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1 Introduction

The ability to reliably identify aircraft is an important aspect of air traffic safety. Civilian air

traffic controllers need to be constantly updated on the status of aircraft moving through the

local airspace. In military scenarios, the need to reliably identify aircraft is even more stringent,

since erroneous identification could easily result in friendly fire incidents.

A common technique for identification of military aircraft is Identification Friend Foe (IFF). IFF

identification is initiated when the interrogator transmits a challenge to the aircraft. Friendly

aircraft are supposed to be equipped with a transponder, which replies to the challenge by

transmitting an identification code to the interrogator. Some IFF modes of operation require

more information to be included in the reply, such as the current aircraft altitude. Hostile air-

craft will in general not be able to respond properly to the challenge because of the lack of a

(compatible) transponder, and will therefore be identified as hostile (or at least not friendly).

Various other identification techniques are used in combination with IFF. For example, friendly

aircraft can be required to limit their flight path to pre-defined regions of airspace called corri-

dors.

Civilian aircraft use a technique similar to IFF called Secondary Surveillance Radar (SSR).

Although SSR like IFF provides information on aircraft type, its primary purpose is to keep

track of the location of civilian aircraft. Until recently it could be safely assumed that all civilian

aircraft carried a SSR transponder. However, on September 11th, 2001, terrorists hijacked

several civilian aircraft, which were then used to attack both the World Trade Center and the

Pentagon, resulting in the loss of over three thousand lives. By disabling the SSR transponders

the terrorists prevented air traffic controllers to detect the altered flight path of the aircraft.

The fundamental drawback of techniques like IFF and SSR is that they require active cooper-

ation from friendly aircraft. However, the events of September 11 and many other incidents in

recent history show that the cooperation of friendly aircraft is not guaranteed. Friendly aircraft

have failed to produce valid IFF replies for a number of reasons, including hardware failure and

human error.

Non-Cooperative Target Recognition (NCTR) techniques do not require the active participa-

tion of friendly aircraft. Instead, they rely on sensor measurements to independently obtain

information on the aircraft. The goal of NCTR is to infer the original aircraft type from these

measurements. This is a classic example of a pattern recognition problem.

The term pattern recognition describes a wide area of research, which includes topics from

the fields of signal processing, computer science, and statistics. Typical pattern recognition

problems range from speech recognition and handwritten character classification to robot lo-

calisation and fault detection in industrial machinery. The problem of deciding from which

aircraft a particular measurement originates is an example of a classification problem. In classi-

fication problems, the task is to develop an algorithm (or classifier) which is capable of deciding

to which of a set of distinct classes a given measurement belongs. In the case of aircraft clas-

sification the classes are different types of aircraft, and it is the task of the classifier to decide

from which aircraft a given measurement originates.

Classifiers can be based on a set of rules derived from expert knowledge of the problem

domain, or they can be based on the statistical properties of a training set: a collection of

measurements for which the corresponding class is known. In the latter case, the resulting

statistical classifier assigns a new measurement to the class which most likely generated the

measurement [1, 2, 3, 4]. Model-based classifiers assume some explicit functional form of the
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radar line-of-sight

Figure 1.1: Example of a range profile of a Boeing 737-500. The radar is situated on the left hand side.

Radar returns from the scatterers on the aircraft (circles) are projected onto the line-of-sight, resulting

in a radar range profile (bottom). Taken from [7], with permission.

true distribution of the measurements (for instance, a Gaussian distribution), and infer the

optimal model parameters from the training set. Classifiers based on template matching, such

as the nearest neighbour classifier, implicitly assume some distribution by defining a similarity

measure between an unknown measurement and the measurements in the training set. Finally,

statistical classifiers can also be constructed using discriminant analysis, which uses the data

set to construct optimal decision boundaries separating the different classes present in the data

set.

Many different sensors can be used to obtain measurements for constructing a training set.

Radar is an attractive sensor for aircraft classification, which compares well to alternatives

such as imaging or infra-red sensors. It is capable of operating over ranges up to several

hundred kilometres, operates equally well by day or by night and is insensitive to a wide range

of weather conditions. Radar range profiles are a specific type of radar measurements which

are often used for classifying aircraft [5, 6, 7, 8, 9, 10, 11, 12, 13], but have also been used for

classifying ships [14, 15, 16, 17, 18, 19] and ground based vehicles [20]. Radar range profiles are

essentially one-dimensional ‘images’ of aircraft, measured along the line-of-sight between the

radar and the aircraft. An example of a range profile is shown in figure 1.1. Range profiles have

a number of properties which makes them suitable measurements for classification purposes.

They can be measured relatively quickly, and can be measured at any orientation of the aircraft.

Furthermore, the requirements on radar hardware are relatively modest.

The use of range profiles for aircraft classification does however have drawbacks, which this

thesis aims to solve. The main drawbacks are the need for translation invariant classification,

the limited accuracy of estimates of aircraft orientation with respect to the radar, and the

difficulty of obtaining sufficient training data.

The need for translation invariant classification results from the fact that changes in the

distance between the radar and the aircraft causes cyclic shifts of the resulting range profile.

The distance between radar and aircraft is usually not known with high enough precision to
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Figure 1.2: A CAD model of a Fokker 100.

correct for this effect, and so a classifier has to be invariant to arbitrary shifts of the range

profile(s) to be classified.

Translation invariant classification is often achieved by using a translation invariant sim-

ilarity measure for comparing range profiles [11, 14, 18, 21]. The main drawback of these

approaches is that they are relatively slow. Another solution is to extract translation invariant

features from the range profiles [12, 22], which has the drawback that potentially discriminative

information is removed from the data. This thesis solves the problem of translation invariant

classification by defining a translation invariant representation of range profiles. This method,

described in chapter 3, aims to provide fast classification, but does not discard any potentially

useful information from the range profiles.

Range profiles are highly dependent on the orientation of the aircraft with respect to the

radar, which is usually expressed as an aspect angle, defined in chapter 2. In [11] it is shown

that the performance of a nearest neighbour classifier increases when aspect angle estimates

are used to only compare range profiles with those profiles in the training set which were

obtained at comparable aspect angles. Furthermore, the availability of accurate aspect angle

information is important for a number of radar signal processing techniques.

Although aspect angles of aircraft can be estimated from tracking data, the estimates suffer

from both systematic and random errors in the order of a few degrees [23]. Since range profiles

can differ dramatically even over changes in aspect angle smaller than one degree, increasing

the accuracy of aspect angle estimates could significantly increase classification performance.

Chapter 4 describes a method which combines aspect angle estimates obtained from track-

ing data with the corresponding radar measurements to improve the accuracy of aspect angle

estimates.

The main drawback of using radar range profiles for aircraft classification is that very large

training sets are required for constructing reliable statistical classifiers. The reason for this is

twofold. First, range profiles are generally represented as high-dimensional vectors contain-

ing several hundreds of elements. It is well known that constructing statistical classifiers in

high-dimensional vector spaces requires huge amounts of training data [4]. Second, the large

dependency of range profiles on aspect angle causes large within-class variability, and so a

large training set is required to accurately reflect the statistical distribution of range profiles.

Unfortunately, measuring range profiles in a controlled experiment is both expensive and time-

consuming. Also, not all aircraft types are available for measuring. Obtaining enough range

profile measurements to construct a sufficiently large training set is therefore not a feasible

option.

Simulated range profiles provide an alternative source for constructing a training set. Simu-

lated range profiles can be obtained using electro-magnetic simulation software together with

CAD models of aircraft such as shown in figure 1.2. Simulated range profiles can be obtained
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quickly, cheaply, and at any orientation of the aircraft. Furthermore, CAD models might be

obtained even for aircraft not available in real life.

Simulated range profiles are in many ways different from measured range profiles. If a simu-

lated training set is used to construct a classifier for measured range profiles, it should base its

decision solely on those features which are present in both simulated and measured range pro-

files. This observation leads to three research questions answered in chapters 5 and 6: what are

the common features present in both simulated and measured range profiles, how can these

features be extracted from the data, and how can the extracted features be used for aircraft

classification?

The differences between simulated and measured range profiles are often ignored when con-

structing a classifier from a simulated training set, assuming that simulated and measured

profiles can be compared directly. Although reasonable classification performance can be ob-

tained in this way, it does not provide insight in exactly which properties of simulated and

measured range profiles provided the basis for comparison. Also, it was shown in [7, 11] that

correcting for some of the differences between simulated and measured range profiles results

in increased classifier performance.

In this thesis it is argued that the common features between simulated and measured range

profiles are the positions of local amplitude maxima, i.e. peaks, in range profiles. Chapter 5

defines a generative model of peak positions, which is capable of generating the statistical

distribution of peak positions, given the aspect angle at which the aircraft is observed. The pa-

rameters of this model have clear physical interpretations. They include the three-dimensional

position of aircraft parts which contribute significantly to the observed range profile (so-called

scatterers), as well as the probability that a given scatterer is visible at a given aspect angle.

A statistical classifier for measured range profiles, based on the generative model of peak

positions, is constructed in chapter 6. This classifier is trained solely from simulated training

data, but is capable of classifying measured range profiles. It can be used to classify single range

profiles as well as sequences of successive range profiles. Finally, it is translation invariant, and

treats the uncertainty in aspect angle estimates in a statistically sound fashion.

Before presenting the actual research on radar range profile processing and classification, this

thesis starts by providing an overview of the basic principles of obtaining and pre-processing

radar range profiles in chapter 2.



2 Radar Range Profiles

2.1 Introduction

High resolution radar (HRR) range profiles are essentially one-dimensional ‘images’ of radar

targets (see figure 1.1). If a range profile is measured with sufficient resolution, the separate

contributions of the scatterers, i.e., the parts of the aircraft that strongly reflect the radar en-

ergy, are resolved. Range profiles therefore provide information on the geometry of the aircraft,

and so they are suitable features for automatic aircraft classification. This chapter summarises

the main properties of radar range profiles, after first defining the appropriate coordinate sys-

tems in section 2.2.

Radar range profiles are obtained by transmitting a radar signal that comprises a wide range

in frequency, using either a single pulse (a chirp), or a series of pulses with increasing fre-

quency. A range profile is defined as the squared magnitude of the coherent complex radar

returns, after optional pre-processing. All phase information is usually discarded. The resolu-

tion of the range profile is inversely related to the transmitted bandwidth B, as will be shown

in section 2.3. However, optional windowing in the Fourier domain usually decreases the reso-

lution (see section 2.5).

Radars usually measure a sequence (or leg) of consecutive range profiles over a period of time.

The motion of the aircraft during this period causes the aircraft to appear at different positions

in different profiles. This effect is known as translation range migration (TRM). Aircraft motion

also influences the pose of the aircraft with respect to the radar (or aspect angle). Occlusion of

scatterers, rotational range migration (RRM) and speckle are effects caused by aircraft rotations

which greatly influence range profiles. Section 2.4 discusses these sources of range profile

variability in detail.

Throughout this thesis simulated range profiles will be used as the basis for constructing

classifiers. Section 2.6 discusses the basics of range profile simulation, and the main differences

between measured and simulated range profiles.

Finally, section 2.7 describes the details of the data set used in the experiments performed

for the research described in this thesis.

2.2 Coordinate Systems

This section introduces a coordinate system, used throughout this thesis, in which locations

relative to the aircraft and aircraft orientation with respect to the radar are defined.

A set of unit vectors (ex,ey ,ez) attached to the aircraft define the axis of the aircraft-fixed

coordinate system shown in figure 2.1. The positive x-axis points in the direction from the tail

to the nose of the aircraft. The positive y-axis points from the wing tip at the starboard side of

the aircraft to the wing tip at port side. Finally, the z-axis points from the bottom of the aircraft

to the top. Note that the origin of the aircraft-fixed coordinate system is fixed but arbitrary.

Radar line-of-sight is defined as the direction from which the radar illuminates the aircraft.

The line-of-sight is expressed in the aircraft-fixed coordinate system as a unit vector s attached

to the origin.

The orientation of the aircraft with respect to the radar is determined by the orientation of

s with respect to the principal axis of the aircraft-fixed coordinate system. Aircraft orientation
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Figure 2.1: The definition of aspect angle θ in the aircraft-fixed coordinate frame (ex ,ey ,ez). The unit

vector −s is the reverse line-of-sight.

is generally described as a two-dimensional aspect angle θ = (θa, θe),1 Aspect azimuth, θa, is

defined as

θa = arctan

(

−s · ey

−s · ex

)

, (2.1)

i.e., θa is the angle between the positive x-axis and the projection of −s on the plane spanned

by ex and ey . Aspect elevation, θe, is defined as

θe = arccos (−s · ez) , (2.2)

i.e., θe is the angle between the positive z-axis and −s. Figure 2.1 shows the geometrical con-

struction of both aspect angles.

Aspect azimuth is zero if the aircraft is viewed from nose-on and 180 degrees if viewed from

tail-on. If the aircraft is observed from the starboard side then θa < 0. If the aircraft is observed

from the port side then θa > 0. Since aircraft are usually symmetric, it can be assumed that a

range profile measured at an aspect azimuth θa is identical to a profile measured at −θa (for a

given aspect elevation θe).

Estimates of the aspect angles of an aircraft in flight can be obtained either from onboard

equipment, like INS or GPS-based systems, or they can be derived from tracking data – a se-

quence of three-dimensional aircraft positions, which can be obtained from a tracking radar.

While onboard equipment provides the most accurate aspect angle estimates, such equipment

is only available in controlled experiments. When performing radar measurements of targets

of opportunity, one has to rely on estimates from tracking data.

Aspect angle estimates from tracking data are obtained by combining the tracking data with

aerodynamic assumptions on the most likely pose of the aircraft given its flight path. Generally,

one assumes that an aircraft moves in the direction of its nose. However, e.g. wind conditions

can cause the aircraft to move in a slightly different direction, which results in a systematic

error on aspect angle estimates. If information on the weather condition is available, the sys-

1Although three angles are required to completely specify aircraft orientation, rotations of the aircraft in the plane
perpendicular to the line of sight do not influence range profile measurements. Therefore, a description of aircraft
pose in terms of aspect angles is sufficient.
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tematic error on aspect angle estimates can be considerably reduced [23].

Aspect angle estimates also suffer from random errors which are the result of small rotations

of the aircraft due to flight corrections or rapidly changing wind conditions, e.g. turbulence.

Positions along the line-of-sight s are denoted by slant range r . The slant range of a point

x = (x,y, z)T in the aircraft-fixed coordinate system is defined as the projection of x on the

line-of-sight s,

r(s,x) = s · x. (2.3)

Using the definitions of aspect angle in equations (2.1) and (2.2), the line-of-sight s can be

expressed as a function of aspect angle as

s(θ) = (− cosθa sinθe, − sinθa sinθe, − cosθe)
T
. (2.4)

Consequently, the slant range of a point x as a function of aspect angle θ is given by

r(θ,x) = s(θ) · x. (2.5)

Suppose that an aircraft, observed initially at aspect angle θ, performs a rotation such that

the aspect angle changes by a small amount ∆θ. Then, the slant range of a point x can be

approximated by a linear function of ∆θ:

r(θ,x) ≈ r(θ0,x)+ r
a
⊥ ∆θ

a + r e⊥ ∆θ
e, (2.6)

where the cross ranges ra⊥ and r e⊥ are defined as

ra⊥ =
d

dθa
r(θ,x) = (ez × s) · x, (2.7)

r e⊥ =
d

dθe
r(θ,x) =

1

sinθe
(s× (ez × s)) · x, (2.8)

i.e., ra⊥ is the projection of x on the direction perpendicular to both the positive z-axis and the

line-of-sight, and r e⊥ is the projection of x on the direction perpendicular to both the line-of-

sight and the plane spanned by the positive z-axis and the line-of-sight.

2.3 Radar Range Profiles

A radar measures the radar reflectivity of an aircraft by transmitting an electro-magnetic pulse

and recording the amplitude and phase of the reflected signal (the radar return), as a function

of time.2 A range profile is defined as the squared amplitude of the radar return. A range

profile thus represents the energy of the reflected signal as a function of slant range r .

If the width of the transmitted pulse is much shorter than the size of the aircraft, the different

parts of the aircraft contributing to the total radar return are resolved in the resulting range

profile, as can be seen in figure 1.1. The width of the transmitted pulse thus determines the

resolution of a range profiles – the shorter the pulse, the more detail will be seen in the range

profile.

The minimum pulse width a radar can achieve is limited by the power (energy per unit of

time) it is capable of transmitting. Unfortunately, most radars are incapable of transmitting the

power required to achieve sufficient range resolution.

2Throughout this thesis it is assumed that the same radar is used for both transmitting and receiving (monostatic
radar).
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Pulse compression [24] allows a radar to achieve high range resolution even with relatively

long pulse widths. This is achieved by modulating the frequency f(t) of the transmitted pulse

during the total pulse width τ = te−ts , where ts and te denote the times of respectively starting

and ending the pulse transmission. Radars utilising pulse compression are essentially measur-

ing the total radar return G(f) in the frequency domain. A range profile is then constructed

by applying an inverse Fourier transform to G(f). The range resolution of the resulting range

profile is determined by the total bandwidth B spanned by f(t).

The chirp waveform is a common application of this idea. The chirp waveform is constructed

by linearly varying the transmitted frequency over the time period τ ,

f(t) = f0 +
t − ts

τ
B, for ts < t < te. (2.9)

Another common waveform [25] is the stepped frequency waveform (SFW). Stepped frequency

waveforms are produced by linearly sampling the desired bandwidth B at specific frequencies

fl,

B = L∆f , (2.10a)

fl = f0 + l∆f , (2.10b)

l = 0, . . . , L. (2.10c)

For each frequency fl, the total radar return Gl = G(fl) is then measured by transmitting the

corresponding pulse at times tl,

tl = ts + l
∆t

L
, (2.11)

where ∆t is the time interval between transmitting two successive pulses.

The corresponding radar return g in the time domain is then reconstructed by performing an

Inverse Discrete Fourier Transform (IDFT) on the L+ 1 returns Gl,

g = F−1(G), (2.12)

The elements yl (usually called range bins) of the resulting range profile y = (y0, . . . , yL) are

then given by

yl = |gl|
2. (2.13)

A problem with the use of the SFW is that radial motions of the aircraft cause a distortion of

measured range profiles. To minimise these distortions, a velocity-tolerant stepped frequency

waveform (VTSFW) can be used. In [11] it is shown that by decreasing the time interval between

transmitting the frequencies fl, any constant velocity of the aircraft is automatically compen-

sated for. A VTSFW is produced by transmitting the frequencies fl at specific times

tl = ∆tmin
(γl+ l)(γL+ L− γ)

γl+ L
, (2.14)

where ∆tmin = tL − tL−1 is the time delay between the two final pulses, and γ = B/f0.

The radar return of a complex target can be described as a coherent sum over the returns of

a set of discrete scatterers [26]. With this assumption, the total coherent return G for a given
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frequency fl and aspect angle θ is given by

Gl(θ) =

M
∑

m=1

Gml (θ), (2.15a)

Gml (θ) = A
m(fl,θ) exp iφm(fl,θ), (2.15b)

where Am is the real-valued amplitude and φm the phase of the return of the mth scatterer. In

general, both will be a function of frequency and aspect angle.

The most basic scatterer is the point scatterer. A point scatterer is considered to be rigidly

attached to the aircraft body at some location x in the coordinate system shown in figure 2.1.

The radar return of a point scatterer has two defining characteristics: it has a constant am-

plitude with respect to both frequency and aspect angle, and its phase varies linearly with both

frequency f and slant range r . The radar return of a point scatterer located at a position x in

the aircraft-fixed coordinate system is given by

Gl(θ) = A exp−
4πifl

c
r(θ,x), (2.16)

where r(θ,x) is defined in equation (2.5).

Many other types of scattering behaviour, such as specular reflections and cavity resonances,

are present in actual HRR measurements [27, 28]. However, the relation between position,

aspect angle and radar return of these scatter types is very difficult to determine, although

efforts have been made to construct parametric models of non-point scattering [29, 30, 31].

It is instructive to explicitly calculate the range profile resulting from a single point scatterer

at position x. From equations (2.12) and (2.16) it follows that

gl = A





sinπl′

sin
πl′

L+1



 exp i

(

φl −
4πf̄

c
r(θ,x)

)

, (2.17)

where c is the speed of light, and l′, f̄ and φ0
l are defined as

l′ = l−
2B

c
r(θ,x), (2.18)

f̄ = f0 +
1

2
L∆f , (2.19)

φl =
πL

L+ 1
l. (2.20)

The elements yl of the resulting range profile y are therefore given by

yl = A
2





sinπl′

sin
πl′

L+1





2

. (2.21)

Equations (2.21) and (2.18) show that a point scatterer causes a local maximum of y in the range

bin yl that contains the point scatterer. In other words, the slant range of a point scatterer can

be estimated from a range profile by locating the local amplitude maxima.

From equations (2.21) and (2.18), two important parameters can be obtained. The nominal

range resolution ∆r is defined as the distance in metres between to successive range bins yl,
and is given by

∆r =
c

2B
. (2.22)
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Due to the periodicity of (2.21), a shift in slant range of an integer multiple of
c

2∆f will cause

the scatterer to appear in the same bin in the range profile. The length

Ru =
c

2∆f
(2.23)

is therefore called the unambiguous range interval.

