that users who
clicked baseline links spent on average 73.3 seconds on a page that was not reached via
a recommended link. Users who clicked distance-based links spent only 37.9 seconds
on a not recommended page. Thus, users who clicked a distance-based link tended to
read all pages shortly. This suggest that these users were engaged in a more informal

4Significance is tested with a two-tailed t-test at a significance level of 0.98.

2.7. Conclusions and discussion 35

search (browsing), in which pages were scanned quickly to see whether they contained
anything of interest. Nevertheless, even for these users the reading times of the pages
reached via the recommended links are short. Note that these results do not mean
that the two systems are assigned to different user groups as this analysis involves
only sessions of users who actually chose to click a recommended link.

2.6.3 Lessons learned

The SeniorGezond experiment indicates that page set division can help web naviga-
tion in practice. The links that were added by the distance-based system were used
more often than the links that were added by the greedy baseline system. Moreover,
distance-based links were associated with shorter sessions and a higher probability
that a recommended link was the last page of the session. This suggests that after
visiting a distance-based link more users had found what they were looking for and
left the site.

In theory, page set division ensures that the system gains much information about
a user’s target. However, this information is only gained when the user clicks one
of the added links. This appears to be a major drawback of applying these types of
methods in practice. Our experiments show that even though the added links can
make navigation more efficient, not many users are inclined to follow these links.

2.7 Conclusions and discussion

Menu adaptation systems often add links to menus of web sites with the aim to min-
imize the number of clicks that users need to make to find their target information.
However, most of these systems in fact do not directly minimize the number of clicks,
but maximize the probability of showing a link to a target page at each step. In other
words, they follow a greedy strategy.

In this chapter we presented three menu adaptation methods that actively min-
imize the length of the user sessions. At each step these methods divide the set of
pages of a site into parts with more or less equal probability of containing the user’s
target. In this way, they balance the costs of collecting more information about the
user against the expected gain of the extra knowledge. Evaluation with artificial and
experimental data shows that these methods can effectively reduce the users’ numbers
of clicks compared to the greedy strategy.

Moving from clean experimental settings to a real web site revealed an important
drawback of the presented methods. When selecting the links, the page set division
methods do not take the static links of the site into account. As a result, they add links
that are optimal when the added links are the only means of navigation, but subopti-
mal in combination with the site’s static links. We found that when users could choose
to use other navigation means, they did not click the added links very often. Conse-
quently, in most of the navigation steps less information was gained than expected.
This suggests that menu adaptation can be improved by taking the whole link struc-
ture of a site into account. This requires a richer model of user navigation, that tells

36 Chapter 2: The role of information gain in menu optimization

us how users navigate through a link structure and how the addition of certain links
will influence their navigation. This idea will be explored further in the next chapter.

Another issue that is not yet addressed is the optimization of the number of links
that are shown on a page. In this chapter we assumed that a user’s navigation time
was determined only by the number of clicks he had to make. We did not take into
account that it takes time to choose a link from the available links on a page. To
fully optimize navigation time a menu adaptation system should find the right balance
between the number of links that are shown on a page and the number of pages that
the user has to visit before reaching his targets. The models presented in next chapter
will allow us to optimize this trade-off.

Another finding in our experiments was that clicks on links that do not lead to the
users’ targets cause a dramatic increase in navigation time. Moreover, the influence of
these navigation mistakes appeared to be larger than the influence of the type of the
menu adaptation method. This finding supports the conclusion of Miller and Reming-
ton (2004) that finding links for which descriptive anchors can be found is at least as
important as finding an optimal link structure. Improving link anchors is the topic of
Chapter 5.

Chapter 3

Navigation behavior models for link

structure optimization

In Chapter 2 we minimized the number of navigation steps users had to

make to reach their target information. In this chapter we aim to find menu

structures that optimize all aspects of menu efficiency. In the first part of

this chapter we study the factors that are believed to influence efficiency. The

second part covers the optimization process.

This chapter was published in User Modeling and User-Adapted Interac-

tion (Hollink et al., 2007c) and co-authored by M. W. van Someren and B.

J. Wielinga.

3.1 Introduction

Designers of web sites make efforts to construct link structures that enable users to
navigate the site efficiently. Despite these efforts, the initial design of link structures
is often far from optimal because designers do not know the goals and strategies of
future users. In practice, the design of web sites is often based on the structure of
the content or the structure of the organization that owns the site rather than on how
users access the site. Even when a link structure is initially well–adapted to the users,
the contents of the site and the goals and search strategies of the user population are
likely to change over time, resulting in a web site that is less efficient.

There are two approaches to improving the efficiency of links. One approach aims
at improving the visual aspects of the links, such as color and location on the web
pages. In this chapter we address the optimization of the structure of the links, i.e.
which pages are connected. These approaches are complementary as both the design
of the links and the link structure influence the efficiency of the navigation process.

Several authors have proposed methods for (semi-)automatically improving link
structures on the basis of the actual usage of a site. These methods consist of heuristics
to add, remove or re–order links on the basis of the access frequencies of the site’s
pages. For example, Smyth and Cotter (2003) move frequently visited pages closer

38 Chapter 3: Navigation behavior models for link structure optimization

to the home page. Pazzani and Billsus (2002) add links to pages that are similar in
content or usage to the last visited page.

The heuristics behind link optimization methods are designed in advance by the
authors, because online evaluation and optimization of such heuristics is not feasible.
Online optimization requires that a large number of different link structures are incor-
porated in the web site for some time until a sufficient number of users have used the
structure. This would not only take an unacceptable amount of time, but would also
mean that users face a continually changing link structure that is often worse than the
initial structure.

Analysis of the heuristics shows that authors often make assumptions about the
preferences and navigation strategies of users without evaluating whether these as-
sumptions hold. Moreover, the assumptions are often left implicit. As a result, the
assumptions can be inconsistent with characteristics of the user population. This is
a serious problem for link structure optimization as incorrect assumptions about the
users can easily yield suboptimal structures. For example, Wang et al. (2006) implic-
itly make the assumption that users read all links on a page before they open one. This
assumption is used by their link optimization algorithm to evaluate the efficiency of
alternative link structures and thus influences the outcome of the optimization. How-
ever, the authors do not test whether users indeed behave in this way, so that there is
no guarantee that the structure that the algorithms finds is indeed maximally efficient.

In this chapter we take an approach to link structure optimization that is based
on the construction of an explicit navigation behavior model. A navigation behavior
model comprises a set of explicit assumptions about the goals and navigation strate-
gies of users. In addition, it specifies the utility of the navigation process in terms
of the amount of information that is found (effectiveness) or the time needed to find
the information (efficiency). Together the information in a navigation behavior model
suffices to make predictions about the utility of link structures. This approach has the
advantage over heuristic approaches that it makes the assumptions of the link opti-
mization methods explicit. This enables systematic evaluation of these assumptions,
which prevents the use of assumptions that are inconsistent with the user population.

The assumptions of link structure optimization methods are evaluated on usage
data by means of a generic framework that provides a structured view on the naviga-
tion behavior models underlying the methods. To construct the framework, we analyze
the literature on link structure optimization methods and extract the assumptions that
are explicitly or implicitly made by these methods. The framework exposes the sim-
ilarities and differences between the models underlying the methods and reveals the
circumstances under which the assumptions are valid. This study differs from earlier
literature reviews, such as Brusilovsky (1996; 2001), Pierrakos et al. (2003), Raymond
(1986) and Lee and Raymond (1992) in that it does not focus on the optimization
methods themselves, but on the assumptions about users that lie at the basis of the
selected adaptations. Analysis reveals that the various methods make very different
assumptions about the users’ goals and navigation behavior. This finding indicates the
need for a systematic approach to select the optimal model for an optimization task.

We provide a method to systematically test the model features in the framework in
the context of a particular site and its usage data. With this method one can find the

3.2. Navigation behavior models of link structure optimization methods 39

best navigation behavior models for sites with a special type of link structures, namely
hierarchical menus. The method applies the various models from the framework to
the site’s log files and determines how accurately the models can predict the behavior
of the users. The model that matches the log data most closely is used for optimiza-
tion of the menu. This procedure ensures that the assumptions that are used during
optimization are consistent with the actual user population.

The model selection method is applied to the menus and log files of four real web
sites. These experiments demonstrate the working of the method. Moreover, if in the
experiments certain model assumptions appear to be inherently better than others, this
reduces the range of the models that need to be considered when optimizing menus
of new sites.

In the second part of this chapter we present a method to optimize menu struc-
tures on the basis of a navigation behavior model. The method generates candidate
improvements and uses the model to evaluate the utility of the improvements. This
approach is generic in that it can be used with any navigation behavior model. The
workings of the optimization method are evaluated by means of a case study. In this
study we investigate the optimization of real menus and examine the influence of
variations in the selected navigation behavior model.

This chapter is organized as follows. First, in Section 3.2 we analyze existing
methods for link structure optimization. In Section 3.3 we present the framework
to compare the navigation behavior models underlying the methods. In Section 3.4
the model selection method is presented and applied to the log files and menus of
four web sites. Section 3.5 explains how a navigation behavior model can be used to
optimize a hierarchical menu. Section 3.6 contains the case study that demonstrates
the working of the optimization method. The last section contains conclusions and
discusses our results.

3.2 Navigation behavior models of link structure optimization
methods

In recent years many methods have been developed to automatically optimize link
structures. In this section we examine several methods and discuss the assumptions
that are explicitly or implicitly made about navigation strategies and goals of users. In
addition, we look at navigation behavior models that are not part of an optimization
method, but were developed to describe user behavior in link structures. First, in
Section 3.2.1 we give an overview of methods that optimize general link structures.
In Section 3.2.2 we focus on methods that are specifically designed for hierarchical
menus. These sections give an informal description of the assumptions underlying the
methods. In Section 3.3 these assumptions will be formalized in a framework.

3.2.1 Link structure optimization

Navigation behavior models underlying link optimization methods are rarely men-
tioned explicitly. For methods for which no explicit model is provided we infer the

40 Chapter 3: Navigation behavior models for link structure optimization

models as accurate as possible from the optimization process. However, the details of
the underlying models are not always clear. For example, Pazzani and Billsus (2002)
create a recommendation agent that is described as ‘The agent recommends related

documents to visitors [...] these recommendations result in increased information read

at the site.’. The paper describes how the recommendations are generated, but does
not mention explicitly how the recommendations are expected to change navigation
or how this influences the site’s utility. Nevertheless, some assumptions can be derived
from their approach, such as that, according to the authors, utility corresponds to the
amount of information that is found.

Recommender systems such as Pazzani and Billsus (2002), Mobasher et al. (2002)
and Lin et al. (2002) improve the efficiency of sites by (dynamically) adding links
to pages that are with high probability of interest to the user. A variety of tech-
niques is used to predict the users’ interests, including clustering of sessions and pages
(Mobasher et al., 2002), association rules (Lin et al., 2002) and the computation of
page co-occurrences in user sessions (Pazzani and Billsus, 2002). Offline experiments
show that the extra links can function as shortcuts that reduce the number of navi-
gation steps that the user needs to make to reach his target information (Mobasher
et al., 2002; Lin et al., 2002). Moreover, Pazzani and Billsus (2002) show in online
experiments that the links can draw the user’s attention to interesting information he
(or she) would have missed otherwise. The authors do not describe exactly how the
recommendations influence the navigation behavior of the users. For instance, they do
not model how users choose between recommended links and existing links or when
users stop searching.

The PageGather system (Perkowitz and Etzioni, 2000) automatically creates index
pages that contain links to pages that are often visited in the same sessions. Like rec-
ommendations, the links on the index pages are shortcuts that allow users to reach
their target pages faster. PageGather uses the same (incomplete) model as recom-
mender systems to predict the effects of the indexes on the utility of the site.

Anderson et al. (2001) created the MinPath algorithm to recommend shortcut links
to users of mobile devices. Four techniques were compared to predict the pages that
users are likely to visit. Among these techniques, mixtures of Markov models proved
most successful. The model underlying the MinPath algorithm is simple. According to
this model, a user is always looking for exactly one page and this page is the last page
of his session. From the log files one can infer the path that the user followed to this
page when he navigated in the original structure. The model assumes that the user
will follow almost the same path when shortcuts are added. The only difference is
that he will use the shortcuts where possible to reach his target page faster. The more
navigation steps can be eliminated, the larger the utility. This model gives an exact
description of the users’ behavior, but it is only suitable for optimization methods that
add links. When links are removed from the original structure, the model gives no
predictions. Moreover, the authors do not verify to what extent the predicted behavior
matches actual user behavior.

Result set clustering is a common method to assist users in finding relevant links
among a set of links that are retrieved by a search engine (e.g. Hearst and Pedersen,
1996; Zamir and Etzioni, 1999; Zeng et al., 2004). After a search engine has retrieved

3.2. Navigation behavior models of link structure optimization methods 41

a set of links that match a user’s query, documents with similar contents are placed
under a common header. Users are supposed to read the links top down and open all
clusters that contain interesting links. The utility of the clustering is computed from
the number of links that are read and the number of clusters that are opened. Several
authors report that result set clustering reduces the time users need to find relevant
information (e.g. Zamir and Etzioni, 1999), but they do not evaluate whether these
reductions are consistent with the predicted utility gain.

Fu et al. (2002) use handmade rules to automatically reorganize web sites. They
assume that the main link structure of the site forms a hierarchy with the homepage as
root. In addition, there can be cross-links that connect pages from different branches,
but these are not affected by the algorithm. The rules move frequently visited pages to
higher positions in the hierarchy, so that fewer steps are needed to reach these pages
from the homepage. In some cases pages without content are deleted or two pages
are merged into one. The authors do not make explicit which assumptions about the
users’ strategies are made in the evaluation of the adaptations.

Wang et al. (2006) also present a method to optimize web sites with hierarchical
main structures. In contrast to Fu et al. (2002), they leave the hierarchical structure
intact and change the additional links. The algorithm is aimed at web stores. In this
context, the goal is not only to help users reach their targets efficiently, but also to
maximize profit. Wang et al. combine these goals in an explicitly defined objective
function that is minimized during the optimization. The objective function provides a
formula for utility, but it does not make clear how the authors expect users to navi-
gate in the adapted structures. Furthermore, the authors do not validate whether the
objective function can indeed accurately predict efficiency and profit.

The Web Montage system (Anderson and Horvitz, 2002) automatically composes
personalized pages that appear as start pages in web browsers. The montages contain
links to pages that the user has visited in contexts similar to the current situation.
Unlike the previously described methods, Web Montage collects links from multiple
sites. To decide which links are included in the montages, it uses a model similar to
the MinPath model (Anderson et al., 2001). This model maximizes the probability that
the user follows the links, the number of clicks that are eliminated by following the
links and the user’s interest in the pages that are linked to. Like the MinPath model,
this model is restricted to predicting which links are eliminated from original sessions.

Pierrakos et al. (2004; 2005) use probabilistic latent semantic analysis to divide a
user population in communities with similar interests and select parts of a web direc-
tory that are interesting for the communities. The resulting community web directories

are smaller than the original hierarchy, so that navigation time is saved. However,
eliminating pages from the hierarchy also means that some of the users’ target pages
are no longer available. Two metrics are used to measure the sizes of these effects.
The first is called ClickPath:

Cl ickPath� ḑ

j�1

b j (3.1)

Here d is the depth of the target in the hierarchy and b j is hierarchy’s branching factor
at depth j. This measure presupposes a model in which each user is looking for a single

42 Chapter 3: Navigation behavior models for link structure optimization

target and users browse top down to their target nodes considering all alternatives on
the way. The second evaluation measure is coverage, which measures how many of
the users’ targets are included in the hierarchies. Both models are described in detail,
but again no studies are provided to compare the models’ predictions to actual user
behavior. Furthermore, it is not clear which of the two models is more important or
how they can be combined.

A model that does make an explicit trade-off between the number of target pages
that are found and the time that the users spend navigating is the information for-
aging model (Pirolli and Fu, 2003). This model is not developed as an element of
an optimization method, but aims to understand and predict web navigation. It as-
sumes that users estimate the information scent of the available links, the amount of
interesting information that can be found by following the links. When no link with
sufficient information scent can be found, the search is terminated. The user believes
that the small probability of finding more interesting information does not justify the
extra navigation time. The information foraging model does not predict the effects of
link structures on efficiency and effectiveness of the navigation.

3.2.2 Menu optimization

Hierarchical menus are link structures that consist of hierarchies of categories with
the content pages located at the leaf nodes. To reach their target information users
navigate top-down through the hierarchy by selecting categories. In this chapter we
consider hierarchies with a purely navigational function. These hierarchies do not
provide information, but only serve to navigate to the content pages on the terminal
nodes. In the following the term ‘menu’ will refer to a hierarchical menu structure.
Categories and leaf nodes within a menu are called ‘menu items’ or ‘hierarchy nodes’.

The effects of the structure of a menu on navigation time and user satisfaction has
been studies since the 1980’s. At first this research concerned menus for selecting com-
mands in offline applications. Later the attention shifted to web menus. A main focus
of this research was the trade-off between the depth of a hierarchy and its breadth
(the number of subitems under each item). User studies were performed to measure
the navigation time and satisfaction of users browsing in menus with various depths
and breadths. Participants performed search assignments with the various menus and
completed a questionnaire afterwards. Most authors found that information could be
located faster in broader and shallower menus than in deeper and narrower menus
and that the broader and shallower menus were also preferred by the participants
(Miller, 1981; Snowberry et al., 1983; Kiger, 1984; Wallace et al., 1987; Jacko and
Salvendy, 1996; Larson and Czerwinski, 1998; Zaphiris, 2000).

Few studies addressed hierarchies with varying breadths. Norman and Chin (1988)
and Zaphiris (2000) found that menus with larger breadths at deeper layers were more
efficient than menus that became narrower towards the end. In addition, in the study
of Norman and Chin menus with the largest breadth in the top layer and the terminal
layer proved more efficient than menus with the largest breadth in the middle layers.
Bernard (2002) found no significant differences between these types of structures.

The research described above resulted in guidelines for using menu structures with

3.2. Navigation behavior models of link structure optimization methods 43

large breadths and menus with larger breadths at certain layers. These guidelines are
based on extensive experimental work and are very useful when designing a menu.
However, they do not provide a quantitative model that can predict the utility of menu
structures. The models that they provide are incomplete in the sense that they cannot
compare all pairs of menu structures. For example, the guidelines do not suffice to
choose between two menus with both different depth/breadth trade-offs and different
shapes.

Several authors have proposed quantitative navigation behavior models to predict
the behavior of users in hierarchical menus. Some models are incorporated in meth-
ods to find optimal menus. One of the first menu optimization methods was developed
by Witten et al. (1984), who optimized the hierarchical index of a digital phone book
using the access frequencies of the phone numbers. They used the entropy of the dis-
tribution of the access probabilities to create menu items that minimized the expected
number of clicks needed to reach the phone numbers. A limited navigation behavior
model was used that assumes that all menu items have an equal and non-adaptable
number of subitems. No user studies were performed to evaluate the benefits of their
approach for real users.

Lee and MacGregor (1985) explicitly sought to quantify the relationship between
menu structure and navigation time. They assumed that users always searched for
only one page and that all pages had equal probability of being sought. Later, Lan-
dauer and Nachbar (1985) extended their model to menus where links on pages were
ordered alphabetically. Paap and Roske-Hofstrand (1986) added the possibility that
links were categorized. The models of Lee and MacGregor and Paap and Roske-
Hofstrand were not evaluated on real data. Landauer and Nachbar compared the
outcomes of their model to data collected in a user experiment and found that the
model predicted the data reasonably well. However, the experiment was somewhat
artificial in that users were not able to follow incorrect paths.

Fisher et al. (1990) improved the Lee and McGregor model by adding frequency-
based page probabilities. Moreover, they invented an algorithm to optimize menus
on the basis of their improved model. The algorithm generates a number of possi-
ble menus by removing intermediate nodes from a manually created base hierarchy.
The model is applied to the possible menus and the menu with the smallest expected
navigation time is selected. A limitation of this algorithm is that it can only find struc-
tures that can be formed by removing intermediate nodes from the original hierarchy.
Moreover, they do not evaluate the benefits of their approach in practice.

Bernard (2002) presented another model for predicting navigation time: the Hy-
pertext Accessibility Index (HHAI). Similar to the Lee and McGregor model, the HHAI

measure predicts the expected navigation time solely on the basis of the menu struc-
ture.

The MESA model (Miller and Remington, 2004) is to our knowledge the only quan-
titative model that links the probability of making navigation mistakes to the quality of
the items’ labels. The connection between label quality and mistake probability seems
natural, but the practical applicability of the model is limited as quality assessments
need to be provided for all labels by experts.

The ClickSmart system (Smyth and Cotter, 2003) adapts WAP menus (menus that

44 Chapter 3: Navigation behavior models for link structure optimization

allow access to web pages on mobile devices) to the behavior of individual users.
Menu items that a user chooses frequently are promoted to a higher position in the
user’s personal hierarchy. To circumvent the problem of creating labels for new menu
items, the optimization algorithm can only make hierarchies flatter and not deeper. An
experiment with real users showed that the ClickSmart system can reduce navigation
time with almost 50%. The prediction model that is used is called the click-distance.
This model is in fact an instantiation of the model introduced by Fisher et al. (1990).

In Hollink et al. (2005b) we presented a system that adapts web menus to indi-
vidual users. We used a model that was similar to Fisher’s model but, unlike Fisher’s
model, our model assumes that users sometimes make navigation mistakes. The ap-
plicability of the algorithm is restricted to situations in which the pages are labeled
with keywords that can function as labels for menu items.

Allan et al. (2003) provide three models to assess the quality of document hier-
archies created through hierarchical clustering: the minimal travel cost, the expected
travel cost and the expected accumulated travel cost. The models are not designed
for predicting navigation time in web menus, but, as they predict the amount of time
that users spend locating documents in a hierarchy, they can be used for this purpose
without modification.

In summary, the review presented in this section shows that methods for link struc-
ture optimization vary substantially in their assumptions about the preferences and
behavior of the users. In many cases it is not clear why certain assumptions are made
and for which users they hold. In the next section we will develop a framework that
allows a more detailed comparison of the methods and their assumptions. In Sec-
tion 3.4 this framework will be used to select the optimal model for a site and a user
population.

3.3 A framework for navigation behavior models

To determine which adaptations lead to the largest utility, link structure optimization
methods need to know the relation between properties of the link structure and the
utility of the navigation. This information is provided by a navigation behavior model.
It describes how the group of users that we are interested in reacts on the possible
variations of a link structure. It predicts how the users will navigate in the various
structures and how this will influence the utility of the navigation. Effectively, a navi-
gation behavior model is a function with a navigation structure as input and a measure
of utility as output.

In general it is not possible to predict exactly how users will behave under certain
circumstances, but navigation behavior models can give an approximation of their
behavior. The more the predicted behavior resembles the true behavior of the users,
the better the model. Naturally, the most accurate model is different for different
applications. It depends, for example, on the experience of the users that are modeled
and the device that is used for navigation. Indeed, if we look at the various link
optimization methods, we find large differences between their navigation behavior
models.

3.3. A framework for navigation behavior models 45

Figure 3.1: Causal dependencies between the link structure of a site, the users’ navigation strat-
egy, the users’ targets, and the utility of the link structure.

In this section we provide a framework with which we can systematically compare
navigation behavior models. The framework exposes the differences and similarities
between the various models. Moreover, it forms the basis of a method for selecting the
best model for a site, which will be presented in the next section. The framework is
based on a detailed analysis of the models underlying the link optimization methods
that are described in Section 3.2. In this analysis we identified the elements of the
models that are relevant for the prediction of the utility of the link structures. We
determined which of these elements are shared by all models and for which elements
the models make different choices. In addition, we studied the motivations for the
various assumptions given in literature.

In the following the framework is explained and the models of the link optimiza-
tion methods introduced in the previous section are positioned in the framework. In
addition, we discuss the circumstances under which the assumptions of the models are
justified. This analysis does not include the research on the depth/breadth trade-off
in hierarchical menus as the guidelines resulting from these studies cannot be seen as
a complete navigation behavior model, as explained in Section 3.2.2.

The framework consists of a number of features that correspond to assumptions
about the users. An example of a feature is the users’ strategy for selecting links. The
possible values of this feature are the various strategies that are assumed in the links
optimization methods. A specific combination of feature values forms a navigation
behavior model. Some of the features have parameters that need to be determined for
each site. For example, a feature is the fact that a model uses access frequencies to
determine the probabilities that pages are targets. The parameters of this feature are
the relative frequencies of the pages of a particular site. Thus, one model can have
different parameter settings for different sites, but always has the same features.

The top level of the framework is formed by the schema in Figure 3.1. The schema
applies to all models of link structure optimization methods, both for generic link
structures and menus. According to this schema, a user accesses a site to fulfill certain

46 Chapter 3: Navigation behavior models for link structure optimization

information needs. We will call the pages that together fulfill these needs the user’s
target pages or his target set. The utility of the navigation process is determined by the
time the user spends navigating (efficiency) and the number of targets that are found
(effectiveness). The number of targets that are found depends on the path the user
follows through the site(s). The efficiency depends both on his path and the strategy
used to follow this path. The path in turn is a consequence of the user’s targets, his
navigation strategy and the link structure.

The framework is used to classify the various methods from literature that are dis-
cussed in the previous section. Tables 3.1, 3.2 and 3.3 show the complete navigation
behavior model framework and the features of the methods. In these tables each col-
umn represents a feature from the framework. The differences between the models
lie in the assumptions they make about the goals and strategies of the users. For these
factors Tables 3.2 and 3.3 show the relevant model features and the choices that are
made in the various models. In addition, Table 3.1 shows in which domains the mod-
els are applicable. In all tables question marks indicate that the descriptions of the
methods given in the papers did not suffice to infer the particular model features. The
application domains are discussed in Section 3.3.1. Sections 3.3.2 and 3.3.3 describe
the model features and discuss the circumstances under which they are appropriate.

3.3.1 Application domain

The optimization methods place various restrictions on the domain to which they can
be applied. The framework distinguishes five domain features that determine the mod-
els’ applicability. These features are shown in Table 3.1. The first feature is the group
of users whose behavior is described by the model. Models developed for personal-
ization describe single users. Link optimization on the basis of such a model results
in a structure that is tailored towards the specific needs of this single user. In con-
trast, models that are used for transformation predict the average behavior of a group
of users (Perkowitz and Etzioni, 2000). We distinguish two kinds of transformation
models: models that concern the whole user population of a site and models that con-
cern a subset of this population. In the latter case, the sites’ users are first clustered
into a number of user clusters that share certain characteristics. For each cluster a
separate navigation behavior model is created. The table shows the user groups for
which the authors have created models. However, many of the methods can easily be
applied to smaller or larger groups. For example, the transformation model created
by Fisher et al. (1990) uses the average access frequencies of the pages. If the aver-
age frequencies are replaced by the frequencies of a single user, the model becomes
suitable for personalization.

The group of users that is modeled determines how often the model needs to be
updated. Navigation behavior models for individual users are often refined during the
user session. Information about the user’s goals is inferred from the selected pages and
immediately incorporated in the model. A popular strategy is to start with a model
that describes the average behavior of the sites’ users and to personalize the model
when more information becomes available (e.g. Hollink et al., 2005b; Pazzani and
Billsus, 2002). Models that describe user populations are not supposed to change on

3.3. A framework for navigation behavior models 47

Model User
Group

Page
domain

Structure
type

Link
ordering

Fixed
breadth

Recommenders user closed any any no
PageGather (Perkowitz and Etzioni,
2000)

popu-
lation

closed any any no

MinPath (Anderson et al., 2001) user closed any any no
Result set clustering user open hierarchy any no
Fu et al. (2002) popu-

lation
closed hierarchy-

based
any no

Wang et al. (2006) popu-
lation

closed hierarchy-
based

any no

Web Montage (Anderson and
Horvitz, 2002)

user open any catego-
rized

no

ClickPath (Pierrakos and Paliouras,
2005)

cluster semi-
open

hierarchy any no

Coverage (Pierrakos and Paliouras,
2005)

cluster semi-
open

hierarchy any no

Information foraging (Pirolli and
Fu, 2003)

popu-
lation

open any any no

Click-distance (Smyth and Cotter,
2003)

user closed menu frequen-
cy

no

Hollink et al. (2005b) user closed menu any yes
Witten et al. (1984) user closed menu alpha-

betic
yes

Lee and MacGregor (1985) popu-
lation

closed menu any no

Landauer and Nachbar (1985) popu-
lation

closed menu alpha-
betic

no

Paap and Roske-Hofstrand (1986) popu-
lation

closed menu catego-
rized

no

Fisher et al. (1990) popu-
lation

closed menu any no

HHAI (Bernard, 2002) popu-
lation

closed menu not de-
fined

no

MESA model (Miller and Reming-
ton, 2004)

popu-
lation

closed menu any no

Minimal travel cost (Allan et al.,
2003)

popu-
lation

closed menu any no

Expected travel cost (Allan et al.,
2003)

popu-
lation

closed menu any no

Expected accumulated travel cost
(Allan et al., 2003)

popu-
lation

closed menu any no

Table 3.1: Properties of the application domain of navigation behavior models of methods for
link structure optimization.

48 Chapter 3: Navigation behavior models for link structure optimization

a daily basis and are mainly used for offline optimization (e.g. Fu et al., 2002; Wang
et al., 2006; Fisher et al., 1990).

The second domain feature is the set of content pages for which a link structure is
created. Most models are designed to make predictions about link structures of closed
domains, usually single sites. In these cases, we know beforehand which pages will
be part of the structure. The optimization methods change the links between pages,
but do not add or remove the pages themselves. Web Montage, result set clustering
and the information foraging models are made for open domains. These models not
only describe how users navigate when the links are changed, but also when content
is added or removed. In between are the models presented in Pierrakos and Paliouras
(2005): the set of pages is known beforehand, but pages can be removed from this set
during optimization.

The third feature is the type of structures for which the models can make predic-
tions. As we explained before, many models are only applicable to hierarchical menus
or other hierarchical link structures. The models presented by Fu et al. (2002) and
Wang et al. (2006) do not require a strict hierarchy, but assume that the links can be
divided in main links and additional links and that the main links form a hierarchy.

The fourth feature involves the ordering of the links on the pages. Optimization
methods may require that the links on the pages are ordered by some criterion or
allow them to be ordered haphazardly.

The last feature is the number of links on each page, the breadth of the link struc-
ture. Most models allow the breadth to vary between pages, but some methods explic-
itly require that the number of links is fixed in advance and equal for all pages.

3.3.2 Goals

The second set of features is shown in Tables 3.2 and 3.3 and involves assumptions
about the goals of the users. The first feature of the users’ goals are the elements that
determine utility. The most common elements are the time the users spend navigating
and the number of target pages they eventually find. Navigation menus usually con-
tain links to all pages of the site, so that in theory users can reach all target pages. The
models that operate in this context assume that users keep searching until all targets
are found. Utility is expressed as the time that they need to reach the target pages. An
exception to this is the minimal travel cost model, which assumes that users stop nav-
igating once they have reached the hierarchy node under which most target pages are
located. In this model the utility score of a hierarchical structure is a combination of
the navigation time to this node and a measure of how well the set of pages under the
node resembles the user’s target set. Optimization methods for open domains decide
which pages are included in the structure. They assume the users search the whole
structure (up to a certain depth) and measure the number of target pages that are
found. The only model that explicitly deals with the trade-off between effectiveness
and efficiency is the information foraging theory (Pirolli and Fu, 2003). This mod-
els states that users stop navigating when they feel the additional targets that can be
found by further search are not worth the extra navigation time. Two studies focus
on the perspective of the site owners rather than the site users. Instead of saying that

3
.3

.
A

fra
m

ew
o
rk

fo
r

n
a
vig

a
tio

n
b
eh

a
vio

r
m

o
d
els

4
9

Model Goals of users Features of users’ strategies

Utility Which
target
sets

Target
set size

Target
set prob-
abilities

Search
strategy

Multiple
target
search

Mistake
proba-
bility

Choice
strategy

Node
choice
function

Node
opening
function

Recommenders time/many
targets

all multiple frequency focused previous
target

? ? 0 linear

PageGather (Perkowitz
and Etzioni, 2000)

time all multiple frequency focused previous
target

? ? 0 linear

MinPath (Anderson
et al., 2001)

time all single frequency original n/a 0 read all 0 linear

Result set clustering time ? multiple ? focused previous
target

0 read until linear linear/ 0

Fu et al. (2002) time all ? frequency ? ? ? ? 0 linear
Wang et al. (2006) time and

profit
all multiple frequency focused previous

target
0 read all linear linear

Web Montage (Ander-
son and Horvitz, 2002)

time all single frequency original n/a 0 original 0 linear

ClickPath (Pierrakos
and Paliouras, 2005)

time all single frequency focused n/a 0 read all linear linear

Coverage (Pierrakos
and Paliouras, 2005)

many
targets

all multiple frequency n/a n/a n/a n/a n/a n/a

Information foraging
(Pirolli and Fu, 2003)

time and
many
targets

all multiple not
defined

focused previous
target

0 read all 0 linear

Table 3.2: Properties of navigation behavior models of methods for general link structure optimization.

5
0

C
h

a
p
te

r
3

:
N

a
vi

g
a
ti

o
n

b
eh

a
vi

o
r

m
o
d
el

s
fo

r
li

n
k

st
ru

ct
u

re
o
p
ti

m
iz

a
ti

o
n

Model Goals of users Features of users’ strategies

Utility Which
target
sets

Target
set size

Target
set prob-
abilities

Search
strategy

Multiple
target
search

Mistake
proba-
bility

Choice
strategy

Node
choice
function

Node
opening
function

Click-distance (Smyth
and Cotter, 2003)

time all single frequency focused n/a 0 read until linear linear

Hollink et al. (2005b) time all multiple frequency focused root fixed read until 0 linear
Witten et al. (1984) time all single frequency focused n/a 0 n/a 0 linear
Lee and MacGregor
(1985)

time all single uniform focused n/a 0 read all/
read until

linear linear

Landauer and Nachbar
(1985)

time all single uniform focused n/a 0 read all logarithm linear

Paap and Roske-
Hofstrand (1986)

time all single uniform focused n/a 0 read until logarithm linear

Fisher et al. (1990) time all single frequency focused n/a 0 read until linear linear
HHAI (Bernard, 2002) time all single uniform focused n/a 0 read all logarithm logarithm
MESA model (Miller
and Remington, 2004)

time all single uniform focused n/a label
quality

read until linear linear

Minimal travel cost (Al-
lan et al., 2003)

time and
many
targets

prede-
fined

multiple uniform focused previous
target

0 read all linear linear

Exp. travel cost (Allan
et al., 2003)

time prede-
fined

multiple uniform exhaus-
tive

previous
target

0 n/a 0 linear

Exp. accumulated
travel cost (Allan et al.,
2003)

time prede-
fined

multiple uniform focused previous
target

0 read until 0 linear

Table 3.3: Properties of navigation behavior models of methods for menu optimization.

3.3. A framework for navigation behavior models 51

users want to find many targets, Pazzani and Billsus (2002) state that the site owner
wants to communicate as much information as possible. Wang et al. (2006) formulate
the optimization goal as a combination of minimizing navigation time and maximizing
the profit made on the visited product pages.

