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CONTINUUM POPULATION DYNAMICS
WITH AN APPLICATION TO DAPHNIA MAGRA

O, DIEKMANN, J.A.J. METZ, S.A.L.M. KOOIJMAN & H.J.A.M. HEIJMANS

ABSTRACT

The paper starts by discussing the formulation of models for the dynarnics

of populations r¡ith physiological structure in the language of continuum

mechanics. Subsequently it is indicaÈed how the spectral theory of positive

semigroups of operators yields results about stable distributions in linear

model-s. It is shown how the formalisrn ean be used to deduce the populatíon

consequences of the physíologica1 effecËs of toxic chemicals on individuals
of, for ínstance DapfurLa tngna,. t'inal1y, the need for mathematical machinery

r,¡hieh is well suited to analyse nonlinear problems is stressed.

I. NTRODUCTTON

The partial differential equations of continuun mechanics describe the

evolution in Èhe course of time of the density of particles in an elastic
material, a fLuíd or a gas. They are derived by conbining a mathematical

description of the physical forces.that act upon the particles r¡ith book-

keeping ar.guments based on conservation of mass, etc. .

A first and crude description of the state of a population is given by

the number of individuals. As a next step one nay distinguish individuals

from each other accordíng to relevant physiologícal traits (a large codfish

is not the same as a sma1l codfish vhen one considers reprocluction and

predation). The present paper is concerned vith this I'next step". Exploitíng

the sirnilarity with the bookkeeping part of continuum rirechanics r¿e shal1

describe, in section .2, tlne Dathematical structure of a large class of models.

The aim of these models is to describe the behavíour of populations in

terms of the behavíour of individuals (such that, for instance, the impact

of toxie substances on populations can be ínferred from the impact on the

individuals). In later sectíons it !¡í11 be argued Ëhat the explicit
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CONTINUIJM POPI]LATION DYNAMICS

incorporation of physiological structure enables one to describe densíty
dependence on the basis of biological facts (or, at least, biologically
plausible arguments) as opposed to ad hoc mathematical assumptions in un-
structured models. .

In section 3 r¿e sha11 sketch how spectral theory, compactness arguntents,
positivity arguments and the theory of semigroups of operators can be com-

bined to yield resuls about stable distributions ín L,íneay, models. tr{ithout
much disadvantage most of this section may be skipped by those readers which
are not interested in functional analysis. In section 4 r¡e sbor¡ how the
mathematical machinery (both the existing and some which stil-l has to be

developed) is of value for deriving the eeological consequences from phys-
iological effects of toxic chemicals on the individual members of a popula-
tion. In section 5 r¡e observe that there exists, as yet, no systemâtic
theory for nonLineø: problems, even if we have some idea how to proceed in
some special cases.

lhis paper describes an odd concoction of mathenatical nodelLing,
(functional) analysis and biologicar experiments, but deliberately so. Among

other things we intend to demonstrate thåt the interplay of mathematics and

bíology can be profitable for both fields simultaneously.

2. BOOKKEEPING AND MODEL S?ECIFICATION

Let the physiological stare of each índividual be given by the value
of an N-vector x. Thus the state space of the individuals is fl, some subset
of ß.N. Ihe individuals trace orbits in n. The beginning and rhe end of
such orbits are the physiological state at birth and death, respectively
("bÍrth" and "death" have to be interpreted broadly as rn¡e shall- see in the
examples later on). I^/e assume that in between the orbits are detennined
by an ordinary differential equation

(2. 1) v(x) ,

r¡here v: n * RN describes the ue\ocítg wíün ¡¡hich the individuals move

through 0. 0f course v may depend on other variables but we do not, at this
point, include this explicitly in our notation.

Let n(t,.): f¿ + IR* be the density function at tíme t, i.e., for each
00 " Q the number of individuals at tine t with physiological state belongiog
to fìU iå gíven by
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I
I n(t,x)ax.

J

0o

Then rm is the fLun of individuals and a sËandard application of the diver-
gence theorem leads to the baLance Ldtn

(2.2) + div(vn) - sources - sinks

where sources and sinks descríbe birth and death (see, for instance, Lin &

Segel (1974), Segel (1977) and the papers by Segel and Oster in DiPrírna

(197D). We sha1l assume that the number of individuals in the relevaût

stateé is so large that lre can use a deterministic approximation to describe

inherentl-y stochastic processes. Or, in other \47Ords, rn7e shal-l- describe the

birth and death processes r¡hich involve some element of chance in terms of

rates. Formulating a mathematical model nol^r amounts to specifying 0, v, the

sources and sinks, and -v.rm (vhere v ís the out\nrard unit normal) at that

part of the boundary âfì where v.v < 0 (i.e., where newborn individuals can

enter fl). In order to illustrate the foroalism ù7e present two sets of exam-

ples vhich concern unicellular organisms rêproducíng by fission and ecto-

thermic animals having weight dependant fertility.

Example t: IftuLtíplieqtion by d¿t:ision. For sinplicity we shal1 assume that

the organísms do not die. Ihe necessary rnodifications to incorporate deaths

are irnnediate.

a: Let the cells be characterized by their age (i.e,, Ëhe time elapsed since

the ce1l r.ras created by a division of her mother). Let b(a) denote the rale

at which cells of age a divide into rvo daughters. since $f = r and all ce1ls

are born with age zero r¡te obtaín

ân
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S n(t,a)

n(t,O) = 2

,a)=-b(a)n(t,a),

n (t, o) do.