2.4 Range Profile Variability

This section discusses the main sources of range profile variability: measurement noise, trans-

lational range migration, rotational range migration, speckle, and occlusion.

Radar measurements are subject to measurement noise, which is caused by both thermal

noise in the radar receiver and clutter – unwanted radar returns from for example birds or

atmospheric effects. The signal-to-noise ratio is mainly determined by the distance between

the radar and the aircraft, since the power of the reflected signal measured by the radar is

inversely proportional to the fourth power of the distance between the radar and the aircraft.

A range profile suffers from translational range migration (TRM) when a change in distance

between the radar and the aircraft causes scatterers to move from one range bin to the next.

Since all scatterers are translated by the same amount, the relative distance between two scat-

terers does not change. Therefore, the shape of the profile does not change due to TRM, and so

the effect of TRM is a translation of the original range profile. In case of a stepped frequency

waveform, this shift is cyclic.

If an aircraft rotates over a significant aspect angle (of the order of a few degrees) such that

the outermost scatterers move from one range bin to the other, the range profiles collected

during this rotation suffer from rotational range migration (RRM) [13].

The next source of variability, speckle, is also related to aircraft rotations. Speckle occurs if in

a single range bin l two or more distinct scatterers are present. Then, only a slight rotation of

the aircraft in aspect azimuth or elevation is enough to change the differential path length to the

radar over half the wavelength. This causes the coherent sum gl of the scatter contributions

to turn from constructive to destructive interference (or vice versa) within tiny changes of

aspect angle; generally between one and two orders of magnitude smaller than the aspect angle

changes associated with RRM.

The effect of speckle is that the range profile amplitudes yl vary rapidly if a sequence of

consecutively measured range profiles is considered. In this case, the change in aspect angle

is due mainly to small aircraft yaw motions during the recording time. Because the rotations

causing speckle are smaller than the accuracy of any aspect angle estimate, speckle is is usually

modelled as statistical variance of peak amplitude.

The so-called Swerling cases [32] are models of amplitude fluctuations in the case of a very

large number of point scatterers being present in a single range bin l. Swerling cases 1 and 2

apply when all scatterers are of comparable strength. Swerling cases 3 and 4 apply when one

scatterer is significantly stronger than the other scatterers. Although the Swerling cases are

derived from the limit case of an infinite number of scatterers, in practice they work well even

if only a few scatterers are present [24].

It has been shown [33] that, for any Swerling case, the resulting distribution p(yl) of yl is a

chi-square distribution with 2k degrees of freedom, given by

p(yl) =
k

(k− 1)! ȳl

(

kyl

ȳl

)k−1

exp

(

−
kyl

ȳl

)

, (2.24)
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Figure 2.2: The Hamming window in both the frequency and the range domain. The gray line in figure (b)

shows the IDFT of the default square window.

where ȳl denotes the average value of yl. Swerling cases 1 and 2 are described by k = 1, while

Swerling cases 3 and 4 are described by k = 2.

From (2.24) one can calculate the expected variance σ 2
l on range profile amplitudes yl. For

both k = 1 and k = 2, this variance varies with yl as

σ 2
l ∝ y2

l . (2.25)

Fluctuations of range profile amplitude due to speckle are thus multiplicative in nature – the

larger the profile amplitude, the larger the variance. This poses a problem for many statistical

classifiers, which are often based on additive noise models. Section 2.5 provides a solution to

this problem by applying a non-linear transformation to the range profiles.

The final source of range profile variability discussed here is occlusion. Occlusion occurs

when a scatterer is positioned such that it is not observable by the radar. In our application,

this is always a case of self-occlusion, which means a scatterer can only be occluded by another

part of the same aircraft. An occluded scatterer does not contribute at all to the measured

range profile. Rotations of the aircraft in the order of 10 degrees can cause occluded scatterers

to become visible and vice versa.

2.5 Range Profile Pre-Processing for Classification

A consequence of using a stepped frequency waveform is that effectively a square window is

applied to the ‘true’ radar return in the frequency domain. This introduces high side-lobes in

the range domain. It is therefore common to apply a filter to the complex radar returns before

performing the IDFT, which reduces the height of the side-lobes at the cost of a slight loss in

resolution.

The choice in filters is rather large (see [34] for an overview), each with their own advantages

and disadvantages. The profiles used for the work described in this thesis have all been filtered

using the Hamming window [35], shown in figure 2.2. Figure 2.3(b) shows the effect of applying

the Hamming window on the resulting range profile. Application of the Hamming window

increases the nominal range resolution by roughly a factor of 1.3,

∆r ≈ 1.3
c

2B
. (2.26)

After applying a window to the (L+1) coherent returns, they can also be zero-padded, thereby
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Figure 2.3: Examples of the effect of the different pre-processing methods described in section 2.5 on

a (measured) range profile. Note that the profiles are normalised to unit vector length, and so the

vertical axes are dimensionless.

increasing the dimensionality from L + 1 to d ≡ z(L + 1), where z > 1 is the oversampling

factor. Zero-padding has the effect of interpolating the resulting range profile, and thereby

artificially increasing the number of range bins in the profile. Note that this does not increase

the resolution of the profile – it only allows for easier detection of amplitude peaks. The effects

of zero-padding on a range profile are shown in figure 2.3(c).

In section 2.4 it was shown (equation (2.25)) that the variance of peak amplitudes due to

speckle was multiplicative in nature. However, many classifiers, such as the nearest neighbour

classifier, assume an additive noise distribution, such as Gaussian distributed white noise. It

can therefore be beneficial to transform the data in such a way that the resulting variance is

additive instead of multiplicative.

It has been shown that applying a Box-Cox transformation [36, 37] to range profiles, the

multiplicative peak amplitude variation induced by speckle can be transformed to be as additive

as possible [11, 38]. A number of equivalent definitions of the Box-Cox transformation are

found in literature – in this thesis, the Box-Cox transformation of a range profile y is defined as

y ′l =
(yl)

η

√

∑

d(yl)
2η
, (2.27)



2.6 Simulated HRR 13

where y′ is the transformed profile, and η = [0,1] is a free tuning parameter. The effect of

applying a Box-Cox transformation to a range profile is shown in figure 2.3(d). In [11, 38] it has

been shown that a value of η ≈ 0.2 is optimal for transforming the multiplicative amplitude

fluctuations caused by speckle to normally distributed fluctuations. Note that the transformed

profile is also normalised to unit vector length to make the final classification independent on

the absolute magnitudes of the range profiles.

2.6 Simulated HRR

Simulated range profiles are produced by supplying radar simulation software with CAD mod-

els of aircraft. Simulated range profiles are a cheap and efficient method for obtaining large

amounts of profiles, which can be used as a training set for constructing a classifier (as dis-

cussed in section 2.1).

Aircraft CAD models represent the geometry of aircraft as a collection of discrete elements.

These elements can be parametric functions (such as for example nurbs [39]), or simple primi-

tives (such as the flat patches of the model shown in figure 1.2).

Simulated range profiles are immune to some of the sources of range profile variability dis-

cussed in section 2.4. Simulated range profiles do not suffer from measurement noise (apart

from negligible errors due to the limited numerical accuracy of computer computations). Also,

simulated range profiles do not suffer from translational range migration (provided the origin

of rotations of the aircraft model is fixed).

Other differences between measured and range profiles result from the limited accuracy of

HRR simulation. First of all, simulation software can only approximate the process of radar

scattering. Also, CAD models are only approximations of the geometry of aircraft.

A large variety of radar simulation software packages exists. A frequently used package is

xpatch [40]. For the work presented in this thesis, the rapport
3 software package [41] was

used exclusively. This section will therefore restrict the discussion of radar simulation to the

approach taken in rapport.

rapport is a radar simulation package which is developed at TNO Physics and Electronics

Laboratory. It calculates the total coherent radar return (amplitude and phase) of an aircraft

model (for a given frequency and aspect angle) using a combination of ray tracing and physical

optics. rapport uses a ray tracing algorithm to calculate the trajectory of the radar waves as

they hit the aircraft. From these paths (which may contain multiple bounces), it determines

which of the flat patches in the aircraft model are ‘visible’ to the radar, i.e. contribute to the

total radar return.

rapport then uses a high frequency approximation to radar scattering called physical optics

to calculate the radar return of each visible facet. The total radar return is the coherent sum of

the contributions of each facet.

2.7 Available Data

The data set used throughout this thesis contains both simulated and measured HRR data

collected from five civil aircraft, seen at approximately broadside aspect angles: the Boeings

737-500 and the 747-400, the Fokker 100, the Airbus A310 and the McDonnell-Douglas of the

80–88 series.

The measured range profiles were collected during the orfeo measurement campaign [42],

using the felstar
4 radar at TNO Physics and Electronics Laboratory. The range profiles were

3Radar signature Analysis and Prediction by Physical Optics and Ray Tracing
4FEL S-band Tracking and Acquisition Radar.
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Carrier frequency f0 = 3.0738 GHz

Bandwidth B = 452.2 MHz

Number of pulses L+ 1 = 324

Frequency step ∆f = 1.4 MHz

Nominal range resolution ∆R = 0.33 m

Unambiguous range Ru = 107.5 m

Minimum delay between pulses ∆tmin = 420µs

Table 2.1: orfeo waveform parameters

measured using the velocity tolerant stepped-frequency waveform described in section 2.3.

Table 2.1 shows the parameters of the waveform used.

A typical orfeo measurement consists of multiple profiles of an aircraft in flight (i.e. a leg)

as the full waveform is repeatedly transmitted while the radar is tracking the aircraft. For each

leg, aspect angle estimates were obtained from the tracking data. The aspect angle estimates

contain a systematic error of about 5 degrees, and a random error of about one degree. More

detail on the orfeo measurement campaign is provided in [11, 42].

For each aircraft in the database a CAD model was used to obtain simulated profiles, using

the rapport software package. Each CAD model consists of a collection of flat patches (or

facets), whose union approximates the shape of the aircraft. Figure 2.4 shows a rendered rep-

resentation of these models. The number of flat facets ranges from 5,238 for the Airbus to

17,935 for the Boeing 747. This demonstrates that the number of facets for the Airbus is rela-

tively low. From figure 2.4 the rougher surface of the Airbus can actually be observed. Clearly,

the predictions for the Airbus will therefore be less accurate than for the other aircraft types.

2.8 Conclusions

This section provided an overview of the basic physical and statistical properties of radar range

profiles. Radar range profiles, denoted by y. are measurements of reflected radar energy as a

function of slant range r .

The measured range profiles used throughout this thesis are obtained using a Velocity Toler-

ant Stepped Frequency Waveform. The benefits of this waveform are twofold. First, by transmit-

ting the total required bandwidth over a relatively large period ∆t, the hardware requirements

on the radar equipment are modest. Second, by a specific choice for the times at which the

specific frequencies in the waveform are transmitted, the resulting measurements are not in-

fluenced by radial motions of the aircraft. All measured range profiles used in this thesis were

obtained during the orfeo measurement campaign.

The main sources of range profile variability are measurement noise, translational range mi-

gration, speckle, rotational range migration and occlusion. Translation range migration occurs

when the distance between the radar and the aircraft changes due to aircraft motions, and

causes cyclic shifts of range profiles. Speckle, rotational range migration and occlusion are all

effects caused by changes in aspect angle θ. Speckle causes rapid amplitude fluctuations when

more than one scatterer are present in a single range bin. RRM causes scatterers to move from

one range bin to the next. Occlusion causes scatterers to be ‘invisible’ in range profiles, and

occurs when a scatterers are hidden from the radar by other parts of the aircraft.

The usefulness of radar range profiles for classification can be enhanced using signal pro-

cessing. By windowing the radar returns in the frequency domain, high side lobes in the range

domain are suppressed. Zero-padding the returns allows for easy interpolation of the range

profile, which allows for more accurate detection of amplitude peaks. Finally, the Box-Cox
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transformation transforms the multiplicative variability caused by speckle into additive vari-

ability.

Simulated range profiles are produced using radar simulation software with CAD models of

aircraft. They are free of the influence of measurement noise and TRM. Due to limitations of

both the simulation software and the CAD models, they are necessarily only an approximations

to measured range profiles. All simulated range profiles used in this thesis were obtained using

the rapport software package.



3 Translation Invariant Classification of Radar Range

Profiles1

3.1 Introduction

Measured radar range profiles are subject to the effects of translational range migration (TRM):

changes in the distance between the radar and the aircraft causes cyclic shifts of the range

profiles. Since the distance between radar and aircraft cannot be measured with sufficient ac-

curacy to correct for this effect, measured range profiles are subject to arbitrary shifts. This is

a problem for classifiers, since two or more range profiles can only be meaningfully compared

after they are aligned, either with respect to each other, or with respect to some external refer-

ence frame. Another solution is to classify range profiles on the basis of translation invariant

features extracted from the range profiles

A general classification framework consists of several discrete stages: data acquisition (mea-

suring radar returns, computing profiles within a simulated environment), pre-processing (scal-

ing, noise removal), feature extraction (including dimension reduction) and finally the actual

classifier. Translation invariance can, in principle, be achieved at any of these stages.

During the pre-processing stage of a classification method, data is prepared for later fea-

ture extraction. Pre-processing typically includes transformations such as scaling and noise

removal. Translation invariance in this phase is achieved by registering the profiles: each pro-

file is translated such that some optimisation criterion is maximised.

In the literature both relative and absolute alignment procedures are found in this stage. It is

important to note that this problem is often ignored in literature. Also, many papers report on

experiments using simulated profiles only – in this case the exact distance between radar and

aircraft always constant, and so TRM is not a source of error.

Relative alignment is commonly achieved by aligning two profiles such that their correlation

is maximised. The third profiles is then aligned with respect to the second, the fourth with

respect to the third, and so forth. One drawback of these and similar approaches, extensively

discussed in [43], is that if one profile is misaligned, this error propagates and disturbs the

alignment of subsequent profiles in the data set. In [43] a method is proposed to deal with

these misaligned profiles.

A method for obtaining absolute alignment during the pre-processing stage is given in [22].

This method, which the authors call auto-aligning, registers profiles by translating them such

that the entropy of an energy vector E, whose elements are the inner products between the

translated profile and K Gaussian windows with increasing standard deviation σk, is minimal.

The second opportunity for obtaining translation invariant classification is during the feature

extraction stage. A common approach [12] is to use the magnitude of the Fourier transform

of the range profiles as feature vectors, discarding all phase information. In [22] translation

invariant features are obtained by first calculating the bi-spectrum (defined as the 2-D Fourier

transform of the third-order autocorrelation function) for each profile, which is then integrated

and inverse Fourier-transformed to obtain features (called accumulated bi-spectral features).

Using translation invariant features can significantly decrease the computational cost of clas-

sification. The main disadvantage of these and similar approaches is that extracting translation

1A paper containing parts of this chapter has been accepted for publication in IEE Proceedings – Radar, Sonar and
Navigation.
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invariant features involves discarding potentially discriminating information, which can result

in a decrease of classification performance. Exactly which features should be considered, and

whether this approach in general provides acceptable performance, is still an open question.

Obtaining translation invariant classification in the actual classifier is probably the most com-

mon approach to solving the problem of translation invariant classification reported in recent

literature. In [11], several similarity-based classifiers using the Sliding Euclidean Distance (SED)

are discussed. The SED is a metric defined as the minimum Euclidean distance between two

profiles y1,y2 over all possible cyclic translations:

SED(y1,y2) = arg min
l

|(Sl y1)− y2|
2, (3.1)

for l = 1, . . . , L, where L is the total number of range bins in each profile. The operator S l shifts

its argument vector l elements cyclically to the left (and so SLy ≡ y). Since

|(Sl y1)− y2|
2 = |y1|

2 + |y2|
2 − 2 (Sl y1) · y2, (3.2)

the SED is equivalent to the normal Euclidean distance after first aligning y1 and y2 such that

their cross-correlation

λ(l) = (Sl y1) · y2 (3.3)

is maximal. The Fast Fourier Transform allows for an efficient implementation of this proce-

dure. Let Y denote the FFT F(y) of y. The discrete correlation theorem [44] states that

λ = F−1
[

Y1Y∗2
]

, (3.4)

where Y∗2 is the complex conjugate of Y2.

In [14, 21] similar approaches using cross-correlation are described. Some disadvantages of

these approaches are summarised in [43]. A general drawback of correlation-based translation-

invariant classifiers (including the SED) is that they are computationally expensive, since a cor-

relation has to be computed between each range profile to be classified and every range profile

in the training set.

In [18] translation invariance is achieved in a model-based classifier by modelling the statis-

tical variations of profile centroids with respect to a set of reference profiles. During actual

classification, the likelihood that an unknown test profile y belongs to a given class C is inte-

grated over all possible centroid positions, weighted by the centroid distribution.

A general disadvantage of obtaining translation invariance in the actual classification stage is

that meaningful feature extraction becomes very difficult. Many often-used statistical feature

extraction methods (like Principal Component Analysis) depend heavily on statistical properties

of the data. Incorrect alignment will affect these properties, decreasing the accuracy of the

feature extraction, which in turn decreases classification performance.

This chapter introduces a method for obtaining translation invariant range profile classifi-

cation by absolute alignment in the pre-processing stage. Section 3.2 shows how the problem

of determining an absolute alignment of radar range profiles can be described as a problem

of phase estimation. Section 3.2.2 describes an alignment method based on this description,

called the Smoothed Zero Phase Representation. Experiments to quantify the effect of different

alignment methods on classification performance are described in section 3.3, the results of

which are presented and discussed in section 3.4. Finally, section 3.5 draws conclusions from

the experimental results.

3.2 Zero Phase Representation

The effects of Translational Range Migration can be best described in terms of the phases of

the Fourier-transformed profiles. A well-known symmetry of the Fourier transform is that for
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any function f(x) with Fourier transform F(f ), the Fourier transform of f(x − s) is given by

F(f (x − s)) = eiωs F(f (x)), (3.5)

i.e. a translation in the range domain is equivalent to a phase shift of F(f(x)) in the frequency

domain. In the discrete case, where the function f is represented as a set of samples fn = f(xn)
for n = 1, . . . , d, a similar property holds for cyclically shifted versions of fn:

F(f(n+k) mod d) = F(fn)e
2πink/d. (3.6)

So, for a discrete shift k, the phase φ of the first AC component will be shifted by 2πk/d, and

higher order phases by integer multiples of 2πk/d.

Suppose a leg consisting of N profiles yi, i = 0, . . . , N−1 is measured from an aircraft in flight

at discrete times ti. Let φ(ti) ≡ φi denote the corresponding phases of the first AC component

of the FFT’s of yi.

Variation inφi is caused by both rotational and translational effects. Suppose for the moment

that the aircraft remains at a fixed distance R w.r.t. the radar while rotating. This means φi is

solely a function of the aspect angles θa and θe:

φi = φ(θ
a(ti), θ

e(ti)) ≡ φ
a
i . (3.7)

Since the aircraft remains at a fixed position, all variation in φ is the result of speckle and

rotational range migration.

In a more realistic setting, the distance r(ti) ≡ ri between radar and aircraft also varies with

time. This is a linear effect on φi,

φi = φ
a
i +

2π

Ru
(ri − R)

= φai + β(ri − R),

(3.8)

where β = 2π/Ru and Ru is the unambiguous range interval (defined in section 2.3).

The last term in (3.8) is the source of TRM. If the ri were known exactly, reversing the effects

of TRM would be trivial: the phase sequence φi could be adjusted by subtracting β(ri − R) at

each time step, and the higher phases by integer multiples of β(ri − R). However, ri is not

known, and so the last term in (3.8) has to be estimated through other means.

3.2.1 Pure Zero Phase Representation

A simple method for finding a translation invariant representation (which has been previously

used for alignment of panoramic images [45]), is setting each φi to zero and adjusting the

higher order phases accordingly. This eliminates the range term in (3.8), but at the same time

introduces an alignment error due to discarding the φai .

As an example, in figure 3.1(a) a leg of simulated range profiles of a Fokker 100 aircraft

viewed over a 180 degree turn is shown. These profiles are perfectly aligned as the aircraft

rotated around its center without changing its distance to the radar. For comparison the same

leg in the Pure Zero Phase Representation (ZPR) is shown in figure 3.1(b).

From figure 3.1 it is clear that the ZPR results in a very rough alignment. The clear tracks

visible in figure 3.1(a) are still recognisable but less smooth in figure 3.1(b).
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Figure 3.1: Outputs of the several alignment procedures for one leg of simulated profiles. The profiles

were obtained at aspect elevation θe = π , and aspect azimuth θa ranging from 0 to π . On the right,

the phases of the resulting profiles are plotted.
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3.2.2 Smoothed Zero Phase Representation

This section proposes a more sophisticated method for dealing with the range terms in (3.8):

the Smoothed Zero Phase Representation (SZPR). It is based on the assumption that the relative

location of the majority of prominent scatterers within the profile will remain stable over small

changes in aspect angle. Therefore, two successive profiles in a leg can be accurately aligned

relative to each other by maximum correlation (as in equation (3.3)). Relative alignment through

maximal correlation is a popular approach in the literature for obtaining translation invariant

classification within similarity-based classifiers.

