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Chapter 1

Introduction

1.1 Detection of buried objects

Over the last decades, the detection and clearing of land mines has been of growing concern.

The number of land mines being laid yearly exceeds the clearing rate by far [1, 2]. In the

early 1930’s, land mines consisted for a considerable part of metallic parts. Nowadays, land

mines are constructed from a variety of materials. These materials are chosen such that

the electromagnetic properties do not differ much from their surroundings. The metallic

content of a land mine is intentionally reduced to a minimum.

The main reason for depositing land mines is the low cost versus effectiveness. Large pieces

of land can be made unusable for both vehicles and man in a period of war. Two main

categories can be distinguished, namely, anti-personnel mines (AP) and anti-tank mines

(AT). The first type of mine is usually buried close to the surface and the latter type is

located at greater depths. A quick but most of all cheap and secure detection device is

needed for clearing these grounds after a period of war.

The demand for the detection of land mines exists ever since they were invented around

the American civil war. The very first antenna system for the detection of buried ob-

jects consisted of two dipole antennas and the objects to be detected were also treated

as dipoles [3]. During the years, the antenna systems became more and more advanced

because the metallic content of a land mine decreased significantly. The near absence of

metallic parts in modern land mines demands the generalization to a dielectric object. In

addition to the detection of land mines, all kinds of buried objects can be detected with the

same antenna system. Other applications vary from the detection of pipes to applications

in archeology [4, 5, 6].

The advantages of such high-tech antenna systems lie in the field of extended penetration

1



2 Chapter 1. Introduction

depth of the electromagnetic waves, higher resolution, power of the waves coupled into the

ground, discrimination of buried objects versus clutter, width of the pulsed signal, etc.

All these enhancements are serving the purpose of a better detection of buried objects.

However, these enhancements raise the cost of the detection system.

The use of electromagnetic signals for the detection of buried objects is an old technique

which has proven itself to be extremely usable [7, 8, 9]. Lately, new techniques that measure

the nuclear spin resonance of nitrogen molecules are being developed. Land mines with a

very low metallic content but with an explosive containing a reasonable amount of nitrogen

bonds can be detected and positively discriminated from its surroundings [10, 11].

The first use of electromagnetic signals to determine the presence and features of metallic

objects is generally attributed to Hülsmeyer in 1904 [3]. The first use of pulsed techniques

was introduced by Húlsenbeck in 1926 [12]. From that time on, different pulsed techniques

have been developed for numerous kinds of ground studies.

In the early 1960’s, several authors [13, 14, 15, 16, 17] have investigated the short-pulse

behavior of dipole antennas with a resistive coating. These short pulses are important

because they have a very broad frequency spectrum. Detection is primarily based on

exciting certain natural frequencies in the spectrum of the material to be detected. The

more frequencies present in the spectrum of the source, the greater the chance that a

natural mode in an object is excited.

A major problem in the detection of a buried object is the ground in which it is buried.

Generally, the ground is highly inhomogeneous and dispersive. Not only do the electro-

magnetic material parameters of the ground as such depend on frequency, these parameters

vary as well with the water content of the ground. The dependence of the material param-

eters on both water content and frequency has been investigated by numerous authors, see

e.g. [18, 19, 20].

Although the research in dipole antennas has been ongoing ever since, more advanced

antenna systems were studied for detection purposes. In the early 1990’s, the resis-

tively loaded dipole for constructing broadband systems was rediscovered by several au-

thors [20, 21, 22, 23, 24, 25, 26] in both theory and measurements. The results obtained

by Rubio Bretones and Tijhuis [25, 27] inspired the present thesis.

1.2 The scope of the thesis

The search for a low-cost and effective antenna system for the detection of a buried object

is very important. One way to reduce the cost is to minimize the post-processing of the
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received signal. Ideally, detection takes place by merely observing the received signal of

the antenna system directly. Therefore, a number of techniques will be studied in this

thesis to enhance the received signal in such a way that detection becomes possible from

that signal without post processing.

As stated above, resistively loaded dipoles exhibit good broadband characteristics. In

addition they are rather cheap. Several authors have shown the broadband qualities of

resistively loaded dipole antennas with theoretically obtained results [23, 28, 29, 30]. Mea-

surements with such antennas by several authors [15, 23, 29] showed that the theoretical

results are accurate. The broadband qualities of resistively loaded dipoles make them

highly suitable for the detection of buried objects [20, 31] since a vast number of natural

modes of the object are excited.

Before the dipoles with a resistive profile are studied, a bi-static set up consisting of two

dipole antennas for the detection of a buried object is investigated numerically. In this bi-

static set up, one wire serves as a transmitter while the other wire is the receiver. As a case

study, a wire antenna is used as a buried object. The modeling of a buried wire is fairly easy

when compared to that of realistic buried dielectric objects. The “ground” is modeled as

a homogeneous half space. Following [20], the averages of the electromagnetic properties

of two types of soil over a certain frequency range are used for numerical computations.

The detection capabilities are studied with a minimum of post-processing techniques.

It will be demonstrated that, along the receiving wire, a difference in the current distri-

bution can be noticed when the buried wire is present. The time-domain response to the

presence of a buried wire is better observable in the current along the resistively loaded re-

ceiving wire. Even when the ground is lossy, a characteristic waveform can be observed. It

turned out that buried objects near the interface are more difficult to detect directly from

the received signal. Therefore the buried wire will be mainly located near the interface.

The single disadvantage of a resistively loaded dipole is the power loss due to the coating.

From literature it is known that only between 10% and 30% of the input power is transmit-

ted by the antenna [17, 23]. To generate an adequate signal into the ground would require

a battery with a large capacity. This automatically means a bigger and heavier battery

which in its turn makes it less suitable for mobile use.

In this thesis, a novel technique, called “pulse compensation”, is presented which is inspired

by the results of the resistively loaded dipoles. The blurring of the received antenna signals

is mainly caused by repeated reflections of the current at the end faces of the wire. The

resistive profile along the wire compensates these repeated reflections. Therefore, the

resistive profile is a passive compensation. Pulse compensation, on the other hand, is an

active way of compensating the repeated reflections at the end faces of the wire. A second
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voltage pulse is generated from the initial voltage pulse. This additional voltage pulse

serves as a second input signal at the center of the wire. Combining the responses to both

voltage pulses results in a suppression of the late-time ringing of the current along the

wire. The total current is actively attenuated at later times. Broadband characteristics

similar to those of the resistively loaded wire can be expected from such a wire antenna.

Furthermore, the technique can be used as a post or pre processing technique. The major

advantage is that the power consumption is comparable to that of regular dipoles.

1.3 Organization of this thesis

In Chapter 2, reflected and transmitted field terms due to a dipole point source are derived.

The derivation is based on earlier work by Rubio Bretones et al. [24]. The respective terms

are extended to a situation with multiple layers to show that the derivation is a general

one for layered media [32].

Chapter 3 is concerned with the derivation of the integral equation for the current along a

single thin wire. The well known expressions given by Pocklington [33] and Hallén [14, 34]

are addressed. To demonstrate the behavior of the current along a thin-wire antenna, a

traveling-wave model according to [35] is introduced as well. Some representative results

will be shown and compared to results found in the literature. These results will be

obtained with the aid of Hallén’s equation.

In Chapter 4, the results from Chapters 2 and 3 will be used to construct the final config-

uration of three wires in a half-space configuration in a few consecutive steps. The results

of each individual step will be compared to results from the literature. In the final con-

figuration, a transmitting and receiving wire in the upper half space form a detection set

up, and a buried wire in the lower half space is the object to be detected. The examples

will illustrate some characteristic effects of the lower half space with the buried wire on

the current along the receiving wire. The effects of different material properties of the

lower half space in combination with the effects of the buried wire on the current along the

receiving wire will be studied as well.

Chapter 5 demonstrates how Hallén’s equation for the current along a wire which is de-

scribed in a certain coordinate system can be transformed to describe that current in terms

of another coordinate system. In the literature, simplified formulations have been found in

the case of coupled dipoles. In this case, the formal derivation will be given. The results

are then used to form a set of coupled integral equations that describe the current along a

number of arbitrarily oriented wires. Some representative results are compared to reference
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results obtained with the Numerical Electromagnetics Code (NEC) [36].

In Chapter 6, the resistive profile as well as pulse compensation are introduced. Both ideas

are then used to study several configurations in Chapter 7. In Chapter 8, some synthetic

seismograms are calculated with the final configuration from Chapter 4. Both the resistive

profile and pulse compensation are used on the wires of the detection set up. From the

synthetic seismograms certain features of the buried wire can be extracted.

Chapter 9 shows results of the pulse compensated and resistively loaded antennas above

an inhomogeneous slab.

In Chapter 10, a summary is given of the main results reported in this thesis. Based on

these results, some general conclusions are drawn and recommendations for future research

are given.
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Chapter 2

Electromagnetic field equations for

stratified media

In this chapter, Maxwell’s equations to describe an electromagnetic field will be discussed.

Maxwell unified previous work from other scientists to arrive at a set of equations that

describe the behavior of electromagnetic fields.

These equations serve as the basis for this chapter and Chapter 3. Maxwell’s equations are

rewritten in a convenient form to describe the electric and magnetic field in a homogeneous

space. With the definition of a current density, the rewritten form of Maxwell’s equations

is solved for a homogeneous space.

The space is divided into two homogeneous half spaces with different electromagnetic

material parameters. Because of the abrupt change of medium parameters at the interface

between the two half spaces, part of the radiated electromagnetic field is reflected at that

interface and part is transmitted into the other half space. With the aid of a set of boundary

conditions and the definition of a current density in one of the half spaces, terms to describe

the transmitted and reflected field are found.

The procedure to find the reflected and transmitted fields is generalized to a slab configu-

ration.

The obtained reflected and transmitted fields can no longer be evaluated analytically.

Therefore, these fields are evaluated numerically. The composite Gaussian quadrature rule

involved with this evaluation is addressed at the end of this chapter.

7



8 Chapter 2. Electromagnetic field equations for stratified media

2.1 Basic relations

In this section, Maxwell’s equations are introduced for an isotropic medium with space

varying permittivity ε(r), permeability µ(r) and conductivity σ(r). From these general

relations, basic relations for free space and for a homogeneous medium will be derived.

The basic mathematical tools to derive suitable expressions from Maxwell’s equations will

be introduced.

2.1.1 Maxwell’s equations in the time domain

In a medium where the material parameters vary in time and space, Maxwell’s equations

can be written in the following special form

∇× E + ∂tB = −K0, (2.1)

∇× H − ∂tD − J = J0. (2.2)

In this notation, bold script letters indicate vector quantities in the space-time domain

(r, t). Unless indicated otherwise, these arguments are omitted. The vector fields in the

right-hand of the equations above are known excitations where K0 is an external magnetic

current density and J0 is an external electric current density. The components on the

left-hand side represent the responses to these excitations. The electric and magnetic field

strengths and the electric and magnetic flux densities, as well as an induced electric current

density, are denoted by E, H, D, B and J, respectively. All responses are supposed to

be causal functions. In other words, if a source starts at an instant t = t0 it is clear that

E,H = 0, for t ≤ t0.

Between the electric flux density and the electric field, as well as between the magnetic

flux density and the magnetic field, an interrelationship exists that depends on the type

of medium under consideration. These interrelationships are known as the constitutive

relations. For instance, in free space, the flux densities differ only by a constant factor

from the field intensities as follows

D = ε0E, B = µ0H, (2.3)

where µ0 and ε0 are the free-space permeability and the free-space permittivity, respectively.

A general formulation of the constitutive relations is found by using the properties of the

medium. In the formulation of the general case, it proves convenient to introduce two

additional vectors, namely the electric and magnetic polarization vectors,

P = D − ε0E, M =
1

µ0

B − H. (2.4)
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The polarization vectors are thus associated with the medium and vanish in free space. In

demonstrating the effect of the medium parameters on the polarization vectors, the electric

polarization vector will be used as an example. For a linear and time-invariant medium,

the electric polarization vector is written as

P(r, t) = ε0

∫ ∞

0

χ
e
(r, τ)E(r, t − τ)dτ, (2.5)

where χ
e
(r, t) is the electric susceptibility which is a 2-tensor. If the medium is isotropic,

the electric susceptibility can be written as

χ
e
(r, t) = χe(r, t) · I, (2.6)

where I is the identity matrix. In addition, the medium is assumed to react instantaneously

and the electric susceptibility can thus be simplified to

χe(r, t) = χe(r)δ(t), (2.7)

where δ(t) is the Dirac delta distribution. With this definition of χe(r, t), the expression

for the electric polarization vector assumes the simplified form

P = ε0χe(r)E. (2.8)

The magnetic polarization vector can be found in a similar way as

M = χm(r)H, (2.9)

where χm(r) is the magnetic susceptibility. The induced current density is found as

J = σ(r)E, (2.10)

where σ(r) is the conductivity. Both susceptibilities and the conductivity are scalar func-

tions that depend only on the position r. Combining (2.8) – (2.10) with (2.1) and (2.2)

leads to

∇× E + µ0µr(r)∂tH = −K0, (2.11)

∇× H − ε0εr(r)∂tE − σ(r)E = J0, (2.12)

where εr(r) = 1 + χe(r) is the relative permittivity and µr(r) = 1 + χm(r) is the relative

permeability, which both depend solely on the position r. With these definitions, the flux

densities can also be written as

D = ε(r)E, B = µ(r)H, (2.13)

where ε(r) = ε0εr(r) is the permittivity and µ(r) = µ0µr(r) is the permeability.
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2.1.2 Maxwell’s equations in the frequency domain

Since, later on in this thesis, a so-called “marching-on-in-frequency” technique [37] is used

to obtain time-domain results for the quantities under investigation, a temporal Fourier

transformation is used to facilitate the necessary conversions to the frequency domain. This

mathematical tool transforms the space-time equations into space-frequency equations. In

this thesis, the temporal Fourier transformation and its inverse are defined as

F (ω) =

∫ ∞

−∞
F(t) exp(iωt)dt, (2.14)

F(t) =
1

2π

∫ ∞

−∞
F (ω) exp(−iωt)dω. (2.15)

As can be seen, the time-domain quantities are represented by a script symbol and the

frequency-domain quantities are represented by a roman symbol. Since, in the time domain,

only causal and real-valued quantities are considered, the temporal Fourier transformation

and its inverse can be written as

F (ω) =

∫ ∞

0

F(t) exp(iωt)dt, (2.16)

F(t) =
1

π
Re

∫ ∞

0

F (ω) exp(−iωt)dω, (2.17)

where it is noted that the frequency-domain quantities are complex-valued. Applying the

temporal Fourier transformation to the time-domain Maxwell’s equations results in

∇× E − iωµ(r)H = −K0, (2.18)

∇× H + iωε(r)E − σ(r)E = J0, (2.19)

which are Maxwell’s equations in the frequency domain. Note that the constitutive pa-

rameters ε, µ and σ depend on position r.

Usually the conductivity is incorporated in the complex permittivity. To this end, the

relative permittivity is redefined as

εr(r) =
ε(r)

ε0

= εr(r) −
σ(r)

iωε0

, (2.20)

also often referred to as the complex relative permittivity. The frequency dependence in

the argument of the complex permittivity is omitted. Substitution of this definition in the

frequency-domain Maxwell’s equations results in

∇× E − iωµ(r)H = 0, (2.21)

∇× H + iωε(r)E = J0, (2.22)

where K0 = 0 since no magnetic current sources are considered.
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2.2 Current sources in layered media

In this section, the solution for the electric and magnetic field quantities excited by an

external source will be given for a planarly layered structure. To facilitate this, Maxwell’s

equations will be rewritten as a suitable set of equations to account for a dielectric, lossy

medium. In principle, the set of equations is also applicable to dispersive media.

As an example, this set of equations will be solved for a homogeneous medium. This

example is extended to two half spaces and finally a solution for a three-layer configuration

(slab) will be given.

An impressed current source is located in a three-dimensional space where the appropriate

material parameters vary in the z-direction only. In view of the layered configuration to

be studied at a later stage, Maxwell’s equations are decomposed into longitudinal and

transverse components. This is done as follows

E = ET + Ezuz,

r = rT + zuz,
(2.23)

where the subscript T refers to the two-dimensional transverse vector and where the sub-

script z is the longitudinal direction. Similar definitions apply to the other physical quan-

tities and coordinates. A solution to Maxwell’s equations in the spatial domain can be

found with the aid of a two-dimensional spatial Fourier transformation. After this trans-

formation, propagation in the z-direction remains, therefore, the longitudinal components

are taken in that direction. This spatial Fourier transformation is defined in this thesis as

Ê(kT , z, ω) =

∫ ∞

−∞

∫ ∞

−∞
E(r, ω) exp(−ikT · rT )dxdy, (2.24)

where kT = kxux + kyuy. Note that the circumflex ˆ represents a spatially transformed

quantity. The corresponding inverse transformation is given by

E(r, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ê(kT , z, ω) exp(ikT · rT )dkxdky. (2.25)

Applying the decomposition into transverse and longitudinal components and the spatial

Fourier transformation to the frequency-domain Maxwell’s equations results in

(ikT + ∂zuz) ×
[
ÊT + Êzuz

]
− iωµ(z)

[
ĤT + Ĥzuz

]
= 0, (2.26)

(ikT + ∂zuz) ×
[
ĤT + Ĥzuz

]
+ iωε(z)

[
ÊT + Êzuz

]
= ĴT + Ĵzuz, (2.27)

where the arguments (kT , z, ω) are omitted. Note that the subscript 0 of the current source

is omitted.
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It is possible to derive a scalar ordinary differential equation for the longitudinal (z-)

components and to express the transverse field components in terms of Êz and Ĥz. The

field components can thus be evaluated.

To this end, equations (2.26) and (2.27) are decomposed into the three directions uz, ikT

and (uz × ikT ). Figure 2.1 shows these components in the (kx, ky) plane. The procedure

uz

kT

(uz × kT )

Figure 2.1: Alternative coordinates for a point in the (kx, ky) plane.

to find the different electromagnetic field components is carried out by taking the inner

products of (2.26) and (2.27) with uz, ikT and (uz × ikT ), respectively. These inner

products result in six equations which, combined, give the desired set to solve Maxwell’s

equations.

Since the derivation is completely analogous for (2.26) and (2.27), the procedure is outlined

only for (2.27). For (2.26) merely the results are given.

First, the inner product of (2.27) with uz is taken. This gives

uz ·
[
(ikT + ∂zuz) ×

(
ĤT + Ĥzuz

)]
+ iωε(z)Êz = Ĵz, (2.28)

which simplifies to

(uz × ikT ) · ĤT + iωε(z)Êz = Ĵz. (2.29)

The same procedure for (2.26) gives

(uz × ikT ) · ÊT − iωµ(z)Ĥz = 0. (2.30)

Next, the inner product of (2.27) with ikT is taken. This gives

ikT ·
[
(ikT + ∂zuz) ×

(
ĤT + Ĥzuz

)]
+ iωε(z)ÊT · ikT = ĴT · ikT (2.31)

which simplifies to

−∂z (uz × ikT ) · ĤT + iωε(z)ÊT · ikT = ĴT · ikT . (2.32)
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When (2.32) is combined with (2.29), the latter equation can be written as

ÊT · ikT =
1

iωε(z)

(
ĴT · ikT + ∂zĴz

)
− 1

ε(z)
∂z

(
ε(z)Êz

)
, (2.33)

and analogously for (2.26)

ĤT · ikT = − 1

µ(z)
∂z

(
µ(z)Ĥz

)
. (2.34)

Finally, the inner product of (2.27) with (uz × ikT ) is taken. This gives

(uz × ikT ) ·
[
(ikT + ∂zuz) ×

(
ĤT + Ĥzuz

)]
+ iωε(z) (uz × ikT ) · ÊT =

(uz × ikT ) · ĴT . (2.35)

With the aid of the following identities

(uz × ikT ) · (ikT × Ĥzuz) = −(ikT · ikT )Ĥz = k2
T Ĥz, (2.36)

(uz × ikT ) · (∂zuz × ĤT ) = ∂z(ikT · ĤT ), (2.37)

where k2
T = |kT |2 = k2

x + k2
y, the latter equation is rewritten as

k2
T Ĥz + ∂z(ikT · ĤT ) + iωε(z)(uz × ikT ) · ÊT = (uz × ikT ) · ĴT . (2.38)

Substituting (2.34) and (2.30) in (2.38) results in the desired ordinary differential equation

for Ĥz:

[
k2

T − ω2ε(z)µ(z)
]
Ĥz − ∂z

[
1

µ(z)
∂z

(
µ(z)Ĥz

)]
= (uz × ikT ) · ĴT . (2.39)

The counterpart of (2.39) is found as

[
k2

T − ω2ε(z)µ(z)
]
Êz− ∂z

[
1

ε(z)
∂z

(
ε(z)Êz

)]
= iωµ(z)Ĵz− ∂z

(
ĴT · ikT + ∂zĴz

iωε(z)

)
. (2.40)

In the next step, the transverse field components are expressed in terms of the longitudinal

field components. The expressions for the transverse field components follow directly from

decomposing them into the directions depicted in Figure 2.1. Doing so results in the

following decomposition for the transverse electric field component

ÊT = − 1

k2
T

[(
ÊT · ikT

)
ikT +

(
ÊT · (uz × ikT )

)
(uz × ikT )

]
, (2.41)

where both inner product terms can immediately be recognized in (2.33) and (2.30), re-

spectively. For the transverse magnetic field component, the same procedure applies. Sub-

stitution of these expressions in (2.41) yields

ÊT =
1

k2
T

[
1

ε(z)

[
∂z

(
ε(z)Êz

)
+

i

ω

(
ĴT · ikT + ∂zĴz

)]
ikT − iωµ(z)Ĥz (uz × ikT )

]
. (2.42)
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The counterpart for ĤT is given by

ĤT =
1

k2
T

[
1

µ(z)
∂z

(
µ(z)Ĥz

)
ikT −

(
Ĵz − iωε(z)Êz

)
(uz × ikT )

]
. (2.43)

The result of the derivation described above is the following set of equations

(
k2

T − ω2ε(z)µ(z)
)
Êz− ∂z

[
1

ε(z)
∂z

(
ε(z)Êz

)]
= iωµ(z)Ĵz− ∂z

(
ĴT · ikT + ∂zĴz

iωε(z)

)
, (2.44)

(
k2

T − ω2ε(z)µ(z)
)
Ĥz − ∂z

[
1

µ(z)
∂z

(
µ(z)Ĥz

)]
= (uz × ikT ) · ĴT , (2.45)

ÊT =
1

k2
T

[
1

ε(z)

[
∂z

(
ε(z)Êz

)
+

i

ω

(
ĴT · ikT + ∂zĴz

)]
ikT − iωµ(z)Ĥz (uz × ikT )

]
,(2.46)

ĤT =
1

k2
T

[
1

µ(z)
∂z

(
µ(z)Ĥz

)
ikT −

(
Ĵz − iωε(z)Êz

)
(uz × ikT )

]
, (2.47)

which is a generalization of the result found in [38, Chapter 6.1]. This result is analogous

to the transmission-line solution for (I, V ) derived by Felsen and Marcuvitz [39].

Once the solutions for Êz and Ĥz are obtained, the expressions for the transverse field

components can be easily obtained. The set of equations will be solved for three different

media configurations. First a current point source in a homogeneous medium will be

addressed.

2.2.1 Solution for a homogeneous medium

The easiest solution to the differential equations (2.44) – (2.45) is found for a homogeneous

medium. For a homogeneous medium the material parameters do not depend on z. There-

fore, the complex permittivity and permeability can be written as ε(z) = ε1 and µ(z) = µ1

and the set of equations (2.44) – (2.47) becomes much easier to work with.

As stated earlier, the electromagnetic field is excited by an external source. In view of the

configurations to be investigated later, the external source is a current point source located

at (x = 0, y = 0, z = z1) pointing into the x-direction and is defined as

J0(r, t) = dtF(t)δ3(r − z1uz)ux, (2.48)

where F(t) is a pulse of finite duration that starts at time instant t0 and ux is a unit

vector in the x-direction. Note that δ3 is the three-dimensional Dirac delta distribution.

The derivative with respect to time has been included to ensure that no static charge stays

behind as t → ∞. After transformation to the frequency and spatial Fourier domain, the

current density is written as

Ĵ0 (kT , z, ω) = −iωF (ω)δ(z − z1)ux, (2.49)
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where δ is the Dirac delta distribution. As an example, the differential equation for the

longitudinal electric field will be solved. At the end of this section, the results for the other

field components will be given as well.

With the definitions of the material parameters and the current density (2.49),

(2.44) reduces to

∂2
z Êz − (k2

T − ω2ε1µ1)Êz = −ikxF (ω)

ε1

δ′(z − z1), (2.50)

where the prime denotes the derivative with respect to z. To find a solution of this dif-

ferential equation, it is convenient to first look at the fundamental, one-dimensional wave

equation

∂2
z Ĝz − γ2

1Ĝz = −δ(z − z1), (2.51)

where γ2
1 = k2

T − ω2ε1µ1 is the square of the axial wavenumber. The general solution

of (2.51) is found as

Ĝz =
1

2γ1

exp(−γ1|z − z1|) + P exp(−γ1z) + Q exp(γ1z). (2.52)

This solution must satisfy the radiation conditions, which imply that the solution must

remain bounded or represent outgoing waves as z → ±∞. Therefore, the unknown con-

stants must be P = Q = 0 and the particular solution to the one-dimensional wave equation

remains. This particular solution is referred to as Green’s function which is defined as

Ĝz =
1

2γ1

exp(−γ1|z − z1|). (2.53)

The evaluation of the complex root for γ1 requires special attention. When the inverse

temporal Fourier transformation (2.17) is carried out for (2.53), the following integrand

is found

Ĝz exp(−iωt) =
1

2γ1

exp [−i (ωt + Im(γ1)|z − z1|) − Re(γ1)|z − z1|] (2.54)

To ensure a decaying wave for large |z − z1|, the real part of the axial wavenumber must

be non-negative. To ensure a radiating solution, it is required that (ωt + Im(γ1)|z − z1|) is

constant for t → ∞ and |z − z1| → ∞, therefore the imaginary part of γ1 is non-positive.

With the solution of (2.51), the solution of (2.50) is readily found as

Êz =
ikx

2γ1ε1

F (ω)∂z [exp(−γ1|z − z1|)]

= − ikx

2ε1

F (ω)sgn(z − z1) exp(−γ1|z − z1|), (2.55)
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and the other field components can easily be found as

Ĥz = −kyω

2γ1

F (ω) exp(−γ1|z − z1|), (2.56)

ÊT =
F (ω)

2γ1ε1

exp(−γ1|z − z1|)
[
(ω2ε1µ1 − k2

x)ux − kxkyuy

]
, (2.57)

ĤT =
iωF (ω)

2
sgn(z − z1) exp(−γ1|z − z1|)uy. (2.58)

2.2.2 Solution for two homogeneous half spaces

In this section, the homogeneous space, as described in the previous section, will be ex-

tended to the configuration depicted in Figure 2.2. The appropriate material parameters

ε1, µ1, σ1

ε2, µ2, σ2

z = 0

•J0(r, t)

z

y

x

Figure 2.2: The location of the current point source J0(r, t) in a half space.

in the upper medium will be denoted with subscript 1 and in the lower medium with sub-

script 2. The positive z-direction points downwards. A current point source is located at

(x = 0, y = 0, z = z1 < 0) above the interface z = 0 between the two media and has been

introduced in (2.48).

Since there are two regions with different material properties, boundary conditions are

needed to ensure a correct representation of the field values in both regions. In this

section, a general derivation of these conditions will be given for the longitudinal field

components because these are the field components that will be solved first from the

appropriate differential equations. The expressions for the longitudinal components will

be used to derive representations for the total field in the half spaces.

The first two boundary conditions follow directly from (2.29) and (2.30)

D̂z = ε(z)Êz is continuous

B̂z = µ(z)Ĥz is continuous

}
for z = 0. (2.59)

The third boundary condition is obtained by integrating (2.44) over a small interval
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[−∆z, ∆z] surrounding the interface. This yields
[

1

ε(z)
∂z

(
ε(z)Êz

)∣∣∣∣
z=∆z

z=−∆z

+

∫ ∆z

−∆z

[ω2ε(z)µ(z) − k2
T ]Êzdz = 0. (2.60)

If the limit for ∆z ↓ 0 is taken, it follows that
[
∂z(ε(z)Êz)

]
/ε(z) must be continuous

because the integral in the second term of (2.60) vanishes. From (2.45), it follows in the

same way that
[
∂z(µ(z)Ĥz)

]
/µ(z) must be continuous. This leads to a second set of

boundary conditions:

1
ε(z)

∂z

(
ε(z)Êz

)
is continuous

1
µ(z)

∂z

(
µ(z)Ĥz

)
is continuous



 for z = 0. (2.61)

Since both half spaces are homogeneous, the latter set of boundary conditions reduces to

∂zÊz is continuous

∂zĤz is continuous



 for z = 0. (2.62)

The longitudinal electric field component for a homogeneous space was found in the pre-

vious section. Since there is an interface in the present configuration, a wave reflected at

the interface propagating in the negative z-direction in the first medium will occur. This

reflected wave is accounted for by a coefficient Q and an appropriate propagation fac-

tor exp(γ1z) which follows immediately from the general solution for the one-dimensional

wave equation (2.51). Again the general solution must satisfy the radiation conditions and

therefore P = 0. For the first medium the longitudinal field can be written as

Êz =
−ikx

2ε1

F (ω)sgn(z − z1) exp(−γ1|z − z1|) + Q exp(γ1z), for z < 0, (2.63)

which is similar to the generalized solution (2.52). In the second medium, there is no

source and only a downward propagating wave can be present (Q = 0) and therefore the

longitudinal field in the second medium is written as

Êz = P exp(−γ2z), for z > 0, (2.64)

with γ2
n = k2

T − ω2εnµn, n = 1, 2. The coefficients P and Q are still undetermined. To find

an expression for these coefficients, the boundary conditions (2.59) and (2.62) are applied

to (2.63) and (2.64), which gives the following system of linear equations

−ikx

2
F (ω) exp(γ1z1) + ε1Q = ε2P, (2.65)

ikxγ1

2ε1

F (ω) exp(γ1z1) + γ1Q = −γ2P. (2.66)
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Solving this system of equations yields

Q =
−ikx

2ε1

F (ω) exp(γ1z1)
ε2γ1 − ε1γ2

ε2γ1 + ε1γ2

=
−ikx

2ε1

F (ω) exp(γ1z1)R
E
12, (2.67)

P =
−ikx

2ε2

F (ω) exp(γ1z1)
2ε2γ1

ε2γ1 + ε1γ2

=
−ikx

2ε2

F (ω) exp(γ1z1)T
E
12, (2.68)

where

RE
12 =

ε2γ1 − ε1γ2

ε2γ1 + ε1γ2

, and TE
12 =

2ε2γ1

ε2γ1 + ε1γ2

, (2.69)

are the electric Fresnel reflection and transmission coefficient, respectively. The subscript

12 in the reflection and transmission coefficient denotes the reflection in medium 1 at the

interface with medium 2 and the transmission from medium 1 to 2, respectively. With

these definitions, (2.63) and (2.64) finally assume the form

Êz =
−ikx

2ε1

F (ω)
{
sgn(z − z1) exp(−γ1|z − z1|) + RE

12 exp[γ1(z + z1)]
}

, for z < 0, (2.70)

Êz =
−ikx

2ε2

F (ω)TE
12 exp(γ1z1 − γ2z), for z > 0. (2.71)

The longitudinal component of the magnetic field is derived in a similar way and looks as

follows

Ĥz =
−kyω

2γ1

F (ω)
{
exp(−γ1|z − z1|) + RH

12 exp[γ1(z + z1)]
}

, for z < 0, (2.72)

Ĥz =
−kyωµ1

2γ1µ2

F (ω)TH
12 exp(γ1z1 − γ2z), for z > 0, (2.73)

where the magnetic reflection and transmission coefficients are defined as

RH
12 =

µ2γ1 − µ1γ2

µ2γ1 + µ1γ2

, and TH
12 =

2µ2γ1

µ2γ1 + µ1γ2

. (2.74)

Now that the expressions for the longitudinal field components are known, the spectral

transverse electric field can easily be found from (2.46) as

ÊT =
F (ω)

2ε1γ1

exp(−γ1|z − z1|)
{
(ω2ε1µ1 − k2

x)ux − kxkyuy

}

+
F (ω)

2ε1γ1

exp[γ1(z + z1)]

{
γ2

1R
E
12

k2
xux + kxkyuy

k2
T

+ ω2ε1µ1R
H
12

k2
yux − kxkyuy

k2
T

}
,

for z < 0, (2.75)

ÊT =
F (ω)

2ε2γ1

exp(γ1z1 − γ2z)

{
ω2ε2µ1

k2
yux − kxkyuy

k2
T

TH
12 − γ1γ2

k2
xux + kxkyuy

k2
T

TE
12

}
,

for z > 0. (2.76)
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For the transverse magnetic field, similar expressions can be found. The transverse com-

ponents of the electric field can be broken up into x and y-components. Furthermore,

a reflected and transmitted field component can be recognized by comparing the latter

expressions to the results found for a homogenous medium as found in the previous sec-

tion. As an example, the x-components of the reflected and transmitted electric field are

extracted

Êr
x =

F (ω)

2ε1γ1

exp [γ1(z + z1)]

{
γ2

1R
E
12

k2
x

k2
T

+ ω2ε1µ1

k2
y

k2
T

RH
12

}
, (2.77)

Êt
x =

F (ω)

2ε2γ1

exp(γ1z1 − γ2z)

{
ω2ε2µ1

k2
y

k2
T

TH
12 − γ1γ2

k2
x

k2
T

TE
12

}
, (2.78)

which is the same result that was found in [24, 25]. With these expressions, the reflected

and the transmitted field are known and the total electromagnetic field can be determined

for any z < 0 and z > 0, respectively.