The second feature concerns the sets of pages that qualify as potential target sets.
Most models do not include a priori knowledge about the users’ targets and assume
that in principle any set of pages can be a user’s target set. Only the travel cost models
make use of predefined topics that form the possible target sets. According to these
models a user is interested in exactly one topic and searches for all pages on this
topic. The travel cost models are developed for assessing document hierarchies. In
this setting the topics form the gold standard for the clusters at the lowest level of the
hierarchy.

The third feature is the size of the target sets. Some models act as if each user
searches for exactly one target. They model the search for each target separately. That
is, no distinction is made between two sessions in which one target is sought and one
session in which two targets are sought. In these models the goal is always to minimize
the average time needed to reach the target. Other models allow for the possibility
that users have multiple targets. The goal can be both to maximize the number of
targets that are found and to minimize navigation time.

The fourth feature is the probability distribution over the target sets. The models
that are explicitly developed to predict average navigation time all assume that the
target sets have equal probability of being sought (uniform). They compute average
navigation time as the unweighted average of the times to each of the targets. All
models used in optimization algorithms assume that the probabilities are proportional
to the frequency of the sets in the log files. This extension has a clear value for link
structure optimization, as it causes algorithms to place more frequently accessed pages
at more prominent positions in the link structures.

3.3.3 Navigation strategies

Tables 3.2 and 3.3 contain six features that concern the users’ navigation strategies,
four of which influence the prediction of the users’ navigation paths. The first feature,
the users’ search strategy, involves the order in which users open hierarchy nodes.
Most models assume that users use a focused strategy: users focus their attention
entirely at getting to their target pages. They base their choices on the link labels and
only open links that (directly or indirectly) lead to targets. For users with a single
target page this means that they take the shortest paths to their targets. The expected
travel cost model assumes a different strategy. According to this model users perform
an exhaustive depth-first search visiting all nodes until they happen to hit their targets.
This means that in the worst case a user traverses the whole tree before he reaches
his target. Most likely, the truth lies in the middle: the link labels are sometimes not
informative enough to determine with certainty whether the links lead to targets, so
that the users have to perform some search. On the other hand, it is unlikely that
users always search systematically ignoring the link labels entirely. Anderson et al.
(2001; 2002) do not provide a complete model that can predict how users navigate

52 Chapter 3: Navigation behavior models for link structure optimization

in any link structure. It only predicts how the adaptations to the structure change
the paths that the users followed in the original structure. In particular, it predicts
which navigation steps that were followed in the original structure will be eliminated
when an adaptation is made. As a result, the applicability of this model is limited
to structures that are highly similar to the original structure (see Section 3.2.1). In
Table 3.2 no search strategy is provided for the coverage model. This model assumes
that the user searches the whole navigation structure, but makes no assumptions about
the way in which the structure is searched.

The second feature concerns the behavior of users with more than one target. The
simpler models assume that these users search for each target separately. When a
target is found the users go back to the starting point (often the hierarchy’s root)
and continue their search from there. More complex models assume that the search
for another target starts at the previous target. In other words, users surf from the
starting point to the first target and from this target to the second target, etc.

The third navigation strategy feature is the probability that users make navigation
mistakes, i.e. make selections that do not match their search strategy. For the fo-
cused strategy, making a mistake means selecting a link that does not lead to a target
page. Most models assume users never make mistakes or make random selections
with a small but fixed probability. The MESA model uses the quality of the link labels
to determine the probability of a user selecting a link erroneously. As stated in Sec-
tion 3.2.2, this limits the applicability of the MESA model to link structures for which
experts have provided quality assessments.

The fourth strategy feature, the users’ choice strategy, concerns the way users with
a focused strategy choose between the links that are available on a page. A user can
read all link labels and then select the best link or start reading at the top of the page
and open a link as soon as an acceptable link is encountered.

The final two strategy features are the function types of the node opening function
and the node choice function. These functions specify the relationship between nav-
igation time and the path followed through the site. Navigation time is determined
by two properties of the path: the number of links a user has opened (|Path|) and for
each navigation step n the number of link labels that the user has read (#choicespnq):

T ime � β . f p|Path|q�ΣtnPPathuα.gp#choicespnqq (3.2)

Here f is the node openings function and g is the node choice function. α and β
are parameters that represent respectively the time users need to read a link label
and the time users need to open a link. The value of #choicespnq depends on the
choice strategy of the users. As mentioned before, one can assume that users read all
available links or that they stop reading when an acceptable link is found. For both
functions f and g three variants appear in literature: a linear function, a logarithmic
function and a null function, meaning that the factor has no influence. For example,
the following time function is used in a model with a linear node opening function
and a logarithmic node choice function, where users need 1.3 seconds to open a link
and 0.25 seconds to read a link label:

T ime � 1.3.p|Path|q�ΣtnPPathu0.25.log2p#choicespnqq

3.4. Selecting navigation behavior models for hierarchical menus 53

A linear relation between navigation time and the number of link openings means
that opening a link takes equal time at each page of the site. A linear choice function
implies that users go top-down through the links on a page and need equal time to
read each link. A logarithmic choice function is justified when the links on the pages
are ordered and people do not need to read every link to find the one they need. If the
links are ordered alphabetically users can find their item by making a series of binary
splits. They start reading an item halfway down the list of links and decide whether
their target is higher or lower on the list. Then, they read an item halfway down the
upper or lower half of the list, etc. In this way a known item can be found in a list of n

items by reading at most log2pnq items. A logarithmic choice function can also be the
result of training: when a user has seen an item in a list before and remembers where
about the item is located, he can find the item without reading all items in the list. A
logarithmic opening function, which is used in the HHAI model, cannot be justified in
this way, as one always has to open all links on the path.

3.4 Selecting navigation behavior models for hierarchical menus

The many differences between the navigation behavior models make clear that choos-
ing a model for a link structure optimization task is a non-trivial task. Tables 3.1, 3.2
and 3.3 already contain 22 models and many more models can be formed by making
new combinations of model features. Some of the feature values in the tables are truly
competing variants, such as logarithmic and linear choice functions. Others are merely
extensions of each other. For instance, a model with uniform target probabilities is in
fact a simplified version of a model with frequency-based probabilities. To find the
best model for a site one needs to determine which of the variants model the situation
best and whether the extensions lead to significant improvements.

In this section we present a method to select the optimal navigation behavior
model for a particular web site and user population. The top level of the method
is given in Figure 3.2. First, the set of possible models is determined on the basis of
literature. Then, for all models the optimal parameter settings are determined. Finally,
the predictions of the models about the users’ behavior and the structure’s utility are
compared to the actual behavior and utility observed in the log files. The model with
the most accurate predictions is selected.

The previous section discussed the collection of possible models. The selection
procedure is described in detail below. For each feature we describe how the various
values can be implemented in a navigation behavior model and how the models are
tested on the log data. In this discussion we restrict ourselves to features that are
relevant for hierarchical menus. Subsequently, we apply the method to the log files
and menus of web sites from various domains demonstrating the working of the model
selection method. Moreover, if in these experiments certain features appear to be
inherently better than others, these results can be applied directly in new domains.
When determiming the optimal model for a new site, the inferior models do not need
to be considered.

54 Chapter 3: Navigation behavior models for link structure optimization

Algorithm 3.1: Find_best_model(cur rent_st ructure, log_f i l es)

Collect possible modelsM
for each µ PM

do

$''&''%Fit parameters of µ on log_ f i l es and cur rent_st ructure

With µ predict user behavior and utility
Compute similarity score of the predictions of µ and the

actual behavior and utility as measured in log_ f i l es

return pModel with highest similarity scoreq
Figure 3.2: Top level of the navigation behavior model selection method.

3.4.1 Model selection method

In this section we present a procedure to evaluate all valid combinations of menu fea-
tures (including combinations that do not appear in the models in Tables 3.2 and 3.3).
First, in Section 3.4.1 the log data that is collected by a server is preprocessed. This
results in data to which the predictions of the models are compared (see Figure 3.2).
In Sections 3.4.1 to 3.4.1 the parameters of the models are fit and the predictions of
the models are compared to the actual user behavior.

The models are not evaluated as a whole, but split into three parts that are eval-
uated separately. Splitting the models greatly reduces the number of combinations
of features that needs to be tested, which has a positive effect on the computational
complexity of the evaluation procedure. Moreover, the smaller size of the partial mod-
els makes it easier to distinguish the effects of individual features. In the first part of
the evaluation, we select the optimal choices for the assumptions about the relation
between the users’ navigation strategies and the paths they follow through the menu.
In the second part, we examine assumptions that concern the relation between the
users’ strategies to follow the paths and their navigation times. Finally, in the third
part we evaluate the assumptions about the goals of the users. No selection procedure
is provided for the restrictions on the application domains, as one can verify directly
whether a domain satisfies a restriction.

Data preprocessing

Preprocessing of the log data consists of two steps. We restore the sessions of individ-
ual users and then determine for each session the most likely target pages.

The sessions of individual users are restored with the method described in Cooley
et al. (1999). All requests coming from the same IP address and the same browser
are attributed to one user. When a user is inactive for more than 30 minutes, a new
session is started. A timeout of 30 minutes is used in many commercial and scientific

3.4. Selecting navigation behavior models for hierarchical menus 55

systems (Cooley et al., 1999), including Fu et al. (2002) and Hay et al. (2004). All
requests for other pages than HTML pages are removed.

We remove sessions that are with high probability created by bots. These include
sessions in which the bots have identified themselves in the agent field and sessions
with extreme statistics. Sessions with more than 100 requests or an average time
between two requests of less than 1 second or more than 6 minutes are called extreme.

As a result of browser caching some pageviews are not visible in the log files. Sev-
eral methods have been developed to estimate which pages are missing and to com-
plete the paths in the restored sessions (e.g. Cooley et al., 1999). In our work path
completion is kept to a minimum. We check for each request in the sessions whether
the referer page is equal to the previously requested page. If they are not equal, we
know that the user has made navigation steps that are not logged. In this case we
include the referer page in the session. Although more pageviews may be missing,
no further path completion is performed because the referer page is the only page of
which we have certainty that it was visited. More elaborate path completion methods
(e.g. Cooley et al., 1999) are based on assumptions about the users’ navigation. These
assumptions are of the same type as the assumptions of the navigation behavior mod-
els and therefore can influence the performance of the models in the model selection
process.

We compute the time spent on a page from the time difference between two con-
secutive requests. No reading time is associated with the added referers and the last
pages of the sessions. In experiments in which reading time is used, these page ac-
cesses are ignored. The missing reading times can be estimated (Cooley et al., 1999),
but these estimates would again be based on assumptions about the users’ navigation.

After the sessions are restored, the pages in the sessions are classified into aux-
iliary1 and target2 pages. A page is a target page for a user if it provides a (partial)
answer to his information needs. Auxiliary pages do not contain information that is in-
teresting for the user, but only facilitate browsing. Several methods exist to determine
whether a page is a target for a user, but most of the methods rely on domain-specific
characteristics of the pages or on manually created page categories. For instance, in
the WUM method (Spiliopoulou and Pohle, 2001) the pages are manually split into
pages that contain the content that the site wants to offer and auxiliary pages that fa-
cilitate browsing. Only pages of the first category qualify as potential targets. When no
domain knowledge is available, the only available information about a user’s interest
in a page is the time the user spent reading the page.

We use the time-based classification method described in Cooley et al. (1999).
All pages with a reading time longer than or equal to a reference length are marked
as targets. The other pages form the paths to the targets. As reference length we
use the median reading time of the hierarchy’s end pages. This means that we make
the assumption that 50% of the times that a user views an end page, this page is
a target page. The rationale behind this percentage is that target pages are content
pages to which a user pays more than usual attention. A different reference length

1The term ‘auxiliary page’ is introduced in Cooley et al. (1999). In other research these pages are sometimes
referred to as ‘index pages’ (e.g. Fu et al., 2002).

2In Cooley et al. (1999) target pages are called ‘content pages’.

56 Chapter 3: Navigation behavior models for link structure optimization

could have been used, but in our experiments we found that this changed the absolute
scores of the various models, but not their relative performance. Moreover, the chosen
percentage falls in the range of optimal reference times (40-70%) that is found in the
experiments of Fu et al. (2002).

Predicting paths

This section describes the procedure for finding the best assumptions about the in-
fluence of the users’ navigation strategies on the paths they follow through the site.
Tables 3.2 and 3.3 contain four features that influence the paths that users with a
given target set follow through a menu: the users’ search strategy, the users’ choice
strategy, the search for multiple targets and the users’ mistake probability. We system-
atically test the influence of each of these features. For the mistake probability, the
tests include only no mistakes and fixed mistake probabilities, because label quality
assessments are generally not available. The features and values that are tested are
summarized in Table 3.4.

Model component Feature Values

Path prediction Search strategy focused (F), exhaustive (E)
Multiple target search return to root (R), continue from

previous target (C)
Choice strategy read all (A), read until (U)
Mistake probability 0, fixed

Time prediction Node opening function 0, linear (S), logarithmic (L)
Node choice function 0, linear (S), logarithmic (L)
Choice strategy read all (A), read until (U)

Average over Target set size single, multiple
target sets Target set probabilities uniform, frequency

Table 3.4: Feature values that are tested in the model selection method.

For each combination of features we form a partial model that predicts a path
given a set of targets and a hierarchical structure. The partial models are evaluated
by comparing the predicted paths to the paths that the users actually followed on the
site. For each target set in the log files, the models predict a path along all targets. In
the end we count how many of the predicted page transitions actually occurred in the
users’ sessions. This procedure is illustrated with a small example. Figure 3.3 shows a
hierarchy and Table 3.5 shows the targets and navigation paths of three example users
who have navigated through this hierarchy. The table also shows the paths predicted
by two path models. In this example the FCA model predicts the users’ paths more
accurately than the EC model.

The similarity scores that are used to compare the models are precision and recall.
Here the precision of a path model κ is the number of transitions that is correctly
predicted by κ divided by the total number of predicted transitions. We focus on
the page transitions rather than the visited pages themselves, because the transitions

3.4. Selecting navigation behavior models for hierarchical menus 57

Figure 3.3: Example hierarchy.

Target Path Path predicted Path predicted Path predicted
set by model EC by model FCA by model ...

E ABE ABE ABE ...
D ABAD ABEFGHACD AD ...
E, H ABEBFH ABEFGH ABEFH ...
...

Table 3.5: Example data as used in the path model evaluation. The letters in the paths stand for
the pages from the example hierarchy in Figure 3.3. The abbreviations in the model names refer
to the feature values in Table 3.4.

determine the navigation time, as we will see below.

precisionpκq� °tTi |iPPathsu |txp, qy|xp, qy� κpTiqu X txp, qy|xp, qy � iu|°tTi |iPPathsu |txp, qy|xp, qy� κpTiqu| (3.3)

Here Paths contains all complete paths of users from the log files. Ti is the set of target
pages on path i. κpTiq denotes the path along the targets Ti as predicted by path model
κ. xp, qy is the transition from page p to page q. i � j means that transition i occurs
on path j.

Recall of κ is the number of transitions that are correctly predicted by κ divided by
the number of transitions in the users’ sessions:

recal lpκq� °tTi |iPPathsu |txp, qy|xp, qy� κpTiquX txp, qy|xp, qy � iu|°tiPPathsu |txp, qy|xp, qy � iu| (3.4)

Computation time is not a major issue, because the selection method does not
need to run online or interactively. However, scalability needs to be guaranteed as
web logs can easily become very large. The computational complexity of the path
model selection procedure is linear in the size of the log files and the size of the menu.
The log files have to be scanned once to determined the paths and the target sets.
When the models are applied to the target sets, all targets have to be looked up in
the menu. In our experiments (see Section 3.4.2) the path evaluation took 4 to 30
minutes per data set on a normal desktop machine.

58 Chapter 3: Navigation behavior models for link structure optimization

Predicting navigation times

The following procedure can be used to evaluate models that predict navigation times
on the basis of the users’ paths. We evaluate all features that influence these pre-
dictions: the users’ choice strategy, the node opening function and the node choice
function (see Table 3.4). Partial models that predict navigation times are formed for
all combinations of features by choosing values for f and g in Equation 3.2 (Sec-
tion 3.3.3). For each path to a target page in the log files we compute the time it took
the user to traverse the path. In addition, we count the number of menu items the user
opened along the way and the number of choices he had in each step. Next, the time
prediction models are fit to these data in such a way that the mean of squared errors
is minimized. This results in optimal parameter settings for the models (i.e. values
for α and β in Equation 3.2). Table 3.6 provides an example of the data to which the
models are fit and the predictions of the resulting models.

Path Navigation Time predicted Time predicted Time predicted
time by model SSA by model SLU by model ...

ABFBE 12.0 12.0 10.6 ...
ACAD 10.0 9.5 9.1 ...
ABE 7.0 6.5 5.0 ...
...

Table 3.6: Example data as used in the time model evaluation. Times are in seconds. The letters
in the paths stand for the pages from the example hierarchy in Figure 3.3. The abbreviations in
the model names refer to the feature values in Table 3.4.

The HHAI model predicts the expected navigation time of a whole menu, but not of
individual paths. To still be able to compare its time predictions to those of the other
models, we modified its definition. Instead of summing over all nodes in the menu,
we took the sum over all nodes on the users’ path.

A 5-fold cross-validation is used to evaluate how well the models predict navigation
times of future users. The models are fit to the training sets and evaluated on the test
sets. As similarity score we use the R-square measure, which expresses the proportion
of the variance in the users’ navigation times that is explained by a model:

R�square� 1 � °
iP Tar getPaths pt i �λpiqq2°

iP Tar getPathspt i � tq2
(3.5)

Here Tar get Paths contains all paths to individual targets from the log files. t i is the
time that the user needed to follow path i and λpiq is navigation time as predicted by
time model λ. t is the average navigation time over all paths in the test set.

The computational complexity of the time model selection procedure is determined
by the amount of log data. The training and test sets can be created in one pass
through the log files. Then, all models need to be fit to the training sets and applied
to the test sets. Applying the models requires one pass through the test sets. The
time needed to fit the models depends on the fitting procedure that is used. In our

3.4. Selecting navigation behavior models for hierarchical menus 59

experiments the time model evaluation took 20 to 60 seconds, approximately half of
which was used by the fitting procedure.

Predicting the average navigation time over all target sets

The previous sections treated models that predict navigation paths and times for given
target sets. We will now consider the components of the models that average over
all targets sets and thus predict the average navigation time of a menu. We will call
these components target set models, as they are based on assumptions about the users’
targets.

We only look at models that assume that utility depends completely on navigation
time, because this is assumed by all optimization methods that apply to menus (see
Section 3.3.2). We test target set models with various values for the target set size and
the target set probabilities, as depicted in Table 3.4. All models assume that all target
sets are possible. Models with predefined topics are not considered, as in general it is
not possible to find a division in topics that applies to all visitors.

Again we split the log data in test and training sessions. The training data is used
to compute the target set probabilities. During training each target set model produces
a collection of target sets that simulates the targets of the actual users. The simplest
model is the single uniform model. It assumes users search for single targets and all
targets have equal probability. Its target set collection is a list of all pages of the site.
The single frequency model also assumes users search for single targets, but now the
target probabilities are based on the number of times each page occurs as a target in
the training sessions. The multiple frequency model consists of target sets with more
than one page. Its target set collection is a list of all target sets occurring in the training
set. The collection of the multiple uniform model would comprise all possible target
sets (the power set of the site’s pages), but the computation of this collection is not
tractable for sites with more than a few pages.

The purpose of the test sets is to evaluate how well the target set collections of
the three models reflect the targets of the actual users of the site. For each target set
in each collection we estimate the time users need to locate the target pages using
the path and time models that scored best in the previous evaluations. The expected
navigation time of a collection is the weighted average time over all targets in the
collection. The expected navigation times are compared to the average time that users
from the test set really needed to locate a target. This procedure is exemplified in
Table 3.7. The table shows the data of two target set models, the single uniform
model and the multiple frequency model. In this example the multiple frequency
model outperforms the single uniform model, because the average navigation time
that is predicted by the multiple frequency model (5.1 seconds) is closer to the actual
average navigation time (4.9 seconds) than the average time predicted by the single
uniform model (3.6 seconds).

As similarity score we use the relative error, the difference between the expected
navigation time and the real average navigation time as percentage of the real average

60 Chapter 3: Navigation behavior models for link structure optimization

Model Target
set

Proba-
bility

Path pre-
dicted by
model κ� Time pre-

dicted by
model λ� Avg. pre-

dicted time
Avg.
actual
time

E 0.20 ABE 3.8

single G 0.20 ABFG 5.9

uniform C 0.20 AC 1.2

...

3.6 4.9

C 0.28 AC 3.6

multiple E,C 0.03 ABEBAC 8.2

frequency E,G 0.11 ABEBFG 13.0

...

5.1 4.9

Table 3.7: Example data as used in the target set model evaluation. Times are in seconds. The
letters in the paths stand for the pages from the example hierarchy in Figure 3.3. κ� and λ� are
the optimal path and time models respectively.

navigation time:

relat ive_er rorpνq � |p°tiPCνu λ�pκ�piqq.pi { °ti PCνu |i|.piq � t |
t

(3.6)

Here ν is a target set model and κ� and λ� are the optimal path and time models
respectively. Cν is the target set collection of ν . pi is the probability of target set i in
Cν . The remaining symbols have the same meaning as before.

A problem with the procedure described above is that the best path prediction
model predicts too short paths, because it assumes users make no mistakes (see Sec-
tion 3.4.2). This results in too short expected navigation times for all target set models,
which leads to a bias towards target set models that predict target sets with large navi-
gation times. We compensate for this by adding a fixed mistake probability to the path
model. The mistake probability is chosen in such a way that the average length of the
predicted paths is equal to the average length of the actual paths. Using this new path
model, we get an unbiased view on the performance of the target set models. Because
the mistakes are random, all experiments are repeated 10 times. The final evaluation
measure is the average relative error over the 10 runs.

Once the best model for a menu optimization task has been selected, the mistake
probability can be set to zero again. During the optimization of the menus, navigation
times of alternative structures are compared only relative to each other and the bias
does not influence their relative performance.

The time complexity of this procedure is linear in the amount of log data and the
size of the menu. The log files have to be read once to create the target set collections.
As before, applying the path models involves reading the collections and locating the
targets in the menu. For the application of the time models, the paths need to be read
once. In our experiments the total of 10 runs took 3 to 27 minutes.

3.4. Selecting navigation behavior models for hierarchical menus 61

3.4.2 Experiments

We applied the method described in the previous section to the menus of four web
sites. These experiments demonstrate the working of the model selection method. In
addition, when models with certain features perform consistently better than others,
this reduces the range of the models that need to be considered for new domains.

The web sites are from different domains and their menus vary in size and struc-
ture. The SeniorGezond site (SG) (SeniorGezond, 2007) gives information about the
prevention of falling accidents. It provides many different navigation means one of
which is a hierarchical navigation menu. The Reumanet site (RN) (Reumanet, 2007)
contains information about rheumatism. GHAdvies (GH) (Gouden Handdruk Specia-
list, 2007) is a site about lay-off compensation. HoutInfo (HI) (Centrum Hout, 2007)
contains pages about the properties and applications of various kinds of wood. Fea-
tures of the sites’ log files and menus are given in Table 3.8.

Site Log period Number of
sessions

Number of
menu items

Maximal
menu depth

Reference
length (sec)

SG 9 months 51,567 92 3 11
RN 9 months 23,995 100 6 12
GH 1 month 22,788 59 6 23
HI 4 days 2,062 288 4 7

Table 3.8: Properties of the four sites that are used for evaluation. The reference length is
explained in Section 3.4.1.

The partial models for path prediction were applied to the four sites. The results of
the experiments are given in Table 3.9. The best scores are shown in bold. There are
only two models with exhaustive strategies, because with this strategy there is no dif-
ference between the two choice strategies. The exhaustive models predicted extremely
long paths, as a consequence of the assumption that users go through a hierarchy sys-
tematically until they hit their targets. The long paths resulted in moderate recall,
but very low precision. The focused models resemble the true strategy of the users
much better: 42-54% of the predicted transitions were actually followed. No large
differences were found between the two choice strategies. Possibly, this is because
both strategies were used by large user groups. In all cases, the models that assume
that users with multiple targets continue from the previous target worked much better
than the models that assume that users return to the root. This finding indicates that
the reduction of multiple target search to a series of single target searches is a too
strong simplification.

In a second set of experiments we added fixed mistake probabilities to the focused
continued search models. Figure 3.4 shows the precision and recall of models with
varying mistake probabilities on the Reumanet and GHAdvies data. Including naviga-
tion mistakes did not improve the models: both precision and recall decreased almost
linearly with increasing mistake probability. Results on the other data sets are similar.
The explanation for this poor performance is not that users do not make navigation
mistakes, but that the probability that the users’ incorrect choices are the same as the

62 Chapter 3: Navigation behavior models for link structure optimization

Path model

Data set ER EC FRU FCU FRA FCA

SG precision 0.010 0.016 0.240 0.443 0.240 0.442
recall 0.234 0.196 0.301 0.309 0.301 0.308

RN precision 0.012 0.028 0.184 0.417 0.184 0.414
recall 0.219 0.203 0.284 0.318 0.284 0.316

GH precision 0.022 0.062 0.196 0.535 0.196 0.530
recall 0.338 0.298 0.308 0.363 0.308 0.359

HI precision 0.007 0.015 0.335 0.499 0.335 0.500
recall 0.517 0.376 0.407 0.342 0.407 0.343

Table 3.9: Precision and recall of the path prediction models. The abbreviations in the model
names refer to the feature values in Table 3.4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
re

ci
si

o
n
 a

n
d
 r

ec
al

l

Mistake probability

Precision
Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
re

ci
si

o
n
 a

n
d
 r

ec
al

l

Mistake probability

Precision
Recall

a. Reumanet b. GHAdvies

Figure 3.4: Precision and recall of the FCA model with varying mistake probabilities. The abbre-
viation FCA refers to the feature values in Table 3.4.

randomly selected choices is small.

In conclusion, when optimizing a menu, the best choice is a focused model without
navigation mistakes. Either one of the choice strategies can be used. In addition, the
model should take into account that users with multiple targets do not start over each
time a target is found.

The results of the experiments with time prediction models are given in Table 3.10.
All values are averages over the 5 test sets. The results of the HHAI model (Bernard,
2002) are shown separately. This model is basically a double logarithmic (LLA) model,
but with some small modifications. The results of the time experiments are less clear
than the results of the path experiments. Nevertheless, some observations can be
made. Models that use both the number of node openings and the number of choices
perform better than models that disregard the number of choices (00, L0 and S0)
or the number of node openings (not shown). Apparently, both elements influence
navigation time. As expected, on three of the four data sets linear node opening

3.4. Selecting navigation behavior models for hierarchical menus 63

Time model

Data set 00 S0 SSU SLU SSA SLA L0 LSU LLU LSA LLA HHAI

SG -0.01 0.88 0.88 0.88 0.88 0.88 0.73 0.84 0.85 0.86 0.87 0.74
RN 0.00 0.67 0.68 0.68 0.69 0.68 0.69 0.73 0.72 0.74 0.72 0.74
GH 0.00 0.78 0.79 0.79 0.80 0.81 0.64 0.75 0.74 0.80 0.80 0.72
HI 0.00 0.84 0.86 0.86 0.87 0.88 0.62 0.75 0.76 0.79 0.84 0.80

Table 3.10: Average R-square of the time prediction models. The abbreviations in the model
names refer to the feature values in Table 3.4. The first character is the node opening function,
the second character the choice function and the third character the choice strategy.

functions gave better results than logarithmic opening functions (see Section 3.3.3).
Only on the Reumanet data set the logarithmic opening functions worked best, but on
this data set all models scored low. Apparently, navigation times were more variable
on the Reumanet site. A possible explanation is that the site is visited frequently by
people with rheumatism for whom clicking links is more difficult.

The difference in performance between models with logarithmic and linear choice
functions is small. We expected to find a preference for linear choice functions, be-
cause the sites have unordered lists of links (see Section 3.3.3). Apparently, visitors
manage to select items without reading all preceding items. This can be a learning ef-
fect: when a user has opened an item before, he remembers where the item is located.
The read all choice strategy performed very similar to the read until strategy as was
the case in the path prediction experiments.

The values of the parameters α and β differ per site. The time users need to read
link labels and to click links depends on the length and complexity of the labels and the
experience of the users. For the SSU model we found that β should be between 2 and
5 times as large as α. This is consistent with the values used in the MESA model (Miller
and Remington, 2004), α� 0.25 and β � 0.5. In the click-distance model (Smyth and
Cotter, 2003) selecting and clicking links takes equal time, but these values are meant
for WAP users who navigate using mobile phones.

For a new menu optimization task, we recommend to use a linear node opening
function, because this function tends to outperform other models and has better the-
oretical foundations. The best node choice function is strongly site dependent and
should be determined again for each site. This can be done offline in the same way
we performed the time model experiments. At the same time these experiments will
yield the optimal parameter settings.

In the target set evaluations we used the FCA path model and the SSA time model.
Table 3.11 shows the error of the prediction of the expected navigation time when
various target set models are used. The use of target set frequencies considerably
improved the predictions. The design of the hierarchies is so that on average less
popular pages are located deeper in the hierarchy than more popular pages. As a
result, the assumption that all pages have equal probability of being sought, leads to
a too large expected navigation time. For all sites the model using target sets with
multiple targets outperformed the models with singleton target sets. This confirms
our earlier conclusion that it is important to model the behavior of users with more

64 Chapter 3: Navigation behavior models for link structure optimization

Target set model

single single multiple
Data set uniform frequency frequency

SG 2.04 1.12 0.15
RN 2.49 1.15 0.27
GH 3.83 2.36 0.09
HI 3.13 1.71 0.11

Table 3.11: Relative error of the target set prediction models in combination with the FCA path
model and the SSA time model.

than one target.

In summary, in our experiments we found clear evidence that focused contin-
ued search path models and multiple target frequency target set models are the best
choices. For the optimization of a new site, these models can be selected directly. The
optimal time model is site-dependent and needs to be determined anew for each site.
This can be accomplished with the method described in the previous section.

If we compare the best performing models to the navigation behavior models in Ta-
bles 3.2 and 3.3, we see that none of the optimization methods uses the optimal model
class. Suboptimal models can cause the methods to select suboptimal adaptations that
result in structures that do not maximize the site’s utility. These findings suggests that
using the selection method to find the optimal navigation behavior model for a site
can greatly improve the optimization of the site’s menu.

3.5 Menu optimization

In the previous sections we described how the best navigation behavior model can be
found for an optimization task. We will now present a method to optimize a hierar-
chical menu once a model has been selected. This provides a concrete example of the
role of navigation models in link structure optimization. Moreover, this method allows
us in the next section to study the effects of the chosen model on the outcome of the
optimization.

The optimization algorithm requires that the menu structure is a proper hierarchy.
This means that the content items are always located at the terminal nodes, while the
non-terminal nodes form the category items. A content item is allowed to be located
at multiple terminal nodes. The optimization changes only the hierarchical structure
of the menus and not the contents of the web site, i.e. the adaptations cannot remove
content pages from the menus, add new content or place content on non-terminal
nodes.

The optimization algorithm can create new category items, but it does not provide
labels for the new items. The labels must be created manually by the site owner. Sev-
eral methods have been proposed to automatically create labels for links (e.g. Witten
et al., 1999; Zamir and Etzioni, 1999; Lawrie et al., 2001; Zeng et al., 2004), but the
automatically constructed labels are generally lengthy and provide poor descriptions

3.5. Menu optimization 65

of the contents. To facilitate the manual creation of labels, the system can be run
semi-automatically. The algorithm suggests a number of adaptations to the menu and
the site owner chooses the adaptations that he finds appropriate and for which he can
find a good label. At the same time this protects the menu’s coherence: items that can
be described by the same category name tend to share certain properties.

The optimization method is based on a steepest ascent hill-climbing search through
a space of possible menus. The value of a menu is the inverse of its expected navigation
time. In other words, the optimal menu is the one with the smallest navigation time.
Below we define a number of menu adaptation operations that generate variations of
the menus. The optimization system searches the space during a number of optimiza-
tion cycles. In each cycle the systems tries all adaptations that can be performed on
the current menu. The navigation behavior model is used to predict the navigation
times of the resulting structures. The adaptation that gives the largest reduction in
navigation time is selected and used as starting point for the next optimization cycle.
This process continues until a menu is found that cannot be improved by any of the
adaptation operations. The hill-climbing procedure is applied to all nodes of the hier-
archy. First, the top level of the menu is optimized, then the nodes at the second level,
etc., until all nodes are optimized.

For menu optimization, hill-climbing approaches offer several advantage over other
optimization algorithms. First, hill climbing is a local search algorithm, which makes it
very efficient in terms of both time and space. Global optimization algorithms such as
A* (Hart et al., 1968) search much larger parts of the search space. This is intractable
for all but the smallest menus, as the number of possible menu structures is extremely
large.

Probably the largest advantage of hill-climbing optimization is that it can be done
in interaction with the owner of the site. This is an important issue, as most people
want to keep control over the changes that are made (Alpert et al., 2003; Cortellessa
et al., 2005). During each hill-climbing cycle the optimization system finds a number
of adaptations that improve the efficiency of the menu. In fully automatic optimization
the system selects the adaptation that leads to the largest improvement. If the system
is used semi-automatically, the site owner chooses the most suitable adaptation from
a set of adaptations with large navigation time reductions. Another advantage of the
current approach is that the system can explain to the site owner why it believes that
certain adaptations improve the menu. For instance, when the system advises to merge
two menu items, it can explain that the items have too small probabilities or that many
users search for content from both items. Several studies have shown that people are
more inclined to allow a system to make changes if they understand why the changes
are selected (e.g. Alpert et al., 2003; Cramer et al., 2006). Finally, with this approach
the navigation times of the various adaptations can be computed independently of
each other. This affords parallel computing.

In the following sections we describe the hill-climbing procedure in more detail.
First, we present the hierarchy transformation operations that serve as menu adapta-
tions. After that, we describe how we select the menu adaptations that are tested.

66 Chapter 3: Navigation behavior models for link structure optimization

3.5.1 Adaptation operations

A natural choice for the set of adaptation operations would be the ‘atomic’ operations
Raise, Lower, Create and Remove. Raise moves an item one level up the hierarchy,
Lower moves an item one level down the hierarchy, Create creates a new empty node
and Remove removes an empty node. This set is complete in the sense that with these
operations any menu tree can in theory be transformed into any other menu tree. A
proof of this fact is the existence of following procedure. Raise all items until all menu
and content items are children of the root node and remove all non-terminal items.
Next, create the first level items of the target tree and lower the content nodes into
the correct nodes. Then, create the second level items etc. Completeness is a desirable
property, because it implies that the current tree can always be transformed in the
optimal tree.

Unfortunately, the fact that the optimal tree can be reached does not ensure that
it can also be reached by making only adaptations that decrease navigation time. The
total time reduction of the operations needed for the transformation from the current
to the optimal tree is positive, because the optimal tree cannot have a larger average
navigation time than the current tree. However, this does not guarantee that all in-
dividual adaptations needed to reach the optimal tree have a positive time reduction.
If we view the process of going from the current tree to the optimal tree as a search
problem, the trees that result from operations with negative navigation time reduc-
tions are dips in the navigation time landscape. The hill-climbing algorithm cannot
cross these dips.