The goal of the SZPR is to combine the advantages of relative alignment through maximal

correlation with the advantages of an absolute alignment using the pure ZPR. Consider again

equation (3.8). The phases φi and φi−1 measured at times ti and ti−1 are related through

φi −φi−1 = φ
a
i −φ

a
i−1 + β(ri − ri−1)

= φai −φ
a
i−1 + β∆ri,

(3.9)

for i = 0, . . . , N − 1. Now, for each profile yi, i > 0, the optimal shift with respect to the

previous profile yi−1 can be estimated using using maximal correlation. This shift corresponds

to a phase shift δφci . The assumption that this phase shift correctly aligns profile yi with

respect to yi−1 is equivalent to the assumption δφci = β∆ri. Since β is known, this means that

for each measurement (except the first) the relative translation ∆ri of the aircraft between two

successive measurements can be estimated.

Using this estimate, a corrected phase sequence φci can be constructed from the original

phases φi as

φci = φ
a
i + β(ri − R −

i
∑

j=1

∆rj)

= φai + β(r0 − R)

(3.10)

for i = 1, . . . , N − 1. In other words, all profiles are now registered at r = r0, the distance

between radar and aircraft at the moment the first measurement was made.

To obtain absolute alignment, all profiles should be registered at the reference distance R.

This can only be achieved if r0 is known. However, r0 is not known, but it can be estimated

using the following heuristic approach. At each time-step, β(r0 − R) is estimated locally by

a moving average over φci . This estimate is then subtracted from φci to obtain a final phase

estimate φ
f
i :

φ
f
i = φ

c
i −

1

w + 1

w
∑

k=−w

φci+k. (3.11)

By varying the window size w of the moving average filter, this alignment procedure can be

‘interpolated’ between the absolute alignment of the pure ZPR (w = 1) and relative alignment

through pure correlation (w = N).

In theory the optimal window size w depends on the differences in aspect angle between

successive profiles, which in turn depends on the pulse repetition frequency (PRF) and the

target rotation rate. For small differences in successive aspect angles (high PRF and/or low

target rotation rate), alignment by maximum correlation works well, and so a large value of w
can be used. When the PRF is small, or the target rotates quickly, the quality of alignment by

maximum correlation degrades, and and so a smaller value of w should be used.

However, in practical situations, i.e. when looking at targets of opportunity, the target rota-

tion rate can not be measured accurately enough to allow for dependable estimates of w. This
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chapter therefore tries to find a globally acceptable value for w by experimentation.

Figures 3.1(c) and 3.1(d) show an example of the effect of the SZPR on a stack of profiles.

Since filtering with a windows size w makes aligning the first w − 1 profiles impossible, these

are left blank in the plots.

3.2.3 Implementation and Computational Cost

This section compares the computational cost of nearest neighbour classification using the

SED with classification using the SZPR and a normal, i.e. non-sliding, Euclidean distance. The

example task is the classification of a leg consisting of M profiles ym, given a training set

containing N pre-aligned (using the SZPR) training profiles ym.

Nearest neighbour classification using the SED requires following computations for each of

the MN possible pairs of test profiles ym and training profiles yn:

1. Calculate the FFT’s Ym and Yn of ym and yn.

2. Calculate the correlation function λ = F−1(YnY
∗
m) and find the maximum of λ. This

determines the optimal alignment from maximum correlation.

3. Collect the phase φm of the first AC component of the Ym’s, and adjust it such that it

reflects the optimal alignment.

4. Use the adjusted phase to align Ym with Yn.

5. Calculate the Euclidean distance between the two profiles (which can be done directly in

the Fourier domain.)

Nearest neighbour classification in the SZPR, using a normal Euclidean distance measure,

requires the following computations to be performed:

1. Calculate the FFT’s Ym and Yn of ym and xn.

2. Calculate the (M −1) correlation function λ = F−1(YmY
∗
m−1) and find the maximum of λ.

This determines the optimal alignment from maximum correlation.

3. Collect the phases φm of the first AC component of the Ym’s, and adjust them such that

the leg is now aligned using maximum correlation.

4. Filter the resulting phase sequence using a moving average filter with window size w.

5. Use the the filtered phase sequence to align Ym in the SZPR.

6. Calculate the Euclidean distance between each of the MN possible pairs of test and train

profiles (which can be done directly in the Fourier domain).

Table 3.1 summarises the computational costs, showing the number of times different com-

putations have to be performed. From table 3.1 it is clear that classification using the SZPR is

significantly faster than using the SED. The computations directly associated with aligning the

profiles have to be computed N times less when using the SZPR than when using the SED. The

filtering of the phase sequence adds some computational cost to the SZPR, but the filtering can

be implemented efficiently using the Fourier transform, similar to the correlation function [44],

and does not contribute significantly to the total number of computations performed.
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Task SED SZPR

FFT MN MN
Calculating λ MN M − 1

Phase adjustments MN M − 1

Filtering phase sequence - 1

Shifting profiles MN M
Euclidean distance MN MN

Table 3.1: Computational cost of classification using the SED and the SZPR. The table elements on the

right denote the number of times the computations shown on the left have to be performed to classify

a leg containing M profiles on the basis of a training set containing N profiles.
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Figure 3.2: The aspect angles of the measured and predicted range profiles. The solid lines represent the

measurements. Each curve is labelled by the call sign of the aircraft (defined in section 2.7). Each of

the dots represent the aspect angle of five predicted range profiles, one for each aircraft type.

3.3 Experiments

3.3.1 Available Data

For the classification experiments, two sets of range profiles are used in this chapter. The first

set contains measured range profiles, the second set contains simulated range profiles.

The measured data set contains a total of 836 profiles in 6 legs. The measurements were

performed during the orfeo measurement campaign, discussed in section 2.7. The estimated

aspect angles are plotted in figure 3.2 as well.

For each aircraft simulated profiles were calculated at 505 grid-points in aspect azimuth and

elevation: one profile every 2.5 degrees in aspect elevation and every 0.2 degrees in aspect

azimuth. See figure 3.2. All simulations were done using the rapport software package, dis-

cussed in section 2.7.

All range profiles in both data sets were Hamming weighted and zero-padded to 512 range

bins. Each range profile y was consequently transformed using the Box-Cox transformation

defined in equation (2.27), with η = 0.2.
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3.3.2 Construction of Simulated Legs

In the case of measured profiles, the concept of a leg is clear: profiles are collected from each

aircraft a number of times in rapid succession. Each set of measurements is therefore a leg: a

sequence of profiles ordered in time.

However, simulated profiles are only labelled by aspect angle. Since the SZPR relies on or-

dered sequences of profiles, artificial legs have to be constructed from the set of simulated

profiles. For each aircraft in the simulated data set, first all profiles obtained at identical aspect

elevation are collected. These collections are then ordered according to aspect azimuth. There-

fore, one leg of simulated data consists of 105 profiles at a constant aspect elevation, ordered

by aspect azimuth which ranges from 80 to 100 degrees with a step size of 0.2.

3.3.3 Range Profile Classification

For the purpose of comparing the quality of different alignment methods the choice of classifier

is arbitrary. This chapter therefore solely uses the 1-nearest neighbour classifier, since it is

is straightforward to implement, and appropriate for all considered alignment methods. All

classification experiments reported in this chapter are therefore based on this algorithm.

To examine the effects of the different alignment methods on classifier performance (ex-

pressed as the percentage of correct classifications), two sets of experiments were performed.

For the first set of experiments the set of simulated profiles was split into a training and a

test set. The training set was produced by taking the odd numbered profiles from each leg.

The test set consisted of all remaining, even-numbered profiles. In reality the training and test

set are not so highly correlated, and consequently the classification performance will in general

be lower than the performance reported in this chapter. However, the goal of this chapter is

to investigate the relative merits of the various alignment techniques, and therefore absolute

classifier performance is not relevant.

The effect of different alignment procedures on the the classification performance was mea-

sured using the classification performance on correctly aligned sets as a comparison baseline.

For the second set of experiments, the training set consisted of all available simulated pro-

files. The test set consisted of the legs of measured profiles. Again, the effect of different

alignment procedures was measured in terms of classification performance.

3.4 Results

3.4.1 Classification Performance

The classification (using a 1-nearest neighbour classifier) of the simulated test data using sim-

ulated training data was optimal, i.e. all 1751 test profiles were classified correctly. A perfect

classification was also obtained by using the SED instead of the normal Euclidean distance.

Using the pure Zero Phase Representation for absolute alignment results in the confusion

matrix shown in table 3.2. In this case, 13 profiles were classified incorrectly. Classification

performance in the SZPR was also measured for a window size ranging from 1 to 20. Optimal

performance was obtained at a window size of 8. In this case, only one profile was classified

incorrectly. These experiments show that in theory the SZPR is a viable method for absolutely

aligning range profiles.

In practice, however, one wants to classify measured profiles from a training set of simulated

profiles. To mimic this situation (and simultaneously research the effect of noisy data on align-

ment), artificially generated measurement noise was added to the simulated test set. Gaussian

noise with variance σ 2 and zero mean was superimposed on the radar returns in the frequency
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Class B73S B74F EA31 FK10 MD80

B73S 0.99 0.00 0.00 0.00 0.01

B74F 0.00 0.99 0.00 0.00 0.00

EA31 0.00 0.00 1.00 0.00 0.00

FK10 0.00 0.00 0.00 0.99 0.01

MD80 0.00 0.00 0.00 0.01 0.99

Table 3.2: Confusion matrix using a 1-NN classifier on profiles in the Zero Phase Representation. The

table shows the fraction of range profiles assigned to the classes shown in the column labels. The row

labels denote the true class label. The overall classification error is 1 %.
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Figure 3.3: Classification error for correctly aligned profiles (solid), using the SED (dotted), the ZPR

(dashed) and profiles in the SZPR using a window size w = 8 (dash-dotted) as a function of the SNR.

domain of the simulated test set. Then, overall classification performance was measured for

correctly aligned profiles, profiles aligned using the SED, and profiles in the ZPR and SZPR as a

function of σ . For the SZPR a window size of w = 8 was used. As a reference, the results for

optimally aligned profiles are provided as well. All results are shown in figure 3.3.

This process was repeated 5 times, each time drawing independent samples from the Gaus-

sian noise distribution. The classification results were averaged over these 5 experiments. The

error bar in 3.3 shows the standard deviation over these 5 measurements.

As could be expected, using correctly aligned profiles is optimal in terms of classification

performance. Classification using the SED outperforms the SZPR, and is more robust with

respect to noise. Recall, however, that classification in the ZPR/SZPR is roughly 500 times

faster compared to the SED. Also, observe that for low signal-to-noise ratios, the lines converge

to an error of 0.8 since the classification becomes effectively random over five classes.

Finally, classification experiments using the measured profiles for testing were performed.

The training set consisted of all simulated profiles. Again, the SZPR was tested for window

sizes ranging from 1 (which is equivalent to the pure ZPR) to 20. For this set, again a window

size w = 8 produced the best classification in the SZPR. In table 3.3, confusion matrices for

the SED, the ZPR, and the SZPR with w = 8 are shown. As in the case where simulated profiles
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Class B73S B74F EA31 FK10 MD80

B73S 0.96 0.00 0.00 0.04 0.00

B74F 0.00 0.98 0.00 0.02 0.00

EA31 0.32 0.00 0.47 0.04 0.17

FK10 0.03 0.00 0.00 0.82 0.15

MD80 0.09 0.00 0.00 0.89 0.02

(a) Confusion matrix for classification using the SED.
Overall classification error is 30.4 %.

Class B73S B74F EA31 FK10 MD80

B73S 0.82 0.00 0.00 0.16 0.01

B74F 0.00 0.96 0.00 0.03 0.01

EA31 0.36 0.00 0.44 0.03 0.18

FK10 0.06 0.02 0.00 0.53 0.39

MD80 0.16 0.00 0.00 0.83 0.01

(b) Confusion matrix for classification in the ZPR.
Overall classification error is 38.5 %.

Class B73S B74F EA31 FK10 MD80

B73S 0.79 0.00 0.00 0.19 0.02

B74F 0.00 0.96 0.00 0.01 0.03

EA31 0.27 0.01 0.47 0.02 0.23

FK10 0.02 0.00 0.00 0.87 0.11

MD80 0.12 0.00 0.00 0.83 0.05

(c) Confusion matrix for classification in the SZPR.
The case reported is for a window size of 8. Overall
classification error is 35.5 %.

Table 3.3: Confusion matrices for the various alignment methods. The tables show the fraction of range

profiles assigned to the classes shown in the column labels. The row labels denote the true class label.

The training set consists of synthetic profiles, while the test set consists of measured profiles.
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were used for both training and testing, classification using the SED outperforms both the ZPR

and the SZPR, although the differences in performance between the three methods are smaller.

The significantly overall larger classification error of all methods compared to the two previous

experiments are due to the fact that in this experiment, measured range profiles are classified

using a simulated training set.

3.5 Conclusions

This chapter described two new methods for aligning range profiles during the pre-processing

stage of a classification framework. The first method, called the Zero Phase Representation,

obtains absolute range profile alignment by shifting range profiles such that the phase of the

first AC component of their Fourier transform is zero. The second method, called the Smoothed

Zero Phase Representation, effectively interpolates between the absolute alignment obtained

using the pure Zero Phase Representation and the relative alignment obtained by correlating

successive range profiles in a leg.

The main benefits of both methods are twofold. First, the range profiles are aligned in a pre-

processing stage, resulting in more possibilities for consequent statistical feature extraction.

Second, when compared to the common approach to translation invariant classification using

the Sliding Euclidean Distance, range profiles aligned using the ZPR or SZPR can be classified

much faster, since in this case a nearest neighbour classifier using the standard Euclidean

distance measure can be used. Classification of a leg containing M range profiles requires

roughly M times less alignment-related computations than classification using the SED.

Using the ZPR or SZPR does result in a decrease in classifier performance compared to classi-

fication using the SED. The difference in performance has been shown to be dependent on the

signal-to-noise ratio of the range profiles. For both very high signal-to-noise ratios (over 20 dB)

and very low signal-to-noise ratios (below 5 dB), the difference in performance is negligible. For

intermediate signal-to-noise ratios, classification using the SED outperforms both the SZPR and

the ZPR, with the SZPR outperforming the ZPR.

However, by combining range profile alignment using the SZPR with subsequent statistical

feature extraction could result in better classification performance. Whether such an approach

outperforms classification using the SED would be an interesting topic for future research.
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4.1 Introduction

The aspect angle at which an aircraft is observed heavily influences range profile measurements.

The effects of speckle, rotational range migration and occlusion (as was discussed in chapter 2)

are the cause of significant range profile variability over both small (less than one degree) and

large (tens of degrees) changes in aspect angle. Therefore, knowledge about the aspect angle at

which a range profile is obtained can significantly increase classification accuracy. Furthermore,

information on aspect angles also benefit many HRR signal processing techniques.

Aspect angles of aircraft can either be measured using onboard equipment, or they can be

estimated using tracking data [23]. Onboard equipment is only available in controlled experi-

ments, and so for the purpose of non-cooperative aircraft classification estimating aspect an-

gles from tracking data is the only source of aspect angle information.

Some research reported in the literature treat aspect angle estimation as an integral part

of the classification task. In these approaches, the task of the classifier is to provide a joint

estimate of class label and aspect angle [46, 47, 48]. Such approaches are useful if no a priori

information on aspect angle is available. This chapter assumes that aspect angle estimates

from tracking data are available, as is the case for the orfeo data set described in chapter 2.

Aspect angle estimates from tracking data suffer from both systematic and random errors

(see chapter 2). The goal of this chapter is to improve the accuracy of aspect angle estimates

by applying a filter to a combination of the original estimates and phase information extracted

from radar measurements.

A simple point scatter model of radar scattering provides the basis for the filter. Section 4.2

shows that a simple linear relationship exists between the phase of a point scatterer and the

aircraft rotation. This linear relationship is then used in section 4.3 to construct a filter for

aircraft rotations.

The derivation of the filter assumes that the phase of a number of point scatterers is extracted

from a leg of range profiles. Section 4.4 develops the feature extraction algorithm necessary to

extract these phase from the measurements.

Section 4.5 describes the experiments performed to evaluate the improvement of aircraft

rotation estimates. Unfortunately, since no onboard equipment was present on the aircraft

measured in the orfeo campaign, the set of available measured range profiles available for this

thesis can not be used for evaluating the performance of the filter. Instead, the experiments are

performed on simulated range profiles. Artificially generated measurement noise was added to

the range profiles so that they more closely resemble measured range profiles.

Finally, section 4.6 discusses the experimental results, followed by the conclusions in sec-

tion 4.7.

4.2 Phase Response of a Point Scatterer

Section 2.3 defined a range profile as the squared amplitude of the complex-valued radar return

g. This transformation discards all phase information in g, so only information on the distri-

bution of scattering centres in slant range is retained. However, the phase of g does contain

information.
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Section 2.3 showed that the elements gl of the radar return of a point scatterer, located at

some position x in the aircraft-fixed coordinate system and observed at aspect angle θ, are

given by

gl = A





sinπl′

sin
πl′

L+1



 exp iφl(θ,x), (4.1)

φl(θ,x) = φ
0
l −

4πf̄

c
r(θ,x), (4.2)

where l′, f̄ and φl are defined as

l′ = l−
2B

c
r(θ,x), (4.3)

f̄ = f0 +
1

2
L∆f , (4.4)

φ0
l =

πL

L+ 1
l. (4.5)

Note that the phase φl(θ,x) in equation (4.2) is defined relative to the phase of the origin of

the aircraft-fixed coordinate system, which is assumed to be zero.

Equation (2.6) defined a linear approximation of slant range as a function of aspect angle as

r(θ+∆θ,x) ≈ r(θ,x)+ ra⊥ ∆θ
a + r e⊥ ∆θ

e, (4.6)

where the cross ranges ra⊥ and r e⊥ are defined in (2.7). Combining (4.2) and (4.6) shows that the

derivative of the phase to θa and θe is respectively given by

d

dθa
φl(θ,x) = −

4πf̄

c
ra⊥ , (4.7)

d

dθe
φl(θ,x) = −

4πf̄

c
r e⊥. (4.8)

Note that (4.7) and (4.8) only hold when the point scatterer remains within the range bin l. If

rotational range migration causes the scatterer to move from range bin l to range bin l + 1, a

phase jump of size πL/(L+ 1) occurs due to (4.5).

For the remainder of this chapter it is assumed that the direction of the rotation vector of

the aircraft is constant, or equivalently, that the plane of rotation is constant. Let α denote the

angle of rotation in this plane with respect to an initial aspect angle θ0. The corresponding

generic cross range r⊥ is defined as

r⊥ = −
c

4πf̄

d

dα
φl(α), (4.9)

and so a linear approximation around θ0 of the phase as a function of the rotation α is given

by

φl(α) = φl(θ0)−
4πf̄

c
r⊥α. (4.10)

Equation (4.10) provides the theoretical basis for the filter for aicraft rotations, which will be

derived in the next section.
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4.3 Filter Overview

Chapter 2 defined the concept of a leg: a sequence of N successive HRR measurements ob-

tained by repeatedly transmitting the full waveform. Let gn, n = 1, . . . , N denote the measured

radar returns, i.e. the Fourier transforms of the coherent responses after windowing and zero-

padding. The corresponding range profiles are denoted by yn.

During the measurement of the leg, the aspect angle at which the aircraft is observed will in

general change due to motions of the aircraft. If the total duration of the measurement is short,

it can be assumed that the aircraft plane of rotation is constant. Let αn, denote the angle of

rotation of the aircraft in this plane, measured with respect to some initial aspect angle θ0.

For the moment assume that the radar returns gn contain the contributions of a total of

M point scatterers. Let φnm denote the phase of the mth point scatterer in the nth profile.

It is assumed that the measurements φnm are corrected for the effects of rotational range

migration, and so the subscript l is not used from now on. Details of the signal processing

involved in extracting phase measurements from the leg and correcting the phases are provided

in section 4.4. Under the stated assumptions it follows from equation (4.10) that, for small va-

lues of α, the phases φnm are related to the rotations αn by

φnm = φm(θ0)+ ρmαn, (4.11)

where ρm = −4πf̄r⊥
m/c, and r⊥

m is the generic cross range of the mth scatterer as defined

in (4.9).

Both the rotations αn and the phases φnm are subject to measurement noise, and so the

linear relationship (4.11) will not hold exactly. The remainder of this section defines a filter for

both the rotation and phase measurements, which finds new estimates of both the rotations αn
and the phases φnm such that their linear dependency holds as close as possible.

Let σ 2
α and σ 2

φ denote the error on rotation and phase measurements respectively. The filter

provides new estimates ᾱn and φ̄nm, which minimise a chi-square function defined as

χ2 =
∑

n





(αn − ᾱn)
2

σ 2
α

+
∑

m

(φnm − φ̄nm)
2

σ 2
φ



 , (4.12)

subject to the linearity condition (4.11).

The filter operates as follows. First, the rotations αn and phases φnm are used to construct

a design matrix A,

A =













α1/σα α2/σα . . . αN/σα
φ11/σφ φ21/σφ . . . φN1/σφ

...
...

. . .
...

φ1M/σφ φ2M/σφ . . . φNM/σφ













. (4.13)

Then the column mean is subtracted from A to construct a zero-mean matrix denoted by A0.

The columns of A0 are not independent, but instead are all related through (4.11). The matrix

columns, when interpreted as vectors in a M + 1 dimensional vector space, span a subspace in

that vector space. If no measurement noise were present, A0 would be of rank one, and the

subspace spanned by the columns of A0 would be one-dimensional (i.e. a line). However, the

measurement error on both αn and φnm causes the rank of A0 to be larger than one. The task

of the filter is to approximate A0 with a matrix Ā0 of exactly rank one.