2.2.3 Solution for a homogeneous slab configuration

In this section, a generalized reflection coefficient for the medium above a homogeneous slab

will be derived. The situation as depicted in Figure 2.3 will be considered. A homogeneous

slab with thickness ds of medium 2 is flanked by two half spaces consisting of medium 1 and

3, respectively. In this configuration, medium 2 may act as a waveguide. Therefore, the

inverse spatial Fourier transformation needs special attention. The material parameters

ε1, µ1, σ1

ε2, µ2, σ2

ε3, µ3, σ3

z = 0

z = ds

•J0(r, t)

z

y

x

Figure 2.3: The location of the current point source J0(r, t) in a slab configuration.

inside the slab are homogeneous. Following the same procedure as in the previous section

for a configuration with two half spaces, the longitudinal electric field for the three regions
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can be written as follows:

Êz = − ikx

2ε1

F (ω)sgn(z − z1) exp (−γ1|z − z1|) + Q exp(γ1z), for z < 0, (2.79)

Êz = A exp(−γ2z) + B exp(γ2z), for 0 < z < ds, (2.80)

Êz = P exp(−γ3z), for z > ds. (2.81)

Applying the boundary conditions (2.59) and (2.62) to the longitudinal field components

at z = 0 and z = ds results in the following system of equations:

−ikx

2
F (ω) exp(γ1z1) + ε1Q = ε2(A + B), (2.82)

ikx

2ε1

γ1F (ω) exp(γ1z1) + γ1Q = γ2(B − A), (2.83)

ε2B exp(γ2ds) + ε2A exp(−γ2ds) = ε3P exp(−γ3ds), (2.84)

γ2B exp(γ2ds) − γ2A exp(−γ2ds) = −γ3P exp(−γ3ds). (2.85)

Solving this system of equations yields

Q = − ikx

2ε1

F (ω) exp(γ1z1)R̃
E
12, (2.86)

A = − ikx

2ε2

F (ω) exp(γ1z1)T̃
E
12, (2.87)

B = − ikx

2ε2

F (ω) exp(γ1z1)R̃
E
23, (2.88)

P = − ikx

2ε3

F (ω) exp(γ1z1)T̃
E
13, (2.89)

with

R̃E
12 = RE

12 +
TE

12R
E
23T

E
21 exp(−2γ2d)

1 − RE
21R

E
23 exp(−2γ2ds)

, R̃E
23 =

TE
12R

E
23 exp(−2γ2ds)

1 − RE
21R

E
23 exp(−2γ2ds)

,

T̃E
12 =

TE
12

1 − RE
21R

E
23 exp(−2γ2ds)

, T̃E
13 =

TE
12T

E
23 exp(−(γ2 − γ3)ds)

1 − RE
21R

E
23 exp(−2γ2d)

,

RE
12 =

ε2γ1 − ε1γ2

ε2γ1 + ε1γ2

, RE
21 =

ε1γ2 − ε2γ1

ε2γ1 + ε1γ2

, RE
23 =

ε3γ2 − ε2γ3

ε3γ2 + ε2γ3

,

TE
12 =

2ε2γ1

ε2γ1 + ε1γ2

, TE
21 =

2ε1γ2

ε2γ1 + ε1γ2

, TE
23 =

2ε3γ2

ε3γ2 + ε2γ3

,
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where the tildes ˜ indicate that the respective coefficients now refer to the complete slab

configuration. With these definitions, (2.79) – (2.81) assume the form

Êz = − ikx

2ε1

F (ω)
{

sgn(z − z1) exp (−γ1|z − z1|) + R̃E
12 exp(γ1(z + z1))

}
,

for z < 0, (2.90)

Êz = − ikx

2ε2

F (ω) exp(γ1z1)
{

T̃E
12 exp(−γ2z) + R̃E

23 exp(γ2z)
}

, for 0 < z < ds, (2.91)

Êz = − ikx

2ε3

F (ω)T̃E
13 exp(γ1z1 − γ3z), for z > ds. (2.92)

For the longitudinal components of the magnetic field, similar expressions apply. With the

expressions for the longitudinal field components, the transverse electric field can easily be

found from (2.46) as

ET =
F (ω)

2ε1γ1

exp (γ1(z + z1))

{
R̃E

12γ
2
1

k2
xux + kxkyuy

k2
T

+ ω2ε1µ1R̃
H
12

k2
yux − kxkyuy

k2
T

}

+
F (ω)

2ε1γ1

exp (−γ1|z − z1|)
{
(ω2ε1µ1 − k2

x)ux − kxkyuy

}
, for z < 0, (2.93)

ET =
F (ω)

2ε2γ1

exp(γ1z − 1)

{
γ1γ2

(
T̃E

12 exp(−γ2z) + R̃E
23 exp(γ2z)

) k2
xux + kxkyuy

k2
T

+ω2ε2µ1

(
T̃H

12 exp(−γ2z) + R̃H
23 exp(γ2z)

) }
, for 0 < z < ds, (2.94)

ET =
F (ω)

2ε3γ1

exp(γ1z1 − γ3z)

{
γ1γ3T̃

E
13

k2
xux + kxkyuy

k2
T

+ ω2ε3µ2T̃
H
12

k2
yux − kxkyuy

k2
T

}
,

for z > ds, (2.95)

where the magnetic reflection and transmission coefficients with superscripts H differ from

their electric counterparts, with superscripts E, by interchanging ε and µ.

In the case that there are more layers, the reflection and transmission coefficients can again

be generalized per medium, but in this thesis, no more than three layers will be considered.

A good description of this generalization can be found in e.g. [40, pages 52-53].

An elegant solution for an inhomogeneous slab configuration can be found in [27, 32, 38].

2.3 Transformation to the spatial domain

In this section, the inverse Fourier transformation to the spatial domain, which is defined

as,

E(r, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ê(kT , z, ω) exp(ikT · rT )dkxdky, (2.96)
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will be elaborated. To this end, cylindrical coordinates are introduced as follows

kx = kT cos φk,

ky = kT sin φk,

x = ρ cos φ,

y = ρ sin φ,

and thus

kT · rT = kT ρ cos(φk − φ). (2.97)

After substitution of the cylindrical coordinates, (2.96) becomes

E(r, ω) =
1

4π2

∫ ∞

0

kT dkT

∫ π

−π

Ê
(
kT (cos φkux + sin φkuy), z, ω

)
·

exp
(
ikT ρ cos(φk − φ)

)
dφk. (2.98)

Later on in this thesis, the x-components of the electric field are used to solve a num-

ber of problems involving thin wires. Therefore, the x-components of the reflected and

transmitted fields as described by (2.77) and (2.78) are used to demonstrate the inverse

Fourier transformation in the k-domain. After carrying out the inverse Fourier transfor-

mation (2.25) and expressing (2.77) and (2.78) in terms of cylindrical coordinates, the

following expressions for the x-component of the reflected and transmitted electric field

are obtained:

Er
x(r, ω) =

F (ω)

8ε1π2

∫ ∞

0

k3
0

ν dν

u1

exp
(
k0u1(z + z1)

)
·

{
u2

1R
E
12

∫ π

−π

cos2(φk) exp
(
ik0νρ cos(φk − φ)

)
dφk

+RH
12ε1rµ1r

∫ π

−π

sin2(φk) exp
(
ik0νρ cos(φk − φ)

)
dφk

}
, (2.99)

Et
x(r, ω) =

F (ω)

8ε2π2

∫ ∞

0

k3
0

ν dν

u1

exp
(
k0(u1z1 − u2z)

)
·

{
TH

12ε2rµ1r

∫ π

−π

sin2(φk) exp
(
ik0νρ cos(φk − φ)

)
dφk

−TE
12u1u2

∫ π

−π

cos2(φk) exp
(
ik0νρ cos(φk − φ)

)
dφk

}
, (2.100)

where the normalized quantities ν = kT /k0 and un =
√

ν2 − εr,nµr,n = γn/k0 have been

introduced and where k0 = ω/c0. The integrals over φk can be evaluated in closed form.

In both field quantities these integrals are the same. The integral containing the squared
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cosine will be used to demonstrate the integration over φk. The integral with the squared

sine is evaluated in a similar way.

First, the identity

cos2(φk) =
1

2
+

1

2
cos(2φk), (2.101)

and φ′
k = φk − φ are substituted in

∫ π

−π

cos2(φk) exp [ik0νρ cos(φk − φ)] dφk. (2.102)

This results in the following integral

2

∫ π

0

(
1

2
+

1

2
cos(2φ′

k) cos(2φ)

)
exp

(
ik0νρ cos(φ′

k)
)
dφ′

k. (2.103)

Now, the identity [41, (9.1.21)]

1

π

∫ π

0

exp (iz cos(θ)) cos(nθ) dθ = inJn(z), (2.104)

can be used, where Jn is the Bessel function of the first kind of order n. With this

identity, (2.103) is reduced to
∫ π

−π

cos2(φk) exp
(
ik0νρ cos(φk − φ)

)
dφk = πJ0 (k0νρ) − πJ2 (k0νρ) cos(2φ), (2.105)

which is the desired analytical expression for the integral containing the squared cosine.

The result for the integral containing the squared sine follows in an analogous way as
∫ π

−π

sin2(φk) exp
(
ik0νρ cos(φk − φ)

)
dφk = πJ0 (k0νρ) + πJ2 (k0νρ) cos(2φ). (2.106)

Substitution of both results in the reflected and transmitted electric field expressions under

consideration gives

Er
x(r, ω) =

ω3F (ω)µ0

8πc0

∫ ∞

0

ν dν exp
(
k0u1(z + z1)

) {
J0 (k0νρ)

[
u1

ε1r

RE
12 +

µ1r

u1

RH
12

]

+J2 (k0νρ) cos(2φ)

[
µ1r

u1

RH
12 −

u1

ε1r

RE
12

]}
, (2.107)

Et
x(r, ω) =

ω3F (ω)µ0

8πc0

∫ ∞

0

ν dν exp
(
k0(u1z1 − u2z)

) {
J0 (k0νρ)

[
µ1r

u1

TH
12 −

u2

ε2r

TE
12

]

+J2 (k0νρ) cos(2φ)

[
µ1r

u1

TH
12 +

u2

ε2r

TE
12

]}
. (2.108)

which is the same result as was found by Rubio Bretones et al. [24].
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It is clear that the integral over ν in the expressions above cannot be evaluated in closed

form. Therefore that integral is evaluated numerically with the aid of a composite Gaussian

quadrature rule. The challenge is to find a fixed quadrature rule that may be applied for

all frequencies and nevertheless produces a correct time-domain result.

The first problem in the integration over ν finds its origin in the 1/un root singularity. In

fact the integrand has two branch points at νj =
√

εjrµjr with j = 1, 2. The integration

needs special attention at these points.

Secondly, in the interval ν ∈ [ν2,∞), the asymptotic behavior of the integrand plays an

important role. In [24], the analysis of this behavior takes place in the time domain. It

turns out that the integrand is of the order O(ν−2) and converges uniformly in the space

and the frequency domain as ν → ∞. The integration contour runs along the real ν axis in

the fourth quadrant, see Figure 2.4. Following [24], the branch points are n1 = min{ν1, ν2}

• • •
Re(ν)

Im(ν)

n1 n2 n3

Figure 2.4: Integration contour in the complex ν-plane with the branch points n1 =

min{ν1, ν2} and n2 = max{ν1, ν2}.

and n2 = max{ν1, ν2}.
Before the substitution that governs the asymptotic behavior of the integrand can be carried

out, an intermediate point n3 where the integrand is sufficiently small is introduced. Now,

the integration contour is divided into 5 intervals. In each interval, a suitable substitution

of the integrand is chosen to handle the problematic behavior near the end points of the

interval. For the choices of n1,2 as described above, the substitution for ν is chosen according

to Table 2.1. In addition to the choice of the substitution for ν per interval, the integration

boundaries for the new integration variable β are tabulated. The boundaries of β are

necessary to determine the appropriate parameters for the quadrature rule. Each of the

subintegrals is evaluated with a Gauss-Legendre rule with the exception of the last interval,

which is evaluated with a Gauss-Laguerre rule with a weighting function exp(−2β) [24].

The latter rule governs the asymptotic behavior of the integrand [24]. Note that in the last

interval, the substitution contains n1 instead of n3. This choice is based on the presence
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Interval ν substitutes boundaries

0 < ν < n1 n1 sin β 0 < β <
π

2

n1 < ν <
n1 + n2

2
n1 cosh β 0 < β < cosh−1

(
n1 + n2

2n1

)

n1 + n2

2
< ν < n2 n2 sin β arcsin

(
n1 + n2

2n2

)
< β <

π

2

n2 < ν < n3 n2 cosh β 0 < β < cosh−1

(
n3

n2

)

n3 < ν < ∞ n1 cosh β cosh−1

(
n3

n1

)
< β < 2

Table 2.1: Substitutions for ν for each interval of the integration and the boundaries for

the new integration variable β.

of u1 in the field expressions.

The point n3 needs to be carefully chosen for a correct calculation of the ν integral. When

the shape of the input voltage is considered in the determination of the point n3, a lower

value of n3 will suffice to produce accurate results.

To demonstrate the effects of the choice of n3 in the frequency domain, the reflected

and transmitted fields due to a point source are evaluated with a composite Gaussian

quadrature rule. The fields in (2.107) and (2.108) are approximated according to

Er,t
x (r, ω) ≈

K∑

k=1

αkζ
r,t(r, νk, ω), (2.109)

where

ζr(r, νk, ω) =
iµ0

8πc0

ω2νk exp [k0u1(z + z1)]

{
J0 (k0νkρ)

[
u1

ε1r

RE
12 +

µ1r

u1

RH
12

]

+J2 (k0νkρ) cos(2φ)

[
µ1r

u1

RH
12 −

u1

ε1r

RE
12

]}
, (2.110)

ζt(r, νk, ω) =
iµ0

8πc0

ω2νk exp [k0(u1z1 − u2z)]

{
J0 (k0νkρ)

[
µ1r

u1

TH
12 −

u2

ε2r

TE
12

]

+J2 (k0νkρ) cos(2φ)

[
µ1r

u1

TH
12 +

u2

ε2r

TE
12

]}
, (2.111)

and where K is the number of points needed for the composite Gaussian quadrature rule.
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The weights {αk} and abscissa {νk} with index k are calculated with the aid of the sub-

routine D01BCF of the NAG numerical library. Note that the weights {αk} do not depend

on the frequency.

In all examples, the point source is located at r = 0.5ux−0.1uz. With the exception of the

permittivity of the lower half space ε2r, the medium properties of both half spaces equal

the ones for vacuum. The points of observation are chosen at r = 0.5ux + uy − 0.1uz and

r = 0.5ux + 0.5uy + 0.1uz for the reflected and transmitted field expressions, respectively.

The first example considers a lower half space with ε2r = 3. In Figure 2.5, the real and
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Figure 2.5: Real and imaginary part of the reflected (A,B) and transmitted electric

field(C,D) at r = 0.5ux + 0.5uy + 0.1uz generated by a point source at r = 0.5ux − 0.1uz

for different values of n3. The material parameters of both half spaces are equal to the ones

from vacuum except ε2r = 3.
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Figure 2.6: Weights αk (A) and abscissa νk (B) as a function of index k. The material

parameters of both half spaces are equal to the ones from vacuum except ε2r = 3. The

letters denote a = ν100 = n1, b = ν200 = (n1 + n2)/2, c = ν300 = n2, d = ν500 = n3 = 5,

e = ν800 = n3 = 100, f = ν1000 = n3 = 1000, respectively.

imaginary parts of the reflected and transmitted electric fields are plotted as a function of

frequency for various values of n3. The value n3 = 1000 is chosen as a reference value for

the calculation of the field expressions. It is observed that the results for the real parts

of the reflected and transmitted fields are stable over the entire frequency range. The

imaginary parts of both fields on the other hand show numerical errors for lower values of

n3. For n3 ≈ 145, the imaginary parts of both fields are calculated accurately. For ε2r = 3,

the weights and abscissa are plotted as a function of the index k in Figure 2.6. The points

n1,2,3 are indicated in both plots. The number of points for the first three intervals is 100

and 10 for the last interval. The number of points for the fourth interval is 200, 500 and

700 for the values 5, 100 and 1000 of n3, respectively.

In Figure 2.5, it was observed that the real parts of both electric fields are stable. Therefore,

only the imaginary parts of the reflected and transmitted electric fields will be plotted in

the remainder of this section.

The next example concerns lower half spaces with ε2r = 9 and ε2r = 16, respectively. In

Figure 2.7, the imaginary parts of the reflected and transmitted electric fields are plotted

for two values of n3. For one value of n3, the calculations are unstable and the other value

of n3 is taken at the point where the calculations become stable. Comparing Figures 2.5

and 2.7 shows that the values of n3 where the field calculations are accurate is proportional

to the square root of the permittivity. The value for n3 is approximately given by n3 = Cn2,
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Figure 2.7: Imaginary parts of the reflected and transmitted electric fields at r = 0.5ux +

0.5uy + 0.1uz generated by a point source at r = 0.5ux − 0.1uz for different values of n3.

The permittivity of the lower half space is ε2r = 9 (A,B) and ε2r = 16 (C,D), respectively.

The other material parameters equal the ones from vacuum.

where C is a constant. From the calculations, it follows that C ≈ 85 results in an accurate

calculation of the reflected and transmitted fields in the frequency domain. For the input

voltage considered in later chapters, it follows that C ≈ 16 produces accurate results.

For the slab configuration, the integration contour has to be deformed differently. In the

slab region, guided-wave poles may occur. This complicates the numerical calculation of

the ν integral significantly [27, 42]. An extensive analysis of how to handle the ν integral

in case of a slab configuration can be found in [42] and in less detail in [27].



Chapter 3

The current along a single straight

thin wire

The current along a single thin wire can be described by an integral equation. To find

this equation, first two integral equations are derived for the scattering by an electrically

impenetrable object in three dimensions. These equations are the well-known electric

and magnetic field integral equations, in the literature often abbreviated as EFIE and

MFIE [43].

The frequency-domain EFIE is then cast into a special form which is also known as the

integral equation of Pocklington [37]. From this equation, the current along a wire antenna

can be obtained for a given voltage source and/or an external incident electric field. A

disadvantage of Pocklington’s equation is the presence of a second-order partial derivative.

In an attempt to find an analytical expression for the current along a wire, Hallén eliminated

the second-order partial derivative. The equation to describe the current along a wire that

was found by Hallén is referred to as Hallén’s equation.

Hallén’s equation is discretized and solved numerically. In this chapter, the excitation is a

delta-gap voltage source. The results are compared to results from the literature.

At the end of this chapter, a traveling-wave model of the current is presented. This model

gives some insight into the actual behavior of the current. The traveling wave model is

adopted from a first-order approximate solution of Hallén’s equation [44]. The current

is described as a sum of traveling waves with the velocity of the exterior medium which

are repeatedly reflected at the end faces of the wire [35]. The parameters involved are a

reflection coefficient and an admittance which determines the amplitude of the traveling

waves at various locations along the wire.

In the first-order approximation, the reflection coefficient at the end faces of the wire equals

29
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−1. The higher-order approximation [35] uses the generalized reflection coefficient found

by Ufimtsev [45] and the generalized admittance found by Shen et al. [46].

3.1 Scattering by an electrically impenetrable object

In this section the integral equation for scattering by an electrically impenetrable object

will be derived following [47]. The entire derivation is carried out in the frequency domain.

The object and the domain definitions involved with the derivation of the integral equation

are depicted in Figure 3.1. A perfectly conducting scatterer which comprises the domain

D

∂D

n

D

Ei(r, ω)

Es(r, ω)

Figure 3.1: Domain definitions for the derivation of the integral equations.

D is embedded in a homogeneous dielectric medium. The homogeneous medium will be

denoted as medium 1 with material parameters µ1(r) = µ1 and ε1(r) = ε1. The scatterer

is bounded by ∂D. The embedding extends over an infinite domain denoted by D and

is exterior to ∂D. The normal n on the surface of D points into D and is assumed to

be piecewise continuous. The incident field that illuminates the object is generated by an

external electric current density.

3.1.1 The incident field

First, the incident field in the interior domain D is considered. This is the field that would

be present in absence of the scatterer. The incident field has its sources in D and therefore
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satisfies

∇× Hi(r, ω) + iωε1E
i(r, ω) = 0, (3.1)

∇× Ei(r, ω) − iωµ1H
i(r, ω) = 0, (3.2)

for r ∈ D. It is seen that the trivial solution to this system of homogeneous differential

equations would be Ei = 0 and Hi = 0. However, non-trivial solutions exist in D and can

be expressed in terms of an electric and magnetic surface current density along ∂D. To

find these expressions, the three-dimensional spatial Fourier transformation will be used.

The 3D spatial Fourier transform V̂(k, ω) of a vector field V(r, ω) over the finite domain

D with boundary ∂D is defined as

V̂(k, ω) =

∫

r∈D

V(r, ω) exp(−ik · r) dr, (3.3)

where k = kxux + kyuy + kzuz. Since the vector field V(r, ω) is restricted to the domain

D, it is extended to an infinite domain by introducing a shape function [48, Appendix B2]

which is defined as

SD(r) =





1 for r ∈ D

1
2

for r ∈ ∂D

0 for r ∈ D

. (3.4)

The choice of this particular shape function follows directly by treating the integral in (3.3)

as a Cauchy principal value integral around “infinity”. The spatial Fourier transformation

can then be written in a general form as

V̂(k, ω) =

∫

r∈lR3

V(r, ω)SD(r) exp(−ik · r) dr. (3.5)

Note that the hat ˆ now represents a Fourier transformation of a spatially filtered function

over the entire domain lR3. To apply this transformation to Maxwell’s equations in the

frequency domain, (2.21) and (2.22), the corresponding transform of ∇ × V(r, ω) has to

be derived. By using Gauss’ theorem, this transform is found as:

̂(∇×V)(k, ω) =

∫

r∈D

(∇× V) (r, ω) exp(−ik · r)dr

=

∫

r∈D

∇× [V(r, ω) exp(−ik·r)] dr +

∫

r∈D

V(r, ω) × [∇ exp(−ik·r)] dr

=

∮

r∈ ∂D

n(r) × V(r, ω) exp(−ik · r)dr + ik × V̂(k, ω), (3.6)
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where n(r) × V(r, ω) is identified as a surface current density. The forward 3D spatial

Fourier transformation as given in (3.5) has an inverse counterpart, which is defined as

SD(r)V(r, ω) =
1

8π3

∫

k∈lR3

V̂(k, ω) exp(ik · r)dk. (3.7)

Applying the 3D spatial Fourier transformation to (3.1) and (3.2) yields

ik × Ĥi(k, ω) + iωε1Ê
i(k, ω) = Ĵ

e,i
B (k, ω), (3.8)

ik × Êi(k, ω) − iωµ1Ĥ
i(k, ω) = −Ĵ

m,i
B (k, ω), (3.9)

in which Ĵ
e,i
B (k, ω) and Ĵ

m,i
B (k, ω) are the spatial transforms over the boundary ∂D of the

quantities

J
e,i
B (r, ω) = −n(r) × Hi(r, ω), (3.10)

J
m,i
B (r, ω) = n(r) × Ei(r, ω), (3.11)

where the subscript B stands for “boundary”. Equations (3.8) and (3.9) are now of an

algebraic form, from which analytic expressions for the electric and magnetic field can be

found in terms of the surface current densities. As an example, an expression for Ĥi will

be derived.

First, the cross product of ik with (3.8) is taken as follows

ik ×
(
ik × Ĥi(k, ω)

)
+ iωε1

(
ik × Êi(k, ω)

)

= ik
(
ik · Ĥi(k, ω)

)
+ k2Ĥi(k, ω) + iωε1

(
ik × Êi(k, ω)

)
= ik × Ĵ

e,i
B (k, ω), (3.12)

with k = |k| = (k · k)
1

2 . The next step is to take the inner product of ik and (3.9) as

− 1

iωµ1

ik ·
(
ik × Êi(k, ω)

)

︸ ︷︷ ︸
=0

+ik · Ĥi(k, ω) =
ik

iωµ1

· Ĵm,i
B (k, ω). (3.13)

After rewriting (3.9) as

ik × Êi(k, ω) = iωµ1Ĥ
i(k, ω) − Ĵ

m,i
B (k, ω), (3.14)

and substituting this result together with (3.13) in (3.12), the following expression is ob-

tained

Ĥi(k, ω) =
1

k2 − k2
1

{
ik × Ĵ

e,i
B (k, ω) + iωε1Ĵ

m,i
B (k, ω) − ik

iωµ1

(
ik · Ĵm,i

B (k, ω)
)}

, (3.15)
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where k1 = ω
√

ε1µ1. An expression for Êi(k, ω) follows analogously as:

Êi(k, ω) =
1

k2 − k2
1

{
− ik × Ĵ

m,i
B (k, ω) + iωµ1Ĵ

e,i
B (k, ω) − ik

iωε1

(
ik · Ĵe,i

B (k, ω)
)}

. (3.16)

At this point, the inverse 3D spatial Fourier transformation is applied to obtain an inte-

gral relation in the space-frequency domain. To perform this inverse transformation, it is

convenient to first look at the solution of the three-dimensional time-domain Helmholtz

equation
(
∇2 − 1

c2
1

∂2
t

)
G(r, t) = −δ(r)δ(t), (3.17)

in which c1 denotes the constant propagation velocity in medium 1 and δ(r) is the three-

dimensional Dirac distribution. By subjecting (3.17) to a temporal Fourier and spatial

Fourier transformation over lR3, the following result is obtained

Ĝ(k, ω) =
1

k2 − k2
1

, (3.18)

which is referred to as the 3D Green’s function for an infinite homogeneous space in the

(k, ω) domain. The right-hand side of (3.18) is the same multiplicative factor that occurs

in (3.15) and (3.16). Therefore Ĥi(k, ω) in (3.15) and Êi(k, ω) in (3.16) can be regarded as

the spatial Fourier transforms of a convolution involving the Green’s function G(r, ω) in the

spatial domain. The fact that k1 depends on ω has no consequences for the convolution

mentioned above because it concerns a convolution in the k-domain and not in the ω-

domain. The 3D Green’s function in the spatial domain is obtained by carrying out the

inversion integral over the domain lR3 as follows

G(r, ω) =
1

8π3

∫

k∈lR3

Ĝ(k, ω) exp(ik · r)dk,

=
1

8π3

∫ ∞

0

dk

∫ π

0

dθk

∫ 2π

0

dφk
k2 sin θk

k2 − k2
1

exp (ikr cos θk) , (3.19)

where spherical coordinates (k, θk, φk) have been introduced to describe the k-domain and

r = |r|. This spherical coordinate system is chosen such that the direction θk = 0 coincides

with the direction of the position vector r. With this particular choice, it follows that

k ·r = kr cos θk. Since the result (3.19) only depends on the length r of r, Green’s function

will be denoted as G(r, ω). In (3.19), the integrals over φk and θk are elementary and result

in

G(r, ω) =
1

4iπ2r

∫ ∞

0

k

k2 − k2
1

[exp(ikr) − exp(−ikr)] dk

= − 1

4iπ2r

∫ ∞

−∞

exp(−ikr)

k2 − k2
1

k dk. (3.20)
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Consider medium 1 to be lossy and choose a fixed real and positive frequency ω. Since

Re ε1 > 0, Im ε1 ≥ 0 and µ1 ∈ lR, it follows that Im k1 > 0. Hence, the poles in the complex

k-plane are as indicated in Figure 3.2 by the crosses. By integrating along the contour of

Re(k)
Im(k)

−k1

k1

κ

Figure 3.2: Chosen contour in the complex k-plane for evaluation of the integral (3.20).

Figure 3.2 and by applying Jordan’s lemma, it follows that in the limit of κ → ∞:

G(r, ω) = − 1

4iπ2r

∫ ∞

−∞

exp(−ikr)

k2 − k2
1

k dk =
2πi

4iπ2r
Res

k=−k1

exp(−ikr)

k2 − k2
1

k =
exp(ik1r)

4πr
. (3.21)

For a lossless medium, the limit for Im ε1 ↓ 0 is to be taken, which does not affect the

obtained result (3.21). In the more general case of a point source in r = r′, the Fourier

transformed Green’s function is found by using translation symmetry as

G(R,ω) =
exp(ik1R)

4πR
, (3.22)

where R = |r − r′|.
Now, Hi(r, ω) and Ei(r, ω) can be written as space convolution integrals

SD(r) Hi(r, ω) = ∇× A
e,i
B (r, ω) −

(
1

iωµ1

∇∇ · −iωε1

)
A

m,i
B (r, ω), (3.23)

SD(r) Ei(r, ω) = −∇× A
m,i
B (r, ω) −

(
1

iωε1

∇∇ · −iωµ1

)
A

e,i
B (r, ω), (3.24)

with

A
e,i
B (r, ω) =

∮

r′∈∂D

G(R,ω)Je,i
B (r′, ω)dr′ (3.25)

A
m,i
B (r, ω) =

∮

r′∈∂D

G(R,ω)Jm,i
B (r′, ω)dr′, (3.26)

where R = |r − r′| and where r is the point of observation.
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3.1.2 The scattered field

Next, the scattered field in the exterior domain D is considered. The scattered field in D

satisfies

∇× Hs(r, ω) + iωε1E
s(r, ω) = 0, (3.27)

∇× Es(r, ω) − iωµ1H
s(r, ω) = 0, (3.28)

for r ∈ D. Again, no sources are found in the right-hand sides of the latter equations

because the sources are located in the interior domain D. Analogous to the integral

relations for the incident field, the integral relations for the scattered field are found as

−∇× A
e,s
B (r, ω) +

(
1

iωµ1

∇∇ · −iωε1

)
A

m,s
B (r, ω) = S

D
(r) Hs(r, ω), (3.29)

∇× A
m,s
B (r, ω) +

(
1

iωε1

∇∇ · −iωµ1

)
A

e,s
B (r, ω) = S

D
(r) Es(r, ω). (3.30)

The opposite signs in the right-hand sides of the latter integral relations originate from

the fact that n(r) points into D. In writing down (3.29) and (3.30), the integral relations

given by (3.23) and (3.24) have been applied to an infinite domain. Strictly speaking,

this is not allowed, since this relation was derived for a finite domain only. However,

(3.29) and (3.30) can also be found by considering the domain between ∂D and a second

boundary at r = r∞. From the radiation condition that the scattered field must represent

an outgoing wave as r → ∞.

Subtracting (3.30) from (3.24) yields

SD(r)Ei(r, ω) − S
D

(r)Es(r, ω) =−∇×A
m
B (r, ω) − 1

iωε1

(
∇∇ · +k2

1

)
A

e
B(r, ω), (3.31)

with

A
m
B (r, ω) =

∮

r′∈∂D

exp(ik1R)

4πR
Jm

B (r′, ω)dr′,

A
e
B(r, ω) =

∮

r′∈∂D

exp(ik1R)

4πR
Je

B(r′, ω)dr′.

The fact that the object is electrically impenetrable provides the extra boundary condition

J
m,i
B + J

m,s
B = Jm

B = n(r) × E = 0, (3.32)

for r ∈ ∂D. After substitution of the extra boundary condition and replacing the scattered

electric field with Es = E − Ei, an integral relation for the total electric field remains

S
D

(r)E(r, ω) = Ei(r, ω) +
1

iωε1

(
∇∇ · +k2

1

)
A(r, ω), (3.33)
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where

A(r, ω) =

∮

r′∈∂D

exp(ik1R)

4πR
J(r′, ω)dr′. (3.34)

The electric vector potential and the electric current density have been replaced with

A
e
B = A and Je

B = J, respectively. In the remainder of this thesis, A and J will be

referred to as the vector potential and the current density, respectively.

For the magnetic field strength a similar relation is found:

S
D

(r) H(r, ω) = Hi(r, ω) −∇× A(r, ω). (3.35)

To make (3.33) and (3.35) suitable for numerical procedures, the tangential field component

on ∂D must be selected and the curl operator in (3.35) must be evaluated. To this end,

the cross product with n(r) is taken and the resulting integral equation is solved for the

electric current density. Analogous to (3.32), the electric current density is given by

J(r, ω) = −n(r) × H(r, ω). (3.36)

With this definition, (3.35) can be rewritten as

J(r, ω) = 2Je,i
B − 2n(r) ×∇× A(r, ω), (3.37)

with r ∈ ∂D. In the literature [43], this equation is known as the magnetic-field integral

equation (MFIE). Since the MFIE pertains to field values on ∂D, it is of the boundary

type. A similar equation can be obtained by considering the electric-field strength E(r, ω)

for ∂D, and is known as the electric field integral equation (EFIE)

iωε1J
e,i
B (r, ω) + k2

1 (n(r) × A(r, ω)) + (n(r) ×∇)∇ · A(r, ω) = 0, (3.38)

with r ∈ ∂D.

Now that the general integral equations for the magnetic and electric field are known, an

integral equation to describe the current along the surface of a thin-wire antenna can be

derived.

3.2 The integral equation of Pocklington

In this section, an integral equation to describe the current along the surface ∂D of a

perfectly conducting, straight thin-wire antenna will be derived. This equation is referred

to as Pocklington’s equation.
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ux

x = 0

x = L

xg − ∆x
xg + ∆x

V (ω)D

∂D

D

E i(r, ω)

Figure 3.3: Wire geometry.

A wire antenna of length L and radius a positioned along the x-axis will be considered, see

Figure 3.3. The wire is embedded in a homogeneous medium with the material parameters

ε(r) = ε1 and µ(r) = µ1, which is located in the domain D. The wire antenna can act

as a receiver or as a transmitter. When the wire acts as a receiver, the external source is

an incident electric field Ei(r, ω) which induces a current along the wire. When the wire

acts as a transmitter, the current along the wire is driven by a voltage V (ω) across a small

gap with vanishing dimension 2∆x which is located at x = xg. The voltage excitation

is referred to as a delta-gap voltage when ∆x ↓ 0. In (3.33), A(r, ω) denotes the vector

potential which is used to interrelate the electric field with the current density J(r, ω) along

the wire. The vector potential was defined as

A(r, ω) =

∮

r′∈∂D

G(R,ω)J(r′, ω)dr′,

with

G(R,ω) =
exp(ikR)

4πR
, (3.39)

and again R = |r− r′| for all source points r′ along the wire. To facilitate the formulation,

cylindrical coordinates (ρ, φ, x) are introduced. Note that this not the standard form of the

cylindrical coordinate system, where the z-direction is used instead of the x-direction. The

vectors r and r′ may now be written as r′ = ρ′uρ′(φ
′) + x′ux and r = ρuρ(φ) + xux. The

unit vectors are defined according to Figure 3.4 where a small part of the wire has been

magnified. It is observed that the unit vector uρ(φ) can also be regarded as the normal on

the surface of the wire, with the exception of the end faces of the wire. The derivation of

Pocklington’s integral equation is carried out in several steps, see also [37].
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• ux

uφ(φ)

uρ(φ)

Figure 3.4: Definition of the unit vectors uρ(φ), uφ(φ) and ux.