+3n(t
da

j0,",
0

I
i

Jl

rl

b: Instead Òf age we nol^r use "sizet's to characterize the cel1s. If cell-s

cliviite into trro identical daughters exactly ¡ohen reaching size one we have

(2.t)

(2,2)
*o(.,r1 * * (v(s)n(t,s)) = o,

v(å)n(t, È) = z v(1)n(t, l) .

Ìi;
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CONTINUIM POPULATION DYNAMTCS

Here v(s), the growËh rate of celrs of size s, is assumed to be positive.
c: Again suppose that ce1ls ilivide exactly r¿hen reaching size one, but nor^/

assume that the t\^ro daughters are not necessaril-y iilentical .

Let the probability that fission results ínto one daughter of size s

and one of size l-s be described by the nonnegative function D r¡hich is sym-
neËric about I and has integral_ l. Then

(2.3)
$ n(t,s) * $ {.,t")o(t,s)) = 2v(t) D(s) n(t,l)

v(0) n(t,O) = O

$n(t,a,s) +$n(t,a,") ** (v(a,s)

In(t,o,s) = o j o(o,2s) n(r,o,2s)do.
0

n(t,a,s)) = - b(a,s) n (t,ars),
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d: Let b(s) denote the rate at which ce11s of size s divide into two iden-
tical daughters of size ls. Itren

AA
ft.n(t,s) + f (v(s) n(t,s)) = - ¡(s) n(t,s) + 4b(2s) n(t,2s),

(2.4)

v(0) n(t,0) = 0.

Exercise: explain the factor 4.
e: AsynnetrÍc division into a part of fixed size so (the daughter) and a
part of size s-s' (the mother) is described by

(2.s)
ãTo(.,") * $ {.,C"1 n(r,s)) = - b(s) n(t,s) + b(s+so) n(r,s+so),

@

I
v(so) n(t,so) = .|b(o) n(t,o)do.

0

f: Combining the examples a and d we arrive at Ëhe equations
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(2.6)

for the age-size density.

PdMARKS. l. These examples clearry illustrate juurp phenomena and non-local
coupling: individuals may junp instantaneousry frorn one position in the
physiological state space to another or they rnay produee offspring at some
other position. This feature is characteristic for mod.els from population
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dynamics and it is perhaps the main reason why continuum population problems

are, despite many similarities so different from problems in continuum

mechanics.

2. In these models both the individual growth rate as r¡ell as the division
rate may depend on environmental conditíons. This will be made more explicit
in the next example. hhen the individuals themselves contribute to the

(change in) environmental conditions we end up with a (set of) nonlinear

equatíon(s).

Example 2: Síze depertCent Teproduction in ectothermíc øtimaLs.

In contrast with the previous example we shall immediately specify all the

functions involved from first principles. The model was derived with the

i^raterflea Daphnia maqna íî mind as the experimental animal. (However, its
applicabí1ity âppears to be much more general.) More details on the individ-
ual level as r¡el1 as empírical evidence for the correctness of our assump-

tions can be found in Kooyrnan & Metz (in press).

a will again denote age, w will denote weight, .L - ,1/3 l.rrgth and x food

dens ity .

i{e start r¡ith indivídual growth. Tt is assumed that ingestion equals

t¡t(x).Lz = ur(*)r2l3 with f (") = #. The basís for this assumption is
that the maximum rate of food intake of an animal should equal the maximum

digestion rate which scales with the surface area of the digestive apparatus.

Moreover, for filter feeders (and also for many other feeding Lypes) the

food intake at low food densities is proportíonal to food density times the

surface area of the food catching apparatus. A hyperbolic relation betlnreen

food density and intake rate results from many micro rnodels of the food

catching process (Holling, 1959; Rashevsky, 1959; Metz & van Batenburg, in

press). In the ecological literature it is knov¡n as the Holling functional
response, in the biochemical and microbiological literature as the Monod

curve. Figure la sho¡¡s the fiË of the assumed relatíon between food density,

body size and amount eaten per unit of tirne for some liËerature data on

Daphnia magna.

trrle assume, moreoveï, that a fraction r of the ingested energy is chan-

nelled to maint.enance and gro\,Jth, and a fraction l-r< to reproduction.

Finally, maintenance is assumed to be proportional to weight. The result is

a growth equation of so-called von Bertalanffy type (Von Bertalanffy, 1934)

åä = n-t 1"ut (")'2l3 - 6w)+ ,
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Fig. l: Left: Feeding rate at 20oC of the rüaterflea Daphnta magna on íne
alga chLoz'eLLa as a funerion of food density x and body length z. The fít-
red curves are given by y = ,L2t1*¡ with f(x) - 6¡l(l+Çx), wirh
v = 0.75x105 cel1s /h.Ím'), E = 0.7x10-5n1/eeLI. Dara fromMcMacon & Rigler
(1963), reproduced by Wulff (1980).

Right: length L of Daphniit ftîa,gnû. as a function of age a for various food
densities x. The fitted curves are given by
,t- = f (x)L^-tf (x)¿m-Zol exp (-ya), with f (x)2, = 2.8g, 3.24, 3.72, 4.17,
4.31 rnar, ZO = 0.Brnn, y = 0. l7d-r.

r¡here n denotes the energy cost of graiTth. The + å.ccounts for the fact
that large animals stop growing, but do not shri.nk, ¡¡hen food density drops
("* ,= max (2,0)). Transforming to length we find

(rcvf (x) - Çl-) + =: g (x,Z)
(2.7)

' x(o) = Lb

where {, the length at birth, is assumed to be fixed" rígure tb shorn,s the
fit of the solution to (2.7) at various constant values of x for some 1ab-
oratory observations on the growth of Daphnia magna,.