The optimal approximation Ā0 of rank one of A0 can be found using the Singular Value

Decomposition (SVD) [44] as follows. First, the SVD of A0 is computed,

A0 = USVT. (4.14)
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The matrix S is diagonal, and the elements on the diagonal are the singular values λi of A. The

matrices U and V are both orthogonal in the sense that their columns ui and vj are orthonormal,

ui · uj = δij , (4.15)

vi · vj = δij . (4.16)

From the matrices U, S and V the elements of the rank one matrix Ā0 are defined as

(Ā0)nm = λ1un1v1m. (4.17)

Finally, the column mean of A is added to each column of Ā0 to construct the matrix Ā

Ā =













ᾱ1/σα ᾱ2/σα . . . ᾱN/σα
φ̄11/σφ φ̄21/σφ . . . φ̄N1/σφ

...
...

. . .
...

φ̄1M/σφ φ̄2M/σφ . . . φ̄NM/σφ













, (4.18)

whose elements are the projections of the columns of A on the one-dimensional subspace

spanned by the columns of A0. It can be shown that the resulting elements of Ā minimise the

chi-squared function defined in (4.12).

4.4 Feature Extraction

The previous section described a filter for combined rotation and phase measurements. This

section describes the procedure used for extracting the necessary phase measurements φnm
from a leg of radar returns gn, n = 1, . . . , N.

The radar returns contain the contribution of several distinct scatterers, which show up as

amplitude peaks of gn, or equivalently of the corresponding range profiles yn (see chapter 2).

Section 4.4.1 describes a method for extracting peak locations and corresponding phases from

the radar returns gn.

The next task of the feature extraction process is to decide which of the extracted peaks

originate from a single scatterer. Figure 4.1(a) shows a leg of range profiles. In the figure

several distinct tracks can be observed, where each track consists of a series of amplitude

peaks caused by a single scatterer. Therefore, the task of assigning peaks to scatterers is

essentially a tracking problem, where the features to track are the set of significant peaks and

corresponding phases in the profiles in the leg. Section 4.4.2 describes the tracking algorithm

used in this chapter.

The final task of the feature extraction process is to correct the phase measurements for the

effects of both translational and rotational range migration, which is discussed in section 4.4.3.

4.4.1 Peak Detection

Amplitude peaks will be extracted from range profiles yn, whose range bins contain the squared

magnitudes of the corresponding range bins in gn (as discussed in section 2.3). First, all range

bins containing local maxima of yn are detected. Let Kn denote the total number of maxima in

yn. For each maximum, its slant range rnk and amplitude ank, k = 1, . . . , Kn is estimated with

sub-bin precision by fitting quadratic polynomial to the amplitudes of the range bin containing

the maximum and the two adjoining range bins on both sides. Then, the same five range bins

are used to estimate the phase φnk of gn at slant range rnk using a linear interpolation of the

phases of the five range bins in gn. It is assumed that the range bins of gn are aligned internally,

for instance using maximum correlation as discussed in the previous chapter.
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Due to measurement noise, some of the extracted peaks are not caused by scattering, but

are caused by the noise process. Therefore, in the next step of the feature extraction process,

the mean amplitude of the noise process will be estimated, and only peaks whose amplitude is

significantly higher than the noise level will be retained.

The longest aircraft used in this thesis (the Boeing 747) is about 70 metres long, while the

unambiguous range interval Ru is about 107 metres. Therefore, a section of at least 30 metres

in each range profile yn does not contain radar returns from the aircraft, i.e., it only contains

noise. A simple heuristic to locate this section is to define it as that consecutive region of

20 metres length with the lowest average energy. The noise level µ is estimated as the mean

amplitude in this section of yn.

Finally, only peaks with a signal-to-noise ratio SNR(ank, µ), defined as

SNR(ank, µ) = 10 log
ank

µ
, (4.19)

above an a priori defined threshold are retained and used for subsequent processing.

4.4.2 Peak Tracking

The next task is to decide which peaks (rnk, ank) in the remaining set originate from the same

scatterer. As discussed before, this is essentially a tracking problem.

Many different tracking algorithms have been reported in literature, each with its own advan-

tages and disadvantages. For the work presented in this chapter a tracking algorithm originally

reported in [49] is used. The main advantage of this tracking algorithm is that it by construction

provides a one-to-one correspondence between peaks rn and rn+1 in successive profiles.

The tracking algorithm establishes correspondences between the detected peaks in each pos-

sible pair of successive profiles n and n+ 1. It operates solely on the set of distances between

the slant ranges rnk and r(n+1)k of the peaks in two successive profiles – the amplitudes ank
are not used for tracking.

At the start of the algorithm, for each pair of successive range profiles yn and yn+1, a Kn ×
Kn+1 proximity matrix M is constructed. The elements of M are defined as

mkl = exp−
d2
kl

2σ 2
d

, for k = 1, . . . , Kn and l = 1, . . . , Kn+1, (4.20)

where dkl = |rnk − r(n+1)l| is the distance in slant range between the peak locations rnk and

r(n+1)l. The variance σ 2
d is a free parameter of the algorithm.

The goal of the algorithm is to find a so-called pairing matrix P, which minimises

trace PTG =
∑

k

∑

l

pnmmkl. (4.21)

To construct the pairing matrix P, first the singular value decomposition of M,

M = USVT, (4.22)

is calculated. Then, a diagonal matrix S′ is constructed by replacing the diagonal elements of S

with the value 1. In [49] it is shown that the paring matrix P, defined by

P = US′V, (4.23)

minimizes (4.21).
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Figure 4.1: Example of the output of the peak tracker.

The elements Pkl of P are a measure of the likelihood that the peak at rnk and the peak at

r(n+1)l belong to the same track. Therefore, if Pkl is both a row and a column maximum of P,

the peaks rnk and r(n+1)l are assigned to the same track. Since the rows of P are orthonormal,

the assignments of peaks to tracks is one-to-one. Figure 4.1(b) shows an example of the tracks

found by this algorithm from the leg of range profiles shown in figure 4.1(a).

Although this tracking algorithm works well for our purposes, some post-processing of the

established tracks is still required. First of all, to be useful for the filter described in the

previous section, all tracks should be of length N, i.e., a track should be present in the complete

leg. This is essentially a missing data problem. Although one could try to use interpolation

techniques to artificially produce full-length tracks, in this chapter tracks of insufficient length

are simply removed from the set.

Another problem is that sometimes large ‘jumps’ in slant range can be observed in a number

of tracks. This is a results of the fact that the algorithm searches for one-to-one correspon-

dences – after identifying the most probable matches, the last remaining possible match has to

be assumed correct, no matter how unlikely. Therefore, tracks which exhibit slant range jumps

larger than an a priori defined threshold are also removed from the set.

The final output of the complete tracking algorithm is a set of M tracks of peak locations

rnm, and corresponding (uncorrected) phases φnm

4.4.3 Phase Estimation

The final step of the feature extraction process is to correct the previously extracted phases

φnm for the effects of translational and rotational range migration.

Section 4.2 assumed that the origin of the aircraft-fixed coordinate system is always observed

in a range profile at zero slant range and with (by definition) zero phase. However, translational

range migration causes the origin of the aircraft fixed coordinate system to appear at essentially

random slant ranges in the different profiles in the leg. Although it has been assumed that the

range bins of the gn are aligned with respect to each other, the extracted phases still need to

be corrected for the effects of TRM.

In section 2.2 it was noted that the origin of the aircraft-fixed coordinate system is fixed but
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arbitrary. The simplest method for correcting the phase measurements for the effects of TRM

is therefore to choose one single track, say m = 1, from the set of detected tracks, and to place

the origin of the aircraft-fixed coordinate system at the position of the corresponding scatterer.

Then, each phase measurement φnm can be corrected for TRM through

φnm → φnm −φn1, (4.24)

rnm → rnm − rn1. (4.25)

After this transformation, all phase measurements φnm are now relative to the origin of the

aircraft-fixed coordinate system.

Next, the phase measurements need to be corrected for the effects of rotational range migra-

tion. Section 4.2 showed that a phase jump of πL/(L+1) occurs if a point scatterer moves from

range bin l to range bin l + 1. Fortunately, rotational range migration can easily be detected

from the slant range measurements rnm, and so correcting the phase measurements φnm is

trivial.

4.5 Experiments

This section describes the experiments performed to test the performance of the filter for

aircraft rotations described in this chapter.

To evaluate the performance of the filter, i.e., the increase in quality of aircraft rotation

estimates, the true values of the rotations need to be known. Unfortunately, all HRR measure-

ments in the orfeo measurement campaign were obtained from targets of opportunity, and so

no onboard equipment was available to provide a ground truth on aspect angles and the corre-

sponding rotations. Therefore, the orfeo data can not be used for testing the filter. Instead,

the filter will be tested on simulated profiles, obtained using the rapport software package

discussed in section 2.6.

Section 4.5.1 discusses the data set used for the experiments. To test the filter figure 2.4

under more or less realistic conditions, artificially generated noise will be added to both the

simulated measurements and the true aspect angle. Section 4.5 discusses the actual experi-

ments performed.

4.5.1 Data Description

The data used for the experiments consist of simulated legs of HRR measurements of the five

aircraft shown in figure 2.4. Simulations were performed for each aircraft at the aspect angles

shown in figure 4.2.

From the legs shown in figure 4.2 sub-legs containing 20 measurements each were con-

structed as follows. Let c = 1, . . . , C denote the class label of each aircraft. For each class

c, the first sub-leg contained the first 20 measurements in the leg. The second and subsequent

sub-legs contained the 19 last measurements of the previous sub-leg and the next measurement

in the whole leg. The total number of sub-legs for each class is denoted by Nc .

Recall that a single HRR measurement consists of a set of coherent responses G measured

in the frequency domain (see chapter 2). To simulate the effects of measurement noise, arti-

ficial complex-valued Gaussian noise to the coherent responses in each sub-leg. The standard

deviation σG of the Gaussian noise is defined in terms of a signal-to-noise ratio defined as

SNR(σG) = 20 log

−

|G|

σG
, (4.26)



36 4 Improving Aircraft Rotation Estimates

PSfrag replacements

θa [deg]

θ
e

[d
e
g
]

B73S (55)

EA31 (43)

B74F (52)

MD80 (62)

FK10 (61)

70 75 80 85 90 95

90

91

92

93

94

95

96

97

Figure 4.2: The aspect angles of HRR measurements in the test set for each class. The numbers following

the aircraft type are the number of measurements in each leg.

where
−

|G| denotes the average absolute value of the elements of G. After measurement noise

has been added to the coherent responses, the effects of TRM were simulated by multiplying

each set of coherent responses with a random phase shift.

Then, the resulting coherent responses were Hamming weighted and zero-padded to 1024

elements. Finally, an IDFT was performed to produce the radar returns g in the time domain.

For each sub-leg n = 1, . . . , Nc for each class c, the true rotations α
c,n
i , i = 1 . . . ,10 were

calculated from the aspect angles θn. Rotations are defined with respect to the first aspect angle

of the leg θ1, and so α
c,n
1 ≡ 0. To simulate the error on rotation estimates present in actual HRR

measurements. artificially generated Gaussian noise was added to the true rotations, resulting

in rotation ‘estimates’ ᾱ
c,n
i . The standard deviation of the Gaussian noise was chosen to be

σα = 2 degrees, which corresponds to the estimated errors on rotation estimates for the orfeo

data.

4.5.2 Filter Performance Evaluation

From each sub-leg, phase measurements were extracted using the method described in sec-

tion 4.4. Then, the filter described in section 4.3 was applied to the noisy rotation estimates

α̂
c,n
i and the extracted phases. The resulting updated rotation estimates are denoted by ᾱ

c,n
i .

Due to the noise added to the measurements, it is possible that no tracks can be established

from the peaks extracted from the range profiles in the leg. In that case the algorithm has failed

to provide improved rotation estimates, and the ‘new’ rotation estimates ᾱ
c,n
i are chosen to be

equal to the original noisy estimates α̂c.ni .

The improvement factor νc,n measures the performance of the filter for each sub-leg, and is

defined as

νc,n =

∑20
i=1(α

c,n
i − ᾱ

c,n
i )2

∑20
i=1(α

c,n
i − α̂

c,n
i )2

. (4.27)
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Note that νc,n = 1 if the algorithm has failed, since in that case ᾱ
c,n
i = α̂

c,n
i .

From the set of improvement factors ν
c,n
i , the mean ν̄ and standard deviation σν ,

ν̄ =
1

C

C
∑

c=1

1

Nc

Nc
∑

n=1

νc,n, (4.28)

σν =
1

C

C
∑

c=1

1

Nc

Nc
∑

n=1

(νc,n − ν̄)2, (4.29)

were determined. The value of ν̄ and σν was measured several times for different values of the

signal-to-noise ratio, ranging from -5 to 10 dB.

4.6 Results

Figure 4.3 shows ν̄ and σν as a function of the signal-to-noise ratio. For low values of the

signal-to-noise ratio no tracks can be established, and so the mean improvement factor is 1. For

signal-to-noise ratios higher than roughly -2 dB, the algorithm is able to find enough tracks, and

the improvement factor decreases until it reaches values of about 0.4, after which it remains

constant.

4.7 Conclusions

This chapter introduced a method for increasing the accuracy of aircraft rotation estimates

obtained from tracking data. On the basis of a point scatter model a filter was developed,

which uses a combination of the original rotation estimates and phase information extracted

from range profiles to update the rotation estimates.

To extract the necessary phase information from the range profiles an extensive feature ex-

traction method was developed. First, tracks of amplitude peaks were detected using a simple
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yet effective tracking algorithm originally described in [49]. From these tracks phase sequences

were extracted, which were subsequently corrected for the effects of translational and rota-

tional range migration.

Since no ground truth on aspect angles are available for the range profiles measured during

the orfeo campaign, the experiments were necessarily restricted to simulated profiles. How-

ever, the effects of measurement noise and translational range migration were artificially added

to the simulated range profiles, and so the resulting data set is similar to actual HRR measure-

ments.

To evaluate the performance of the filter, an improvement ratio ν was introduced. It has

been shown that the filter does indeed improve aircraft rotation estimates (typically ν ≈ 0.4),

provided that the signal-to-noise ratio is sufficiently high (larger than -2 dB). For smaller signal-

to-noise ratios, the algorithm fails to provide more accurate rotation estimates, resulting in an

improvement factor of 1.

Although these are promising results, a definitive answer on the applicability of this method

on actual measured range profiles does require further testing.



5 A Generative Model of Point Scattering

5.1 Introduction

A drawback of using range profiles for classifying aircraft is that measuring sufficient range

profiles from which a statistical classifier can be constructed is not feasible (see chapter 1). A

solution to this problem is to use a training set containing simulated range profiles. Simulated

range profiles differ significantly from measured range profiles (see section 2.6). If a classifier

for measured profiles is to be trained from simulated profiles, care must be taken to ensure

that the classifier bases its decision solely on the common features between simulated and

measured profiles.

A reasonable assumption is that at least some of the dominant scatterers found in simulated

profiles will also be present in measured profiles. For example, when observing a commercial

airliner from approximately broadside, one would expect scatterers to be located at the loca-

tion of jet engines and the body of the aircraft in both measured and simulated profiles. These

dominant scatterers cause peaks at a certain location with a certain amplitude in both simu-

lated and measured profiles. The peak locations, which are determined by the positions of the

associated scatterers on the aircraft, should be identical (within reasonable bounds) in both

cases.

This is in general not true for peak amplitudes. It is very difficult to predict the (relative)

amplitude of peaks in simulated profiles, since not all scattering behaviour is included in the

simulation. If one or more scatterers are not present in the simulated profile, the (relative)

amplitude of the remaining peaks are useless for comparison with measured profiles.

This chapter therefore assumes that the common features between measured and simulated

range profiles are the slant ranges of amplitude peaks.

The use of peak locations (in combination with amplitude information) as features for classi-

fication has previously been discussed in [8, 50], where a peak location probability function is

defined which determines for each location in a profile the probability that a peak occurs there.

This function is estimated by aggregating peak location information over all possible aspect

angles. Since peak locations are dependent on aspect angle (through the effects of TRM), this

procedure causes a ‘widening’ of the peak location distribution. This effect will be more severe

for increasing numbers of poses, and so this approach can only be applied to training sets in

which the pose does not change significantly.

This chapter presents a method which uses peak locations as features for classification, but

does not build the classifier in the feature space. Instead, for each class the parameters of a

generative model will be estimated, i.e., a set of parameters from which, for any given aspect

angle, the statistical distribution of peak locations can be predicted. These generative models

are then used to construct a maximum likelihood classifier for radar range profiles.

A simple and adequate model for the distribution of peak locations in range profiles is a

configuration of point scatterers, including their visibility to model occlusions. The advantage

of such a simple model is that its parameters (point scatter locations and visibility areas) can be

automatically estimated from a training set of simulated range profiles. Once generative models

for each aircraft are available, they can be used to determine the likelihood of an unknown

series of profiles, conditioned on aircraft class.

In recent literature [29, 30], a more sophisticated parametric model of radar scattering has

been developed. This model includes more complicated scattering, and contains the point



40 5 A Generative Model of Point Scattering

scatterer as a special case. This chapter uses a simpler model in order to limit the complexity

of the parameter estimation algorithm.

Expressing the likelihood of peak locations given the model parameters requires the use of a

set of hidden variables. The hidden variables of this problem are the assignments of observed

peaks in the profiles to scatterers in the model. The optimal model parameters are estimated

using an Expectation-Maximisation algorithm [51].

A similar parameter estimation problem is presented in [52], where the goal is to reconstruct

the three-dimensional shape of an object from a set of images taken from different camera

positions. The hidden variables of this problem describe which observed image features corre-

spond to which 3D feature of the object. While the parameter estimation procedure presented

in [52] provides the basis for the procedure presented in this chapter, there are some significant

differences.

Section 5.2 provides detailed descriptions of the estimation of the parameters of the genera-

tive models. Section 5.3 shows how the estimated models can be used to construct a maximum

likelihood classifier for range profiles. Sections 5.4 and 5.5 describe the experiments performed

to test the models. Finally, section 5.6 contains conclusions based on the experimental results.

5.2 Estimation of Model Parameters

This section describes the construction of a model-based classifier for range profiles. The

generative model used by the classifier is capable of predicting the distribution of amplitude

peaks occurring in range profiles, given aircraft type and aspect angle. The parameters of the

model are estimated from peak locations extracted from a training set containing simulated

range profiles.

All significant peaks in simulated range profiles are assumed to be caused by point scatterers.

There are a number of advantages in using such a simple model. The parameters of a point

scatter model are easy to estimate given only measurements of peak locations in a set of pro-

files. Also, given such a model it is possible to predict peak locations for any given aspect angle,

i.e., it allows us to interpolate between different aircraft poses. This is a crucial requirement

for a classifier for range profiles.

5.2.1 Observed Variables and Model Parameters

The training set for each aircraft consists of N simulated range profiles. The aspect angles at

which these profiles were collected are denoted by Θ = {θn} for n = 1, . . . , N.

The parameters of the point scatter models will be estimated solely from the positions of

local amplitude maxima, i.e., peaks, in each profile. As explained in chapter 2, range profiles

are measurements of an aircraft’s radar reflectivity as a function of slant range r , defined in

section 2.2. The positions of amplitude peaks can therefore be expressed as a set of slant

ranges rnk, where n is the index of the profile in the training set, and k = 1, . . . , Kn, where

Kn is the total number of amplitude maxima in the nth profile. Note that in general different

profiles will contain a different number of amplitude maxima, and so Kn will be different for

each profile. The complete collection of amplitude peak positions R = {rnk} are the observed

variables of the problem.

The distribution of peak locations is modeled by a generative point scatter model containing

M point scatterers located at positions xm = (xm, ym, zm), m = 1, . . . ,M , in the aircraft-fixed

coordinate system defined in section 2.2. For each scatterer, the corresponding peak location

distribution, when observed at aspect angle θ, is modeled as a Gaussian distribution with mean
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r(θ,xm) (defined in equation (2.5)) and variance σ 2
m,

p(r |xm, σ
2
m) =N (r ; r(θ,xm), σ

2
m). (5.1)

Note that the variances σ 2
m are parameters of the generative models, and are assumed to be

independent of aspect angle.

Section 2.4 introduced the main sources of range profile variability. The simulated range

profiles in the training set are not influenced by translational range migration or measurement

noise, but they are influenced by speckle and occlusion.

Both speckle and occlusion have an effect on the visibility of a scatterer. Speckle can cause

the return of several scatterers present in a given range bin to cancel out completely, and as

a consequence no amplitude peak will be present in that range bin. Similarly, if a scatterer is

occluded at a given aspect angle, it does not generate an amplitude peak in the corresponding

profile.

The effects of both speckle and occlusion will be collectively modelled by introducing a visi-

bility matrix V. It is a N ×M matrix with elements vnm, with vnm defined as the probability of

scatterer m being visible when observed at aspect angle θn. If vnm = 1, the scatterer is visible,

while a value of vnm = 0 means it is occluded. Values of vnm between 0 and 1 indicate that

speckle is causing the visibility to rapidly fluctuate over a small changes of aspect angle (see

also section 5.2.6).

For notational convenience, Ψ = {X,σ,V} is used to denote the complete set of model pa-

rameters X = {xm}, σ = {σm} and V = {vnm}.