First, the x-component of (3.33) is chosen according to

iωε1ux ·
(
S

D
(r)E(r, ω) − Ei(r, ω)

)
= ux ·

(
∇∇ · +k2

1

)
A(r, ω)

= ∂x∇ · A(r, ω) + k2
1ux · A(r, ω). (3.40)

With the definition of the vector potential, this equation can be further simplified as

iωε1 ·
(
S

D
(r)Ex(r, ω) − Ei

x(r, ω)
)

= ∂x∇ · A(r, ω) + k2
1

∮

r′∈∂D

G(R,ω)Jx(r
′, ω)dr′. (3.41)

Next, the remaining ∇ operator is split up according to

∇ = ∂xux + ∇T , (3.42)

where the subscript T stands for transverse. Substituting (3.42) in the pertaining part

of (3.41) gives

∂x∇ · A(r, ω) = ∂2
x

∮

r′∈∂D

G(R,ω)Jx(r
′, ω)dr′ + ∂x

∮

r′∈∂D

∇T · (G(R,ω)J(r′, ω)) dr′.

The integrand containing the ∇T · operator in the right-hand side of the latter equation

can be written as

∇T · (G(R,ω)J(r′, ω)) = G(R,ω)∇T · J(r′, ω)︸ ︷︷ ︸
=0

+J(r′, ω) · ∇T G(R,ω)

= J(r′, ω) · ρuρ(φ) − ρ′uρ′(φ
′)

R
∂RG(R,ω). (3.43)

When the point of observation is chosen on the central axis of the wire, i.e., r = xux, and

the source point on the surface of the wire, it follows that ρ = 0 and ρ′ = a. Along the
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surface of the wire, except for the end faces, the inner product J(r′, ω) · uρ′(φ
′) = 0 and

consequently ∇T · (G(R,ω)J(r′, ω)) = 0. If the currents at the end faces of the wire are

neglected, (3.40) can therefore be written as

iωε1 ·
(
S

D
(xux)Ex(xux, ω) − Ei

x(xux, ω)
)

=
(
∂2

x + k2
1

) ∮

r′∈∂D

G(Ra, ω)Jx(r
′, ω)dr′, (3.44)

with Ra =
√

(x − x′)2 + a2. Because G(Ra, ω) does not depend on φ′, the latter integral

may be written as

∮

r′∈∂D

G(Ra, ω)Jx(r
′, ω)dr′ =

∫ L

0

G(Ra, ω)

{
a

∫ π

−π

Jx(x
′ux + auρ′(φ

′), ω)dφ′
}

dx′

=

∫ L

0

G(Ra, ω)I(x′, ω)dx′, (3.45)

where the definition of the total current

I(x′, ω) = a

∫ π

−π

Jx(x
′ux + auρ′(φ

′), ω)dφ′ (3.46)

flowing along the wire at position x = x′ now follows naturally from the derivation.

The electric field in the gap at x = xg satisfies

∫ xg+∆x

xg−∆x

Ex(xux, ω)dx = −V (ω), (3.47)

where V (ω) is a known impressed voltage across the gap. By taking the limit ∆x ↓ 0, the

electric-field strength inside the delta gap can be written as Ex(xux, ω) = −δ(x−xg)V (ω),

where δ(x − xg) denotes the Dirac delta distribution. Substitution of this result in the

left-hand side of (3.44) gives the integro-differential equation of Pocklington:

(∂2
x + k2

1)

∫ L

0

G(Ra, ω)I(x′, ω)dx′ = −iωε1

[
V (ω)δ(x − xg) + Ei

x(xux, ω)
]
. (3.48)

From the above derivation, which was first given in [37], it follows that this integral equation

is almost exact. In fact, the only approximation amounts to neglecting the radial currents

on the end faces.

Pocklington’s equation can easily be solved numerically. However, the differentiations

with respect to x can cause problems in the numerical evaluation of (3.48), especially near

x = x′, where 1/Ra becomes almost singular.
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3.3 Hallén’s equation

In 1938, Hallén [34] derived a simple approximation for describing the current along a thin

wire with the intention to find an analytical expression. In addition, this new equation is

more convenient for a numerical computation of the current along a wire.

In this section, a brief description of the derivation of Hallén’s equation will be given. After

writing the incident electric field as a superposition of delta distributions as follows

Ei
x(xux, ω) =

∫ L

0

Ei
x(x

′ux, ω)δ(x − x′)dx′, (3.49)

the differential operator (∂2
x + k2

1) in (3.48) can be handled in an elegant manner.

As a first step, (3.49) is substituted in (3.48) which yields the following result:

(∂2
x + k2

1)

∫ L

0

G(Ra, ω)I(x′, ω)dx′

= −iωε1

[
V (ω)δ(x − xg) +

∫ L

0

Ei
x(x

′ux, ω)δ(x − x′)dx′
]

, (3.50)

for 0 ≤ x ≤ L. A closer look at the latter equation shows that the structure of (3.50) again

resembles the structure of the one-dimensional wave equation. Therefore the solution to

the one-dimensional wave equation (2.51) can be used to rewrite (3.50) as

∫ L

0

I(x′, ω) exp(ik1Ra)

4πRa

dx′ − F0(ω) exp (ik1x) − FL(ω) exp (ik1(L − x))

=
Y1

2

[
V (ω) exp(ik1|x − xg|) +

∫ L

0

Ei
x(x

′ux, ω) exp(ik1|x − x′|)dx′
]

, (3.51)

for 0 ≤ x ≤ L and where Y1 =
√

ε1/µ1 is the complex admittance of the medium. The

terms containing F0(ω) and FL(ω) are the homogeneous solutions of the one-dimensional

wave equation. The factors F0(ω) and FL(ω) can be found as a combination of source terms

with the aid of the boundary conditions I(0, ω) = I(L, ω) = 0. In the present derivation

these factors are solved numerically as extra unknowns. It is, however, necessary to ex-

plicitly account for the boundary conditions given I(0, ω) = I(L, ω) = 0. Equation (3.51)

is known as Hallén’s equation.

3.3.1 Discretization of Hallén’s equation

In the previous paragraph, Hallén’s equation for the current along a straight thin wire with

a circular cross section was derived. This equation cannot be solved analytically and is

therefore solved numerically.
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To this end, Hallén’s equation will be discretized. Following [37], the wire is divided in M

subintervals with mesh size ∆x = L/M where M is chosen as a fixed value which does not

depend on the frequency. Now x is chosen fixed as x = xm = m∆x, with m = 0, . . . ,M .

If the numerator containing the current in (3.51) is approximated piecewise linearly, the

following expression is obtained

I(x′, ω) exp(ik1Ra) ≈
M−1∑

m′=1

Im′(ω) exp(ik1R
a
m−m′)φm′(x′), (3.52)

with Ra
m =

√
m2∆x2 + a2 and where φm′(x) is the triangular expansion function which is

defined as

φm′(x) =

{
1 − |x − xm′ |/∆x for |x − xm′ | ≤ ∆x

0 otherwise
, (3.53)

for m′ = 1, . . . ,M − 1. This approximation implicitly accounts for the boundary condi-

tions I(0, ω) = I(L, ω) = 0. The first term on the left-hand side of (3.51) can now be

approximated by

∫ L

0

M−1∑

m′=1

Im′(ω) exp(ik1R
a
m−m′)φm′(x′)

4πRa

dx′

≈
M−1∑

m′=1

I(xm′ , ω) exp(ik1R
a
m−m′)

∫ L

0

φm′(x′)

4πRa

dx′, m = 0, . . . ,M. (3.54)

The integral in the right-hand side of the latter equation is rewritten as

∫ L

0

φm′(x′)

4πRa

dx′ =

∫ x
m′+∆x

x
m′−∆x

φm′(x′)

4π
√

(m∆x − x′)2 + a2
dx′, m = 1 − M, . . . ,M − 1. (3.55)

The weighting coefficients wm are defined as

wm =
1

4π

∫ xm+∆x

xm−∆x

φm(x)√
x2 + a2

dx (3.56)

The integrals in the definition of the weighting coefficients wm are split up as

wm =
1

4π

(∫ xm

xm−∆x

∆x − xm + x

∆x
√

x2 + a2
dx +

∫ xm+∆x

xm

∆x + xm − x

∆x
√

x2 + a2
dx

)
. (3.57)
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The first integral is calculated in closed form as

∫ xm

xm−∆x

∆x − xm + x

∆x
√

x2 + a2
dx =

∫ xm

xm−∆x

1 − m√
x2 + a2

dx +
1

∆x

∫ xm

xm−∆x

x√
x2 + a2

dx

= (1 − m) log

(
m∆x + Ra

m

(m − 1)∆x + Ra
m−1

)
+

1

∆x

(
Ra

m − Ra
m−1

)
, (3.58)

where log is the natural logarithm. The second integral of (3.57) is found analogously. The

closed-form expression for the weighting coefficient wm is thus found as

wm =
1

4π

{[
(m − 1) log

(
Ra

m−1 + (m − 1)∆x

Ra
m + m∆x

)
+ (m + 1) log

(
Ra

m+1 + (m + 1)∆x

Ra
m + m∆x

)]

− 1

∆x

[
Ra

m+1 − 2Ra
m + Ra

m−1

]
}

, (3.59)

for m = 1 − M, . . . ,M − 1. The remaining integrals in (3.51) can be approximated by a

straightforward trapezoidal rule. The discretized Hallén equation can thus be written as

M−1∑

m′=1

wm−m′ exp
(
ik1R

a
m−m′

)
Im′(ω) − exp (ik1xm) F0(ω) − exp (ik1(L − xm)) FL(ω)

=
Y1

2

[
exp (ik1|xm − xg|) V (ω) +

M∑

m′=0

vm′ exp (ik1|xm − xm′ |) Ei
x(xm′ux, ω)

]
, (3.60)

for m = 0, . . . ,M . The weighting coefficients vm are defined as

vm =

{
∆x, for m = 1, . . . ,M − 1,
∆x
2 for m = 0,M.

(3.61)

Now, all coefficients, except the current along the wire, are known and (3.60) is a linear

system of equations of fixed dimension (M + 1). The M + 1 unknowns are F0, FL and

{Im|m = 1, . . . ,M − 1}.
The system of equations is solved numerically with the aid of a conjugate-gradient fast-

Fourier transformation (CGFFT) method [49]. When this system has been solved for Nf

frequencies, the inverse Fourier transformation (2.17) can be applied to obtain the time-

domain current.
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3.3.2 Results

A single thin wire is excited by a Gaussian voltage pulse which in the time domain is

defined as

V(t) = exp

[
−

(
t − t1

τ

)2
]

, (3.62)

where τ corresponds to the pulse duration and t1 the time instant where the amplitude

reaches its maximum (see Figure 3.5). The frequency-domain voltage pulse is given by

V (ω) = τ
√

π exp

(
−

(ωτ

2

)2

+ iωt1

)
, (3.63)

and is also displayed in Figure 3.5. In the remainder of this chapter, this Gaussian pulse

1

1
e τ

t1

V(t)

t

√
πτ
e

√
πτ

√
2

τ

|V (ω)|

ω

Figure 3.5: The shape of the Gaussian excitation in time and frequency domain.

will be used with τ = 0.5 ns and t1 = 4τ . This particular choice of t1 ensures that

the magnitude of the voltage pulse is negligible for t ≤ 0. Therefore, the Gaussian voltage

pulse may be regarded as a causal signal and is thus a correct input signal for the numerical

procedure. The maximum frequency in the spectrum of the Gaussian excitation is 2 GHz.

An external incident field is not considered here, i.e., Ei
x = 0.

The wire is located along the x-axis, see Figure 3.3. The points of excitation and observa-

tion are chosen at the center of the wire (xg = x = L/2). The current along the wire has

been calculated using the parameters L = 1 m and a = 0.002 m. The spatial discretization

is given by M = 30 and the number of time steps is N = 1024. The current at the center

of the wire is calculated for four different embeddings. The results have been compared

with results from a time-domain numerical code for thin-wire structures “DOTIG1”[50].

Both results are visualized in Figure 3.6. The present frequency-domain Hallén method is

referred to as “FDH”. At a first glance, it is observed that the presented results from the

frequency domain Hallén method are in perfect agreement with the time-domain results

from DOTIG1. The difference in relative permittivity between (A) and (C) and between

(B) and (D) results in a difference in travel time of the current along the wires. For (A)
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Figure 3.6: The induced current at the center of a wire with length L = 1 m, radius

a = 0.002 m, M = 30 and N = 1024 for an embedding with ε1 = 1, σ1 = 0 (A),

ε1 = 1, σ1 = 0.005 S/m (B), ε1 = 9, σ1 = 0 (C) and ε1 = 9, σ1 = 0.005 S/m (D). The

permeability is µ0 for all configurations. The excitation is a Gaussian voltage pulse with

τ = 0.5 ns and t1 = 4τ .

and (B) the time difference between the second negative peak and the second positive

peak is ∆t = 8.96 − 5.6 = 3.36 ns and ∆t = 22.24 − 12.16 = 10.08 ns, respectively. This

shows that the current along the wire in (A) travels approximately 10.08/3.36 = 3 times

faster then the one along the wire in (C), which is exactly the square root of the quotient

ε1,C/ε1,A = 9/1. For (B) and (D) the same observation is made. The conductivity of

the embedding has no effect on the travel time of the current along the wire because the

contribution in k1 is not real-valued. In Hallén’s equation, the conductivity does have an
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attenuating effect on the current. Because of this attenuating effect, the current along the

wire will vanish quicker as can be observed from comparing (A) with (B) and (C) with

(D).

After approximately 35 ns, the shape of the current in (A) behaves as a damped oscillation.

This can be explained from the fact that the dominant mode of the current along the wire

attenuates slower than the other modes. The current travels along the wire and reflects

at the end faces of the wire, see also the next section. After a certain time, only the

dominant mode contributes to the current along the wire which has a fixed travel time

(depending on the medium parameters). Therefore, the current will act as an oscillation.

The attenuating effect follows directly from the fact that the wire is radiating and therefore

loses power as time passes. If the embedding also has a conductivity σ1, the current along

the wire attenuates quicker.

3.4 Approximate solution of Hallén’s equation

As described above, the current along a single thin wire has a traveling-wave nature. In

1961, Altshuler [13] described a traveling-wave linear antenna. This new look inspired

many authors to find approximate expressions of the current along the wire in terms of

traveling waves. In the next section, this approximation is derived. The purpose of this

section is to give some insight in the behavior of the current along a wire.

Inspired by the first-order approximation given by Bouwkamp [44] and earlier published

results [37, 51, 52, 53], a traveling-wave model is derived to describe the current along a

wire [35]. In [35], the parameters that are used in the derivation as given below were found

by fitting the current to a reference current.

To describe the current by a traveling-wave model, Hallén’s equation in the frequency

domain (3.51) is used to derive a first order approximate expression for the current along

the wire. The wire is embedded in a homogeneous medium with ε1(r) = ε1 and µ1(r) = µ0

and only a voltage excitation is considered. Then Hallén’s equation can be written as

∫ L

0

I(x′, ω) exp(ik1Ra)

4πRa

dx′

=

∫ L

0

I(x′, ω) exp(ik1Ra) − I(x, ω) exp(ik1a) + I(x, ω) exp(ik1a)

4πRa

dx′

= F0(ω) exp (ik1x) + FL(ω) exp (ik1(L − x)) +
Y1

2
V (ω) exp(ik1|x − xg|). (3.64)
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The left-hand side of (3.64) can be written as
∫ L

0

I(x′, ω) exp(ik1Ra) − I(x, ω) exp(ik1a)

4πRa

dx′ + I(x, ω) exp(ik1a)

∫ L

0

dx′

4πRa

. (3.65)

The last integral in the right hand side of (3.65) can be calculated analytically as follows
∫ L

0

1

Ra

dx′ =

∫ x

0

dx′
√

(x − x′)2 + a2
+

∫ L

x

dx′
√

(x − x′)2 + a2
= Ω(x)

= 2 log

(
L

a

)
+ log

(
x +

√
x2 + a2

L

)
+ log

(
L − x +

√
(L − x)2 + a2

L

)
. (3.66)

The first-order approximation consists of neglecting the first integral in (3.65) [35, 54]. The

remaining current belongs to the approximated equation and will therefore be denoted as

If (x, ω).

With the substitution of Ω(x) into (3.51), the first order approximate solution of Hallén’s

equation is given by

If (x, ω) =
2πY1

Ω(x)
V (ω) exp(ik1(|x − xg| − a))

+
4π

Ω(x)
[F0(ω) exp (ik1(x − a)) − FL(ω) exp (ik1((L − x) − a))] . (3.67)

By using the boundary conditions If (0, ω) = If (L, ω) = 0, the factors F0(ω) and FL(ω)

are found as

F0(ω) =
Y1

2
V (ω)

exp[ik1(2L − xg)] − exp[ik1xg]

1 − exp(2ik1L)
, (3.68)

FL(ω) =
Y1

2
V (ω)

exp[ik1(L + xg)] − exp[ik1(L − xg)]

1 − exp(2ik1L)
. (3.69)

Substituting (3.68) and (3.69) in (3.67) results in

If (x, ω) =
2πY1

Ω(x)
V (ω)

[
exp(ik1(|x − xg| − a)) −

∞∑

m=0

exp (ik1(x + xg + 2mL))

−
∞∑

m=0

exp (ik1(2L − x − xg + 2mL)) +
∞∑

m=0

exp (ik1(2L + x − xg + 2mL))

+
∞∑

m=0

exp (ik1(2L − x + xg + 2mL))

]
, (3.70)

where the fact has been used that for Im k1 > 0

1

1 − exp(2ik1L)
=

∞∑

m=0

exp(2ik1mL). (3.71)
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2L − xg + x

Figure 3.7: The various possibilities for current waves originating from xg to arrive at the

observation point x.

From the series approximation, the traveling-wave nature can easily be seen. For m = 0,

the various contributions have been visualized in Figure 3.7. It is observed that the first

and second series represent the contributions with 2m+1 reflections. The third and fourth

series represent the contributions with 2m+2 reflections. All contributions, except for the

direct contribution, repeat themselves after traveling over a distance 2L. Note that in that

case the current wave has reflected at least twice.

Since the current wave is fully reflected at the end faces of the wire in the model above,

the sign of the current changes. This is related with a reflection coefficient that equals −1.

The admittance function in (3.70) equals

Y (x) =
2πY1

Ω(x)
. (3.72)

A closer look at the traveling-wave model (3.70) shows that the current is now fully de-

scribed by an admittance times a superposition of delayed voltage pulses. That this is a

first-order model follows from the fact that the reflection coefficient does not attenuate the

voltage. In free space, k1 is real-valued and therefore the current will never attenuate. The

frequency-domain series representation then does not converge. From a physical point of

view this is unacceptable and therefore a higher-order approximation is required.

At the end faces of the wire, the current wave normally does not reflect immediately [35, 52].

Therefore an extra time delay should be incorporated in the solution to describe the cur-

rent along the wire. In general, the reflection coefficient does not equal −1 [45]. The

admittance is known to be frequency dependent while the expression (3.72) is not. By ap-
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proximating the reflection coefficient and the admittance more accurately, a higher-order

approximation of the traveling-wave current based on (3.70) can be constructed. For the

sake of completeness, a short derivation of the higher-order model is given below. In [35],

the higher-order approximation is given in the time domain. The parameters involved with

this approximation are found by fitting the current on the current calculated with Hallén’s

equation. It was shown that the radiated electric field was better approximated with the

fitted model than with the direct frequency-domain model. A more detailed description

can be found in [35].

3.4.1 Higher-order approximation

A short derivation of a higher-order approximation to describe the current along the wire

in terms of traveling waves will be given. As a guideline, the first order approximation

given by (3.70) will be used to incorporate the generalized admittance found by Shen et

al. [46] and the reflection coefficient found by Ufimtsev [45]. The time delay for reflection

at the end faces of the wire will be included in the reflection coefficient. Note that for

the derivation of generalized admittance and the reflection coefficient, the constraint that

|k1a| < 0.2 is assumed.

Shen et. al. [46] approximated the admittance of an infinitely long wire antenna excited

at xg = 0 by describing first the current along that wire. The current along the infinitely

long wire is described by

I∞(x, ω) = iY0V (ω) exp(ik1|x|)

· log


1 +

2iπ

2 log(k1a) + γ − log
(
k1|x| +

√
(k1x)2 + exp(−2γ)

)
− i3π

2


 , (3.73)

where γ ≈ 0.577215664... is Euler’s constant. The factor exp(ik1|x|) shows the traveling-

wave nature of the current along the wire in Shen’s approximation. The admittance is

then found as

Yf (x) =
I∞(x − xg, ω)

V (ω) exp(ik1|x − xg|)
. (3.74)

The current represented by (3.73) is excited by a delta-gap voltage at xg = 0. In the present

model of a finite wire, the point of excitation is xg > 0. Thus a current wave traveling

away from xg in both directions has the value I(x, ω) = I∞(x − xg, ω) for 0 < x < L.

The admittance from (3.74) is plotted in Figure 3.8. Plots A and B are given for the

arguments x = xg and |x− xg| = L/2, respectively. The frequency range is up to 10 GHz.
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Figure 3.8: The generalized admittance Yf for |x − xg| = L/2 (A) and x = xg (B).

From both plots, it is observed that Re(Yf ) dominates the behavior of the absolute value

of the generalized admittance.

Since the time delay will be incorporated into the reflection coefficient, the real or absolute

value of the generalized admittance may be chosen. If the complex admittance would be

chosen, additional, unwanted time delays could be introduced. The generalized admittance

is therefore redefined according to

Yf (x) =

∣∣∣∣
I∞(x − xg, ω)

V (ω) exp(ik1|x − xg|)

∣∣∣∣ . (3.75)

In the first-order approximate traveling wave model, the current waves reflect at x = 0

and x = L with a reflection coefficient Rf = −1. A current wave which has been reflected

at x = 0 has a generalized admittance Yf (xg). A current wave which has reflected at least

once at x = L has a generalized admittance Yf (L− xg) and a current wave traveling from

x = xg without having been reflected has a generalized admittance Yf (|x − xg|). What

remains is a better approximation of the reflection coefficient Rf .

In 1962, Ufimtsev [45] derived an approximation of the reflection coefficient for a thin

cylindrical conductor. The work of Ufimtsev is based on earlier work by Vainshtein [55].
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The high-frequency approximate reflection coefficient at the end of a thin-wire antenna is

found as

Rf =
iπ − 2 log (exp(γ)k1a)

log

(
2iL

exp(γ)k1a2

)
− E(2k1L) exp(−2ik1L)

, (3.76)

where

E(2k1L) = −
∫ ∞

2k1L

cos(t)

t
dt + i

∫ 2k1L

0

sin(t)

t
dt − i

π

2
. (3.77)

In Figure 3.9, the reflection coefficient is plotted as a function of frequency. It is observed

0

0.2

0.4
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Figure 3.9: The reflection coefficient Rf versus frequency f .

that the reflection coefficient equals 1 only at frequency f = 0. With the definition of

the reflection coefficient and the generalized admittance, the higher-order approximation

of Hallén’s solution is readily found as

If (x, ω) = Yf (|x − xg|)V (ω) exp(ik1|x − xg|)

−Yf (xg)V (ω)
∞∑

m=0

R2m+1
f exp[ik1(x + xg + 2mL)]

−Yf (L − xg)V (ω)
∞∑

m=0

R2m+1
f exp[ik1(2L − x − xg + 2mL)]

+Yf (xg)V (ω)
∞∑

m=0

R2m+2
f exp[ik1(2L − x + xg + 2mL)]

+Yf (L − xg)V (ω)
∞∑

m=0

R2m+2
f exp[ik1(2L + x − xg + 2mL)]. (3.78)
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The latter equation can be further simplified to

If (x, ω) = Yf (|x − xg|)V (ω) exp(ik1|x − xg|)

+Yf (xg)V (ω)

[
− exp[ik1(x + xg − L)]

Rf exp(ik1L)

1 − R2
f exp(2ik1L)

+ exp[ik1(xg − x)]
R2

f exp(2ik1L)

1 − R2
f exp(2ik1L)

]

+Yf (L − xg)V (ω)

[
− exp[ik1(L − x − xg)]

Rf exp(ik1L)

1 − R2
f exp(2ik1L)

+ exp[ik1(x − xg)]
R2

f exp(2ik1L)

1 − R2
f exp(2ik1L)

]
. (3.79)

In most examples, the point of observation equals the point of excitation x = xg = L/2.

In this case, (3.79) reduces to

If (x = xg = L/2, ω) = Yf (0)V (ω)

+Yf (L/2)V (ω)

[
− 2

∞∑

m=0

R2m+1
f exp[ik1((2m + 1)L)]

+2
∞∑

m=0

R2m+2
f exp[ik1((2m + 2)L]

]

= Yf (0)V (ω) − 2Yf (L/2)V (ω)
Rf exp(ik1L)

1 + Rf exp(ik1L)
. (3.80)

Apart from the approximate reflection coefficient, the current can now easily be evaluated.

The reflection coefficient Rf can be determined numerically for each frequency before the

summations are carried out. When the current If is calculated for a number of frequencies,

the time-domain results are obtained after an inverse temporal Fourier transformation.

As an example, the current along a wire with length L = 1 m and radius a = 0.002 m will

be calculated with the higher-order approximation and Hallén’s equation from the previous

section. The wire is excited by a Gaussian voltage pulse as defined in Section 3.3.2. The

results are visualized in Figure 3.10. It is observed that the first pulse is well approximated

by the higher-order model. In fact, until 20 ns, the pulses are well approximated. After

20 ns, the amplitude of the higher-order model current is larger than in Hallén’s version

of the current. In the frequency-domain approximation, the lowest possible mode of the

current is not represented accurately. This mode is dominant in the late-time behavior of

the total current.
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Figure 3.10: The induced current at the center of a wire with length L = 1 m, radius

a = 0.002 m, M = 30 and N = 1024. The wire is embedded in a homogeneous medium

with parameters ε0 and µ0. The excitation is a Gaussian voltage pulse with τ = 0.5 ns and

t1 = 4τ .



Chapter 4

Various configurations with thin

wires

In the previous chapter, Hallén’s equation was derived for a single thin wire in a homo-

geneous embedding which was referred to as medium 1. This equation will now be used

to generalize thin-wire problems in various configurations. In each configuration one new

element will be added. The configurations are depicted In Figure 4.1. The dots represent

the cross sections of wires. In the various configurations, an interaction can be recognized

from a pair of arrows. It is seen that each addition, whether that is an extra wire or an

extra medium, increases the number of interactions between the elements of a configura-

tion. The computational complexity therefore increases with each additional wire since all

currents are coupled and they are calculated simultaneously. Configuration I has already

been examined in the previous section and the results will be used for other configurations.

The goal of this chapter is to model a buried wire with a transmitting and receiving wire

system above the ground (configuration IV). This last configuration is formed by adding

various elements to the initial configuration (configuration I) in a natural order. As can be

seen, in configuration II, the space is divided in two half spaces comprising different media.

The difference in medium parameters of the half spaces causes a part of the radiated field

from the wire to be reflected at the interface between these two half spaces. In configuration

III, a second wire is added to the upper half space. Wire 1 is the transmitting wire and

wire 2 is the receiving wire. This gives two extra interactions, one directly and one via

the interface. With the addition of a third wire in the lower half space, configuration IV

has been reached. Wire 3 is the buried wire. In this configuration, one more interaction is

added to wire 1 and wire 2 in the form of a transmitted field through the interface between

two half spaces. The transmitted field interaction takes place between wire 1 and wire 3

53
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= Medium 1 = Medium 2
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Figure 4.1: Various configurations involving thin wires.

as well as between wire 2 and wire 3.

The additional terms in Hallén’s equation for increasing complexity of the configuration

will be introduced according to an interaction table (see Table 4.1). The section number

refers to the section pertaining to a configuration. Until configuration IV, the results can

be verified from the literature [24, 25].

At the end of the chapter, the calculation times of a number of configurations are discussed.

4.1 Hallén’s equation for a single thin wire above an

interface between two half spaces

In the previous section, Hallén’s equation for a single thin wire with a delta-gap source in

a homogeneous medium, see (3.51), was derived as

∫ L

0

I(x′, ω) exp(ik1Ra)

4πRa

dx′ = F0(ω) exp (ik1x) + FL(ω) exp (ik1(L − x))

+
Y1

2

[
V (ω) exp(ik1|x − xg|) +

∫ L

0

Ei
x(x

′ux, ω) exp(ik1|x − x′|)dx′
]

, (4.1)
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Configuration Section Interactions

I 3.3 · None

II 4.1 · Wire and Interface

III 4.2 · Wire 1 and Interface

· Wire 2 and Interface

· Wire 1 and Wire 2

· Wire 1, Wire 2 and Interface

IV 4.3 · Wire 1 and Interface

· Wire 2 and Interface

· Wire 1 and Wire 2

· Wire 1, Wire 2 and Interface

· Wire 3 and Interface

· Wire 1, Wire 3 and Interface

· Wire 2, Wire 3 and Interface

Table 4.1: Interaction table for various configurations involving thin wires, see Figure 4.1.

with Ra =
√

(x − x′)2 + a2 and k1 = ω
√

µ0ε1. As in the previous chapter, the interface

between medium 1 and medium 2 is located at z = 0. The upper half space, z < 0, is

denoted as medium 1 while the lower half space, z > 0, is denoted as medium 2. Instead of

a current dipole source, a wire antenna with a circular cross section is located at z = z1 < 0.

The complex permittivities are ε1 and ε2 for medium 1 and medium 2, respectively. The

permeability is µ0 for both media. The wire is again of length L and radius a. The

excitation is a delta-gap voltage source at x = xg. For an overview of the configuration,

see Figure 4.2. For visualization purposes, the limit ∆x ↓ 0 has not been carried out yet

here. In this configuration, there is no incident field from an external source. However,

the difference in dielectric properties between the two media adds a contribution from the

interface to the current along the wire. This contribution finds its origin in a reflection

from a part of the radiated field from the wire at the interface. This reflected field can be

seen as a secondary incident field on the wire. The field incident on the wire can in that

interpretation be written as [24]

Ei
x(xux + z1uz, ω) = Er

x(xux + z1uz, ω) (4.2)

where the superscript r denotes a reflected field due to the interface between the two media.

To interrelate the current on the wire with the reflected field by the interface, the current
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Figure 4.2: A wire above an interface.

is written as

I(x, ω) =

∫ L

0

I(x′′, ω)δ(x − x′′)dx′′. (4.3)

Using superposition of the rewritten current on the reflected field at r from a current point

source which is given by (2.107) yields

Er
x(x

′ux + z1uz, ω) =
iω2Z0

8π

∫ L

0

I(x′′, ω)

∫ ∞

0

ζr((x′ − x′′)ux + z1uz, ν, ω)dνdx′′, (4.4)

with

ζr((x′ − x′′)ux + yuy + z1uz, ν, ω) = ν exp (2k0u1z1)

·
{

J0 (k0ν|(x′ − x′′)ux + yuy|)
[

u1

ε1r

RE
12 +

1

u1

RH
12

]

+J2 (k0ν|(x′ − x′′)ux + yuy|) cos(2φ)

[
1

u1

RH
12 −

u1

ε1r

RE
12

] }
, (4.5)

where u1 = (ν2 − ε1,r)
1

2 , k0 = ω/c0 and F (ω) specified in (2.49) has been chosen such that

−iωF (ω) = 1. Note that in this configuration, y = 0 and cos(2φ) = 1. The reflected field

due to the interface is now defined for every point along the wire. With the wire located

at r = xux + z1uz, with 0 < x < L, the reflected-field term can be incorporated in (4.1)
∫ L

0

I(x′, ω) exp(ik1Ra)

4πRa

dx′ − F0(ω) exp (ik1x) − FL(ω) exp (ik1(L − x))

=
Y1

2

[
V (ω) exp(ik1|x − xg|) +

∫ L

0

Er
x(x

′ux + z1uz, ω) exp(ik1|x − x′|)dx′
]

, (4.6)

with Er
x as defined in (4.4). In the next section, the discretized version of the reflected-field

term will be given. The remaining parts of Hallén’s equation (4.6) are discretized according

to (3.60).
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4.1.1 Discretization of the reflected field term

In the previous chapter, it was stated that the integral over ν is calculated with the aid of

a composite Gaussian quadrature rule [24]. The integral over ν in (4.4) is approximated

according to

∫ ∞

0

ζr((x′ − x′′)ux + z1uz, ν, ω)dν ≈
K∑

k=1

αkζ
r((x′ − x′′)ux + z1uz, νk, ω), (4.7)

where K is the number of points needed for the composite Gaussian quadrature rule. The

weights {αk} and abscissa {νk} are again calculated with the aid of the subroutine D01BCF

of the NAG numerical library. Note that the weights {αk} do not depend on the frequency.

The integral from 0 to L is approximated with the aid of a trapezoidal rule [24].

As a result, the discretized reflected field term is obtained as

∫ L

0

Er
x(x

′ux + z1uz, ω) exp(ik1|xm − x′|)dx′ ≈ iω2Z0∆x

8π

M∑

m′=0

vm′ exp(ik1|xm − xm′ |)

·
M−1∑

m′′=1

Im′′(ω)
K∑

k=1

αkζ
r
(
x|m′−m′′|ux + z1uz, νk, ω

)
, (4.8)

for m = 0, . . . ,M and where

vm =

{
∆x, for m = 1, . . . ,M − 1,
∆x
2

for m = 0,M.
(4.9)

Combining (3.60) with the discretized reflected field term results in the following discretized

Hallén’s equation for a wire above an interface between two half spaces:

M−1∑

m′=1

wm−m′ exp
(
ik1R

a
m−m′

)
Im′(ω) − F0(ω) exp (ik1xm) − FL(ω) exp (ik1(L − xm))

=
Y1

2

[
exp (ik1|xm − xg|) V (ω)

+
iω2Z0∆x

8π

M∑

m′=0

vm′ exp(ik1|xm − xm′ |) ·
M−1∑

m′′=1

Im′′(ω)ξr(m′ − m′′, z1)

]
, (4.10)

with

ξr(m′ − m′′, z1) =
K∑

k=1

αkζ
r
(
x|m′−m′′|ux + z1uz, νk, ω

)
, (4.11)

for m = 0, . . . ,M . The summation for ξr(m′−m′′, z1) is carried out only once per frequency.
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4.1.2 Results

A single thin wire is excited by a Gaussian voltage pulse as specified in Section 3.3.2. The

current along the wire is calculated using the parameters L = 1 m and a = 0.002 m. The

spatial discretization is given by M = 30 and the number of time steps is again N = 1024.