To calculate the birth rate \,/e recall that a fraction l-< of the inges-
ted energy is channel-led to reproduction. Nevertheless r^¡e assume that the
animals only staït making young when their length has reached a certain
value, to be called zy since they first have ro build up their reproductive
apparatus. Moreover, there is an exception to the rc-rule: ¡¡hen food densitv
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suddenly drops very far, maintenance takes priority for otherr¡ise the animal

!úould die. More precisely Iúe assume Lhat the índividual reproductive rate

ß(x,Z) is given by

!, < L_
J.

L-sL<L
J_

t <L.Z

r¡here (i) ow' is the energy needed to produce one young; (íí) I-:= g-lrvf(x)
is the síze (ax the current food density) at which exactly the fractíon r
of the ingested energy is needed for riraínten^o""iV = f-l Vf(x) is the size
at r¡hich all ingested energy is needed for maintenance. Animal-s for v¡hich

.L > Z are assumed to die.
Finally we need the death rate.

starvation, this quantity is largely
Sone possible choíses are
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It appears that, except for death from
determined by age (and not by síze).

(2. e)

Ttre last formula was fotmd ernpirically in prelininary laboratory observations

on individuaL DapVLnia.

our next step is writíng dor¿n the population equations. In the case of
(2.9a) the death rate is not age dependent and r^re may describe the population

completely by íts size distribution:

aSa
m* . where a is the maximum possible

^=a 
' m

m age.

, with for instance, ü(a) = I - .e-a
m

(a) z vG¡L)

(b,) : vG,'L)

(br) : v(a,.L)

ãâ
ãî n(t'{) + 

ãZ

n(t,1.) = I

e(x,.{¡) n (r,q)

=d

_ Id,- t-,
= d + 1r(a)

(e(x,.L)rL(r,.L)) = - dn(t,Z) for ,L < 'L(x)

for .L >- ,L(x)

ß (x,Z) n(t,L)aL_r-J
a
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-twith n = l\,.t^7, with L^= Ç'rcv the upper bound to the individual lengths.

trIhen death does depend on age we might naively write

$.,(t,.,2) *$ n(t,a,-L) *$ te{*,2)n(t,a,Z)) =

= - y(a,.L) n(t,arZ)

with a = [0.a ) "lL. ..L l.-mb'm

However, ¡¡hen r¡e try to formulate the boundary condition r^¡e run into some

trouble: since both age and sí.ze are fixed at birth, rnre need a delta I'function"

I
n(t,0,2) = 6(L-Lì J e<",21 n (t,a,Z) da dL'

n

Moreover, the deterministic individual gro\rth pushes this delta "function"
from the boundary into Èhe interior of Q: all mass r¡il1 alwayS be concen-

tråted on. some (varying) curve in fl.

Thus we prefer to r^rork vith a functíon of one variable, for which

we choose age, and to do some extra bobkkeeping in order to knor^7 the relation

between age and 1-ength. Murphy (1983) has recently inLroduced a convenient

trick to do the latter: to \drite dor¿n a separate partial differeutíal equation

Lor L(t,a), the age-length relation at Ëine t
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(2. 10)

where Q = [0,a_]. mís equation also eneompasses'm
if r¡e a11ow a = @.

m

$ztt,') *Sz{t,.) = s(x,z(t,a))

L(r,o) = .Lo

S r'(t,a) + S n{t,a ¡- -p(a,Z(t,a))n(t,a)

n(t,a) = 6

(
n(r,0) = J 0{",2{t,a)) n(t,a)da

.L(r,a) . Z(x)

L(t,a) = Z(")

t.$

It-i\i"
| . :,.':.

ii
:l
$

5.j
I

È

.*

ä
¡
l"{
-f
v

ir,ì.

Àr
Tj
5

ì,r
il
il
':Í

È
j

.,1

,*j
ì{. 

'
3\.tr.
,i ,:'i
l'i[ ;,'

d
J

Ë.

the former case of (2.9a)



90 O. DTEKMANN, J.A.J. METZ, S.A.L.M. KOO]JMAN' H.J.A.M. HEIJMANS

REIÍARKS. l. Equations (2.10) can easily be generalized, e.g. to take care

of deaths as a result of the accumulation of toxic compound by introduction
of additíonal equations for the internal concentrations of toxic compounds

as a function of a and to 1et ¡r depend on these concentrations as well.

2. In our derivation we have implicitly assumed that the animal has no energy

reserves, so Èhat it dies as soon as energy intake cannot keep pace with
maintenance. A more detailed model on the individual 1eve1, which takes

account of energy reserves, is developed in Kooijman (in press).

3. The derivation contains one hidden assumption which is slightly embarras-

sing from a biological point of view: the production of young is assumed

to depend instantaneously on energy intake. In other words, an individual
needs not accumulate the necessary energy ulw'. Thus we ímplicitly assume

that all individuals at each time add some infinitesimal amount of young

tissue to a coÍmunal pool from which, by some miracle, the individual
young are created. This assumption is cormonly made in the literature
of mathematical biology, but always implicitly. A rígorous justification
of the resulting equations is possible, however, by assumíng that the

size of the young is very small, that \¡ery many youn€i are produced, but
that most of them die at a very early age (Heijmans & Metz, in prep.).