An example of an adaptation with a negative time reduction is the create op-
eration. This adaptation cannot improve the navigation time, because empty nodes
increase the number of choices and thus navigation time. If the optimal tree has more
nodes than the current tree, the optimal tree cannot be reached without creating new
nodes. In this situation the create actions form a gap around the optimal tree, which
prevents the hill-climbing algorithm from reaching the global optimum.

To overcome this problem, we do not use lower, create and remove as separate
operations, but define a number of composite adaptations that can function as bridges
over the gaps. The resulting set of adaptation operations is shown in Figure 3.5. If n

is the node whose subtree is currently being optimized (henceforth referred to as the
current node), the operations are:

Raise If node n2 is a descendant of n1 and n1 is a child of n, move n2 so that it
becomes a child of n.

RaiseAll If nodes n2, n3, ..., nm are the children of n1 and n1 is a child of n, move
n2, n3, ..., nm so that they become children of n and remove n1.

Split If node n1 is a child of n and n1 has at least two child nodes, create a new node
n2 as a child node of n and move a strict subset of the children of n1 so that they
become children of n2.

Merge If node n2 and node n1 are both children of n and n1 is not a content node,
move all children of n2 so that they become children of n1 and remove n2. If n2

3.5. Menu optimization 67

is a content node, it is not removed, but moved so that it becomes a child of n1.

LowerSome If nodes n1, n2, ..., nm are all children of n, create a new node nm�1 as a
child of n and move n1, n2, ..., nm so that they become children of nm�1.

a. Raise a2 b. RaiseAll A

c. Split A d. Merge A B

e. Lowersome A B

Figure 3.5: The working of the five adaptation types.

The lowerSome adaptation creates a new node and fills it with some children. In
contrast to the atomic action of creating an empty node, the lowerSome adaptation
can have a positive time reduction. The RaiseAll operation is added to make it
possible to raise all children of an item with two children with about equal probability.
In this case raising either child separately can result in a negative time reduction, while
raising both is positive. The merge and split adaptations do not bridge any obvious
gaps, but are chosen because they are natural menu adaptations. The remove action
always results in a positive score. Remove is not included as separate adaptation but
done automatically when the last child of a node is raised.

Like the set of atomic operations, the set of operations in Figure 3.5 suffices to
transform any tree into any other tree. Although with the introduction of the compos-
ite operations some frequently occurring gaps have been bridged, we can still give no
guarantee that we can always reach the optimal tree without taking steps with a neg-

68 Chapter 3: Navigation behavior models for link structure optimization

ative time reduction. Methods like simulated annealing (Kirkpatrick et al., 1983) can
be used to increase the probability of finding the globally optimal structure. However,
these methods often increase search time. The current version of the system does not
include this feature.

The definition of the menu operations determines the parent-child relations be-
tween the nodes in the hierarchy, but not the ordering of a set of child nodes. Follow-
ing Smyth and Cotter (2003), our menu optimization system orders the nodes on the
basis of the total access frequency of the underlying content nodes. This ordering is
optimal for users who read the menu items top down and stop when they have read
an acceptable item. For users who read all items before making a decision the order
is not important. When the navigation behavior model has a reading strategy that is
more complex than the strategies treated in this work, finding the optimal ordering of
menu items can be more difficult. In this case, the ordering can be optimized with a
new adaptation operator that adapts the ordering of a set of items.

3.5.2 Selecting promising adaptations

Ideally, the optimization algorithm should find the highest scoring adaptations at each
step. Unfortunately, finding these adaptations is intractable as it requires the com-
putation of the time reduction of all possible adaptations to the current node. For
the Raise and RaiseAll operations this computation is no problem. The number
of possible Raise adaptations equals the number of items below the current node.
The number of possible RaiseAll adaptations equals the number of children of the
current node. For the Merge operation the number of adaptations is quadratic in the
breadth of the tree. This is in most practical applications still tractable. However, the
number of possible Split and LowerSome operations is exponential in the breadth,
so that it is usually not possible to try them all.

Instead of suggesting the absolute best splits, we aim at finding reasonably good
splits using heuristics. We try to find some good splits for each child node m of the
current node n. An initial split is made by randomly dividing the children of m in
two groups with equal numbers of items. Subsequently, we try to improve the time
reduction of the split by moving an item from one group to the other. After each move
the time reduction of the split is computed. If the score is improved by moving an
item, the best item is moved. This process continues until there are no more moves
that improve the split. The process is guaranteed to end, because we only make moves
that increase the time reduction.

For LowerSome we use a similar heuristic. In this case we start with the child of
the current node n that has the smallest probability. This child node is placed under a
new empty child e. Then we try adding children of n to e and see whether the average
navigation time improves. If it does, we add the best scoring child to e. Next, we try
removing each child of e and placing it back under n. If this improves the score, we
remove the best scoring item. Then we try adding another node to e, etc. The process
ends when no more improvements can be made by adding or removing nodes.

The heuristics can be adapted to the requirements of a specific situation. In large
menus it can be necessary to decrease search time by reducing the number of adapta-

3.6. Case study 69

tions that are tried. For instance, merging time can be reduced by only trying merges
of items with small probabilities. Another way to speed up the optimization is by
discarding adaptations that have led to poor structures in earlier steps of the opti-
mization. This means for instance that if the algorithm has tried to split a certain node
and has found that it leads to a large increase in navigation time, it will not try to split
this node in later optimization steps.

3.6 Case study

In this section we evaluate the menu optimization method in a case study. The opti-
mization method is applied to the four web sites that were introduced in Section 3.4.2.
First, we study the optimization process and the resulting menus when the optimal
models and parameter settings are used. Then, we examine the effects of alternative
models and parameter settings.

3.6.1 Optimization with optimal models

In the first experiments we used the models that performed best in the evaluation
experiments in Section 3.4.2. In this section we found that the focused continued
search path model and multiple target frequency target set models gave best results
in all four domains. Among the time models the four models with linear opening
functions generally gave best results. The differences between the models with linear
openings functions were negligible. In the optimization experiments we used the SSA
time model, which was also used in the target set experiments (see Section 3.4.1).
This model has a linear choice function and assumes that users read all items before
making a choice. The parameters of this model were set using the method described
in Section 3.4.2. The parameter settings for the various sites are shown in Table 3.12.

Data set α β

SG 0.07 4.00
RN 0.31 1.73
GH 1.52 2.95
HI 0.15 2.13

Table 3.12: Parameters of the SSA time models.

The expected navigation times of the menus before and after optimization are
given in Table 3.13. Figure 3.6 shows how the expected navigation time is gradually
decreased during the adaptation process. For all sites the optimization considerably
improved the efficiency of the menus: the expected navigation time was reduced by
12–30%.

Table 3.13 shows that the average number of subitems under an item (the menu’s
breadth) is larger in the optimized menus than in the original menus. This is a re-
sult of the fact that during the optimization more Raise and Merge operations were
selected than Split and LowerSome operations, as can be seen in Table 3.14. The

70 Chapter 3: Navigation behavior models for link structure optimization

Menu Exp.
navigation
time

#non-
terminal
nodes

Max.
depth

Avg.
depth

Weighted
avg.
depth

Max.
breadth

Avg.
breadth

SG original 5.5 15 3 3.0 3.0 14 6.1
optimal 4.1 7 5 2.6 2.2 40 11.3

RN original 5.0 18 6 3.7 3.4 15 5.5
optimal 4.4 14 4 3.6 3.1 10 6.4

GH original 11.2 15 6 4.2 3.7 5 3.9
optimal 9.9 10 6 4.0 3.4 7 4.9

HI original 5.3 46 4 4.0 3.8 19 6.2
optimal 3.7 34 6 3.9 3.1 20 8.1

Table 3.13: Properties of the original and optimized menus of the sites.

 0

 2

 4

 6

 8

 10

 12

65 20 16 12 8 4 0

E
x
p
ec

te
d
 n

av
ig

at
io

n
 t

im
e

Adaptation cycle

SG
RN
GH
HI

Figure 3.6: Decrease of the expected navigation time during the optimization of the menus.

fact that broadening the menus increases the efficiency indicates that the menus were
originally too narrow and deep. This finding is in agreement with the conclusion of
HCI research that in general broader menus are more efficient than narrower menus
(see Section 3.2.2). The sixth column of Table 3.13 shows the average depth of the
content items weighted by their access frequencies. In all menus the weighted aver-
age depth is smaller than the unweighted depth, which means that on average more
popular items are located in higher positions. However, in the optimized menus the
differences are much larger than in the original menus. This shows that the optimized
menus differentiate more than the original menus between more and less popular con-
tent items. This can also be seen from the maximal depth: although the average depth
of all menus is decreased by the optimization, the maximal depth of two menus is
increased.

The time needed for the optimization depends on the number of adaptations that
are made. Tables 3.14 and 3.8 show that there is a relation between the number of

3.6. Case study 71

Data set Raise RaiseAll Merge Split LowerSome All

SG 5 7 5 0 2 19
RN 6 1 5 1 1 14
GH 4 1 7 1 0 13
HI 22 8 21 1 13 65

Table 3.14: Number of adaptations made during the optimization of the menus.

adaptations and the number of items in the menu, but that in all cases the number
of adaptations was reasonably small. Moreover, most of the decrease in expected
navigation time is realized during the first five adaptation steps, as visible in Figure 3.6.
Thus, making only a few adaptations can greatly improve the efficiency of a menu.
This means that the optimization process can be terminated after a few steps without
drastically reducing the quality of the resulting menu. This is an advantage when
optimization time is limited, for instance, because optimization is done in cooperation
with a site owner.

To see how the navigation time reductions are accomplished, we will now examine
some optimization steps in detail. Figure 3.7 shows a fragment of the Reumanet menu
before and after optimization. The two menu items ‘walking aids’ and ‘transport‘ are
merged into one. Both items contained fewer pages than optimal. Moreover, the pages
from the two items are frequently visited in the same sessions, most likely by people
who are interested in ways to enhance their mobility. The content page ‘adjusted
bicycle’ is raised to a higher position in the hierarchy, because it is a very popular
item and viewed by many visitors. The merge operation is a very good adaptation
because it increases the menu’s efficiency, without decreasing its coherence. Moreover,� Accessibility aids� ...� Walking aids� Rollator� Walking-stick� Forearm crutches� Patter chair� Walker� Tri / quad canes� Transport� Push wheelchair/cart� Wheelchair (active)� Mobility scooter� Adjusted bicycle� ...

� Accessibility aids� ...� Walking aids + Transport� Patter chair� Forearm crutches� Rollator� Wheelchair (active)� Tri / quad canes� Mobility scooter� Walking-stick� Push wheelchair/cart� Walker� ...� Adjusted bicycle� ...

Figure 3.7: Example of the optimization of a portion of the (translated) Reumanet menu: Merge
‘walking aids’ and ‘transport’ and Raise ‘adjusted bicycle’. Left: before optimization. Right: after
optimization.

72 Chapter 3: Navigation behavior models for link structure optimization� Accessibility aids� ...� Personal care� Dressing stick� Buttonhook� Sock aid� Extended shoehorn� Zipper aid� Elastic shoe laces� Raised toilet seat� Raised toilet� Toilet with under shower and drier� Shower stool� Bath board� Bath/shower safety mat� Bath brush, extended bent� Nail clipper/file� Extended comb/hair brush� ...

� Accessibility aids� ...� Personal care-1� Dressing stick� Elastic shoe laces� Buttonhook� Sock aid� Zipper aid� Raised toilet seat� Extended shoehorn� Raised toilet� ...� Personal care-2� Toilet with under shower and drier� Bath brush, extended bent� Nail clipper/file� Shower stool� Bath/shower safety mat� Extended comb/hair brush� Bath board� ...

Figure 3.8: Example of the optimization of a portion of the (translated) Reumanet menu: Split
‘Personal care’. Left: before optimization. Right: after optimization.

a good label can be found for the new item, for instance ‘mobility’. On the other
hand, a site owner might not find the raise operation appropriate as adjusted bicycles
conceptually belong to the mobility item. To enhance coherence he can decide to block
the adaptation entirely or to place ‘adjusted bicycle’ both at the higher location and
under mobility. The latter option still reduces expected navigation time.

Another adaptation of the Reumanet menu is depicted in Figure 3.8. The menu
item ‘personal care’ originally contains many content pages. A split operation is
performed to split the item in two smaller items. One part contains appliances for
dressing and going to the toilet. The other part mainly contains pages about appliances
for taking a shower or a bath.

The HoutInfo menu contains two items ‘inner doors’ and ‘outside doors’. As these
items are frequently visited by the same users, they are merged into one. A site owner
will probably not forbid this adaptation as the merge reduces navigation time and
enhances the menus’ coherence. In addition, a perfectly descriptive label (‘doors’) is
available for the new item.

During the adaptation of all sites, popular items are raised to higher positions. On
the Reumanet site we have already seen that the item ‘adjusted bicycle’ is raised. On
the HoutInfo site examples of raised items are a page that gives an overview of the
various types of wood and a page that summarizes the properties of certain types of
wooden plates. Both pages provide high level information that is interesting for a large
portion of the site’s visitors.

3.6. Case study 73

3.6.2 The effects of alternative models

In this section we demonstrate the sensitivity of the method to the choice of the model
and the parameter settings. We optimize the menus with models that differ at certain
points from the optimal model and examine the effects on the resulting menus.

In the first set of experiments we study the influence of the parameters α and β ,
which correspond respectively to the time that a user needs to read and open a menu
item. We optimize the menus with SSA time models with different ratios between α
and β . The values of β are taken from the optimal time models and the values of α
are varied.

Figure 3.9 shows the average depth and breadth of the optimized Reumanet and
GHAdvies menus when various ratios of β and α are used. When β is relatively large
the menus are broader and shallower. In the broader menus users do not need to make
many clicks to reach the content items, but they do need to read long lists of items.
This is efficient according to these models because they assume that clicking takes a
relatively long time.

The influence of the parameter settings on the expected navigation time of the
menus is shown in Figure 3.10. The figure shows the expected navigation time of
menus optimized with models with various β{α ratios according to the model with the
optimal values for α and β . It can be seen clearly that choosing incorrect parameter
settings can have devastating effects on the efficiency of the resulting menus. Although
the method appears to be fairly robust against small changes in the β{α ratio, the
expected navigation time increases rapidly when one deviates too far from the optimal
ratio. At some point the optimized menus become even less efficient than the original
menus (in the figures shown as horizontal lines). In Table 3.12 we can see that the
optimal parameter settings differ substantially between sites. Consequently, using the
same values for all sites can lead to highly suboptimal menus. These findings stress
the importance of finding the optimal parameter settings for a user population.

The next experiments address the influence of the time model. We optimize the
menus with the four time models with linear opening functions: SSU, SSA, SLA and
SLU. For each model, the optimal parameter settings are used. Table 3.15 shows
for each model the average breadth and depth of the resulting menus. Assuming
that users stop reading once an acceptable item is found leads to larger depths than
assuming that users read all items before making a choice. This is a result of the fact
that for users who stop reading the length of the list below the chosen item has no
influence on the navigation time. A logarithmic choice function results in shallower
menus than a linear choice function. With a logarithmic choice function increasing the
menu’s breadth has a small influence on the expected navigation time while it reduces
the depth considerably. In fact, we can prove that with single targets with uniform
probabilities and a focused strategy without navigation mistakes, the optimal menu
according to a logarithmic choice model is always the flat list of items. Although this
does not necessarily hold for models with multiple targets, in our experiments three
of the eight menus that were optimized with logarithmic choice functions became
completely flat.

Next, we optimized the menus with the three target set models described in Sec-

74 Chapter 3: Navigation behavior models for link structure optimization

 0

 4

 8

 12

 16

 0 5 10 15 20 25 30 35 40

A
v
er

ag
e

d
ep

th
 a

n
d
 b

re
ad

th

β/α

Depth
Breadth

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

d
ep

th
 a

n
d
 b

re
ad

th

β/α

Depth
Breadth

a. Reumanet b. GHAdvies

Figure 3.9: Average depth of the terminal nodes and the average breadth of the non-terminal
nodes in menus optimized with models with various β{α ratios. The circles indicate the values
of the menus optimized with the optimal models.

 4

 4.5

 5

 5.5

 6

 0 5 10 15 20 25 30 35 40

E
x
p
ec

te
d
 n

av
ig

at
io

n
 t

im
e

β/α

 9

 10

 11

 12

 13

 0 2 4 6 8 10 12 14 16 18 20

E
x
p
ec

te
d
 n

av
ig

at
io

n
 t

im
e

β/α

a. Reumanet b. GHAdvies

Figure 3.10: Expected navigation times according to the optimal model of menus optimized with
models with various β{α ratios. The horizontal lines indicate the expected navigation time of the
original menus. The circles indicate the values of the menus optimized with the optimal models.

tion 3.4. The results of these experiments are summarized in Table 3.16. The simpler
target set models do not make the menus systematically broader or narrower than the
multiple frequency model, but they do systematically increase the expected navigation
time. Inspection of the optimized menus revealed that this increase is mostly caused
by ineffective merge, split and lowersome operations. The single target models
have no information about the probability that two pages are visited in the same ses-
sion. They make their adaptations only on the basis of the pages’ access probabilities
and do not take into account whether pages should be placed close to each other in
the menu. As a consequence, the optimized menus appear to be much less coherent

3.7. Conclusions and discussion 75

SSA SSU SLA SLU

depth breadth depth breadth depth breadth depth breadth

SG 2.6 11.3 2.1 34.0 2.1 15.2 2.0 67.0
RN 3.6 6.4 2.4 38.5 2.3 14.5 2.0 76.0
GH 4.0 4.9 2.0 40.0 2.3 14.0 2.0 40.0
HI 3.9 8.1 2.4 41.2 2.3 41.2 2.0 121.5

Table 3.15: Average depth of terminal nodes and average breadth of non-terminal nodes of
menus optimized with various time models.

than the menus optimized with the multiple frequency model. This is illustrated by
the fact that none of the example merges and splits described in the previous section
are made during the optimization with single target set models. Instead of merging
‘walking aids’ with ‘transport’, the single uniform model merges ‘walking aids’ with
‘health institutes’ and ‘transport’ with ‘adjusted furniture’. The menu item ‘personal
care’ is split, but the parts are not meaningful. On the HoutInfo site the items ‘inner
doors’ and ‘outside doors’ are not merged. This makes clear that models that do not
capture dependencies between content items do not suffice to optimize menus.

Multiple Single Single
Frequency Frequency Uniform

Data set Breadth ENT Breadth ENT Breadth ENT

SG 11.3 4.1 14.8 4.2 24.3 4.5
RN 6.4 4.4 4.8 4.6 7.8 5.0
GH 4.9 9.9 3.7 11.0 3.7 11.2
HI 7.5 3.4 6.7 4.2 5.9 5.8

Table 3.16: Average breadth of non-terminal nodes and expected navigation time (ENT) accord-
ing to the optimal model of menus optimized with various target set models.

3.7 Conclusions and discussion

In this chapter we presented an approach to optimization of navigation structures that
is based on an explicit model of the users’ navigation behavior. We created a generic
framework that allows us to systematically compare various navigation behavior mod-
els described in the literature. Applying the framework to the models underlying a
large number of methods showed that the models vary substantially and that several
methods make assumptions that are questionable or that certainly do not hold for all
sites and user populations. Moreover, these assumptions are often left implicit and are
not verified for the user population of the site. To solve these problems we proposed a
methodology to test the assumptions offline using log data. With this method one can
select the optimal model for the optimization of a hierarchical menu on the basis of
usage data and properties of the navigation structure. Once the best model is deter-
mined for a site, one needs to find the link structure that is optimal according to this

76 Chapter 3: Navigation behavior models for link structure optimization

model. In this chapter a generic optimization method is presented that can optimize a
hierarchical menu on the basis of a given navigation behavior model.

Our systematic approach to the selection of navigation models enables the choice
of a model that fits the properties of a site and its users. Using a correct model is
essential for link structure optimization. Experiments with the optimization of four
web sites showed that varying the features of the navigation model results in radically
different menus. With certain model types the menus even became completely flat.
However, when we compared the assumptions of existing menu optimization methods
to the model features that proved optimal in our experiments, we found that none of
the methods used an optimal model. These findings indicate that menu optimization
can be substantially improved by application of the model selection method.

The presented link structure optimization method can be used interactively. The
system proposes modifications of the structure and explains why these modifications
lead to more efficient menus. A human webmaster accepts or rejects the proposals and
provides labels for newly created hierarchy nodes. This scenario has the advantage
that the site owner keeps full controll over the changes that are made to the menu,
which can contribute to the acceptance of the system. Evaluation of the system by
means of a case study gave encouraging results. The method generated both sensible
and effective proposals for improvement. For the four sites it found menus that were
much more efficient than the original menus according to the provided models.

Although the case study clearly showed the promise of the presented methods,
some issues remain to be researched. First, the current work treats the optimization
of link structures as an isolated problem. It does not consider the influence of other
factors such as the semantic coherence of a set of links, the logical structure of a hier-
archy or the information provided in link anchors. More research is needed to model
the effects of these factors on the utility of the links and the potential interaction ef-
fects between these factors and the link structure. Once such models will be available,
techniques can be developed to combine the models and optimize the various factors
simultaneously.

Second, the model selection method evaluates the predictions of the models only
on log data of the site’s original link structure. For real applications this is an advan-
tage, because generally the original structure is the only structure for which log data
is available. However, the purpose of the navigation models is to predict navigation
times of structures that have been adapted. To see how well the predictions of the
models generalize to the new structures, one needs log data created with different
structures for the same site. In particular, the navigation times of original menus need
to be compared to the navigation times of optimized menus.

Another topic for further research is the comparison between the selected naviga-
tion behavior models and the heuristics used in optimization methods. Such studies
will show under which conditions and to what extent the heuristics follow from the
models. This provides insights in the applicability of the heuristics and the utility of
the link structures that result from the heuristics.

A limitation of the current work is that the model selection and optimization meth-
ods are restricted to hierarchical menus. In the future these methods can be extended
to generic link structures. For the model selection method relaxing this restriction

3.7. Conclusions and discussion 77

is fairly straightforward. Optimization becomes more complex because of the large
number of possible link structures. An efficient graph transformation method will be
needed to keep the optimization tractable. Another issue is the integration of our
methods with more complex web sites. Most sites offer other navigation means be-
sides links, such as search engines or recommender components. Joint optimization of
link structures and other navigation means is a complex problem that awaits further
exploration.

Until now we have optimized link structures for user populations as a whole, but
the methods can be applied equally well for personalizing structures for single users
or specific groups of users. To find navigation models for groups of users the users are
clustered on the basis of their navigation behavior (e.g. Mobasher et al., 2002; Hay
et al., 2004). For each cluster a separate model is created by applying the selection
method to the relevant entries in the log file. Personalization for a single user is more
complicated as there is usually not enough data of one user to accurately measure
the performance of the models. In this case one needs to create model templates on
the basis of characteristics of a user group and fill in the details for specific users on
the basis of their personal navigation behavior. This will make the optimization both
efficient and tailored to the specific needs of individual users.

78 Chapter 3: Navigation behavior models for link structure optimization

Chapter 4

Discovering stages in web navigation for

problem-oriented navigation support

In the previous chapters we created menu structures for users with well-

specified information needs. In this Chapter we address menus aimed at users

who do not know exactly which information they are looking for or what

the site has to offer. These problem-oriented menus guide users step by step

through the site providing pages that not only match the topic of the user’s

search, but also the current stage of the navigation process. We propose a

method to divide the pages of a web site into sets of pages that correspond

to navigation stages. The stages can be used in combination with the pages’

topics to automatically construct problem-oriented menus.

This Chapter was written together with M. W. van Someren and B. J. Wie-

linga. It was published in User Modeling and User-Adapted Interaction, spe-

cial issue on statistical and probabilistic methods for user modeling (Hollink

et al., 2007b). Earlier versions appeared in the Proceedings of the Tenth

International Conference on User Modeling (Hollink et al., 2005a) and the

Proceedings of the Twelfth Workshop on Adaptivity and User Modeling in In-

teractive Systems (Hollink et al., 2004).

4.1 Introduction

In recent years web sites have evolved from small electronic leaflets to highly com-
plex continually changing information systems. They are used not only to find well-
specified information, but also to find answers to less articulate questions and to solve
problems. This development poses higher demands on the structure of a web site and
tools that support navigation. When solving a problem users often do not know exactly
what solutions exist nor what the site has to offer as support in finding the solutions.
If a user is not able to express her information needs as keywords, simple search and
retrieval are not adequate (Alpay et al., 2004). For these users a topic-based naviga-
tion structure is also not optimal as some of the pages about a topic will be relevant at
an early stage of the search and others only after the user has acquired the knowledge

80 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

that is needed to select a solution.

For example, consider a web site of an online shop that not only includes detailed
information about products but also general information about the product types, their
purposes and the conditions for their use. Maybe it even has pages describing possible
combinations of products or explaining the products’ terminology. For users who are
looking up some detail of a specific product this extra information is not interesting.
On the other hand, users who are wondering which product is the most suitable for
them can benefit enormously from visiting the general information before reading
about specific products. The general information does not directly contribute to their
buying decisions but rather helps to reformulate and articulate their questions or tell
them in which directions to look for a specific product.

Ezendam et al. (Ezendam et al., 2005; Alpay et al., 2005, 2007) showed that users
who cannot accurately formulate their questions can be helped greatly by problem-
oriented navigation structures that help them to view the information on the site in
the right order. Problem-oriented navigation support is especially useful for sites with
many incidental or one-time users with questions that need to be solved in a number
or steps. Many of these questions first need to be reformulated or abstracted into
the terminological and conceptual context of a domain before a solution can be given
(see, for example, the classic work in the context of expert systems by Clancey (1985)).
Despite these benefits at present not many sites provide problem-oriented navigation
support. One reason is that it is hard to predict in advance with which questions
users will come to the site and how this will influence navigation. Moreover, creating
advanced navigation structures by hand is an extremely difficult and time consuming
task.

Existing methods to automatically support user navigation or structure web sites
do not offer problem-oriented navigation support. Recommender systems provide au-
tomated support by selecting a limited number of pages which they believe to be
interesting for the user. Many systems, including Schwab and Pohl (1999), Zhu et al.
(2003) and Mobasher et al. (2002), form clusters of pages with similar topics in such a
way that users who are interested in some of the pages from a cluster have a high prob-
ability of also being interested in the other pages from that cluster. When a user visits
a page, other pages from the cluster of the currently visited page are recommended.
The recommendations act as shortcuts, which allow the user to reach his goal without
passing through a series of less interesting pages. As we argued above, when navi-
gation involves orientation and reformulation of problems, representing user interests
as topic clusters is no longer sufficient. Two pages from the same cluster can be very
similar in topic but one may contain introductory information and the other a detailed
solution. In this case the introductory page should be recommended first or appear
first in a navigation structure.

In this chapter we propose a method to automatically create navigation compo-
nents that indicate the preferred reading order for the pages of a web site. The
sequential structures underlying these components consist of a number of so called
navigation stages. The stages represent groups of pages that fulfill the same role the
users’ navigation processes. Input to the algorithm is the information stored in the
site’s log files. From the patterns found in the logs the optimal number of stages is de-

4.2. The SeniorGezond site 81

termined and each page is assigned to a single stage. At the same time the algorithm
minimizes the number of times the stage order is violated in the user logs.

The stages that are discovered can be combined with an (automatically constructed)
content-based structure to construct problem-oriented navigation support. This sup-
port can be offered in the form of a menu in which pages are presented in the preferred
order or recommendations that do not appear until the user has visited the relevant
introductory pages. Other possible applications include filtering or ranking the results
of a search engine so that the results match the current stage of the user’s navigation
process.

The stage discovery algorithm is applicable to sites where the users prefer to read
the pages in a specific order, but where the initial navigation structures do not enforce
a reading order. If the navigation structure influences the reading order too strongly,
the discovered navigation patterns reflect the structure of the site instead of the users’
preferences. This happens for instance when the algorithm is applied to sites that
rely on in-text links as primary means of navigation. In-text links force users to click
through series of pages before other pages can be reached. Consequently, the page
order imposed by the link structure will appear as the dominant pattern in the log files.
Examples of navigation means to which our method is applicable are topic-oriented
menus. The menus show the user where the pages on some topic are located, but do
not prescribe in which order the pages should be read. Other suitable structures are
site search engines. The order of the pages in result lists indicate the pages’ relevance
but not their reading order.

The remainder of this chapter is organized as follows. Section 4.2 specifies the
task of discovering stages. Section 4.3 discusses related work. Section 4.4 describes
the stage discovery algorithm. In sections 4.5 and 4.6 we evaluate the algorithm on log
data collected in user experiments. In section 4.7 artificial data is used to examine the
sensitivity of the algorithm to characteristics of the log data. Section 4.8 demonstrates
how a stage model can be used for building order sensitive menu structures. The last
section contains conclusions and suggestions for further research.

4.2 The SeniorGezond site

In this section we describe the navigation structure of the SeniorGezond site (Se-
niorGezond, 2007) which motivated us to create the stage model. The SeniorGezond
site is a Dutch healthcare site developed by the Netherlands Organization for Applied
Scientific Research (TNO) in cooperation with domain specialists from the Geriatric
Network and the Leiden University Medical Center. It contains information for elderly
people about the prevention of falling accidents (Alpay et al., 2007).

Before the current navigation menu of the SeniorGezond site was developed, other
menu structures were designed and tried out in various prototypes. In the first proto-
type a purely topic-oriented structure was used. Evaluation of this prototype showed
that people experienced great difficulties in expressing their problems in terms of the
site’s topics (Alpay et al., 2004). This motivated the developers to build a navigation
structure that is directed more at the viewpoint of the visitors.

82 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

The current navigation menu of the SeniorGezond site reflects the Precaution
Adoption Process (PAP) model, a psychological model that describes how people be-
come aware of their problems and translate their problems into actions (Alpay et al.,
2007). The stages of the PAP model are translated into a menu structure with three
layers. The first layer consists of problem descriptions, the second layer consists of
descriptions of general solutions and the third layer consists of practical information
about products and services that implement the general solutions. The product pages
contain the information that in the end solves the users’ problems. The other two lay-
ers help the users to articulate their problems and provide information about available
solutions. A screenshot of the SeniorGezond site and the layered menu can be found
in Figure 4.1.

The problem-oriented menu of the SeniorGezond site has two dimensions. The
horizontal axis or the layers of the menu represent navigation stages. On the vertical
axis we see a number of topics such as dizziness and joint wear. Automatically finding
clusters of pages with similar topics, as on the vertical axis, is a well known task that
is worked on by many researchers, including Mobasher et al. (2002), Perkowitz and

Figure 4.1: A screenshot of the SeniorGezond site and its problem-oriented menu (in Dutch).
The screenshot shows a product page about rollators. In the menu this product is connected to
the solution ‘Loophulpmiddel nodig?’ (Need a walking aid?) and the problem ‘Gewrichtsslijtage’
(joint wear).

4.2. The SeniorGezond site 83

Etzioni (2000) and Pierrakos and Paliouras (2005). The emphasis of our work is on
the other dimension: finding the stage structure.

We define a navigation stage as a group of pages that play similar roles in the
users’ navigation processes. The structure that our method searches for consists of a
set of stages and a relative ordering of the stages. The stages are ordered in such a
way that users generally prefer to visit pages from the first stage at the beginning of
their sessions, then proceed to pages from the second stage, etc. There is no preferred
visiting order for two pages within the same stage.

Ezendam et al. (Ezendam et al., 2005; Alpay et al., 2007) evaluated the layered
structure of the SeniorGezond site by analysis of the log files and a usability study.
They found that all three layers of the menu were visited frequently and that most
transitions between pages occurred within layers or from problems to solutions or
from solutions to products. Moreover, many users visited all three layers. The usability
study showed that people recognized the layered structure and found it easy to use.
In conclusion, Ezendam’s results provide strong evidence that the problem-oriented
structure is used as intended and that it provides better guidance than a topic-oriented
menu.

There are many other domains in which a problem-oriented structure might be
able to provide guidance. The study of Choo et al. (2000) shows that web users vary
substantially in the extent to which they know what information they are searching
for. It frequently happens that people want to solve a problem or answer a question
and do not know beforehand what solutions exist and what the site has to offer. They
can formulate their information needs in terms of the questions, but not in terms of
solutions or answers. In these cases, it is important that the site is structured around
the viewpoints of the users rather that the viewpoints of the providers of the content.

An example is someone who wants to ask the local government permission to build
a shed. In the end her question will be answered by a web page that contains the ad-
dress of an organization she needs to write to or an application form for a building
permit. However, when she visits a governmental site about building legislation she
cannot search for these organizations and permits, because she may not know that
they exist or whether they apply. Here a problem-oriented menu could be of great
help. Instead of referring her to the application form directly, it would first provide
general information about building legislation, then refer her to some application pro-
cedures and finally to a downloadable application form. A similar situation occurs
when someone wants to buy some product he is not familiar with. A topic-oriented
menu orders the available products according to some product features. If the visitor
does not know exactly what he needs he might not be able to select the features that
are most appropriate for his situation. A problem-oriented structure starts with offer-
ing more general information about product types and product features. In the next
step this information can be used to select a product.

In spite of the potential benefit of problem-oriented menus, not many sites offer
this service. No doubt one of the reasons for this is the considerable effort needed to
create these structures. In this chapter we present a method to automate this process.
It allows site owners to learn the order in which users want to read the pages of a site
and it creates a problem-oriented navigation structure. The method saves site owners

84 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

the effort of restructuring the contents of the site and saves the users the effort of
tracking the relevant information through the site’s structure.

4.3 Related work

In recent years much research has been devoted to the automatic construction and
adaptation of navigation structures. Probably the most notable in this respect is the
work of Perkowitz and Etzioni (2000). They developed PageGather, an algorithm to
automatically create index pages for web sites. PageGather creates a graph represent-
ing pages and their co-occurrences in the users’ sessions. The connected components
in the graph form the basis of the index pages. More recently Pierrakos and Paliouras
(2005) invented an algorithm to select parts of a web directory that are interesting
for a group of users. Their Community Directory Miner employs probabilistic latent
semantic analysis to extract clusters of users with common interests and to select page
categories that correspond to these interests. The Web Montage system (Anderson
and Horvitz, 2002) automatically assembles personalized start pages (montages) for
web users. The montages contain links to pages that the user has visited in contexts
similar to his current situation. By providing shortcuts to frequently accessed web
content the Web Montage system facilitates routine web browsing. In Hollink et al.
(2005b) we presented an algorithm that uses the information gain criterion to opti-
mize a navigation menu in terms of the number of steps that users need to reach their
target information. Web personalization refers to a large family of methods to adapt
web navigation structures or web content to individual users. For a survey of usage-
based personalization methods we refer to Pierrakos et al. (2003). A more broad
view on adaptive navigation support in the context of adaptive hypermedia is given in
Brusilovsky (2001).