The medium parameters of both half spaces as well as the height z1 are varied.

The results have been compared to results from Rubio-Bretones et al. [24] where a frequency-

domain Hallén technique was used as well. The results from [24] will be referred to as “Ref.”

In Figure 4.3, the currents at the center of the wire have been plotted for z1 = −0.25 m.
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Figure 4.3: The induced current at the center of a wire with length L = 1 m, radius

a = 0.002 m, z1 = −0.25 m, M = 30 and N = 1024. The medium properties are

ε1r = 1, σ1 = σ2 = 0, ε2r = 9 (A) and ε2r = 3 (B). The permeability is µ0 in all cases. The

excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .

The medium parameters are ε1r = 1, σ1 = 0 and σ2 = 0 for ε2r = 9 and ε2r = 3, respec-

tively. It is observed that the results from the present frequency-domain Hallén method

(FDH) are in perfect agreement with the reference results.

In Figure 4.4, the current at the center of the wire has been plotted for different heights z1

and various complex permittivities of the lower half space. The free-space case is added for

comparison. The currents are slightly affected by the presence of the interface. The effect of

the interface on the current increases when the distance z1 to the interface decreases. The

conductivity σ2 hardly influences the current in (B). In (D), the magnitude of the current

is slightly higher due to the conductivity σ2 because the magnitude of both the electric

and magnetic reflection coefficient increases with increasing σ2. However, the difference

between the currents in case of an interface and free space is not dramatic.
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Figure 4.4: The induced current at the center of a wire with length L = 1 m, radius

a = 0.002 m, M = 30 and N = 1024 for different heights z1. The medium properties

are ε1r = 1, σ1 = 0 for the upper half space. The properties of the lower half space are

varied as ε2r = 9, σ2 = 0 (A), ε2r = 9, σ2 = 0.05 S/m (B), ε2r = 3, σ2 = 0 (C) and

ε2r = 3, σ2 = 0.05 S/m (D). The excitation is a Gaussian voltage pulse with τ = 0.5 ns

and t1 = 4τ .

The explanation is quite simple. In Figure 4.5, the wire is located above an interface. The

wire radiates in all directions. The incident field on the wire is a part of the field reflected

at the interface. This only takes place directly under the wire and is indicated by a wave

A. The rest of the radiated field reflects at the interface as the waves B and does not return

to the wire. In other words, only a very small portion of the radiated field affects the wire

through a reflection at the interface when the radius of the wire is small.
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•
a

wire

B B

A

Figure 4.5: The reflected field components at the interface.

In Figure 4.6, the current at the center of the wire has been plotted for the case where the

lower half space is perfectly electrically conducting (PEC). The height is z1 = −0.25 m.

In the case of a PEC interface, the conductivity σ2 → ∞, therefore the following limiting

values of the reflection coefficients can be used

lim
σ2→∞

RE
12 = 1, lim

σ2→∞
RH

12 = −1. (4.12)

The oscillating behavior of the current that was observed in other configurations is now
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Figure 4.6: The induced current at the center of a wire with length L = 1 m, radius

a = 0.002 m, z1 = −0.25 m, M = 30 and N = 1024 for σ2 → ∞ (PEC). The other

medium properties are ε1r = 1, µ1r = 1 and σ1 = 0. The free space case (FS) has been

added for comparison. The excitation is a Gaussian voltage pulse with τ = 0.5 ns and

t1 = 4τ .
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much stronger and attenuates very slowly. The oscillatory behavior is no longer restricted

to the wire. The wire and the PEC interface form a “waveguide” that allows a TEM mode.

In Figure 4.7, the current at the center of the wire has been plotted for a height z1 =

−0.25 m and for various complex permittivities of the upper half space. The medium

parameters of the lower half space are ε2r = 1 and σ2 = 0. The same observations are
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Figure 4.7: The induced current at the center of a wire with length L = 1 m, radius

a = 0.002 m, z1 = −0.25 m, M = 30 and N = 1024 for various conductivities σ1. The

other medium properties are ε2r = 1, σ2 = 0, ε1r = 9 (A) and ε1r = 3 (B). The excitation

is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .

made as in the previous results. The current is hardly influenced by the reflection at the

interface. When the conductivity of the upper half space increases, the current along the

wire is affected severely for both choices of the permittivity ε1r. This is mainly due to the

additional attenuation introduced by the conducting embedding and not by the interface.

4.2 Two wires above an interface between two half

spaces

In this section, the configuration of the previous section is extended with a second wire

as depicted in Figure 4.8. The wires are denoted as wire 1 and wire 2, respectively. In

this configuration, wire 1 is driven by a delta-gap voltage at x = xg. As a result of

mutual coupling, a current will flow along both wires. To make a clear distinction between

transmitter and receiver, the limit ∆x ↓ 0 has not been carried out in Figure 4.8. The wires
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V (ω)
xg

L

z1

z = 0

ε2, µ0, σ2

ε1, µ0, σ1

wire 1 wire 2

d

z

x

y

Figure 4.8: Two wires above an interface.

are located at z = z1 < 0 above the interface at z = 0 between medium 1 and medium 2

with complex permittivities ε1 and ε2, respectively. The permeability is again µ0 for both

media. The distance between the wires is denoted as d, and the central axes of the wires

are chosen r1 = xux + z1uz and r2 = xux +duy + z1uz where 0 < x < L and the subscripts

1 and 2 refer to wire 1 and wire 2, respectively.

From the interaction table, Table 4.1, it follows that the currents along both wires influence

each other. Wire 1 is considered to demonstrate the influence of the other wire. In addition

to the reflection of a part of the radiated field from wire 1 at the interface, the field incident

on wire 1 has now two extra contributions. In particular, the scattered field from wire 2

acts as a part of the incident field on wire 1 directly through medium 1 and also via a

reflection at the interface at z = 0. Hence, the incident electric field in Hallén’s equation

for wire 1 can be written as

Ei,1
x = Er,1

x + Er,2
x + Ed,2

x , (4.13)

where the superscripts i, r and d denote the incident field, the reflected field and the direct

field, respectively. The additional superscripts 1 and 2 refer to the sources of the field

terms, wire 1 and wire 2, respectively.

The term direct field is introduced here. The scattered field from wire 2 gives two con-

tributions to wire 1 as stated above. The scattered field of wire 2 is a reaction to the

scattered field from wire 1. Analogous to wire 1, the scattered field from wire 1 arrives at

wire 2 in two ways, one directly trough medium 1 and one via a reflection at the interface.

Therefore, the so-called scattered field is split up in two contributions which are referred

to as the direct field and the reflected field.

The first term in the right-hand side of the latter equation can be described by (4.4) where
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I(x′′, ω) = I1(x
′′, ω) and r = r1 are chosen. For the reflected field due to the current along

wire 2, a similar contribution as (4.4) can be used where I(x′′, ω) = I2(x
′′, ω) and r = r2

are chosen.

The direct field can be derived elegantly in a manner that is similar to the derivation

of Hallén’s equation. Therefore, consider (3.41) for wire 2. The point of observation r

is chosen on the axis of wire 1. Assume that the current density for wire 2 is given by

J2(r
′, ω). After using the null-field condition, (3.41) is generalized to

iωε1 · (Es
x(r, ω) − SD (r)Ex(r, ω))

= ∂x∇ · A(r, ω) + k2
1

∮

r′∈∂D

G(R,ω)J2x(r
′, ω)dr′, (4.14)

with

A(r, ω) =

∮

r′∈∂D

G(R,ω)J2(r
′, ω)dr′,

where ∂D is the surface of wire 2. This equation is valid in a homogeneous space. Since in

a homogeneous space an interface is absent, the scattered field Es
x in (4.14) is equal to the

direct field Ed,2
x in (4.13). Following the same procedure as in Section 3.2, the ∇· operator

in the latter equation is broken up into a longitudinal and a transversal component. With

the point of observation r on the central axis of wire 1 and the source point on the surface

of wire 2, it follows that

R = |(x − x′)ux + duy + auρ′(φ
′)|

=
√

(x − x′)2 + d2 + a2 + 2ad (uy · uρ′(φ′))

= Rd

√
1 +

2ad (uy · uρ′(φ′))

R2
d

+
a2

R2
d

, (4.15)

with Rd =
√

(x − x′)2 + d2. After carrying out a Taylor expansion of the square root in

the latter equation, the distance R is written as

R ≈ Rd

[
1 +

ad [uy · uρ′(φ
′)]

R2
d

+ O
(

a2

R2
d

)]
, (4.16)

where O(a2/R2
d) vanishes when the argument approaches 0. The second term in the right-

hand side of (4.16) vanishes after the integration over φ′. Since d À a and therefore

Rd À a, the ∇· operator is written as

∇ · A(r, ω) = ∂x

∮

r′∈∂D

G(Rd, ω)J2x(r
′, ω)dr′. (4.17)
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If the currents at the end faces are neglected, (4.14) can be written as

iωε1E
d,2
x (r, ω) =

(
∂2

x + k2
1

) ∮

r′∈∂D

G(Rd, ω)J2x(r
′, ω)dr′. (4.18)

Because G(Rd, ω) again does not depend on φ′, the integral in (4.18) can be simplified

analogous to (3.45). This results in

iωε1E
d,2
x (r, ω) =

(
∂2

x + k2
1

) ∫ L

0

G(Rd, ω)I2(r
′, ω)dx′. (4.19)

In a similar fashion as in Section 3.3, the differential operator in the latter equation can

be handled elegantly to finally arrive at a special form of Hallén’s equation.

The combination of the special form of Hallén’s equation and the results from the previous

section together with choosing r = xux + duy results in the generalized version of Hallén’s

equation for wire 1:
∫ L

0

[
I1(x

′, ω) exp(ik1Ra)

4πRa

+
I2(x

′, ω) exp(ik1Rd)

4πRd

]
dx′

= F0(ω) exp (ik1x) + FL(ω) exp (ik1(L − x))

+
Y1

2

[
V (ω) exp(ik1|x − xg|) +

∫ L

0

Er,1
x (x′ux + z1uz, ω) exp(ik1|x − x′|)dx′

+

∫ L

0

Er,2
x (x′ux + duy + z1uz, ω) exp(ik1|x − x′|)dx′

]
. (4.20)

For the second wire, a similar equation can be found.

From (4.20), it is easily seen that the current along wire 2 influences the current along

wire 1. Since a similar equation is found for wire 2, the influence is mutual. The mutual

influence is referred to as “mutual coupling”. As far as the discretization is concerned,

the only term that needs attention is the scattered field term from wire 2 in the case that

the current on wire 1 is evaluated. The discretization for the remaining terms has already

been discussed in previous sections.

4.2.1 Discretization of the direct field term

Since the distance d has already been assumed to be much larger than the radius a of the

wire, the term Rd does not become singular when x = x′. Therefore the complete integrand

can be approximated by a piecewise-linear expansion which results in the trapezoidal rule.

The scattered field term can thus be approximated as
∫ L

0

I2(x
′, ω) exp(ik1Rd)

4πRd

≈
M−1∑

m′=0

um−m′I2,m′(ω) exp(ik1R
d
m−m′), m = 0, . . . ,M, (4.21)
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with

um =
∆x

4πRd
m

, Rd
m =

√
(m∆x)2 + d2. (4.22)

Again, the boundary condition I2(0) = I2(L) = 0 is accounted for. With this result, the

total discretized Hallén equation for wire 1 can be written as

M−1∑

m′=1

[
wm−m′ exp

(
ik1R

a
m−m′

)
I1,m′(ω) + um−m′ exp

(
ik1R

d
m−m′

)
I2,m′(ω)

]

= F0(ω) exp (ik1xm) + FL(ω) exp (ik1(L − xm))

+
Y1

2

{
V (ω) exp (ik1|xm − xg|) +

iω2Z0∆x

8π

M∑

m′=0

vm′ exp(ik1|xm − xm′ |)

·
[

M−1∑

m′′=1

I1,m′′(ω)ξr,1(m′ − m′′, z1) +
M−1∑

m′′=1

I2,m′′(ω)ξr,2(m′ − m′′, d, z1)

]}
,

m = 0, . . . ,M, (4.23)

with

ξr,1(m′ − m′′, z1) =
K∑

k=1

αkζ
r(x|m′−m′′|ux + z1uz, νk, ω), (4.24)

ξr,2(m′ − m′′, d, z1) =
K∑

k=1

αkζ
r(x|m′−m′′|ux + duy + z1uz, νk, ω). (4.25)

4.2.2 Results

In Section 4.1.2, the current along a single thin wire for a number of configurations was

calculated. In this section, some examples will be shown for the configuration with two

wires above an interface.

In the examples given in this section, the calculation was carried out for L = 1 m, a =

0.002 m, M = 30 and N = 1024. The excitation is again the Gaussian pulse as given in

Section 3.3.2.

In Figure 4.9, the current at the center of both wires has been calculated for a height of

z1 = −0.25 m. The medium parameters are ε1r = 1, σ1 = σ2 = 0 and ε2r = 9. The

permeability is again µ0. The results have been compared to results from Rubio-Bretones

et al. [25] which will be referred to as “Ref.”. The free-space case (FS) had been added for

comparison.
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Figure 4.9: The induced current at the center of wire 1 and 2. Both wires have a length

L = 1 m and radius a = 0.002 m. The distance between the wires is d = 0.5 m for (A) and

(B), d = 1 m for (C) and (D) and d = 2 m for (E) and (F). The height is z1 = −0.25 m.

The medium properties are ε1r = 1, σ1 = 0, ε2r = 9 and σ2 = 0 for all configurations. The

excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ . The reference results

(Ref.) are taken from [25] and the free space (FS) case has been added for comparison.
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The results are in good agreement with the reference results, as can be easily seen from all

plots. Comparing (B), (D) and (F) with each other shows that the amplitude of the current

along wire 2 is much higher when the distance d decreases. In the free-space (FS) case the

amplitude is directly related to the distance; when the distance becomes two times smaller,

the amplitude increases approximately with a factor of two. After approximately 20 ns, the

current along wire 2 in (A) acts as a damped oscillation. When the distance between the

wires is increased to 1 m, this damped oscillation effect starts after approximately 30 ns

and also vanishes much quicker. The delay between the first negative peaks in (D) and (B)

is exactly 1.67 ns which is expected from the difference in distance ((1−0.5)/c0 = 1.67 ns).

For the current along wire 1, a similar oscillatory behavior is observed.

It is interesting to see that, for d = 1 m, the oscillatory behavior of the current along wire 1

attenuates much quicker than for the other distances d. The current along wire 2 produces

a direct field to wire 1. This direct field results in a current along wire 1 that is of opposite

sign compared to the current that was excited by the original voltage pulse for d = 1 m.

For d = 0.5 m, the current along wire 1 due to E d,2
x has the same sign as the current that

is already traveling along the wire. The current along wire 2 is similar to the current along

a single thin wire which means that the distance d = 2 m is large enough to ensure that

mutual coupling has little effect.

For (A), (C) and (E), it is observed that the early-time behavior of the current (t < 20 ns)

is hardly influenced by the presence of wire 2. The reason for this is that the voltage pulse

still dominates over the coupling contribution from wire 2. After 30 ns, the magnitudes

of the currents along wire 1 and wire 2 for d = 1 m are almost the same resulting in the

oscillatory behavior of both currents. In (A) this happens slightly earlier because the initial

magnitude of the current in (B) is larger than in (D). Because of this larger magnitude in

current, which is a direct effect of the smaller distance between the wires, the oscillation

vanishes at a slower rate. In general, the oscillation strongly depends on the coupling

between the wires.

The influence from the reflection at an interface on the current along a single thin wire was

observed to be negligible. In (A), (C) and (E), this observation is confirmed. However, the

currents along wire 2 are affected by the presence of an interface, as can be easily observed

from (B), (D) and (F). When the coupling between wire 1 and wire 2 is stronger, the

presence of the interface has less effect on the current along wire 2. After approximately

30 ns, the damped oscillation starts in (D), and the amplitude of the current along wire

2 is reduced heavily until 50 ns. In (F) this reduction of the current along wire 2 is after

approximately 80 ns. The oscillatory behavior of both wires is influenced by the direct

coupling but also by the coupling to the interface.
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To demonstrate this effect, a PEC interface has been used. The wire parameters are the

same as in previous configurations. The distance between the wires is d = 1 m and the

height is z1 = −0.25 m. The results are visualized in Figure 4.10. It is observed that the
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Figure 4.10: The induced current at the center of wire 1 and 2. Both wires have a length

L = 1 m and radius a = 0.002 m. The distance between the wires is d = 1 m and the

height is z1 = −0.25 m. The lower half space is perfectly conducting (PEC). The medium

properties of the upper half space are ε1r = 1 and σ1 = 0. The excitation is a Gaussian

voltage pulse with τ = 0.5 ns and t1 = 4τ . The free space (FS) case has been added for

comparison.

current along both wires oscillates heavily and attenuates very slowly. For the single wire

above the PEC interface from Figure 4.6, it was observed that the oscillatory behavior

of the current starts after approximately 20 ns. In plot (A) of Figure 4.10, the same

observation is made. This means that, also in the PEC interface case, wire 2 has little

influence on the current along wire 1. The presence of the PEC interface has an attenuating

effect on the current along wire 2 until approximately 30 ns. After that, the presence of

the PEC interface results in a slowly attenuated, oscillating current along both wires.

It is clear that the presence of the interface has an attenuating effect on the current along

wire 2. Since the current along wire 1 is hardly influenced by the presence of wire 2 and the

interface, in the remainder of this section, only currents along wire 2 will be shown. This

applies when the conductivity of the lower half space is kept fairly small. For increasing

conductivity, the lower half space will behave more like a PEC half space and in that case,

a strong oscillatory behavior of the current along both wires can be expected.

To investigate the effects of choosing a shorter and larger distance to the interface, the
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Figure 4.11: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m for different conductivities σ2. The distance is d = 1 m and z1 = −0.1 m for

(A) and (B), z1 = −0.25 m for (C) and (D) and z1 = −1 m for (E) and (F). The medium

properties are εr,1 = 1, σ1 = 0 and εr,2 = 9 for (A), (C) and (E) and εr,2 = 3 for (B),

(D) and (F). The permeability is µ0 for all configurations. The excitation is a Gaussian

voltage pulse with τ = 0.5 ns and t1 = 4τ .
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previous configuration is used with heights z1 = −0.1 m, z1 = −0.25 m and z1 = −1 m.

The distance between the wires is kept fixed at d = 1 m. The currents along wire 2 have

been plotted for various conductivities σ2 of the lower half space. The relative permittivity

is ε2r = 9 for the plots on the left and ε2r = 3 for the plots on the right (see Figure 4.11).

The remaining medium parameters are µ1 = µ2 = µ0 and σ1 = 0 for all configurations.

It is immediately observed from (E) and (F) that the conductivity of the lower half space

has hardly any influence on the current along wire 2 at z1 = −1 m, even for a fairly high

conductivity σ2. This means that the direct influence between wire 1 and wire 2 dominates

over the reflection at the interface. The conductivity though, has a slightly stronger effect

when ε2r is lower. When the height is z1 = −0.25 m, (C) and (D), the currents are still not

much affected by the conductivity σ2 for t < 30 ns. After this time, the damped oscillation

starts as was observed earlier. The magnitude of the oscillating current increases for higher

conductivity. For z1 = −0.1 m, the magnitude is approximately 4 times lower for ε2r = 9

and σ2 = 0 compared to ε2r = 3 and σ2 = 0. For increasing σ2, the magnitudes of the

currents in (A) and (B) are almost the same. Compared to the free-space current along

wire 2, the presence of the interface has an attenuating effect on the current along wire

2 provided that the conductivity is not too high. When σ2 increases, its influence in the

complex permittivity ε2r increases. Therefore, the currents in the plots on the left and

right for z1 = −0.1 m are almost the same when σ2 = 0.1 S/m.

4.3 Three coupled wires in a half space configuration

In this section, the configuration of the previous section is extended with a third wire as

depicted in Figure 4.12. The wires are denoted as wire 1, wire 2 and wire 3, respectively.

In this configuration, wire 1 is driven by a delta-gap voltage source. Again, to make the

distinction between transmitter and receivers, the delta gap is clearly indicated in the

figure. Wire 1 and wire 2 are located at z = z1 < 0 above the interface at z = 0, and

wire 3 is located at z = z2 > 0 below the interface. The complex permittivities are ε1

and ε2, for the upper half space and the lower half space, respectively. The permeability

is again µ0 for both half spaces. The distance between wire 1 and wire 2 is denoted as d.

The central axes of the wires are chosen r1 = xux + z1uz and r2 = xux + duy + z1uz for

0 < x < L. The subscripts 1 and 2 refer to wire 1 and wire 2, respectively. The distance

in the y-direction between wire 1 and wire 3 is denoted as d2 and the depth of wire 3 is

denoted as z2. The central axis of wire 3 is chosen as r3 = xux +d2uy +z2uz for 0 < x < L.

The subscript 3 refers to wire 3. From the interaction table (Table 4.1), it follows that the
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Figure 4.12: Two wires above an interface between two half spaces and one buried wire.

fields incident on wire 1 and wire 2 have an extra contribution in the form of a transmitted

field from wire 3 through the interface. Wire 3 has three contributions in its incident field.

Namely the transmitted fields through the interface from wires 1 and 2, respectively and a

reflected field from the interface due to the scattered field from wire 3. To demonstrate the

influence of the transmitted-field contribution, Hallén’s equation for wire 3 is discussed.

The incident field along wire 3 can be written as a sum of the three contributions as follows

Ei,3
x = Er,3

x + Et,1
x + Et,2

x , (4.26)

where the superscript t denotes the transmitted field and the additional superscript 3 refers

to wire 3. The other superscripts have been defined in previous sections. The reflected-field

term is, in principle, again the one described in (4.4). To obtain the correct expression in

medium 2, merely ε1 is replaced by ε2, −z1 is replaced by z2 and the current is chosen as

I(x′′, ω) = I3(x
′′, ω). Note that the complex wavenumber is now k2. The reflected field

term for wire 3 is then found as

Er,3
x (x′ux + d2uy + z2uz, ω) =

iω2Z0

8π

∫ L

0

I3(x
′′, ω)

∫ ∞

0

ν dν exp [−2k0u2z2]

·
{

J0 (k0ν|x′ − x′′|)
[

u2

ε2r

RE
21 +

1

u2

RH
21

]

+J2 (k0ν|x′ − x′′|) cos(2φ)

[
1

u2

RH
21 −

u1

ε2r

RE
21

] }
dx′′, (4.27)

with

RE
21 =

ε1u2 − ε2u1

ε1u2 + ε2u1

, RH
21 =

u2 − u1

u2 + u1

,
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the electric and magnetic reflection coefficients in medium 2, respectively. Note that in the

reflected field term again cos(2φ) = 1. With this result, the expressions for the transmitted

fields from wires 1 and 2 can be easily found with the aid of the substitutions above

and (2.108). This yields the transmitted field from wire 1:

Et,1
x (x′ux + d2uy + z2uz, ω) =

iω2Z0

8π

∫ L

0

I1(x
′′, ω)

∫ ∞

0

ν dν exp [k0(u1z1 − u2z2)]

·
{

J0 (k0ν|(x′ − x′′)ux + d2uy|)
[

1

u1

TH
12 −

u2

ε2r

TE
12

]

+J2 (k0ν|(x′ − x′′)ux + d2uy|)
[

1

u1

TH
12 +

u2

ε2r

TE
12

] }
dx′′, (4.28)

with

TE
12 =

2ε2u1

ε2u1 + ε1u2

, TH
12 =

2u1

u2 + u1

. (4.29)

The expression for the transmitted field from wire 2 is similar to (4.28). Hallén’s equation

to describe the current along wire 3 is written as

∫ L

0

I3(x
′, ω)

exp(ik2Ra)

4πRa

dx′ = F0(ω) exp (ik2x) + FL(ω) exp (ik2(L − x))

+
Y2

2

[∫ L

0

Er,3
x (x′ux + d2uy + z2uz, ω) exp(ik2|x − x′|)dx′

+

∫ L

0

Et,1
x (x′ux + d2uy + z2uz, ω) exp(ik2|x − x′|)dx′

+

∫ L

0

Et,2
x (x′ux + d2uy + z2uz, ω) exp(ik2|x − x′|)dx′

]
. (4.30)

For wires 1 and 2 similar equations are found. The discretization of these three coupled

equations has already been discussed in previous sections. The actual new item is the

transmitted field, which is obtained in exactly the same manner as the reflected-field term

in previous sections.

4.3.1 Results

In the previous section, the currents along wire 1 and wire 2 were calculated for a number

of configurations. In this section the results from a few examples with the presence of a

third wire will be discussed and compared to the currents obtained in the previous section.

The excitation is again the Gaussian pulse specified in Section 3.3.2. In all examples, the
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points of excitation and observation are chosen at the centers of the wires. The current

along the wires has been calculated for L = 1 m, a = 0.002 m, d = 1 m, d2 = d/2, M = 30

and N = 1024. In the different examples, the depth of the wire z2, the height z1 of wire

1 and wire 2 and the medium parameters of the lower half space ε2r and the conductivity

σ2 are varied. The remaining medium parameters are ε1r = 1, σ1 = 0 and µ1 = µ2 = µ0 in

all examples. In Figure 4.13, the currents at the centers of wire 1 and wire 2 are plotted.

The solid lines represent a current with the influence of a buried wire and the dotted lines

represent a current without a buried wire. The height is varied as z1 = −0.1 m for (A),

(B), (E) and (F) and z1 = −0.25 m for (C), (D), (G) and (H). The relative permittivity

of the lower half space is ε2r = 9 for (A) through (D) and ε2r = 3 for (E) through (H).

The conductivity of the lower half space is σ2 = 0 for all configurations. The depth of the

buried wire is kept fixed at z2 = 0.1 m.

It is again observed that the current along wire 1 is hardly affected by the presence of the

buried wire. Therefore in the remaining examples, only the current along wire 2 will be

plotted.

For z1 = −0.25 m, the presence of wire 3 hardly contributes to the current along wire 2 for

both permittivities of the lower half space, see (D) and (H). For z1 = −0.1 m, the influence

of wire 3 can be easily observed from plots (B) and (F). For ε2r = 9, the current along wire

2 is affected stronger by the presence of wire 3. The magnitude of the current along wire

2 in (B) is lower than in (F) due to the higher reflection coefficient at the interface. It was

shown in previous examples that the presence of the interface has a negative effect on the

current as long as the conductivity is fairly small. The transmission coefficient TE
12 will be

lower for a high relative permittivity ε2r, thus the induced current on wire 3 will be lower

when ε2r = 9. But the transmission coefficient TE
21 will be higher for ε2r = 9. Combination

of these effects results in a larger contribution from wire 3 to the current along wire 2 when

ε2r = 9. Further on in this section, the different electric field contributions arriving at wire

2 will be examined.

In the next two examples, the same configuration is used. In Figure 4.14, the permittivity

of the lower half space is ε2r = 9. The conductivity is varied as σ2 = 0 for (A) and (B),

σ2 = 0.01 S/m for (C) and (D) and σ2 = 0.03 S/m for (E) and (F). The height is varied as

z1 = −0.1 m for (A), (C) and (E) and z1 = −0.25 m for (B), (D) and (F). The distance

between wires 1 and 2 is d = 1 m. The depth of the buried wire is again z2 = 0.1 m. For

z1 = −0.1 m, the influence of σ2 is considerable. In all cases the presence of wire 3 can be

easily observed. For z2 = −0.25 m, the presence of wire 3 cannot be observed clearly. The

conductivity does not make a difference here.

For a lower permittivity, namely ε2r = 3, the effect of σ2 at the heights z1 = −0.1 m
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Figure 4.13: The induced currents at the centers of wire 1 (A,C,E,G) and wire 2 (B,D,F,H)

both with length L = 1 m and radius a = 0.002 m. The distance between wire 1 and 2

is d = 1 m, the height of wire 1 and 2 is z1 = −0.1 m for (A), (B), (E) and (F) and

z1 = −0.25 m for (C), (D), (G) and (H). The medium properties are ε2r = 9 for (A) to

(D) and ε2r = 3 for (E) to (H). The remaining parameters are ε1r = 1, σ1 = σ2 = 0, µ1 =

µ2 = µ0 and z2 = 0.1 m for all configurations. The excitation is a Gaussian voltage pulse

with τ = 0.5 ns and t1 = 4τ . The solid lines represent “with wire 3” and the dotted lines

“without wire 3”.
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Figure 4.14: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The distance is d = 1 m, the depth of wire 3 is z2 = 0.1 m. The height of

wires 1 and 2 is z1 = −0.1 m for plots (A), (C) and (E) and z1 = −0.25 m for plots (B),

(D) and (F). The medium parameters are ε1r = 1, σ1 = 0, ε2r = 9 and σ2 = 0 for (A) and

(B), σ2 = 0.01 S/m for (C) and (D) and σ2 = 0.03 S/m for (E) and (F). The permeability

is µ0 for all configurations. The excitation is a Gaussian voltage pulse with τ = 0.5 ns and

t1 = 4τ . The solid lines represent “with wire 3” and the dotted lines represent “without

wire 3”.
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Figure 4.15: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The distance is d = 1 m, the depth of wire 3 is z2 = 0.1 m. The height of

wires 1 and 2 is z1 = −0.1 m for plots (A), (C) and (E) and z1 = −0.25 m for plots (B),

(D) and (F). The medium parameters are ε1r = 1, σ1 = 0, ε2r = 3 and σ2 = 0 for (A) and

(B), σ2 = 0.01 S/m for (C) and (D) and σ2 = 0.03 S/m for (E) and (F). The permeability

is µ0 for all configurations. The excitation is a Gaussian voltage pulse with τ = 0.5 ns and

t1 = 4τ . The solid lines represent “with wire 3” and the dotted lines represent “without

wire 3”.
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and z1 = −0.25 m, respectively, is visualized in Figure 4.15. In general, the presence of a

buried wire cannot be distinguished easily from the current along wire 2. For increasing

conductivity σ2, the effect of wire 3 on the current along wire 2 decreases. For σ2 =

0.03 S/m, the presence of wire 3 can no longer be observed any more.

To conclude this chapter, the different electric fields contributing to the incident field term

in Hallén’s equation for wire 2 are plotted in Figure 4.16. The incident field term is given

by

E i,2
x = E d,1

x + E r,1
x + E r,2

x + E t,3
x .

Since a wire antenna radiates stronger near the end faces of the wire, the end face at

r = duy + z1uz is chosen as the point of observation. The wires in the configuration are

the same as in previous examples. The medium parameters are ε1r = 1, σ1 = 0, σ2 = 0 and

µ1 = µ2 = µ0 for ε2r = 9 (A) and (B) and ε2r = 3 (C) and (D). The height is z1 = −0.1 m

and the depth is again z2 = 0.1 m. It is observed from (A) and (C), which are both

responses from wire 1, that the direct field Ed,1
x is almost the same. The reflected field

in (A) is larger than in (C), as could be expected from the larger reflection coefficient in

(A). It is interesting to see that the direct field and the reflected field at the interface from

wire 1 in (A) have almost the same magnitude but are of opposite sign for t > 10 ns. In

(C), the reflected field is still of opposite sign but not of the same magnitude anymore for

t > 10 ns. The direct contribution will therefore be more dominant when ε2r = 3. This was

already observed in previous examples. From (B) and (D), it is observed that the reflected

field at the interface from wire 2 is smaller for ε2r = 9. This is due to the smaller initial

current along wire 2. Furthermore, it is observed that the transmitted field from wire 3

is much smaller for ε2r = 9. From the electric fields in Figure 4.16, it can be concluded

that the contribution from wire 1 to wire 2 is smaller for a larger permittivity. The

reflected field from wire 2 and the transmitted field from wire 3 are smaller for increasing

permittivity. The improved visibility of the buried wire for ε2r = 9 comes from the fact

that the contribution of wire 1 is smaller for increasing permittivity.

In general, it is observed that the buried wire cannot be detected from the shape of the

current directly. This is due to the mutual coupling between wire 1 and wire 2. The strong

mutual coupling is a direct effect of the oscillatory behavior of the currents along both

wires. This oscillating behavior is the result from the traveling-wave nature of the current.

If the height z1 is small, the amplitude of the current along wire 2 due to the presence

of wire 3 changes. For larger distances z1, a difference in amplitude can no longer be

observed directly. Of course, a number of standard signal processing tools exist to enhance

the output signal of wire 2 for detection purposes. In Chapters 6 and 7, two techniques
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Figure 4.16: The electric field strengths originating from the various wires in the config-

uration incident on wire 2 at position r = duy + z1uz. The wires are of length L = 1 m

and have a radius a = 0.002 m. The height and depth are z1 = −0.1 m and z2 = 0.1 m,

respectively. The medium parameters are ε1r = 1, σ1 = σ2 = 0 and ε2r = 9 for (A) and (B)

and ε2r = 3 for (C) and (D).

are introduced to eventually enhance the detection.

4.4 Computation times

At the end of this chapter, the computation times from a few configurations from previous

sections are gathered. The configurations consist of one, two and three wires. All wires

are of length L = 1 m and have radius a = 0.002 m. The excitation is again the Gaussian
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voltage pulse specified in Section 3.3.2.

The single wire is embedded in free space (FS) and in a configuration with two half spaces.

The lower half space has a relative permittivity of ε2r = 3 and ε2r = 9, respectively. The

other material parameters are equal to those of free space. The height of the wire is

z1 = −0.1 m.

In the configuration with two wires, the embedding is free space (FS) and a configuration

with two half spaces. The lower half space has a relative permittivity of ε2r = 3 and ε2r = 9,

respectively. The other material parameters are equal to those of free space. The height

of both wires is z1 = −0.1 m. The distance between the wires is d = 1 m.

In the case where 3 wires are considered, the embedding is a configuration with two half

spaces. The lower half space has a relative permittivity of ε2r = 3 and ε2r = 9, respectively.

Wire 1 and 2 are located in the upper half space at a height z1 = −0.1 m. The third wire

is a buried wire and is located at a depth of z2 = 0.1 m. The distance between wire 1

and wire 2 is d = 1 m and the distance between wire 1 and wire 3 in the y-direction is

d2 = d/2 = 0.5 m.