3. POSIT]VE SEMIGROUPS AND STABLE DISTRIBUTIONS

fn this section r^re assume that the environment is constant and that
the equation is linear. If the model specification ís complete, adding an

initíal eondit'Lon n(O,x) = 0 (x) should single our a unique solution
n = n(t,x;þ). So a first mathematical task is províng existence and unique-
ness of a solutíon to the initial value problem. A frequent approach is to
u.se íntegration along charactez.'tstics (i.e. along curves in the (t,x) - space

determíned by the ordinary differential equations ji = r,:ä = v(x)) to
transform Ëhe problem to orie to which the contraction mapping prínciple
can be applied (the corresponding construction of a solution by successive
approximations has the biological interpretation of a "generation" expansion).
So usually the first task can be fu1fil1ed without much difficulty, although
the precise meaning of ttsolution[ needs further explanatíon (see below).
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It is cqnvenient to conceive of g and n(t,.;0) as elements of a

function space X (the population state space, e.g.Lr(n) or C(f¿)) and
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Banach

to r^zrite
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(3.t) n(t,.;ö) = T(t)ó

r¡here {t(t)} is a strongly continuous semigroup of bounded linear operators
on X, i.e.,

(z.z)

(i) r(o)=1,

(ii) r (t) T(t) = T (t+t) , r, 'r à 0

(iii) lim llT(r) 0-0 ll = 0n v Q e X.
r+0

tlne ínfinítesimøL generator A is defined by

(3.3) A o = ri, i,t,.r*-*,r+0

for those é e X for which this 1írnit exists. The original partial differen-
tial equatíon can now be interpreted as the abstract ordinary differential
equation

(3.4) $ = a",

and thus one can define t'solutiontr in terms of a semigroup and its generator

(Pazy, 1983) .

R.EMARK: For parabolic partial differential equations it is custonary to
sËârt by defining A an¿l Ëo prove, by verifying the Hille-Yoshida conditions,
that it generates a semigroup. Ilowever, for the present class of first order
equations it is usually much easier to first.construct a semigroup directly
and only later re-interpret the origínal equation as one involving the
generator.

Ex.anple. i{e illustrate the general remarks above by elaborating in some

detail the very siurple example Ia. We begín by specifying the assumpLions

on b and by naking a prelimínary transformation.
Suppose that each cel-l has to divide before reaching a maxír¡al age,

say a = l. Since the probabil-ity that a newborn ce1l does not divide before
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(:.s¡

T¡/e assume

b is nonnegative and integrable on [0,]-e] for each e e (0,1) but

b has a non-integrab!-e singularity in a = l.

Ihe transformation

(3.6) n(t,a) = n(t,a) F(a)

leads to

(3.7)

r'¡here

(3.8) K(a) = 2b(a) F(a)

is nonnegative and integrable on [0,1] (and zeto fax a > l) and r¡here

(3.e)

I,le assume Ëhat rl, e L,[0,]-l . Since F(l) = 0 this is, among other things, arr

assumption on the behavíour of Ó near a = l. Define

I
r(3.10) y(t) := j K(o) u(t,o)do ,

0

âûd preLeûd that y is known. Then m is readily expressed ín terms of rl and

v:

r!(a-t) , a ¿ t '
(3.1l) n(t,a¡rl)

y(t-â), a<t.

a
t

F(a) =exp(- I b(o)do),
)
0

''':,
i

I
I

( * '<.,.1,* *' '(.,") = o

{ ',.,0, = j rt"l ro (t,o)do

( ,<0,'r = T,',
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COÑTINI]T]M POPULATION DYNAMICS

Substituting this result into (3.10) we find the reneuaL equation

t
(3. t2)

¡,lhere

(3. l7)

with norrn

î
y(r) = | K(o)y (t-o)do + f(t)

J

0

x = {ô e L,to,rJ | . *ffi is in L, [o,l]]

I

fl4ü"=f rffir* ,

0

ì,ì.

I
(

(3.13) f(t) = | K(o)1,(o-t)do.
)
t

Existence and uniqueness of an integrable sol-ution y is easy to prove and

this solution is represented by the infinite series

(g.l¿) y=f+K*f+K*K*ft...,

where.t denotes the convolution product (see, for inst.ance, Mil1er l97l).
Define

(3.15) S(Ë) ú = rn(t,. ;r!)

r^¡ith m given by (3.11), y being the solution of (3.12). rt is rather srraight-
for¡¡ard to verify that {S(t)} is a strongly continuous semigroup on

Ll[0, 1] r¿ith infinitesimal generator

dt'tsllj=--+oa
(3. I 6)

Dß) = {rl e L,t0,l I lú is absolutely continuous and

I
I

4r(o) = j r(o) rt, (o)doÌ

0

(the generator of translation is always dífferentiation). Let x denote the
weighted I,1 - space

r.Ì

¡\
L
:l\

Ì¡.

t'i

,,;.

i

- Ö(a)- T(Ð.

É.1.

and define L : X + Ltlo,ll by (Lö)(a)



ii',¡t:, i
'i tr

{
\, .1. 

i.ri

i,r

. it:

liiå
l.r I'{ 

lì

\,¡
':1

\:.