5.2.2 Hidden Variables

The optimal model parameters Ψ∗ are found by maximising the joint log likelihood of the

observed variables R as a function of the model parameters Ψ , given the aspect angles Θ,

Ψ
∗ = arg max

Ψ

logp(R|Ψ ;Θ). (5.2)

The likelihood of observing the peak positions R is dependent on the way scatterers in the

model are assigned to the peaks, i.e, to solve (5.2) it is necessary to know which of the observed

peaks rnk are measurements of the slant range positions of which of the scatterers xm. An

example of an assignment is shown in figure 5.1.

Recall that in profile n there are a total of Kn detected peaks, which have to be assigned to

a total of M scatterers. In general Kn ≠ M , both because peaks may be present in the profile

which were not caused by any of the scatterers, and because of any of the peak detection issues

described in section 2.4.

Assignments are described by a set of assignment variablesΩ. Letωnk denote an assignment

between a detected peak and a scatterer,

ωnk ∈ {0,1, . . . ,M}, (5.3)

The statement ωnk = m means that the measured slant range location rnk of the kth peak

in the nth profile is a measurement of r̂nm = r̂ (θn,xm), while ωnk = 0 means this peak is

not assigned to any scatterer. An overview of the relationship between scatterers, peaks and

assignments is shown in figure 5.1.

The set of assignments between peaks and scatterers in the nth profile are denoted by ωn =

{ωnk}, and the complete set of assignments between peaks and scatterers over all profiles by

Ω = {ωn}.
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Figure 5.1: Example of possible assignments ωnk between 4 scatterers xm (here shown in 2 dimensions

instead of 3), and peaks in two profiles z1 and z2. Profile z1, measured at aspect angle θ1, contains 5

peaks at slant ranges r1k, where k = 1, . . . ,5. The second profile, z2, measured at a different aspect

angle θ2, contains only 3 peaks at slant ranges r2k, where now k = 1, . . . ,3.

Not all possible assignment are valid assignments. An assignment ωn is valid if each peak is

assigned to at most one scatterer, and each scatterer is assigned to at most one peak. The first

condition is always met due to the way assignments are encoded. The second condition must

be enforced through other means, which are described later in this chapter.

Although the assignments Ω are required to be able to express the likelihood of the obser-

vations given the model, their correct value is unknown. They are the hidden variables of the

problem. The joined log likelihood occurring in (5.2) can only be expressed as a marginalisation

over the hidden variables Ω:

logp(R|Ψ ;Θ) = log
∑

Ω

p(R,Ω|Ψ ;Θ). (5.4)

In section 5.2.4 an exact definition of this likelihood will be given.

5.2.3 Expectation-Maximisation Optimisation

From (5.2) and (5.4) it follows that the optimal model parameters Ψ∗ are those that maximise

the joint log likelihood of peak locations R and the hidden assignment variables Ω,

Ψ
∗ = arg max

Ψ

log
∑

Ω

p(R,Ω|Ψ ;Θ). (5.5)

Due to the dependence of the log likelihood on the unknown assignments Ω, equation (5.5) can

not be solved directly.

A common approach for maximum likelihood parameter estimation in the presence of hidden

variables is to use an Expectation-Maximisation (EM)[51, 53, 54, 55, 56]. The main idea behind

EM optimisation is that although the true values of the hidden variables are unknown, it might

be possible to estimate a distribution over Ω, given the input data and an estimate of the

model parameters. This distribution is then used to obtain an improved estimate of the model
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parameters.

EM is an iterative algorithm, and consists of an expectation and a maximisation step. Let t be

the number of the current iteration.

• In the expectation step, a distribution qt(Ω) is computed such that

qt(Ω) = p(Ω|R,Ψ t ;Θ), (5.6)

where Ψ t is the current best estimate of the model parameters.

• In the maximisation step, a new best estimate Ψ t+1 of Ψ∗ is constructed by maximising the

expected joined log likelihood of the observed and hidden variables, where the expectation

value is taken with respect to qt(Ω):

Ψ
t+1 = arg max

Ψ

Eqt
[

logp(R,Ω|Ψ ;Θ)
]

. (5.7)

In appendix A it is shown that this procedure maximises logp(R|Ψ ;Θ). Detailed descriptions

of the implementation of the expectation and maximisation steps are given in sections 5.2.5

and 5.2.6.

5.2.4 Derivation of Likelihoods

This section derives explicit expressions for the likelihoods occurring in equations (5.6) and (5.7).

The joint likelihood of the observed and hidden variables can be written as

p(R,Ω|Ψ ;Θ) = p(R|Ω,Ψ ;Θ)p(Ω|Ψ ;Θ). (5.8)

Since p(R|Ω,Ψ ;Θ) is conditioned on the assignments Ω, this distribution is independent of the

visibility matrix V, since a scatterer assigned to any given peak is visible by definition. Likewise,

a scatterer which has not been assigned to any peak invisible by definition. Therefore,

p(R|Ω,Ψ ;Θ) = p(R|Ω,X,σ;Θ). (5.9)

The peak positions are assumed to be conditionally independent,

p(R|Ω,X,σ;Θ) =

N
∏

n=1

Kn
∏

k=1

p(rnk|ωnk,X,σ;θn). (5.10)

The distribution of the slant range rnk of a peak assigned to scatterer m, i.e., ωnk = m, is

defined as the Gaussian distribution given by

p(rnk|ωnk =m,X,σ;θn) =N (rnk; r(θn,xm), σ
2
m). (5.11)

If peak rnk is not assigned to any scatterer, i.e., ωnk = 0, all slant range are equally likely, and

so

p(rnk|ωnk = 0,X,σ;θn) =
1

L
, (5.12)

where L is the unambiguous range interval, i.e. the total length of the profile, defined in 2.2.
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The second term in (5.8) is the a priori likelihood of the set of assignments Ω, given the

model parameters Ψ . It is assumed to be only dependent on the visibility matrix V,

p(Ω|Ψ ;Θ) = p(Ω|V). (5.13)

The a priori likelihood of assigning a scatterer m to any of the peaks in the nth profile is just

vnm, which is the probability of visibility of the mth scatterer in the nth profile. Assigning a

scatterer which is considered occluded (vnm ≈ 0) is therefore considered very unlikely, while

assigning a scatterer which is known to be visible (vnm ≈ 1) is considered very likely. Likewise,

the a priori likelihood of not assigning the mth scatterer to a peak in the nth profile is 1−vnm.

Let εnm be a binary variable indicating whether the mth scatterer has been assigned to any

peak in the nth profile,

εnm =

{

1 if m ∈ωn

0 if m ∉ωn
. (5.14)

The a priori likelihood of an assignment Ω is then given by

p(Ω|V) =

N
∏

n=1

p(ωn|vn)

=

N
∏

n=1

M
∏

m=1

(vnm)
εnm(1− vnm)

1−εnm .

(5.15)

Finally, the distribution qt(Ω) defined in (5.6) can be rewritten using Bayes’ rule as

qt(Ω) = p(Ω|R,Ψ t ;Θ)

∝ p(R|Ω,Ψ t ;Θ)p(Ω|Ψ t ;Θ).
(5.16)

Using the independence assumptions (5.11) and (5.15), equation (5.16) can be written as

qt(Ω)∝

N
∏

n=1

p(rn|ωn,X
t ,σt ;θn)p(ωn|V

t). (5.17)

Since the space of possible assignments is discrete, qt(Ω) is completely defined by a set of

probabilities qtnkm, defined as

qtnkm = p(ωnk =m|R,Ψ
t ;Θ), (5.18)

i.e., qtnkm is the posterior likelihood of assigning the kth peak in the nth profile to scatterer m.

5.2.5 Description of the Expectation Step

Unfortunately, because of the constraints on valid assignments ωn (described in section 5.2.2),

it is impossible to directly calculate (5.18). Instead, the qtnkm will be estimated by sampling the

posterior distribution over valid assignments. From this set of samples the qtnkm is estimated

as

qtnkm =
1

S

S
∑

s=1

δ(ωs
nk,m), (5.19)

where δ is the Kronecker delta function and S is the total number of samples.

A Markov chain Monte Carlo (MCMC) algorithm is used to obtain the samples. Monte Carlo
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algorithms (or more specifically, Metropolis-Hastings algorithms [57, 58]) sample a target dis-

tribution by sequentially generating new samples from a proposal distribution, which are then

either accepted or rejected based on the value of some acceptance ratio a.

In MCMC algorithms, the proposal distribution takes the form of a Markov process, which

means that a new sample ω′
n is generated probabilistically from the last accepted sample ωn,

according to a so-called Markov transition probability p(ω′
n|ωn).

The exact sampling process, which is performed for each profile separately, is as follows:

1. Start with a valid assignment ωs
n, s = 1.

2. For s = 1 to S,

a) Randomly generate a new valid assignment ω′
n from ωs

n according to the Markov

transition probability p(ω′
n|ω

s
n).

b) Calculate the acceptance ratio a,

a =
p(ω′

n|rn,Ψ
t ;θn)

p(ωs
n|rn,Ψ

t ;θn)

p(ωs
n|ω

′
n)

p(ω′
n|ω

s
n)
. (5.20)

c) If a > 1, accept ω′
n by setting ωs+1

n = ω′
n. Otherwise, accept ω′

n with a probability

a. If the proposal is rejected, set ωs+1
n =ωs

n.

The acceptance/rejection mechanism ensures that the final set of samples are drawn from

p(Ω|R,Ψ t ;Θ). This property of the sampling process is, apart from some general restric-

tions [54], independent of the exact choice for the Markov transition probabilities. The Markov

transition probabilities do however determine the efficiency of the sampling process. To en-

sure the algorithm explores the search space sufficiently while still generating high probability

samples, the following method for generating new samples was used:

1. Randomly choose a scatterer m ∈ 1, . . . ,M .

2. Find the current assignment k of m, where k ∈ 1, . . . , Kn means m is currently assigned

to peak k, i.e, ωs
nk =m, and k = 0 means m is considered occluded in the current value

of ωs
nk.

3. Randomly change the assignment form from k to k′, according to the probability P(k′|k,m)
defined as

P(k′|k,m) =
p(k′|k,m)

∑

k′ p(k
′|k,m)

,

p(k′|k,m) =











0 if k′ = k,

(1− vnm) if k′ = 0 and k′ ≠ k,

p(rnk′|xm, σm;θn)× vnm if k′ ∈ 1, . . . , Kn and k′ ≠ k.

(5.21)

4. Ifm is now assigned to a peak formerly assigned to another scattererm′, repeat the above

process for scatterer m′. Otherwise, stop.

The last step in the algorithm ensures that the resulting proposal assignment ω′ is always a

valid assignment.

Finally, estimates of qtnkm are constructed from the resulting set of samples using equa-

tion (5.19). These estimates are then used to construct the expected joint log likelihood in the

maximisation step.
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5.2.6 Description of the Maximisation Step

In the maximisation step, a new best estimate Ψ t+1 of the model parameters is found by max-

imising the expected joint log likelihood of the observed and hidden variables,

Ψ
t+1 = arg max

Ψ

Eqt
[

logp(R,Ω|Ψ ;Θ)
]

= arg max
X,σ,V

Eqt
[

logp(R|Ω,X,σ;Θ)+ logp(Ω|V)
]

,
(5.22)

where the last step uses the definitions presented in section 5.2.4. The expected joint log

likelihood can be expressed in terms of the qtnkm (defined in equation (5.18)) as

Eqt
[

logp(R|Ω,X,σ;Θ)
]

=

N
∑

n=1

K
∑

k=1

M
∑

m=0

qtnkm logp(rnk|wnk =m,X,σ;θn). (5.23)

The new best estimate Xt+1 of X is most easily defined in terms of virtual measurements řnm
and virtual measurement variances σ̌ 2

m, defined as [52]

řnm ≡

∑Kn
k=1 q

t
nkm rnk

∑Kn
k=1 q

t
nkm

,

σ̌ 2
m ≡

σ 2
m

∑Kn
k=1 q

t
nkm

,

(5.24)

for n = 1, . . . , N and m = 1, . . . ,M . Using these definitions, equation (5.23) can be written as

Eqt
[

logp(R|Ω,X,σ;Θ)
]

= C +

N
∑

n=1

M
∑

m=1

(řnm − r̂nm)
2

2σ̌ 2
. (5.25)

where C is a constant which does not depend on X. A new estimate Xt+1 of the scatter positions

can be found by maximising (5.25) using a General Least Squares solver.

Given the new position estimates Xt+1, the maximum likelihood solution for the model vari-

ances are given by

(σ t+1
m )2 =

∑N
n=1

∑Kn
k=1 q

t
nkm (rnk − r̂nm))

2

∑N
n=1

∑Kn
k=1 q

t
nkm

. (5.26)

To estimate the visibility matrix, the expected log likelihood (5.15) can be written in terms of

the assignments Ω as

Eqt
[

logp(Ω|Ψ ;Θ)
]

=
∑

n

∑

m

ε̄nm log(vnm)+ (1− ε̄nm) log(1− vnm), (5.27)

where ε̄nm is defined as the expectation value of εnm,

ε̄nm = Eqt [εnm] =
∑

k

qtnkm. (5.28)

The maximum likelihood solution v t+1
nm is the given by

vt+1
nm = ε̄nm =

∑

k

qtnkm. (5.29)
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Equation (5.29) should be interpreted as follows: the probability of scatterer m being visible in

profile n is equal to the sum over k of the probabilities that scatterer m is assigned to peak k.

Although the estimate (5.29) is the maximum likelihood solution, it does not reflect the phys-

ical properties of radar scattering correctly. The problem is that in the training set, a scatterer

is either present in a profile, or it is not. Unconstrained optimisation of the visibility matrix

using (5.29) would therefore result in a ‘binary’ visibility matrix, i.e., all elements vnm would be

either 0 or 1.

This is a problem in the case of speckle. As described in section 5.2, speckle causes a the

visibility of a scatterer to vary rapidly over small changes in aspect angle. Therefore, speckle

should be modelled as a probability of visibility between 0 and 1.

To remedy this problem, the visibility matrix is smoothed after the new estimates (5.29) have

been calculated, by applying a Gaussian filter to the elements v t+1
nm ,

v′
t+1
nm =

N
∑

n′=1

M
∑

m′=1

Wn′m′ vt+1
n′m′ , (5.30)

Wnm =

(

2πσ 2
v

)−1/2
exp

(θn−θn′ )
2

2σ2
v

∑N
n′=1

∑M
m′=1

(

2πσ 2
v

)−1/2
exp

(θn−θn′ )
2

2σ2
v

. (5.31)

The elements v′t+1
nm form the new estimate of the visibility matrix Vt+1.

A drawback of using this smoothing procedure is that the new estimate Vt+1 no longer max-

imises the expected log likelihood (5.27). Consequently, the convergence of the parameter

estimation algorithm is no longer guaranteed as it is for true EM algorithms. Nevertheless, the

approach converges in practice, and the resulting estimate of V does more accurately reflect

the physics of radar scattering.

5.3 Model-Based Classification

This section describes the construction of a maximum likelihood classifier for simulated range

profiles. Although such a classifier has no practical application, it can validate the assumptions

underlying the generative point scatter model if it performs well. Furthermore, the classifier

described in this section is the basis for a maximum likelihood classifier for measured range

profiles, described in chapter 6.

Let c = 1, . . . , C denote the class labels of the aircraft in the database. It is assumed that for

each aircraft a generative point scatter model Ψ c has been estimated. The task of the classifier

is to assign a class label c∗ to a leg of simulated profiles Y = {yn} with aspect angles Θ = {θn}.

First, the peak locations R = {rnk} are extracted from the leg Y. Then, the maximum likeli-

hood classifier assigns to the leg the class label c∗ of the generative model Ψ c which maximises

the likelihood of the peak locations R,

c∗ = arg max
c

logp(R|Ψ c ;Θ). (5.32)

As discussed in section 5.2.2, the likelihood p(R|Ψ c ;Θ) can only be expressed as a marginal-
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isation over the hidden assignment variables Ω,

c∗ = arg max
c

log
∑

Ω

p(R,Ω|Ψ c ;Θ)

= arg max
c

log
∑

Ω

p(R|Ω,Xc ,σc ;Θ)p(Ω|Vc ;Θ)

= arg max
c

logE
[

p(R|Ω,Xc ,σc ;Θ)
]

p(Ω|Vc ;Θ) ,

(5.33)

where E denotes expectation value.

Note that in equation (5.33) the prior distribution p(Ω|Vc ;Θ) over the assignments is now

conditioned explicitly on the aspect angles Θ in the test set. This is necessary because in

general, the profiles in the test set will be obtained at different aspect angles than the profiles in

the training set from which the generative models have been estimated. However, the elements

of the visibility matrix Vc are the probability of visibility for the different scatterers at the

aspect angles present in the training set.

The elements of Vc will therefore be linearly interpolated (as a function of aspect angle) to

estimate a new visibility matrix V̄c , with elements v̄cnm denoting the estimated probability of

scatterer m being visible in the nth profile of the test set.

The prior distribution p(Ω|Vc ;Θ) is defined as

p(Ω|Vc ;Θ) = p(Ω|V̄c)

=

N
∏

n=1

M
∏

m=1

(v̄nm)
εnm(1− v̄nm)

1−εnm ,
(5.34)

with εnm defined in (5.14).

Unfortunately, explicitly calculating the expectation value (5.33) is intractable due to the large

number of possible assignments. A common solution is to estimate the expectation value (5.33)

by averaging p(R|Ω,Xc ,σc ;Θ) over a set of S samples Ωs from p(Ω|V̄c),

E
[

p(R|Ω,Xc ,σc ;Θ)
]

p(Ω|V̄c) ≈
1

S

S
∑

s=1

p(R|Ωs ,X
c ,σc ;Θ). (5.35)

However, the distribution p(Ω|V̄c) is not very informative, since it does not include the infor-

mation present in the peak locations R and the other model parameters. Therefore, a large

number of samples would be required to reliably estimate the expectation value (5.35).

Fortunately, equation (5.35) can be rewritten in such a way that it can be approximated as

the average over a set of samples drawn from the posterior distribution p(Ωs|R,Ψ
c ;Θ). The

posterior distribution is much more informative than the prior p(Ω|V̄c), and so less samples

are required to reliably estimate the log likelihood.

Equation (5.35) is rewritten as follows. In appendix A, equation (A.4), it is shown that the log

likelihood can be written as [55]

logE
[

p(R|Ω,Xc ,σc ;Θ)
]

p(Ω|V̄c) =E
[

logp(R,Ω|Ψ c ;Θ)
]

p(Ω|R,Ψ c ;Θ)

+H
[

p(Ω|R,Ψ c ;Θ)
]

,
(5.36)
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where H[p(Ω|R,Ψ c ;Θ)] denotes the entropy of p(Ω|R,Ψ c ;Θ), defined by

H
[

p(Ω|R,Ψ c ;Θ)
]

= −E
[

logp(Ω|R,Ψ c ;Θ)
]

p(Ω|R,Ψ c ;Θ)

= −
∑

Ω

p(Ω|R,Ψ c ;Θ) logp(Ω|R,Ψ c ;Θ). (5.37)

Both the expectation value and the entropy term on the right-hand side of equation (5.36)

can be approximated as an average over samples Ωs , but now from the posterior distribution

p(Ωs|R,Ψ
c ;Θ):

E
[

logp(R,Ω|Ψ c ;Θ)
]

p(Ω|R,Ψ c ;Θ) ≈
1

S

∑

s

logp(R,Ωs|Ψ
c ;Θ), (5.38)

H
[

p(Ω|R,Ψ c ;Θ)
]

≈ −
1

S

∑

s

logp(Ωs|R,Ψ
c ;Θ). (5.39)

The samples used to calculate (5.39) can be obtained using the exact same sampling algorithm

used during the training of the generative models, discussed in section 5.2.

5.4 Experiments

This section describes the experiments performed to test both the quality of estimated point

scatter models, and the use of these models to construct a classifier as described in section 5.3.

5.4.1 Data Description

The data used in the experiments described in this section consist of simulated profiles from

the five commercial aircraft described in section 2.7. The profiles were divided into a training

set and a test set. The training set contained, for each aircraft, 240 profiles collected on a

rectangular grid of aspect angles shown in figure 5.2. Aspect azimuth covered a range from 70

to 99 degrees, while aspect elevation ranged from 87.5 to 105 degrees.

Since commercial aircraft tend to be longer and wider than they are high, changes in aspect

azimuth generally have a greater effect on range profiles than changes in aspect elevation.

Therefore aspect azimuth was sampled in steps of 1 degree, while aspect elevating was sampled

in steps of 2.5 degrees.

For the classification experiments an independent test set containing simulated profiles was

obtained. The test set consists of five legs containing 50 range profiles each, one leg per air-

craft. The profiles in leg were generated along continuous paths in aspect angle, also shown in

figure 5.2.

5.4.2 Model Estimation

In the first experiment, the training set was used to estimate the parameters of a generative

point scatter model for each aircraft, using the procedure described in section 5.2.

The slant ranges rnk of all local maxima were estimated by fitting a quadratic function to the

amplitudes of the five range bins surrounding each local maximum.

Selecting the model order, i.e. the number of scatterers to use in the model, is a difficult

problem, for which no robust and efficient automated solution exists. Instead, the number of

scatterers in each model was chosen a priori to be 25.