The computation times that have been recorded are the total computation time ttot and

the time to calculate the spectral integral involved with the reflected and transmitted field

terms tspec. The number of time steps for which all calculations were done are N = 1024,

N = 2048 and N = 4096, respectively. The computation times refer to a personal computer

with an AMD Athlon 1800 processor and 512 MBytes DDR266 memory. The results are

tabulated in Table 4.2

From the column FS in Table 4.2 it can be concluded that adding a wire to the configuration

results in 2
√

2 times the computation time for each value of N . This is expected from

the use of CGFFT. Increasing the number of time steps with a factor of two and four,

respectively, results in an increase of ttot approximately with the same factor. In general,

for one and two wires it is observed that the calculation of the spectral integral is more time

consuming than the actual calculation of the currents along the wires. In the case where

three wires are embedded in a half space configuration, this is only partly true. Depending

on the permittivity, the spectral integral is the dominant factor in the calculation. Here,

for ε2r = 3, the spectral integral is dominant in ttot while for ε2r = 9 it is not.
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FS ε2r = 3 ε2r=9

N # of wires ttot [s] tspec [s] ttot [s] tspec [s] ttot [s]

1024

1 1.28 6.96 8.45 7.29 8.85

2 3.50 17.14 21.47 17.46 21.70

3 NA 44.82 71.90 47.18 97.62

2048

1 2.56 14.16 17.51 14.38 17.57

2 7.06 35.16 43.61 34.82 43.49

3 NA 89.93 144.77 92.73 194.40

4096

1 5.11 28.14 34.90 28.91 35.41

2 14.14 69.90 86.63 70.06 87.15

3 NA 179.92 289.31 181.12 380.70

Table 4.2: CPU times for the spectral integral and the total computation time. The timings

are considered for 1, 2 and 3 wires. The relative permittivities of the lower half space are

free space (FS), ε2r = 3 and ε2r = 9, respectively. The number of time steps is N = 1024,

N = 2048 and N = 4096, respectively. The free space situation is not available (NA) for

configurations with 3 wires.



Chapter 5

Wires with arbitrary orientation and

length

In previous chapters, coupled integral equations were derived for several configurations

to describe the currents along the wires in the respective cases. The configurations, so

far, were restricted to parallel wires of equal length. To dispose of extra parameters for

optimizing the detection of a buried wire, it is interesting to study configurations with

wires of arbitrary length and arbitrary orientation with respect to a reference coordinate

system.

In this section, rotated and translated coordinate systems with respect to a reference

coordinate system will be introduced. Subsequently, Hallén’s equation for a single thin

wire pointing in the x-direction of an arbitrary coordinate system is subjected to this

transformation. All transformations are considered with respect to the reference coordinate

system (Or,uxr
,uyr

,uzr
). A wire can thus be arbitrarily positioned in space. If in the new

coordinate system the wire is oriented along the x-axis, only the pertaining incident field

term needs to be considered.

Next, the coupling between two, now arbitrarily oriented, wires in free space is studied

again. This coupling exists because the radiated field of one wire may be regarded as a

part of the incident field on the other wire. When the radiated field is also written in terms

of the reference coordinate system, mutual coupling can be described.

The organization of this chapter is as follows. First, the transformation from the reference

coordinate system to an arbitrary coordinate system and vice versa is introduced. Next, the

transformation is applied to Hallén’s equation for a single thin wire and a transformation is

applied to Hallén’s equation for a second thin wire in another arbitrary coordinate system.

With these three steps, wires can be arbitrarily positioned with respect to a reference

81
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coordinate system.

5.1 Coordinate transformations

The currents along a set of straight wires are coupled via the radiated field and the

incident-field term in Hallén’s equation pertaining to each wire. As described earlier, for

an arbitrarily oriented wire as in Figure 5.1, the incident-field term in coordinate system

(O1,ux1
,uy1

,uz1
) is transformed to the reference system. In a later stage, the currents along

other wires can be related to the current along the wire displayed in Figure 5.1. Before the

Or

uzr

uxr

uyr

d1

O1

uz1

ux1

uy1

L1

Figure 5.1: An arbitrarily oriented thin wire with respect to the reference system

(Or,uxr
,uyr

,uzr
).

incident field term is transformed to the reference system for every point along the wire,

first an arbitrary point r = x1ux1
+ y1uy1

+ z1uz1
in coordinate system (O1,ux1

,uy1
,uz1

)

will be expressed in terms of the unit vectors of the reference system (Or,uxr
,uyr

,uzr
).

The transformation involves the following steps.

(A) Translation of the system (Or,uxr
,uyr

,uzr
) over a displacement vector d1 resulting

in
(
O1,u

(1)
x ,u

(1)
y ,u

(1)
z

)
.

(B) Rotation of
(
O1,u

(1)
x ,u

(1)
y ,u

(1)
z

)
around the z-axis over an angle φ1 resulting in

(
O1,u

(2)
x ,u

(2)
y ,u

(2)
z

)
.

(C) Rotation of system
(
O1,u

(2)
x ,u

(2)
y ,u

(2)
z

)
around the y-axis over a second angle θ1

resulting in (O1,ux1
,uy1

,uz1
).
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In Figure 5.2, each step is visualized. The extra superscripts (1) and (2) indicate that

the first and the second step have been carried out, respectively. The two intermediate

coordinate systems are only introduced for the derivation of the transformation. Note that

d1

Or

uzr

u
(1)
z

•

uxr

uyr

O1

•

u
(1)
x

u
(1)
y

(A)

O1

u
(1)
x

u
(1)
y

φ1

φ1

•
u
(2)

z
=

u
(1)

z

u
(2)
x

u
(2)
y

(B)
O1

u
y
1 =

u (2)y θ1

θ1

u
(2)
x

u
(2)
z

ux1

uz1

(C)

Figure 5.2: Translation over d1 (A), rotation over φ1 around the z-axis (B), and rotation

over θ1 around the y-axis (C), respectively.

the subscript 1 refers to coordinate system 1.

An arbitrary vector r can be written as

r = xruxr
+ yruyr

+ zruzr
= x(1)u(1)

x + y(1)u(1)
y + z(1)u(1)

z

= x(2)u(2)
x + y(2)u(2)

y + z(2)u(2)
z = x1ux1

+ y1uy1
+ z1uz1

. (5.1)

The derivation of the transformation formulas is carried out by composition of at most

three individual steps whose mathematical description is given below.

The transformation of the reference system to system 1 is then as follows

(A) Translation over d1 = d1xuxr
+ d1yuyr

+ d1zuzr
:

r = xruxr
+ yruyr

+ zruzr
= x(1)u(1)

x + y(1)u(1)
y + z(1)u(1)

z , (5.2)

with




x(1)

y(1)

z(1)


 =




xr

yr

zr


 −




d1x

d1y

d1z


 , and




u
(1)
x

u
(1)
y

u
(1)
z


 =




uxr

uyr

uzr


 . (5.3)

(B) Rotation around the z-axis over φ1:

r = x(1)u(1)
x + y(1)u(1)

y + z(1)u(1)
z = x(2)u(2)

x + y(2)u(2)
y + z(2)u(2)

z , (5.4)
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with



x(2)

y(2)

z(2)


 = T(1)




x(1)

y(1)

z(1)


 ,




u
(2)
x

u
(2)
y

u
(2)
z


 = T(1)




u
(1)
x

u
(1)
y

u
(1)
z


 , (5.5)

and T(1) =




cos φ1 sin φ1 0

− sin φ1 cos φ1 0

0 0 1


 .

(C) Rotation around the y-axis over θ1:

r = x(2)u(2)
x + y(2)u(2)

y + z(2)u(2)
z = x1ux1

+ y1uy1
+ z1uz1

, (5.6)

with



x1

y1

z1


 = T(2)




x(2)

y(2)

z(2)


 ,




ux1

uy1

uz1


 = T(2)




u
(2)
x

u
(2)
y

u
(2)
z


 , (5.7)

and T(2) =




cos θ1 0 sin θ1

0 1 0

− sin θ1 0 cos θ1


 .

With these three steps the following composed transformation formula from the reference

system to coordinate system 1 can be constructed:




x1

y1

z1


 = T(2)




x(2)

y(2)

z(2)


 = T(2) · T(1)




x(1)

y(1)

z(1)


 = T1







xr

yr

zr


 −




d1x

d1y

d1z





 , (5.8)

and



ux1

uy1

uz1


 = T1




uxr

uyr

uzr


 , (5.9)

with

T1 = T(2) · T(1) =




cos φ1 cos θ1 sin φ1 cos θ1 sin θ1

− sin φ1 cos φ1 0

− cos φ1 sin θ1 − sin φ1 sin θ1 cos θ1


 . (5.10)
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Because T1T
T
1 = I, the transformation matrix T1 is orthogonal and hence the inverse

transformation matrix can be written as

T−1
1 = TT

1 =




cos φ1 cos θ1 − sin φ1 − cos φ1 sin θ1

sin φ1 cos θ1 cos φ1 − sin φ1 sin θ1

sin θ1 0 cos θ1


 , (5.11)

where the superscript T stands for “transposed” [56, page 39]. The transformation from

coordinate system (O1,ux1
,uy1

,uz1
) to the reference system is found as




xr

yr

zr


 = TT

1




x1

y1

z1


 +




d1x

d1y

d1z


 ,




uxr

uyr

uzr


 = TT

1




ux1

uy1

uz1


 (5.12)

The subscript 1 in the transformation matrix indicates that the transformation pertains

to coordinate system 1. Since all transformations are from and to the reference coordinate

system, no extra indication is made. In general, a transformation from coordinate system

n = 1, 2, . . . to the reference system is described by a transformation matrix Tn and a

translation vector dn. Note that the components of the vector dn are found with respect

to the reference coordinate system.

5.2 Transformation of the incident-field term in

Hallén’s equation

With the coordinate transformations that are found, the electric field in a certain coordinate

system can be transformed to the reference system and vice versa. Once the transformed

electric field from a coordinate system is known in the reference system, the transformation

to a second coordinate system can be carried out. If these electric fields originate from

wire antennas, the mutual coupling between wires, each in their own coordinate system,

can be described.

In terms of the notation of previous chapters, the radiated electric field originating from a

wire antenna will be referred to as the direct field Ed(r) of a wire.

The transformation as described in the previous section will be applied to the incident

field term in Hallén’s equation for a thin wire in coordinate system 1 and length L1, see

Figure 5.1.

The incident field term at position r can be written as

Ei
x1

(r)ux1
+ Ei

y1
(r)uy1

+ Ei
z1

(r)uz1
= Ei

xr
(r)uxr

+ Ei
yr

(r)uyr
+ Ei

zr
(r)uzr

, (5.13)
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with

r = x1ux1
+ y1uy1

+ z1uz1
= xruxr

+ yruyr
+ zruzr

. (5.14)

The position r can be described in terms of the reference system as well as in terms

of coordinate system 1 as was shown earlier. For the incident electric field vector, the

transformation is limited to the orientation and magnitude of the three field components.

The value of the field vector is already determined by the position r which is a parameter

of the incident electric field. This can be easily shown by introducing the start and end

points of the incident field vector as

p = (px1
, py1

, pz1
)




ux1

uy1

uz1


 = (pxr

, pyr
, pzr

)




uxr

uyr

uzr


 , (5.15)

q = (qx1
, qy1

, qz1
)




ux1

uy1

uz1


 = (qxr

, qyr
, qzr

)




uxr

uyr

uzr


 , (5.16)

respectively. The incident field vector as such is then defined by q−p. When the coordinate

transformation is carried out on the right-hand sides of (5.15) and (5.16) as follows




pxr

pyr

pzr


 = TT

1




px1

py1

pz1


 +




d1x

d1y

d1z


 ,




qxr

qyr

qzr


 = TT

1




qx1

qy1

qz1


 +




d1x

d1y

d1z


 ,

and




uxr

uyr

uzr


 = T1




ux1

uy1

uz1


 , (5.17)

it is seen that the translation vector d1 cancels in the subtraction q − p. Hence, the

translation has no effect in the transformation of a field vector.

With this result, the transformation of the incident electric field term in Hallén’s equation

from the reference system to system 1 is found as

(
Ei

x1
(r), Ei

y1
(r), Ei

z1
(r)

)



ux1

uy1

uz1


 =

(
Ei

xr
(r), Ei

yr
(r), Ei

zr
(r)

)



uxr

uyr

uzr


 , (5.18)
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with



xr

yr

zr


 = TT

1




x1

y1

z1


 +




d1x

d1y

d1z


 ,




Ei
xr

Ei
yr

Ei
zr


 = TT

1




Ei
x1

Ei
y1

Ei
z1


 ,

and




uxr

uyr

uzr


 = TT

1




ux1

uy1

uz1


 . (5.19)

What remains is to write the electric field in the reference system in terms of the electric

field in system 1. With the incident field term as defined in (5.18), the transformation

from system 1 to the reference system is determined by




x1

y1

z1


 = T1







xr

yr

zr


 −




d1x

d1y

d1z





 ,




Ei
x1

Ei
y1

Ei
z1


 = T1




Ei
xr

Ei
yr

Ei
zr


 ,

and




ux1

uy1

uz1


 = T1




uxr

uyr

uzr


 . (5.20)

In the previous chapter, a special form of Hallén’s equation is used to describe the mutual

coupling between two wires. In this equation, the wires have to be kept parallel to each

other. Since the wires may now be arbitrarily oriented, an extension of this special form

is needed.

In the next section, the electric field from an electric point dipole will be derived in the

frequency domain. The result can then be used to find an expression for the direct field of

a wire. This direct field is used to describe the mutual coupling between two wires.

5.3 The electric field of a line current in a homoge-

neous medium

To determine the direct field of a thin wire, first the electric field of a line current is

considered. With the result obtained in this section and superposition, the direct field

from a wire can be described.

An electric current source J1 is located in a homogeneous medium with complex permit-

tivity ε1 and permeability µ1. The source only differs from zero inside a bounded volume

D. The subscript 1 refers to an arbitrary coordinate system 1.
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According to (2.21) and (2.22), Maxwell’s equations in the frequency domain are given by

∇× E − iωµ1H = 0, (5.21)

∇× H + iωε1E = J1. (5.22)

The first equation yields ∇·H = 0 provided that ω 6= 0, i.e., that static fields are excluded.

This result implies that the solution for H can be written as

H = ∇× Am, (5.23)

where Am is the magnetic vector potential. Substituting the magnetic vector poten-

tial (5.23) in (5.21) gives

∇× (E − iωµ1Am) = 0. (5.24)

From (5.24), it follows that an arbitrary electric scalar potential Φ exists and that the

electric field can be written as

E = iωµ1Am + ∇Φ. (5.25)

Substituting (5.25) and (5.23) in (5.22) yields

∇× (∇× Am) − k2
1Am + iωε1∇Φ = J1, (5.26)

where k1 = ω
√

ε1µ1. After substitution of ∇× (∇× Am) = ∇ (∇ · Am)−∇2Am in (5.26)

and choosing

∇ · Am = −iωε1Φ, (5.27)

the following equation for the magnetic vector potential is found:

(
∇2 + k2

1

)
Am = −J1. (5.28)

The solution for the magnetic vector potential should satisfy the radiation conditions.

These radiation conditions imply that the solution must decay to zero or represent outgoing

waves when |r| → ∞. The magnetic vector potential is readily found as

Am(r, ω) =

∫

r′∈D

exp(ik1|r − r′|)
4π|r − r′| J1(r

′, ω)dr′. (5.29)

Substitution of (5.27) in (5.25) gives

E = iωµ1Am +
i

ωε1

∇∇ · Am =
i

ωε1

[
k2

1 + ∇∇·
]
Am. (5.30)
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The electromagnetic field from a current source in a homogeneous medium is now fully

determined by (5.23) and (5.30), which are both expressed in terms of the magnetic vector

potential.

To obtain an expression for the electric field of a current source in a homogeneous medium,

the electric current density is defined as

J1(r1, ω) = I1(x1, ω)δ(y1)δ(z1) [U(x1) − U(x1 − L1)]ux1
, (5.31)

where U(x1) is the Heaviside step function and I1(x1, ω) is the current at position x1. The

magnetic vector potential (5.29) can then be simplified to

Am(r1, ω) =
1

4π

∫ L1

0

exp(ik1R1)

R1

I1(x
′
1, ω)ux1

dx′
1, (5.32)

with R1 =
√

(x1 − x′
1)

2 + y2
1 + z2

1 .

To obtain the electric field, first the ∇· operator is carried out. This yields

∇ · Am =
1

4π

∫ L1

0

I1(x
′
1, ω)∂x1

ψ dx′
1 (5.33)

where

ψ =
exp(ik1R1)

R1

. (5.34)

Evaluating the partial derivative with respect to x1 gives

∇ · Am =
1

4π

∫ L1

0

I1(x
′
1, ω)∂x1

ψdx′
1

=
1

4π

∫ L1

0

(ik1R1 − 1)
exp(ik1R1)

R3
1

(x1 − x′
1)I1(x

′
1, ω)dx′

1. (5.35)

With this result the last term of (5.30) is found as

∇∇ · Am =
1

4π

∫ L1

0

I1(x
′
1, ω)∇ [φ(x1 − x′

1)] dx′
1, (5.36)

where

φ = (ik1R1 − 1)
exp(ik1R1)

R3
1

. (5.37)

If the ∇ operator in the right-hand side of (5.36) is carried out, (5.36) can be elaborated

as

∇∇ · Am =
1

4π

∫ L1

0

((x1 − x′
1)∇φ + φux1

) I1(x
′
1ux1

, ω)dx′
1

=
1

4π

∫ L1

0

[ (
(ik1R1)

2 − 3ik1R1 + 3
) exp(ik1R1)

R5
1

(x1 − x′
1)R1

+(ik1R1 − 1)
exp(ik1R1)

R3
1

ux1

]
I1(x

′
1, ω)dx′

1, (5.38)
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with R1 = (x1 − x′
1)ux1

+ y1uy1
+ z1uz1

.

Finally, the electric field due to an arbitrary line current source is obtained as

E(r1, ω) =
i

4πωε1

∫ L1

0

[ (
(ik1R1)

2 − 3ik1R1 + 3
) exp(ik1R1)

R5
1

(x1 − x′
1)R1

−
(
(ik1R1)

2 − ik1R1 + 1
) exp(ik1R1)

R3
1

ux1

]
I1(x

′
1, ω)dx′

1. (5.39)

Now that all ingredients are known to formulate expressions that describe the mutual

coupling between wire antennas in arbitrary Cartesian coordinate systems, a system of

equations is set up to describe the mutual coupling between two arbitrarily oriented wires.

5.3.1 Two mutually coupled, arbitrarily oriented wires in a ho-

mogeneous medium

The mutual coupling between wires can be described by using the direct field from one

wire as an incident field on the other wire and vice versa. As an example, the configuration

depicted in Figure 5.3 is studied. As can be seen, a wire with length L1 is considered in

Or

uzr

uxr

uyr

d1

d2

O1

uz1

ux1

uy1

L1

O2

uy2

L2

ux2

uz2

Figure 5.3: Two arbitrarily oriented wires with respect to the reference system

(Or,uxr
,uyr

,uzr
).

system 1 and a second wire with length L2 is considered in system 2. Both wires have radius

a. The wires will be referred to as wire 1 and wire 2, respectively. The total configuration

is embedded in a homogeneous medium with complex permittivity ε1 and permeability µ1.

Wire 1 is related to the reference system through d1 and transformation matrix T1 and

wire 2 through d2 and T2.

To describe the mutual coupling, the direct field of wire 1 is treated as part of the incident

field on wire 2 and vice versa. In that way, the currents along wire 1 and wire 2 are related
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to each other. As an example, the direct field from wire 2 will be transformed to system 1

via the reference system to demonstrate the influence of wire 2 on wire 1. The direct field

from wire 2 is given by

Ed
2(x2ux2

+ y2uy2
+ z2uz2

, ω) =
i

4πωε1

∫ L2

0

[(
(ik1R2)

2 − 3ik1R2 + 3
) exp(ik1R2)

R5
2

x2R2

−
(
(ik1R2)

2 − ik1R2 + 1
) exp(ik1R2)

R3
2

]
I2(x

′
2, ω)dx′

2, (5.40)

with R2 = (x2 − x′
2)ux2

+ y2uy2
+ z2uz2

and R2 = |R2|.
First (5.20) is used to transform the direct field from wire 2 to the reference system.

Applying (5.20) to (5.40) gives

(
Ei

xr
(r), Ei

yr
(r), Ei

zr
(r)

)



uxr

uyr

uzr


 =

(
Ed

x2
(r), Ed

y2
(r), Ed

z2
(r)

)



ux2

uy2

uz2


 , (5.41)

with



Ed
x2

Ed
y2

Ed
z2


 = T2




Ei
xr

Ei
yr

Ei
zr


 ,




x2

y2

z2


 = T2







xr

yr

zr


 −




d2x

d2y

d2z





 ,

and




ux2

uy2

uz2


 = T2




uxr

uyr

uzr


 . (5.42)

Then (5.19) is used to transform Ei
r from the reference system to system 1. This yields

(
Ei

x1
(r), Ei

y1
(r), Ei

z1
(r)

)



ux1

uy1

uz1


 =

(
Ei

xr
(r), Ei

yr
(r), Ei

zr
(r)

)



uxr

uyr

uzr


 , (5.43)

with



Ei
xr

Ei
yr

Ei
zr


 = TT

1




Ei
x1

Ei
y1

Ei
z1


 ,




xr

yr

zr


 = TT

1




x1

y1

z1


 +




d1x

d1y

d1z


 ,

and




uxr

uyr

uzr


 = TT

1




ux1

uy1

uz1


 . (5.44)
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Substitution of (5.41) in (5.43) and (5.42) in (5.44) gives

(
Ei

x1
(r), Ei

y1
(r), Ei

z1
(r)

)



ux1

uy1

uz1


 =

(
Ed

x2
(r), Ed

y2
(r), Ed

z2
(r)

)



ux2

uy2

uz2


 , (5.45)

with



Ed
x2

Ed
y2

Ed
z2


 = T2T

T
1




Ei
x1

Ei
y1

Ei
z1


 ,




x2

y2

z2


 = T2


TT

1




x1

y1

z1


 + D


 ,

D = d2 − d1, and




ux2

uy2

uz2


 = T2T

T
1




ux1

uy1

uz1


 (5.46)

The incident field for wire 2 can easily be found by interchanging the subscripts 1 and 2

in the latter equation.

Hallén’s equation for wire 1 then becomes

∫ L1

0

I(x′
1) exp(ik1Ra)

4πRa

dx′
1 − F 1

0 exp (ik1x1) − F 1
L exp (ik1(L1 − x1))

=
Y1

2

[
V exp(ik1|x1 − xg1|) +

∫ L1

0

Ei
x1

(x′
1ux1) exp(ik1|x1 − x′

1|)dx′
1

]
, (5.47)

where only the x-component of the incident electric field Ei
1 needs to be taken. For wire

2, a similar equation is found.

5.4 Results

In this section, the transformation matrix will be applied to a two-wire configuration in

free space as depicted in Figure 5.3. The arbitrary orientation of the wires results in a

significant increase of the computational effort due to the loss of the possibility to use FFT’s

for the calculation of the spatial convolutions. As a reference, the method-of-moments code

called Numerical Electromagnetics Code (NEC) will be used [36, 57].

NEC is a computer code for the analysis of the electromagnetic response of antennas and

other metallic structures. The source can be a voltage source or an external incident field,

i.e., a plane wave. Structures are modeled with wire segments, and surfaces are modelled

with patches. The segments that NEC uses are always straight and short. To obtain

accurate results, a proper choice of the spatial discretization is of the utmost importance.
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The number of segments should be sufficient to produce accurate results for the highest

frequency occurring in the calculation. However, the dimension and the number of segments

with respect to the wavelength λ are limited. In general, the size ∆x of the segments on a

wire should not be larger than 0.1λ. On the other hand, shorter segments may be needed

to accurately model a critical region of the antenna. In the NEC code, wire segments

shorter than 0.001λ should be avoided to ensure numerical stability. The first modeling

rule for NEC is thus given as

0.001 <
∆x

λ
< 0.1. (5.48)

The wire radius a relative to the wavelength is limited by the approximation used for the

kernel in the electric field integral equation. In NEC, the user can choose between two

different kernels, namely the exact kernel and the reduced kernel. By choosing the first

kernel, the current will be calculated as if it is concentrated on the central axis of the

wire in NEC. In calculations with the exact kernel, the current is assumed to be uniformly

distributed around the surface of each wiresegment. The NEC user’s guide [57] recommends

to keep 2πa ¿ λ. A more convenient rule is found in [58] as

0 < a < 0.01λ. (5.49)

Last but not least, the accuracy of the results also depends on the quotient ∆x/a. The

NEC user’s guide guarantees errors less than 1% if

∆x

a
> 2, for the exact kernel, (5.50)

∆x

a
> 8, for the reduced kernel. (5.51)

The geometry of a wire is given by the coordinates of the end faces of the wire and the radius

a. The length of a wire is calculated from those coordinates. By giving the coordinates

of the end faces of a wire, the user is able to position a wire completely arbitrarily. The

current is always flowing along the x-axis of a certain coordinate system. The coordinates

of wire n are represented as

Wn = {(xb, yb, zb), (xe, ye, ze)} , (5.52)

where the subscripts b and e represent the begin and end point of a wire. In all examples

given below, the reduced kernel is used. With the examples given in this section, the steps

A, B and C of the transformation are introduced successively.

In the first example, the coordinates of two wires with radius a = 0.002 m in free space are

given by W1 = {(0, 0, 0), (1, 0, 0)} and W2 = {(0, 1, 0), (1, 1, 0)}. The lengths of both wires
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is thus 1 m and the wires are still parallel oriented. The excitation is a delta-gap voltage

with an amplitude of 1 V. This voltage source will be used in the rest of this chapter.

The calculation is carried out for a frequency of 300 MHz, which means that λ = 1 m. In

Figure 5.4 the absolute values of the currents in the frequency domain along wire 1 and

wire 2 is plotted. It is immediately seen that the currents match the results from NEC
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Figure 5.4: The induced currents along wire 1 and wire 2. The radius of both wires is a =

0.002 m. The coordinates of the end faces of the wires are given by W1 = {(0, 0, 0), (1, 0, 0)}
and W2 = {(0, 1, 0), (1, 1, 0)}. The wires are located in free space. Wire 1 is excited with

a delta-gap voltage at the center of the wire with an amplitude of 1V. The frequency of

operation is f = 300 MHz. The solid lines represent results obtained with Hallén’s equation.

The dotted lines represent results obtained with NEC.

very accurately. The larger peak at the center of wire 1 can be explained from the different

approaches used for the calculation of both results. The currents are symmetrical around

the center of the wires. The fact that the current along wire 2 matches perfectly shows

that the direct field from wire 1 incident on wire 2 is calculated accurately. The shape of

the current is not the same for wire 1 and wire 2. The distance d is already large enough

for the radiated field from wire 1 to behave as a far field which is incident on wire 2 [59].

Therefore, the current along wire 1 follows as the current which is induced by a plane wave.

Also in the frequency domain results, the magnitude of the current along wire 2 is about

10 times less than along wire 1. This was already observed in the time domain in previous

chapters. Along wire 1, two peaks can be recognized. The current along a wire behaves as

a sinusoidal function [14, 44, 60, 61]. Since the wire is λ long, exactly one period of a sine

and/or cosine fits on the wire. Therefore, the absolute value shows two peaks. On wire
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2, there is only one peak visible but the behavior of the current near the end faces of the

wire shows that there is more than half a period of a sinusoidal present.

In the next example, again two wires in free space are considered. The coordinates are

given by W1 = {(0, 0, 0), (1, 0, 0)} and W2 = {(0.9, 1, 0), (1.9, 1, 0)}. The wires have again a

length of 1 m and are parallel. The difference with the previous configuration is the offset

in the x-direction of 0.9 m and the frequency, which is now f = 600 MHz. The absolute

values of the currents along both wires are depicted in Figure 5.5. It is observed that

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

|I 1
|[

m
A

]

x [m]

(A)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

|I 2
|[

m
A

]

x [m]

(B)

Figure 5.5: The induced currents along wire 1 and wire 2. The radius of both wires is a =

0.002 m. The coordinates of the end faces of the wires are given by W1 = {(0, 0, 0), (1, 0, 0)}
and W2 = {(0.9, 1, 0), (1.9, 1, 0)}. The wires are located in free space. Wire 1 is excited

with a delta-gap voltage at the center of the wire with an amplitude of 1V. The frequency of

operation is f = 600 MHz. The solid lines represent results obtained with Hallén’s equation.

The dotted lines represent results obtained with NEC.

the results are similar. The symmetry around the center of wire 2 is no longer observed.

The behavior of the currents along both wires is described by two periods of a sinusoidal.

The current along wire 1 is almost symmetrical. Therefore it can be concluded that the

presence of wire 2 has hardly any effect on the current along wire 1. It is clear that step

A of the transformation process performs well.

In the previous example, the length of wire 2 is 1 m. Now, the length of wire 2 is de-

creased to 0.5 m. The wires have the coordinates W1 = {(0, 0, 0), (1, 0, 0)} and W2 =

{(0.85, 1, 0), (1.35, 1, 0)}. The absolute values of the currents along both wires are depicted

in Figure 5.6. It is immediately observed that the current along wire 2 is described by a

single period of a sinusoidal. Because of the offset in the x-direction, the current is not
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Figure 5.6: The induced currents along wire 1 and wire 2. The radius of both wires is a =

0.002 m. The coordinates of the end faces of the wires are given by W1 = {(0, 0, 0), (1, 0, 0)}
and W2 = {(0.85, 1, 0), (1.35, 1, 0)}. The wires are located in free space. Wire 1 is excited

with a delta-gap voltage at the center of the wire with an amplitude of 1V. The frequency of

operation is f = 600 MHz. The solid lines represent results obtained with Hallén’s equation.

The dotted lines represent results obtained with NEC.

symmetrical around the center of the wire. In general, the result is in good agreement with

the reference result. Step A of the transformation is performing well. Again, the current

along wire 1 is hardly affected by the presence of wire 2.

To demonstrate the next step in the transformation process, two wires in free space with

coordinates W1 = {(0, 0, 0), (1, 0, 0)} and W2 = {(0.2, 0.5, 0), (0.2, 1.5, 0)} are considered.

The frequency is again f = 600 MHz. The absolute values of the currents along both wires

are depicted in Figure 5.7. It is observed that the results are similar. This means that step

B of the transformation process performs well.

Next, two wires in free space with coordinates W1 = {(−0.5, 0, 0), (0.5, 0, 0)} and W2 =

{(−4.33, 1,−0.25), (4.33, 1, 0.25)}, respectively, are considered. The frequency is again

f = 600 MHz and the wires are located in free space. The absolute values of the currents

along wire 1 and wire 2 are plotted in Figure 5.8.

The currents are in perfect agreement with the reference results. Therefore it may be

concluded that step C of the transformation process is accurate. The current along both

wires can again be described by two periods of a sinusoidal. Because the rotation over θ

is at the center of both wires, the current along wire 2 is again fully symmetrical. Once

more, the current along wire 1 does not change significantly due to the presence of wire 2.
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Figure 5.7: The induced currents along wire 1 and wire 2. The radius of both wires is a =

0.002 m. The coordinates of the end faces of the wires are given by W1 = {(0, 0, 0), (1, 0, 0)}
and W2 = {(0.2, 0.5, 0), (0.2, 1.5, 0)}. The wires are located in free space. Wire 1 is excited

with a delta-gap voltage at the center of the wire with an amplitude of 1V. The frequency of

operation is f = 600 MHz. The solid lines represent results obtained with Hallén’s equation.

The dotted lines represent results obtained with NEC.

In the last example, two wires with coordinates W1 = {(−0.5, 0.2,−0.4), (0.4, 0.3, 0.2)} and

W2 = {(0.25, 1, 0.1), (0.65, 0.82, 0.47)} are considered. The frequency is again f = 600 MHz

and the wires are located in free space. The absolute values of the currents along both wires

are depicted in Figure 5.9. The coordinates were chosen completely arbitrarily for this

example. Wire 1 is approximately 1.1 m long. Slightly more than two periods of a sinusoidal

describe the behavior of the current along wire 1. The other wire is approximately 0.57 m

long. This means that half a period of a sinusoidal describes the behavior of the current

along wire 2. This is indeed observed. The second wire has offsets in all three directions.

Moreover, it is rotated over both φ and θ. The transformation process thus performs well.

In general, the magnitude of the current is lower when wire 2 rotates over φ and θ with

respect to wire 1. This can be easily seen when the results in Figure 5.6 are compared to

those in Figure 5.9. A similar observation is made concerning Figure 5.5 and Figure 5.8.

The first plot shows a maximum current of 160 µA while the latter shows a maximum

current of 90 µA. When the second wire does not have an offset in the x-direction in

Figure 5.5, the maximum current is found to be 110 µA. It may be concluded that the

transformation works accurately. Another important observation is that the effects of

mutual coupling are still important.
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Figure 5.8: The induced currents along wire 1 and wire 2. The radius of both wires

is a = 0.002 m. The coordinates of the end faces of the wires are given by W1 =

{(−0.5, 0, 0), (0.5, 0, 0)} and W2 = {(−4.33, 1,−0.25), (4.33, 1, 0.25)}. The wires are lo-

cated in free space. Wire 1 is excited with a delta-gap voltage at the center of the wire with

an amplitude of 1V. The frequency of operation is f = 600 MHz. The solid lines represent

results obtained with Hallén’s equation. The dotted lines represent results obtained with

NEC.
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Figure 5.9: The induced currents along wire 1 and wire 2. The radius of both wires

is a = 0.002 m. The coordinates of the end faces of the wires are given by W1 =

{(−0.5, 0.2,−0.4), (0.4, 0.3, 0.2)} and W2 = {(0.25, 1, 0.1), (0.65, 0.82, 0.47)}. The wires

are located in free space. Wire 1 is excited with a delta-gap voltage at the center of the

wire with an amplitude of 1V. The frequency of operation is f = 300 MHz. The solid

lines represent results obtained with Hallén’s equation. The dotted lines represent results

obtained with NEC.



Chapter 6

Suppression of repeated reflections

The presence of a buried wire may have an influence on the current along the wires in the

detection set up. To recognize this response directly from the current along wire 2 is quite

complicated due to repeated reflections at the end faces of both wires in the detection

set up and of the buried wire. The currents along the wires 1 and 2 can be subjected to

a variety of signal processing tools to enhance the detection. These enhancements filter

the information about the buried object from the current along wire 2. In other words,

effects of the buried wire that are already present in the current along wire 2 become better

visible.

Instead of signal processing or post processing, it is also possible to modify the wires 1 and

2 before using them for detection purposes. In this chapter, two possible modifications are

introduced and discussed.