A large majority of the research on navigation adaptation for both groups of users
and individuals, including the ones mentioned above, focuses on the selection of in-
teresting content. Much less attention has been paid to the order in which the pages
should be presented to the users. An exception is the work on educational hyper-
media (e.g. De Bra and Calvi, 1998; Brusilovsky et al., 1998). However, here the
preferred order of the pages, or more general the content chunks, is specified by hand.
Although it is generally agreed that the need to specify these relations is one of the
main drawbacks of these systems, to our knowledge no attempts have been made to
automatically learn the prerequisites from user behavior.

A variety of machine learning techniques have been applied to the task of learning
a model of web usage. Again, most models only include page relevance and not page
order. A type of models that do include page order are Markov models (e.g. Pitkow and
Pirolli, 1999; Sarukkai, 2000; Deshpande and Karypis, 2004). Markov models make
predictions about the next step of a user using the observed frequencies of sequences
of pages in the log files. They contain information about sequences of individual pages,
but do not specify relations between larger units such as page clusters. This lack of
a large scale structure means that they do not provide insights in the behavior of the
users and cannot serve as a basis for automatically created navigation structures.

4.3. Related work 85

In Anderson et al. (2001) and Cadez et al. (2003) mixtures of Markov models are
used to find clusters of users with similar browsing patterns. A limitation of this work is
that the patterns that characterize the clusters are restricted to sequences of manually
assigned page categories. These sequences can be viewed as navigation stages, but the
possible stages are limited to the predefined page categories.

Ypma and Heskes (2003) overcome this problem by representing web user behav-
ior as a hidden Markov model (HMM). In HMMs the hard-coded page categories are
replaced by a number of unobservable states. The current state of a user determines
the probability of visiting pages and moving to other states. In theory, the states of
a HMM can contain pages with similar topics as well as similar stages. However, in-
spection of the states produced in Ypma and Heskes (2003) reveals that in practice
the pages are primarily grouped by topic. Moreover, the simultaneous optimization of
stages and topics makes learning HMMs computationally expensive. Furthermore, for
the creation of navigation structures HMMs yield the same problem as Markov mod-
els, albeit to a lesser extent. The states of a HMM provide some structure, but it is not
completely clear how they can be translated into a navigation structure.

A more clear interpretation can be given to the model presented in Jin et al. (2005).
Just like Pierrakos and Paliouras (2005) they use probabilistic latent semantic analysis
to detect clusters of users who have visited similar sets of pages (in the paper called
tasks). Once the clusters have been fixed, the authors find task-level usage patterns by
computing the most likely tasks in each step of the users’ navigation. These patterns
provide information about tasks that are frequently performed subsequently in a ses-
sion. A drawback of this approach is that tasks can only be distinguished if they are
frequently performed in isolation. Series of subtasks that are almost always performed
together are viewed as one task. This makes the method appropriate for finding top-
level tasks, but not for dividing the navigation within tasks into stages.

Another interesting model of web usage is the information foraging theory first
introduced in Pirolli and Fu (2003). The theory describes how people decide when to
keep browsing in the current information source (web site) and when to go search-
ing for a better source. According to Pirolli and Fu, people estimate the amount of
relevant information that can be found on a site based on the site’s information scent.
When the information scent becomes too low they switch to another site with a higher
scent. Pirolli and Fu model the sequential behavior of users who are trying to fulfill an
information need. The model explains how an information need gets satisfied when
information is found, but not how an information need is changed by the information
found so far. As a result, navigation assistance systems based on the information for-
aging theory, such as the one in Herder (2004), can help users to find trails along the
most informative pages, but the theory does not prescribe in which order the pages
should be on the trail

In sum, an extensive amount of work has been devoted to the automatic creation
of link structures, but in this area presenting the links in the right order has received
little or no attention. Possibly, this is due to the lack of order sensitive models that are
comprehensible enough to be used in navigation structures. In Hollink et al. (2005a)
we presented a method for finding a simple and understandable model of web usage in
which the main order characteristics are preserved. In the current work this algorithm

86 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

is refined and evaluated in more depth. Moreover, here we go beyond building the
model and show how it can be used to automatically create sequential navigation
structures.

At the algorithmic level the method presented in this chapter bears some resem-
blance to scaling methods such as uni-dimensional preference scaling (Carroll, 1972)
and ordinal utility revelation (Domshlak and Joachims, 2007). Like our method, these
methods seek to convey the underlying structure in a set of items by scaling them onto
one dimension. Scaling methods make use of observed relations between items. If we
apply scaling to web usage data, the items are pages and the relation between them
is ‘is visited (directly) before’. A problem occurs when two sets of pages occur almost
never in the same sessions. In this case the scaling algorithms have no accurate infor-
mation about the relative positions of the two sets of pages. Our algorithm overcomes
this problem by using the positions of the pages in the sessions which makes all pages
comparable.

4.4 The stage discovery algorithm

In this section we present an algorithm that automatically divides the pages of a web
site into navigation stages. Each stage represents a group of pages for which the order
of their requests cannot be accurately predicted, but that as a group can be ordered
relative to other groups. The pages in a stage may not have similar topics, but play
similar roles in the users’ navigation processes.

The stage discovery algorithm needs as input a set of log files of the site for which
a stage structure is created. To collect these logs the site must have been online for
some time. Moreover, while the server logs are collected, the site’s navigation structure
must not force the users to visit the pages in a specific order. As we discussed in
the introduction, many commonly used navigation structures fulfill this requirement,
including topic-based menus and site search engines.

The stage discovery algorithm does not make use of the pages’ contents. Content-
based methods use word similarity to cluster pages with related topics. These clusters
may not correspond to stage structures because pages with similar roles do not nec-
essarily contain similar words. As a result, one topic cluster can contain both generic
introductory pages and pages with highly specific information.

Figure 4.2 shows the top level of the algorithm in pseudocode. The algorithm is
composed of three main steps that are discussed in detail below:

1. Initialization The pages are scaled along one dimension (i).

2. Stage construction By clustering the scale is divided into an optimal number of
stages and the pages are assigned to the stages (ii).

3. Stage optimization The page assignments are optimized through bootstrapping
(iii).

4.4. The stage discovery algorithm 87

Algorithm 4.1: Discover_stages(log_ f i l es)

sessions� Preprocessplog_ f i l esq
fARP � Initializepsessionsq (i)
fstage � Construct_stagesp fARP , sessionsq (ii)
fstage � Optimize_stagesp fstage, sessionsq (iii)
return p fstageq

Figure 4.2: The top level of the stage discovery algorithm.

4.4.1 Initialization

Before the actual initialization starts, the sessions of individual users are extracted
from the server logs. Here a session is defined as the sequence of pages that a user has
viewed during her visit to the site. When users are required to login to the site, the
requests of individual users can be uniquely identified. Otherwise, the sessions need
to be restored from the IP addresses and browser information that are available in
standard log files. Log files of sites with dynamically created pages sometimes contain
large numbers of URLs pointing to pages with almost the same contents. In this case
pages with very similar contents need to mapped onto one URL. A wealth of techniques
has been developed to improve the quality of restored sessions when proxies and
caching are used (e.g. Cooley et al., 1999), but a discussion of these techniques is
beyond the scope of this thesis. From now on we assume that the sessions are restored
and represented as lists of consecutively visited pages.

The second preprocessing step is the removal of all revisits from the restored ses-
sions. Users who are visiting pages from one stage might sometimes go back to a page
from the previous stage that they have already visited to look up details they do not
remember accurately. To prevent the algorithm from incorrectly inferring that these
pages belong to the later stage, we remove all revisits from the sessions. Another ad-
vantage of removing the revisits is that it removes the difference between sessions of
users who use browser caching and sessions of users who do not use browser caching.

After preprocessing the actual initialization step starts. In this step the pages are
laid out on a one-dimensional scale that reflects the parts of the sessions in which they
are visited most often. The initialization process is summarized in Figure 4.3.

The algorithm starts with collecting the positions of the pages in each session and
normalizing the positions by dividing them by the length of the session. We define the
relative position (RP) of a page p at the k th place in a session consisting of m page
visits as:

RPppq � pk� 1q{pm� 1q
The position of a page in a session with only one page is defined as 0.5. The average

relative position (ARP) of a page is the average over its relative positions in all ses-

88 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

Algorithm 4.2: Initialize(sessions)

for each s P sessions

do

$&%for i � 1 to |s|
do

"
p � the page on position i in s

Add Relative_positionpi, |s|q to RP_l istp

for each p P pages

do fARPppq � AveragepRP_l istpq
return p fARPq
procedure Relative_positionpposi t ion, session_l eng thq
if session_l eng th� 1

then return p0.5q
else return pposi t ion� 1q{psession_l eng th�1q

Figure 4.3: The first step of the stage discovery algorithm: initialization.

sions in which it appears. In the pseudocode in Figure 4.3 the ARPs of the pages are
represented as a function fARP that maps pages onto ARP values.

The reason for introducing the concept of average relative position is that it allows
us to lay down all pages onto a one-dimensional scale. The position on this scale
reflects the part of the sessions in which the page is visited most often. Pages with
low ARP values are visited mainly in the beginning of sessions, while pages with high
ARPs belong to the end of sessions. This insight is formalized in the second step of the
stage discovery algorithm where the stages are constructed.

4.4.2 Stage construction

In the stage construction step the ARP values of the pages are clustered. The resulting
page clusters form the initial stages. In addition, in this step we determine in how
many stages the navigation can be decomposed. Figure 4.4 shows the construction
process in pseudocode. In the coming paragraphs we first explain how we transform
the ARP values into stages when the number of stages is known (in Figure 4.4 starting
at (i)) and then we explain how the optimal number of stages can be estimated (iv).

Constructing a fixed number of stages

To divide the ARP scale into n clusters we apply the Expectation Maximization (EM) al-
gorithm (Dempster et al., 1977). The EM algorithm fits a mixture of n one-dimensional
Gaussians to the ARP values (i). In the resulting mixture each Gaussian corresponds
to a cluster of ARP values. To transform the Gaussians into stages we compute for

4.4. The stage discovery algorithm 89

each Gaussian in which interval of the ARP scale the Gaussian is the most likely com-
ponent. In other words, we compute the intersection points of the Gaussians in the
mixture (ii). The intersection points divide the ARP scale into a number of regions
that correspond to the stages.

Now each page can be assigned to the stage in which ARP region the page’s ARP
value falls. However, the assignment of pages with ARPs close to the region boundaries
is very insecure. Therefore, for each stage we increase the lower boundary of its region
and decrease the upper boundary of its region until only 70% of the stage’s original
ARP region remains (iii). Pages with ARPs within these intervals are assigned to the
corresponding stages. The assignment of pages with ARP values outside the stage
boundaries is postponed to the last step of the stage discovery algorithm. In Figure 4.4
the stage assignments are represented by the function fstage that maps pages onto
stages.

Algorithm 4.3: Construct_stages(fARP , sessions)

best_ f i tness� 0

for no_stages� 1 to max_no_stages

do

$''''''''''''''''''&''''''''''''''''''%
l ikel ihood, gaussians� EMpno_stages,Rangep fARPqq (i)
ARP_reg ions� Intersect_pointspgaussiansq (ii)
ARP_reg ions� Tighten_regionsp0.7, ARP_reg ionsq (iii)
for each p P pages

do

$''&''% fstageppq�?

for c � 1 to no_stages

do

"
if fARPppq within ARP_reg ionsrcs

then fstageppq � c

f i tness� p1�αq � l ikel ihood �α � Proportion_regularpsessions, fstageq (iv)
if f i tness¥ best_ f i tness

then

"
best_ fstage � fstage

best_ f i tness� f i tness

return pbest_ fstageq
Figure 4.4: The second step of the stage discovery algorithm: stage construction.

Determining the number of stages

As can be seen in Figure 4.4 the optimal number of stages is determined by generating
and evaluating models with increasing numbers of stages and selecting the best per-
forming model. Intuitively, the best performing model is the one that most accurately
describes the user behavior that is found in the log data. The quality of a model’s fit
to the ARP data is expressed by the average log-likelihood of the ARP values given

90 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

the Gaussian mixture. However, this measure alone does not suffice to compare the
performance of mixture models as models with more components always have the po-
tential to fit the data at least as good as models with fewer components. Consequently,
using only the log-likelihood could lead to severe overfitting.

To prevent the selection of overly complex models the likelihood needs to be com-
bined with a measure that favors models with smaller numbers of stages. One pos-
sibility is to penalize models relative to the number of model components. However,
for this problem a more meaningful solution is at hand. The proportion regular transi-

tions reflects the extent to which the individual user sessions follow the stage pattern
prescribed by the model. The more sessions follow the pattern, the better the model.
The proportion regular transitions is defined as the proportion of the page transitions
made in the user sessions in the log file that are regular according to a model. A transi-
tion between two consecutively visited pages is regular if the pages are from the same
stage or if the stage of the first page directly precedes the stage of the second page.

The proportion regular transitions is generally smaller when a model with fewer
components is used, because smaller models place fewer restrictions on the page order.
According to a model with only one stage all transitions occur within one stage and
thus all transitions are regular. In the other extreme, a model that assigns each page to
a separate stage prescribes a complete page ordering. With this model all deviations
from the prescribed path are marked as irregular.

As a final measure of model performance, we define the fitness of a model as a
linear combination of its average log-likelihood and its proportion regular transitions:

F i tnesspn|Sq� p1�αq � Likel ihoodpS|nq�α � Propor t ion_regularpS|nq
Here Likel ihoodpS|nq is the average log-likelihood of the sessions S given the model
with n stages. Propor t ion_regularpS|nq is the proportion of the page transitions in S

that are regular according to the model with n stages. α is a weighting parameter.

In the current version of the algorithm we test all models with a number of stages
smaller than some user specified value. The model in this set with the highest fitness
is used to create the initial stage assignment that is passed on to the next step of the
stage discovery algorithm. Another possibility is to start with a model with one stage
and test continually larger models until the fitness no longer increases. In this work
we chose to implement the former method. It requires a little more computation, but
is less sensitive to variations in the fitness.

The EM algorithm does not always result in a fit that can be interpreted as a valid
stage model. Sometimes one of the model components ‘dies’, its prior probability
becomes zero. In this case the model effectively has become a model with a smaller
number of stages. Another possibility is that one Gaussian is superimposed on another
Gaussian, so that the regions between the Gaussians’ intersection points do not include
the means of the distributions. In both situation we consider the fitted model to be
an invalid stage model and assign it a fitness of zero. Note that both problems do not
occur with one-stage models. This means that a one-stage model (a model without
a division in stages) is correctly marked as the preferred choice when no other valid
stage model can be found for a data set.

4.4. The stage discovery algorithm 91

4.4.3 Stage optimization

In the previous section the pages were assigned to stages on the basis of the parts of the
sessions in which they occurred most. Here we improve the classification by looking
at the context in which the pages occur in the individual sessions (see Figure 4.5 for
the pseudocode).

In our model stages are strictly ordered, so that most navigation steps occur within
one stage or from a page from one stage to a page from the next stage. As a conse-
quence, a page which occurs in the sessions mostly between two pages from stage s

has a high probability of belonging to stage s. We use this idea to correct the classifica-
tion of pages that are initially assigned to an incorrect stage. For each page p and each
stage s we count the number of times p occurs between two pages of stage s. We define
the evidence of misclassification of p as the difference between the number of times p

occurs in its current stage and the maximum number of times p occurs in some other
stage (ii). The pages with the highest evidence of misclassification are reassigned to
the stage in which they occur most (iii). With the new classifications for each page the
evidence of misclassification is recomputed and again the stages of the pages with the
highest evidence are changed. This bootstrapping process is continued until no more
stage changes are made or until a maximum number of cycles is reached.

Because the bootstrapping process can be sensitive to sessions of users who did
not follow the stage structure very accurately, it is embedded in a larger cycle. The
first time the bootstrapping process is called we use only sessions that have a least
90% regular page transitions (i). In later cycles this restriction is gradually relaxed
until all sessions are used with at most 50% regular page transitions (iv). In this way
we improve the quality of the data that is used during bootstrapping and reduce the
chance that the process drifts towards a suboptimal classification.

4.4.4 Complexity

The stage discovery algorithm is designed to run offline. There is no need to rerun
the algorithm each time a user requests a page, as the discovered stage structures are
typically stable behavior patterns that do not change on a daily basis. As a result, the
running time of the algorithm is not a major issue. Nevertheless, in this section we
briefly discuss the algorithm’s space and time requirements as scalability is essential
when using web log data.

The initialization phase involves one pass through the log file. The time and mem-
ory complexity of this phase are linear in the length of the log file. For stage con-
struction more resources are needed. The time complexity of one iteration of the EM
algorithm is linear in the size of the data set and the number of model components.
The data set consists of one data point per page so that the complexity becomes Opp.nq,
where p is the number of pages on the site and n is the number of stages. The number
of cycles that the algorithm needs to converge depends on the distribution of the data
and is hard to predict in advance. However, in practice for many data sets the num-
ber of cycles appears to be approximately constant under varying amounts of data and
model components (e.g. Cadez et al., 2003). In these cases the total time complexity is

92 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

Algorithm 4.4: Optimize_stages(fstage , sessions)

min_regular � 0.9

while min_regular ¥ 0.5

do

$''''''''''''''''''&''''''''''''''''''%
reg_sessions�H
for each s P sessions

do

"
if Proportion_regularps, fstageq ¥ min_regular (i)

then Add s to set reg_sessions

for c ycl e� 1 to max_no_c ycl es

do

$''''''&''''''%miss_evidence� MaxtpPpages,cPRangep fstagequ (ii)pEvidencepp, c, fstage, reg_sessionsq�Evidencepp, fstageppq, fstage, reg_sessionsqq
if miss_evidence� 0

then break

fstage � Repair_stagespmiss_evidence, fstageq (iii)
min_regular � min_regular� 0.1 (iv)

return p f _stageq
procedure Evidenceppage, stage, fstage, sessionsq
evidence� 0

for each s P sessions

do

$''&''%for i � 2 to |s|� 1

do

$&%pi � the page on position i in s

if pi � page and fstageppi�1q � fstageppi�1q � stage

then evidence� evidence� 1

return pevidenceq
Figure 4.5: The third step of the stage discovery algorithm: stage optimization.

linear in the number of data points and the number of components. Our experiments
suggest that also for the stage discovery algorithm this relation is roughly linear. To
determine the optimal number of stages the construction process is run with various
numbers of stages. For each number of stages EM is called and the log file is traversed
to determine the proportion regular transitions. As a result, the time complexity of
the stage construction phase is OpN .pp. 1

2
.pN � 1q � sqq, where s is the size of the log

file and N is the maximum number of stages. The memory requirements of the EM
algorithm are modest as only the values of the current cycle need to be stored. The
space complexity is Opp.nq.

In the stage optimization phase for each regularity level the algorithm makes one
pass through the log file to select the regular sessions. With these sessions a number
of bootstrapping cycles are performed. The time needed for one bootstrapping cycle

4.5. Discovering stages for the SeniorGezond site 93

is Oprq, where r is the number of regular sessions. Our experiments indicate that the
number of bootstrapping cycles does not increase with increasing numbers of sessions.
Consequently, the time needed to perform the bootstrapping process is linear in the
number of regular sessions. In total, the time complexity of the optimization phase
is Ops� b.rq per regularity level, where b is the number of bootstrapping cycles. The
space complexity is Opr � pq.

The time requirements of the stage optimization phase can be problematic when
s and r are very large. Fortunately, the time can easily be reduced by increasing the
required proportion of regular transitions. The minimum proportion of regular transi-
tions can thus be used as a parameter to control the computational costs. Increasing
this parameter reduces both the number of bootstrapping cycles and the number of
sessions included in bootstrapping.

Because the total time and space requirements of the stage discovery algorithm are
linear in the length of the log file and the number of pages of the site, the algorithm can
be used on large data sets. To give an indication of the practical running time: running
the algorithm on the log data from the SeniorGezond experiment (244 sessions with
in total 5057 server requests, see section 4.5) takes 7 seconds on a normal desktop
computer using an implementation that was not extensively optimized.

4.5 Discovering stages for the SeniorGezond site

To evaluate whether the stage discovery algorithm is able to produce useful stage
structures, we test it on two different domains. The first domain is the SeniorGezond
site that was discussed in section 4.2. The second domain is described in section 4.6.
In both cases the structure of the web sites is used as a gold standard to which the
classification made by the algorithm is compared.

In this section we apply the stage discovery algorithm to log data from the Se-
niorGezond site to see whether the algorithm is able to reconstruct the site’s stage
structure from the users’ navigation patterns. In this experiment we used a simplified
version of the site. Instead of the stage-oriented menu this version contained only a
single large menu with a long list of links to all pages of the site. Furthermore, all
external links, in-text links and other means of navigation were removed.

Thirty participants performed each ten search tasks on the modified SeniorGezond
site. In each task the participants were asked to play the role of an elderly person
in a problematic situation who searched the SeniorGezond site for a solution. The
formulation of the problem descriptions was on purpose a little vague. We wanted
to simulate users who felt they had a problem, but were not able to clearly articulate
their problem. An example of a problem description can be found in Appendix A.1.
The participants were mainly computer science students. None of them knew the
purpose of the experiment.

The participants accessed the modified site through a login page. During the search
assignments all clicks were recorded. For each assignment of each participant we listed
the pages that were viewed consecutively during the performance of the assignment.
This resulted in 244 lists of pages (sessions) with an average length of 7.3 page views

94 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

Page type No. pages No. visited No. visits Avg. no. visits
pages per visited page

Problems 10 10 355 35.5
Solutions 27 20 732 36.6
Products 83 60 685 11.4
Total 120 90 1772 19.7

Table 4.1: The number of pages and page visits per page type in the SeniorGezond experiment
after removal of revisits.

(after revisit removal). As shown in Table 4.1, 90 of the 120 pages were visited at least
once. In the following discussion we will only consider the 90 visited pages, since the
algorithm has no information about the remaining 30 pages. This does not affect the
scope of our conclusions, because in a real application we can safely assume that all
web pages are visited.

First, we analyzed the behavior of the subjects by hand to see whether they fol-
lowed the expected pattern problemsÑ solutionsÑ products. In this analysis we made
use of the types of the pages. Of course, this information was not available to the dis-
covery algorithm. The transition matrix in Table 4.2 shows for each page type how
many times someone went from a page of this type to a page of each other type. From
the matrix it is clear that by far most transitions occur within stages or go from one
stage to the next stage. This confirms that the different page types are used during
different navigation stages. Furthermore, the transition frequencies in Table 4.2 are
very similar to the ones found for the online version of the SeniorGezond site (Alpay
et al., 2007). Apparently, the tasks used in the experiment elicit behavior that closely
resembles that of the real users.

To type

Problems Solutions Products Stop

Start 75.4 20.1 4.5 -

From Problems 38.9 52.1 4.8 4.2
type Solutions 3.0 63.5 25.0 8.5

Products 1.6 4.8 69.2 24.4

Table 4.2: Relative frequency of transitions between the page types of the SeniorGezond site in
percentages.

The navigation stages can be seen even more clearly from the ARP distributions of
the three page types shown in Figure 4.6. The figure clearly shows that the problem

pages are visited mostly in the beginning of the sessions, the solution pages in the
middle and the product pages in the end. From these results we conclude that for our
users the three page types of the SeniorGezond site indeed form navigation stages:
the problem pages form the first stage, the solutions the second stage and the products
the third stage.

Above we showed that the three navigation stages of the SeniorGezond site can be
seen clearly when the types of the pages are known. We will now demonstrate that

4.5. Discovering stages for the SeniorGezond site 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
fr

eq
u
en

cy

Average relative position in bins of 0.055

Problems
Solutions
Products

All

Figure 4.6: The distribution of the ARPs of the pages in the log data of the SeniorGezond experi-
ment.

the stage discovery algorithm can find the stages without requiring knowledge about
the types of the pages.

To determine the number of stages we fitted models with one up to eight stages
and determined the fitness of these models as described in section 4.4.2. We repeated
the experiments with various values for the parameter α to determine the optimal
value for α. Figure 4.7 shows the fitness of the models when various values of α are
used. The correct number of stages, three, is found when α lies between 0 and 0.625,
with the most clear optimum around 0.25.

When the stage discovery algorithm is applied to a new site, the optimal value for
α cannot be determined is this way, as for a new site the correct number of stages is
unknown. However, in the following sections we will see that an α of 0.25 also works
well in other domains, so that in a new domain this value can be used directly.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

F
it

n
es

s

Number of stages

Average likelihood
Part regular transitions

Alpha = 0.25
Alpha = 0.5

Alpha = 0.75

Figure 4.7: The fitness of models with various numbers of stages and various values of α for the
SeniorGezond data.

96 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

Next, the model with three stages was used to assign each page to a stage. Ta-
ble 4.3 shows the proportion of the SeniorGezond pages that was classified correctly,
the accuracy. Note that a stage assignment is called correct if a problem page is as-
signed to the first stage, a solution to the second stage or a product page to the third
stage. After the stage construction step 86% of the pages were assigned to the correct
stage. As visible in the table most problem and product pages were classified correctly,
but the assignment of the solution pages was not very accurate. Inspection of the pro-
cess showed that most of these pages were not really misclassified, but not yet assigned
to a stage. In the stage optimization step these unclassified pages were assigned to a
stage and all misclassifications were repaired. In the end all pages were assigned to
the correct stage. These results lead to the conclusion that the stage discovery algo-
rithm can accurately discover the navigation stages of the SeniorGezond site from log
files.

Accuracy

Step Problems Solutions Products Total

Stage construction 0.90 0.45 0.98 0.86
Stage optimization 1.00 1.00 1.00 1.00

Table 4.3: The accuracy of the stage discovery algorithm on the pages of the SeniorGezond site.

4.6 Discovering stages for a hardware comparison site

We replicated the SeniorGezond experiment with pages and tasks in a second do-
main. The site we used in this experiment contains information about computers and
products related to computers such as printers and digital cameras. The site not only
provides information about specific products and terminology, but also about the im-
portance of the various features of the products.

The site consists mainly of four page types. The so called howto pages tell the users
how to buy a product from some category. They discuss the different types of prod-
ucts, the importance of the features for various purposes and explain the terminology
used to describe the features. For instance, the ‘How to buy a printer’ pages explain
the difference between laser printers and inkjet printers and advice the users on which
type of printer to buy in which situation. In addition, they explain the importance of
features such as resolution and cartridge capacity. The overview pages provide a side-
by-side comparison between a number of top-rated products. For example, the laser
printer overview pages show small photos of ten laser printers and list briefly the most
important features of each printer. The most specific pages are the product pages.
These pages contain detailed information about single products. The full specifica-
tions of the products are given and for some products a series of photos is provided.
Besides these three types of structured pages, the site also contains a number of news
articles. These address a wide variety of topics, including new developments, trends
and opinions.

4.6. Discovering stages for a hardware comparison site 97

Users who want to buy a product without being an expert in the area of the product
can first explore the domain by reading the howto pages. Once they have an idea of
their needs in terms of product features, they can use the overview pages to select some
promising products. Finally, they can make a decision based on the specific product
features. This scenario suggests that the howto pages form the first navigation stage,
the overview pages the second and the product pages the third stage. The role of the
news pages is less clear.

Despite the natural order of the page types, the hardware site does not provide
a stage-oriented menu. All four page types are represented as top level items in the
site’s menu. The links to the howto pages are not emphasized, so that the user is given
no clue about what pages are good starting points. In contrast, a stage-oriented menu
would guide the users from the howto pages via the overview pages to the product

pages. Such a menu could potentially reduce the users’ efforts needed to find the
pages that are relevant in each stage of the search process.

To see whether users are indeed inclined to visit the hardware pages in some order
we conducted an experiment parallel to SeniorGezond experiment. For this experi-
ment we selected howto, overview, product and news pages from eleven product cate-
gories. Again we removed the menu and link structure from the pages and replaced it
by a flat menu that did not impose or suggest any visiting order. The number of pages
in the hardware comparison experiment was much larger than in the SeniorGezond
experiment (303 vs. 120), which made it much harder for the participants to locate
the useful pages. With this number of pages selecting a page from an alphabetic list
of links to all pages of the site would take to long. Therefore, we added a selection
facility, which allowed the participants to enter keywords and only view links to pages
that contained the keywords. The selected links were still ordered alphabetically and
not by relevance, so that the link order did not bias the participants’ choices.

Thirty-one participants performed ten search tasks. In each task the participants
played the role of a person who wanted to buy a product for some purpose, but who
was not knowledgeable in the domain. An example of a task description can be found
in Appendix A.2. The experiment resulted in 288 sessions with an average of 6.4 page
views per session (after revisit removal). These figures are comparable to the figures
of the SeniorGezond experiment. However, the hardware comparison site contained
more pages than the SeniorGezond site, so that the individual pages were visited less
frequently as shown in Table 4.4.

Page type No. pages No. visited No. visits Avg. no. visits
pages per visited page

Howtos 44 40 543 13.6
Overviews 27 26 359 13.8
Products 136 122 804 6.6
News 96 59 136 2.3
Total 303 247 1842 7.5

Table 4.4: The number of pages and page visits per page type in the hardware comparison
experiment.

98 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

Figure 4.8 shows the distribution of the ARPs of the four page types of the hard-
ware site. The figure confirms our hypothesis that the howto pages are visited mostly
in the beginning of the sessions, the overview pages in the middle and the product

pages in the end. Another interesting finding is that the news pages did not seem to
belong to a navigation stage, but were visited throughout the sessions. We did not
include the transition matrix here, but it shows the same patterns.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
fr

eq
u
en

cy

Average relative position in bins of 0.055

Howto
Overview
Products

News

Figure 4.8: The distribution of the ARPs of the pages in the log data of the hardware comparison
experiment.

The stage discovery algorithm was applied to the log data. Figure 4.9 shows the
fitness of models with various numbers of stages. The models with 6 and 8 stages have
a fitness of 0. In these cases the solutions of the EM algorithm were not valid stage
models, because one of the model components had zero probability (see section 4.4.2).
Unfortunately, the model with three stages did not have the highest fitness with any
value of α. The algorithm comes closest to the correct solution when an α of 0.25 is
used, which coincides with the optimal value found in the SeniorGezond experiment.
The average likelihood and proportion regular transitions in Figure 4.9 follow less
smooth courses than the ones of the SeniorGezond data. This is most likely due to the
smaller numbers of visits per page, which makes the ARP values less accurate and the
boundaries of the stages less sharp. In the next section the negative effect of small
amounts of data is shown in simulation experiments.

Subsequently, we evaluated how accurate the stage discovery algorithm could find
the stages, when the optimal number of stages was known. The algorithm was applied
to the experimental data and assigned all visited pages to a stage. We limit the compu-
tation of the classification accuracy to the howto, overview and product pages, because
the news pages do not have a correct stage. Ideally the algorithm would recognize
automatically which pages belong to a particular part of the sessions and which pages
are visited throughout the sessions, but the current version does not yet include this
feature.

The accuracy of the classification after stage construction and stage optimization is
shown in Table 4.5. The algorithm assigned 76% of the pages to the correct stage. The

4.6. Discovering stages for a hardware comparison site 99

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

F
it

n
es

s

Number of stages

Average likelihood
Part regular transitions

Alpha = 0.25
Alpha = 0.5

Alpha = 0.75

Figure 4.9: The fitness of models with various numbers of stages and various values of α for the
hardware comparison data.

classification of the howto and overview pages was very accurate, but the classification
of the product pages proved more difficult. This difference can be explained by the
fact that the howto and overview pages are visited twice as much as the product pages
(see Table 4.4). More visits per page make the ARP values more accurate and provide
more evidence during the optimization phase. This fact also explains the difference
with the accuracies found in the SeniorGezond experiment. In the next section, we
evaluate the effect of the number of pages on the accuracy in detail.

Accuracy

Step Howto Overview Products Total

Stage construction 0.78 0.69 0.61 0.66
Stage optimization 0.90 0.88 0.69 0.76

Table 4.5: The accuracy of the stage discovery algorithm on the pages of the hardware compari-
son site.

The effect of the size of the log files can be seen in Figure 4.10. This plot was
created by running the stage discovery algorithm on randomly selected parts of the
hardware comparison log. Adding more data dramatically improves the accuracy of
stage construction and stage optimization. The figure suggests that at 288 sessions the
accuracy of the classification has not yet reached a maximum and can be improved by
adding more data.

In conclusion, we found strong indications that the various page types of the hard-
ware comparison site are used during different navigation stages. The stage discovery
algorithm is capable of finding the foundations of the stage structure, although more
data is necessary to automatically determine the optimal number of stages. The dis-
covered stage structure can be used to build a stage-oriented menu, which matches the
users’ search patterns (see section 4.8). Such a menu might provide better guidance
to the users than the currently available topic-based menu.

100 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 50 100 150 200 250 300

A
v
er

ag
e

ac
cu

ra
cy

Number of training sessions

Stage construction
Stage optimization

Figure 4.10: The average accuracy with various numbers of sessions taken from the log data of
the hardware comparison experiment.

4.7 Analysis of the sensitivity of the method

The previous sections discussed applications of our method to pages taken from exist-
ing sites. In this section we analyze the sensitivity of the method to several character-
istics of the data using artificial data.

The behavior of users is simulated with a finite state automaton. The automa-
ton consists of an ordered set of states and a transition function. The states in the
automaton correspond to navigation stages. The transition probabilities between the
states stand for the probabilities of going from a page in one stage to a page in another
stage. The transition probabilities are determined by three parameters: the probability
of staying in the same stage, psta y , the probability of going to the next stage, pproceed ,
and the probability of going to any other stage, p jump. Each state consists of a set of
pages. All pages in a state have equal probability of being visited. Thus, the proba-
bility of visiting a page p in stage s is the probability of going to stage s divided by
the number of pages in s. Figure 4.11 shows an example of an automaton with three
states.

The automata are used to generate sets of user sessions (log files). The generation
process starts with an empty session in the start state. A state transition is performed
with the probabilities determined by the transition function. If the new state is a
content state, a page is randomly selected from the new state and added to the session.
Then a second state transition is performed, etc. A session is complete when the stop
state is reached.

Simulation models with various characteristics are used to generate data sets for
the sensitivity tests. In each case the reference data set is the one that is most similar
to the SeniorGezond data. Like the SeniorGezond site, the model for the reference set
has 3 stages with respectively 10, 20 and 60 pages. It is used to generate 244 sessions.
Furthermore, the probability of going to a random stage (p jump) is set at the value
found in the Seniorgezond data, 0.136. The values of psta y and pproceed are adjusted,

4.7. Analysis of the sensitivity of the method 101

 '&%$!"# gf ed`a bc gf ed`a bc gf ed`a bc '&%$!"#
pproceed�psta y //

88
==

pproceed //

psta y

\\

##

��pproceed //

psta y

��

ii
AA

pproceed //

psta y

��
ww

ii

Figure 4.11: A simulation model with three content states. States are represented by circles,
pages in the states by dots. All unlabeled arrows have probability p jump{2.

so that the average length of the sessions in the reference data set becomes equal to
the average length of the SeniorGezond sessions.

4.7.1 Finding the number of stages

To determine under which conditions the right number of stages is found we used
the simulation model to generate log files with various numbers of stages and various
numbers of sessions. We had the stage discovery algorithm choose between models
with one to six stages. We repeated each experiment 50 times and evaluated in how
many cases the algorithm was able to find the correct number of stages.