94 o. DTEKMANN, J.A.J. METz, s.A.t.M. KoorJMAN, H.J.A.M. HETJMANS

The semigroup T(t) is defined on X by

(3.1S) r(t) = l-1 s(r) ¡,

and its generaror A is given by I = L-IBL rith D(A) = {OIr.O. D(B)}. Hence

(3. l9)

Aó=-99-t.'da

?(l) = iö e x | " 
*3-G) is absolutely conËinuous and

F(a)
I
I

0(0)=zJu(o)0(o)do].
0

End of example.
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The nexË mathematical probl-ern is Ëo analyse the asgnrptotíc behauíots,

for t + *. Fortunately a powerful maËhematical tool, speetraL theotg, is at
our disposal. The standard approach involves tv¡o steps:
(i) the derivation of certain relations bet\^reen the spectra of T(t) and Ar.

(ii) an analysis of the spectrum of A.

(Note that the eonstructive definition of the semigroup is, in general" not
suíted at all to determine the spectrr¡m of T(t) directly.) We sha1l first
describe sone general results for step (i) and r¡e shall formulate a theorem

vhích inplíes, under sorß cottpa.etness condition, the convergence tor{ards a

stabLe disttibutío1n. Subsequentl-y we discuss the influence of positiuity
on fhe posirion of the spectra.

The point speetra of A and T(t) are re1-ated by

rPÕ(A) tPo(A)
e cpo(T(t))c(e u{0})

A similar relation exists for the residual spectrum, but the continuous

spectrum mây not be t'faithfultt (Pazy, 1983). In the pïesent context, hornr-

ever, another subdivision of the spectrurù is ¡rore useful-, Tl;.e essentiql
spectrwn oe(L) (in the sense of Browder) of a cl-osed operator L ís defined
as rhe set of those ). e o(I) for r¿hich at least one of the fo1lor¿ing con-

ditions ís satisfied

(a) R(fr-L) ís not closed,
(b) I is an accumulation point
(c) the generalized eigenspace

s ional .

of o(L), 
.

corresponding to À is infinite-dimen-

'' il
i:

i, l
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If ). e o(1) \ o^(L) then À is an isolated pole of finite order of the re-
e

solvent. f.et p be the order of Èhe pol-e, Ëhen

x = tv((rT*r,)p) o R((u-r)p).

The elements of o(I) \oe(L) are called nownaL eigenuaLues.

The measure-of-noncompactness o(V) of a bounded set V c_X is the in-
fimum of the positive numbers d for which V can be covered by finitely nany

sets of diameter less than or equal to d. The measure-of-noncompactness
y(L) of a bounded linear operator L : X + X ís the infimum of the positive
numbers k for ¡¡rhich

o(L(v)) < k o(v)

for all bounded sets V c X.

For a bounded operator L n¡e have the r¿ell-knor,m identity
I

r(L) = 1in ll Ln¡ n

1læ

!

,]
li

lìi .

I\
$

Ì

for the speetral radius of L. Nussbar¡u (1970) has proved
the essent.ial spectral radius:

the analogue for

I
re(L) = tin (y(r,n))n.

næ

Here the essêntía1 spectrai. radius is of course defined by

re(L) = sup{lrl I r .o.(L)}.

Let A be the generåtor of the strongLy eontinuous semigroup T(t). I{e define

r0 = ,0(A) = 1in I rog nr(t)il,
t*L

,r = at(e) = rt* * to,.r (r(r)).
fæ

(¡¿ith the convention 1og 0 = - -¡

i.
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"i'

)
It can be proved that

r(T(r)) = u'ot,

r"(T(t)) = .ttt.

(vith the convention e*- = 0)

The relation beËween tO , rl and the spectrum of A ís rattrer eomplícated.

There are examples, even of positive semigfoups' where

,ol sup{Rerlreo(A)}.

(See Greiner, Voigt & Ílolf (1981).)

Ilowever, it can be shor,m that

ôO = max {rrl , , urr} ,

r¡here

^z= r2(A) = sup {nerll is a normal eigenvalue of A}'

(See l{ebb (in press), andFrüss (1983)). Thus one cån chata"t.rize oo

precisely in terms of A provided a suitable estimate for ul, can be given.

And knor¡1edge of rrr. yields exponential estimates for the semigroup'

TITEOREM A. Assu¡ne that
l) A has a simple reaL eigenuaLue \Uwhíeh is a poLe of the z'esaLoent.

2) There eæists drl e > O such that

o(A) n {r Ine tr t Àd - e} = {À¿}

3) T(r) = U(t) + v(r) uhez,e U(t) ds coñpa.ct, anÅ fot'aome \ > 0, M > 0

ll v(r)ll <Mexp(Àu-n)t, t>0

thenr(t) 0 = "Àdt 
p þ + o(e(tr¿-v)t), r*-,uhene v =mín {e,n} andp

is the spectz,aL projeetíon on the eígenuectot, eorresponding to ),U.
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OONTINUIIM POPULATION DYNAMICS

PROOF. Since P cotrmures with T(t), the restriction i(t) to tfn"
R(r-P) defines a strongly continuous senigroup having generator
the resrriction of A to R(I-p). Ir follov¡s directly that

subspace

Â which

97

1S

,,(Â) = o,(e) s Àu- rand rr(Â) s td - r. Therefore ro{Â) < tu-v, from
which r^¡e conctude thar for all r > 0 ll (I-p)T(r) { Il = ilî(t)(r-p) O ll

(1,-v¡ Ë (À ,-v) t<Ke q il(r-p)6ll sre d il6il,
-!ir,

ir
¡
J

È.
;
s

'i
$

üì'
lì

s
fi

{
,å
i*
I

for some positive constant K.
sínce r(t) 0= r(r) ((t-r¡ 4+ pO) = (r-p)r(t) 0

I,r
*. o Pþ, the result follows.