A good initialisation for the model parameters X, σ and V is important to prevent the al-

gorithm to converge to a local minimum. After experimenting with different initialisation
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Figure 5.2: Overview of aspect angles used for generating the training and test data. The dots, arranged

in a rectangular grid, denote the location of the aspect angles used in constructing the training set.

Also shown are the aspect angles of the sequences in the test set, together with the corresponding

aircraft code-names.

schemes, a cross-shaped formation was chosen to initialise the scatter positions. In this ini-

tialisation scheme, one-third of the scatterers are located evenly spaced across the center of

aircraft’s hull. The remaining scatterers were evenly spaced along a line roughly following the

wings. The exact locations of these lines was determined by manual examination of the aircraft

models.

The algorithm is rather insensitive to the initial values of σ and V. All variances were ini-

tialised to σ2
m = 10 m2. The elements vnm of v were initialised to 0.75, but any reasonable

value seemed to work well.

The remainder of the free parameters were set as follows. The EM algorithm was run until

either the scatter positions had converged, or the maximum number of 100 iterations was

reached. For each profile, 105 assignments were sampled each iteration.

5.4.3 Classification

To test the use of the estimated models for classification, as well as the approximation of the

log likelihood described in section 5.3, the following experiments were performed.

From each profile in the test set the locations of significant peaks were extracted. Then, each

sequence in the test set was classified using the classifier described in section 5.3.

5.5 Results

This section discusses the results of the experiments described in the previous section. Sec-

tion 5.5.1 describes the results of the model estimation experiment. Section 5.5.2 contains

a more in-depth discussion of the results of estimating the model parameters for the Boeing

747-500. Finally, in section 5.4.3 the results for the classification experiment will be presented.
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5.5.1 Model Estimation Results

The estimated point scatter locations and model variances are shown in figures 5.3, 5.4 and 5.5.

In general, the estimated scatter locations are located on or near the body of the original aircraft

model. From the figures it can be observed that scatterers located on the starboard side of the

aircraft are usually in better correspondence with the model than those located on the port

side.

This effect is caused by occlusion. Since all profiles in the training set were measured from

approximately broadside, scatterers located on the port side of the aircraft are occluded by

the aircraft body for aspect elevations close to zero. For these scatterers, less peak location

samples are available, which decreases the accuracy of the location estimates.

This effect is most noticeable in the decrease in accuracy of the z-coordinate estimate of

scatterers located on the port side.

5.5.2 Example: Boeing 747-500

Figure 5.4(a) shows the estimated scatter positions and model variances for the Boeing 747-

400, while figure 5.6 shows the corresponding visibility matrix. Figure 5.7(a) shows the peak

locations extracted from the Boeing 747-400 training set, while figure 5.7(b) shows the predicted

peak locations based on the estimated model parameters. The peak locations were predicted

at exactly the same aspect angles as in the training set, so the two plots in figure 5.7 can be

compared directly. Note that the order in which the profiles are shown in figure 5.7 is arbitrary,

and has been chosen such that the data set is easily visualised. The estimation procedure is

independent of any ordering.

First, note the two scatterers located on both wingtips at locations (14.7, 31.8, -2.16) and

(14.9, -31.6, -3.94). They are shown in figure 5.4(a) as A and B. The locations are of these

scatterers are in good, but not exact, correspondence with the actual model.The reason for the

inaccuracy can be seen in figure 5.7(a). The two ‘tracks’ corresponding to these scatterers are

easily observed at the left and right-hand side of the figure. As can be seen from this figure,

peaks from other scatterers are located close to parts of the track caused by scatterers A and

B. This causes uncertainty in the expectation step, which results in a less accurate estimation

of the scatter positions.

It is apparent from figure 5.7(a) that the scatterer on the left-hand wingtip is occluded in a

large number of profiles. The occlusion is caused by the fact that this wingtip is occluded by the

hull of the aircraft when observing the aircraft at aspect elevations close to zero. This behaviour

is accurately reflect in the estimated model, as can be seen in figure 5.6. The visibility matrix for

scatterer B is shown in figure 5.6 in row four, column four. The visibility matrix clearly shows

scatterer B to be occluded between zero and 5 degrees elevation. Only for aspect azimuths

larger than 95 degrees is it visible at 5 degrees elevation for – this occurs because the hull is

not as high at the rear as it is near the middle of the aircraft. Similar occlusion effects also

occur for the scatterers located around the farthest jet engine on the left hand wing, shown in

columns one and two of the third row in figure 5.6.

Closer to the hull it is much harder to extract point scatterers from the peak location shown

in figure 5.7(a). Especially in the region −10 < r < 10, many peaks occur close to each other.

This makes it very difficult to establish definitive assignments in the expectation step of the

algorithm. This in turn causes the point scatter location estimate to be rather inaccurate. This

can easily be seen by observing the scatterers located closely to the hull in figure 5.4(a).

Although the exact location of these scatterers might not correspond perfectly to the original

model, the predicted peak locations are accurate. This can be seen in figure 5.7(b), which

shows the predicted peak locations at the same aspect angles as in the training set. Clear

correspondences between figures 5.7(a) and 5.7(b) can be seen.
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Figure 5.3: Estimated point scatter locations and model variances for the Airbus 310 and McDonnel-

Douglas 88. The top figures show the projection on the xy-plane, the bottom figures the projection

on the yz-plane. The stars denote the estimated scatter positions xm. The circles have a radius of σm.
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Figure 5.4: Estimated point scatter locations and model variances for the Boeing 747-400 and the Boeing

737-500. The top figures show the projection on the xy-plane, the bottom figures the projection on

the yz-plane. The stars denote the estimated scatter positions xm. The circles have a radius of σm.
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Figure 5.5: Estimated point scatter locations and model variances for the Fokker 100. The top figures

show the projection on the xy-plane, the bottom figures the projection on the yz-plane. The stars

denote the estimated scatter positions xm. The circles have a radius of σm.
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Figure 5.6: The estimated visibility matrix for the B74F. Each figure represents the estimated visibility of

a scatterer in the model. The axes, shown on the lower right-hand side of this figure, are the same for

each scatterer. Below each figure, the position of the corresponding scatterer is given.
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(a) Peak locations in the training set of the Boeing 747-400. Some
clear tracks are easily observed.
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peaks with an estimated probability of visibility larger than
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Figure 5.7: Observed peak locations and model predictions for the Boeing 747-400.
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Class B73S B74F EA31 FK10 MD80

B73S 1.00 0.00 0.00 0.00 0.00

B74F 0.00 1.00 0.00 0.00 0.00

EA31 0.00 0.00 1.00 0.00 0.00

FK10 0.00 0.00 0.00 1.00 0.00

MD80 0.00 0.00 0.00 0.00 1.00

Table 5.1: Classification performance of the maximum likelihood classifier for simulated range profiles.

The table shows the fraction of range profiles assigned to the classes shown in the column labels. The

row labels denote the true class label.

5.5.3 Classification Results

The maximum likelihood classifier assigned the correct label to each of the legs in the test set,

i.e. the classification error was 0%. For completeness, the resulting confusion matrix is shown

in table 5.1. The row labels in the confusion matrix show the true class of the leg. The elements

of the confusion matrix are the fraction of legs assigned to the class shown in the column

labels.

5.6 Conclusions

This chapter introduced a generative model of peak locations in range profiles, which is capable

to generate the distribution of peak locations for a given aircraft type at any desired aspect

angle.

The parameters of the generative models consist of M 3D point scatter locations X, a set of

M variances σ 2
m, and a visibility matrix V which models visibility effects caused by occlusion

and speckle. It has been shown that these model parameters can be reliably estimated using an

Expectation-Maximisation algorithm. Although the point scatter assumption is simple, it does

fit the scatterers in the simulated training data set very well.

The parameter estimation algorithm is based on an algorithm previously described in [52],

but has been improved on in several ways. In [52], the feature extraction process was performed

a priori by a human operator, while in this chapter an automatic feature extraction algorithm

is used. Also, in [52] the problem of occlusion is handled by selecting an a priori probability of

occlusion. In this chapter, the probability of visibility of each scatterer in the model is explicitly

modeled as a function of aspect angle. Furthermore, the parameters of the visibility model are

estimated from the training set.

Model parameters have been estimated for each of the five aircraft shown in figure 2.4. It

has been shown that the estimated model parameters show good agreement with the aircraft

models. In particular, many of the estimated scatter positions coincide with clearly identifiable

features on the aircraft body. Furthermore, the estimated visibility matrices clearly identify the

regions in aspect angle in which scatterers are occluded.

This chapter also introduced a maximum likelihood classifier for radar range profiles, based

on the previously estimated generative models. The classifier assigns a class label to the slant

range positions of amplitude peaks extracted from each profile in a test set. The classifier

calculates an approximation of the log likelihood of the set of peak positions for each of the

estimated point scatter models. It then assigns to the test set the class label of the model

for which the resulting log likelihood was the highest. Although calculation of the true log

likelihood is intractable, the approximations described in section 5.3 allow us to calculate an

estimate of the true log likelihood.
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Since the classification used a test set containing simulated range profiles, the perfect clas-

sification results merely provide a proof of principle: model-based range profile classification

from peak locations is a feasible approach. The final goal is of course to classify measured

range profiles, using the generative models estimated from simulated range profiles. This is

the topic of the next chapter.



6 Model-Based Classification of Measured Range Profiles

6.1 Introduction

In the previous chapter it was assumed that the common features between simulated and mea-

sured range profiles are the locations of peaks in the range profiles. The main goal of the

current chapter is to validate that assumption by analysing the classification performance of

a model-based classifier which uses only peak locations to assign class label to one or more

measured range profiles.

The classifier for measured range profiles used in this chapter is very similar to the classifier

for simulated range profiles discussed in chapter 5. It assigns to a set of extracted peak loca-

tions the class label of the generative point scatter model which maximises the log likelihood of

the peak locations. The classifier uses the same point scatter models (estimated from simulated

range profiles) as in the previous chapter.

However, classification of measured range profiles does require some modifications of the

classifier described in the previous chapter, due to the differences between measured and sim-

ulated profiles. First, simulated range profiles do not suffer from measurement noise. There-

fore, each peak occurring in simulated range profiles is significant, i.e. its presence is due to

scattering from the aircraft. Measured range profiles do suffer from measurement noise (dis-

cussed in section 2.4), and so a peak in a measured range profile could be caused by either a

real scattering process or by measurement noise.

Another difference between simulated and measured profiles is that for simulated profiles

the exact aspect angles are known, while for measured profiles only an estimate of the aspect

angle is available (see also section 2.7).

Finally, measured range profiles are subject to translational range migration (discussed in

section 2.4), while simulated range profiles are not. Therefore, measured range profiles need to

be aligned with respect to the point scatter models before they can be classified.

The features extracted from measured range profiles consist of a set of peak locations (as

in the previous chapter), as well as a set of peak significance values. The significance value of

a peak, defined in section 6.2, is a measure of the likelihood that a given peak is caused by a

scattering process or by the measurement noise.

A generative model for the peak locations and a corresponding likelihood function for the

extracted features is derived in section 6.3. It is similar to the generative model discussed in

the previous chapter, but differs in two respects. First, it includes the extracted significance

values as an external parameter. Second, it is modified to include the uncertainty in the aspect

angle estimates and the effects of translational range migration.

Unfortunately, evaluating the derived likelihood function is intractable, and so section 6.3

also discusses a number of approximations to the earlier derived likelihood function which

allow the likelihood function to be evaluated.

Section 6.4 describes three classifiers for measured range profiles. The first is a maximum

likelihood classifier, which uses the generative models to classify a leg of measured range pro-

files. The second classifier uses a less formal similarity measure between the generative model

and the extracted features. The main benefit of this classifier is that it requires less computa-

tions to classify a leg than the maximum likelihood classifier. Finally, the third classifier is a

nearest neighbour classifier, which is not model-based, but directly compares measured range

profiles with a training set containing simulated profiles. It’s purpose in this chapter is to pro-
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(b) After subtracting the base amplitude.

Figure 6.1: Illustration of the base-line estimation procedure and the resulting peak significance values.

Figure 6.1(a) shows a profile in grey, and the estimated base amplitude in black. Figure 6.1(b) shows

the same profile after subtracting the base amplitude, as well as the significance values of a number

of detected peaks.

vide a base-line classification performance to compare the performance of the other classifiers

with.

Section 6.5 contains a description of the experiments performed to test the performance of

the three classifiers. Section 6.6 contains the results of these experiments. Finally, section 6.7

contains the conclusions drawn from the experimental results.

6.2 Feature Extraction from Measured Profiles

The task of a classifier for measured range profiles is to assign a class label c to a leg of N range

profiles Y = {yn}, with aspect angle estimates Θ̂ = {θ̂n}. The profiles in the leg are assumed to

be internally aligned (for instance, using maximum correlation).

The features to be extracted from the leg are the slant range locations R = {rnk} of all peaks

in each profile in the leg, and corresponding significance values Γ = {γnk}, where k = 1, · · · , Kn,

and Kn is the total number of peaks in the nth profile. A peak significance value γnk = [0,1]
close to zero signifies that a peak is likely to be caused by the noise process, while a significance

value close to 1 signifies that the peak is likely to be caused by some scattering process.

Measurement noise causes an amplitude offset in radar range profiles. This so-called base

amplitude affects the relative amplitudes of peaks in the profile, which will be used later on

to determine peak significance values. To correct for this, the base amplitude in each profile

needs to be estimated, and subsequently subtracted from the profile.

The local minima in a range profile provide a lower bound on the base amplitude in the

range bins containing the minima. To estimate the base amplitude in other range bins, the

local minima are linearly interpolated, and the resulting sequence is smoothed using a low-

pass Gaussian filter. An example of the resulting estimate of the base amplitude is shown

in figure 6.1(a). Figure 6.1(b) shows the same profile after the the base amplitude has been

subtracted.
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After the base amplitude has been subtracted from the profile, the locations rnk and ampli-

tudes ank of all local maxima are determined by fitting a quadratic function to the amplitudes

of the five range bins surrounding each local maximum.

The next step in the feature extraction process is estimating the distribution of the ampli-

tudes of peaks caused by the noise process.

The longest aircraft used in this thesis (the Boeing 747) is about 70 metres long, while the

unambiguous range interval Ru is about 107 metres. Therefore, a section of at least 30 metres

in each range profile does not contain radar returns from the aircraft, i.e., it only contains noise.

By locating this region, the amplitude distribution of peaks caused by noise can be estimated.

A simple heuristic to locate this region is to define it as that consecutive region of 20 metres

length with the lowest average energy. The amplitude distribution of peaks caused by the noise

process is then characterised by the average µn and standard deviation σn of all amplitude

peaks within this region.

Finally, peak significance values γnk = [0,1] are defined as

γnk =
1

1+ exp(−ānk)
, (6.1)

where

ānk = w ×

(

ank − µn

σn
− b

)

. (6.2)

The free parameters w and b in (6.2) determine the slope and offset of the sigmoid function

(see also figure 6.2).
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6.3 Derivation of Maximum Likelihood Function

6.3.1 Hidden Variables

The maximum likelihood classifier for measured range profiles assigns to a given leg Y the class

label c∗ of the generative model Ψ c which maximises the log likelihood of the observed peak

locations,

c∗ = arg max
c

logp(R|Ψ c ; Θ̂, Γ). (6.3)

Note that both the aspect angle estimates Θ̂ and the peak significance values Γ are treated as

external parameters in (6.3).

A leg of measured range profiles suffers from translational range migration, as discussed in

section 2.4. In chapter 3 it was shown that profiles within a leg can be accurately aligned using

maximum correlation, such that the origin of the aircraft fixed coordinate system is stationary

within the leg.

The likelihood of the observed peak locations given the generative model can only be eval-

uated if the peaks are aligned with the model, i.e., if the origins of the two aircraft-fixed co-

ordinate systems are at the same slant range location. The global translation in slant range

a required to align the two coordinate systems is however unknown a priori, and so a is the

second hidden variable of this problem.

The possible values of the shift a are bounded by the unambiguous range interval L (i.e. the

length of the profile). The marginalisation over a of the peak likelihood is therefore given by

logp(R|Ψ c ; Θ̂, Γ) = log

∫ L

a=0
p(R, a|Ψ c ; Γ , Θ̂)da

≡ log

∫

a
p(R|a,Ψ c ; Γ , Θ̂)p(a)da,

(6.4)

where the prior distribution p(a) over a is assumed to be independent of the other parameters,

and is given by

p(a) =
1

L
. (6.5)

Let R′ denote the measured peak positions R cyclically shifted over a distance a,

R′ ≡ {rnk + a}. (6.6)

Equation (6.4) can then be written as

logp(R|Ψ c ; Θ̂, Γ) = log

∫

a
p(R′|Ψ c ; Γ , Θ̂)p(a)da. (6.7)

As in section 5.2.2, the likelihood of observing the peak positions R is dependent on the

way scatterers in the model are assigned to the peaks, i.e, to evaluate p(R′|Ψ c ; Γ , Θ̂) in (6.7) we

need to know which of the observed peaks r ′nk are measurements of the slant range positions of

which of the scatterers xm. The assignments are again expressed as a set of (hidden) assignment

variables Ω, with the same definition as provided in section 5.2.2.
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The marginalisation over Ω is again given by the sum over all possible values of Ω,

logp(R|Ψ c ; Θ̂, Γ) = log

∫

a

∑

Ω

p(R′,Ω|Ψ c ; Γ , Θ̂)p(a)da

= log

∫

a

∑

Ω

p(R′|Ω,Ψ c ; Γ , Θ̂)p(Ω, a|Ψ c ; Γ , Θ̂)p(a)da.

(6.8)

6.3.2 Definition of Probability Distributions

Now that the hidden variables have been included in the likelihood function, the probability

distributions in (6.8) can be defined. The probability distributions are similar to the distribu-

tions defined in section 5.2.4, but are adapted to include the uncertainty in the aspect angle

estimates Θ̂ and the peak significance values Γ .

The distribution p(R′|Ω,Ψ c ; Θ̂) can be factorised, similar to equation 5.15, as

p(R′|Ω,Ψ c ; Θ̂) =

N
∏

n=1

Kn
∏

k=1

p(r ′nk|ωnk,Ψ
c ; θ̂n). (6.9)

If the kth scatterer in the nth profile has been assigned to the mth scatterer, ωnk = m, the

peak position distribution p(r ′nk|ωnk =m,Ψ
c ; θ̂n) is assumed to be Gaussian.

In the previous chapter, the mean of this Gaussian distribution was defined as the slant range

r(θ,xm) of the mth scatterer, defined in equation (2.5) as

r(θ,xm) = s(θ) · xm. (6.10)

The variance of this distribution was the model parameter σ 2
m.

However, the uncertainty in the aspect angle estimate θ̂ induces an uncertainty in the slant

range r(θ̂,xm). Assuming a zero-mean Gaussian error distribution on θ̂, with covariance matrix

Σθ, the resulting variance σθ on r(θ̂,xm) is given by

σ 2
θ = (r⊥)

T
Σθ r⊥, (6.11)

r⊥ = (r
a
⊥ , r

e
⊥)

T, (6.12)

where the cross ranges ra⊥ and r e⊥ are defined in equation (2.7).

Therefore, the mean of the Gaussian distribution p(r ′nk|ωnk = m,Ψ
c ; θ̂n) is itself Gaussian

distributed, with mean r(θ̂,xm) and variance σ 2
θ . The resulting peak location distribution is

therefore given by

p(r ′nk|ωnk =m,X
c ; Θ̂) =N

(

r ′nk; r(θ̂n,xm), σ
2
m + σ

2
θ

)

, (6.13)

i.e., the variance of the peak location distribution is the sum of the model variance σ 2
m and the

variance σ 2
θ induced by the variance of the aspect angle estimate θ̂.

If the kth peak has not been assigned to any scatterers, ωnk = 0, the peak location likelihood

is given by

p(r ′nk|ωnk = 0,Xc ; Θ̂) =
1

L
, (6.14)

which is identical to (5.12).
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In section 5.2.4, equation (5.15), the prior distribution p(Ω|Ψ c ;Θ) was defined as

p(Ω|Ψ c ;Θ) = p(Ω|Vc)

=

N
∏

n=1

p(ωn|v
c
n)

=

N
∏

n=1

M
∏

m=1

(vcnm)
εnm(1− vcnm)

1−εnm ,

(6.15)

with Vc the visibility matrix of class c. Each element vcnm of the visibility matrix Vc denotes the

probability of scatterer m being present in the nth profile of the simulated training set, where

the profile was obtained at a specific aspect angle θn.

In general, the measured range profiles in the test set will be measured at different aspect

angles θ̂n. To obtain an estimate V̄ of the probability of visibility at the estimated aspect angles

θ̂n, the elements of V will be linearly interpolated as a function of aspect angle, as described in

section 5.3.

The definition (6.15) will now be adapted to include the significance values Γ as an additional

parameter.

The prior probability of assigning scatterer m with visibility v̄nm to peak in profile n at

location r ′nk with peak significance γnk is given by

p(ωnk =m|v̄
c
nm, γnk) = v̄nmγnk. (6.16)

The prior probability of not assigning themth scatterer to any peak, wnk = 0, in the nth profile

is given by

p(ωnk = 0|v̄cnm, γnk) = (1− v̄
c
nm), (6.17)

which is the same definition as used in chapter 5.

