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Correlation network analysis reveals relationships between
diet-induced changes in human gut microbiota and metabolic health
T Kelder1, JHM Stroeve, S Bijlsma, M Radonjic1 and G Roeselers

BACKGROUND: Recent evidence suggests that the gut microbiota plays an important role in human metabolism and energy
homeostasis and is therefore a relevant factor in the assessment of metabolic health and flexibility. Understanding of these
host–microbiome interactions aids the design of nutritional strategies that act via modulation of the microbiota. Nevertheless,
relating gut microbiota composition to host health states remains challenging because of the sheer complexity of these ecosystems
and the large degrees of interindividual variation in human microbiota composition.
METHODS: We assessed fecal microbiota composition and host response patterns of metabolic and inflammatory markers in
10 apparently healthy men subjected to a high-fat high-caloric diet (HFHC, 1300 kcal/day extra) for 4 weeks. DNA was isolated from
stool and barcoded 16S rRNA gene amplicons were sequenced. Metabolic health parameters, including anthropomorphic and
blood parameters, where determined at t¼ 0 and t¼ 4 weeks.
RESULTS: A correlation network approach revealed diet-induced changes in Bacteroides levels related to changes in carbohydrate
oxidation rates, whereas the change in Firmicutes correlates with changes in fat oxidation. These results were confirmed by
multivariate models. We identified correlations between microbial diversity indices and several inflammation-related host
parameters that suggest a relation between diet-induced changes in gut microbiota diversity and inflammatory processes.
CONCLUSIONS: This approach allowed us to identify significant correlations between abundances of microbial taxa and
diet-induced shifts in several metabolic health parameters. Constructed correlation networks provide an overview of these relations,
revealing groups of correlations that are of particular interest for explaining host health aspects through changes in the gut microbiota.
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INTRODUCTION
The microbial ecosystems in the mammalian gastrointestinal tract
play an intricate role in animal health, including protective
functions against pathogens, immune-system maturation and
modulation of nutrient acquisition and host energy metabolism.
Alterations in the composition of the gut bacterial communities
have been implicated in metabolic disorders such as type 2
diabetes,1 metabolic syndrome,2 obesity3–5 and nonalcoholic
steatohepatitis.6 Several studies suggest that specific bacterial
phylotypes, or bacterial metabolic activities, could be beneficial or
detrimental to patients with obesity.5 It is suggested that the
proportional abundance of the most dominant bacterial phyla in
the human gut, Bacteroidetes and Firmicutes, affect the efficiency
of host energy harvesting and is linked with adiposity in both mice
and humans,5,7 although there is no consensus on these links.8–10

Nevertheless, it is clear that the gut microbiota delivers additional
energy to the host in the form of short chain fatty acids (SCFAs); in
the case of butyrate, it is reported to induce thermogenesis of the
adipocytes.11 In turn, host diet and lifestyle have been shown to
affect the gut microbiota.12–14 Together, these interactions with
the host make the microbiota an intrinsic part of the system,
maintaining the balance between (metabolic) health and disease.
The gut microbiota is, therefore, a potential diagnostic, nutritional
and pharmacological target in the management of obesity and
obesity-related diseases.4,15–17 To explore the relation between
perturbations of the gut microbiota in diet-induced obesity and
metabolic health factors, we studied the response to a high-fat

high-caloric (HFHC) diet of a number of host parameters related to
glucose metabolism, lipid metabolism, substrate oxidation
(metabolic flexibility) and inflammation in relation to the
composition of the gut microbiota. For this purpose, 10 male
subjects were given a HFHCaloric diet for 4 weeks, and we
monitored anthropomorphic, blood metabolic and health
parameters, as well as the dynamic changes in the gut
microbiota composition in stool samples before and after
dietary intervention. The specific questions we aimed to address
in this study were: (1) how does the distribution of microbial taxa
change in response to HFHC diet-induced weight gain and (2) are
specific members of the microbiota correlated with specific
phenotypic characteristics, fasting levels of substrate oxidation
and plasma markers?