!
An implication of the theorem is thatn as t + -, the dynamies becomes

one-dímensional: the population will grow or decay (depending on the sign
of IU) exponentíally while the x-distribution becornes sËationary. The eigen-
vector corresponding to the so-called strictly dominant eigenvalue trU ís
ca11ed tj¿e stabLe x-dt)etxibutóon.

This theorem covêrs many population problems, although there exist
cases, such as example lb, which exhibit a different Eype of asymptotic
behavíour.

The assumptíons l) and 2) of theoremA may seem, at first sight, rather
specíal and resËrictive. So let us now briefly explain how in,many problems

from population dynamics, posítive operâtor theory can be exploited to prove

that these assumptions are satisfied.
Let us first give some definitions. Let

the Banach space X. A bounded operåtor L : X

leaves X* invariant, i.e.

ìr.

tÍ
|ì
i
Ì

Y
+

->

be a convex closed cone in
X ís called positive if ít

I^Iê denote

L(X ) c X .'+'-+

by Xi the dual cone, i.e.

xi = {f . x*1.f, ó>> o, v ó e x*}.

For an íntroduction to positive operator theor)r we refer to schaeffer (1974)
V

and Krasnosel-'skií (1964).
' ,"t



In our model"s from population dynaurics the

a population density requires that T(t) leaves
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interpretation of T(t) $
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invariant. Nor¡ the identity

(Àr-A) Re tr large,

the resolvent (lI-A)-l defines a positive
t.

(See Paay (1983)) yields
ôperator for every large
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The famous Krein-Rutman theorem and its variants descríbe the spectrum

of a bounded, positive opercator on the círcle vith radius equal to the

spectrål- radius, thus generalizing the Perron-Frobenius theorem on the eigen-

values of a positive matrix.

TITEOREM B. Let X*be nepz'odueí,ng, (í.e. {$-ùlS,V . X*} = X) rvtd nownaL

(i... fôro vô,ü €x+ : ïp +vil ¿ ô ilóil).

LetLbe abounded" positioe operator euch tha-b for aLL $ e x*r þ i 0 and

f. xi, f+o thev,a eæists anintegerp auehthat <f,Lo O'o foraLL
n > p. Moveouey Let ), = r(t) be a poLe af the z'esaLu.ent of L (uhieh is ttue
if L í,s eontpaat) Then

(i) r(L) is an øLgebra|eaLlg símp1-e eígentalue

cnd the eoyz'eaponding eigenoeetar beLongs to x*.
(ii) It¡o ather eigewector beLongs tu X*.

(iii)rf À e d(L) ard 
^ 

* r(L) tl¡en lrl < r(t).

Ihis theorem is formulated inl4arek (1970). We refer Ëo KrasnoseltskiY
(1964) for símílar theorems for so-called uO -positive operators.

In several cases it is possible to shov that the resol-vent of A satis-
fies the hypotheses of theorem B and subsequently the correctness of the

assumptions 1) and 2) of theorem A ís â straightforwatd consequence of the

relation betnreen the spectra of A and itts resolvent. tr{e refer to Heijmans

(in press) for more detalls in a specific example.
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CONTINUITM POPI]LATION DYNAMICS

If we do not have some kind of strong positivity (such as <f,Lnô>>0)

conclusion (iíi) of theorem B has to be weakened in the sense that the

spectrum of L on the circle of radíus r(L) is a cyclíc set, i.e. if
r(L)ei0 e o(L), then r(f,).iko e s(L), for all k ¿ Z. hre refer to Schaefèr
(1974) for precise formulations. Greiner (1981) has shown that, under certain
conditions, the spectlm of the generator A of a positive semigroup on the
vertical line Re À = ld is necessarily additive cyclic (i.e. if ),U+iy e o(A)
then ÀU+iky e o(A) for all k e Z; also see Davies (1980)), and rhar
Àd = ,0. Ihis result is consistent with the multipl-icative cyclicity of rhe

spectrum of T(t) on the circle wiËh radius e " . In such a situation the

asymptotic behaviour for t + - is determined by the projection onto an

infinite dimensional subspaee of X (i.e. infinitely many tpropert.iesf of
the inítial condition remain manifest for all tirp). A trivial example of
this type of behaviour is provided by exampLe Ib, and å. more subtle one by
example ld \^rith v(x) = cx, for some constant c. (See Diekmann, Heijmans &

Thieme, (in press).)

rn many cases (with x one-dimensional) it is actual possible to derive
a (transcendental) eharacteristic equation frorn rorlrich the eigenvalues of A

can be computed. rn that case one finds the necessâry information about
the spectrum of A directly, and any appeal to general results can be avoiiled.
(see Heijmans (in press)). NeverËheless these general results are important
for putting things in their true perspective.