The first modification to the wires is the application of a so-called Wu-King profile. The

current along a wire has a slowly attenuating late-time response because of the repeated

reflections of the traveling current wave at the end faces of the wire. If these repeated

reflections can be suppressed by attenuating the current wave towards the end faces of the

wire, it is possible to see the influence of secondary incident fields on the current along a

wire. In 1965, Wu and King proposed a resistance profile along the wire which attenuates

the current towards the end faces of a wire [17].

The second modification to reduce the repeated reflections is pulse compensation. With

pulse compensation, a second pulse with a carefully chosen amplitude and time delay is

generated from the original first voltage pulse at wire 1. Combining the responses from

both pulses on wire 1 causes a significant reduction of the oscillatory behavior of the current

along wire 1. For the compensation of the current along wire 2, a similar procedure can

be followed.

99



100 Chapter 6. Suppression of repeated reflections

6.1 The Wu-King resistive loading

In this section, the current along a perfectly conducting thin wire in a homogeneous space

is considered, see Figure 3.3. The wire has a length L and a radius a. The material

parameters of the homogeneous space are given as ε1(r) = ε1 and µ(r) = µ0. The current

along such a wire is repeatedly reflected at the end faces of the wire. To avoid the repeated

current reflections, Wu and King [17] derived a resistance distribution that attenuates the

current towards the end faces of the wire. With their particular distribution, a current wave

originating from the center of the wire travels along the antenna and is fully attenuated

when it reaches the end faces of the wire. Therefore, the current wave does not return

any more from the end faces. The derivation will be demonstrated with a generalization

of the resistance profile as was found in [17]. In 1967, Shen and Wu [62] derived an

expression to describe a resistance distribution with a variable degree of loading. Several

authors [62, 63, 64] have used this adjustable profile in theory and experiment. They all

come to the same conclusion that the degree of loading is not very critical for the field

pattern from the antenna as long as the degree of loading is between 90% and 110% of the

resistive profile ZWK proposed by Wu and King [17]. It has also been demonstrated that

the theory complies with experiments [22, 29, 62, 63].

When the total current along the wire is given by I(x, ω), and the wire has the internal

impedance per unit length Zi(x) = ZWK(x−L/2), the total tangential electric field on the

axis is given by

Ex(xux, ω) = Zi(x)I(x, ω) + V (ω)δ(x − L/2) + Ei
x(xux, ω), 0 < x < L, (6.1)

where xg = L/2 is chosen. The point of excitation is chosen at the center of the wire

and the resistance profile is chosen symmetrical around the driving point. With the aid

of (6.1), Pocklington’s equation (3.48) can be extended to

(∂2
x + k2

1)

∫ L

0

G(Ra, ω)I(x′, ω)dx′

= −iωε1

[
V (ω)δ(x − L/2) + Zi(x)I(x, ω) + Ei

x(xux, ω)
]
, 0 < x < L, (6.2)

where

G(Ra, ω) =
exp(ik1Ra)

4πRa

, Ra =
√

(x − x′)2 + a2,

Following the notation of Wu and King [17] and Shen and Wu [62], (6.2) is written as

(∂2
x + k2

1)

∫ L/2

−L/2

G(Ra, ω)I(x′, ω)dx′=−iωε1

[
V (ω)δ(x) + Zi(x)I(x, ω) +Ei

x(xux, ω)
]
,(6.3)
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for −L/2 < x < L/2. Further on, x will be replaced by x − L/2 again to return to the

original notation from previous chapters. The next step in the derivation is to approximate

the integral in (6.3) by

∫ L/2

−L/2

exp(ik1Ra)

Ra

I(x′, ω)dx′ ≈ I(x, ω)Ψ, (6.4)

where the factor Ψ remains to be determined [17]. Since Ψ varies slowly with respect to x

and ω, the arguments of Ψ are omitted. Substitution of (6.4) into (6.3) gives

(∂2
x + k2

1)I(x, ω) = −4πiωε1

Ψ

[
V (ω)δ(x) − Zi(x)I(x, ω) + Ei

x ((x + L/2)ux, ω)
]
. (6.5)

The latter equation can be rewritten as

[
∂2

x + k2
1 + ik1f(x)

]
I(x, ω) = −4πiωε1

Ψ

[
V (ω)δ(x) + Ei

x ((x + L/2)ux, ω)
]
, (6.6)

with

f(x) =
4πZi(x)

Z1Ψ
, (6.7)

which is a so-called distribution function [61] and Z1 is the characteristic impedance of the

homogeneous medium. This function describes the distribution of the resistance along the

wire. The resistance should go to infinity at the end faces of the wire to fully attenuate

the current at those positions. In [62], f(x) is chosen as

f(x) =
2α

L/2 − |x| , (6.8)

where the dimensionless constant α represents the degree of loading with 0 ≤ α ≤ 1.

When α = 0, the resistance profile is absent, hence the current in (6.6) behaves as a

current distribution along a perfectly conducting wire. In [17], the constant α = 1. At this

point the derivation of the resistance profile therefore deviates from the one followed by

Wu and King, hence 0 ≤ α ≤ 1.

With the choice of f(x), the internal impedance per unit length Zi(x) can be determined.

The only unknown is the factor Ψ. To find an expression for Ψ, the current along the wire

is represented as [15]:

I(x, ω) = A exp(ik1|x|)(L/2 − |x|)Φ(β), (6.9)

where β = 2ik1(L/2 − |x|) and A is an arbitrary constant which does not depend on x.

The factor exp(ik1|x|) describes the traveling-wave nature. The factor (L/2− |x|) ensures

that the current is zero at the end faces of the wire.
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The functional Φ can be obtained by substituting (6.9) in (6.6). Since the distribution is

symmetrical around x = 0, the derivation can be restricted to the interval 0 < x < L/2.

For x > 0, first the derivatives with respect to x in (6.6) are found as follows

∂2
xI(x, ω) = ∂2

x [A exp(ik1|x|)(L/2 − |x|)Φ(β)]

= A∂x[ik1 exp(ik1x)(L/2 − x)Φ(β) − exp(ik1x)Φ(β) + exp(ik1x)(L/2 − x)∂xΦ(β)]

= A exp(ik1x)

[ [
(ik1)

2(L/2 − x) − 2ik1

]
Φ(β) + [2ik1(L/2 − x) − 2] ∂xΦ(β)

+(L/2 − x)∂2
xΦ(β)

]
. (6.10)

When ∂xΦ(β) is rewritten as

∂xΦ(β) = −2ik1∂βΦ(β), (6.11)

and (6.9) and (6.10) are substituted in (6.6), the following equation is obtained

β∂2
βΦ(β) + (2 − β)∂βΦ(β) + (α − 1)Φ(β) = 0, (6.12)

for x > 0. This equation is recognized as Kummer’s equation [41, 13.1.1] with the general

solution

Φ(β) = BM(b, c, β), (6.13)

where b = 1−α and c = 2. In the latter equation, B is an arbitrary constant and M(b, c, β)

is known as Kummer’s function.

Kummer’s function has the following integral representation [41, 13.2.1]

M(b, c, β) =
Γ(c)

Γ(c − b)Γ(b)

∫ 1

0

exp(βu)(1 − u)c−b−1ub−1du. (6.14)

For the given b and c, this function becomes

M(1 − α, 2, β) =
Γ(2)

Γ(1 − α)Γ(1 + α)

∫ 1

0

exp(βu)

(
1 − u

u

)α

du. (6.15)

Because of the singularity at u = 0, it is convenient to modify the integration path to

a contour C such that it fully encloses the interval 0 < u < 1 [65, Chapter 6] and [66,

Chapter 4]. With the integral representation as given above, (6.13) can be rewritten as

Φ(β) = B
Γ(2)

Γ(1 − α)Γ(1 + α)

∫

C

exp(βu)

(
1 − u

u

)α

du, (6.16)
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where the integration path is modified to the contour C mentioned above. Now that Φ(β)

has been determined, (6.9) is substituted in (6.4). At x = 0, Ψ is found as

Ψ =
2

Φ(β0)

∫ L/2

0

exp(ik1R0)

R0

exp(ik1x
′)

(
1 − 2x′

L

)
Φ(β′)dx′, (6.17)

with R0 =
√

x′2 + a2, β′ = 2ik1(L/2 − x′) and β0 = ik1L. Interchanging the order of the

integrations over x′ and u gives

Ψ =
2

∫
C

(
1 − u

u

)α

exp(ik1Lu)du

∫

C

{(
1 − u

u

)α

exp(ik1Lu)

·
∫ L/2

0

[
exp(ik1R0)

R0

− 2x′

L

exp(ik1R0)

R0

]
exp[ik1x

′(1 − 2u)]dx′
}

du. (6.18)

When R0 is approximated by R0 ≈ x′, the latter expression can be written as

Ψ =
2

∫
C

(
1 − u

u

)α

exp(ik1Lu)du

∫

C

(
1 − u

u

)α

exp(ik1Lu)

·




∫ L/2

0

exp (2ik1R0(1 − u))

R0

dx′

︸ ︷︷ ︸
g(x, u)

− 2

L

∫ L/2

0

exp (2ik1x
′(1 − u)) dx′

︸ ︷︷ ︸
h(x, u)




du. (6.19)

It is observed that the approximation cannot be used for g(x, u). The integral h(x, u)

in (6.19) can be evaluated in closed form:

h(x, u) =
2

L

∫ L/2

0

exp [2ik1x
′(1 − u)] dx′ =

i

k1L(1 − u)
[1 − exp(ik1L(1 − u))] . (6.20)

The integral g(x, u) in the right-hand side of (6.19) is solved as follows

g(x, u) =

∫ L/2

0

exp (2ik1R0(1 − u))

R0

dx′

=

∫ L/2

0

[
1

R0

− 1 − cos[2k1R0(1 − u)]

R0

+ i
sin[2k1R0(1 − u)]

R0

]
dx′

= sinh−1

(
L

2a

)
− C(2A,H) + iS(2A,H), (6.21)

where A = k1a(1 − u), H = k1L(1 − u), and where

C(p, q) =

∫ q

0

1 − cos W

W
du, S(p, q) =

∫ q

0

sin W

W
du, W =

√
u2 + p2,
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are the generalized cosine and sine integrals [61, chapter II.19]. The total function Ψ is

then obtained as

Ψ = 2 sinh−1

(
L

2a

)
− 2

∫
C

(
1 − u

u

)α

exp(ik1Lu)du

∫

C

(
1 − u

u

)α

exp(ik1Lu)

·
[
C(2A,H) − iS(2A,H) +

i

H
[1 − exp(iH)]

]
du. (6.22)

As stated earlier, the constant α = 1 gives the solution from Wu and King [17]. Evaluat-

ing (6.22) for α = 1 gives

Ψ = 2

[
sinh−1

(
L

2a

)
− C (2k1a, k1L) + iS (2k1a, k1L)

]
− i

k1L
[1 − exp (ik1L)] . (6.23)

Now that the factor Ψ has been found, the internal impedance per unit length can easily

be found by combining (6.7) and (6.8). Before that step is carried out, x is replaced again

by x − L/2 in accordance with (6.2). Now, (6.8) is redefined as

f(x) =
2

L/2 − |x − L/2| , (6.24)

for 0 < x < L and α = 1. With the redefinition of f(x), the following expression for Zi is

obtained

Zi(x) =
Z1Ψ

π(L − |2x − L|) . (6.25)

In Figure 6.1, the internal impedance per unit length is plotted as a function of the position

along the wire (A) and the parameter Ψ is plotted as a function of frequency, respectively.

The length of the wire is L = 1 m and the radius is a = 0.002 m. In the calculations of the

current along a single thin wire, the results between computations with the real part or the

absolute value of Ψ did no deviate much from each other. Because of this and the fact that

Re(Ψ) can be used in the time domain, the real part of Ψ is used for the resistive profile.

In addition, a real valued resistance profile is easier to construct in practical situations.

The Wu-King resistive profile can thus be written as

Zi(x) =
Z1Re (Ψ)

π(L − |2x − L|) (6.26)

Hallén’s equation for a single thin wire with the Wu-King profile can thus be written as
∫ L

0

G(Ra, ω)I(x′, ω)dx′ − F0(ω) exp(ik1x) − FL(ω) exp(ik1(L − x))

=
Y1

2

[
V (ω) exp(ik1|x − L/2|) +

∫ L

0

Zi(x′)I(x′, ω) exp(ik1|x − x′|)dx′

+

∫ L

0

Ei
x(x

′ux, ω) exp(ik1|x − x′|)dx′
]
, (6.27)
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Figure 6.1: The internal impedance per unit length Zi(x) and the parameter Ψ. The length

is L = 1 m and the radius is a = 0.002 m. The internal impedance is calculated at a

frequency of f = 300 MHz.

for 0 < x < L. Note that the point of excitation is chosen in the center of the wire, i.e., at

xg = L/2.

6.1.1 Results

In the previous section, a resistance profile to attenuate the current towards the end faces

of a wire was derived. In this section, a few examples will illustrate the potential of the

resistance profile.

First a single thin wire is excited by the voltage pulse as given in Section 3.3.2. The

current along the wire is calculated for L = 1 m, a = 0.002 m, M = 60 and N = 512.

The surrounding medium is free space. In Figure 6.2, the current along the wire has been

plotted for 0 < x < L as a function of time. The left plot shows the current along a

perfectly conducting thin wire and the right plot shows the current along a wire with the

Wu-King profile. It is immediately observed that the current along the perfectly conducting

thin wire oscillates heavily at all points along the wire and vanishes very slowly, see also

Section 3.3.2. Along the Wu-King loaded wire, the current attenuates towards the end

faces of the wire and the oscillating behavior of current along the wire is fully suppressed.

To examine the effect of the oscillating current along the wire a bit further, the input

impedance at the center of the wire is studied. The input voltage is a delta-gap voltage.

The spectrum of the source is V (ω) = 1. Again, the wire has a length L = 1 m and a
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Figure 6.2: The induced current along a single thin wire with length L = 1 m and radius

a = 0.002 m, M = 60 and N = 512 in free space. The currents along a perfectly conducting

thin wire and along a Wu-King loaded wire are visualized in (A) and (B), respectively. The

excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .

radius a = 0.002 m. The frequency range is 0 < f < 2 GHz. The cell size should be smaller

than half the smallest wavelength. In this case, the wavelength is λ = c1/fmax ≈ 0.15 m.

This means that on a wire of length L = 1 m, there should be at least 2L/λ ≈ 15 cells.

In Figure 6.3, the magnitude and phase of the impedance at the center of the wire are

plotted. The solid lines represent a perfectly conducting wire and the dashed lines represent

the Wu-King loaded wire. It is immediately seen that the impedance of the Wu-King loaded

wire is a very smooth function of the frequency. It is observed that the behavior of the

impedance of the perfectly conducting wire oscillates around the impedance of the Wu-

King loaded wire. In other words, the Wu-King profile averages the impedance of the wire

over a broad frequency range. The smooth input impedance over a wide frequency range

ensures that the wire is capable of measuring transient signals without pulse distortion.

As an illustrative example, two wires in free space are considered. Both wires have length

L = 1 m and radius a = 0.002 m. The number of space steps is M = 30 and the number

of time steps is N = 1024. The distance between the wires has been varied as d = 0.5 m,

d = 1 m and d = 2 m. Both wires are loaded with the Wu-King resistance profile.

The currents at the center of wire 1 (A) and wire 2 (B) are plotted in Figure 6.4. It is

immediately observed that the current along wire 1 is not at all affected by the presence

of wire 2. The first maximum is about 0.8 times the magnitude when compared to the

response of a perfectly conducting wire, see Figure 4.9. For the magnitude of the first

minimum, this factor is 0.3. After the first minimum, the current along the wire is almost
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Figure 6.3: The magnitude and phase of the input impedance at the center of a wire with

length L = 1 m and radius a = 0.002 m, M = 60. The input voltage is a delta-gap voltage.
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Figure 6.4: The induced current in the center of wire 1 and wire 2 with length L = 1 m

and radius a = 0.002 m, M = 30 and N = 1024 for various distances d. Both wires are

loaded with the Wu-King resistance profile. The embedding is free space. The excitation is

a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .
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negligible.

The behavior of the current along wire 2 depends similarly on the distance between the

wires as perfectly conducting wire antennas in a similar configuration, see Figure 4.9. The

arrival time of the electric field is proportional to the distance d. The magnitude of the

current for the first minimum is inversely proportional to the distance d. For wire 2, the

magnitude of the current is approximately 2.4 times smaller in comparison with the current

pulse on the unloaded wires. The first maximum of the current no longer relies directly on

the changes in the distance between the wires. The magnitude of the second minimum of

the current along wire 2 again changes with a different factor in relation to the distance.

After this second minimum, the current along wire 2 is quickly attenuated.

6.2 Pulse compensation

In the previous section, the results obtained for wires with a resistance profile demonstrated

that the reflections at the end faces of the wire can be suppressed. A disadvantage is the

considerable power loss. Therefore, a different approach will be employed to avoid the

unwanted reflections at the end faces of the wires.

In this section, pulse compensation will be considered as an alternative to the Wu-King re-

sistance profile. The feasibility of pulse compensation can be understood from the traveling-

wave model for the current described in Chapter 3. The pulse compensation for suppressing

the reflections at the end faces of the wire is carried out in two steps. First, the reflections

of the current at the end faces of wire 1 are compensated. Second, the reflections of the

current at the end faces of wire 2 are compensated.

Pulse compensation amounts to generating a second pulse with a carefully chosen amplitude

and time delay from the original first voltage pulse at wire 1. The combined response to

both pulses on wire 1 causes a significant reduction of the oscillatory behavior of the current

along wire 1. The current along wire 2 is compensated in a similar way. To find the proper

shape of the compensation pulse, the data obtained from previous sections is used. Pulse

compensation can be used as a pre-processing technique as well.

6.2.1 Compensation of the end face reflections

In this section, pulse compensation will be used to suppress the repeated reflections of the

current at the end faces of a single wire. The pulse will be compensated with an additional

Gaussian voltage pulse at the point of excitation xg. Since the process of compensation is

easier to visualize in the time domain, the discussion will take place in the time domain.
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If the current is written as a function of the voltage, the current can be symbolically written

as

I(t) = f(V(t)), (6.28)

where the argument x is omitted. This function is envisaged in Figure 6.5 by the square

containing V/I. The voltage V is the input and the current I is the output.

V V

I

I

Figure 6.5: Schematic view of I(t) = f(V(t)).

If a second voltage pulse with amplitude A1 and time delay T1 is applied, the total current

along the wire can be written as

Itot(t) = f(V(t)) + A1f(V(t − T1)) = I(t) + A1I(t − T1). (6.29)

The total process is depicted schematically in Figure 6.6. For the compensation, it is

V V

I
•

T1 A1

+
Itot

Figure 6.6: Schematic view of Itot(t) = I(t) + A1I(t − T1).

required that the total current Itot(t > t(1)) = 0, where t(1) represents the time it takes

for the first reflected current wave to reach the point x = xg = L/2. In Figure 6.7,

these reflected current waves are shown. It is easily seen that the current waves that have

x = xg = L/2
0 L

x + xg = L

2L − x − xg = L

Figure 6.7: The current waves arriving at x = xg = L/2 that have been reflected once.

been reflected once, both travel over a distance L. Therefore, the typical travel time for
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x = xg = L/2 is found as t(1) = L/c1 where the time delay that occurs during reflection

at the end faces as mentioned in Section 3.4.1 is not incorporated.

In the frequency-domain model, the current is given by

Itot(ω) = (1 + A1 exp(ik1T1)) I(ω). (6.30)

Since the data from previous calculations is used, a sampled version of (6.29) is needed.

This means that the compensation for the total current is then written as

Itot(i∆t) = I(i∆t) + A1I((i − j)∆t), i = 0, . . . , N, (6.31)

where j is a fixed integer and N is the number of samples with time step ∆t. The time

delay is given by T1 = j∆t. Of course, the time delay can also be found by interpolating

between the discrete steps but this option is not used here since the time step is chosen

very small.

The data sets from previous calculations all have the observation point at x = xg. The

unknown parameters A1 and T1 are found with an error minimization procedure.

Determination of the parameters

In this section, the unknown parameters A1 and T1 will be determined for x = xg. To this

end, the following squared error is introduced

Λ(p) =

∫ tmax

tmin

[I(t) + A1I(t − T1)]
2 dt =

∫ tmax

tmin

I2
tot(t)dt, (6.32)

where p = [A1, T1] and tmax can in principle be chosen freely. When the compensation

is accurate, the pulse will tend to zero rapidly for t > tmin so tmax can be fairly small

to accomplish an accurate determination of the amplitude and the time delay, typically

tmax = 10tmin. This choice of tmax allows the current waves to be reflected at the end faces

of the wire at least ten times before they reach the center of the wire again. The value tmin

is chosen as t(1) < tmin < t(2), where t(2) = 2(t(1)+τd), where τd represents the additional

delay time during which the current wave is being reflected at the end faces of the wire,

see Section 3.4.1. The choice of tmin is based on the fact that the current waves reflect at

the end faces of the wire at least one time before they reach the center of the wire again.

The parameters are found by minimizing Λ(p). To keep the option of adding additional

parameters for the minimization, Powell’s quadratic convergence method [67] will be used.

With Powell’s algorithm, multiple search directions can be employed simultaneously. The

number of directions depends on the number of unknowns. In the Numerical Recipes

Library [67], the search directions are cast into a matrix X. The only real requirement for
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using Powell’s method is a good initial estimate p = p0 and an initial set of search directions

in X. The unit matrix X = I is used as the initial estimate for the search direction matrix.

The minimization stops when a given tolerance is reached. To compensate the total current

as accurately as possible, two options will be examined. First, the time delay T1 is chosen

fixed as the difference in time between the first local maximum of the current and the

second local minimum of the current at the center of the wire. Between these instants, the

current then has travelled from the point of excitation to x = xg and has been reflected

once at the end faces of the wire. The amplitude A1 is then the only parameter which

needs to be optimized. The other option is to minimize with both parameters at the same

time. It will be shown that this option is advantageous in comparison with the first option.

Since τ = 0.5 ns for the Gaussian voltage as given in Section 3.3.2, the first local maximum

of the current is at the time instant t = 4τ = 2 ns. The second local minimum is found

from the data set to be at t = 5.47 ns. The initial estimates of A1 and T1 for both methods

are chosen according to Table 6.1. The boundaries in the determination of Λ are chosen

Initial estimates Results after minimization

Option A1 T1 [ns] A1 T1 [ns]

T1 fixed 0.75 3.47 0.7582 3.4700

T1 not fixed 0.75 L/c1 = 3.33 0.7590 3.4637

Table 6.1: Initial estimate and minimized values for the amplitude A1 and time delay T1

for both minimization options.

as tmin = 7 ns and tmax = 80 ns. The parameters are determined for a wire with length

L = 1 m and radius a = 0.002 m. The value for A1 follows from the fact that the negative

peak at t(1) has to compensate the positive peak at t(2) when the total current is zero for

t > tmin. The ratio between the amplitudes of the peaks at t(1) and t(2) is approximately

0.75.

After minimization, the following values for A1 and T1 are obtained, see Table 6.1. These

results show that the amplitude, as well as the time delay have almost the same values for

both choices. The total current Itot(t) for these values of the compensation parameters is

plotted in Figure 6.8. The uncompensated current is included as a reference. Comparing

the three currents clearly shows that an extra compensation pulse reduces the current

substantially. For the first reflection, the reduction is 20 log(2.400/0.925) = 8.3 dB. This

is fairly good considering that the first reflection cannot be suppressed completely, see

Section 1 of this chapter. For the third peak, the suppression of the current amounts
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Figure 6.8: Current at the center of a wire with length L = 1 m and radius a = 0.002 m in

free space. The compensation parameters are A1 = 0.7582 and T1 = 3.4700 ns for T1 fixed

and A1 = 0.7590 and T1 = 3.4637 ns for T1 not fixed.

to 20 log(1.801/0.189) = 19.6 dB. When the current after 10 ns is zoomed in on, the

compensation with T1 not fixed reduces the current slightly better. Despite the small

difference in amplitude and time delay, the option where T1 is not fixed is preferred over

the one with T1 fixed.

Until now, the amplitude A1 is considered real-valued. The amplitude may be complex-

valued in the frequency domain. When the current is treated as a so-called dual-analytic

signal, the imaginary part of the complex-valued amplitude has consequences for the time

domain current. The significance of a complex amplitude A1 for the pulse compensation

can be explained with the aid of the theory of dual analytic signals [42, 68, 69]. Therefore

a short discussion about such a signal is given below.

In Chapter 2, the inverse temporal Fourier transformation was defined as

F(t) =
1

π
Re

∫ ∞

0

F (ω) exp(−iωt)dω, for t ∈ lR. (6.33)

The dual analytic signal associated with F(t) is then given by

F1(t) =
1

π

∫ ∞

0

F (ω) exp(−iωt)dω for Im(t) ≤ 0. (6.34)

With this definition, the inverse Fourier transformation for real-valued t can be written as

F(t) = Re (F1(t)) = Re (F1(t − i0)) , (6.35)
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where the notation t− i0 denotes the limit for Im t ↑ 0. With the definition of the Hilbert

transform FH(t) of F(t), which is given by

FH(t) =
1

π
PV

∫ ∞

−∞

F(t′)

t − t′
dt′, (6.36)

where PV stands for the Cauchy principal value, the dual analytic signal can be written as

F1(t) = F(t) − iFH(t). (6.37)

Now, assume that A1 in (6.30) is a complex-valued quantity. In that case the inverse

Fourier transformation can be written as

Itot(t) =
1

π

∫ ∞

0

[1 + (A′
1 − iA′′

1) exp(−iωT1)] I(ω) exp(−iωt)dω, (6.38)

where A′
1 and −A′′

1 represent the real and imaginary part of A1, respectively. With (6.35),

the total current is found as

Itot(t) = Re(Itot,1(t)) =
1

π

{
Re

(∫ ∞

0

I(ω) exp(−iωt)dω

)

+A′
1Re

(∫ ∞

0

I(ω) exp(−iω(t − T1))dω

)

+A′′
1Im

(∫ ∞

0

I(ω) exp(−iω(t − T1))dω

)}

= I(t) + A′
1I(t − T1) − A′′

1IH(t − T1). (6.39)

Note that, in the frequency-domain calculations, the inclusion of the Hilbert transform

does not require any significant extra computational effort.

Minimizing the squared error given by (6.32) gives the desired amplitude A1 = A′
1 − iA′′

1

and the time delay T1. The initial estimates are given in Table 6.2. The parameters are

Initial estimates Results after minimization

Option A′
1 A′′

1 T1 [ns] A′
1 A′′

1 T1 [ns]

T1 fixed 0.75 0 3.470 0.7596 0.0327 3.470

T1 not fixed 0.75 0 L/c1 = 3.33 0.7538 0.1315 3.384

Table 6.2: Initial estimate and minimized values for the complex amplitude A1 and time

delay T1 for both minimization options.

again determined for a wire with length L = 1 m and radius a = 0.002 m. The boundaries

in the determination of Λ are chosen as tmin = 7 ns and tmax = 80 ns. After minimization,
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Figure 6.9: Current at the center of a wire with length L = 1 m and radius a = 0.002 m in

free space. The compensation parameters are given in Table 6.2.

the values for A1 and T1 are obtained as in Table 6.2. The total current Itot(t) is plotted for

these parameters in Figure 6.9. As can be seen, the option with T1 not fixed compensates

the first reflected current wave better when compared to T1 fixed. For later reflections, the

option where T1 is minimized performs better. As mentioned earlier, the current wave is

not immediately reflected when it arrives at the end faces [35], see also Section 3.4.1. An

additional time delay τd exists between arrival and reflection at the end faces. Therefore

the fixed value for T1 is more accurate for the first reflection but not for later reflections.

Since the value of the calculated time delay T1 comes closer to the initial estimate for T1,

it follows that A′′
1 governs part of τd.

A comparison of Figure 6.8 with Figure 6.9 shows that the complex-valued amplitude A1

is preferred over the real-valued amplitude.

From now on, compensation of the current will take place with a complex value of A1. The

minimized version of the time delay T1 is chosen in the case of a single wire.

6.2.2 Compensation for a single thin wire

In the previous section, the compensation parameters have been determined by using

previously generated data sets. Since the current in Hallén’s equation depends linearly

on the input voltage, pulse compensation can be employed on the excitation as well. The

only modification of Hallén’s equation is to multiply the voltage V (ω) with a factor of
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1 + A1 exp(ik1T1). Hallén’s equation for a single wire then reads

∫ L

0

I(x′, ω) exp(ik1Ra)

4πRa

dx′ − F0(ω) exp (ik1x) − FL(ω) exp (ik1(L − x))

=
Y1

2
[1 + A1 exp(ik1T1)] V (ω) exp(ik1|x − xg|), (6.40)

for 0 ≤ x ≤ L. Pulse compensation is used on the data of the uncompensated wire of

Figure 6.2.

The wire is again of length L = 1 m and radius a = 0.002 m. The spatial discretization is

M = 60 and the number of time steps is N = 512. The wire is excited by the Gaussian

voltage as given in Section 3.3.2. The result for A1 = 0.7538 − i0.1315 and T1 = 3.3784

is shown in Figure 6.10(B). The current along a perfectly conducting wire is added for

comparison in Figure 6.10(A). It is observed that the current in (B) does not attenuate

towards the end points as nicely as in the Wu-King case, see Figure 6.2 (B). This is a

direct result from the compensation delay time T1. The resistive profile has an effect

immediately at the time of excitation. With pulse compensation, the second voltage pulse

can only be applied when the current wave has reflected at least once. The effects of pulse

compensation start from t > T1. After the first positive and negative peak in plot (B), the

current is effectively attenuated.
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Figure 6.10: The induced current along a single thin wire with length L = 1 m and radius

a = 0.002 m, M = 60 and N = 512 in free space. The current along a perfectly conducting

wire is visualized in plot (A). The current along a pulse-compensated thin wire with A1 =

0.7538 − i0.1315 and T1 = 3.3784 ns is visualized in plot (B).
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6.2.3 Compensation for two coupled thin wires

Now that the current along a single thin wire can be compensated satisfactorily, a second

wire is added to study the effect of pulse compensation of a transmitting wire on the current

along a receiving wire. These wires are again denoted as wire 1 and wire 2, respectively.

Both wires have length L = 1 m and radius a = 0.002 m. The distance between the wires

is d = 1 m. Both wires are embedded in free space. The initial estimates are given in

Table 6.2 for T1 not fixed.

When the influence of wire 2 is taken into account, the compensation parameters for the

current along wire 1 are found as A1 = 0.7417 − i0.1196 and T1 = 3.3786 ns when T1 is

optimized and A1 = 0.7461 − i0.02 and T1 = 3.47 ns when T1 is fixed. The presence of

wire 2 does not change the parameters drastically in comparison with the case of a single

thin wire in free space.

The total current along wire 2 with the compensation parameters from wire 1 is given by

I ′
2(t) = I2(t) + A′

1I2(t − T1) − A′′
1I2,H(t − T1), (6.41)

where I2(t) is the current along wire 2 in the case of an uncompensated wire 1. The

coupling from the current along wire 1 to the current along wire 2 is depicted schematically

in Figure 6.11. It can be seen that the voltage pulse is the source for the total, compensated

current along wire 1 and subsequently a direct field originating from wire 1. In the second

schematic view, this direct field is the source for the current along wire 2.

V V

I
•

T1 A1

+
I1,tot I

E
E

d,1

(A)

E
d,1

E

I

I ′
2

(B)

Figure 6.11: Schematic visualization of the current functions along wires 1 (A) and 2 (B),

respectively.

In Figure 6.12, the current at the center of both wires has been plotted for both compen-

sation parameters. The compensated current along a single thin wire is included in (A)

and the uncompensated current along wire 2 is included in (B).
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Figure 6.12: Current at the centers of wire 1 and wire 2. Both wires have length L =

1 m and radius a = 0.002 m. The embedding is free space. The current along wire 1 is

compensated with parameters A1 = 0.7461− i0.02 and T1 = 3.47 ns when T1 is fixed (solid

lines) and A1 = 0.7417 − i0.1196 and T1 = 3.3786 ns when T1 is optimized (dotted lines).

In plot (A), the compensated current for a single wire is added for comparison (dashed

line in left plot). In plot (B), the uncompensated current along wire 2 has been added for

comparison (dashed line).

From (A) in Figure 6.12, it is observed that the compensation where T1 is optimized results

in a slightly better compensation. The compensated current along a single wire in free space

is similar to the result where T1 is optimized. It is also seen that in general, the current

along wire 1 is hardly affected by the presence of wire 2. On the other hand, the current

along wire 2 is heavily affected by the compensation of wire 1. The attenuation for the

second negative peak is about 6 dB. The first two peaks are not affected because these are

mainly caused by the first maximum of the current along wire 1, which is not compensated.

The compensation on wire 1 has an effect from about 3 ns after the start of the first current

peak. The current along wire 2 shows the same time delay before the shape of the current

changes. The oscillatory behavior of the current did not vanish. The compensation for T1

optimized gives a slightly better reduction of the magnitude of the current when compared

to the compensation with T1 fixed. Therefore, the optimized version of T1 is used in future

calculations.
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6.2.4 Pulse compensation of wire 2

Although the current along wire 2 is already attenuated considerably, pulse compensation

is also applied to reduce the current along wire 2 even further after some time instant

t > T2, where T2 is the time delay for the compensation of the current along wire 2. In

the previous chapter, it was demonstrated that wire 1 is not affected by the presence of

another wire. Therefore, wire 1 can be regarded as an impressed source for wire 2.

Since wire 2 is excited by a secondary field and not by a voltage pulse, the compensation

works on the secondary incident field. The determination of the compensation parameters

for wire 1 is based on the fact that the source is located at the center of the wire. For wire

2, the secondary field impinges along the whole wire. To ensure that both current waves

have the same time delay, the current waves are reflected at least twice before they reach

the point of excitation again, see Figure 6.13. The current along wire 2 depends linearly
x0 L

2L

2L

Figure 6.13: The current waves arriving at a point x that have been reflected twice.

on these secondary fields. The compensation parameters for wire 1 are already determined

in the previous section. These parameters are directly related to the wire geometry.