Let κnk be a binary variable indicating whether the kth peak has been assigned to any scat-

terer in the nth profile,

κnk =

{

1 if ωnk ≠ 0

0 if ωnk = 0
. (6.18)

With this definition, the total prior probability of a set of assignments Ω, given a visibility

matrix Vc and peak significance values Γ , can be written as

p(Ω|Vc , Γ ; Θ̂) =

N
∏

n=1

p(ωn|v̄
c
n,γn)

=

N
∏

n=1





M
∏

m=1

(v̄cnm)
εnm(1− v̄cnm)

1−εnm

Kn
∏

k=1

(γnk)
κnk



 .

(6.19)

Combining the assumptions and definitions presented in this section, the peak position log

likelihood can be written as a nested expectation value,

logp(R|Ψ c ; Θ̂, Γ) = log

∫

a

∑

Ω

p(R′|Ω,Ψ c ; Θ̂)p(Ω|Vc , Γ ; Θ̂)p(a)da

= logE

[

E
[

p(R′|Ω,Ψ c ; Θ̂)
]

p(Ω|Vc ,Γ ;Θ̂)

]

p(a)
.

(6.20)



6.3 Derivation of Maximum Likelihood Function 65

6.3.3 Evaluation of Expected Log Likelihood

Unfortunately, the expected log likelihood (6.20) can not be easily evaluated. First, the expecta-

tion value over p(a) involves an integral over a which can not be performed analytically. Also,

the expectation value over p(Ω|Vc , Γ ; Θ̂) involves a sum over an exponential number of possible

assignments, which is computationally very expensive. This section therefore presents some

approximations which allow (6.20) to be evaluated within a reasonable time.

A common approach to calculating expectation values is to sample from the distribution over

which the expectation value is taken, and approximate the expectation value as the average

posterior likelihood taken over the set of samples.

Unfortunately, this approach is not applicable to the expectation value over p(a) in (6.20) for

two reasons. The first reason is that the prior p(a) = 1/L is flat, and therefore not informative.

As a consequence, a large number of samples would be required to reliable approximate the

expectation value. The second reason is that, for each sample from p(a), the marginalisation

over Ω would have to be performed, which would take a prohibitive amount of time.

Instead, equation (6.20) is approximated by estimating an optimal value of the global shift

a∗c , and replacing the original definition p(a) = 1/L with

p(a) = δ(a− a∗c ). (6.21)

Equation (6.20) then reduces to

logp(R|Ψ c ; Θ̂, Γ) = log

∫

a

∑

Ω

p(R′|Ω,Ψ c ; Θ̂)p(Ω|Vc , Γ ; Θ̂)δ(a− a∗c )da

= log
∑

Ω

p(Rc|Ω,Ψ c ; Θ̂)p(Ω|Vc , Γ ; Θ̂)
(6.22)

where Rc = {rnk + a
∗
c }.

The optimal shift a∗c for a given class c is estimated using a observed peak signature matrix

P, constructed from the extracted features, and model peak signature matrices Qc , constructed

from the generative model of each class c. A peak signature matrix is an N×D matrix, where N
is the number of profiles in the leg, and D the number of range bins in each profile. The rows

pn of P are called observed peak signatures; the rows qcn of Qc are called model peak signatures.

Observed peak signatures are constructed from the extracted features as follows. First, a

function G is defined as the weighted sum of Kn Gaussian kernels, with means rnk and constant

variances σ 2
k (which is a free parameter). The weighting factors for each Gaussian kernel are

the peak significance values γnk:

Gn(r) =
∑

k

γnkN (rnk, σ
2
k ). (6.23)

Then, the observed peak signature pn is constructed by sampling G at the slant ranges rd of

the original range bins, and normalising the resulting vector:

pnd =
Gn(rd)
∑

dGnrd
. (6.24)

Model peak signatures are constructed similarly. In this case, the function Gc is a weighted

sum ofM Gaussian kernels, with means r(θ̂,xcm) and variances σ 2
m+σ

2
θ . The weighting factors

in this case are the scatter visibilities vcnm:

Gcn(r) =
∑

m

vcnmN (r(θ̂,xcm), σ
2
m + σ

2
θ ). (6.25)
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As before, the model peak signature qcn is constructed by sampling Gc at the slant ranges rd of

the range bins in the measured range profile, and normalising the resulting vector:

qnd =
Gn(rd)
∑

dGnrd
. (6.26)

Figure 6.3 provides an overview of the construction of peak signatures.

From each pair of peak signature matrices P and Qc , an optimal shift in slant range a∗c is

estimated by cyclically shifting the rows of P, and calculating the resulting ‘inner product’ χ of

P and Qc ,

a∗c = arg max
a

Pa ·Qc

≡ arg max
a

∑

n

pan · qn.
(6.27)

After the extracted peak locations have been shifted over the optimal shift a∗c , the remaining

expectation value over p(Ω|Vc , Γ) is given by

logp(R|Ψ c ; Θ̂, Γ) = logE
[

p(Rc|Ω,Ψ c ; Θ̂)
]

p(Ω|Vc ,Γ ;Θ̂)
. (6.28)

Equation (6.28) has the exact same form as equation (5.36) – consequently, it can be evaluated

using the same procedure as discussed in section 5.3.

6.4 Classifiers for Measured Range Profiles

This section discusses three different classifiers for measured range profiles. Two of the clas-

sifiers are model-based. The third is a nearest neighbour classifier which operates on range

profiles directly.

In describing the different classifiers it is assumed that the data to be classified, i.e., the test

set, consists of a leg Y = {yn} containing N profiles, and a set of corresponding aspect angle

estimates Θ̂ = {θ̂n}.

6.4.1 Maximum Likelihood Classifier

This section summarises the feature extraction process and subsequent calculation of the peak

location likelihood described in the previous sections.

The maximum likelihood classifier for measured range profiles assigns to the profiles in the

test set the class label c∗ of the model Ψ c which maximises the log likelihood of the observed

peak locations. The maximum likelihood classifier can operate in three ‘modes’: 1-look classifi-

cation, majority voting, and full leg classification.

In 1-look classification mode, the classifier assigns a class label c∗n to each profile yn in Y

separately, according to

c∗n arg max
c

logp(rn|Ψ
c ; θ̂n,γn). (6.29)

In majority voting mode, the classifier assigns a single class label c∗ to all profiles in the

leg. In this mode, c∗ is the class label which the majority of profiles have been assigned in the

1-look classification mode. In the case of a tie, the class assigns the leg to an unknown class,

labeled NOMA (for No Majority).
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Figure 6.3: Construction of a peak location signature. The predicted peak positions, variances and visi-

bility probabilities (shown in figure 6.3(a)) are combined to construct a peak location signature (shown

in figure 6.3(b)). The resulting peak signature matrix is shown in figure 6.3(c).
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Finally, in full leg classification mode, the classifier assigns a single class label c∗ to all

profiles in the leg, based on the total likelihood of extracted peak locations,

c∗ = arg max
c

logp(R|Ψ c ; Θ̂, Γ). (6.30)

A summary of the processing involved in maximum likelihood classification in full leg clas-

sification mode is presented below. (The extension to the other modes of operation is straight-

forward.) A schematic overview is shown in figure 6.4.

1. Features R and Γ are extracted from the leg. From these features a peak signature matrix,

P, is constructed.

2. By combining the aspect angle estimates Θ̂ with each point scatter model, a peak signature

matrix Qc is constructed for each class c.

3. For each class c, the optimal shift a∗c of the extracted peak locations R is estimated by

searching for the shift which maximises the inner product of P and Qc .
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4. A set of assignment samples is drawn from p(Ω|Rc ,Ψ c ; Θ̂, Γ), where Rc is the set of ex-

tracted peak locations cyclically shifted by a∗c .

5. From the set of sampled assignments, the log likelihood for each class is estimated us-

ing (6.28).

6. The test set is assigned the class label c∗ of the model which produces the maximum log

likelihood.

6.4.2 Heuristic Alternative: Maximum Correlation

A drawback of the maximum likelihood classifier is that the computational requirements are

rather high, due to the necessity of sampling the assignment distribution. This section in-

troduces an alternative model-based classifier for measured range profiles with more modest

computational requirements.

Section 6.3.3 describes the peak signature matrices P and Qc , which are used to calculate

an optimal global shift a∗c of the peak locations for each class c. However, the maximum

correlation between P and Qc is itself a measure of similarity between the extracted features

and the generative model – the more peaks they have in common, the higher the maximum

correlation will be in general.

A simple and quick alternative to maximum likelihood classification is therefore to use the

maximum value of the cross-correlation between P and Qc as a measure of similarity between

the extracted features and the generative model.

The maximum correlation classifier can operate in the same three modes as the maximum

likelihood classifier: 1-look classification, majority voting, and full leg classification.

In 1-look classification mode, the classifier assigns a class label c∗n to each profile yn in Y

separately, according to

c∗n arg max
c

max
a

pan · qcn. (6.31)

In majority voting mode, the classifier assigns a single class label c∗ to all profiles in the

leg. In this mode, c∗ is the class label which the majority of profiles have been assigned in the

1-look classification mode. In the case of a tie, the class assigns the leg to an unknown class,

labeled NOMA (for No Majority).

Finally, in full leg classification mode, the classifier assigns a single class label c∗ to all

profiles in the leg, based on the total maximum correlation between P and Qc ,

c∗ = arg max
c

max
a

Pa ·Qc . (6.32)

Although this classifier lacks a solid statistical foundation, it is significantly faster then the

maximum likelihood classifier, since the time-consuming process of sampling the possible as-

signments is no longer required. Furthermore, the computations necessary to use the maximum

correlation classifier are in fact identical to the first set of computations necessary to use the

maximum likelihood classifier (see also figure 6.4). Therefore, the maximum correlation classi-

fier can be used to obtain a preliminary classification while the maximum likelihood classifier

is still being computed.

6.4.3 Nearest Neighbour Classifier

The nearest neighbour classifier is commonly used in many classification tasks. It is used in

this chapter to provide a base-line classification performance, with which the performance of

the other two classifier are compared.
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The nearest neighbour classifier is not model-based, but instead compares the test profiles

yn directly with the ‘training set’ of simulated profiles.

Let Z = {zt}, t = 1, . . . , T denote the simulated profiles in the training set, and let ct denote

the class label of zt . Finally, let θn denote the aspect angle of zn.

To increase the reliability of the nearest neighbour classifier, a test profile yn should only be

compared to training profiles zt whose aspect angles θt are within the expected error of the

aspect angle estimate θ̂n of yn. Since the expected error on aspect angle estimates is about 5

degrees (see section 2.7), a test profile yn is only compared to training profiles zt′ for which the

distance between θ̂n and θn is below 5 degrees,

t′ = {t ∈ 1, . . . , T
∣

∣

∣ |θ̂n − θt| < 5}. (6.33)

The nearest neighbour classifier can operate in two modes: 1-look classification and majority

voting.

In 1-look classification mode, the classifier assigns a class label c∗n to each profile yn in Y

separately, according to

c∗n = ct∗ , (6.34)

t∗ = arg min
t′

SED(yn,zt′). (6.35)

In majority voting mode, the classifier assigns a single class label c∗ to all profiles in the

leg. In this mode, c∗ is the class label which the majority of profiles have been assigned in the

1-look classification mode. In the case of a tie, the class assigns the leg to an unknown class,

labeled NOMA (for No Majority).

6.5 Experiments

This section describes the classification experiments performed to test the three classifiers for

measured range profiles discussed in the previous section.

6.5.1 Data Description

The data set contained simulated and measured range profiles from the five different commer-

cial aircraft used throughout this thesis (shown in figure 2.4).

The radar returns were Hamming weighted and zero-padded to 2048 elements. Finally, a

Box-Cox transformation, defined in equation (2.27), was applied to each available profile. The

free parameter η was chosen to be η = 0.2.

The simulated profiles were used to estimate a generative point scatter model for each air-

craft as described in the previous chapter – the same models were used in the experiments

described in section 5.4.

The measured range profiles were measured in the orfeo measurement campaign, described

in section 2.7. Not all available range profiles were used: only range profiles measured at aspect

azimuth θa ranging from 70 to 105 degrees and aspect elevation θe ranging from 87.5 to 102

degrees were used.

The (rather long) legs in the original orfeo data were divided into sub-legs containing 10

profiles each. Table 6.1 shows the total number of available legs for each aircraft. Figure 6.5

shows the aspect angles of each leg. The profiles in each sub-leg were then aligned with respect

to each other using maximum correlation, as described in chapter 3.
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Aircraft code Number of legs

B73S 102

B74F 17

EA31 34

FK10 22

MD80 87

Table 6.1: Number of available legs for each aircraft.
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Figure 6.5: Aspect angles of available measured data.
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Finally, the peak locations R and peak significance values Γ were extracted from the profiles

in each leg, according to the feature extraction described in section 6.2. The variance of the

Gaussian filter used in the baseline estimation procedure was σ 2 = 20 m2. The free parameters

w and b defined in (6.2) were chosen to be w = 2 and b = 3. Note that these parameters are

not estimated from the data, but are instead chosen a priori.

6.5.2 Classification

Each classifier (in all its operating modes) discussed in section 6.4 was used to classify the test

set.

6.6 Results and Discussion

The results of each classification experiment are presented in tables 6.2, 6.3 and 6.4. The results

are presented as confusion matrices. The row labels denote the true class of the legs, while the

column labels denote the class assigned by the classifier. The elements of the confusion matrix

represent the fraction of the available data assigned to the class denoted in the column label.

Table 6.2 contains the confusion matrices for each operating mode of the maximum likeli-

hood classifier. The full leg classification mode of the maximum likelihood classifier clearly

outperforms both other modes, both in terms of overall classification error as well as in terms

of the classification error for four of the five classes – only the classification error for the FK10

is slightly lower in the majority voting mode.

In all modes, the B74F is almost always classified correctly. This is not surprising, since the

B74F is by far the largest aircraft in the data set.

The results for the MD80 vary the most over the different operating modes of the maximum

likelihood classifier. Although the classification error is the same for both the 1-look classifica-

tion mode and the majority voting mode, the relatively large number of legs which are classified

as NOMA shows that the peak likelihood fluctuates rapidly within the legs of the MD80. The

full leg classification mode assigns the correct class label to almost all legs previously classified

as NOMA.

Table 6.3 contains the confusion matrices for each operating mode of the maximum correla-

tion classifier. Overall, the performance of the maximum correlation classifier is comparable,

mode by mode, to the performance of the maximum likelihood classifier. As with the maximum

likelihood classifier, the 1-look classification mode is results in the poorest performance, and

the full leg classification mode results in the best performance of the three modes.

In fact, the results of the full leg classification mode of the maximum correlation for each

aircraft separately are slightly better than for the same mode of the maximum likelihood clas-

sifier – the overall error is however most affected by the large number of legs of the B73S in

the test set. Since the computational requirements for the maximum correlation classifier are

so much lower than for the maximum likelihood classifier, one could argue that the maximum

correlation classifier is the more attractive choice in practice.

Table 6.4(a) contains the confusion matrix for the two operating modes of the nearest neigh-

bour classifier. Both the 1-look classification mode and the majority voting mode of the nearest

neighbour classifier outperforms the similar modes of the two model-based classifiers, mainly

due to the increase in performance of the B73S.

Since there is no full leg classification mode for the nearest neighbour classifier, one can only

compare the full leg classification modes of the model-based classifiers to the majority voting

mode of the nearest neighbour classifier. The overall performance in these cases is roughly the

same for all three classifiers, but again, the overall performance is heavily influenced by the

large number of legs of the B73S.
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Class B73S B74F EA31 FK10 MD80

B73S 0.62 0.02 0.10 0.12 0.14

B74F 0.00 0.96 0.04 0.01 0.00

EA31 0.01 0.41 0.56 0.00 0.03

FK10 0.17 0.00 0.02 0.63 0.18

MD80 0.23 0.01 0.11 0.08 0.57

(a) 1-Look Classification. Overal error: 0.38

Class B73S B74F EA31 FK10 MD80 NOMA

B73S 0.75 0.00 0.05 0.08 0.07 0.05

B74F 0.00 1.00 0.00 0.00 0.00 0.00

EA31 0.00 0.38 0.62 0.00 0.00 0.00

FK10 0.09 0.00 0.00 0.77 0.14 0.00

MD80 0.16 0.00 0.09 0.05 0.57 0.13

(b) Majority Voting. Overal error: 0.31

Class B73S B74F EA31 FK10 MD80

B73S 0.79 0.00 0.05 0.09 0.07

B74F 0.00 1.00 0.00 0.00 0.00

EA31 0.00 0.32 0.68 0.00 0.00

FK10 0.09 0.00 0.00 0.73 0.18

MD80 0.17 0.00 0.06 0.06 0.71

(c) Full leg. Overal error: 0.24

Table 6.2: Confusion matrices for the maximum likelihood classifier. The tables show the fraction of

range profiles assigned to the classes shown in the column labels. The row labels denote the true class

label.
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Class B73S B74F EA31 FK10 MD80

B73S 0.60 0.01 0.05 0.22 0.13

B74F 0.00 0.96 0.02 0.01 0.01

EA31 0.01 0.34 0.58 0.00 0.07

FK10 0.21 0.00 0.03 0.63 0.13

MD80 0.21 0.01 0.06 0.15 0.57

(a) 1-Look Classification. Overal error: 0.39

Class B73S B74F EA31 FK10 MD80 NOMA

B73S 0.71 0.00 0.04 0.16 0.07 0.03

B74F 0.00 1.00 0.00 0.00 0.00 0.00

EA31 0.00 0.32 0.59 0.00 0.03 0.06

FK10 0.18 0.00 0.00 0.77 0.05 0.00

MD80 0.11 0.00 0.05 0.11 0.68 0.05

(b) Majority Voting. Overal error: 0.29

Class B73S B74F EA31 FK10 MD80

B73S 0.77 0.00 0.04 0.14 0.05

B74F 0.00 1.00 0.00 0.00 0.00

EA31 0.00 0.24 0.76 0.00 0.00

FK10 0.14 0.00 0.05 0.77 0.05

MD80 0.15 0.00 0.06 0.06 0.74

(c) Full leg. Overal error: 0.26

Table 6.3: Confusion matrices for the correlation classifier. The tables show the fraction of range profiles

assigned to the classes shown in the column labels. The row labels denote the true class label.

Class B73S B74F EA31 FK10 MD80

B73S 0.88 0.00 0.00 0.09 0.03

B74F 0.00 0.99 0.00 0.01 0.00

EA31 0.15 0.00 0.71 0.04 0.10

FK10 0.16 0.00 0.00 0.58 0.25

MD80 0.29 0.00 0.00 0.19 0.51

(a) 1-Look Classification. Overal error: 0.28

Class B73S B74F EA31 FK10 MD80 NOMA

B73S 0.96 0.00 0.00 0.03 0.01 0.00

B74F 0.00 1.00 0.00 0.00 0.00 0.00

EA31 0.21 0.00 0.68 0.03 0.09 0.00

FK10 0.14 0.00 0.00 0.73 0.14 0.00

MD80 0.30 0.00 0.00 0.18 0.52 0.00

(b) Majority Voting. Overal error: 0.24

Table 6.4: Confusion matrices for the nearest neighbour classifier. The table shows the fraction of range

profiles assigned to the classes shown in the column labels. The row labels denote the true class label.
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Overall it can be concluded that there is no significant difference in the performance of the

three classifiers on the data set available for the experiments.

6.7 Conclusions

In the previous chapter it was shown that it was possible to estimate generative point scatter

models from simulated range profiles, and that these models could be used to reliably classify

simulated range profiles. Furthermore, it was assumed that the slant ranges of amplitude peaks

are the common features between measured and simulated range profiles.

This chapter described two new model-based classifiers for measured range profiles: a max-

imum likelihood classifier and a maximum correlation classifier. Both use the same generative

model defined in chapter 5 to assign a class label to a leg of measured range profiles,

The comparable performance of the model-based classifiers and the nearest neighbour classi-

fier show that the common features between simulated and measured range profiles are indeed

the slant ranges of amplitude peaks. Furthermore, these common features can be modeled

from simulated data. The resulting generative models are capable of discriminating between

measured profiles of different aircraft types, although not with 100% accuracy.

Of the three classifiers described in this chapter, the maximum correlation classifier provides

a good compromise between theoretical rigor and practical requirements. While it lacks a for-

mal statistical foundation, its performance is comparable to the maximum likelihood classifier,

while requiring significantly less computations. Furthermore, it is model-based, and it does not

require a large continuously available training set, which the nearest neighbour classifier does.

The maximum likelihood classifier is theoretically sound – it is a proper maximum likelihood

classifier, based on a simple but physically relevant model of radar scattering. Therefore, future

research should focus on further developing this classifier.

Instead of assigning scatterers to peaks, an interesting approach would be to assign scatterers

to tracks of amplitude peaks in a given leg. This would dramatically reduce the number of

possible assignments, which is the main reason for the large computational requirements of

the maximum likelihood classifier.

Furthermore, the generative model underlying the maximum likelihood classifier could be

extended to include more complex scattering mechanisms than simple point scattering.
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Aircraft classification from radar range profiles is a challenging task due to the three problems

identified in chapter 1: the need for translation invariant classification, the limited accuracy of

available aspect angle estimates, and the difficulty of obtaining sufficient training data. These

problems are addressed in the previous chapters in this thesis. This final chapter provides an

overview of the main results as well as directions for possible future research.