To study the correlations in light of the host–microbiota system,
we applied a network biology approach to identify clusters of
correlating host parameters and microbiota. Network biology is an
emerging field that represents biology as networks that capture
the relations between the parts of a complex biological system,
such as molecules, processes, organs or even different organ-
isms.18 These networks provide a framework to aid understanding
and modeling of the many interactions that maintain the balance
between health and disease19 and are an invaluable tool to
visualize and explore high-dimensional data sets.20 These aspects
are especially relevant in studying host–microbiota interactions,
given the high dimensionality of the resulting data sets and the
complexity of the underlying host–microbiota system.
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MATERIALS AND METHODS
Study subjects
Subjects were recruited from a pool of volunteers from TNO (Netherlands
Organization for Applied Scientific Research, Zeist, The Netherlands). Ten
apparently healthy men agreed to participate in the study. Inclusion
criteria were: male sex, age 35–50 years, body mass index 23–30 kg m� 2,
having normal Dutch eating habits (consuming mostly three main meals
including breakfast) and being a nonrestrained eater, defined as a score of
o3.25 on the Dutch Restrained Eating Questionnaire.21 Exclusion criteria
were: history of medical or surgical events that may affect the study
outcome (including medication for diabetes, cholesterol-lowering
medication, eating disorders and/or food allergies), smoking, consuming
more than 28 units of alcohol per week and exercising for 43 h per week.
Recruited subjects received a HFHC for 4 weeks. Response to the diet was
measured at the beginning and end of this 4-week period.

Ethics statement
Written informed consent was obtained from each participant after
receiving an explanation of the procedures. Before the start of the study all
subjects underwent a screening that involved an anamnesis about the
medical history, lifestyle and eating behavior, measurement of body
composition, blood pressure, waist circumference and collection of blood
for clinical laboratory tests. The research protocol was approved by an
independent medical ethics committee (The Medical Ethics Committee of
Tilburg).

Intervention study design
The HFHC diet consisted of a fixed amount of commercially available food
items with high-fat and/or sugar content: candy bars, sausage rolls, coated
peanuts and full-fat chocolate-flavored milk. Subjects received food items
of the HFHC diet on weekly basis. Subjects were asked to maintain their
habitual diet and lifestyle. On top of their habitual diet, subjects were
asked to consume the items of the HFHC diet. The calculated nutritional
composition of the weekly consumed HFHC items (28 food items) was
36 328 kJ, 215 g protein, 440 g fat and 965 g carbohydrates. This resulted in
a daily surplus of 5190 kJ, 31 g protein, 63 g fat and 138 g carbohydrates.
Subjects were instructed to divide their HFHC items equally over the
course of the week. For the final week every subject received an extra
snack-pack on top of the HFHC diet in order to maintain an increase in
body weight. In order to monitor food intake and compliance, subjects
were guided by a dietician on weekly basis. Before starting the diet,
subjects were instructed to fill out a 3-day food record through which their
baseline energy and macronutrient intake was calculated. In the first week
of the intervention, compliance (based on returned food items) reached
between 98 and 100%. In the second week, compliance was 100%, and in
the third week, compliance was between 89 and 100%. In the final week,
the compliance was between 95 and 100%.

Physiological measurements
Indirect calorimetry and anthropometry. Substrate oxidation was measured
using the ventilated hood method (QUARK RMR, version 9.1, Cosmed, Rome,
Italy). The respiratory quotient (RQ) was assessed as the ratio of carbon
dioxide exhaled divided by the amount of oxygen consumed by the
individual (RQ¼VCO2/VO2). At days 1 and 29, a measurement of 20 min
was performed, reflecting the fasting substrate oxidation of the subjects.
Data of the first 5 min were discarded. From the subsequent period of
15 min, a 10-min reading was selected that reflected a steady state.

Body composition was measured by a whole-body electrical resistance
analyzer (InBody 720, Biospace, Seoul, Korea). Subjects’ clothing was limited
to underwear. Body weight, body fat mass, fat free mass, skeletal muscle
mass and the visceral fat area were determined. Waist circumference was
measured using a measuring tape 2 cm above the umbilicus.

Biochemical analyses. Blood samples were collected in ice-chilled tubes
containing potassium ethylenediaminetetraacetic acid (K2EDTA) for
plasma (Vacutainer Systems, Becton Dickinson, Plymouth, UK). Blood was
centrifuged for 15 min at 2000� g at 4 1C, within 15–30 min after
collection. Plasma and serum were stored at � 70 1C. Assays were
performed at TNO using Olympus analytical equipment and reagents,
except for adiponectin, insulin, cortisol, gastric inhibitory polypeptide (GIP),
glucagon-like peptide-1 (GLP-1) and glucagon. GIP concentrations were
determined by an enzyme-linked immunosorbent assay. Adiponectin,

GLP-1 and glucagon were determined by radioimmunoassay. Insulin and
cortisol were determined by an immunoenzymomatric assay. Plasma
samples were used for multiarray analyses of seven inflammatory proteins,
IFN-g, IL-1b, IL-6, IL-8, IL-10, IL12p70 and TNF-a, using the Multiplex panel
‘Human Proinflammatory 7-plex’ (Mesoscale Discovery, MSD, Gaithersburg,
MD, USA) and of four vascular proteins, CRP, ICAM-1, VCAM-1 and SAA,
using the Multiplex panel ‘Human Vascular Injury II’ (Mesoscale Discovery).