Exarnple. Again we il"lustrate the general outríne by analysing exanple la.
trie formulate the resul"ts in terms of s(t) and B. The abstract equation
().I-B)rf = f implies

ú'(a) = - À,1 (a) + f(a)

and consequently

-t ^ú(a)=e"'rr(0)+

99
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Ilowever, rf ís an element of 2

I

.J*r"rjl"
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Thís equation can be solved for rþ(0) íf f f¿ -r(o)e-lõ d o # l. l+re conclude

rhar À € p(B), the resolvent set of B, if ljrtol "-nodo # I and that the
-l -lnzeros of l- Jô K(o)e "" do of order p are poles of the resolvent of order

p and eigenvaLues of B. The fact that K(a) > 0 implies that Ëhere exists

one sitnpLe real zero ÀU and that all other zeros satisfy R" À a ÀU - e for

sone e > 0 (use the analyticity and the lerma of Riemann-Lebesque),

For t > 1 the influence of the initial condition rfr on Ehe solution m

in (3.11) is through y defined by (:.12) on1y. one can use standard esti-

mates to show that, as a consèquence, T(t) is compact for t ) l.

REMARKS I. 0f course the conclusion can, for this sirnple examplen also be

derived directly froro (3.12) usíng Laplaee transformation.

2. If we study example 1 with a e [,0,-), i.e. r¡ithout maximal age, the direct
ínfluence of thê initial condition on the solution remains for all times

although, under suítable conditions on b, its 'rstrengthil dininishes as

t * @. In such a case one can exploit a represeûtâtion T(t) = U(t) + V(t)
(see I^febb, in press, and Prüp, lg8l and in press).

3. In the case of example ld the compactness as r¡e11 as Ëhe existence of a

nontrivial additive group of eigenvalues on the line ReÀ = lU hinge upon

the behaviour of the function v(2x) - 2v(x). I^Ie refer to Diekmann,

Heijmans & thíeme (io press) for the details and the biologieal inter-
preËation of the ttcyclicrt case.

4. In certain situations the choice of topology is of some importance.

Heijmans (in prep.) uses the weak * topology and duality to demonstrate

the existence of a stêb1e distributíon for a model of predatory behaviour

introduced in Metz & vån Batenburg (in press).

4. NTE POPULATION DYNAMICS OF ECTOITTERMS

In this section ve sha1l concentrate on the second exarnple from section
2. In order to simplify the discussion rnte shal1 assume that am < æ. For the

sake of convenience lre repeat formula (2.10) as fornula (4.1):

(4.1a) 'L(r,o) = \
r.or L(t,a) . VG)

for .L(r,a) > Z(x)

:
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* u,r,., * S z{t,") = e(x,z(r,a)) ,

{ $ "tt,"l + $ n(t,a) = -p(a,.L(t,a)) n(t,a),
I

{n(t,a) 
= 0 ,

lr
I n(t,0) = j ß(x,¿(r,a)) n(t,a)da .
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[r7hen x is constant, equation (4.1a) has a stationary (i.e. time independent)

solution and an¡r solution of an initial value problem will be identical to

the stationary one after finite time. Therefore i¡re can restrict the attention
to the linear (4.1b) and apply the Ëheorv of the 1âst sectíon. In Kooijnan
& Metz (in press) the value of the dominant eigenvalue IU was studíed as

a functíon of x.

IiS=_¿, Dominant eigenvalue lO for the waterflea Døphnía røgnû feedLrLg orl

the alga ChLoreLLa ax 20oC as a function of food density.

Fígure 2 shornrs the result for the growth parameters of. Døphnia magna arrd

r¡ith forrnnrla (2.9 bl) r¡ith d = 0 for the death rate. It can be seen from
theis figure that oear *".it defíned by ld(*"rit) = 0 ttre dependence of
lU on x is very steep indeed. This means that for DapLtrtía and ecologically
similar organísms a srna11 fluctuation in the food density x in the neigh-
bourhood of x_,,, has a very drastic effect on population gro!/th. This iscr at
one possible explanation for the frequently erratic appearance of population
counts of. daphnids recorded in the literature,

since in the Daphnia model all paramèters have a direct physiologícal
interpretation it becomes possible to study the popui-ation effects of Ëoxic
compounds affecting these parameters in dependence on the food density x.
Thís is very ímportant since routine 1-aboratory toxicity testíng is almost
always done at high food densities r¡hereas in nature food is generally
scarce. Fígure 3 shovs the result of such an exe¡cise ror Døphnia ma.gna.
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Fig. 3: Dominant eigenvalue ),u under stressed conditions as a function of
lu(x) under unstressed conditions for compounds affecting (l) feeding rate
E, Q) digestion v, (3) bâsal Eerabolism 6n (4) growth n, (5) reproducrive
rate o, and (6) survival a,o. Except for the feeding rate the concentration
of the toxic compound is chosen such that the maximum stressed value of
ru is 902 of the maximum blank value lu,n; parameter vaLues of the waterflea
Daphnia nagna f.eed,íng on rhe alga ChLot'eLLa ax ZOoC.

rn this figure the value of Àu(x) under cheoically stressed condirions is
plotted as a function of Lu(x) in the unstressed situatíon (that is, r^,ê

vary x but put Àu(x) on the horizontal axis) for various types of physiolog-
ical effects, The leve1 of chemical stress is (arbitrarily) chosen such Ëhat
Àu is reduced by l0z ar very high food densities (ío the case of an effecr
on the filteríng rate which manifests ítserf in a loweríng of { another
choice is rnade since thís effèct never manifests itself in lu at high food
densities). rt can be seen from Figure 3 that for effects on growth and
reprodüction the relative reduction of Ào is hardly depending on x (extra-
polation'is "safet'). 0n the contrary compounds affecting survival bring about
a far more drastic relative reduction of ).0 at lor¡er food densitíes. These
predictions are consolidated for all regions of the parameËer space which r,re

have explored so far.
As yet we have not done any laboratory experiments on Daphnía nagna

to test the theory.
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of the rotator Braevn)onus rubens for various concentrations of 3r4-dich-
loroaniline (1eft) and potassiuru dichromate (right) (horizontal) feeding
at varíous chlorella densities (backr¡ards). The Leftmost concentration
is the blank and should be positíoned at ninus infinity.