Figure 4.12 shows the part of the log files for which the correct number of stages
was found when the real number of stages was 3. Best results are achieved with an α
between 0 and 0.5, in other words when the likelihood of the Gaussian mixture was
weighted more heavily than the proportion regular transitions. Within this range the
algorithm is robust against small changes in the value of α. This confirms our claim
that the an α of 0.25 can be used safely in new domains. The estimation of the number
of stages becomes much more accurate if more training sessions are available. From
Figure 4.13 we can see why: when more data is available each page is visited more
often so that the deviations of the ARPs of the pages in the various stages are smaller.
This results in larger ‘gaps’ between the ARPs of the pages from different stages which
makes the stages more easily separable.

In the next experiment we varied the number of stages by adding more stages with
20 pages between the first and the last stage. As visible in Figure 4.14, the higher the
number of stages, the more difficult it is to find the correct number of stages. When
there are more stages, the means of the ARPs of the pages of the stages lie closer
together, while the variance does not change. This increases the overlap between
the stages which makes the individual stages harder to distinguish. To be able to
discover models with more stages, better estimations of the ARP values are necessary.
As Figure 4.14 shows, this can be accomplished by acquiring larger log files.

102 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

P
re

ci
si

o
n

Alpha

244 sessions
500 sessions

1000 sessions
1500 sessions
2000 sessions

Figure 4.12: Part of the experiments in which the correct number of stages is found with various
numbers of sessions and various values of α.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 1500 1000 500 244 100

M
ea

n
 a

n
d
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
 o

f
A

R
P

s

Number of sessions

Figure 4.13: The average mean and standard deviation of the ARPs of the pages from three stages
and various amounts of training sessions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

P
re

ci
si

o
n

Number of stages

244 sessions
500 sessions

1000 sessions
2000 sessions

Figure 4.14: Part of the experiments in which the correct number of stages is found with various
numbers of stages, various numbers of sessions and an α of 0.25.

4.7. Analysis of the sensitivity of the method 103

4.7.2 Page classification

In this section we evaluate the accuracy of the stage assignment when the number of
stages is known. All presented accuracies are averages over 50 generated log files.

First, we look at the effects of stage construction and stage optimization on the
logs generated with the reference model. Figure 4.15 plots the distribution of the
accuracy over 50 runs. After stage constructions most runs have an accuracy of around
0.7. The optimization step makes some runs much better and others much worse.
This is a direct consequence of the bootstrapping method. When enough pages are
classified correctly, misclassified pages have a large probability of occurring between
two correctly classified pages and being fixed. On the other hand, when too many
pages become misclassified, the stage of correctly classified pages can be changed,
so that even more pages become misclassified. This ‘snowball’ effect results in large
numbers of very good and very bad runs and relatively small numbers of mediocre
runs.

In the second experiment we varied the number of sessions per log file. Figure 4.16
shows the accuracy after stage construction and stage optimization. Both accuracies
are higher when more training data is available. The effect on the optimized accuracy
is stronger, because bootstrapping benefits from more data as well as a better initial-
ization. These effects are similar to the ones found for the hardware comparison data
in section 4.6.

We varied the total number of pages while keeping the ratio between the numbers
of pages in the three stages fixed. The results (after optimization) are presented in
Figure 4.17. If there are more pages, the available data per page is less, which results
in a decrease in construction accuracy. When there are many pages the optimized
accuracy suffers from the lower construction accuracy. At the same time more pages
also mean that there is more data available for the bootstrapping phase. As can be seen
in Figure 4.17, these two opposite effects make that the algorithm performs optimal
when the number of pages is about 50.

In the next experiment again the number of pages was varied, but in this case
pages were only added to the second stage. Figure 4.18 shows that the classification
accuracy decreases when the number of pages in the stages become unbalanced. There
are two reasons for this effect. Firstly, if one stage has much more pages than the
others, there is relatively little data about the pages in the large stage. The large
number of imprecise ARP values hinders the stage construction. Secondly, EM assigns
a large probability to the large stage. Because of this more pages from the smaller
stages are classified incorrectly as pages from the large stage than vice versa. During
bootstrapping this effect is magnified, so that the large stage ‘swallows’ the smaller
stages. Fortunately, the figure also shows that these effects are less likely to occur
when more data is available.

We made the behavior of the simulated users less predictable by increasing the
probability of making irregular stage transitions (p jump). Figure 4.19 shows the re-
sults of varying the value of p jump, while keeping the ratio between psta y and pproceed

constant. Imprecise ARP values resulting from large numbers of irregular transitions
reduce the construction accuracy. In the optimization step the algorithm suffers both

104 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
fr

eq
u
en

cy

Accuracy in bins of 0.1

Stage construction
Stage optimization

Figure 4.15: The distribution of the accuracy over 50 simulation runs.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 800 1600 2400 3200 4000 4800

A
v
er

ag
e

ac
cu

ra
cy

Number of sessions

Stage construction
Stage optimization

Figure 4.16: The average accuracy with various numbers of sessions.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

A
v
er

ag
e

fi
n
al

 a
cc

u
ra

cy

Total number of pages

100 sessions
244 sessions
500 sessions

1000 sessions

Figure 4.17: The average accuracy with various numbers of pages (varied in all stages).

4.8. Building problem-oriented navigation structures 105

from the reduced construction accuracy and from the many irregular transitions in
the data. All together, the accuracy drops when the percentage irregular transitions
exceeds a certain maximum, but irregularity can be compensated for by adding more
log data.

In the last experiment, the number of stages was varied by adding more stages
with 20 pages between the first and the last stage. From Figure 4.20 we can see that
there is a maximum number of stages that can be learned with a certain amount of
training data. With high numbers of stages the stage boundaries become very tight
compared to the deviation of the ARPs. Since more data makes the deviation smaller,
more stages can be learned if more training sessions are available.

In summary, the algorithm appears to be sensitive to irregularities in the data and
the complexity of the site and the navigation. However, these problems can be over-
come by providing more training data. This is a promising result, as log files of web
sites are typically very noisy but also extremely large.

4.8 Building problem-oriented navigation structures

The previous sections discussed how pages of a web site can be divided into naviga-
tion stages on the basis of the pages’ usage. In this section we demonstrate how a
discovered stage structure can be used to create a menu that guides visitors through
the navigation stages.

In Figure 4.1 we showed the structure of the problem-oriented menu of the Se-
niorGezond site. The tree like structure can be decomposed into two orthogonal struc-
tures. The vertical layers represent the navigation stages: the left most layer contains
the problem pages, the middle layer the solutions and the right most layer the prod-
ucts. The horizontal structure represents the pages’ topics. Below each problem page
we find the solution pages that treat the same subject as the problem page and below
each solution we find the products that implement the solution. The topic structure
and the stage structure are orthogonal: topics stretch over multiple stages and stages
contain pages from all topics.

To construct a problem-oriented menu for a site one needs to divide the site’s
pages along both dimensions. The stage discovery algorithm can be used to form the
stages. The topics can be taken from the site’s topic-based menu, if such a menu is
available. Otherwise, a topic structure can be found with traditional content- or usage-
based clustering methods, for example with the ones used in Mobasher et al. (2002) ,
Perkowitz and Etzioni (2000) and Pierrakos and Paliouras (2005).

The experiments in section 4.5 showed that the stage discovery algorithm was able
to find the stage structure of the SeniorGezond menu. By combining the stages with
the site’s topic structure the problem-oriented menu of the SeniorGezond site can be
reconstructed. Ezendam et al. (Ezendam et al., 2005; Alpay et al., 2007) showed that
the addition of this menu to the SeniorGezond site made it significantly easier for the
users to find their way through the site. This shows that at least in this case the stage
discovery algorithm was able to find a valuable and effective stage structure.

To demonstrate that the stage discovery algorithm also produces meaningful menus

106 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250

A
v
er

ag
e

fi
n
al

 a
cc

u
ra

cy

Total number of pages

100 sessions
244 sessions
500 sessions

1000 sessions

Figure 4.18: The average accuracy with various numbers of pages (varied in the second stage).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
v
er

ag
e

fi
n
al

 a
cc

u
ra

cy

P_jump

100 sessions
244 sessions
500 sessions

1000 sessions

Figure 4.19: The average accuracy with various values for Pjump.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

A
v
er

ag
e

fi
n
al

 a
cc

u
ra

cy

Number of stages

100 sessions
244 sessions
500 sessions

1000 sessions

Figure 4.20: The average accuracy with various numbers of stages.

4.8. Building problem-oriented navigation structures 107

in other domains we built a problem-oriented menu for the hardware comparison site.
We used the stage structure with three stages as it was discovered in section 4.6.
The topic structure was created with the PACT approach of Mobasher et al. (2002).
We did not evaluate other clustering techniques, since our goal was not optimize the
topic structure but to demonstrate how stages and topic clusters are combined into
a stage-oriented navigation structure. According to the PACT methodology, the ses-
sions were first clustered on the basis of the cosine similarities between the vectors
of visited pages. Subsequently, each session cluster was characterized by the pages
that were visited frequently in the sessions in the cluster. This resulted in 18 partially
overlapping page clusters.

Table 4.6 shows 2 topics of the combined stage and topic structures for the hard-
ware comparison site. Due to space limitations not all pages in the visible cells are
shown. The stage classification in Table 4.6 is not perfect. The first stage of topic 2
contains the news page, ‘Affordable_Camcorders.html’ and the overview stage contains
the product page ‘JVC_GR–D72US.html’. In spite of these misclassifications, overall
the intended stage structure is clearly visible. The topic clusters are also easy to inter-
pret: cluster 1 contains pages about printers and cluster 2 contains pages about digital
camcorders.

Figure 4.21 shows a part of the menu that was created from the matrix. The stage
headings are added by hand. In the situation of Figure 4.21 the user has first clicked
on ‘How to Buy a Printer - The Big Picture’. When he clicked the link the page was
shown and the menu below the link opened to reveal three links to overview pages.
From these the user selected ‘Top 5 Affordable All-purpose Printers - Chart’ and got

Topic cluster 1 Topic cluster 2 . . .

Stage 1 How_to_Buy_a_Printer_–_Shop-
ping_Tips.html

How_to_Buy_a_Digital_Camcorder_
–_Introduction.html

How_to_Buy_a_Printer_–_The_Big_
Picture.html

Affordable_Camcorders.html

How_to_Buy_a_Printer_–_The_
Specs_Explained.html

How_to_Buy_a_Digital_Camcorder_
–_The_Specs_Explained .html

Stage 2 Top_10_Ink_Jet_Printers_–_Chart
.html

Top_9_Digital_Camcorders_–_List
.html

Top_5_Affordable_All–purpose_
Printers_–_Chart.html

JVC_GR–D72US.html

Top_10_Ink_Jet_Printers_–_List
.html

Top_9_Digital_Camcorders_–_Chart
.html

Stage 3 Canon_i455_Desktop_Photo_Printer
.html

Sony_DCR–HC20_MiniDV_Handy-
cam.html

Canon_Pixma_iP1500.html Sharp_VL–Z800U.html

Canon_i860_Desktop_Photo_Prin-
ter.html

Panasonic_PV–DV953.html

Table 4.6: Part of the stage and topic structures for the hardware comparison site with a few
classified pages.

108 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

access to three product links. Finally, he selected the product ‘Canon i860 Desktop
Photo Printer’. This example demonstrates that the menu indeed behaves as intended:
at each step it shows the pages that are both relevant for the user’s task and match the
user’s navigation stage.

The results of the user experiment presented in section 4.6 indicated that users of
the hardware site tend to go through a number of stages when searching for informa-
tion. The problem-oriented menu supports this pattern by showing the pages in their
natural order. The results in Ezendam et al. (2005) and Alpay et al. (2007) show that
this can considerably facilitate the users navigation processes. Therefore, we believe a
problem-oriented menu like the one presented here can be a valuable addition to the
hardware comparison site. However, detailed usability studies are necessary to con-
firm that the stage menu works also in the hardware domain. In specific, the objective
navigation efforts and the subjective experiences of visitors using a problem-oriented
menu should be compared to the experiences of visitors using a topic-based structure.

Besides the presented navigation menus, stage structures can also provide order
information in other types of menus or even other navigation means. The presented
menus are difficult to use if too many pages belong to the same stage and topic. In
this case the lists of menu items should be subdivided into subtopics. A user now
first selects a category before she sees the pages from her current stage and topic.
An example of an alternative problem-oriented navigation means is a wizard style
interface that helps users step by step to formulate their information needs. The stages
can also be used to rank the results of a site search engine or recommender system in
such a way that links that match the user’s current navigation stage appear at the top

Canon i860
desktop photo printer

Canon's i860 uses five inks: cyan
genta, yellow, and two kinds of
- a photo black for graphics an
pigment-based black mostly for
The dual blacks pay off: Letters
dark but very clean at big and
type sizes. And because the i860
all five tanks at once, you don't hav
switch inks to print fine-looking gloss
photos.
Gray-scale prints showed sharp
and realistic shading, and color photo
accurately reproduced colors and
tures. Color graphics on plain paper

• Canon i860 desktop photo printer

Figure 4.21: Part of the automatically constructed stage-oriented menu for the hardware com-
parison site.

4.9. Conclusions and discussion 109

of the list. In any case the navigation structures allow the users to navigate trough the
site and the stages assist this process by presenting the pages in the right order.

4.9 Conclusions and discussion

Most web sites provide a topic-based menu as the primary means of navigation. They
aim to make all content reachable in a small number of clicks. Topic-based structures
are efficient when users know what information they want and the menu is only used
to reach the relevant links. However, users do not always know exactly what they
are looking for and what the site has to offer. For these users a topic-based naviga-
tion structure is not ideal, as they often experience great difficulties translating their
information needs into the site’s topics (Alpay et al., 2004).

In Ezendam et al. (Ezendam et al., 2005; Alpay et al., 2007) an alternative navi-
gation structure is presented that not only aims at making the information reachable
but also guides the users through the available information. Ezendam shows that
this structure significantly facilitates the navigation process in the domain of falling
accidents.

Based on the structure of Ezendam et al. we created the stage model presented in
this chapter. According to this model users’ navigation processes can be decomposed
into a number of navigation stages. Each stage is characterized by a distinct set of
pages. We provide an efficient and scalable algorithm to learn the parameters of the
model for a given web site. The algorithm divides the set of pages of the site into a
number of navigation stages on the basis of the observed usage of the pages in site’s
server logs. We demonstrate how a filled in model can be used to create a problem-
oriented navigation menu.

The stage discovery algorithm was evaluated in a series of experiments. The al-
gorithm proved to be able to find stage structures in log data from user experiments
conducted in two very different domains. Simulation experiments showed that the al-
gorithm is able to discover stages in noisy data as long as enough log data is provided.
These results indicate that the stage discovery algorithm is an adequate method to
automatically create problem-oriented navigation structures for a wide range of do-
mains.

Although the results of the stage discovery algorithm are encouraging, some issues
remain unsolved. Firstly, the sites that were used for the data collection in the user
experiments were stripped of all navigation structures to exclude the possibility that
the discovered patterns were imposed by the sites’ structures. However, for real web
sites this is a rare situation. Web sites for which a stage-oriented menu is created
most likely provide some navigation means that allow the users to browse through
the site. The algorithm can be applied without modification to sites which structures
do not force the users to follow a specific path through the site, such as topic-based
menus and site search engines. More problematic are sites with in-text links and
other sequential structures that require that the users click through a series of pages
before they can reach the pages they actually want to visit. Such structures bias the
navigation behavior of the users and, consequently, the patterns found in the log files.

110 Chapter 4: Discovering stages in web navigation for problem-oriented navigation support

More research is needed to determine how large the influence of these biases is on the
discovered stage patterns and how they can be compensated for.

From Ezendam et al. (2005) and Alpay et al. (2007) we know that in the falling
accident domain the stage-oriented menu has a positive effect on the users’ navigation
experiences. However, we do not know for sure whether stage structures will have
the same effects in other domains. We expect that in any domain where users enter a
site without knowing exactly what information they need the users will navigate from
pages which give an overview of the available options to pages with more specific
content. We believe that for these users problem-oriented menus can provide useful
guidance, but detailed usability studies are necessary to confirm this. In particular,
the navigation efforts and navigation experiences of visitors using a stage-oriented
structure need to be compare to the efforts and experiences of visitors using a topic-
oriented structure.

Other directions of further research involve the extension of the stage discovery
algorithm. One point that needs improvement is that in the current version all pages
of a site are assigned to a navigation stage. In our experiments we found that some-
times there are pages that do not belong to a particular stage but are used throughout
the sessions. Future research could investigate the possibility of using the standard
deviations of the pages’ ARP values to determine whether a page should be assigned
to a stage or placed somewhere outside the stage-oriented menu.

Another point that needs to be addressed is the creation of menus for sites where
some users do not know what they are looking but others have very specific informa-
tion needs. This situation poses two challenges. For the discovery algorithm the stage
patterns become harder to distinguish because they are not visible in the sessions of
the users with specific questions. Menu creation becomes more complicated because
the menu should now accommodate both user types. The first challenge can poten-
tially be handled by running the algorithm only on sessions which at first sight seem to
follow a meaningful pattern. This extra bootstrapping cycle can boost the algorithm’s
robustness to noise and at the same time make it more efficient. An easy solution to
the second challenge is to include two separate menus for the two user types. How-
ever, choosing between the two menus requires extra effort on the users’ part. The
best solution would be to identify the users’ search types very early in the sessions and
adapt the interface style to their personal needs.

The last and maybe most tricky issue is the creation of labels for the stages. Like
most clustering methods the stage algorithm creates groups of pages, but a human is
needed to interpret the groups and provide labels. Automating the labeling involves
identifying the role that the pages play in the users’ navigation. Topic clusters can to
some extent be characterized by words that occur frequently on the pages or in the
pages’ annotations (e.g. Perkowitz and Etzioni, 2000; Pierrakos and Paliouras, 2005).
For stage clusters extracting the labels from the pages’ contents is more complicated,
because the pages’ roles are often not mentioned explicitly.

Chapter 5

A semi-automatic usage-based method

for improving hyperlink descriptions

The previous chapters addressed the optimization of structures of menus.

In this chapter we turn our attention to descriptions of menu items. We

present a novel algorithm to automatically detect links with problematic de-

scriptions on the basis of usage information. The algorithm distinguishes

several types of problematic descriptions and provides recommendations for

how problematic descriptions of each type can be improved. The findings of

the algorithm can help a webmaster of a site to gain insights in the behavior

of the users of the site and to improve the site accordingly.

This chapter is based on a paper co-authored with M. W. van Someren

and B. J. Wielinga, which has been submitted for publication. Earlier ver-

sions were presented at the Sixteenth Annual Machine Learning Conference

of Belgium and the Netherlands (Hollink and Van Someren, 2007) and the

Workshop on Data Mining for User Modeling (Hollink et al., 2007d).

5.1 Introduction

Users who navigate unfamiliar web sites in search of information choose links on the
basis of link anchors and the text surrounding the links. When these descriptions are
accurate, users can make the right choices and reach their target information effi-
ciently. Unfortunately, it often happens that the meaning of link descriptions is am-
biguous or otherwise unclear, so that users are forced to try out various links before
they can find what they need.

Designers of web sites face the task of inventing descriptions that the users of the
site will understand well. This already challenging task is further complicated by the
fact that the information needs of the user population are often not known in advance.
Descriptions can be clear from one perspective, but ambiguous for users with other
points of view. Moreover, initially well-designed descriptions can become unsuitable
when the content of the pages is changed or when new links are added.

Many tools have been developed to help a webmaster to improve a site’s link

112 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

structure (e.g. Wang et al., 2006; Nakayama et al., 2000; Wu et al., 2005), but the
improvement of link descriptions has received much less attention. This is surprising
as several studies have shown that the impact of navigation errors on navigation ef-
ficiency is much larger than the impact of the link structure (Miller and Remington,
2004; Hollink and Van Someren, 2006 (Chapter 2)). Since good link descriptions re-
duce the number of navigation errors, much can be gained from methods to improve
link descriptions.

In this work we focus on the improvement of link descriptions in hierarchical link
structures, such as menus and web directories. In these structures some links do not
point directly to content, but to new sets of links. Finding good descriptions for these
links is particularly difficult, because the descriptions must not only cover the contents
of one page, but of the whole category of pages that are located under the link.

Although hierarchical link structures can be implemented in a variety of ways, we
will refer to all such structures as menus. We define a menu as a whole hierarchical
menu structure. Individual items in a menu are called menu items. The clickable part
of a menu item we call a link, even though not all menus are implemented as HTML
hyperlinks. The pages that are located in the subhierarchy under a link will be called
the page set of the link. We make the assumption that users navigate through a menu
to fulfill certain information needs. The term target pages1 will refer to the pages that
provide a (partial) answer to their information needs.

We present a semi-automatic method that helps a webmaster to improve the link
descriptions in a site’s menu. We identify six classes of problems that users can have
with link descriptions. Each class is characterized by a specific usage pattern that can
be observed in the site’s log files. Links with accurate and unambiguous descriptions
are characterized by a usage pattern in which exactly those users who are looking for
the pages behind the link, follow the link. Other usage patterns indicate that to some
users the descriptions are not clear. We present an algorithm that analyzes the log
files of a site and classifies the link descriptions in the site’s menu on the basis of their
usage patterns in terms of well-understood descriptions or descriptions corresponding
to a certain problem class.

Each problem class is associated with a number of generic solutions, such as mak-
ing descriptions more specific or merging certain menu items. The solutions are pre-
sented to the webmaster together with the problems that the algorithm has found.
The webmaster interprets the results and decides whether adaptations to the menu
are necessary. He (or she) chooses the solution that he finds most appropriate and
specifies the details of the adaptation.

The presented method is evaluated on the menus of three real web sites. During
the first part of the evaluation we assess the responses of the webmasters of the sites
to the identified problems and solutions. In the second part we measure in a user
experiment whether the proposed changes to the menus cause users to make less
navigation mistakes.

The remainder of this chapter is organized as follows. In the next section we review
related work. In Section 5.3 we present the classes of problematic link descriptions.

1In Cooley et al. (1999) target pages are called ‘content pages’.

5.2. Related work 113

Section 5.4 explains the algorithm to assign link descriptions to classes. In Section
5.5 we evaluate the method. The last section contains conclusions and discusses our
results.

5.2 Related work

Several methods have been developed to automatically improve link structures. These
methods analyze a link structure and a set of log files and determine which links need
to be added or removed. For example, efficiency can be increased by placing more fre-
quently used items at higher positions in a menu or by adding links between pages that
are often viewed in the same sessions. Some of these methods autonomously change
the structure (e.g. Smyth and Cotter, 2003; Wu et al., 2005; Wang et al., 2006). Others
recommend possible adaptations and leave it to the webmaster to decide which adap-
tations are implemented (e.g. Nakayama et al., 2000; Hollink et al., 2007c (Chapter
3)). These methods have in common that they improve the topology of the link struc-
ture, but not the descriptions of the links.

Systems that add new links autonomously need to provide descriptions for these
links. These systems often rely on hand-made rules to find descriptions. For instance,
the m-Links system (Schilit et al., 2002) creates navigation menus for web pages that
are suitable for viewing on mobile phones. The links in the menus are labeled with
texts from predefined sources, such as page titles and URLs.

Adaptive link annotation refers to the process of attaching visual cues to links to
help users select the most relevant links (Brusilovsky, 1996, 2001). For example,
the Syskill and Webert system (Pazzani et al., 1996) asks a user to rate the pages he
visits and learns a user profile from these ratings. On the basis of the profile, the
system annotates links with symbols that indicate how interesting the system thinks
the user will find the links. The methods described in Joachims et al. (1997) and
Herder (2004) do not require ratings, but ask the user to describe the topic of his
search. Links matching this topic are annotated with small pictures. Link annotations
can provide specialized support as they are adapted to the personal needs of each
user. A disadvantage of this approach is that elements are added to a page even when
selecting the correct link is straightforward. In this case, the annotations unnecessarily
increase the visual complexity of the page.

Nakayama et al. (2000) optimize both the structure and the descriptions of links.
Their algorithm detects page pairs that are similar in content, but that are not fre-
quently visited in the same session. They suggest to add a link between these pages
if the pages are not yet linked. If a link is already present, they conclude that the
page layout must be adapted to improve the visibility of the link. They propose sev-
eral methods to improve the layout, including changing the link anchor or the text
preceding the link. A limitation of their work is that they can only detect problematic
links between pages that are very similar in content. The usage-based character of our
method allows us to find problematic links between pages that are related in terms of
user relevance, but that have different contents.

Srikant and Yang (2001) propose a method to discover the location in a web site

114 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

where users expect to find certain target pages. They assume that users follow links to
the location where they believe a target is located and backtrack when they find out
that no link to the target is present at the expected location. Their method computes
for each target page the positions where users frequently backtrack and recommends
to add links to the target at these positions. This approach is similar to our approach
in that both methods aim to determine incorrect navigation paths. However, Srikant
and Yang search for the end points of these paths (the backtrack points). They solve
the problems at the end points by adding links to the target pages. In contrast, we
determine the source of the problem, the point where users deviate from the optimal
path. The problem is solved at these points by improving the link descriptions that
gave users incorrect expectations about the contents of the underlying pages.

Even though the creation of link descriptions has not received much attention, link
descriptions are recognized as a useful source of information for a wide variety of
tasks. For example, Fürnkranz (1999) uses anchors of links and the text surrounding
links for document classification. In Lu et al. (2002) anchor texts are used to translate
search queries. Others use anchors to refine search queries (Kraft and Zien, 2004)
or to improve search engines (Westerveld et al., 2002; Craswell et al., 2001). These
methods all rely on high quality link descriptions to perform certain tasks, but are not
aimed at obtaining such descriptions.

5.3 Problematic link descriptions

We divide problematic link descriptions in a number of classes. Each class represents
a type of navigation mistake and is characterized by a particular usage pattern. The
more classes we distinguish, the more insight we can give a webmaster in the naviga-
tion mistakes of the users. On the other hand, attempts to find too many classes can
significantly reduce the accuracy of the classification. Therefore, we defined a set of
classes that give enough information to choose an appropriate solution, but that can
still be reliably detected in log data. In this section we present the problem classes
and discuss possible solutions. Section 5.4 gives the algorithm that assigns link de-
scriptions to the classes.

The classes are organized in a hierarchy as shown in Figure 5.1. At the top level the
hierarchy distinguishes between well-understood (strong) and incorrectly understood
(weak) descriptions. These classes tell a webmaster which link descriptions need im-
provement. The second layer of the hierarchy shows which links are clicked instead
of the correct ones. This gives a webmaster information about the direction in which
the descriptions need to be changed. The third layer tells a webmaster which tar-
get information the users were looking for when they made the navigation mistakes.
This information can help him understand why the mistakes were made and which
elements of the links need modification.

The classes of link descriptions are defined as follows:

Strong A description of a link is strong if users with target pages in the page set of
the link can accurately predict that their target pages are located under the link.

5.3. Problematic link descriptions 115

Figure 5.1: Classes of link descriptions.

Weak A description of a link is weak if users with target pages in the page set of the
link cannot accurately predict whether their target pages are located under the
link or under another link.

Covered The description of link A is covered by the description of link B if users with
target pages in the page set of link A frequently believe that their target pages
are located under B.

Overlapping The descriptions of links A and B overlap if users with target pages in
the page set of link A frequently believe that their target pages are located under
B and users with target pages in the page set of link B frequently believe that
their target pages are located under A.

Unclear A description of a link is unclear if users with target pages in the page set of
the link cannot accurately predict that their target pages are located under the
link, but the link is not confused with specific other links.

Partially unclear/covered/overlapping The description of a link A is partially un-
clear, covered or overlapping if the problem can be attributed to users with tar-
get pages in the page sets of certain specific subitems of A: the problematic

subitems.

Completely unclear/covered/overlapping The description of a link A is completely
unclear, covered or overlapping if the problem concerns all users with target
pages in the page set of the link, in other words, if the problem cannot be at-
tributed to users with target pages in the page sets of certain specific subitems
of A.

The hierarchy shown in Figure 5.2 illustrates the various problem classes. This
Figure shows the menu of the web site of a fictitious research project. The site contains
information on the contact details of the department, the personal details of the two
project members, the toolkit developed in the project and some practical information

116 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

about various other aspects of the project. The link Project exemplifies the concept of
an unclear link. The term Project is too general in this domain, as the whole site is
about the project. As a result, people looking for the information located in this part
of the hierarchy will not be able to infer that they need to click on Project. This holds
for all three pages below Project, so that Project is a completely unclear link. Visitors
who are looking for the email address of Mrs. Smith do not know whether they need
to select People or Contact and will often incorrectly click on Contact. Therefore, we
say that the link People is covered by the link Contact. As the problem occurs only for
users who are looking for the Email page and not for the other pages under People, the
link People is called partially covered.

Figure 5.2: Example menu hierarchy.

5.3.1 Finding solutions for problematic link descriptions

Once we determined which link descriptions are weak, the problematic descriptions
need to be improved. The most obvious solution for a weak description is to change
the text of the description. However, in some cases weak links can also be improved by
changing the structure of the menu. For example, when a description covers only part
of a link’s page set, the problem can often be solved by moving the uncovered parts
to another location in the menu. We provide several possible solutions to improve the
various problem classes. The solutions are shown in Table 5.1.

The proposed solutions tell us in which directions link descriptions need to be
changed, but they do not provide new descriptions. Several authors have proposed
methods to automatically extract keywords from texts (e.g. Witten et al., 1999; Zamir
and Etzioni, 1999; Lawrie et al., 2001; Zeng et al., 2004). The extracted keywords
can be used as link descriptions, but the keywords are generally of poor quality. These
alternatives will probability not help a webmaster to improve the link descriptions and
possibly even tempt him to choose alternatives that are even worse than the original

5.4. Link description classification algorithm 117

Problem class Solution type Solution

A is partially un-
clear

Descriptions Make the description of A broader, so that the prob-
lematic subitems are also covered.

Structure Move the problematic subitems to a new menu item.

A is completely un-
clear

Descriptions Give A a new description that contains only terms that
are known to the users and not too general.

B partially covers A Descriptions Make the description of B narrower, so that it no
longer covers the problematic subitems under A .

Structure Move or copy the problematic subitems from A to B.

B completely cov-
ers A

Descriptions Make the description of B narrower, so that it no
longer covers the page set of A.

Structure Make A a subitem of B.
Structure Merge items A and B and give the new item the de-

scription of B.

A and B partially
overlap

Descriptions Make the descriptions of A and B narrower, so that
they no longer contain the overlapping items.

Structure Merge items A and B.
Structure Create a new menu item that contains the problematic

subitems.

A and B completely
overlap

Descriptions Give A and B new descriptions that make the differ-
ences between the two categories more clear.

Structure Merge items A and B.

Table 5.1: Possible solutions for the various classes of weak link descriptions.

descriptions. Therefore, we decided to leave the creation of new descriptions in hands
of webmasters.

5.4 Link description classification algorithm

In this section we explain how we assign link descriptions to the classes defined above.
Figure 5.3 shows the algorithm in pseudocode. Below, we explain each element of
the algorithm in detail. First, we describe how the log files are preprocessed. Then,
we describe how the logs are used to distinguish between the problem classes in the
various layers of the class hierarchy. The last subsection discusses the presentation of
problematic descriptions to webmasters.

5.4.1 Preprocessing

Before we can detect patterns in user behavior, the log files need to be preprocessed.
During preprocessing we restore the sessions of individual users and determine for
each session the most likely target pages. In addition, the logs are cleaned by removing
sessions that are not created by real users.

The sessions of individual users are restored with the method described in Cooley
et al. (1999). All requests coming from the same IP address and the same browser
are attributed to one user. When a user is inactive for more than 30 minutes, a new

118 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

Algorithm 5.1: Evaluate_menu(Hierarchical menu menu)

problems�H
for each f ragment in menu (i)

do

$''''''''''''''&''''''''''''''%
f ragment_problems�H
Create confusion matrix c (ii)
for each Row in c with correct link l and incorrect links i

do Add evaluate_linkpi, lq to f ragment_problems

for each pair of problems pair in f ragment_problems

do

$''&''%if pair � covered_b ypl , kq and covered_b ypk, lq (iii)
then Change pair into overlappl , kq

for each problem problemplink lq in f ragment_problems

do problem� partial_or_complete_problempproblemplqq
Add f ragment_problems to problems

return pproblemsq
procedure evaluate_linkpincorrect links i, correct link lq
l ink_problems�H
if ψ" row_frequencyplq{row_frequencypiY lq (iv)

then

$''''&''''%for each incorrect link k in i

do

"
if row_frequencypkq{row_frequencypiq " 1{|i| (v)

then Add covered_b ypl , kq to l ink_problems

if l ink_problems �H
then Add unclearplq to l ink_problems

return pl ink_problemsq
procedure partial_or_complete_problempproblemplink lqq

problemat ic_subi tems �H
for each j in subitemsplq

do

"
if problem_proportionp j, problemq " problem_proportionpl , problemq (vi)

then Add j to problemat ic_subi tems

if problemat ic_subi tems �H
then return pcomplete_problemplqq
else return ppar t ial_problempl , problemat ic_subi temsqq

Figure 5.3: The link description classification algorithm in pseudocode. ‘"’ stands for ‘signifi-
cantly larger than’.

5.4. Link description classification algorithm 119

session is started. A timeout of 30 minutes is used in many commercial and scientific
systems (Cooley et al., 1999), including Fu et al. (2002) and Hay et al. (2004). All
requests for other pages than HTML pages are removed.

We ignore sessions that are with high probability created by bots. These include
sessions in which the bots have identified themselves in the agent field and sessions
with extreme statistics. Sessions with more than 100 requests or an average time
between two requests of less than 1 second or more than 6 minutes are called extreme.

After the sessions are restored, the pages in the sessions are classified into target
pages and auxiliary pages2. Auxiliary pages do not contain information that is inter-
esting for the user, but only facilitate navigation. Several methods exist to determine
whether a page is a target for a user, but most of the methods rely on domain-specific
characteristics of the pages or on manually created page categories. For instance,
in the WUM method (Spiliopoulou and Pohle, 2001) the pages of a site are manually
split into pages that contain the content that the site wants to offer and auxiliary pages
that facilitate browsing. Only pages of the first category qualify as potential targets.
When no domain knowledge is available, the only available information about a user’s
interest in a page is the time the user spent reading the page.

We use the time-based classification method described in Cooley et al. (1999). All
pages with a reading time longer than or equal to a reference length are marked as
targets. The other pages form the paths to the targets. Reading time is computed
from the time difference between two consecutive requests. No reading time can be
computed for the last page of a session. These pages are always classified as non-target
pages. Classifying them as targets would mean that more navigation steps are seen as
mistakes, which can cause links to be incorrectly classified as weak (see Section 5.4.2).

As reference length we use the median reading time of the hierarchy’s terminal
pages (a terminal page is a page that does not have any subitems in the menu hier-
archy). This means that we make the assumption that 50% of the times that a user
views a terminal page, this page is a target page. The rationale behind this percentage
is that target pages are content pages to which a user pays more than usual attention.
This percentage falls in the range of optimal reference times (40-70%) that is found
in the experiments of Fu et al. (2002).