SCFA and branched chain fatty acids were extracted from feces and
quantified as described by Maathuis et al.22

Feces sample collection and DNA extraction
Fresh stool sample were collected by subjects (n¼ 10) at day 1 and day 29.
Samples were frozen at � 20 1C immediately by the subjects after
defecation and immediately transported in frozen state to the laboratory
at TNO where samples were mechanically homogenized, split into aliquots
in sterile 2 ml cryovials and stored at � 80 1C. Genomic DNA was isolated
using the AGOWA mag Mini kit (DNA Isolation Kit, AGOWA, Berlin,
Germany) according to the manufacturer’s instructions.

Pyrosequencing of barcoded 16S rRNA gene amplicons
A fragment of the 16S rRNA gene (B330 bp), spanning the V5 and V6
hypervariable regions, was PCR amplified using primer 785F and 1061R as
described previously.23 Purified PCR products were unidirectionally
sequenced on a 454 Genome Sequencer FLX system (Roche, Branford,
CT, USA) according to the manufacturer’s protocols, resulting in 137 960
raw sequences. FASTA-formatted sequences and corresponding quality
scores were extracted from the.sff data file generated by the GS-FLX-
Titatium sequencer using the GS Amplicon software package (Roche). All
data extraction, pre-processing, analysis of OTUs and classifications were
performed using modules implemented in the Mothur software platform24

as in Roeselers et al.25 except where noted below. A total of 49 469 high-
quality sequences were aligned using the ‘align.seqs’ command and the
Mothur-compatible Bacterial SILVA SEED database. A total of 4480 unique
sequences were retrieved using this pipeline. OTUs were generated using a
97% sequence-identity threshold. Sequences were taxonomically classified
by the RDP-II Naive Bayesian Classifier using a 60% confidence threshold.
Community profiles were compared by Bray–Curtis dissimilarity and
Weighted Unifrac clustering of OTU abundance.26 Sequences were
normalized to 1000 sequences per samples (subsampling method).
Population-level comparison of OTU abundance between stool samples
collected before and after the HFHC diet was performed using the
metastats tool.27

Statistical analysis of host parameters
To test for difference in host parameters induced by the diet intervention,
measurements at week 0 were compared measurements at week 4 using
the analysis of variance model. For all analysis of variance measurements,
the residuals plots were inspected. If these plots revealed a low variation
for low values of the parameter of interest and a high variation for high
values of the parameter of interest, the data were LOG transformed (¼ LN
transformation). This transformation was performed on the original data
set. If the residual was 43*Omse for a certain variable, the subject was
considered as a statistical outlier and was removed from the particular data
set. In all statistical tests performed, the null hypothesis (no effect) was
rejected at the 0.05 level of probability. All analyses were performed in SAS
9.3 (SAS Institute, Cary, NC, USA).

RV coefficient
The RV coefficient was calculated between the microbial and the
physiological data. The RV coefficient is a multivariate generalization of
the Pearson correlation coefficient.28

Correlation network analysis
To quantify the change in microbiota parameters M (normalized
microbiota abundance and associated ratios and diversity indices) in
response to intervention (DM), the absolute difference before and after
intervention were calculated as:

DM ¼ Mt29�Mt0

Where Mt0 and Mt29 are the values of a given microbiota parameter before
and after intervention respectively. For the change in host parameters in
response to intervention (DP) the relative difference between each
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parameter measurement before and after intervention was calculated as:

DP ¼ Pt29� Pt0ð Þ=Pt0

Where Pt0 and Pt29 is the measurement of a given host parameter before
and after intervention respectively. Pairwise correlations between the DM
and DP for each microbiota and host parameter were calculated using the
Kendall tau rank correlation coefficient.29 Based on these correlation
coefficients, a bi-partite correlation network was built where nodes
represent either a microbiota or a host parameter. For each microbiota
and a host parameter with an absolute correlation coefficient 40.6, an
edge was added between the corresponding nodes in the correlation
network. Correlations were calculated in R30 and the network was
visualized in Cytoscape.31

Multivariate statistical analysis
PLS32 was used to correlate the microbial composition/physiological data to
several parameters including jackknife-based variable selection. For all
models, the data were autoscaled to mean zero and unit variance. Leave-
one-out cross-validation was applied; this may lead to optimistic results but it
was the only possibility because of the limited number of available subjects
in the study. Each PLS model resulted in a list of relevant parameters.
All analyses were performed using Matlab R2012b (The Mathworks Inc.,
Natick, MA, USA) and the PLS toolbox for Matlab version 7.0.3 (Eigenvector
Research Inc., Manson, WA, USA).