The total currents along wire 1 and wire 2 with the compensation pulse are now defined

as

I1,tot(t) = I1(t) + A′
1I1(t − T1) − A′′

1I1,H(t − T1),

I2,tot(t) = I ′
2(t) + A′

2I ′
2(t − T2) − A′′

2I ′
2,H(t − T2),

with

I ′
2(t) = I2(t) + A′

1I2(t − T1) − A′′
1I2,H(t − T1),

I ′
2,H(t) = I2,H(t) + A′

1I2,H(t − T1) + A′′
1I2(t − T1),

and where the subscripts 1 and 2 refer to the wires that are compensated. The currents

with the prime represent the results as given in (6.41). The Hilbert transform I ′
2,H(t) is

obtained in a similar way as (6.39). The total current along wire 2 is shown schematically

in Figure 6.14. Both wires again have a length L = 1 m and radius a = 0.002 m. The

distance between the wires is d = 1 m. Since the wires are of equal length, the time delay is
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Figure 6.14: Schematic visualization of the total current function along wire 2

chosen as T2 = 2T1 and the amplitude as A2 = −A2
1. The wires are again embedded in free

space. In Figure 6.15, the current at the center of wire 2 is plotted for the compensation

parameters as given above.

From the results, it is seen that the current along wire 2 is reduced heavily by the compen-

sation. Between 15 ns and 30 ns the current is not fully attenuated after compensation.

The current along wire 1 is also not fully attenuated in this time interval but oscillates

slightly and has almost the same magnitude as the current along wire 2 (dotted line). The

oscillation of the current along wire 2 is maintained by the mutual coupling between the

wires, see Chapter 4. After 30 ns, the current is fully attenuated. The magnitude of the

current along the pulse compensated wires is about 10 times higher than in the Wu-King

case.

Since the coupling between the wires affects the compensation of the current along wire

2, the parameters A2 and T2 are optimized in a similar way as A1 and T1 were found.

In previous sections, the currents along both wires have been calculated for various con-

figurations. These data are again used for the determination of optimized compensation

parameters for wire 2. The initial estimates are given by A2 = −(0.75)2 = −0.5625 and

T2 = 2L/c1 = 6.67 ns, see Figure 6.13. After minimization, the optimized compensation

parameters for wire 2 are found as

A′
2 = −0.5961, A′′

2 = −0.2491, T2 = 6.6643 ns.

The current at the center of wire 2, I2,tot, is plotted in Figure 6.16 for two sets of com-

pensation parameters. In the first case, the parameters obtained for wire 1 are used, i.e.

A2 = −A2
1 and T2 = 2T1. In the second case, the optimized parameters are used. The

current along wire 2 is already heavily influenced by the compensation of the current along

wire 1. The current along wire 2 is compensated after approximately 20 ns. In comparison,

the optimized parameters result in a better attenuation between 15 ns and 30 ns. After

30 ns, the other set of parameters gives better results.

It has been shown that the current along the wire can be compensated in a similar way as

the current along wire 1. This is explained from the fact that wire 1 is identical to wire 2.

Because the excitation of the current along wire 2 is more complicated in comparison to

the current along wire 1, the time delay T2 is larger.
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Figure 6.15: Current at the center of wire 2 in free space. The length of the wire is L = 1 m

and the radius a = 0.002 m. The solid line represents I2 when wire 1 is not compensated.

The dotted line represents I2 when wire 1 is compensated with A1 = 0.7417 − i0.1196,

T1 = 3.3786 ns and wire 2 is not compensated. The dashed line represents I2 when wire 1

is compensated with A1 = 0.7417− i0.1196, T1 = 3.3786 ns and wire 2 with A2 = −A2
1 and

T2 = 2T1.
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Figure 6.16: Current at the center of wire 2 with length L = 1 m and radius a = 0.002 m

in free space. Wire 1 is compensated with A1 = 0.7417 − i0.1196, T1 = 3.3786 ns. The

dotted line represents represents I2 when wire 2 is compensated with A2 = −A2
1 and T2 =

2T1. The solid line represents I2 when wire 2 is compensated with the optimized values

A2 = −0.5961 + i0.2491 and T2 = 6.6643 ns.



Chapter 7

Enhanced detection of a buried wire

In this chapter a simple two-wire detection set up is considered to detect a buried wire

with a minimum of post-processing techniques. The high direct coupling between the two

wires, whether or not in the presence of an interface, turned out to be the major problem

in detecting the buried wire directly from the current along wire 2. By suppressing the

late-time reflections of the current along the wire, the effects of mutual coupling can be

reduced as was shown in the previous chapter.

In Chapter 6, a Wu-King resistance profile and pulse compensation were shown to attenuate

the late time response of the current along a wire. Both techniques are used to enhance

the detection of a buried wire.

First, the resistively loaded wires are used in a half-space configuration as depicted in

Figure’s 4.8 and 4.12. Then, pulse compensation is used for the wires of the detection set

up in a similar configuration. The compensation parameters are calculated for the same

configuration in absence of the buried wire.

At the end of this chapter, the influence of various parameters of the configuration on the

compensation parameters is examined.

7.1 A detection set up with resistively loaded wires

In this section, the wires of the detection set up are loaded with the Wu-King resistance

profile.

The first configuration that is considered is the two-wire configuration that is depicted in

Figure 4.8. The wires have a length L = 1 m and radii a = 0.002 m. The distance between

the wires is d = 1 m. The relative complex permittivity of the upper half space is ε1r = 1.

The permeability is µ0 for both half spaces. In Figure 7.1, the currents at the centers of

121
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Figure 7.1: The induced currents at the center of wire 2 with length L = 1 m and radius

a = 0.002 m for different conductivities σ2. The distance is d = 1 m and z1 = −0.1 m

for (A) and (B), z1 = −0.25 m for (C) and (D) and z1 = −1 m for (E) and (F). The

medium properties are ε1r = 1, ε2r = 9 for (A), (C) and (E) and ε1r = 1, ε2r = 3 for (B),

(D) and (F). The permeability is µ0 for all configurations. The excitation is a Gaussian

voltage pulse with τ = 0.5 ns and t1 = 4τ .
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wire 2 are plotted for various permittivities of the lower half space. The height is varied

as z1 = −0.1 m, z1 = −0.25 m and z1 = −1 m. The current at the center of wire 1 for all

these configurations can be found in Figure 7.2.

The relative permittivity of the lower half space is ε2r = 9 for all plots on the left and

ε2r = 3 for all plots on the right. The conductivity of the lower half space is varied as

σ2 = 0, σ2 = 0.01 S/m and σ2 = 0.03 S/m.
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Figure 7.2: The induced current at the center of wire 1 with length L = 1 m and radius

a = 0.002 m for different conductivities σ2, permittivities ε2r and heights z1. The distance

between the wires is d = 1 m and ε1r = 1. The permeability is µ0 for all configurations.

The excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .

From Figure 7.2(A), it is immediately seen that regardless of the configuration, the current

along wire 1 is hardly influenced. That the current along wire 1 is still slightly affected by

the presence of the interface can be seen in (B).

The currents along wire 2 in Figure 7.1 are affected by the presence of the interface when

the detection set up is located close to the interface, see (A) and (B). The influence of

the conductivity in these successive plots can easily be noticed. The conductivity has an

effect within the time span from 5 < t < 20 ns. For lower permittivity, (B), the effect

of the conductivity is bigger. The influence of the conductivity increases with decreasing

relative permittivity. This can also be observed from (C) and (D) where the height is

increased to z1 = −0.25 m. The current in (D) is still affected by the conductivity while,

in (C), the current is no longer affected for the presented conductivities. In the plots

where z1 = −1 m, the currents are no longer affected by the conductivity of the lower half

space. It is clear that an interface is present because of the small additional waveform

between 9 ns and 15 ns. The magnitude of the additional waveform is smaller when the
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Figure 7.3: The induced currents at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The distance is d = 1 m and z1 = −0.1 m for (A) and (B), z1 = −0.25 m

for (C) and (D) and z1 = −1 m for (E) and (F). The medium properties are ε1r = 1,

σ1 = σ2 = 0, µ1 = µ2 = µ0 and ε2r = 9 for (A), (C) and (E) and εr,2 = 3 for (B), (D)

and (F). The buried wire has length L = 1 m, radius a = 0.002 m and is positioned at

z2 = 0.1 m. The excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .
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relative permittivity is lower. The direct effect of a lower permittivity is a smaller reflection

coefficient at the interface. Due to the reduced reflection at the interface, the current along

wire 2 is less influenced when the permittivity is lower. Since wire 1 is not at all affected

by its environment and the medium parameters of the upper half space are chosen equal to

the ones from free space, in the remainder of this section, only plots of the current along

wire 2 are given.

In Figure 7.3, the configuration as depicted in Figure 4.12 is considered. The medium

parameters of the lower half space are ε2r = 9, σ2 = 0 for all plots on the left and ε2r = 3,

σ2 = 0 for all plots on the right. Wire 3 with length L = 1 m and radius a = 0.002 m

may be present in the lower half space at a depth of z2 = 0.1 m. The lateral distance

of wire 3 is given as d2 = 0.5 m. At z1 = −1 m, the current along wire 2 is hardly

affected by the presence of wire 3. At z1 = −0.1 m, there is a significant difference in the

currents along wire 2 due to the presence of wire 3. In (B), the shape of the current clearly

changes. In (A), the shape of the current also changes but to a lesser extent than in (B).

At z1 = −0.25 m, the current along wire 2 in (C) is hardly affected by the presence of the

buried wire. When the permittivity is lower, see (D), the shape of the current still changes

due to the presence of the buried wire. Looking at the late-time behavior of the current

along wire 2, t > 15 ns, gives the impression that the shape of the current along wire 3

is visible. In Figure 7.4, the absolute value of the current at the center of wire 2 with

and without wire 3, as well as the absolute value of the current at the center of wire 3 is

plotted. The current along wire 2 indeed adapts to the current along wire 3. The shape

of the current along wire 3 can be read immediately from the current along wire 2. The

magnitude of the current along wire 3, when compared to the magnitude of the current

along wire 2, is bigger. This is due to the fact that wire 3 is not loaded with the Wu-King

profile.

To conclude this section, the effect of the conductivity σ2 of the lower half space is studied.

In Figure 7.5, the current at the center of wire 2 has been plotted for 3 different situations

regarding wire 3. All three wires are again of length L = 1 m and radius a = 0.002 m.

The height of the detection set up is z1 = −0.1 m. The medium parameters are ε1r =

1, σ1 = 0, ε2r = 9 for all plots on the left and ε2r = 3 for all plots on the right. The

conductivity of the lower half space is varied as σ2 = 0 in (A) and (B), σ2 = 0.01 S/m

in (C) and (D) and σ2 = 0.03 S/m in (E) and (F). From (A) and (B), it follows that

the transmitted field from wire 2 at a depth of z2 = 0.5 m arrives 5.5 ns later in (A)

than in (B). This is explained from the difference in optical path length divided by the

respective wave speeds, which is exactly 5.5 ns. The difference between the arrival times

of the transmitted field from wire 3 at z2 = 0.5 m and z2 = 1 m is approximately 9 ns
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Figure 7.4: The induced current at the center of wire 2 and wire 3 with lengths L = 1 m

and radii a = 0.002 m. The distance is d = 1 m and height and depth are z1 = −0.1 and

z2 = 0.1 m, respectively. The medium properties are ε1r = 1, σ1 = σ2 = 0, ε2r = 3 and

the permeability is µ0 for both half spaces. The excitation is a Gaussian voltage pulse with

τ = 0.5 ns and t1 = 4τ .

for ε2r = 9 and 5 ns for ε2r = 3. The difference in travel times for the optical path length

shows similar figures. Furthermore, it is noted that the presence of wire 3 shows up as

a typical waveform in the current along wire 2. This waveform is almost the same for

both permittivities and originates from the first current pulse induced on wire 3. Since

the current along wire 2 adapts to the behavior of wire 3, the occurrence of peaks at later

times gives additional information about both the depth of the wire and the lower half

space provided that information about the type of buried object is known.

In (C), the presence of wire 3 still adds the typical waveform to the current along wire

2, but with a lower amplitude. The conductivity of the lower half space has a double

effect on the transmitted field from wire 2. First, the fields in the lower half space are

attenuated while travelling to and from wire 3. Second, the induced current along wire

3 is more rapidly attenuated for higher conductivities and for later times, see Figure 4.7.

The consequences for the current along wire 2 are a reduced additional waveform due to

the damping of the involved fields in the lower half space and a heavy attenuation of the

late-time response of the current along wire 3. In (D), the current along wire 2 is hardly

influenced by the presence of a buried wire. When the conductivity is increased further,
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Figure 7.5: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m for different depths z2 of the buried wire. The distances are d = 1 m and

d2 = 0.5 m. The depth of wire 3 is varied as indicated in each plot. The medium properties

are ε1r = 1, σ1 = 0, ε2r = 9 for all plots on the left and ε2r = 3 for all plots on the right. The

conductivity of the lower half space is varied as σ2 = 0 in (A) and (B), σ2 = 0.01 S/m in (C)

and (D) and σ2 = 0.03 S/m in (E) and (F). The permeability is µ0 for all configurations.

The excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .
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see (E) and (F), the current along wire 2 is hardly affected by the presence of wire 3. In

general, the influence of the conductivity is again more substantial when the permittivity

is lower.

7.2 A detection set up with pulse-compensated wires

In this section, pulse-compensated wires are used in the detection set up. From previous

results, it is observed that the detection set up should be positioned close to the interface.

With pulse compensation, the effects of the interface on the current along wire 2 can be

partly eliminated. This is achieved by adding a third compensation to the current along

wire 2 as is depicted schematically in Figure 7.6. The direct field E
d,1 originates from wire

E
r
1

E

I

I2
•

T2 A2

+ •

T3 A3

+
I2,tot

Figure 7.6: Schematic visualization of the total current function along wire 2

1 as depicted in Figure 6.11(A). This third compensation does not have fixed parameters

but the compensation parameters depend on the medium properties of the lower half space.

The first configuration that is considered is the two-wire configuration depicted in Fig-

ure 4.8. The wires have length L = 1 m, radius a = 0.002 m and the distance between

the wires is d = 1 m. The height is z1 = −0.1 m. The relative complex permittivity of

the upper half space is ε1r = 1. The conductivity of the lower half space is σ2 = 0. The

permeability is µ0 for both half spaces.

In Figure 7.7, the currents at the center of wire 2 are plotted for the relative permittivities

ε2r = 9 and ε2r = 3 of the lower half space. The wires are compensated with the free-space

parameters and with the parameters A3, T3 that have been optimized for the respective

half spaces. The values of the compensation parameters for the different configurations

are tabulated in Table 7.1. In all cases, the additional compensation for wire 2 gives a

better attenuation of the current along wire 2. When the height of the detection set up is

z1 = −0.1 m, the current is compensated very well after 25 ns.
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ε2r z1[m] A′
3 A′′

3 T3 [ns]

3 −0.1 −0.084 −0.101 7.233

9 −0.1 −0.055 −0.027 7.281

Table 7.1: The compensation parameters for different configurations.
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Figure 7.7: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The distance between the wires is d = 1 m and the height is z1 = −0.1 m. The

medium properties are ε1r = 1, σ1 = σ2 = 0, ε2r = 9 (A) and ε2r = 3 (B). The permeability

is µ0 for all configurations. The currents are pulse compensated with optimized values (solid

lines) and free-space values (dashed lines).

7.2.1 The influence of various parameters on the pulse compen-

sation

The presence of an interface has an influence on the currents of wire 1 and wire 2, which are

both located at a height z1 above the interface. It was observed that the presence of wire 2

affects the compensation parameters of wire 1 slightly. With a third compensation, effects

from the lower half space can be partly eliminated. From previous results it was observed

that the interface has a strong effect on the currents along the wires when z1 is small. It

is therefore interesting to see how the compensation parameters depend on the height z1.

In Table 7.2, the results are given for 0.1 ≤ |z1| ≤ 1 and the relative permittivities ε2r = 3,

ε2r = 9 and ε2r = 16. In Figure 7.8, the real part of the amplitude A3 is plotted as a

function of the height z1. The relative permittivity of the lower half space is varied as

ε2r = 3, ε2r = 9 and ε2r = 16, respectively.
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ε2r = 3 ε2r = 9 ε2r = 16

z1 [m] A′
3 A′′

3 T3 [ns] A′
3 A′′

3 T3 [ns] A′
3 A′′

3 T3 [ns]

-0.1 -0.084 -0.101 7.233 -0.055 -0.027 7.281 -0.154 -0.011 7.460

-0.2 -0.126 0.022 7.560 -0.192 0.066 7.581 -0.233 0.088 7.593

-0.3 -0.145 0.002 7.496 -0.229 -0.009 7.461 -0.266 -0.012 7.471

-0.4 -0.139 -0.004 7.469 -0.212 -0.007 7.500 -0.244 -0.008 7.539

-0.5 -0.098 0.071 8.779 -0.186 0.066 8.610 -0.211 0.086 8.700

-0.6 -0.086 0.040 8.893 -0.164 -0.005 8.678 -0.194 -0.033 8.555

-0.7 -0.005 0.051 10.481 -0.074 0.069 10.291 -0.100 0.074 10.279

-0.8 -0.008 0.008 10.271 -0.063 -0.019 10.171 -0.085 -0.033 10.181

-0.9 -0.013 -0.028 11.331 -0.078 -0.001 11.724 -0.103 0.012 11.760

-1.0 0.009 -0.061 11.112 -0.047 -0.100 11.260 -0.074 -0.113 11.315

Table 7.2: Compensation parameters as a function of the height z1 for various permittivities

ε2r.
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Figure 7.8: The real part of the amplitude compensation factors from both wires as a

function of the height z1. The relative permittivity is chosen as ε2r = 3, ε2r = 9 and

ε2r = 16.
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Figure 7.9: The imaginary part of the amplitude compensation factors from both wires as

a function of the height z1. The relative permittivity is chosen as ε2r = 3, ε2r = 9 and

ε2r = 16.
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Figure 7.10: The time delays for the pulse compensation of both wires as a function of the

height z1. The relative permittivity is chosen as ε2r = 3, ε2r = 9 and ε2r = 16.
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The imaginary part of A3 is plotted in Figure 7.9 for the same configuration. The matching

time delays T3 for the pulse compensation are depicted in Figure 7.10.

From Figure 7.10, it is immediately observed that the time delay T3 is more or less linearly

dependent on the height z1. This can be fully explained from the increasing travel time

for an increasing height z1. The plot for the real part of the compensation parameters A3

shows a curve with a minimum at z1 = −0.3 m. Furthermore, the curve is not smooth. The

fact that standing waves may exist at certain heights z1 probably causes this phenomenon.

From Figure 7.9, it is observed that the imaginary part of the amplitude compensation

parameter A3 shows a similar behavior as the real part of A3 but with a local maximum

around z1 = −0.4 m. For increasing permittivity of the lower half space the variation of

A3 is stronger.

Next, the dependence on ε2r for a fixed z1 of the compensation parameters is studied. The

results are listed in Table 7.3. In Figure 7.11, the real part of A3 is plotted for heights

z1 = −0.1 m and z1 = −0.25 m and 2 ≤ ε2r ≤ 16. The imaginary part of the amplitude

z1 = −0.1m z1 = −0.25m

ε2r A′
3 A′′

3 T3 [ns] A′
3 A′′

3 T3 [ns]

2 -0.090 -0.063 7.265 -0.113 0.013 0.752

3 -0.084 -0.101 7.233 -0.139 0.014 0.750

4 -0.074 -0.116 7.224 -0.157 0.019 7.518

5 -0.065 -0.116 7.216 -0.174 0.018 7.480

6 -0.026 -0.127 7.030 -0.187 0.026 7.515

7 -0.018 -0.124 7.050 -0.199 0.031 7.530

8 0.000 -0.089 7.080 -0.210 0.031 7.520

9 -0.055 -0.027 7.281 -0.220 0.033 7.514

10 -0.100 0.002 7.470 -0.228 0.033 7.511

11 -0.122 0.013 7.510 -0.235 0.034 7.511

12 -0.139 0.015 7.519 -0.241 0.035 7.512

13 -0.150 0.015 7.524 -0.247 0.033 7.501

14 -0.156 0.012 7.524 -0.252 0.036 7.513

15 -0.158 0.000 7.490 -0.257 0.037 7.511

16 -0.154 -0.011 7.460 -0.260 0.040 7.530

Table 7.3: Compensation parameters as a function of the permittivity ε2r for heights

z1 = −0.1 m and z1 = −0.25 m.
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Figure 7.11: The real part of the amplitude compensation factors from both wires as a

function of the relative permittivity ε2r. The height of the wires is chosen as z1 = −0.1 m

and z1 = −0.25 m.

A3 is plotted in Figure 7.12. The appropriate time delay T3 is depicted in Figure 7.13. It

is observed that T3 is hardly influenced by the increasing permittivity. Together with the

height dependence of the time delay, it can be concluded that the time delay T3 depends

directly on the path length between the wires via the interface and thus on the height z1.

For z1 = −0.25 m, the real and imaginary parts of A3 are smooth functions of the per-

mittivity ε2r. From previous results, it was observed that the presence of an interface has

a strong effect on the current along wire 2 when z1 is small. This is in accordance with

the observation that for z1 = −0.1 m the amplitude A3 changes rapidly as a function of

the permittivity. For an increasing height z1, indeed the influence of the presence of the

interface on the compensation parameter A3 is smaller.

In general, the choice of parameters for the third compensation demands proper attention.

The current along wire 2 is strongly affected by the presence of an interface, especially

when z1 is small. In all cases, the time delays are less critical.

7.2.2 Detection of a buried wire

The currents that are shown in the examples in this section are calculated for the configu-

ration depicted in Figure 4.12. The wires have length L = 1 m, radius a = 0.002 m and the
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distance between the wires is d = 1 m. The height is given by z1 = −0.1 m. The relative

permittivity of the upper half space is ε1r = 1. The conductivity and permeability of both

half spaces is σ1 = σ2 = 0 and µ0, respectively. In the calculation of the currents along the

pulse-compensated wires in the detection set up, the free-space parameters are used. The

current along wire 2 is compensated by the third compensation with the parameters from

Table 7.1.

The relative permittivity of the lower half space is ε2r = 9 for all plots on the left and

ε2r = 3 for all plots on the right. Wire 3 with length L = 1 m and radius a = 0.002 m may

be present in the lower half space. The lateral distance from wire 3 to wire 1 is given as

d2 = 0.5 m.

In Figure 7.14, the currents at the center of wire 2 for z2 = 0.1 m and z2 = 1 m are plotted.

From all results, it is seen that the presence of the buried wire has a strong effect on the

current along wire 2. Especially after 20 ns, the current is heavily affected. In (A), the

difference between the two currents is bigger than in the Wu-King case after t = 15 ns. The

current in (B) is comparable to the Wu-King case. When the depth of wire 3 increases, the

current in (C) is affected in a similar way as in the Wu-King case after t ≈ 23 ns. However,

the difference in the current is bigger for t = 35 ns. In the last plot, the influence of wire 3

starts around 10 ns. The pulse compensation has not started yet at that time. Therefore,

the arrival of the transmitted field from wire 3 is not visible from the current along wire

2. After approximately 15 ns, the difference between the currents is comparable with the

Wu-King case.
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Figure 7.14: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The length and radius of the buried wire is L = 1 m and a = 0.002 m,

respectively. The distance between the wires is d = 1 m and the height is z1 = −0.1 m. The

medium properties are ε1r = 1, σ1 = σ2 = 0, ε2r = 9 for (A) and (C) and ε2r = 3 for (B)

and (D). The permeability is µ0 for all configurations. The currents are pulse compensated

with optimized values. The depth of wire 3 is z2 = 0.1 m for (A) and (B), and z2 = 1 m

for (C) and (D). The dotted lines represent the current in absence of wire 3 and the solid

lines represent the current in presence of wire 3.



Chapter 8

Scanning the lower half space

In the previous chapter, it was shown that a buried wire can in principle be detected by

the detection set up. In this chapter, the currents along the wires of the detection set are

calculated at different positions in the y-direction. The technical term for such a series of

currents is a scan, and in this particular case a B-scan [12]. The presence of the buried

wire affects the current along the wires in the detection set up. Since the travel time and

the position with respect to the interface from the transmitted field from the transmitting

wire to the receiving wire via the buried wire changes all the time, the current along the

receiving wire changes. The variation in the current along the receiving wire makes it

possible to see if a buried wire is present.

Both the Wu-King resistive profile and pulse compensation will be used on the wires of

the detection set up. The pulse-compensation parameters are optimized for the respective

configurations.

8.1 Introduction

The detection of objects is difficult with only a single time signal. The observation can be

made only by comparing the time signal to a reference signal pertaining to the situation.

The reference signal is defined as a signal without a buried object but with the presence

of the homogeneous half space. When a series of calculations of the current along a wire is

performed for different positions, a difference can easily be observed by plotting the various

time signals next to each other. Such a series of time signals is usually referred to as a

“scan”. In the literature, see e.g. Daniels [12], three types of scans can be distinguished.

137



138 Chapter 8. Scanning the lower half space

Consider the data to be of the form

A(xi, yj, tk) for i = 0, . . . , I,

j = 0, . . . , J,

k = 0, . . . , K.

(8.1)

Then the three types of scans are defined as in Figure 8.1. From Figure 8.1, it follows that

all previous plots are A-scans, namely one time signal at a fixed point. The B-scan is a

series of time signals when the wire is moved in the x or y-direction. The C-scan is a series

of measurements in both directions for a fixed value of z or a range of z-values.

With the detection set up formed by wire 1 and wire 2, a B-scan is carried out for a

number of configurations. The detection set up is moving in the y-direction as depicted in

Figure 8.2. Both wires have a length L = 1 m and radius a = 0.002 m and are directed

parallel to each other and the interface. The distance between the wires of the detection

set up is d = 1 m. The detection set up is located at a height z1. The buried wire has

a length L3 and radius a = 0.002 m and is located at a depth z2 = 0.1 m. The distance

in the y-direction of wire 3 with respect to wire 1 is denoted by d2. Since the reference

coordinate system is chosen such that at wire 1, y = 0, the distance d2 can have a negative

value. So d2 < 0 merely indicates that wire 3 is located to the left of wire 1. The length

of wire 3 may be varied and the wire may also have an offset xoff in the x-direction. The

permittivity and conductivity of the upper half space are ε1r = 1 and σ = 0, respectively,

in all examples. The permeability of both half spaces is chosen as µ1 = µ2 = µ0 in all

cases.

The depth of the buried wire is chosen fixed as z2 = 0.1 m. When z2 increases, the influence

of the current along wire 3 shows up in a distinct waveform in the current along wire 2

at later times. This increases the detectability of wires that are located at larger depths,

provided that the conductivity of the lower half space does not attenuate the current along

wire 3 and the transmitted field too much.

In general, all scans will be performed over a range of −1 < d2 < 2 m. The scan interval

is divided into 75 steps, which yields a spatial discretization in the y-direction with a step

of ∆d2 = 0.04 m. The current is then plotted versus time t and position d2. Such a plot

is referred to as a “synthetic seismogram”. The effects of the buried wire on the local

minima and maxima of the current at the center of wire 2 occur at different time instants

as a result of the varying y-position. The relation between the varying time instants and

the different y positions is described by hyperbolas [12]. Therefore, the presence of the

buried wire results in hyperbolic spreading functions in the synthetic seismogram.
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j = 0, . . . , J,
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j = 0, . . . , J,

k = 0, . . . , K.
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(B)
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Figure 8.1: Definition of the A-scan (A), B-scan (B) and C-scan (C). The indices i, j and

k refer to sampling in the x, y and t direction, respectively.



140 Chapter 8. Scanning the lower half space

•

• •

d

z = 0

z = z1

z = z2

d2

scan direction

Wire 1 Wire 2

Wire 3

(A)

L L

L3

Wire 1 Wire 2
Wire 3

xoff

d

d2

(B)

Figure 8.2: Lateral view (A) and top view (B) for the B-scan.

8.2 B-scan with Wu-King loaded wires in the detec-

tion set up

The wires of the detection set up are loaded with a resistance profile. This detection set

up is then used to generate B-scans as discussed in the previous section. In all examples,

the medium parameters of the upper half space are equal to those of vacuum. The length

of the wires of the detection set up is L = 1 m and the radius is a = 0.002 m. The distance

between the wires is d = 1 m. The excitation of wire 1 is again the Gaussian pulse as given

in Section 3.3.2.

In the first example, wire 3 is absent. The rest of the configuration is as described in

the previous section with z1 = −0.1 m, ε2r = 9 and σ2 = 0. The current along wire 2

is plotted in Figure 8.3. Obviously, the current does not change with d2 when the same

lower half space is scanned. For future use it is therefore sufficient to calculate only one

reference result instead of an entire scan. From previous results it was observed that the

first minimum of the current along wire 2 is not affected by the presence of a buried wire.

In the second example, two synthetic seismograms are presented to show the advantages

of the Wu-King profile. The configuration is as described in the previous section with

L3 = 1 m, xoff = 0, z1 = −0.1 m, z2 = 0.1 m ε2r = 3 and σ2 = 0. In Figure 8.4, plot

(A) shows the current at the center of wire 2 without the resistance profile while plot (B)

shows the current at the center of wire 2 with the resistance profile. It is immediately seen

that the current along the perfectly conducting wire is oscillating heavily. In both plots,
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a = 0.002 m. The buried wire is absent. The medium properties are ε1r = 1,σ1 = σ2 = 0,

ε2r = 9 and the permeability is µ0 in both half spaces. The wires of the detection set up are

resistively loaded.
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Figure 8.4: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 1 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3 and the permeability is µ0 for both half spaces. In (A), the wires of the detection

set up are perfectly conducting while in (B), they are resistively loaded.
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the first maximum is visibly affected by the presence of the buried wire when it is located

between 0 < d2 < d. For the perfectly conducting wire, this effect is observed during

the entire scan. From the Wu-King loaded wire, a hyperbolic spreading function can be

recognized directly from the current along wire 2. This means that the depth of the buried

wire can be calculated directly from the signal detected by a Wu-King loaded wire.

Earlier, it was mentioned that only one calculation is necessary as a reference. This partic-

ular calculation contains information about the entire configuration without the presence

of wire 3. In detection terminology, the reference calculation is referred to as a background

calculation. Subtracting the reference calculation from the synthetic seismogram yields a

second synthetic seismogram showing the difference between the two time signals. This

technique is commonly known as “background subtraction”.

As a first example of background subtraction, the detection set up is located at z1 = −0.1 m

and wire 3 is located at z2 = 0.1 m. The offset is xoff = 0. In Figure 8.5, the current at

the center of wire 2 has been plotted for ε2r = 3 and σ2 = 0. The permittivity is changed

to ε2r = 9 for the scan in Figure 8.6. The hyperbolic spreading functions can easily

be observed. For t → ∞, the hyperbolic spreading function approaches the asymptotes

associated with the spreading function. In Figure 8.6, the angle of the asymptotes with

a time axis through the point d = 0.5 m is smaller than in Figure 8.5. The asymptote is

given by [12]:

d2 =
d

2
± ∆d2

∆t
(t − tc), (8.2)

where tc is a constant. The factor ∆d2/∆t is referred to as the relative speed vr of the

entire configuration. In Figure 8.5, the relative speed is found as:

vr =
2 − 1

14 − 7.5
109 = 153.9 106 m

s
, (8.3)

where the values for the dots have been obtained directly from the data set. The path length

l3 for a signal from wire 1 to wire 2 via wire 3 is given by l3 = 2
√

(d/2)2 + (z2 − z1)2. Since

the first arrival time and the relative speed are known, l3 can be determined by multiplying

the arrival time with the relative speed. The depth of the wire is then given as [12]:

z2 =

√(
vrt0
2

)2

−
(

d

2

)2

+ z1. (8.4)

The first arrival time is t0 = 7 ns. For Figure 8.5, the depth of wire 3 is then found as

z2 = 0.099 m. This value is in accordance with the input parameter.



143

•

•

7.5 14

• •

15.9 27.6

2

1

0

−1
0 20 40

d
2

[m
]

t [ns]

Figure 8.5: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 1 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3. The permeability is µ0 for both half spaces. The wires of the detection set up are

resistively loaded.

The arrival time can also be calculated by means of the respective speeds of the media and

the distance that a wave has to travel from wire 1 to wire 2 via wire 3. Let t1 be the time

that the field travels through the upper half space with velocity c1 = c0 = 3 108 m/s, and

let t2 be the time that the field travels trough the lower half space with speed c2. Then

the following relation is found for the arrival time

t̃0 = t1 + t2 = 2

(
−z1

√
(d/2)2 + (z2 − z1)2

(z2 − z1)c1

+
z2

√
(d/2)2 + (z2 − z1)2

(z2 − z1)c2

)
. (8.5)

From this equation, it is observed that all variables except c2 are already known. Since

the magnitude of the Gaussian voltage pulse reaches its maximum at 2 ns and the arrival

time t̃0 is taken at the first peak value that occurs in the synthetic seismogram, the arrival
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Figure 8.6: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 1 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 9. The permeability is µ0 for both half spaces. The wires of the detection set up are

resistively loaded.

time lies at t̃0 = t−2 = 5 ns. With the given value for t̃0, the speed in the lower half space

is found as c2 = 168 106 m/s. The relative permittivity is then found as ε2r = 3.2. This

value is also quite accurate when compared to the input parameters.

The last parameter that can be retrieved from the synthetic seismogram is the length of

the wire. When the time delay parameter Tdelay that can be observed from the synthetic

seismogram is known, the length of the buried wire is determined by L3 = Tdelayc2/2. From

Figure 8.5 the time delay is found as Tdelay = 27.6 − 15.9 = 11.7 ns. This yields for the

length of the buried wire L3 = 0.98 m, which is again an accurate representation of the

input parameters.

From Figure 8.6, the relative speed is calculated as vr = 137.3 106 m/s. The first arrival

time is found as t0 = 8 ns. The depth is then z2 = 0.13 m. This value is not as accurate
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as in the previous example because the lines are less distinct in Figure 8.6 when compared

to Figure 8.5. A small deviation in the time difference may cause inaccurate results.

In the next example, wire 3 is of length L3 = 0.5 m and the offset is xoff = 0.25 m. In

Figure 8.7, the current along wire 2 for this configuration has been plotted for ε2r = 3 and

σ2 = 0. A few interesting features can be seen immediately. The asymptotes from the
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Figure 8.7: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 0.5 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0.25 m. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3. The permeability is µ0 for both half spaces. The wires of the detection set up are

resistively loaded.

first hyperbola are exactly the same as the asymptotes in Figure 8.5. This actually shows

that the angles of the asymptotes contain information about the medium properties of the

lower half space rather than about the buried wire. The time delay between two distinctive

points in the late-time behavior of the current along wire 2 shows that Tdelay is exactly half

the value that was found in Figure 8.5. This is expected because wire 3 is half the size of

wire 3 in Figure 8.5. The elevated maxima and minima between 0 < d2 < d are stronger

here than for wire 3 with length L3 = 1 m. It is also observed that the current along wire

3 is attenuated slower when the wire is shorter. This shows that the oscillating behavior

of the current along wire 2 is determined by the repeated reflections of the current along

the buried wire. The repeated reflections of the current along wire 3 cannot be suppressed
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by the resistive profile along the wires of the detection set up.