5.4.2 Detection of unclear, covered and overlapping link descriptions

To evaluate link descriptions in a hierarchical menu, the menu is first divided in menu

fragments (Figure 5.3 (i)). A menu fragment consists of one non-terminal node and
its direct children. An example of a fragment from the menu in Figure 5.2 is shown in
Figure 5.4.

The evaluation is performed fragment by fragment. For each fragment, we count
in the log files how many times a user went from one page in the fragment to another
page in the fragment. We count both steps from the parent node to one of its children
and steps from child nodes to other child nodes. For each step, we determine which
target page the user was looking for when he made the step. We assumed that this

2The term ‘auxiliary page’ is introduced in Cooley et al. (1999). In other research these pages are sometimes
referred to as ‘index pages’ (e.g. Fu et al., 2002).

120 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

Figure 5.4: Example fragment from the menu in Figure 5.2.

is the first target page that a user would reach. Clicks on links that led to the user’s
target we call correct clicks. Clicks on other links, we call incorrect. For example, a
user navigating in the menu of Figure 5.2 could have created the following trace:

Home (2) Ñ Contact (3) Ñ Home (1) Ñ People (1) Ñ Home (2) Ñ Toolkit (46) Ñ
Home (3)Ñ Project (2)Ñ Funding (105)Ñ Project (0)

Here the letters denote the pages that the user has visited and the numbers between
brackets denote reading times. The user’s target pages are shown in bold. In this
example we see that the user clicked two incorrect links (Contact and People) and one
correct link (Toolkit) before reaching target page Toolkit. He clicked no incorrect links
before he correctly selected page Project which led to target page Funding.

The numbers of clicks within the fragment are counted in all user sessions. The
total numbers of clicks are stored in a matrix. We call this matrix a confusion matrix as
it shows how often users confused links with other links (Figure 5.3 (ii)). An example
of a confusion matrix is shown in Figure 5.5.

Clicked link

Contact People Toolkit Project

Contact 100 6 2 1
Target People 40 86 0 1
under Toolkit 0 6 90 2

Project 9 10 12 61

Figure 5.5: A confusion matrix with example frequencies for the menu fragment in Figure 5.4.
Clicks on correct links are shown in bold.

The link descriptions in a menu fragment are evaluated using the corresponding
row in the confusion matrix. Strong descriptions are characterized by a usage pattern
where the correct link is chosen frequently while the incorrect links are chosen infre-
quently. In other words, people are able to select the links that lead to their targets.
Large numbers of clicks on incorrect links indicate weak link descriptions.

Formally, the values in the confusion matrix are compared to a background model
that represents the usage of links with good descriptions. According to this model,

5.4. Link description classification algorithm 121

users with a target in the page set of a link with a good description, click this link
with at least probability ψ. The incorrect links have uniform probabilities of being
chosen. Links with usage patterns that comply with the background model have strong
descriptions. Deviations from the background model are used to assign links to the
various problem classes. By default, the value of ψ is set at the median of the observed
probabilities of all correct links in a menu:

ψ� MedianLPmenu

�
cor rect L

cor rect L � incor rect L

where cor rect L is the number of times link L was selected while the target was in the
page set of L and incor rect L is the number of times another link was selected while
the target was in the page set of L.

Not every deviation from the background model signals a weak link as small de-
viations can result from chance. To determine whether a deviation is significant, we
use a statistical test. For each row in the confusion matrix we compare the number of
clicks on the correct link to the number of clicks on incorrect links by means of a bino-
mial test (Figure 5.3 (iv)). If the proportion of clicks on the correct link is significantly
lower than the expected probability ψ, the description of the link is marked as weak.

The subcategory of a weak link is determined by comparing the frequencies of the
clicks on the incorrect links (v). For each incorrect link we compute with a binomial
test whether the link has a significantly higher relative frequency than 1{i , where i is
the number of incorrect links. If the frequency is too high, the correct link is covered
by the incorrect link. If none of the incorrect links have a significantly high frequency,
the description of the correct link is unclear.

When all links in a fragment have been evaluated, we check for overlapping links.
For each pair of links we see whether they are covering each other (iii). Mutually
covered links are called overlapping.

We illustrate this procedure by inferring the two example problems in the toy menu
of Figure 5.2. We assume that the click frequencies of the first fragment of this menu
are as shown in the matrix of Figure 5.5. ψ is set at 0.88. We start with the evaluation
of link Contact. The first row of the confusion matrix shows that in total there were 109
(100+6+2+1) occasions in which users with a target in the page set of Contact made
a navigation step within the menu fragment. 100 of these users selected link Contact.
The binomial test shows that 100/109 is not significantly lower than the expected
value 0.88. Therefore, we conclude that Contact is a strong description. In 86 of the
127 occasions where the target was located under People, People was chosen. The test
indicates that this is significantly lower than 0.88 and we conclude that the description
People is weak. Next, we compare the frequencies of the clicks on incorrect links: 40, 0
and 1. The relative frequency of link Contact (40/41) appears to be significantly higher
than 1/3, which indicates that surprisingly many people with a target in the page set
of People click link Contact. Therefore, we say that the description People is covered
by the description Contact. Testing the third row of the confusion matrix indicates no
problems with the description of link Toolkit. Link Project is chosen on only 61 out of 92
occasions, which is significantly low. If we compare the frequencies of the clicks on the

122 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

incorrect links, we find that none of them is too high. Consequently, the description
Project is classified as unclear. In this example, none of the links are overlapping.

5.4.3 Detection of complete and partial problems

The next step in the classification process is to determine the target pages that the
users were trying to reach, when they made the navigation mistakes found in the
previous section. In particular, we determine whether these targets are located mainly
in certain parts of the underlying menu tree or divided evenly over the underlying
menu tree. For example, in the previous section we found that the description of link
Project was unclear to many users. We will now determine whether Project was mainly
unclear to the users who were looking for Partners, for Funding, or for Downloads or
that Project was unclear to all of these users.

To further classify the problem of a weak link L, we look at all menu items that
are in the menu hierarchy located directly or indirectly under L (L’s subitems). For
each subitem we count the number of times users with targets in the page set of
the subitem correctly clicked link L and how many times they made the navigation
mistake corresponding to the problem. For instance, we count how often users with
target Partners correctly clicked Project and how often these users incorrectly clicked
another link. We test, again with a binomial test, whether the proportion of mistakes
of users with a target in the page set of the subitem is significantly larger than the
proportion of mistakes of all users with a target in the page set of L (Figure 5.3 (vi)).
If users with a target in a subitem’s page set made significantly more mistakes, the
subitem is called a problematic subitem.

Problems for which problematic subitems are found relate to only part of the users,
namely the ones with targets in the page sets of the problematic subitems. There-
fore, these problems are called partial problems. Problems for which no problematic
subitems can be found are classified as complete problems. Note that items that form
terminal nodes in a menu hierarchy can only have complete problems, because they
do not have any subitems.

To demonstrate this step of the menu evaluation process we will complete the
classification of the two problematic links found in the example fragment from the
previous subsection. First, we classify the problem ‘covered_by(People, Contact)’. For
all 86 times when a user had a target under People and correctly clicked People, we de-
termine under which subitems the target was located. Similarly, we determine where
the target was located for the occasions in which Contact was clicked instead of People.
We assume the frequencies are as shown in Figure 5.6(a). For each subitem we com-
pute the proportion of the times the problem occurred. For instance, for subitem Smith
the problem proportion is 28/(56+28). The binomial test shows that this propor-
tion is not significantly lower than the problem proportion of item People as a whole
(40/(86+40)). Thus, Smith is a not problematic subitem. If we do the same analysis
for Email we find that its problem proportion is significantly high. Consequently, Email
is marked as a problematic subitem. The other subitems are unproblematic. Because
we found a problematic subitem, link People is classified as partially unclear.

The next problem is ‘unclear(Project)’. For subitem Partners we count how many

5.4. Link description classification algorithm 123

Clicked link Problem

People Contact proportion

People 86 40 0.32
Target Smith 56 28 0.33
under Johnson 30 12 0.29

Email 28 26 0.48
CV 28 2 0.07

(a)

Clicked link Problem

Project not Project proportion

Project 61 31 0.34
Target Partners 10 5 0.33
under Funding 10 6 0.38

Downloads 41 20 0.33

(b)

Figure 5.6: Example subitem frequencies and problem proportions for the problems (a) cov-
ered_by(People, Contact) and (b) unclear(Project). Problem proportions of problematic subitems
are shown in bold.

times a user with target Partners clicked Project and how many times a user with target
Partners clicked another link. The same analysis is done for the other subitems Funding
and Downloads. We will assume that the results are as shown in Figure 5.6(b). We
test whether the problem proportions of the subitems are significantly lower than the
problem proportion of link Projects. In this case, none of the subitems appears to be
problematic, so that Projects is classified as completely unclear.

5.4.4 Presentation of the problems

The confidence level that is used in the statistical tests determines how many links
are called weak. Confidence levels usually vary between 0.9 and 0.999, but the exact
value depends on how sure a webmaster wants to be before making changes. To make
it easier for a webmaster to choose a sensible confidence level, we show with each
identified problem the maximal level at which the problem is found. These levels can
be determined by running the algorithm a number of times with various confidence
levels. In the final presentation the problems are ordered from most certain to least
certain. The webmaster can start at the top and stop when he feels he runs across too
many unimportant problems.

As we cannot require that webmasters know our classification, we need to express
our findings in normal language. For each problem class we formulated a sentence
that explains the corresponding navigation mistake. The problematic link descriptions
are filled in in these sentences automatically. In addition to problem statements we
provide the solutions from Table 5.1. Figure 5.7 gives an example of a report as it is

124 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

Problem 1 (confidence 0.9999):

Many users who are looking for information under link People first open
link Contact. These users are mainly searching for page Email.
Possible solutions:

- Make the description of link Contact narrower, so that it no longer covers
page Email .
- Move or copy the link to page Email from People to Contact.

Problem 2 (confidence 0.9999):

Many users who are looking for information under link Project open an-
other link first.
Possible solutions:

- Give link Project a new description that contains only terms that are
known to the users and not too general.

Figure 5.7: Example of a report as it is shown to a web master.

sent to webmasters containing the two problems of the example fragment.

5.4.5 Computational complexity

Computation time is not a major issue for the link description classification algorithm,
as the algorithm does not require a webmaster to pay attention while running. How-
ever, log files of even moderately sized sites are often extremely large, so that scalabil-
ity is essential. In this section we discuss the time and space requirements of the link
description classification algorithm.

To preprocess the log data the algorithm needs to go through the log files once.
Consequently, the time complexity of the preprocessing phase is OpLq, where L is
the number of page requests in the raw log files. Building the confusion matrices
requires one pass through the preprocessed logs, which requires Oplq time, where l is
the number of requests in the preprocessed logs. The memory requirements to store
the matrices are linear in the number of menu fragments and quadratic in the number
of links in one fragment. This is maximally Opn.b2q, where n is the number of links in
the menu and b is the maximal number of links in one fragment (the menu’s breadth).

To classify the link descriptions in a menu as weak or strong, the algorithm first
goes through all rows in the confusion matrices to determine ψ. The time needed for
this operation is linear in the number of rows in the matrices which is equal to the
number of links in the menu: Opnq. Subsequently, the algorithm passes through all
rows again to determine which links are weak. For each weak link it checks all other
links in the fragment to classify the link as covered or unclear. The time needed for
this operation is linear in the number of weak links and the number of links per menu
fragment: Opw.pb�1qq, where w is the number of weak link descriptions. Overlapping
links are found by checking all pairs of weak links: Opw2q. The space requirements are

5.5. Evaluation 125

Opn.b2 �wq, as the algorithm stores the confusion matrices and a list of weak links.
The algorithm passes through the preprocessed logs once more to determine the

problem proportions of the subitems of the weak links. To decide which subitems are
problematic, the algorithm looks at all problem proportions. The time complexity of
this phase is linear in the size of the preoprocessed logs, the number of weak links
and the number of subitems under each link. This is smaller than Opl � w.nq, because
the number of subitems under a link is always smaller than the number of links in the
menu (n). The space complexity of this phase is maximally Op2.w.nq, as the algorithm
stores for all subitems of weak links the numbers of correct and incorrect clicks. During
this phase the confusion matrices are no longer needed.

In total, the time complexity of the link description algorithm is:

OpL � 2l � 2n�wpb� 1�w � nqq
The maximal space complexity of the algorithm is:

Opmaxpn.b2 �w, 2w.nqq
Thus, the total time requirements are linear in the size of the log files. This indicates
that the algorithm will scale well to very large log files. The fact that the time and
space complexity are (in the worst case) quadratic in the size of the menus is not
problematic either, as in practice the size of a hierarchical menu seldom exceeds a few
thousand links.

When the log files are very large, computation time can be further reduced by col-
lecting all information needed for the whole classification process in one pass through
the logs. However, this comes at the cost of higher memory requirements. With this
modification the memory requirements become Opn.b2 � n2.bq.

To give an indication of the running time of the algorithm in practice, we measured
the time needed to analyze the menus of the sites that are used in the experiments
in Section 5.5. The smallest site that was used in the experiments is the Reumanet
site with 86 links in the menu and 56,463 log sessions (see Table5.2). Apart from
preprocessing, the analysis took for this site less than three minutes. The largest web
site, the Leiden site, has both much larger log files (1,150,091 sessions) and a much
larger menu (543 links). To analyze this site the algorithm needed about 5 hours.

5.5 Evaluation

We evaluated the method for improving link description on the menus of three Dutch
web sites. The first site is the SeniorGezond site (SG) (SeniorGezond, 2007). It is
aimed at elderly people and contains information about the prevention of falling ac-
cidents. The second site is called Reumanet (RN) (Reumanet, 2007) and contains
information about rheumatism. The last site is the official site of the local government
of the city of Leiden (Gemeente Leiden, 2007). The sites provide various navigation
means, but in this study we restricted ourselves to the links in the hierarchical menus.

For each site we extracted the menu and collected log files. Properties of the menus
and logs can be found in Table 5.2. At the time we extracted the menu of the Leiden

126 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

site it contained 5472 links. Large parts of the menu consisted of uniform lists of links
that functioned as archives. For instance, some lists contained minutes of all meetings
of certain committees ordered and named by date. We excluded these parts of the
menus from the evaluation. Without these lists the menu of the Leiden site consisted
of 543 links.

The last two columns of Table 5.2 show the parameter values used in the exper-
iments. The thresholds for determining target pages (the reference lengths) are set
at the median reading times of the hierarchies’ end pages (see Section 5.4.1). The
expected proportions of correct links (ψ) are set at the median of the proportions of
all correct links (see Section 5.4.2).

Site Log period Number of Menu size Reference ψ
sessions length

SG 29 months 150,568 92 links 14 seconds 0.75
RN 29 months 56,463 86 links 13 seconds 0.83
LE 26 months 1,150,091 543 links� 18 seconds 0.88

Table 5.2: Properties of the sites and log files that were used for evaluation. �These are the links
that were used in the evaluation study. The whole menu is larger (see text).

During the first phase of the evaluation, we assessed how useful webmasters think
the method is. We applied the algorithm to the logs and menus of the three web sites.
The identified problems and solutions were shown to the webmasters of the sites. We
interviewed the webmasters while they went through the lists of problems that were
generated by the system. For each problem we asked them whether they thought the
identified problem was really a problem that called for an adaptation in the menu.
When they felt an adaptation was needed, we asked them to choose an appropriate
solution from the provided solutions or come up with an alternative solution. More-
over, when they chose a solution that involved changing link descriptions, they had to
provide the new descriptions. After the interviews we counted how many identified
problems the webmasters found relevant and for how many problems they were able
to select a solution.

The second phase of the evaluation concerned the influence of the solutions that
were selected by the webmasters on user navigation. We implemented the selected
solutions in offline versions of the sites’ menus. In a user experiment these menus
were compared to the original menus.

Participants in the user experiment performed tasks in an interface that was devel-
oped for this purpose. The interface is shown in Figure 5.8. Each task started with
a description of the information needs of a fictitious person (Figure 5.8(a)). When a
participant had read the description, he or she pushed a button. The interface then
showed a menu that was partly opened (Figure 5.8(b)). The links in the deepest
menu fragment that was visible were preceded by option buttons. The participants
were asked to click the button preceding the link that they would open first when they
were the person from the task description. When they selected one of the buttons, the
choice was recorded and the description of the next task was shown.

5.5. Evaluation 127

(a) (b)

Figure 5.8: Screenshots of the experiment interface (translated from Dutch) (a) before opening
the menu and (b) after opening the menu.

Each participant performed tasks in the menus of all three sites. For each site they
saw either the original menu or the adapted menu. The version of the menu that they
used was determined randomly at the start of the experiment and remained the same
throughout the session. The participants did not know whether they were using an
original or an adapted menu. In fact, they didn’t even know that there was more than
one version.

The participants started the experiment with a practice task to familiarize them-
selves with the interface. After that, the order of the tasks was random and different
for all users. However, we made sure that users always performed tasks in higher
menu layers before they performed tasks in lower menus. In this way, the participants
had not yet seen which links were located under the links from which they had to
choose.

When we wrote the task descriptions we asked the webmasters to describe typical
usage scenarios. In addition, we looked at target pages of users in the log files to
determine with what kinds of questions users visited the sites. In this way, we tried
to create tasks that realistically reflected the needs of real users. We avoided the use
of terms in the task descriptions that were also present in the link descriptions in
the menus, so that the participants’ choices would not be biased by our formulation.

128 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

For each task we defined a number of target pages: the pages that answered the
information needs. All tasks had target pages that were located in parts of the menus
that were modified by the webmasters. Examples of task descriptions can be found in
Appendix B.

The main goal of the link evaluation method, is to reduce the number of navigation
mistakes. To see to what extent this goal is met, we measured the number of mistakes
made in the original and the adapted menus. Some adaptations introduced an extra
layer in the menu hierarchy. In these cases the participants had to make a choice in
both layers (the higher layer first). Only when both choices were correct, we counted
the task as performed correctly.

Besides the users’ choices, we also recorded the time they needed to make a choice.
The interface allowed us to distinguish between the time a user spent reading a task
description and the time he needed for his choice. A timer was started when a user
opened the menu and ended when he submitted his choice. To reduce the influence
of users who were distracted from the tasks, we removed choice times longer than 1
minute from the analysis.

5.5.1 Results of the study with webmasters

On all three sites the link evaluation algorithm found many problems. Table 5.3 shows
that 16-27% of all links were classified as weak. Thus, at about one fifth of the links
users often make incorrect choices. This suggests that improving weak descriptions
can have a large effect on the efficiency of the users’ navigation.

Site Number Identified problems

of links number percentage

SG 92 15 16.3%
RN 86 23 26.7%
LE 543 88 16.2%
Total 721 126 17.5%

Table 5.3: The number of links on each site, the numbers of problems that are identified by the
algorithm and the percentage of links classified as weak.

Table 5.4 shows how many problems from each class were found. At the Se-
niorGezond site and the Reumanet site the algorithm mainly found complete prob-
lems, while many partial problems were found at the Leiden site. The SeniorGezond
and Reumanet menus contain many terminal nodes, that can only have complete prob-
lems (see Section 5.4.3). Moreover, for these sites less log data was available than for
the Leiden site, so that getting significant deviations was more difficult. This also
explains that at these sites a larger proportion of the descriptions was classified as
unclear.

Only one case of overlapping links was found. This case concerned the links ‘ser-
vice points’ and ‘products and services’ on the Leiden site. Most problems were clas-
sified as covered even though they had overlapping meanings. This happened for

5.5. Evaluation 129

Site Unclear Covered Overlapping

partial complete partial complete partial complete

SG 0 8 0 7 0 0
RN 0 8 1 14 0 0
LE 0 16 10 61 0 1
Total 0 32 11 82 0 1

Table 5.4: Numbers of problems from each class that are identified by the algorithm.

instance when one of the descriptions was more general than the other or when one
of the descriptions contained more common terms. Only when descriptions were over-
lapping in meaning and had equivalent terms we found navigation mistakes in both
directions.

As shown in Table 5.3, 88 problems were found in the menu of the Leiden site. For
a webmaster who wants to improve the menu of his site, it is doable to look at all 88
problems. However, for the interview with the webmaster this number was too high,
as the time of the webmaster was limited. Therefore, we restricted the evaluation for
this site to the 21 problems that concerned non-terminal menu items. For the other
two sites the algorithm found much smaller numbers of problems, so that all problems
could be evaluated.

In total, the webmasters found that 38 of the 59 evaluated problems were really
problematic, as can be seen in Table 5.5. This indicates that in general the algorithm
is capable of finding relevant problems. On the SeniorGezond site and the Leiden site
the majority of the problems was assessed as relevant. Only on the Reumanet site,
many irrelevant problems were found. Reasons why the webmaster did not find these
problems relevant are discussed below. Problems concerning non-terminal items were
more often found relevant than problems with terminal items (respectively 76% and
48%).

Site Problems shown Relevant problems Solutions found

to webmasters number percentage number percentage

SG 15 14 93.3% 9 64.3%
RN 23 8 34.8% 6 75.0%
LE 21 16 76.2% 16 100%
Total 59 38 64.4% 31 81.6%

Table 5.5: The number of problems shown to the webmasters, the number and percentage of
the shown problems that the webmasters assessed as relevant, the number and percentage of
relevant problems for which the webmasters found solutions.

For 81.6% of the relevant problems the webmasters could come up with a satisfying
solution (Table 5.5). For 15 problems they chose one of the solutions proposed by the
algorithm and for 19 problems they brought forth a solution of their own3 (Table 5.6).

3The total of these two figures is larger than the number of solutions, as for some problems solutions were
chosen that consisted of multiple actions, such as merging items and modifying link descriptions.

130 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

Site Source of solution Solution type

proposed other descriptions content structure

SG 4 7 8 2 6
RN 5 1 4 0 3
LE 6 11 3 1 15
Total 15 19 15 3 24

Table 5.6: Numbers of solutions of various types that are selected by the webmasters.

Most solutions involved changing either the structure of the menu or changing the link
descriptions. However, in a few cases the webmasters chose a third type of solution:
changing the structure of the content. When the algorithm found that users could not
distinguish between items, the webmasters chose to merge the texts. Naturally, this
solution was chosen only when the individual texts were very short. Besides helping
to modify the menus, in some cases the findings of the algorithm also inspired the
webmasters to improve other navigation means. During the interviews they came up
with ideas to change in-text links and to add keywords to the indexes of the sites’
search engines.

In general, the webmasters were very positive about the approach. They felt that
the lists of problems provided useful insights in the behavior of the users and could
really help them to improve the site. Moreover, one of the webmasters felt that the
findings backed up her own ideas about the site. She reported that one of the problems
already came up during a pilot study in which the site was evaluated. Keeping the
structure as it was, was a political decision.

The information that the algorithm extracts appears to be well-chosen. The more
information the problem classes gave, the more they were appreciated. An illustration
of this fact came up during the interview with the webmasters of the SeniorGezond
site. When the webmasters encountered a complete problem, they asked themselves,
which targets these users were looking for. This question was raised before they knew
the algorithm could sometimes identify problematic subitems. Similarly, when links
were unclear, the webmasters often wondered which items the links were confused
with.

About one third of the identified problems were not found problematic. The web-
masters gave various reasons for this. First, there were some problems for which the
webmasters could not think of a reason why users would make the navigation mistake.
For example, on the Reumanet site, the algorithm found that many people clicked on
‘Patient association’ when they were looking for information under ‘Accessibility aids’.
The webmasters assumed that these problems resulted from noise in the data. Sec-
ond, in some cases the webmasters found that the problems were sufficiently solved
by in-text links. The target pages were not located under the selected menu items,
but users could reach them through the in-text links on the pages under the selected
items. The webmasters of the SeniorGezond site gave a third reason for not wanting
to change certain link descriptions: they wanted to educate their users. They liked the
fact that users did not know the meaning of certain descriptions. They thought that

5.5. Evaluation 131

these descriptions could trigger the users’ curiosity and make them open more pages,
so that the users would learn more about the prevention of falling accidents. For the
same reason, they did not want to move certain items, even though they believed
users searched for these items at other locations. For instance, the algorithm found
that many users searched for ‘mobility scooters’ under ‘walking aids’. The webmasters
of SeniorGezond did not want to place it there, because they wanted to teach people
that mobility scooters are not walking aids.

A particularly interesting reason why problems were not relevant, was given by
the webmaster of the Reumanet site. Most of the irrelevant problems for this site
(10 out of 15) concerned terminal items that were part of lists of accessibility aids.
The webmaster explained that users usually do not search these lists for particular
items, but look at all available aids to see whether there is anything they can use. In
these cases, our assumption that users have target pages does not hold, so that the
algorithm fails to produce sensible results. This insight suggests that the algorithm
can be improved by first dividing the user population in users who are searching for
particular information and users who are browsing.

5.5.2 Results of the user experiment

35 participants took part in the user study. 3 of the participants performed not all
tasks, but the data from the tasks that they completed could still be used. None of
the participants were familiar with the contents of the sites. 15 participants were
computer science students. The background of the others varied. Table 5.7 shows the
number of times a user performed a task on the two versions of the sites.

Site Number of Number of times a task is performed

different tasks in original menu in adapted menu

SG 12 176 214
RN 11 196 167
LE 15 267 222
Total 38 639 603

Table 5.7: Numbers of tasks formulated for the various sites and the number of times the tasks
were performed in the original and adapted versions of the menus.

On all three sites the participants selected in the adapted menus more correct links
than in the original menus, as shown in Table 5.8. In the adapted menus 10-28%
less mistakes were made, which is a significant improvement. This indicates that the
adaptations that the webmasters chose on the basis of the outcomes of the algorithm
really improved the menus.

We measured for each task individually how well the task was performed in the
original and the adapted menus. Table 5.9 shows the results per solution type. Tasks
that addressed parts of the sites where structural adaptations were made, showed
the largest improvements (25%), but the other solution types also gave considerable
improvements. The only type of adaptation that did not help was changing the order

132 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

Site Original Adapted Improvement
correct correct

SG 0.52 0.61 0.10 (z=-1.89, p�.003)
RN 0.41 0.59 0.17 (z=-3.30, p .001)
LE 0.34 0.62 0.28 (z=-6.18, p .001)
Total 0.41 0.61 0.20 (z=-6.94, p .001)

Table 5.8: Proportion of tasks in which the correct choices are made in the original and the
adapted menus. Significance is tested with a two sample z-test.

of the items in a menu (a structural change). Apparently, in our study, users did not
favor the top items in a list over the other items. If this also holds for real web users,
this can be useful information for webmasters. However, it can also be an artifact
of our experimental design: the participants were focussing entirely on making the
correct choice, while real web users might be more inclined to choose quickly and try
out various options. More research is needed to determine which explanation is true.

We measured the time users needed to perform the tasks, to rule out the possibility
that the efficiency that is gained by making less mistakes is cancelled out by slower
choice times. For tasks that included more than one choice, we used the total time
needed for all choices. On average users spent 15.66 seconds thinking in the original
menus. In the adapted menus they needed 15.73 seconds. Thus, the adaptations did
not significantly slow down the navigation and were only beneficial.

Solution Original Adapted Improvement
type correct correct

descriptions 0.39 0.53 0.14 (z=-3.11, p .001)
content 0.46 0.62 0.16 (z=-1.61, p�.05)
structure 0.42 0.67 0.25 (z=-6.36, p .001)
Total 0.41 0.61 0.20 (z=-6.94, p .001)

Table 5.9: Proportion of tasks in which the correct choices are made in the original and the
adapted menus. Significance is tested with a two sample z-test.

5.6 Conclusions and discussion

In this chapter we presented a method that helps a webmaster to understand at which
points in a navigation menu users make incorrect choices. Based on these insights the
algorithm provides suggestions for improving the menu.

Evaluation of this method on three real websites gave promising results. The web-
masters of the sites felt that the analyses made by the algorithm were very helpful.
64% of the problems that the algorithm identified were assessed as relevant. In a user
study the usefulness of the method was confirmed: in menus that the webmasters had
adapted on the basis of the analyses users made 10-28% less mistakes than in the orig-
inal menus. These findings lead to the conclusion, that the algorithm can effectively

5.6. Conclusions and discussion 133

help webmasters to make navigation menus more efficient.

The current work demonstrated how link descriptions can be evaluated for a user
population as a whole, but the algorithm can be applied equally well to smaller user
groups. In domains with heterogeneous user populations, it can be necessary to create
different descriptions for different groups of users or for users in different contexts.
This can be accomplished by first clustering the log data in a number of user clusters
with similar navigation patterns or similar contextual properties. Several methods
have been developed for this purpose (e.g. Mobasher et al., 2002; Hay et al., 2004).
Once the data is clustered, a link description analysis is performed for each cluster
using only the sessions of the users from the cluster. In this way, it is possible to find
link descriptions that are clear to one group of users but unclear to others.

From usage data we can compute how descriptive links are in their current context,
but we cannot evaluate link descriptions per se as descriptiveness is highly context
dependent. For instance, a description ‘seal’ is perfectly descriptive among ‘stamp’ and
‘envelope’, but when a link named ’walrus’ is added it becomes unclear. Consequently,
when new pages are added to the site, a new link description analysis needs to be
performed for the modified branches.

The evaluation study involved a limited number of search tasks. Even though we
made efforts to create tasks that were natural in the domains, studies using search
tasks can never cover the information needs of all users of a site. To evaluate the
effects of a new menu on the whole user population, the menu must be placed online,
so that it is used by real users. After a while, the influence of the new menu can be
determined from the user logs. A disadvantage of this method is that users who visited
the site before will have to get used to the new menu. This could lead to a temporary
drop in performance which biases the results towards keeping the menu as it was.

In the evaluation study we found that users sometimes do not search for specific
target pages, but rather browse the site to see whether it contains anything of interest.
The current version of the link evaluation algorithm does not take this into account
and treats browsing behavior as noise. As a result, it produces poor results for parts of
the menus where many users browse. This leads to the conclusion, that the algorithm
can probably be improved by filtering out logs of browsing users. More research is
necessary to determine what criteria can be used to distinguish between browsing and
searching users.

Another topic for further research are methods to infer higher order problems from
the problem classes detected in this chapter. For instance, if a large portion of the links
in a menu fragment appears to be unclear, we might infer that the categorization of
the menu fragment represents an inappropriate perspective. For example, if most users
search movies by actor, then a menu consisting of a list of genres will lead to many
navigation mistakes. In this case it is probably more effective to restructure the whole
menu instead of updating individual links.

We presented a method for automated analysis of logfiles to identify menu items
that cause navigation errors and to propose improvements of the descriptions or the
structure of these items. The method is very generally applicable because it only needs
data that is available in log files and it was proved to give useful advice to webmasters
in practice.

134 Chapter 5: A semi-automatic usage-based method for improving hyperlink descriptions

Chapter 6

Conclusions

6.1 Main contributions

The aim of this thesis was to investigate how we can optimize hierarchical menus in
such a way that navigation becomes as efficient as possible. Previous research in the
area of link structure adaptation focused in majority on the optimization process it-
self. The question whether the criteria to which the optimization process is directed
are consistent with the needs of the user population has received much less atten-
tion. In human-computer interaction research user needs are a major focus. Many
HCI guidelines for developing menus involve analysis of the requirements of the user
populations. However, these guidelines are usually not directly applicable for opti-
mization as they are too general to decide which of a number of alternative menus is
most efficient. In this work we took an approach that combines the best of both worlds.
We created generic models that represented the needs of various types of users and
provided methods to fit the model parameters for a specific site and user population.
These models enabled us to explicitly represent user needs and at the same time were
specific enough to direct optimization.

Until now menu optimization research was restricted to users with specific infor-
mation needs and mainly covered the structures of menus. This thesis extended this
work in several ways. We discussed both the optimization of menu structures and the
optimization of the descriptions of menu items. In addition, we distinguished menus
aimed at two types of users. The first type of menus supports users with specific in-
formation needs, who want to reach their target information as fast as possible. The
second type are problem-oriented menus. These menus are aimed at users with less
articulate questions, who gradually define their information needs while reading the
information on the site.

Chapters 2 and 3 focused on the improvement of menu structures for users with
specific navigation needs. We explored methods to determine the efficiency of a given
menu structure and to find the most efficient structure for a menu. We showed that
to accurately predict navigation time we need a model of the users’ navigation. We
provided a method to find the best model for a user population and demonstrated
how a navigation model can be incorporated in an algorithm that optimizes menu

136 Chapter 6: Conclusions

structures.

The creation of menus for users with unspecific information needs was the topic of
Chapter 4. Inspiration for this work originated from the SeniorGezond site (SeniorGe-
zond, 2007), which offers a menu that guides users step by step through the pages of
the site. Evaluation of this site has shown that this problem-oriented menu facilitates
navigation for users who do not know exactly which information they need (Ezen-
dam et al., 2005). Problem-oriented menus have great potential for other sites that
are visited by users with unspecific information needs, but manual creation of these
menus requires considerable time and effort. To support this process, we presented an
algorithm that automatically generates problem-oriented menus on the basis of usage
information stored in log files.

Finally, in Chapter 5 we addressed the improvement of descriptions of menu items.
Accurate descriptions prevent users from making navigation errors and thus lead to
more efficient navigation. We presented a method to automatically detect descriptions
that cause confusion. We distinguished various types of inaccurate link descriptions
and for each type we provided a number of possible solutions that can help web mas-
ters to improve the descriptions.

Below, we go back to the research questions posed in the introduction. We discuss
how the various parts of our research contribute to answering the questions. The last
section discusses limitations of our work and explores avenues for future research.

6.2 Reflections on the research questions

6.2.1 How can we adapt the structure of hierarchical menus in such a
way that they become maximally efficient for their user popula-
tions?

Many different algorithms have been developed that aim to make navigation more
efficient by dynamically adding a fixed number of links to an existing link structure. In
Chapter 2 we showed that the majority of these algorithms follow a greedy approach:
they estimate the probability that the user is interested in each page and provide
links to the most interesting pages. In each step the greedy approach maximizes the
probability of leading a user to a target page directly, but we showed that it does not
necessarily minimize the length of the users’ sessions. Simulation experiments and
user studies confirmed that in practice the greedy approach indeed sometimes results
in navigation times that are longer than necessary.

We presented a method to minimize the length of a session. This method uses
principles from information theory to select the most informative sets of links. A
maximally informative set of links divides the pages of a site into parts with equal
probability of containing the user’s targets. When these links are added to the site, we
can determine in a minimal number of navigation steps what the targets of the user
are. Three variants of this method were tested in a series of simulation experiments
and user studies. In all experiments the method proved more effective than the greedy
approach: it significantly reduced the length of the users’ sessions. All three variants

6.2. Reflections on the research questions 137

are fully automatic and computationally efficient. Therefore, they are suitable for
online use, for example, in a personalized recommender system.

The experiments proved that the page division method is effective when the dy-
namically added links form the only available navigation means and the number of
added links is fixed. However, we found that these type of methods are insufficient
in more realistic settings. Moreover, these methods do not provide a way to make a
trade-off between the number of links in each menu layer and the number of menu
layers.