Chapter 3 addressed the problem of translation invariant classification by introducing the

Smoothed Zero Phase Representation for radar range profiles. This representations allows

for fast translation invariant classification, while not discarding any potentially discriminative

information from the range profiles.

The main benefits of using the Smoothed Zero Phase Representation compared to other ap-

proaches to translation invariant range profile classification are twofold. First, the method

aligns range profiles in a pre-processing step, and so it becomes possible to apply statistical

feature extraction methods on the data set. This is not possible with many other approaches,

which obtain translation invariance by using a translation invariant similarity measure to clas-

sify range profiles. The second benefit is that translation invariant classification is faster than

classification using the common approach of using a nearest neighbour classifier based on the

Sliding Euclidean Distance. Classification of a leg containing M range profiles requires roughly

M times less alignment-related computations than classification using the SED.

Using the ZPR or SZPR does result in a decrease in classifier performance compared to classi-

fication using the SED. However, by combining range profile alignment using the SZPR with sub-

sequent statistical feature extraction could result in better classification performance. Whether

such an approach outperforms classification using the SED would be an interesting topic for

future research.

The aspect angle at which an aircraft is observed heavily influences range profile measure-

ments. The effects of speckle, rotational range migration and occlusion cause significant range

profile variability. Therefore, knowledge about the aspect angle at which a range profile is ob-

tained can significantly increase classification accuracy. Furthermore, information on aspect

angles also benefit many HRR signal processing techniques, such as ISAR imaging.

Aspect angle estimates from tracking data suffer from both systematic and random errors

(see chapter 2). Chapter 4 introduced a method for increasing the accuracy of aircraft rota-

tion estimates obtained from tracking data. On the basis of a point scatter model a filter was

developed, which uses a combination of the original rotation estimates and phase information

extracted from range profiles to update the rotation estimates.

To extract the necessary phase information from the range profiles an extensive feature

extraction method was developed, which involves tracking peaks detected in a leg of range

profiles, and correcting extracted phases for the effects of translational and rotational range

migration.

Since no ground truth on aspect angles are available for the range profiles measured during

the orfeo campaign, the experiments were necessarily restricted to simulated profiles. How-

ever, the effects of measurement noise and translational range migration were artificially added

to the simulated range profiles, and so the resulting data set is similar to actual HRR measure-

ments.

It has been shown that the filter does indeed improve aircraft rotation estimates, provided

that the signal-to-noise ratio is sufficiently high (larger than 0 dB). For smaller signal-to-noise
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ratios, the algorithm fails to provide more accurate rotation estimates, resulting in an improve-

ment factor of 1.

The main area of future research regarding this method is its application on actual measured

range profiles, for which a ground truth on aspect angles is available.

In this thesis simulated range profiles were used to construct classifiers for measured range

profiles, which requires solving two problems. Since simulated range profiles are significantly

different from measured range profiles, the classifier should base its decision solely on those

features of range profiles which are present in both simulated and measured range profiles.

Therefore, the first problem to be solved is to identify those common features. The second

problem is actually constructing a classifier capable of classifying the extracted features.

Chapter 5 assumed that the common features present in both simulated and measured range

profiles are the locations (i.e. the slant ranges) of the local maxima occurring in range profiles.

On the basis of that assumption, a generative model describing the distribution of peak posi-

tions was defined. The model is based on a simple point scatter model of radar scattering. It’s

parameters include the three dimensional positions of a set of point scatterers, as well as a

visibility matrix which models the effects of speckle and occlusion.

For each aircraft in the training set model parameters were estimated using an Expectation-

Maximisation algorithm. It was shown that the resulting scatter positions and visibility matrices

are in good agreement with the original CAD models used to generate the simulated training

set.

Finally, the performance of a maximum likelihood classifier based on this generative model

was shown to result in perfect classification accuracy on a test set containing simulated range

profiles. This is an important proof of principle: model-based range profile classification from

peak locations is a feasible approach.

An interesting topic for future research is the use of more sophisticated model of radar

scattering as the basis of a generative model for peak locations. Although the current point

scattering model performs well in practice, more sophisticated models could further increase

the expressive power of the generative model. Also, it would be interesting to look into the

problem of model order selection, i.e. the problem of deciding the number of scatterers present

in the model.

Chapter 6 used the generative models obtained in chapter 5 to construct two model-based

classifiers for measured range profiles. The first classifier is a maximum-likelihood classifier

very similar to the one presented in chapter 5. The second classifier is also model-based, but

uses a similarity measure instead of the maximum likelihood to classify range profiles.

Measured range profiles are subjected to measurement noise and translational range migra-

tion. Chapter 6 presented an algorithm to assign a significance value to peaks extracted from

measured range profiles, which is a measure of the likelihood that a peak was caused by ac-

tual scattering, or by the noise process. The generative model was modified to include these

significance values in the definition of peak position likelihood. The problem of translational

range migration was solved by first aligning the peaks extracted from the measurements with

the distribution predicted by the model before classification. The performance of the resulting

classifiers was shown to be comparable to the performance of a nearest neighbour classifier,

which proves that peak locations are indeed the correct features for comparing simulated and

measured range profiles.

The identification of the common features between simulated and measured range profiles is

the most important result presented in this thesis, which leads to many possibilities for further

research.

The accuracy of the peak detection algorithms and the assignment of significance values

might be improved by exploiting the fact that usually a leg of profiles is available. In this

thesis, peaks are detected on a profile by profile basis. However, one could also try to detect

tracks of peaks in the leg (as was done in chapter 4). The significance value of a peak could
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then be related to the likelihood of it being part of track.

Another benefit of using tracks of peaks is that this could decrease the computational re-

quirements of the maximum likelihood classifier. Instead of assigning scatterers to peaks, one

would assign scatterers to tracks instead. This would dramatically reduce the number of pos-

sible assignments, which is the main reason for the large computational requirements of the

maximum likelihood classifier.

The obvious long-term goal of any research on non-cooperative aircraft recognition is actual

application in radar systems. The main question which has to be answered before such an

application is possible is whether sufficient classification performance can be achieved when

many more aircraft types are included in the data set. The work presented in this thesis has

hopefully provided the next step towards answering that question.





A Expectation-Maximisation Optimisation

This appendix provides more details on the Expectation-Maximisation algorithm described in

section 5.2.3. It closely follows the description presented in [55].

First, let q(Ω) denote an arbitrary distribution over the hidden variables Ω. The log likeli-

hood logp(R|Ψ) can be written as

logp(R|Ψ) = log
∑

Ω

p(R,Ω|Ψ)

= log
∑

Ω

q(Ω)
p(R,Ω|Ψ)

q(Ω)

≥
∑

Ω

q(Ω) log
p(R,Ω|Ψ)

q(Ω)

≡ F[q,Ψ],

(A.1)

where in the third step Jensen’s inequality is used. The lower bound F[q,Ψ] is called the free

energy.

The Expectation-Maximisation algorithm is an iterative algorithm, which in each iteration

finds an updated set of model parameters which maximise the free energy. Each iteration

consists of an Expectation step and a Maximisation step.

Let t be the number of the current iteration. In the Expectation step, the model parameters

Ψ
t are fixed. By writing the free energy as

F[q,Ψ t] =
∑

Ω

q(Ω) log
p(R,Ω|Ψ t)

q(Ω)

=
∑

Ω

q(Ω) logp(R|Ψ t)+
∑

Ω

q(Ω) log
p(Ω|R,Ψ t)

q(Ω)

= E[logp(R|Ψ t)]q(Ω) −
∑

Ω

q(Ω) log
q(Ω)

p(Ω|R,Ψ t)

= logp(R|Ψ t)−D[q(Ω)||p(Ω|R,Ψ t)],

(A.2)

where D denotes the Kullback-Leibler divergence. The optimal choice qt(Ω) for q is given by

qt(Ω) = p(Ω|R,Ψ t), (A.3)

since in that case D = 0 and the free energy is equal to the log likelihood.

In the Maximisation step, qt(Ω) is fixed, and the free energy is maximised as a function of Ψ .

A different expansion of the free energy is given by

F[qt ,Ψ) =
∑

Ω

qt(Ω) log
p(R,Ω|Ψ)

qt(Ω)

=
∑

Ω

qt(Ω) logp(R,Ω|Ψ)−
∑

Ω

qt(Ω) logqt(Ω)

= E[logp(R,Ω|Ψ)]qt(Ω) +H[q
t(Ω)],

(A.4)
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where H[qt(Ω)] denotes the entropy of qt(Ω). Since qt is fixed, the entropy of qt is indepen-

dent of Ψ . Therefore, the new optimal model parameters Ψ t+1 are those that maximise the first

part of (A.4), i.e., the expected log likelihood:

Ψ
t+1 = arg max

Ψ

E[logp(R,Ω|Ψ)]p(Ω|R,Ψ t). (A.5)
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Summary

The ability to quickly and reliably identify aircraft is an important aspect of air traffic safety.

Civilian air traffic controllers need to be constantly updated on the status of aircraft moving

through the local airspace. In military scenarios, the need to reliably identify aircraft is even

more stringent, since erroneous identification could easily result in friendly fire incidents.

A common technique for identification of military aircraft is Identification Friend Foe (IFF),

which relies on the aircraft providing a correct response to a challenge transmitted by a ground

station. An aircraft not capable of correctly answering the challenge is assumed to be hostile

(or at least not friendly).

Unfortunately this assumption does not always hold. In recent history many incidents have

shown that friendly aircraft are not always capable of providing a correct response, be it due to

hardware failure or human error.

The subject of this thesis is automatic aircraft classification from radar measurements. The

main advantage of this method is that radar measurements and subsequent classification can be

achieved without the (active) cooperation of the aircraft (Non-Cooperative Target Recognition),

which can potentially decrease the number of friendly fire incidents.

In this thesis aircraft are classified on the basis of radar range profiles which are measure-

ments of an aircraft’s radar reflectivity measured along the line-of-sight between the radar and

the aircraft. Since the amount of reflected radar energy is different for different parts of the

aircraft, a range is dependent on the geometry of the aircraft. It is this property of radar range

profiles which make them suitable features for automatic aircraft recognition. However, the

use of range profile for aircraft classification does have drawbacks, which are addressed in this

thesis.

Radar range profiles are heavily influenced by the distance between the radar and the target

at the time of measurement: changes in distance cause (cyclic) shifts of the range profile. The

distance between the radar and the target can not be estimated with sufficient accuracy to

correct the range profile for this effect. Therefore, a classifier for range profiles should be

translation invariant, i.e., independent of any cyclic shift of the range profile.

Chapter 3 introduces a new method for obtaining translation invariant classification of range

profiles. First it is shown that range profile alignment is essentially a problem of phase estima-

tion. On the basis of this analysis, a translation invariant representation called the Zero-Phase

Representation is constructed. The main advantage of this representation is that translation

invariant classification can be achieved more rapidly than with existing methods, at the cost of

a decrease in classification accuracy.

A second drawback of using range profiles for aircraft classification is the strong dependency

of range profiles on the pose of the aircraft with respect to the radar (called aspect angle).

Aircraft rotations cause a change in aspect angle, and even small rotations can have a drastic

effect on the resulting range profile due to interference effects.

Although aspect angles can be estimated from tracking data (a sequence of three-dimensional

aircraft positions), the accuracy of these estimates is rather low. Chapter 4 describes a new

method for increasing these aspect angle estimates by analysing phase information extracted

from the measured range profiles.

Perhaps the main drawback of using range profiles for aircraft classification is the large

amount of training profiles required to construct a reliable classifier. Range profiles are usually

represented as vectors containing hundreds of elements. It is well known that constructing sta-
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tistical classifiers in high-dimensional vector spaces requires large quantities of training data.

Furthermore, the dependency of range profiles on aspect angle causes large within-class vari-

ances, and so again many profiles are required to accurately reflect their statistical distribution.

Unfortunately, measuring radar range profiles is both time-consuming and expensive, and so

using measured data is not a feasible option for constructing a classifier.

Simulated range profiles provide an alternative source for obtaining training data. Using

radar simulation software and CAD models of aircraft, large numbers of range profiles can be

obtained cheaply and relatively quickly, and at any desired aspect angle.

Simulated range profiles are different from measured range profiles in a number of ways. Due

to the limited accuracy of both the simulation software as well as the CAD models, simulated

range profiles can only approximate measured range profiles. Furthermore, simulated range

profiles are not corrupted by measurement noise. Therefore, when constructing a classifier for

measured range profiles on the basis of a simulated training set, care must be taken to train

the classifier solely on those features which are present in both simulated and measured range

profiles.

In this thesis it is assumed that the common features present in both simulated and measured

range profiles are the positions of local amplitude maxima of the profiles. These maxima are

related to the position of string radar reflectors on the aircraft, and one can assume that at

least some of the reflectors are present in both simulated and measured profiles.

Chapter 5 introduces a generative model of the statistical distribution of these common fea-

tures, which is conditioned on aircraft type and aspect angle. The parameters of this model

have a clear physical interpretation, and in chapter 5 it is shown how to reliably estimate the

model parameters from a data set containing simulated range profiles.

Finally, chapter 6 shows how the estimated models can be used to classify (sequences of)

measured range profiles. The experiments performed in this chapter show that the classifica-

tion performance obtained is comparable to the performance of standard classifiers. The main

advantage of the method described here is the clear physical interpretation of the model pa-

rameters, and the ability to estimate the statistical distribution of the common features at any

desired aspect angle.



Samenvatting

De mogelijkheid om snel en betrouwbaar vliegtuigen te kunnen herkennen is van groot belang

voor zowel civiele als militaire luchtvaart. Verkeersleiders dienen continu op de hoogte te zijn

van de positie, snelheid en andere kenmerken van vliegtuigen die zich in het lokale luchtruim

bevinden. In militaire scenario’s is betrouwbare informatie omtrent vliegtuigtypes letterlijk van

levensbelang.

De bestaande systemen voor het automatisch bepalen van het type vliegtuig (ofwel vliegtuig

classificatie) zijn gebaseerd op een vraag-antwoord principe: een grondstation stuurt een zo-

genaamde challenge naar een vliegtuig, dat vervolgens geacht wordt een bijpassend antwoord

terug te sturen. Een vliegtuig dat geen passend antwoord terugstuurd wordt dan geacht vijandig

te zijn.

Helaas is dit laatste niet altijd het geval. In de recente geschiedenis zijn er meerder gevallen

bekend waarin een vriendelijk vliegtuig niet in staat bleek een passend antwoord te versturen

ten gevolge van een menselijke fout of door een gebrek aan de hardware, met alle gevolgen

vandien.

Het onderwerp van dit proefschrift is het automatisch herkennen van het type vliegtuig (of-

wel vliegtuig classificatie) op basis van radarmetingen. Het grote voordeel van deze methode

is dat in dit geval de meting en de daaropvolgende classificatie plaatsvinden zonder de (actie-

ve) medewerking van het betreffende vliegtuig (non-cooperative target recognition). Hierdoor

kunnen hopelijk in de toekomst veel ongelukken worden voorkomen.

In dit proefschrift is gekozen voor het gebruik van radarafstandsprofielen als basis voor

classificatie. Radarafstandsprofielen (of kortweg profielen) zijn metingen van de sterkte van

het gereflecteerde radarsignaal, gemeten langs de kijkrichting van de radar (zie 1.1). Omdat

de sterkte van de refelectie verschillend is voor verschillende onderdelen van het vliegtuig zijn

profielen afhankelijk van de vorm van het vliegtuig. Het is deze afhankelijkheid die profielen

geschikt maakt als basis voor vliegtuigclassificatie.

Het gebruik van radarafstandsprofielen voor vliegtuigclassificatie heeft echter ook nadelen,

waarvan de belangrijkste in dit proefschrift besproken en opgelost worden.

Radarafstandsprofielen zijn sterk afhankelijk van de afstand tussen de radar en het vliegtuig

tijdens de meting; een verandering in afstand veroorzaakt een (cyclische) verschuiving van

het gemeten profiel. Omdat de afstand tussen radar en vliegtuig niet voldoende nauwkeurig

kan worden bepaald om voor dit effect te corrigeren, is het noodzakelijk dat de gebruikte

classificatie methode invariant is onder willekeurig cyclische verschuivingen van het gemeten

profiel.

Hoofdstuk 3 beschrijft een nieuwe methode voor het translatie-invariant classificeren van

radarafstandsprofielen. Eerst wordt aangetoond dat het uitlijnen van profielen in essentie een

fase-schattingsprobleem is. Op basis van deze analyse wordt vervolgens een nieuwe translatie-

invariante representatie van profielen gedefinieerd, de Zero-Phase Represenatation. Het grote

voordeel van deze representatie is dat translatie-invariante classificatie aanmerkelijk sneller

kan worden gerealiseerd dan met bestaande methodes, hoewel dit wel ten koste gaat van het

uiteindelijke classificatieresultaat.

Een tweede nadeel van het gebruik van radarafstandsprofielen voor vliegtuigclassificatie is

hun sterke afhankelijkheid van de aangezichtshoek waaronder de radar het vliegtuig waar-

neemt. Rotaties van het vliegtuig veroorzaken veranderingen in aangezihtshoek, en relatief

kleine rotaties (in de orde van een tiende graad) kunnen al een grote invloed hebben op het



90 Samenvatting

gemeten profiel als gevolg van interferenties.

Aangezichtshoeken kunnen worden geschat uit zogenaamde tracking data (een serie metin-

gen van de positie van het vliegtuig). Echter, deze schatting is weinig nauwkeurig. Hoofd-

stuk 4 beschrijft een nieuwe methode om op basis van de oorspronkelijke schattingen van de

aangezichtshoek en faseinformatie verkregen uit de geobserveerde radarafstandsprofielen een

verbeterde schatting van de aangezichtshoek te construeren.

Het grootste nadeel van het gebruik van profielen voor vliegtuigclassificatie is de grote hoe-

veelheid profielen die nodig zijn om een betrouwbare classificator te construeren. Profie-

len worden gewoonlijk gerepresenteerd als vectoren in een hoog-dimensionale vectorruimte

(meestal van een paar honderd tot enkele duizenden dimensies). Het is algemeen bekend dat

het construeren van statistische classificatoren in zulke ruimtes bijzonder veel metingen ver-

eist. Verder is, vanwege de grote afhankelijkheid van profielen voor de aangezichtshoek, de

statistische variantie van een set profielen van één vliegtuig bijzonder groot, en zijn er dus

zeer veel profielen vereist om deze variantie goed te kunnen beschrijven. Het meten van pro-

fielen is echter kostbaar en tijdrovend, waardoor het gebruik van gemeten profielen voor het

construeren van een classificator geen reële optie is.

Een oplossing voor dit probleem is het gebruik van gesimuleerde profielen voor het verkrijgen

van een dataset van voldoende grootte. Gesimuleerde profielen worden verkregen met behulp

van radarsimulatiesoftware in combinate met drie-dimensionale CAD modellen van vliegtuigen.

Op deze manier kunnen snel en goedkoop veel profielen worden berekend, bij elke gewenste

aangezichtshoek, en voor elk gewenst vliegtuigtype.

Gesimuleerde radarafstandsprofielen zijn verschillen in een aantal opzichten van hun geme-

ten tegenhangers. Vanwege de beperkte nauwkeurigheid van zowel de simulatesoftware als de

gebruikte CAD modellen zal een gesimuleerd profiel nooit exact gelijk zijn aan een gemeten

profiel van hetzelfde vliegtuig bij dezelfde aangezichtshoek. Tevens zijn gesimuleerde pro-

fielen niet onderhevig aan ruis. Het gebruik van gesimuleerde profielen voor het classificeren

van gemeten profielen zal dan ook gebaseerd moeten zijn enkel op die kenmerken die in beide

types voorkomen.

Een belangrijke aanname in dit proefschrift is dat de ‘gezamenlijke’ kenmerken in gesimu-

leerde en gemeten profielen de positie van lokale maxima van de amplitudes in een profiel zijn.

Deze maxima komen overeen met sterke reflectoren op een vliegtuig, en men mag verwachten

dat op zijn minst een aantal van die reflectoren zowel in de simulatie als tijdens een echte

meting in het profiel aanwezig zijn.

Hoofdstuk 5 introduceert een generatief model voor deze gezamenlijke kenmerken. Dit ge-

neratief model is in staat om voor een gegeven vliegtuig en aangezichtshoek de statistische

distributie over de posities van lokale amplitude maxima te genereren. Bovendien bevat het

model parameters die de effecten van rotaties van het vliegtuig op de kenmerken modelleren.

Hoofdstuk 5 beschrijft hoe de modelparameters betrouwbaar geschat kunnen worden op basis

van een dataset bestaande uit gesimuleerde profielen.

Hoofdstuk 6 laat vervolgens zien hoe de geschatte modellen gebruikt kunnen worden om ge-

meten profielen te classificeren. Uit de experimenten blijkt dat het uiteindelijke classificatiere-

sultaat vergelijkbaar is met dat van standaardmethodes. De voordelen van de in dit proefschrift

beschreven methode zijn dat het statistisch model gebaseerd is op fysisch interpretabele para-

meters, en dat het niet meer nodig is om een grote hoeveelheid profielen te gebruiken tijdens

classificatie: het model is in staat om bij elke willekeurige aangezichtshoek voor elk gewenst

vliegtuigtype de distributie van de gezamenlijke kenmerken te voorspellen .
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