In the last examples the length and the offset of the buried wire are varied as L3 = 1 m

and xoff = 0.9 m and L3 = 0.5 m and xoff = 0.75 m. The currents at the centers of wire 2

have been plotted in Figure 8.8. From plot (A), it is observed that the first arrival time t0
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Figure 8.8: The induced currents at the centers of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with radius a = 0.002 m is z2 = 0.1 m. The

length and offset of the buried wire are varied as L3 = 1 m and xoff = 0.9 m (A) and

L3 = 0.5 m and xoff = 0.75 m (B). The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3. The permeability is µ0 for both half spaces. The wires of the detection set up are

resistively loaded.

is smaller when compared to a buried wire with length L3 = 1 m and xoff = 0. In plot (B),

a similar observation can be made. The transmitted field from wire 1 reaches wire 3 later

when an offset xoff between the centers of the wires of the detection set up and wire 3 is

present. The angles of the asymptotes are the same again in both plots. This means that

information about the lower half space is preserved. The length of wire 3 cannot easily be

determined from these plots.
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8.3 B-scan with pulse-compensated wires in the de-

tection set up

The currents along the wires of the detection set up are pulse compensated with a carefully

chosen set of complex amplitudes and time delays. Both parameters depend on the height

of the detection set up and on the material parameters of the lower half space as was shown

in Section 7.2.

The basic configuration is the same as in Section 8.2. In the examples that are shown in

this section, the lengths of the wires of the detection set up are L = 1 m and the radii are

a = 0.002 m. The height of the detection set up is z1 = −0.1 m. The depth of wire 3 is

z2 = 0.1 m in all examples. The radius of wire 3 is a = 0.002 m. The length and offset of

wire 3 may be varied. The medium parameters of the respective half spaces are ε1r = 1

and σ1 = σ2 = 0. The permeability is equal to µ0 for all configurations. The compensation

parameters for both wires are given in Table 7.1.

In general the maxima and minima of the currents along wire 2 are about ten times larger

in magnitude for pulse compensation than the currents along the Wu-king loaded wires.

In the first examples, wire 3 has a length L3 = 1 m and the offset is xoff = 0. The relative

permittivity is ε2r = 3 for Figure 8.9 and ε2r = 9 for Figure 8.10. The arrival time

and angle of the asymptotes are the same as in the synthetic seismograms obtained with

Wu-King loaded wires. After t = 15 ns, the influence from wire 3 on the current along wire

2 is clearly visible, especially around d2 = 0 and d2 = 1 m. For these values of d2, wire 3 is

in the same (x, z)-plane as wire 1 and wire 2, respectively. The mutual interaction at those

points is at its maximum. In addition, the wire radiates the strongest around the end faces

of a wire where the Wu-King profile attenuates the current. Therefore, the presence of wire

3 can be noticed by the “hot spots” in the synthetic seismogram for uncompensated wires.

In the Wu-King case, the resistive profile spreads this effect out over time, see Figure 8.5.

For ε2r = 9, the effects of wire 3 last longer with pulse compensation. Outside the region

0 < d2 < d, the current is fully attenuated after about 35 ns while in the Wu-King case it

does not. This indicates that pulse compensation is more precise in scanning applications

since it leads to a better discrimination outside the region 0 < d2 < d.

In the third configuration, wire 3 has a length L3 = 0.5 m, radius a = 0.002 m and the

offset is xoff = 0.25 m. The relative permittivity is ε2r = 3. The synthetic seismogram for

this configuration is depicted in Figure 8.11. The influence of wire 3 on the current along

wire 2 is stronger in comparison with Figure 8.9. The mutual interaction between the wires

when wire 3 is present in the region 0 < d2 < d is very strong. Outside this region, the
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Figure 8.9: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 1 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3. The permeability is µ0 for both half spaces. The wires of the detection set up are

pulse compensated.

current is fully attenuated with pulse compensation after t = 35 ns. Again, hot spots are

noticeable at later times.

In the final examples, the length and the offset of the buried wire are varied as L3 = 1 m

and xoff = 0.9 m and L3 = 0.5 m and xoff = 0.75 m. The relative permittivity of the lower

half space is ε2r = 3. The currents at the centers of wire 2 have been plotted in Figure 8.12.

The currents along the pulse-compensated wires are attenuated more rapidly outside the

region 0 < d2 < d in comparison with Figure 8.8. The hot spots as noted in previous

figures are no longer present. Here, the center of the buried wire has an offset with respect

to the centers of the wires of the detection set up. The current distribution along the wire

is therefore no longer symmetrical. A comparison between the plots (A) of Figure 8.8 and

Figure 8.12 shows that effects of the buried wire are stronger with pulse-compensation.
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Figure 8.10: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 1 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 9. The permeability is µ0 for both half spaces. The wires of the detection set up are

pulse compensated.

Again, it is observed from both plots that information about the object cannot be easily

retrieved when an offset xoff is applied. Information about the lower half space is still

retrievable from the synthetic seismogram.

When an offset between the center of the buried wire and the wires of the detection set

up is present, more advanced signal processing will be needed to retrieve more information

about the object. For this case, a C-scan should be made in order to tell something about

the position of the wire. When the detection set up is also moved into the x-direction, the

first arrival time will appear as a hot spot in a certain time slice. A time slice is a plot in

x and y-direction for a given time instance. With this extra information, the depth of wire

3 should be retrievable.
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Figure 8.11: The induced current at the center of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with length L3 = 0.5 m and radius a = 0.002 m

is z2 = 0.1 m. The offset is xoff = 0.25 m. The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3. The permeability is µ0 for both half spaces. The wires of the detection set up are

pulse compensated.
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Figure 8.12: The induced currents at the centers of wire 2 with length L = 1 m and radius

a = 0.002 m. The depth of the buried wire with radius a = 0.002 m is z2 = 0.1 m. The

length and offset of the buried wire are varied as L3 = 1 m and xoff = 0.9 m (A) and

L3 = 0.5 m and xoff = 0.75 m (B). The medium properties are ε1r = 1, σ1 = σ2 = 0,

ε2r = 3. The permeability is µ0 for both half spaces. The wires of the detection set up are

pulse compensated.



Chapter 9

The inhomogeneous slab

At the end of this thesis, one final configuration is studied. An inhomogeneous slab sand-

wiched between two homogeneous half spaces is analyzed by the detection set up, see

Figure 9.1. In the literature, Rubio Bretones et al [32] described a similar case with re-

sistively loaded wires in the detection set up. The goal of the study was to determine

properties of the lower half space with a simple detection set up. With pulse compensated

wires, similar results are expected.

With the introduction of the slab, the reflected-field terms become more complicated. An

elegant solution to handle the reflected field terms for z < 0 and the inverse spatial Fourier

transformation involved is presented in [27] and [32], respectively. With the resistively

V (ω)
xg

L

z1

z = 0

z = ds

ε2(z), µ2(z), σ2(z)

ε1, µ1

ε3, µ3

wire 1 wire 2

d

z

x

y

Figure 9.1: An inhomogeneous slab configuration
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loaded wires, the slab properties can be understood better from the current at the center

of wire 2 [32]. Again, wire 1 was hardly affected by the presence of the second medium.

For the examples presented in this section, the computer code that generated the results

of [32] is used. Calculations can be carried out for wires with or without the resistive

loading. In all examples, the half spaces have a complex permittivity ε1 = ε3 = ε0 and a

permeability µ1 = µ3 = µ0. In [32], only the slab may have a conductivity as depicted in

Figure 9.1. It was observed that the conductivity only attenuates the effects of the slab on

the current along wire 2 [32]. Therefore, in all the examples given here, the conductivity

σ2(z) of the slab is chosen zero. The length of the wires of the detection set up is again

L = 1 m and their radius is a = 0.002 m. The height of the detection set up is chosen

as z1 = −0.25 m. The distance between the wires is d = 1 m and the width of the slab

ds = 2 m. The permittivity of the slab is varied as ε2r(z) = 2 + 9z, ε2r(z) = 20 and

ε2r(z) = 2, respectively, while the permeability is µ2r = µ0. The results for the unloaded

and loaded wires are repeated from [32, Figure 2] but for a slab width of 2 m, see Figure 9.2.

For the sake of completeness, the currents at the center of wire 1 are plotted as well. To

obtain the currents from (A) and (B), perfectly conducting wires are used. The plots (C)

and (D) were obtained with resistively loaded wires. It is observed from (C) that the

resistance profile is again effective in suppressing the end reflections of the wire and thus

attenuating the current effectively. From both currents at the center of wire 1, it is not

possible to visibly retrieve information about the slab. From (D), the waveforms added to

the current along wire 2 by the reflected wave at z = ds can be easily observed for all three

permittivity profiles. In (B), the additional waveform due to the slab with permittivity

ε2r(z) = 2 is not visible in the current at the center of wire 2. In the waveform introduced

by the permittivities ε2r(z) = 20 and ε2r(z) = 2 + 9z, only the first positive peaks as

recognized from (D) are visible in the currents in (B). Since the first negative peaks are

not clearly visible, the first arrival time is not known. By looking only at the currents in

(B), the arrival times of the additional waveforms due to the slab cannot be retrieved.

In the remaining examples of this chapter, only the currents along wire 2 will be plotted.

The resistively loaded wires show to be advantageous over the perfectly conducting wires,

see Figure 9.2 and [32]. Based on the results from previous chapters, the perfectly conduct-

ing wires are pulse compensated. The compensation parameters are chosen equal to the

ones obtained for a similar detection set up in free space. The compensation parameters

are chosen this way because it is necessary to retrieve information about the slab and thus

for the entire embedding. As a first test, the configurations from the previous example are

used. In Figure 9.3, the current at the center of wire 2 is plotted. The additional wave-

forms added to the current along wire 2 by the slab with permittivities ε2r(z) = 2+9z and
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Figure 9.2: The induced currents at the center of wire 1 and wire 2. Both wires are of

length L = 1 m with radius a = 0.002 m. The height is chosen as z1 = −0.25 m and the

distance between the wires is d = 1 m. The half spaces have the material properties of

vacuum. The permeability and conductivity of the slab are the same as for vacuum. The

permittivity ε2r(z) of the slab is varied as indicated. The wires from (C) and (D) are loaded

with the resistive profile from Chapter 6. The excitation is a Gaussian voltage pulse with

τ = 0.5 ns and t1 = 4τ .

ε2r(z) = 20 are clearly visible. The first negative peak is more difficult to recognize from

the additional waveform added by the slab with permittivity ε2r(z) = 2. From comparing

the currents along the pulse compensated wires to the currents obtained for the same con-

figuration with uncompensated PEC wires, see Figure 9.2, it is clearly observed that more

information is retrieved with the pulse-compensated wires. Although pulse compensation



154 Chapter 9. The inhomogeneous slab

-100

-50

0

50

100

150

200

0 20 40 60 80 100 120 140

I 2
[µ

A
]

t [ns]

ε2r(z) = 2 + 9z
ε2r(z) = 20
ε2r(z) = 2

Figure 9.3: The induced current at the center of wire 2. The wire is of length L = 1 m

with radius a = 0.002 m. The height is chosen as z1 = −0.25 m. The half spaces have

the material properties of vacuum. The permeability and the conductivity of the slab are

the same as for vacuum. The permittivity ε2r(z) of the slab is varied as indicated. The

free-space compensation parameters for 2 wires are used. The excitation is a Gaussian

voltage pulse with τ = 0.5 ns and t1 = 4τ .

allows the oscillating behavior of the current to some extent, the influence from the slab

can now be clearly recognized as well as the first arrival time. Compared to the Wu-King

loaded wires, a similar pulse shape is introduced to the current at the center of the pulse-

compensated wires by the interface at z = d2. The additional waveform is attenuated later

in the latter case. This is a direct result from the fact that the current wave has to be

allowed to travel twice along wire 2 before pulse compensation has any effect. Again, the

most important difference is that the magnitude of the current is about 10 times higher in

the pulse-compensated case. The arrival times from the reflected wave at z = ds are the

same as in the Wu-King case.

In the next example, a linear permittivity and linear permeability profile in the slab are

studied. The rest of the configuration, with the exception of the method for suppressing

the end reflections, is the same as in the other examples. In Figure 9.4, the currents at the

center of a Wu-King loaded wire, see (A), and of a pulse compensated wire 2, see (B), are

plotted. The medium parameters of the slab are varied as ε2r(z) = 2 + 9z, µ2r(z) = 1 for

the permittivity profile and ε2r(z) = 1, µ2r(z) = 2 + 9z for the permeability profile. From
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Figure 9.4: The induced currents at the center of wire 2. The wire is of length L = 1 m with

radius a = 0.002 m. The height is chosen as z1 = −0.25 m and the distance between the

wires is d = 1 m. The half spaces have the material properties of vacuum. The permittivity

and permeability of the slab are varied as ε2r(z) = 2 + 9z, µ2r(z) = 1 (solid lines) and

ε2r(z) = 1, µ2r(z) = 2 + 9z (dotted lines). The conductivity of the slab is σ(z) = 0. The

wires are loaded with the Wu-King profile in (A). The free-space compensation parameters

for two wires are used in (B). The excitation is a Gaussian voltage pulse with τ = 0.5 ns

and t1 = 4τ .

the plots it is observed that the additional waveform due to the reflected wave at z = ds

occurs at the same time instant in both currents. The signs of the waveforms introduced

by the slab are the same for both methods. Again, pulse compensation attenuates the

effects a little later then the resistive profile.

Based on these results, it may be concluded that effects from the slab remain visible after

pulse compensation. The additional waveform that occurs in the current is not removed

by the pulse compensation scheme as it is used here. Besides the effects from the slab,

the results show that the currents along wire 2 are not fully compensated by the free-

space parameters. Between the additional pulses due to the reflected waves at z = ds,

the wire oscillates with a rather big amplitude. In previous chapters, it was seen that

the interface at z = 0 plays an important role in the determination of the compensation

parameters. Especially for the first 6 ns, the interface has a strong effect on the current

along wire 2. Therefore, in the configuration as described above with ε2r(z) = 20 and

µ2r(z) = 1, a third compensation will be applied. The compensation parameters from

Table 7.3 are used. The results are presented in Figure 9.5. It is observed immediately
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Figure 9.5: The induced current at the center of wire 2. The wire is of length L = 1 m

with radius a = 0.002 m. The height is chosen as z1 = −0.25 m and the distance between

the wires is d = 1 m. The half spaces have the material properties of vacuum. The

permittivity, permeability and conductivity of the slab are ε2r(z) = 20, µ2r(z) = 0 and

σ(z) = 0, respectively. The compensation parameters can be found in Table 7.3. The

excitation is a Gaussian voltage pulse with τ = 0.5 ns and t1 = 4τ .

that the current is compensated better between the responses of the current to the first and

second reflected wave at z = ds. The additional waveform that is introduced to the current

due to the reflection at z = ds is not affected by the third compensation. Even when the

minimization is focused on the additional waveform due to the reflection at z = ds, this

waveform is not compensated by the third compensation. The effects from the slab are not

compensated which means that the properties of the lower half space are not compensated

either. Therefore, properties of the lower half space may be retrieved from the current

along wire 2. Note that the additional compensation is carried out as a test only. It was

not the aim of the analysis as such.
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Conclusions and recommendations

The work presented in this thesis studies the possibilities of a cheap and easy to build

antenna system for the detection of buried objects. To simplify the analysis a wire antenna

is used as a buried object. The antenna system for the detection of the buried object

consists of two wire antennas. The study concerns the modeling and numerical computation

of coupled integral equations that describe various configurations containing wire antennas.

The first part of the study focusses on the formulation of the general theory that is used for

modeling different parts of the configuration under study. In Chapter 2, Maxwell’s equa-

tions are formulated. From these equations, general reflected and transmitted field terms

at an interface between two media are derived. An electric point dipole source serves as

the source term in Maxwell’s equations. The temporal and spatial Fourier transformations

associated with the reflected and transmitted field terms are addressed.

Chapter 3 involves the derivation of several formulations to describe the current along a

single thin wire. First the electric and magnetic field integral equation, EFIE and MFIE,

respectively, for an electrically impenetrable object are derived from Maxwell’s equations

as given in Chapter 2. The integral representation associated with the EFIE is then used to

find an equation that describes the current along a single, perfectly conducting thin wire.

The result of this derivation is the integro-differential equation of Pocklington. The latter

equation is rewritten to end up with a different formulation for the current along the wire.

The integral equation obtained in this manner was first given by Hallén and is for that

reason often referred to as Hallén’s equation. At the end of Chapter 3, a traveling-wave

model to describe the current along a wire is derived. The obtained approximate expression

for the current provides insight into the behavior of the current along the wire. The results

show that the current behaves as a damped oscillation along the wire. The oscillating effect

is a result of the traveling-wave nature of the current along the wire. Namely, the current
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reflects repeatedly at the end faces of a wire.

The second part of the study deals with the description of the desired configuration. This

configuration consists of two half spaces with a two-wire antenna set up in the upper

half space, and a third wire that is buried in the lower half space. The two wires in

the upper half space are together referred to as the detection set up in which one wire

serves as the transmitting wire and the other wire serves as the receiver. To arrive at a

set of coupled integral equations that describe the currents along the three wires, a few

increasingly complicated configurations are analyzed in Chapter 4. The building blocks for

each step are derived in Chapters 2 and 3. The individual steps are tested and the results

are compared to results from the literature. All intermediate configurations give accurate

results.

After the description of the three-wire configuration, a method to describe the arbitrary

orientation of a wire with respect to a second wire is derived in Chapter 5. Some results

obtained with the aid of this method prove to be accurate.

The results of Chapter 4 show that a buried wire can in principle be detected by the

detection set up. It is also demonstrated that the best visible detection is obtained when

the detection setup is located close to the interface. The permittivity of the lower half

space mainly has an effect on the current along the receiving wire. The conductivity of the

lower half space, on the other hand, affects the current along both wires of the detection

set up. The electric and magnetic reflection coefficients tend to ±1 when the conductivity

becomes high. Slowly attenuating, but heavily oscillating currents along both wires of

the detection set up are the result. Since the conductivity of the lower half space has an

attenuating effect on the current along the buried wire, as well as on the transmitted fields,

the influence of the buried wire on the current along the receiving wire is heavily reduced

for increasing conductivity. The contribution from the buried wire is limited to a small

amplitude effect. In addition, the buried wire does not deform the general shape of the

current along the receiving wire but merely raises or reduces its amplitude. Only after

comparing the current to a reference current, a contribution from the buried wire can be

noticed. The slowly attenuating, oscillating behavior of the current along the receiving

wire is still present. This particular behavior of the current makes it difficult to detect a

buried wire from the received signal directly.

To suppress this oscillating behavior, two methods are presented in Chapter 6. In the

first method, Hallén’s equation is used to model a resistance distribution along the wire.

This resistive profile extinguishes the current wave towards the end faces of the wire. The

oscillating effect of the current along the wire is fully suppressed, which results in a smooth

frequency response of the wire.



159

The second method is pulse compensation. It is shown that with a carefully chosen time

delay and complex amplitude, a second voltage pulse can be generated from the first

voltage pulse. The combined response of both voltage pulses results in a single current

pulse along the wire. However, the effects from the embedding on the current along the

wire are exactly the same. After compensation of the transmitting and receiving wire,

the current along the transmitting antenna becomes less sensitive to the influence of the

receiving wire and the half space. This effect is observed as well for a resistively loaded

wire. The current along the receiving wire, on the other hand, is very much affected by the

presence of an interface. To reduce the effects of the interface, a third compensation with

different parameters is used to attenuate the effects of the lower half space on the current

along the receiving wire. The oscillating behavior of the current along the buried wire is

not affected by both methods. Therefore, effects of the buried wire become visible in the

current along the receiving wire.

While the first enhancement involves a physical change of the wire antenna, the second

enhancement is carried out at the input and output of the wire directly. The technique

can be applied after the current has been obtained or it can be applied on the input and

output signals directly. Thus, pulse compensation can be either implemented in software

or hardware while the Wu-King profile can only be realized in hardware.

It is shown in Chapters 6 and 7 that the transmitting and receiving characteristics of the

detection set up are greatly enhanced by applying both methods. A buried wire changes the

current along the receiving wire such that the presence of the buried wire can be observed

visually from the shape of the current without any signal processing. In addition, features

from the lower half space can be obtained from the current along the receiving wire.

The resistively loaded wires are used to perform a scan of the lower half space in Chapter

8. Since the buried wire should be allowed to be in an arbitrary position somewhere in

the lower half space, results of Chapter 5 are used to facilitate this. However, there is

a big disadvantage in calculating the currents along coupled, non-parallel thin wires. In

previous computations, the fact that the wires were located parallel to each other offered

the possibility of using FFT’s for an efficient computation of the spatial convolutions. The

direct computation of the convolution terms requires extra computational effort in both

memory and time. To keep the computation times low, the wires of the detection set up

are kept parallel to each other and the buried wire.

Certain features of the entire lower half space can be retrieved from the synthetic seismo-

grams generated by the computational scan. At all times, the depth and relative speed to

and from the buried wire can be found. The extraction of the length of the buried wire

is only possible when the centers of the wires are located in the same plane perpendicular
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to the axes of the wires. The detection set up can therefore not be used to retrieve the

length of the buried wire. Although some of the features can be retrieved directly from the

current along the receiving wire, the subtraction of a reference signal enhances the plot sig-

nificantly. This reference signal holds information of the configuration without the buried

wire. The first current wave along the receiving wire is much higher in magnitude than the

effects of the other signals. Instead of this so-called background subtraction, zooming in

on the current after the first current pulse enhances the plot as well. However, when the

buried object is located close to the interface, it may not be possible to recognize the first

arrival time of the electric field from that object in the current along the receiving wire

directly in that case.

The pulse-compensated wires are also used for a scan of the lower half space in Chapter

8. The synthetic seismograms look similar to the ones obtained with the resistively loaded

wires. The magnitude of the current pulse along the receiving wire is approximately 10

times higher than in the loaded case. This means that the pulse-compensated wires are

far more efficient than resistively loaded wires. Features of the lower half space are more

pronounced in the seismograms than with the loaded wires.

Compared to the unloaded wires, the current along the resistively loaded wires attenuates

much quicker. A detection set up with resistively loaded antennas is therefore very suitable

for scanning applications. The detection set up is capable of moving rapidly over the

interface. The results obtained from the pulse compensation prove that the technique

can be of a great practical use. The strength of the technique lies in the fact that the

compensation parameters can easily be implemented in hardware. With both methods,

the computational effort for post processing is reduced considerably.

In both cases, the presence of the buried wire adds a visibly detectable waveform to the

current along the receiving wire. However, when the conductivity of the lower half space

is bigger, the magnitude of the additional waveform becomes smaller. For the pulse-

compensated wires this is only partly true. For low permittivities of the lower half space, the

additional waveform due to the presence of a buried wire is obvious. When the permittivity

increases, it is more difficult to distinguish whether or not an object is present in the lower

half space.

For objects which are located at greater depths, the current along the receiving wire shows

an additional waveform for both techniques. For a detection set up with pulse-compensated

wires, the results are not influenced any more by a larger permittivity.

With pulse compensation, the influence of the lower half space on the current along the

wires of the detection set up can be partly attenuated. However, when the permittivity

increases, it also compensates partly the effects of the presence of a buried wire which is
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close to the interface. This makes it harder to detect such a buried wire. For wires at

greater depths, detection is no problem. Even the conductivity of the lower half space does

not play an important role here. Of course, at much greater depths, the attenuation of the

transmitted field into the lower half space makes detection very difficult.

At the end of the thesis, a slab configuration is probed with the detection set up. Both

methods for enhancing the current distribution along the wire were employed. The re-

sults show that the methods are comparable. However, the current along the resistively

loaded wire is again a factor of 10 lower than in the pulse-compensated case. Secondly,

the pulse-compensated current along the receiving wire is slightly oscillating between the

characteristic waveforms due to repeated reflections of the slab. Nevertheless, the current

in the time interval between two of those waveforms can be attenuated efficiently when the

parameters for a third compensation are optimized in that time interval.

Both methods are useful in the study of a lower half space. In both cases, a buried wire is

observable directly from the current along the receiving wire. The pulse-compensated wires

have a better energy efficiency than the resistively loaded wires. The current along the wire

still oscillates visibly while the current along the resistively loaded wire does not. Because

the resistive profile also attenuates the effects of the buried wire, the pulse-compensated

wires perform better in the detection of the buried wire. This can also be concluded by

looking at the synthetic seismograms.

The advantage of pulse compensation is that each individual contribution can be treated

separately while the resistive profile attenuates all contributions. After dealing with the

direct contribution from the transmitting wire, a third compensation can be applied to

eliminate the current pulse due to interface reflections. This third compensation does not

affect the response to the presence of the buried wire, which makes it easy to detect that

buried wire. In the case of a slab, the third compensation network cannot compensate

for the reflection at the interface between the slab and the lower half space. This is

inherent to the choice of the starting point for the minimization procedure to determine

the compensation parameters.

Finally, a few suggestions regarding interesting future research topics are made. It was

demonstrated that a buried wire can be detected by a simple bi-static antenna set up.

When the end reflections of the current wave at the end faces of the antenna are atten-

uated by either a resistive profile or pulse compensation, the detection of a buried wire

is greatly enhanced. Results of the resistively loaded wires are comparable to results of

pulse-compensated wires. But with one important difference, the magnitude of the current

along the pulse-compensated receiving wire is about 10 times higher than in the resistively

loaded case. It seems plausible that other antenna systems, such as resistively or capaci-



162 Chapter 10. Conclusions and recommendations

tively loaded bow-tie antennas [70, 71, 72] and vee dipoles [20], can be pulse compensated

in a similar manner.

The ability for both techniques to quickly attenuate the current along a wire antenna

makes it possible to increase the repetition rate of the input signal. Both types of wires

are thus attractive for scanning applications. The pulse-compensated wires have the extra

advantage that their power consumption is far less in comparison with the resistively loaded

wires. Thinking about scanning applications, the pulse compensated wires could be used

as a pre-scanning device in conjunction with a more advanced radar system. Because the

pulse-compensated wires have the ability to handle short pulses, the wires could be rotated

90 degrees back and forth. In that way, the polarization of the electromagnetic waves is

changed every second measurement. Of course, the data processing would require a little

bit more effort.

Before any measurements are carried out, the determination of a criterion that links an

optimal detection to certain parameters of the entire configuration would be very useful.

A first attempt to formulate a criterion is made in [31].

The results presented in Chapters 7 and 8 should be verified by measurements. A mea-

surement in a controlled environment with and without a homogeneous lower half space

should validate that the pulse compensation indeed works and can be made with mostly

passive components. The next test is then on actual ground. In both cases, a test mea-

surement has to be carried out for obtaining the compensation parameters. In view of the

measurements on an actual ground, it is beneficial when the reflected and transmitted field

terms as described in Chapter 2 are adapted to handle real grounds.

Instead of the buried wire, a more realistic buried object should be considered. Therefore,

the buried object can be generalized to a metallic object and subsequently to a dielectric

object.
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Summary

In this thesis, a theoretical study is carried out to investigate the feasibility of detecting

a buried wire with a transmitting and receiving thin-wire antenna. Detection is primarily

based on “electromagnetic coupling”. This means that a primary current along an antenna

induces a secondary current along a second antenna and vice versa. This takes places via

an electromagnetic field that propagates through the medium in which the two antennas

are located. The properties of that medium have an influence on this electromagnetic

field and hence the currents along the antennas are influenced as well. As a representative

configuration, two homogeneous half spaces are considered. The properties of each half

space can be different. For the transmitting and receiving antenna, two thin-wire antennas

are chosen. Both wire antennas are located in the upper half space. As an example

of an object to be detected, a wire antenna is chosen that is buried in the lower half

space. Reflected and transmitted fields will occur at the interface between the two half

spaces. This complicates the coupling problem when compared to a similar problem in a

homogeneous environment.

The mathematical description of the detection problem leads to a system of coupled integral

equations that describes the currents along the three wires. The interface between the two

half spaces is dealt with by taking into account the reflected and transmitted fields in the

formulation. An impressed voltage source at the center of the transmitting wire serves as

the source term. The system of equations is solved with the aid of the Conjugate-Gradient

method; this method minimizes the squared error in the equality sign of the discretized

integral equations. Important issues are the fixed spatial discretization of the wires, the

use of a composite Gaussian quadrature rule to determine the reflected and transmitted

fields and the use of a Fast Fourier Transformation to evaluate spatial convolutions.

The influence of a large number of parameters on the detection of the buried wire has been

investigated by numerical calculations. Amongst the parameters that were varied are the

distance between and the height of the transmitting and receiving wire, the depth at which

the buried wire is located and the electromagnetic properties of both half spaces. Numerical
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calculations demonstrate that the current along the receiving wire is influenced by the

presence of a buried wire. However, compared to the effects of the repeated reflections of the

currents at the end faces of the wires but also of mutual coupling between the transmitting

and receiving wires and reflected fields at the interface, the additional contribution is small.

Therefore, a direct interpretation of the received time signal is virtually impossible.

To enhance the detection, two techniques have been studied. First, a carefully chosen

resistance profile has been implemented on the transmitting and receiving wire numeri-

cally. This suppresses repeated reflections of the currents at the end faces of the wires.

The detection is greatly improved but the resistance profile has an adverse effect on the

energy consumption of the wires. As a second technique, pulse compensation is studied.

With pulse compensation, a simple passive pre or postprocessing is applied to the input

and output signal, respectively. Numerical calculations show that, also in this case, the

detection of the buried wire is improved. However, pulse compensation does not stress the

energy consumption. Pulse compensation is new and it seems feasible to implement this

idea on the transmitting and receiving wire in both software and hardware.

Both techniques have been used to simulate a scan of the subsurface containing a buried

wire. The output of such a scan is a three-dimensional image which shows characteristic

information about the subsurface and the buried wire.

Finally, a slab configuration is probed with both the resistively loaded and the pulse-

compensated wire antennas.



Samenvatting

In dit proefschrift wordt een theoretische studie uitgevoerd naar de haalbaarheid van de

detectie van een begraven draad m.b.v. een zend- en ontvangst dunne draadantenne. De

detectie is gebaseerd op het verschijnsel “elektromagnetische koppeling”. Dat wil zeggen

dat een primaire stroom langs een antenne een secundaire stroom induceert langs een

tweede antenne en vice versa. Dit gebeurt via het elektromagnetische veld dat zich in

de omgeving van de twee antennes voortplant. De eigenschappen van die omgeving bëın-

vloeden dit elektromagnetische veld, waardoor ook de stromen langs de antennes worden

bëınvloed. Als configuratie beschouwen we twee homogene halfruimten met verschillende

materiaaleigenschappen. Als zend- en ontvangstantenne kiezen we draadantennes die zich

in de bovenste halfruimte bevinden. Als voorbeeld van een te detecteren object kiezen

we een draad die begraven is in de onderste halfruimte. Aan het grensvlak tussen de

twee media ontstaan gereflecteerde en doorgelaten velden. Dit compliceert het koppelings-

probleem t.o.v. een vergelijkbaar probleem in een homogene omgeving.

De wiskundige beschrijving van dit probleem leidt tot een gekoppeld stelsel integraalverge-

lijkingen voor de stromen langs de drie draden. Om de medium-overgang te modelleren zijn

gereflecteerde en doorgelaten velden in de formulering meegenomen. Als bron beschouwen

we een opgedrukte spanning in het midden van de zenddraad. Dit koppelingsprobleem

is opgelost m.b.v. de Conjugate Gradient methode; dit is een iteratieve methode die de

kwadratische fout in het gelijkteken van de gediscretiseerde integraalvergelijkingen min-

imaliseert. Belangrijk hierbij is de constante stapgrootte in de ruimtelijke discretisatie

van de draden, het gebruik van een samengestelde Gauss kwadratuur ter bepaling van de

gereflecteerde- en doorgelaten velden en het gebruik van zogenaamde Fast Fourier Trans-

formations om ruimtelijke convoluties te bepalen.

In de uitgevoerde berekeningen is de invloed van een groot aantal parameters op de detectie

onderzocht, zoals de afstand tussen en de hoogte waarop de zend- en ontvangstdraad zich

bevinden, de diepte waarop de begraven draad zich bevindt en de elektromagnetische

eigenschappen van de verschillende media. Uit de resultaten blijkt dat de begraven draad
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een waarneembare invloed heeft op de stroom langs de ontvangstdraad. Echter, die extra

invloed is klein t.o.v. met name de herhaalde reflecties van de stromen aan de uiteinden

van de draden maar ook t.o.v. de effecten van de onderlinge koppeling tussen de zend-

en ontvangstdraad en de gevolgen van reflecties aan het grensvlak. Dit maakt een directe

interpretatie van het ontvangen tijdsignaal bijna onmogelijk.

Om de detectie te verbeteren is een tweetal technieken bestudeerd. Ten eerste zijn in

de gemodelleerde configuratie, de zend- en ontvangstdraad van een speciaal gekozen weer-

standsprofiel voorzien. Hiermee worden herhaalde reflecties van de stroom aan de uiteinden

van beide draden onderdrukt. Dit verbetert de detectie maar heeft een negatieve invloed

op de benodigde energie. Als tweede techniek bekijken we pulscompensatie, een eenvoudige

passieve pre- en postprocessing van respectievelijk het in- en uitgangssignaal. De berekende

resultaten geven aan dat de begraven draad ook in dit geval beter detecteerbaar is, echter

zonder dat er extra energie nodig is. Pulscompensatie is nieuw en het lijkt mogelijk om dit

idee in een praktische situatie hard- dan wel softwarematig te implementeren bij zowel de

zend- als de ontvangstdraad.

Beide technieken zijn gebruikt voor het simuleren van een scan van de ondergrond met

een begraven draad. Hierdoor ontstaat een drie-dimensionaal beeld dat karakteristieke

eigenschappen van de ondergrond en de begraven draad laat zien.

Ten slotte zijn beide technieken gebruikt om een slabconfiguratie te onderzoeken.
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