In Chapter 3 we presented an approach to menu optimization that does not only
consider the addition of links, but that takes the whole menu structure into account.
This approach is based on an explicit model of the users’ navigation. With this model
we can simulate navigation through a menu and predict the average time users will
need to reach their targets. A semi-automatic hill-climbing algorithm is used to gradu-
ally improve a menu. At each step the algorithm tries a number of possible adaptations
that result in alternative menu structures. The navigation model is used to estimate
the efficiency of each of the alternatives. The most promising alternatives are shown to
a webmaster who decides which of the alternative structures is implemented. Using a
semi-automatic method has two advantages. First, some of the modifications result in
new menu items for which a label must be created by hand. Second, a semi-automatic
method can make very fundamental changes to the menu, because all changes are
checked by a human. However, the semi-automatic character of this method also
means that it is not usable for online optimization.

The model-based approach allows us to assess the quality of the menu as a whole.
Moreover, it enables us to clearly distinguish between the estimation of navigation
time and the method that is used to find the optimal menu. The potential of the model-
based method was shown in four case studies. In these studies the method proved able
to select effective adaptations. According to the navigation model the adaptations
considerably reduced navigation time. On top of that, the case studies showed that
with this method one can create coherent categories for which a description can be
found easily.

6.2.2 Which characteristics of user populations must be included in a
navigation behavior model to predict the efficiency of hierarchical
menus?

In Chapter 3 we showed that many systems that claim to optimize efficiency are based
on incorrect assumptions about the navigation and goals of the users. The assumptions
are often left implicit and almost never validated. This is a serious shortcoming as our
experiments prove that the assumptions have a large influence on the optimization
process and the resulting menu structures. Consequently, assumptions that are not
consistent with the user population can easily lead to suboptimal efficiency.

To get a clear view on the assumptions that are made, a framework was provided
that shows the assumptions in an organized way. In a literature study we collected the
(implicit) models underlying various link structure optimization methods. This analy-
sis revealed three main topics about which the methods made different assumptions:

138 Chapter 6: Conclusions

properties of the link structures, the goals of the users and the navigation strategies of
the users. The framework further decomposes these topics in, in total, fifteen features
that represent detailed assumptions. For instance, one of the features describes the
relation between the number of menu items that users read and the reading time.

We developed a procedure to test the validity of a set of assumptions and to select
the best set of assumptions for a user population. We introduced the notion of a
navigation behavior model: an instantiation of the fifteen features of the framework.
A navigation behavior model suffices to predict navigation paths through a menu and,
from this, the average time users need to follow these paths. To find the best model for
a site all possible navigation models are constructed and used to predict navigation.
The predicted navigation is compared to the actual navigation of users as recorded in
the log files. The model that makes the most accurate predictions is selected.

In an experiment we applied the model selection method to four web sites. We
found that some feature values were inherently better than others: these values clearly
outperformed the other values at all four sites. We found that it is better to take into
account that users can have multiple targets than to make the simpler assumption
that each user searches for a single target page. Also, the relative frequency of targets
should not be ignored. Navigation time is a function of both the number of menu items
from which a user makes a choice and the number of times a user opens a menu item.
When selecting a model for a new site, these feature values can be used directly. For
other features the optimal choice differed per site. For instance, navigation time can
vary linearly or logarithmically with the number of subitems under each menu item.
As the optimal values of these features depend on the user population, the various
values must be tested anew for each new site. This can be accomplished with the
presented procedure.

By means of the framework, we compared the feature values that were found opti-
mal to the assumptions used by the menu optimization methods. This study revealed
that none of the methods used an optimal model. As stated, this can be detrimental to
the resulting menu structures. Therefore, we believe that menu optimization can be
improved substantially by application of the presented model selection method.

6.2.3 How can we automatically create problem-oriented menus?

In Chapter 4 we presented a novel way to represent the preferred reading order of a
set of web pages. So called stage models consist of a number of navigation stages.
Each stage represents a cluster of pages that play similar roles in the users’ navigation.
The ordering of the stages is such that users tend to start their sessions by viewing
a number of pages from the first stage, then visit some pages from the second stage,
etc. There is no preferred reading order for two pages from the same stage. Stage
models can be combined with traditional topic-based structures to construct problem-
oriented menus. The stage models form the layers of the menu hierarchies. When
users navigate from the root of the hierarchy to the deeper layers, the pages they
encouter become more and more specific. The topic-based structures determine the
position of the pages within each layer. Users use the topics to select pages that are
relevant to their information needs.

6.2. Reflections on the research questions 139

We presented an algorithm to automatically find a specific stage model for a user
population on the basis of usage data. The algorithm searches for regularities in the
order in which users visited the pages of a site. It computes for each page the average
relative position of the page in the users’ sessions. Expectation maximization is em-
ployed to divide the pages in a number of stages on the basis of their relative positions.
Stage models with various amounts of stages are tried and the best fitting model is se-
lected. Finally, the stage model is optimized through bootstrapping. The initial stage
model is compared to the page order in the individual sessions and improved where
necessary.

We evaluated the stage discovery algorithm on the SeniorGezond site (SeniorGe-
zond, 2007), for which a problem-oriented menu was created by experts. In an offline
version of the site we replaced the problem-oriented menu with a basic menu that did
not impose a reading order. Participants were asked to perform search tasks and their
actions were recorded. The algorithm proved able to reconstruct the correct stage
structure on the basis of these log files. In a second experiment the algorithm was
applied to a site that did not yet offer a problem-oriented menu. Also in this domain
the algorithm was able to generate an adequate stage model that was consistent with
the natural reading order of the sites’ pages. In addition, we demonstrated how this
stage model can be used to automatically construct a problem-oriented menu for the
site. Simulation data allowed us to test the sensitivity of the algorithm to properties
of the site and the log files. We found that the algorithm could find stage models for
large sites, for sites with many stages, and for sites with noisy log files, provided that
enough log data was available. These results show that stage models are a suitable
means for creating problem-oriented menus and that the stage discovery algorithm
can effectively learn stage models from log data.

6.2.4 How can we reduce the number of navigation mistakes in hierar-
chical menus?

Experiments of Miller and Remington (2004) and ourselves (Chapter 2) show that
clicks on menu items that do not lead to a user’s targets strongly increase navigation
time. Therefore, reducing navigation errors can considerably contribute to the effi-
ciency of hierarchical menus. In the introduction we formulated the hypothesis that
navigation errors are often caused by inaccurate link descriptions. Inaccurate descrip-
tions give users incorrect ideas of the content that can be reached by following the
links, so that users cannot predict which links lead to their target information.

In Chapter 5 we proposed a model that describes how users navigate in the pres-
ence of accurate link descriptions as well as various types of inaccurate descriptions.
Accurate descriptions are characterized by a usage pattern in which most users select
the links that lead to their target pages. Other usage patterns indicate that descriptions
are not correctly understood or that descriptions of links are confused.

We provided a method that determines which descriptions in a menu are inaccu-
rate by comparing the model to the navigation patterns of the sites’ users. For all
sessions in the log files the method estimates which target pages the users were look-
ing for. It compares the menu items that the users should have selected to reach their

140 Chapter 6: Conclusions

targets most efficiently to the items that were actually selected. The method deter-
mines the types of the mistakes that are made at the various locations in the menu
and makes recommendations for how the descriptions can be improved.

We evaluated our approach on three web sites. The method was used to analyze
the logs of the sites and its findings were shown to the webmasters of the sites. All
webmasters found the analyses very useful for improving the menus. 64% of the prob-
lems that were identified by our method were assessed as relevant. A user experiment
showed that on all sites the adaptations to the menus that the webmasters chose on
the basis of the analyses significantly reduced the number of navigation mistakes. This
confirms our hypothesis that navigation mistakes can be brought down by improving
inaccurate link descriptions. Moreover, it indicates that our method can effectively
help web masters to improve hierarchical menus and, consequently, to reduce naviga-
tion time.

6.2.5 How can we automatically or semi-automatically adapt hierarchi-
cal menus of web sites in such a way that the users of the sites
can fulfill their information needs more efficiently?

Above we answered the four specific research questions. We will now return to our
main research question and draw general conclusions about the optimization of hier-
archical menus.

Our first observation is that one can optimize various aspects of menus and var-
ious types of menus. We optimized menus for users with two types of information
needs: specific information needs and unspecific information needs. These two types
of users have different goals during navigation and thus pose different requirements
on a menu. Furthermore, menus consist of a hierarchical link structure and descrip-
tions for the links. Previous research on menus focused primarily on link structures.
We showed that inaccurate link descriptions have a large influence on navigation time,
which means that efficiency can be further enhanced by improving link descriptions.

We have shown that the optimization of both types of menus as well as both as-
pects of menus can be accomplished by a model-based approach. The models that we
used consist of two layers. The first layer comprises a generic model, that represents
the requirements of the task. This thesis provided three examples of generic models:
navigation behavior models for users with specific information needs, stage models for
users with unspecific information needs and mistake models that described navigation
patterns of accurate and inaccurate link descriptions. For each of these generic models
we provided a method to create a specific model that represents a particular site and
user population. When a specific model is created, the next step is to find a menu that
is optimal according the model. Sometimes this is very straightforward, for instance,
transforming a specific stage structure into a problem-oriented menu. In other appli-
cations optimization requires a considerable amount of computation, as is the case for
navigation behavior models. Some optimization tasks even have to be performed by
humans, such as optimizing inaccurate descriptions.

The model-based approach allows us to make a sharp distinction between mod-
eling the needs of users and finding menus that optimally support these needs. This

6.3. Discussion and future research 141

distinction makes it easier to see for which sites and users the models are applicable.
Moreover, it enables us to separate the evaluation of the models from the evaluation
of the optimization methods. This is a great advantage as our experiments showed
the importance of making correct assumptions about a user population. The practical
value of the model-based approach was shown by the experiments presented in this
thesis: it was successfully used for optimizing various aspects of hierarchical menus in
a variety of domains.

Another point that is shown in this thesis is that usage data is a powerful means for
menu optimization. We showed that menus for users with specific as well as unspecific
information needs can be improved considerably by using usage data that is generally
available in log files. On top of that, usage data suffices to optimize both menu struc-
tures and link descriptions. Usage data has several advantages over other information
sources, such as the contents of the pages, annotations of the contents or explicit user
feedback. Firstly, log files are very useful for optimizing efficiency as they explicitly
show the times that users needed for navigation. Secondly, the alternative informa-
tion sources are often domain specific, so that methods depending on these sources
cannot easily be transfered to other domains. Because usage data can be collected
in any domain, our methods are completely domain independent. Thirdly, acquiring
annotations or user feedback requires manual effort from the developers or the users
of the site. Finally, in contrast to content-based methods, usage-based methods can be
applied to sites that offer content in other forms than text, like images or movies.

6.3 Discussion and future research

In this section we discuss advantages and limitations or our work. In particular, we
address the applicability of the methods that we have presented. In the last part of the
section we identify unsolved issues and directions for future research.

Hierarchical menus can be implemented in a variety of ways. Some menus are
simply hierarchies of HTML hyperlinks. Others are formed by, for instance, javascript
or cgi programs. Although in this thesis we often spoke about menu items as ‘links’,
the presented methods are not limited to menus implemented as HTML hyperlinks.
The only restriction that our methods pose on a menu is that the opening of menu
items happens on the server side rather than the client side, so that menu openings
can be recorded in log files. For our experiments, the menus of the various sites were
transformed to an internal format by custom made scripts. For each new site this
required several hours of manual labor. A standard representation of menus would
significantly facilitate this process. However, at present no such standard exists.

In the previous section we named several advantages of usage-based methods.
However, the use of usage data also poses constraints on the applicability of the meth-
ods. Most importantly, usage-based methods suffer from the cold-start problem. When
new content is added to a site or when a site has just gone online, no usage information
is available. Consequently, optimization has to be delayed until a sufficient number of
users have visited the new site or the new part of the site.

The storage of usage data that is required for our methods may raise questions

142 Chapter 6: Conclusions

about privacy. We believe, however, that our methods can be applied while privacy
remains reasonably well-protected. The data that we use is limited to sessions on a
single site. This means that per user only a few requests are stored, so that relatively
little can be inferred about individual users. This stands in contrast to data collected
in proxies which includes all request that a user makes to any site. Moreover, our
methods only use click stream data and do not require users to register or otherwise
disclose personal information. For domains where privacy is so crucial that even reg-
ular log data cannot be stored for long periods of time, our methods must be made
incremental. Instead of using large amounts of log data at once, incremental methods
digest data directly when it comes in.

We put much emphasis on the evaluation of our methods. We evaluated each of
our methods on the menus of real web sites. In all cases, these studies showed that
the methods were able to substantially improve the menus. However, the evaluations
were limited to case studies and user experiments. To test the quality of the optimized
menus with real users the optimized menus must be placed on the sites. Compari-
son between navigation through the original and the optimized menus will allow an
unbiased view on the effects of menu optimization on navigation of real users.

In this thesis various aspects of menus were addressed separately. Future research
should explore how these aspects can be integrated in one system that helps a web
master to optimize all aspects of a site’s menu. A particularly promising research
direction involves the combination of menus for users with specific and unspecific
information needs. Combined menus are urgently needed as most sites accommodate
both types of users. Another issue that awaits further exploration is the integration of
structure optimization with link description optimization. The current versions of the
methods cannot be combined directly. The description optimization method enables
us to assess the quality of descriptions in the current menu structure, but does not
provide a way to predict the quality of descriptions in alternative structures. Finally,
in this thesis we focussed mainly on the minimization of navigation time. Future work
could investigate usage-based approaches to the optimization of other criteria, such as
the visual design of menus or the consistency between the terminology of a menu and
the rest of a site.

In this work we showed how explicit navigation models constructed from usage-
data can be applied for menu optimization. Our experiments clearly demonstrate the
promise of the model-based approach in this domain. However, the benefits of models
are not inherently limited to hierarchical menus. We believe, therefore, that this type
of methods will prove useful for a much wider range of applications. Future research
should explore models that describe how users interact with other types of interfaces.
These models will enable easy and unbiased optimization of these interfaces.

Appendix A

Example assignments from the stage

discovery experiments

A.1 SeniorGezond (translated from Dutch)

Mr. Jansen is 82 years old. He lives with his wife in an apartment for senior citizens
on the ground flour. He has got up early to visit his grandson’s birthday. At half past
nine his daughter picks him up by car. He had to give up cycling and driving years ago
because of his poor sight and rheumatism. He walks towards the car on his daughter’s
arm and opens the door. When he tries to bend over to enter the car, he suddenly
slips. He makes a nasty fall on his elbow and feels a severe pain. Scared to death his
daughter calls an ambulance.

Soon after their arrival in the hospital Mr. Jansen is seen by a doctor. The doctor
takes x-rays of Mr. Jansen’s arm and concludes that it is broken in two places, but
the segments are not displaced. The arm is placed in a cast and Mr. Jansen receives
a prescription for pain killers. From all the events Mr. Jansen is very tired and his
daughter decides to bring him home. On the way home they drive by the drugstore to
pick up the pain killers.

The next day Mr. Jansen feels already much better, but he is still worried about the
whole event. He visits the SeniorGezond site to see whether the site can help him to
make sure accidents like this won’t happen again. Play the visit of Mr. Jansen to the
SeniorGezond site.

A.2 Hardware comparison site

You have a small law firm with four employees. You have bought a new computer with
a new system to document your cases. To make sure the old paper documentation
does not get lost, you decide to buy a scanner and save it all on cd-rom. You want a
scanner suitable for this purpose, but you don’t know anything about scanners. Find
an appropriate scanner.

Appendix B

Example assignments from the link

description experiment

B.1 SeniorGezond (translated from Dutch)

You tripped over a telephone cable. Fortunately, you are not hurt, but you are scared
that a similar accident will happen again. Find out whether there are ways to prevent
such accidents.

B.2 Reumanet (translated from Dutch)

For months you have been suffering from sore feet when you are walking. Your family
doctor thinks that specialized shoes might solve this problem. Find out how and where
you can obtain such shoes.

B.3 Leiden (translated from Dutch)

You suffer from back problems that make walking difficult. Some years ago the local
government provided you with a rollator. When you were at the grocery store the
other day, the rollator broke down. You want to apply for a new rollator to the local
government. Find the application form at the web site.

Bibliography

Adda, M., M. Rokia, P. Valtchev, and C. Djeraba: 2005, ‘Recommendation strategy
based on relation rule mining’. In: Proceedings of the IJCAI’05 Workshop on Intelligent

Techniques for Web Personalization, Edinburgh, UK. pp. 33–40.

Allan, J., A. Feng, and A. Bolivar: 2003, ‘Flexible intrinsic evaluation of hierarchi-
cal clustering for TDT’. In: Proceedings of the Twelfth International Conference on

Information and Knowledge Management, New Orleans, LA, USA. pp. 263–270.

Alpay, L. L., N. P. M. Ezendam, and J. H. M. Zwetsloot-Schonk: 2005, ‘Final report of
the Geriwijzer/SeniorGezond project’. Technical report, Leiden University Medical
Center, Leiden, The Netherlands.

Alpay, L. L., P. J. Toussaint, N. P. M. Ezendam, A. J. M. Rövekamp, W. C. Graafmans,
and R. G. J. Westendorp: 2004, ‘Easing internet access of health information for
elderly users’. Health Informatics Journal 10(3), 185–194.

Alpay, L. L., P. J. Toussaint, N. P. M. Ezendam, A. J. M. Rövekamp, R. Westendorp, J.
Verhoef, and J. H. M. Zwetsloot-Schonk: 2007, ‘The Dutch website ‘SeniorGezond’:
an illustration of a road map for the informed patient’. Managed Care 2.

Alpert, S. R., J. Karat, C.-M. Karat, C. Brodie, and J. G. Vergo: 2003, ‘User attitudes
regarding a user-adaptive ecommerce web site’. User Modeling and User-Adapted

Interaction 13(4), 373–396.

Anderson, C. R., P. Domingos, and D. S. Weld: 2001, ‘Adaptive web navigation for
wireless devices’. In: Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence, Seattle, WA, USA. pp. 879–884.

Anderson, C. R. and E. Horvitz: 2002, ‘Web Montage: A dynamic personalized start
page’. In: Proceedings of the Eleventh International Conference on World Wide Web,
Honolulu, HI, USA. pp. 704–712.

Balabanović, M.: 1997, ‘An adaptive web page recommendation service’. In: Proceed-

ings of the First International Conference on Autonomous Agents, New York, NY, USA.
pp. 378–385.

146 Bibliography

Balabanović, M.: 1998, ‘Exploring versus exploiting when learning user models for
text recommendation’. User Modeling and User-Adapted Interaction 8(1-2), 71–102.

Bernard, M. L.: 2002, ‘Examining a metric for predicting the accessibility of informa-
tion within hypertext structures’. Ph.D. thesis, Wichita State University, Wichita, KS,
USA.

Bradley, K. and B. Smyth: 2001, ‘Improving recommendation diversity’. In: Proceed-

ings of the Twelfth National Conference in Articial Intelligence and Cognitive Science,
Maynooth, Ireland. pp. 75–84.

Brusilovsky, P.: 1996, ‘Methods and techniques of adaptive hypermedia’. User Modeling

and User-Adapted Interaction 6(2-3), 87–129.

Brusilovsky, P.: 2001, ‘Adaptive hypermedia’. User Modeling and User-Adapted Interac-

tion 11(1-2), 87–110.

Brusilovsky, P., J. Eklund, and E. Schwarz: 1998, ‘Web-based education for all: a tool
for developing adaptive courseware’. In: Proceedings of the Seventh International

Conference on World Wide Web, Brisbane, Australia. pp. 291–300.

Burke, R.: 2002, ‘Hybrid recommender systems: survey and experiments’. User Mod-

eling and User-Adapted Interaction 12(4), 331–370.

Cadez, I., D. Heckerman, C. Meek, P. Smyth, and S. White: 2003, ‘Model-based clus-
tering and visualization of navigation patterns on a web site’. Data Mining and

Knowledge Discovery 7(4), 399–424.

Carroll, J. D.: 1972, ‘Individual differences and multidimensional scaling’. In: R.
Shepard, A. K. Romney, and S. B. Nerlove (eds.): Multidimensional Scaling: Theory

and Applications in the Behavioral Sciences. New York, NY, USA: Seminar Press, pp.
105–155.

Centrum Hout: 2007, ‘Houtinfo.nl’. Web site. Last accessed September 12, 2007, from
http://www.houtinfo.nl/.

Choo, C. W., B. Detlor, and D. Turnbull: 2000, ‘Working the web: an empirical model
of web use’. In: Proceedings of the 33rd Hawaii International Conference on System

Sciences, Maui, Hawaii, USA.

Clancey, W.: 1985, ‘Heuristic classification’. Artificial Intelligence 27(3), 289–350.

Cooley, R., B. Mobasher, and J. Srivastava: 1999, ‘Data preparation for mining world
wide web browsing patterns’. Journal of Knowledge and Information Systems 1(1),
5–32.

Coombs, C. H.: 1964, A Theory of Data. New York, NY, USA: John Wiley.

Bibliography 147

Cortellessa, G., M. V. Giuliani, M. Scopelliti, and A. Cesta: 2005, ‘Key issues in in-
teractive problem solving: an empirical investigation on users attitude’. In: M. F.
Costabile and F. Paterno (eds.): INTERACT 2005, Vol. 3585 of Lecture Notes in Com-

puter Science. Berlin / Heidelberg, Germany: Springer, pp. 657–670.

Cramer, H., V. Evers, S. Ramlal, M. W. Van Someren, B. J. Wielinga, L. Rutledge, N.
Stash, and L. Aroyo: 2006, ‘My computer says I love Rembrandt: The influence
of system transparency on user acceptance of recommender systems’. Manuscript
submitted for publication.

Craswell, N., D. Hawking, and S. Robertson: 2001, ‘Effective site finding using link
anchor information’. In: Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, New Orleans, LA,

USA. pp. 250–257.

Dasgupta, S., W. Lee, and P. Long: 2002, ‘A theoretical analysis of query selection for
collaborative filtering’. Machine Learning 51, 283–298.

De Bra, P. and L. Calvi: 1998, ‘AHA! an open adaptive hypermedia architecture’. The

New Review of Hypermedia and Multimedia 4, 115–139.

Dempster, A., N. Laird, and D. Rubin: 1977, ‘Maximum likelihood from incomplete
data via the EM algorithm’. Journal of the Royal Statistical Society 39, 1–38.

Deshpande, M. and G. Karypis: 2004, ‘Selective Markov models for predicting web
page accesses’. ACM Transactions on Internet Technology 4(2), 163–184.

Dmoz: 2007, ‘Dmoz open directory project’. Web site. Last accessed September 12,
2007, from http://www.dmoz.org/.

Domshlak, C. and T. Joachims: 2007, ‘Efficient and non-parametric reasoning over
user preferences’. User Modeling and User-Adapted Interaction, special issue on Sta-

tistical and Probabilistic Methods for User Modeling 17(1-2), 41–69.

Ezendam, N. P. M., L. L. Alpay, A. J. M. Rövekamp, and P. J. Toussaint: 2005, ‘En-
hancing accessibility of the content of a fall prevention website for elderly: a cross
sectional study’. Technical report, Leiden University Medical Center.

Fisher, D. L., E. J. Yungkurth, and S. M. Moss: 1990, ‘Optimal menu hierarchy design:
syntax and semantics’. Human Factors 32(6), 665–683.

Fu, Y., M. Shih, M. Creado, and C. Ju: 2002, ‘Reorganizing web sites based on user
access patterns’. International Journal of Intelligent Systems in Accounting, Finance

and Management 11(1), 39–53.

Fürnkranz, J.: 1999, ‘Exploiting structural information for text classification on the
WWW’. In: D. Hand, J. N. Kok, and M. Berthold (eds.): Proceedings of the Third

International Symposium on Advances in Intelligent Data Analysis, Amsterdam, The

Netherlands, Vol. 1642 of Lecture Notes in Computer Science. Berlin / Heidelberg,
Germany: Springer, pp. 487–498.

148 Bibliography

Gemeente Leiden: 2007, ‘De gemeente Leiden online’. Web site. Last accessed Septem-
ber 12, 2007, from http://www.leiden.nl/gemeente/.

Golovchinsky, G.: 1997, ‘What the query told the link: the integration of hypertext and
information retrieval’. In: Proceedings of the Eighth ACM Conference on Hypertext,
Southampton, UK. pp. 67–74.

Gouden Handdruk Specialist: 2007, ‘De gouden handdruk specialist’. Web site. Last
accessed September 12, 2007, from http://www.goudenhanddrukspecialist.nl/.

Hart, P. E., N. J. Nilsson, and B. Raphael: 1968, ‘A formal basis for the heuristic
determination of minimum cost paths’. IEEE Transactions on Systems Science and

Cybernetics 4(2), 100–107.

Hay, B., G. Wets, and K. Vanhoof: 2004, ‘Mining navigation patterns using a sequence
alignment method’. Knowledge and Information Systems 6, 150–163.

Hearst, M. A. and J. O. Pedersen: 1996, ‘Reexamining the cluster hypothesis: scat-
ter/gather on retrieval results’. In: Proceedings of the Nineteenth Annual Interna-

tional ACM/SIGIR Conference on Research and Development in Information Retrieval,
Zurich, Switzerland. pp. 76–84.

Herder, E.: 2004, ‘Sniffing around for providing navigation assistance’. In: Proceedings

of the Twelfth Workshop on Adaptivity and User Modeling in Interactive Systems, Berlin,

Germany. pp. 20–24.

Hollink, V. and M. W. Van Someren: 2006, ‘Optimal link categorization for minimal re-
trieval effort’. In: Proceedings of Sixth Dutch-Belgian Information Retrieval Workshop,
Delft, The Netherlands. pp. 65–72.

Hollink, V. and M. W. Van Someren: 2007, ‘Web usage mining for the classification of
link anchors’. In: Proceedings of the Sixteenth Annual Machine Learning Conference

of Belgium and the Netherlands, Amsterdam, The Netherlands. pp. 153–154.

Hollink, V., M. W. Van Someren, and S. Ten Hagen: 2004, ‘Web site adaptation: rec-
ommendation and automatic generation of navigation menus’. In: Proceedings of

the Twelfth Workshop on Adaptivity and User Modeling in Interactive Systems, Berlin,

Germany. pp. 33–35.

Hollink, V., M. W. Van Someren, and S. Ten Hagen: 2005a, ‘Discovering stages in web
navigation’. In: Proceedings of the Tenth International Conference on User Modeling,
Edinburgh, UK. pp. 473–482.

Hollink, V., M. W. Van Someren, S. Ten Hagen, and B. J. Wielinga: 2005b, ‘Recom-
mending informative links’. In: Proceedings of the IJCAI’05 Workshop on Intelligent

Techniques for Web Personalization, Edinburgh, UK. pp. 65–72.

Bibliography 149

Hollink, V., M. W. Van Someren, S. Ten Hagen, and B. J. Wielinga: 2007a, ‘The
SeniorGezond recommender: exploration put into practice’. In: Proceedings of

the AAAI’07 Workshop on Intelligent Techniques for Web Personalization, Vancouver,

Canada. pp. 35–45.

Hollink, V., M. W. Van Someren, and B. J. Wielinga: 2007b, ‘Discovering stages in
web navigation for problem-oriented navigation support’. User Modeling and User-

Adapted Interaction, special issue on Statistical and Probabilistic Methods for User Mod-

eling 17(1-2), 183–214.

Hollink, V., M. W. Van Someren, and B. J. Wielinga: 2007c, ‘Navigation behavior
models for link structure optimization’. User Modeling and User-Adapted Interaction

17(4), 339–377.

Hollink, V., M. W. Van Someren, and B. J. Wielinga: 2007d, ‘Using log data to detect
weak hyperlink descriptions’. In: Proceedings of the UM’07 Workshop on Data Mining

for User Modeling, Corfu, Greece. pp. 35–39.

ISO: 2002, ‘Ergonomic requirements for office work with visual display terminals
(vdts) - part 14: Menu dialogues’. International Organization for Standardization,
ISO 9241-14.

Jacko, J. and G. Salvendy: 1996, ‘Hierarchical menu design: breadth, depth and task
complexity’. Perceptual and Motor Skills 82, 1187–1201.

Jin, X., Y. Zhou, and B. Mobasher: 2005, ‘Task-oriented web user modeling for recom-
mendation’. In: Proceedings of the Tenth International Conference on User Modeling,
Edinburgh, UK. pp. 109–118.

Joachims, T., D. Freitag, and T. Mitchell: 1997, ‘Webwatcher: a tour guide for the
world wide web’. In: Proceedings of the Fifteenth International Joint Conference on

Artificial Intelligence, Helsinki, Finland. pp. 770–777.

Kiger, J. I.: 1984, ‘The depth/breadth tradeoff in the design of menu-driven interfaces’.
International Journal of Man-Machine Studies 20, 201–213.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi: 1983, ‘Optimization by simulated an-
nealing’. Science 220(4598), 671–680.

Kraft, R. and J. Zien: 2004, ‘Mining anchor text for query refinement’. In: Proceedings

of the Thirteenth International Conference on World Wide Web, New York, NY, USA.
pp. 666–674.

Landauer, T. K. and D. W. Nachbar: 1985, ‘Selection from alphabetic and numeric
menu trees using a touch screen: depth, breadth and width’. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, San Francisco, CA, USA.
pp. 73–78.

150 Bibliography

Larson, K. and M. Czerwinski: 1998, ‘Web page design: implications of memory, struc-
ture and scent for information retrieval’. In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, Los Angeles, CA, USA. pp. 25–32.

Lawrie, D., W. B. Croft, and A. Rosenberg: 2001, ‘Finding topic words for hierarchical
summarization’. In: Proceedings of the 24th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, New Orleans, LA, USA.
pp. 349–357.

Lee, E. and J. MacGregor: 1985, ‘Minimizing user search time in menu retrieval sys-
tems’. Human Factors 27(2), 157–162.

Lee, E. S. and D. R. Raymond: 1992, ‘Menu-driven systems’. In: A. Kent and J. G.
Williams (eds.): Encyclopedia of Microcomputers. New York, NY, USA: Marcel Dekker,
pp. 101–128.

Lekakos, G. and G. M. Giaglis: 2007, ‘A hybrid approach for improving predictive ac-
curacy of collaborative filtering algorithms’. User Modeling and User-Adapted Interac-

tion, special issue on Statistical and Probabilistic Methods for User Modeling 17(1–2),
5–40.

Lieberman, H.: 1995, ‘Letizia: an agent that assists web browsing’. In: Proceedings

of the Fourteenth International Joint Conference on Artificial Intelligence, Montreal,

Canada. pp. 924–929.

Lin, W., S. A. Alvarez, and C. Ruiz: 2002, ‘Efficient adaptive-support association rule
mining for recommender systems’. Data Mining and Knowledge Discovery 6, 83–105.

Lu, W.-H., L.-F. Chien, and H.-J. Lee: 2002, ‘Translation of web queries using anchor
text mining’. ACM Transactions on Asian Language Information Processing 1(2), 159–
172.

McCarthy, K., J. Reilly, L. McGinty, and B. Smyth: 2005, ‘End user evaluation recom-
mendation through dynamic critiquing’. In: Proceedings of the IJCAI’05 Workshop on

Intelligent Techniques for Web Personalization, Edinburgh, UK. pp. 57–64.

McGinty, L. and B. Smyth: 2003, ‘Tweaking critiquing’. In: Proceedings of the IJCAI’03

Workshop on Intelligent Techniques for Personalization, Acapulco, Mexico. pp. 20–27.

Miller, D. P.: 1981, ‘The depth/breadth tradeoff in hierarchical computer menus’. In:
Proceedings of the 25th Annual Meeting of the Human Factors and Ergonomics Society,
Santa Monica, CA, USA. pp. 296–300.

Miller, G. S. and R. W. Remington: 2004, ‘Modeling information navigation: implica-
tions for information architecture’. Human-Computer Interaction 19, 225–271.

Mobasher, B., H. Dai, T. Luo, and M. Nakagawa: 2002, ‘Discovery and evaluation
of aggregate usage profiles for web personalization’. Data Mining and Knowledge

Discovery 6, 61–82.

Bibliography 151

Molich, R. and J. Nielsen: 1990, ‘Improving a human-computer dialogue’. Communi-

cations of the ACM 33, 338–348.

Nakayama, T., H. Kato, and Y. Yamane: 2000, ‘Discovering the gap between web site
designers’ expectations and users’ behavior’. Computer Networks 33(1–6), 811–822.

Nielsen, J.: 1994, ‘Heuristic evaluation’. In: J. Nielsen and R. L. Mack (eds.): Usability

Inspection Methods. New York, NY, USA: John Wiley, pp. 25–62.

Norman, K. L. and J. P. Chin: 1988, ‘The effect of tree structure on search in a hierar-
chical menu selection system’. Behaviour and Information Technology 7, 51–65.

Osdin, R., I. Ounis, and R. White: 2002, ‘Using hierarchical clustering and summari-
sation approaches for web retrieval: Glasgow at the TREC 2002 interactive track’.
In: Proceedings of the Eleventh Text REtrieval Conference, Gaithersburg, MD, USA. pp.
640–644.

Paap, K. R. and R. J. Roske-Hofstrand: 1986, ‘The optimal number of menu options
per panel’. Human Factors 28(4), 377–385.

Pazzani, M. and D. Billsus: 2002, ‘Adaptive web site agents’. Journal of Agents and

Multi-Agent Systems 5(2), 205–218.

Pazzani, M., J. Muramatsu, and D. Billsus: 1996, ‘Syskill & Webert: identifying inter-
esting web sites’. In: Proceedings of the Thirteenth National Conference on Artificial

Intelligence, Portland, OR, USA. pp. 54–61.

Perkowitz, M. and O. Etzioni: 1997, ‘Adaptive web sites: an AI challenge’. In: Proceed-

ings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya,

Japan. pp. 16–23.

Perkowitz, M. and O. Etzioni: 2000, ‘Towards adaptive web sites: conceptual frame-
work and case study’. Artificial Intelligence 118(1-2), 245–275.

Pierrakos, D. and G. Paliouras: 2005, ‘Exploiting probabilistic latent information for
the construction of community web directories’. In: Proceedings of the Tenth Inter-

national Conference on User Modeling, Edinburgh, UK. pp. 89–98.

Pierrakos, D., G. Paliouras, C. Papatheodorou, V. Karkaletsis, and M. Dikaiakos: 2004,
‘Web community directories: a new approach to web personalization’. In: B.
Berendt, A. Hotho, D. Mladenic, M. W. Van Someren, M. Spiliopoulou, and G.
Stumme (eds.): Web Mining: From Web to Semantic Web, Vol. 3209 of Lecture Notes

in Artificial Intelligence. Berlin / Heidelberg, Germany: Springer, pp. 113–129.

Pierrakos, D., G. Paliouras, C. Papatheodorou, and C. D. Spyropoulos: 2003, ‘Web us-
age mining as a tool for personalization: a survey’. User Modeling and User-Adapted

Interaction 13(4), 311–372.

152 Bibliography

Pirolli, P. and W.-T. Fu: 2003, ‘SNIF-ACT: a model of information foraging on the world
wide web’. In: Proceedings of the Ninth International Conference on User Modeling,
Johnstown, PA, USA. pp. 45–54.