Ïigure 4 sho¡.¡s the results of laboratory experíments rríth another animal-,
the rotifer Brachionus z,ubens" for vhich population experiments are more
easily done. rË can be concluded that the predictions are borne out by the
data, at least qualitatively.

rn many population dynamical experiments x is not a given quantity but
it is dynamically dependent on the population trajectory (consumptionl). some
possible simple assumptions about the dynamics of x are

:

ii-
l.l

.i
ii

. ,|';

(4,2a)

or

(4.2b)

r¡here ia both cases

dx
ãE=a-Yx-vr(x)p

dx 2 -.
Ë=o"-yx -vf(x)p

= I u'r,,",
n
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. ,i

0123
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To arrive at (4.2a) \^rè assume that r,re feed the population at a constant rate
and that uneâten food deteriorates aË a constant relative rate, e.g. through
sinking to the bottom of the experimental- container or through overflow in
chemostat-like set ups. Equation (4.2b) corresponds to the so-ca11ed logis-
tic growth of the food population.

Together (4.t) and (4.2) forrn a nonlínear pair of equations r¡hich r¡e

only just began studying. I^le sha1l finish this section r¡íth a short over-
viev of our presènt lines of approach.

To find all possible equílibria the time derivatives in (¿r.l) and (4.2)

are sèt equal to zero. NoË unexpectedly it turns out that there is a unique
nontrivial equilibríun L, ì, ?. ¡¡ith ñ > 0 if and only if Ëhe trivial equi-
librium (ñ = 0, î = y-lo) is unstable. Ihis in turn happens if and only if
the domínant eigenvalue ÀU of the linear problem whích resuLts from sètting
x equal to y-la for all tiure, is positive.

For the nontrivial equilibriurn 2 irr.r.""." r¡ith a and Z(ar) . .(-(î), i.e.
we remain well away fron the kink in g. Therefore r^7e can study, at least
formally, loca1 stability by using a linearization procedure. This leads

to a characteristic equation (of a type r,¡hich one also encounters in delay
differential equations) which is far more difficult than the one correspon-
ding to the trivial equilibrium, some idea of the behaviour of the roots of
the characteristic equaÈion can. be got already from the experimentaL results
reproduced in Figure 5: the oscillations resulting from a temperature change

from lSoc to 25oc strongly suggest the occurrence of a l{opf bifurcation.
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CONTINUUM POPULATION DYNAMICS

Fig. 5: Population growth in the r¡aterflea DøpVmöa Magna

(b) 25oC in 50 cc of pond r^7ater. (Reproduced from pratt
by Krebs (1972), reproduced by Nisbet & Gurney (1982).)

5. DENSITY DEPENDENCE: GENERAL REMARKS
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Unlirnited popul-ation gro\rth does not exisË. A growing populatíon in-
fl-uences its environment and therefore its own grovÈh. Many such bio1ogical
feedback 1ooþs can only be described properly in terms of the interaction
of the physiological processes r¡ithin the individuals (e.g. growth, repro-
duction) and environmental factors (e.g. the availabí1íty of food). Con-

sequently models of the type described in section 2 are an ideal tool to
give a realistic mathematical formulation of density dependence (Streifer,
1974). Once one kno¡¡s the general structure of the models it is hardly more

difficult to formulate a nonlinear model than a linear one(there are, how-
ever, some subtilities and pitfalls; see Diekmann, Lauwerier, Aldenberg &
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Metz, 1983, for an example), but unfortunafely this reSemblance ceases when

r"¡e consider the mather¡atical analysis of the resulting problems.

If the conditions at the beginning of section 3 are relaxed one usually

sti1l cau solve the probl-ern of the existence and uniqueness of a sol-ution

for the initial value problem and subsequently define a semigroup of non-

linear operators (possibly onl-y on a closed subset tr{ of X such that solutions

starting in Il renain in w and do not blow up in finite time; for instance,

the definition of 't^I may involve nonnegativity). I{orrever, the catalogue of

possíble asymptotic behaviour is much richer now and, in fact, so rich that

we cannoË say anything ín general. I{e expeat thât progress will be nade

by analysing specific problems in detail using bifurcation theory (Chor¡ ¿

llale, 1982, Guckenheimer & Holmes, 1983) and numerical experírneats (Gurney

& Nisbet, in press). Much r^¡ork has to be done in order to generalize such

basic theoretical resuLts âs the princíple of linearized stability and the

Hopf bifurcation theorem to the Present class of dynamical systems (t^/ebb,

in press, Cushing, 1983, and Prüss, 1981, 1983, contain results
for age-dependent populatíon growth which is a rathet sPecial case since

-dathe groaTth rate f;f is always one and never density dependent). Ilowever' a

perhaps much more pressing problem is the development of powerful methods

to derive results about roots of characteristic equations r¿hich are not of

the simple kind discussed ín section 3 (Cooke & Grossmå.n, 1982). These arise
rrhen linearizing about some non-zero steady state.

Anyhow, except for the case of age dependence there exists at this

moment no general nonlinear mâthernatical theory at all and wetve had our

say on Ëhis natter.
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