Pitkow, J. E. and P. Pirolli: 1999, ‘Mining longest repeated subsequences to predict
world wide web surfing’. In: Proceedings of the Second USENIX Symposium on Internet

Technologies and Systems, Boulder, CO, USA. pp. 139–150.

Quinlan, J. R.: 1986, ‘Induction of decision trees’. Machine Learning 1, 81–106.

Raymond, D. R.: 1986, ‘A survey of research in computer-based menus’. Technical Re-
port CS-86-61, Department of Computer Science, University of Waterloo, Waterloo,
Canada.

Reumanet: 2007, ‘Reumanet’. Web site. Last accessed September 12, 2007, from
http://www.reumanet.nl/.

Sarukkai, R.: 2000, ‘Link prediction and path analysis using markov chains’. Computer

Networks 33(1-6), 377–386.

Schilit, B. N., J. Trevor, D. M. Hilbert, and T. K. Koh: 2002, ‘Web interaction using very
small internet devices’. Computer 35(10), 37–45.

Schwab, I. and W. Pohl: 1999, ‘Learning user profiles from positive examples’. In:
Proceedings of the ACAI’99 Workshop on Machine Learning in User Modeling, Chania,

Greece. pp. 21–29.

SeniorGezond: 2007, ‘SeniorGezond’. Web site. Last accessed September 12, 2007,
from http://www.seniorgezond.nl/.

Shimazu, H.: 2002, ‘ExpertClerk: a conversational case-based reasoning tool for de-
veloping salesclerk agents in e-commerce webshops’. Artificial Intelligence Review

18(3-4), 223–244.

Smyth, B. and P. Cotter: 2003, ‘Intelligent navigation for mobile internet portals’.
In: Proceedings of the IJCAI’03 Workshop on AI Moves to IA: Workshop on Artificial

Intelligence, Information Access, and Mobile Computing, Acapulco, Mexico.

Smyth, B. and P. McClave: 2001, ‘Similarity vs. diversity’. In: Proceedings of the Fourth

International Conference on Case-Based Reasoning, Vancouver, Canada. pp. 347–361.

Snowberry, K., S. R. Parkinson, and N. Sisson: 1983, ‘Computer display menus’. Er-

gonomics 26(7), 699–712.

Spiliopoulou, M. and C. Pohle: 2001, ‘Data mining for measuring and improving the
success of web sites’. Journal of Data Mining and Knowledge Discovery, special issue

on Applications of Data Mining to Electronic Commerce 5, 85–114.

Bibliography 153

Srikant, R. and Y. Yang: 2001, ‘Mining web logs to improve website organization’.
In: Proceedings of the Tenth International Conference on World Wide Web, Hong Kong,

Hong Kong. pp. 430–437.

Symeonidis, P., A. Nanopoulos, A. N. Papadopoulos, and Y. Manolopoulos: 2006, ‘Scal-
able collaborative filtering based on latent semantic indexing’. In: Proceedings of the

AAAI’06 Workshop on Intelligent Techniques for Web Personalization, Boston, MA, USA.
pp. 1–9.

Van Someren, M. W., S. Hagen ten, and V. Hollink: 2004, ‘Greedy recommending is
not always optimal’. In: B. Berendt, A. Hotho, D. Mladenic, M. W. Van Someren,
M. Spiliopoulou, and G. Stumme (eds.): Web Mining: From Web to Semantic Web,
Vol. 3209 of Lecture Notes in Artificial Intelligence. Berlin / Heidelberg, Germany:
Springer, pp. 148–163.

Vossen, P. (ed.): 1998, EuroWordNet: a multilingual database with lexical semantic

networks. Norwell, MA, USA: Kluwer.

Wallace, D., N. Anderson, and B. Shneiderman: 1987, ‘Time stress effects on two menu
selection systems’. In: Proceedings of the 31st Annual Meeting of the Human Factors

and Ergonomics Society, New York, NY, USA. pp. 727–731.

Wang, Y. W., D. W. Wang, and W. H. Ip: 2006, ‘Optimal design of link structure for
e-supermarket website’. IEEE Transactions: Systems, Man and Cybernetics - Part A

36(2), 338–355.

Westerveld, T., D. Hiemstra, and W. Kraaij: 2002, ‘Retrieving web pages using content,
links, URL’s and anchors’. In: Proceedings of the Tenth Text REtrieval Conference,
Gaithersburg, MD, USA. pp. 663–672.

Witten, I. H., J. G. Cleary, and S. Greenberg: 1984, ‘On frequency-based menu-splitting
algorithms’. International Journal of Man-Machine Studies 21, 135–148.

Witten, I. H., G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-Manning: 1999,
‘KEA: practical automatic keyphrase extraction’. In: Proceedings of the Fourth ACM

Conference on Digital Libraries, Berkeley, CA, USA. pp. 254–255.

Wu, E. H., M. K. Ng, and J. Z. Huang: 2005, ‘On improving website connectivity by
using web-log data streams’. In: Y.-J. Lee, J. Li, K. Y. Whang, and D. Lee (eds.):
Database Systems for Advanced Applications, Vol. 2973 of Lecture Notes in Computer

Science. Berlin / Heidelberg, Germany: Springer, pp. 352–364.

Yahoo! Inc.: 2007, ‘Yahoo! Directory’. Web site. Last accessed September 12, 2007,
from http://dir.yahoo.com/.

Ypma, A. and T. Heskes: 2003, ‘Automatic categorization of web pages and user clus-
tering with mixtures of hidden Markov models’. In: O. R. Zaïane, J. Srivastava, M.

154 Bibliography

Spiliopoulou, and B. Masand (eds.): WEBKDD 2002 - Mining Web Data for Discov-

ering Usage Patterns and Profiles, Vol. 2703 of Lecture Notes in Artificial Intelligence.
Berlin / Heidelberg, Germany: Springer, pp. 35–49.

Zamir, O. and O. Etzioni: 1999, ‘Grouper: a dynamic clustering interface to web search
results’. Computer Networks 31(11–16), 1361–1374.

Zaphiris, P.: 2000, ‘Depth vs. breadth in the arrangement of web links’. In: Proceedings

of the 44th Annual Meeting of the Human Factors and Ergonomics Society, San Diego,

CA, USA. pp. 139–144.

Zeng, H., Q. He, Z. Chen, W. Ma, and J. Ma: 2004, ‘Learning to cluster web search
results’. In: Proceedings of the 27th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, Sheffield, UK. pp. 210–217.

Zhang, T. and V. S. Iyengar: 2002, ‘Recommender systems using lineair classifiers’.
Journal of Machine Learning Research 2, 313–334.

Zhu, T., R. Greiner, and G. Häubl: 2003, ‘Learning a model of a web user’s interests’.
In: Proceedings of the Ninth International Conference on User Modeling, Johnstown,

PA, USA. pp. 65–75.

Ziegler, C.-N., S. M. McNee, J. A. Konstan, and G. Lausen: 2005, ‘Improving rec-
ommendation lists through topic diversification’. In: Proceedings of the Fourteenth

International Conference on World Wide Web, Chiba, Japan. pp. 22–32.

Summary

Nowadays many web sites consist of hundreds, thousands or even hundreds of thou-
sands of pages. The information on these pages can be used to answer many different
questions, but at the same time the large number of pages makes it difficult for users to
locate relevant information within a site. To assist users in their search, web sites offer
a range of navigation means, such as in-text links and site search engines. In this thesis
we focus on one of the oldest and most frequently used navigation means: hierarchi-
cal menus. In particular, we investigate how hierarchical menus can automatically be
optimized in such a way that navigation becomes as efficient as possible.

Menus can support various aspects of navigation. Most menus are aimed at users
with specific information needs. The goal of this type of menus is to help users to reach
the information they need as fast as possible. Other menus are meant for users who do
not know exactly what information they are looking for. These problem-oriented menus

guide users step by step through the site. They first show pages with introductory
information the users. Once the users have determined what information they need,
the menu guides them to more specific pages.

Menus consist of two elements: the structure of the menu hierarchy and the de-
scriptions of the menu items. Both elements influence the efficiency of the users’
navigation. The structure of the hierarchy determines how many navigation steps are
needed to reach certain pages. Menus that are not well-structured (for instance, be-
cause popular targets are located deep in the hierarchy) require users to make many
navigation steps. Users read the descriptions to choose which menu items they will
open. Accurate descriptions enable users to choose items that lead to the information
they need. However, when the descriptions are unclear, users cannot make the right
choices and often open incorrect items.

Until now menu optimization research was restricted to users with specific infor-
mation needs and mainly covered the structures of menus. This thesis extends this
work in several ways. We show that existing methods for menu optimization under
certain circumstances do not result in the most efficient menu structures. We propose
a method to overcome this problem. In addition, we address novel tasks, such as
automatically creating problem-oriented menus and optimizing descriptions of links.

Various information sources can be exploited to determine how a menu needs to be

156 Summary

adapted. The most frequently used sources are the contents of the pages (the words),
annotations that are manually added to the pages, and log files that contain data about
the usage of the site. The methods that are presented in this thesis apply only usage
data. Usage data have a number of advantages compared to data from other sources.
Firstly, no human effort is needed to collect these data. Secondly, usage data can
be used also on sites that consists largely of images or movies, while content-based
methods are restricted to text. Finally, most methods that make use of content or
annotations depend on domain-specific characteristics of sites. Usage-based methods
are domain independent.

The first chapters of this thesis directly build on existing research on menu opti-
mization. In these chapters we address the optimization of the structure of menus for
users with specific information needs. We discover that existing methods that aim to
minimize the average number of navigation steps, in fact do not accomplish this. In-
stead, in every navigation step, they maximize the probability that in that step the user
will reach the information he needs. We show the effects of this discrepancy in the-
ory and practice. Another weakness of these methods is that they make assumptions
about the users of the site without verifying whether these assumptions hold. Our
experiments demonstrate that this is a serious shortcoming as incorrect assumptions
often lead to inefficient menus.

We present a framework that shows the assumptions underlying menu optimiza-
tion methods in an organized way. The framework clearly shows that there are large
differences between the assumptions that are made by the various menu optimiza-
tion methods. For example, some methods assume that users read all menu items
before making a choice, while others assume that users open an item as soon as an
acceptable item is encountered. In total the framework distinguishes fifteen types of
assumptions. We provide a method to systematically test the validity of the assump-
tions in the framework in the context of a particular site and its menu. For every
possible combination of assumptions the method creates a model that can be used to
predict user navigation through the menu. The predictions of the models are com-
pared to the user navigation that is recorded in the log files. In this way, for every site
we can find the model that is most consistent with its user population.

A model of a user population can be used to optimize a menu. We demonstrate a
method to gradually improve a menu during a number of optimization steps. In each
step the method applies various adaptation operations to the current version of the
menu. This results in a number of alternative menu structures. The model is used
to predict how much time the average user will need to reach the information he is
looking for when using each of the alternative menus. The best structure is saved and
used as starting point for the next optimization step. We evaluate the method in four
case studies. The results are positive: the adaptations reduce the predicted navigation
time, while the coherence of the menus is maintained.

Problem-oriented menus present users the information on a site in the right order.
Therefore, to automatically construct these menus we need to know not only which
pages users want to visit, but also in which order they want to read the pages. We
present a model to describe the preferred reading order of a set of pages. A method is
developed to the fill in the data of the model for a specific site on the basis of usage

Summary 157

data. Experiments with two sites show that this method can accurately determine the
order in which users tend to read the pages of the sites. Moreover, on the basis of
these models we can construct effective problem-oriented menus.

The last part of this thesis focuses on the optimization of descriptions of menu
items. We present a model that describes how users navigate in the presence of accu-
rate link descriptions as well as various types of inaccurate descriptions. Comparing
the model to the users’ navigation at certain locations in a menu allows us to determine
the quality of the descriptions in the menu. We distinguish various types of inaccurate
descriptions and for each type we provide a number of possible solutions. In an eval-
uation study this method was applied to the menus of three web sites. Webmasters
of the sites judged that the findings of the method were very useful for improving the
menus. On top of that, the adaptations to the menus that the webmasters chose on
the basis of these findings significantly reduced the number of navigation mistakes.

In this thesis we showed how we can construct models on the basis of usage data
and how these models can be used to improve the efficiency of hierarchical menus.
Our model-based approach proved very effective for various aspects of menu opti-
mization and in various domains. However, the benefits of models are not inherently
limited to hierarchical menus or even to web sites. We believe, therefore, that in the
future the model-based approach will also prove useful for the optimization of other
types of interfaces.

158 Summary

Samenvatting

Heden ten dage bestaan veel websites uit honderden, duizenden of zelf honderd-
duizenden pagina’s. Met de informatie op deze pagina’s kunnen vele vragen wor-
den beantwoord, maar tegelijkertijd maken de grote hoeveelheden pagina’s het ook
moeilijk om de relevante pagina’s binnen een site te vinden. Websites proberen hun
gebruikers te helpen in hun zoektocht door het aanbieden van verschillende navigatie-
middelen, zoals links in de tekst en site-zoekmachines. In dit proefschrift onderzoeken
wij één van de oudste en meest gebruikte navigatiemiddelen: hiërarchische menu’s.
We onderzoeken, hoe hiërarchische menu’s automatisch zo kunnen worden aangepast
dat navigatie door de menu’s zo efficiënt mogelijk wordt.

Menu’s kunnen verschillende soorten informatiebehoeften ondersteunen. De mees-
te menu’s zijn ontworpen voor gebruikers die op zoek zijn naar specifieke stukjes in-
formatie. Het doel van dit type menu’s is om mensen te helpen de gezochte informatie
zo snel mogelijk te bereiken. Er zijn echter ook menu’s voor gebruikers die niet pre-
cies weten welke informatie zij nodig hebben. Deze probleem-georiënteerde menu’s

begeleiden gebruikers stap voor stap door de site. De menu’s tonen de gebruikers
eerst pagina’s met algemene informatie. Wanneer de gebruikers weten, wat zij precies
nodig hebben, worden zij naar meer specifieke pagina’s geleid.

Menu’s bestaan uit twee onderdelen: de structuur van de menuboom en de be-
schrijvingen van de menu-items. Beide onderdelen beïnvloeden de efficiëntie van de
navigatie. De structuur bepaalt, hoeveel navigatiestappen er nodig zijn om bepaalde
pagina’s te bereiken. Slecht gestructureerde menu’s, waarin bijvoorbeeld populaire pa-
gina’s diep in de hiërarchie zijn verborgen, zorgen dat gebruikers onnodig veel stappen
moeten maken. De beschrijvingen worden door de bezoekers gebruikt om te bepalen
welke items zij zullen openen. Adequate beschrijvingen stellen bezoekers in staat om
te bepalen onder welk item de gezochte informatie zich bevindt. Als beschrijvingen
echter onduidelijk zijn, kunnen de bezoekers geen goede keuzes maken en zullen zij
vaak verkeerde items openen.

Tot nu toe richtte menuoptimalisatie zich alleen op menu’s voor gebruikers met
specifieke vragen en dan met name op de structuur van deze menu’s. Dit proef-
schrift vult dit werk op een aantal punten aan. We laten zien dat bestaande methoden
voor menuoptimalisatie onder bepaalde omstandigheden niet tot de meest efficiënte

160 Samenvatting

menu’s leiden en we bespreken manieren om deze methoden te verbeteren. Bovendien
richten we ons op nieuwe taken, zoals het automatisch construeren van probleem-
georiënteerde menu’s en de optimalisatie van beschrijvingen van menu-items.

Verschillende informatiebronnen kunnen worden ingezet om te bepalen, hoe me-
nu’s moeten worden aangepast. De meest gebruikte bronnen zijn de inhoud van de
pagina’s (de woorden), annotaties die handmatig aan de pagina’s zijn toegevoegd, en
logbestanden waarin gegevens over het gebruik van de website zijn opgeslagen. Alle
methoden die in dit proefschrift worden gepresenteerd beperken zich tot het gebruik
van logbestanden. Gebruiksgegevens hebben een aantal voordelen ten opzichte van
andere informatiebronnen. Ten eerste is er geen menselijke inspanning nodig om
deze gegevens te verzamelen. Bovendien kunnen gebruik-gebaseerde methoden ook
worden toegepast op websites die voornamelijk bestaan uit plaatjes of filmpjes, terwijl
inhoud-gebaseerde methoden beperkt zijn tot tekst. Tenslotte gebruiken methoden die
met inhoud of annotaties werken meestal specifieke eigenschappen van een bepaald
domein. Gebruik-gebaseerde methoden zijn domeinonafhankelijk.

De eerste hoofdstukken van dit proefschrift bouwen direct voort op bestaande lite-
ratuur op het gebied van menuoptimalisatie. In deze hoofdstukken richten we ons op
de optimalisatie van de structuur van menu’s voor gebruikers met specifieke vragen.
We ontdekken dat bestaande methoden die tot doel hebben om het gemiddeld aantal
navigatiestappen te minimaliseren, dit in feite niet doen. In plaats daarvan maximali-
seren zij in elke navigatiestap de kans dat de gebruiker in die stap de informatie vindt
die hij zoekt. We laten in theorie en praktijk zien dat dit niet altijd op hetzelfde neer
komt. Een andere tekortkoming van deze methoden is dat zij aannames doen over de
gebruikers zonder te controleren of deze aannames kloppen. Experimenten laten zien
dat dit een ernstige onvolkomenheid is, omdat verkeerde aannames in veel gevallen
leiden tot inefficiënte menu’s.

We maken een raamwerk waarin de verschillende aannames geordend worden.
Dit raamwerk laat duidelijk zien dat de verschillende methoden gebaseerd zijn op heel
verschillende aannames. Zo nemen sommige methoden aan dat gebruikers alle menu-
items lezen voor ze een keuze maken, terwijl andere ervan uitgaan dat gebruikers een
keuze maken zodra ze een relevant item vinden. In totaal onderscheidt het raamwerk
vijftien type aannames. We presenteren een methode om op basis van het raamwerk
de mogelijke aannames systematisch te toetsen. De methode maakt van elke mogelijke
combinatie van aannames een model, waarmee de navigatie van gebruikers voorspeld
kan worden. De voorspellingen van de modellen worden vergeleken met de navigatie
van de gebruikers die geregistreerd is in de logbestanden. Op deze manier kunnen
we voor iedere site het model vinden dat het meest consistent is met de gebruikers-
populatie.

Op basis van een model van de gebruikerspopulatie kan een menu worden geopti-
maliseerd. We demonstreren een methode om een menu in een aantal stappen gelei-
delijk te verbeteren. In elke stap probeert de methode verschillende aanpassingen
uit op de huidige versie van het menu, hetgeen resulteert in een aantal alternatieve
menustructuren. Het gebruikersmodel wordt gebruikt om te voorspellen, hoe lang de
navigatie gemiddeld zal duren in elk van de alternatieve structuren. De beste structuur
wordt bewaard en vormt het startpunt voor de volgende aanpassingsstap. We evalu-

Samenvatting 161

eren deze methode in vier case studies. De resultaten zijn positief: de aanpassingen
blijken de voorspelde navigatietijd te reduceren, terwijl de coherentie van de menu’s
behouden blijft.

Probleem-georiënteerde menu’s leiden gebruikers in de juiste volgorde door de
pagina’s van de site. Om deze menu’s automatisch te construeren moeten we zo-
doende niet alleen weten welke pagina’s mensen willen bezoeken, maar ook in welke
volgorde zij de pagina’s willen lezen. We presenteren een model om de volgorde van
de pagina’s te beschrijven en ontwikkelen een methode om op basis van gebruiks-
gegevens het model in te vullen voor een specifieke site en gebruikerspopulatie. Ex-
perimenten op een tweetal sites laten zien dat we op deze wijze effectief kunnen
bepalen in welke volgorde mensen de pagina’s het beste kunnen lezen. Bovendien
blijkt dat we op grond van deze modellen adequate probleem-georiënteerde menu’s
kunnen genereren.

In het laatste deel van het proefschrift behandelen we de optimalisatie van be-
schrijvingen van menu-items. We beschrijven een model dat weergeeft, hoe mensen
navigeren in de context van menu-items met goede en minder goede beschrijvingen.
Door dit model te vergelijken met de navigatie van mensen op bepaalde punten in een
menu kunnen we bepalen of de beschrijvingen in het menu effectief zijn. We onder-
scheiden verschillende typen slechte beschrijvingen en voor elk type geven we een
aantal mogelijke oplossingen. In een evaluatiestudie werd deze methode toegepast op
de menu’s van een drietal websites. Beheerders van de websites oordeelden dat de
bevindingen van de methode heel nuttig waren voor het verbeteren van de menu’s.
Bovendien bleken de aanpassingen aan de menu’s die de beheerders kozen op grond
van deze bevindingen het aantal fouten keuzes significant te verlagen.

In dit proefschrift hebben we laten zien, hoe we op basis van gebruiksgegevens
modellen kunnen construeren waarmee de efficiëntie van hiërarchische menu’s ver-
beterd kan worden. Onze model-gebaseerde aanpak bleek goed te werken voor ver-
schillende aspecten van menuoptimalisatie en in verschillende domeinen. Er is echter
geen reden waarom deze benadering alleen toepasbaar zou zijn voor menu’s of zelfs
websites. We verwachten dan ook dat in de toekomst de model-gebaseerde aanpak
tevens zijn nut zal bewijzen voor de optimalisatie van andere soorten interfaces.

162 Samenvatting

SIKS dissertation series

1998-1 Johan van den Akker (CWI)
DEGAS - An active, temporal
database of autonomous objects

1998-2 Floris Wiesman (UM)
Information retrieval by graphi-
cally browsing meta-information

1998-3 Ans Steuten (TUD)
A contribution to the linguistic
analysis of business conversations
within the language/action per-
spective

1998-4 Dennis Breuker (UM)
Memory versus search in games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij straf-
toemeting

1999-1 Mark Sloof (VU)
Physiology of quality change mod-
elling; Automated modelling of
quality change of agricultural prod-
ucts

1999-2 Rob Potharst (EUR)
Classification using decision trees
and neural nets

1999-3 Don Beal (UM)
The nature of minimax search

1999-4 Jacques Penders (UM)
The practical art of moving physi-
cal objects

1999-5 Aldo de Moor (KUB)
Empowering communities: A
method for the legitimate user-
driven specification of network
information systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object
database design

1999-8 Jacques H.J. Lenting (UM)
Informed gambling: Conception
and analysis of a multi-agent mech-
anism for discrete reallocation.

2000-1 Frank Niessink (VU)
Perspectives on improving software
maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS storage man-
agement

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen
van kennistechnologie; Een proces-
benadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, a formal model of compe-
tence knowledge for user interface
design

164 SIKS dissertation series

2000-5 Ruud van der Pol (UM)
Knowledge-based query formula-
tion in information retrieval.

2000-6 Rogier van Eijk (UU)
Programming languages for agent
communication

2000-7 Niels Peek (UU)
Decision-theoretic planning of clin-
ical patient management

2000-8 Veerle Coupé (EUR)
Sensitivity analyis of decision-
theoretic networks

2000-9 Florian Waas (CWI)
Principles of probabilistic query op-
timization

2000-10 Niels Nes (CWI)
Image database management sys-
tem design considerations, algo-
rithms and architecture

2000-11 Jonas Karlsson (CWI)
Scalable distributed data structures
for database management

2001-1 Silja Renooij (UU)
Qualitative approaches to quantify-
ing probabilistic networks

2001-2 Koen Hindriks (UU)
Agent programming languages:
Programming with mental models

2001-3 Maarten van Someren (UVA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and disjunctive ver-
sion spaces with instance-based
boundary sets

2001-5 Jacco van Ossenbruggen (VU)
Processing structured hypermedia:
A matter of style

2001-6 Martijn van Welie (VU)
Task-based user interface design

2001-7 Bastiaan Schonhage (VU)
Diva: architectural perspectives on
information visualization

2001-8 Pascal van Eck (VU)
A compositional semantic structure
for multi-agent systems dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards distributed development
of large object-oriented models,
views of packages as classes

2001-10 Maarten Sierhuis (UVA)
Modeling and simulating work
practice BRAHMS: A multiagent
modeling and simulation language
for work practice analysis and de-
sign

2001-11 Tom M. van Engers (VU)
Knowledge management: The role
of mental models in business sys-
tems design

2002-01 Nico Lassing (VU)
Architecture-level modifiability
analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-
based document collections

2002-03 Henk Ernst Blok (UT)
Database optimization aspects for
information retrieval

2002-04 Juan Roberto Castelo Valdueza
(UU)
The discrete acyclic digraph
markov model in data mining

2002-05 Radu Serban (VU)
The private cyberspace modeling
electronic environments inhabited
by privacy-concerned agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Build-
ing a knowledge-based ontology of
the legal domain

2002-07 Peter Boncz (CWI)
Monet: A next-generation DBMS
kernel for query-intensive applica-
tions

SIKS dissertation series 165

2002-08 Jaap Gordijn (VU)
Value based requirements engi-
neering: Exploring innovative e-
commerce ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating modern business appli-
cations with objectified legacy sys-
tems

2002-10 Brian Sheppard (UM)
Towards perfect play of scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent based modelling of dynam-
ics: Biological and organisational
applications

2002-12 Albrecht Schmidt (UVA)
Processing XML in database sys-
tems

2002-13 Hongjing Wu (TUE)
A reference architecture for adap-
tive hypermedia applications

2002-14 Wieke de Vries (UU)
Agent interaction: Abstract ap-
proaches to modelling, program-
ming and verifying multi-agent sys-
tems

2002-15 Rik Eshuis (UT)
Semantics and verification of UML
activity diagrams for workflow
modelling

2002-16 Pieter van Langen (VU)
The anatomy of design: Founda-
tions, models and applications

2002-17 Stefan Manegold (UVA)
Understanding, modeling, and im-
proving main-memory database
performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-based information shar-
ing in weakly structured environ-
ments

2003-02 Jan Broersen (VU)
Modal action logics for reasoning
about reactive systems

2003-03 Martijn Schuemie (TUD)
Human-computer interaction and
presence in virtual reality exposure
therapy

2003-04 Milan Petković (UT)
Content-based video retrieval sup-
ported by database technology

2003-05 Jos Lehmann (UVA)
Causation in artificial intelligence
and law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of
virtual environments

2003-07 Machiel Jansen (UVA)
Formal explorations of knowledge
intensive tasks

2003-08 Yongping Ran (UM)
Repair based scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided
behaviour

2003-10 Andreas Lincke (UVT)
Electronic business negotiation:
Some experimental studies on
the interaction between medium,
innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under uncertainty in
natural language dialogue using
bayesian networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multi-
media information retrieval

2003-13 Jeroen Donkers (UM)
Nosce hostem - Searching with op-
ponent models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing language: Conceptualisa-
tion processes across ICT-supported
organisations

2003-15 Mathijs de Weerdt (TUD)
Plan merging in multi-agent sys-
tems

166 SIKS dissertation series

2003-16 Menzo Windhouwer (CWI)
Feature grammar systems - Incre-
mental maintenance of indexes to
digital media warehouses

2003-17 David Jansen (UT)
Extensions of statecharts with
probability, time, and stochastic
timing

2003-18 Levente Kocsis (UM)
Learning search decisions

2004-01 Virginia Dignum (UU)
A model for organizational interac-
tion: Based on agents, founded in
logic

2004-02 Lai Xu (UVT)
Monitoring multi-party contracts
for e-business

2004-03 Perry Groot (VU)
A theoretical and empirical analysis
of approximation in symbolic prob-
lem solving

2004-04 Chris van Aart (UVA)
Organizational principles for multi-
agent architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and mono-
tonicity

2004-06 Bart-Jan Hommes (TUD)
The evaluation of business process
modeling techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; Voor-
beeldgestuurd onderwijs, een
opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek (UM)
Politie en de nieuwe interna-
tionale informatiemarkt, grensre-
gionale politiële gegevensuitwissel-
ing en digitale expertise

2004-09 Martin Caminada (VU)
For the sake of the argument;
Explorations into argument-based
reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of
learning-objects

2004-11 Michel Klein (VU)
Change management for dis-
tributed ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial ex-
pressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using multiple models of reality:
On agents who know how to play

2004-14 Paul Harrenstein (UU)
Logic in conflict. logical explo-
rations in strategic equilibrium

2004-15 Arno Knobbe (UU)
Multi-relational data mining

2004-16 Federico Divina (VU)
Hybrid genetic relational search for
inductive learning

2004-17 Mark Winands (UM)
Informed search in complex games

2004-18 Vania Bessa Machado (UVA)
Supporting the construction of
qualitative knowledge models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic mod-
els for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from design: Facilitating
multidisciplinary design teams

2005-01 Floor Verdenius (UVA)
Methodological aspects of design-
ing induction-based applications

2005-02 Erik van der Werf (UM)
AI techniques for the game of go

2005-03 Franc Grootjen (RUN)
A pragmatic approach to the con-
ceptualisation of language

SIKS dissertation series 167

2005-04 Nirvana Meratnia (UT)
Towards database support for mov-
ing object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-level probabilistic grammars
for natural language parsing

2005-06 Pieter Spronck (UM)
Adaptive game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia presentation genera-
tion for semantic web information
systems

2005-08 Richard Vdovjak (TUE)
A model-driven approach for build-
ing distributed ontology-based web
applications

2005-09 Jeen Broekstra (VU)
Storage, querying and inferencing
for semantic web languages

2005-10 Anders Bouwer (UVA)
Explaining behaviour: Using qual-
itative simulation in interactive
learning environments

2005-11 Elth Ogston (VU)
Agent based matchmaking and
clustering - A decentralized ap-
proach to search

2005-12 Csaba Boer (EUR)
Distributed simulation in industry

2005-13 Fred Hamburg (UL)
Een computermodel voor
het ondersteunen van eu-
thanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-service configuration on the
semantic web; Exploring how se-
mantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the dynamics of cogni-
tive processes

2005-16 Joris Graaumans (UU)
Usability of XML query languages

2005-17 Boris Shishkov (TUD)
Software specification based on re-
usable business components

2005-18 Danielle Sent (UU)
Test-selection strategies for proba-
bilistic networks

2005-19 Michel van Dartel (UM)
Situated representation

2005-20 Cristina Coteanu (UL)
Cyber consumer law, state of the
art and perspectives

2005-21 Wijnand Derks (UT)
Improving concurrency and recov-
ery in database systems by exploit-
ing application semantics

2006-01 Samuil Angelov (TUE)
Foundations of b2b electronic con-
tracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and
use of information technology in
organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in
learning to solve problems

2006-04 Marta Sabou (VU)
Building web service ontologies

2006-05 Cees Pierik (UU)
Validation techniques for object-
oriented proof outlines

2006-06 Ziv Baida (VU)
Software-aided service bundling -
Intelligent methods & tools for
graphical service modeling

2006-07 Marko Smiljanić (UT)
XML schema matching – Balanc-
ing efficiency and effectiveness by
means of clustering

2006-08 Eelco Herder (UT)
Forward, back and home again
- Analyzing user behavior on the
web

168 SIKS dissertation series

2006-09 Mohamed Wahdan (UM)
Automatic formulation of the audi-
tor’s opinion

2006-10 Ronny Siebes (VU)
Semantic routing in peer-to-peer
systems

2006-11 Joeri van Ruth (UT)
Flattening queries over nested data
types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-
cology of people, our technological
environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and decision games for
information exchanging agents

2006-14 Johan Hoorn (VU)
Software requirements: Update,
upgrade, redesign - Towards a the-
ory of requirements change

2006-15 Rainer Malik (UU)
CONAN: Text mining in the
biomedical domain

2006-16 Carsten Riggelsen (UU)
Approximation methods for effi-
cient learning of bayesian networks

2006-17 Stacey Nagata (UU)
User assistance for multitasking
with interruptions on a mobile de-
vice

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for natural
language processing

2006-19 Birna van Riemsdijk (UU)
Cognitive agent programming: A
semantic approach

2006-20 Marina Velikova (UVT)
Monotone models for prediction in
data mining

2006-21 Bas van Gils (RUN)
Aptness on the web

2006-22 Paul de Vrieze (RUN)
Fundaments of adaptive personali-
sation

2006-23 Ion Juvina (UU)
Development of cognitive model
for navigating on the web

2006-24 Laura Hollink (VU)
Semantic annotation for retrieval
of visual resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL
and evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score region algebra: A flexible
framework for structured informa-
tion retrieval

2006-27 Stefano Bocconi (CWI)
Vox populi: Generating video docu-
mentaries from semantically anno-
tated media repositories

2006-28 Börkur Sigurbjörnsson (UVA)
Focused information access using
XML element retrieval

2007-01 Kees Leune (UVT)
Access control and service-oriented
architectures

2007-02 Wouter Teepe (RUG)
Reconciling information exchange
and confidentiality: A formal ap-
proach

2007-03 Peter Mika (VU)
Social networks and the semantic
web

2007-04 Jurriaan van Diggelen (UU)
Achieving semantic interoperabil-
ity in multi-agent systems: A
dialogue-based approach

2007-05 Bart Schermer (UL)
Software agents, surveillance, and
the right to privacy: A legisla-
tive framework for agent-enabled
surveillance

SIKS dissertation series 169

2007-06 Gilad Mishne (UVA)
Applied text analytics for blogs

2007-07 Natas̆a Jovanović (UT)
To whom it may concern - Ad-
dressee identification in face-to-
face meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of change in multi-agent
organizations

2007-09 David Mobach (VU)
Agent-based mediated service ne-
gotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. conformity: An insti-
tutional perspective on norms and
protocols

2007-11 Natalia Stash (TUE)
Incorporating cognitive/learning
styles in a general-purpose adap-
tive hypermedia system

2007-12 Marcel van Gerven (RUN)
Bayesian networks for clinical deci-
sion support: A rational approach
to dynamic decision-making under
uncertainty

2007-13 Rutger Rienks (UT)
Meetings in smart environments;
Implications of progressing tech-
nology

2007-14 Niek Bergboer (UM)
Context-based image analysis

2007-15 Joyca Lacroix (UM)
NIM: A situated computational
memory model

2007-16 Davide Grossi (UU)
Designing invisible handcuffs. for-
mal investigations in institutions
and organizations for multi-agent
systems

2007-17 Theodore Charitos (UU)
Reasoning with dynamic networks
in practice

2007-18 Bart Orriens (UVT)

On the development and manage-
ment of adaptive business collabo-
rations

2007-19 David Levy (UM)

Intimate relationships with artifi-
cial partners

2007-20 Slinger Jansen (UU)

Customer configuration updating
in a software supply network

2007-21 Karianne Vermaas (UU)

Fast diffusion and broadening use:
A research on residential adoption
and usage of broadband internet in
the netherlands between 2001 and
2005

2007-22 Zlatko Zlatev (UT)

Goal-oriented design of value and
process models from patterns

2007-23 Peter Barna (TUE)

Specification of application logic in
web information systems

2007-24 Georgina Ramírez Camps (CWI)

Structural features in XML retrieval

2007-25 Joost Schalken (VU)

Empirical investigations in soft-
ware process improvement

2008-01 Katalin Boer-Sorbán (EUR)

Agent-based simulation of financial
markets: A modular, continuous-
timeapproach

2008-02 Alexei Sharpanskykh (VU)

On computer-aided methods for
modeling and analysis of organiza-
tions

2008-03 Vera Hollink (UVA)

Optimizing hierarchical menus: A
usage-based approach