RESULTS
Subject response to HFHC diet
The 4-week HFHC diet had a clear impact on the subject’s body
composition, with an average increase in body weight of 2.8 kg
(Po0.0001; Figure 1), and resulted in increased fasting levels of
markers of glucose and lipid metabolism. Supplementary Table S1
provides an overview of the observed diet-induced changes in the
96 measured host parameters, including phenotypic characteristics,
fasting levels of substrate oxidation and plasma markers. Of these
parameters, 26 were significantly changed (Po0.05) as a result of
the diet intervention, including body weight, visceral fat mass,
energy expenditure, and plasma insulin, cholesterol and leptin
levels (Supplementary Table S2 and Supplementary Table S3C–E).

High-throughput sequencing metrics
After all 137 960 raw DNA sequences obtained from the stool
samples of subjects were subjected to rigorous quality control, a
total of 49 469 high-quality, aligned sequences remained that were
subsequently clustered into 980 unique operational taxonomic
units (OTUs; 97%) and taxonomically classified into 115 genera
within 8 bacterial phyla. The number of sequences per sample
ranged from 1171 to 5420. Of these 49 469 pyrosequences, 16 805
were from stool samples collected before the HFHC diet (t¼ 0) and
32 664 sequences were obtained from stool samples collected after

the HFHC diet period (t¼ 29). Although the sampling depth differed
for these two groups, our sequence data set was large enough
across both groups to permit comparison of the composition
bacterial communities. Supplementary Tables S3A and B contain
the relative taxonomic abundances for each subject.

Relative abundances of microbial taxons
The microbiota comprised 8 bacterial phyla, of which 5 phyla were
found across all samples, with the dominant phylum, based on
relative abundance, in all samples being Firmicutes (77%) followed
by Bacteroidetes (11%) and Proteobacteria (5%) (Figure 2a and
Supplementary Figure S1). The proportions of Bacteroides with
respect to Firmicutes varied among the subjects studied (Figure 2a).
The Firmicutes–Bacteroidetes ratio was not statistically different
between the samples collected before and after the HFHC diet.

OTU-based microbiome population analysis
Next, samples were examined to determine how they grouped
based on species diversity and OTU abundance. Samples collected
at t¼ 0 did not cluster to the exclusion of samples collected at
t¼ 29 (Figures 2b and c). Interindividual differences were apparent
in the fecal microbiota and prevailed over potential diet-induced
differences (Figures 2a–c). Population-level analyses showed that
there were no OTUs that were significantly differentially abundant
between stool samples collected before and after the HFHC diet.

Overall correlation between the diet-induced changes in
microbiota and host parameters
To assess the overall measure of correlation between the diet-
induced changes in microbiota and host parameters, an RV
coefficient was calculated. The RV coefficient of 0.368 was found
between the relative abundance of microbial genera and host
parameters, indicating a low overall correlation between the
microbiota data and host parameters as a whole.

Correlation network analysis of the diet-induced changes in
microbiota and host parameters
Pairwise correlations between diet-induced changes in microbiota
and host parameters (with an absolute Kendall coefficient of at
least 0.65) resulted in a correlation network of 62 (out of 228)
microbial parameters (taxonomic groups and two microbial
diversity parameters) and 58 (out of 96) host parameters for
which at least one correlation could be found. The network
consists of 105 edges (correlations) and 120 nodes (microbial and
host parameters) that clustered in 29 connected components
(sub-networks). In total, 16 components consisted of 2 or more
correlations, whereas the other components were single
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Figure 1. (a) Average weight gain, (b) blood resistin levels and (c) carbohydrate oxidation rates after 4-week HFHC diet intervention
(Po0.0001, n¼ 10).
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correlations between a host parameter and a microbial parameter
(Supplementary Figure S2).

The largest component of the network mainly consists of
taxonomic groups within the phylum Firmicutes (5 out of 8) and
the phylum Bacteroidetes (2 out of 8) (Figure 3a). This component
contains 10 different host parameters of which 9 are related to
substrate oxidation (2 estimates for carbohydrate oxidation, 1
estimate for fat oxidation, the respiratory quotient, 1 pancreatic
hormone regulating plasma glucose levels, 2 long-chain polyunsa-
turated fatty acids, 1 eicosanoid and total non-esterified fatty acid
levels). The two estimates of carbohydrate oxidation (absolute
measurement and % relative to fat oxidation) together correlate with
most microbial taxa (six out of eight) that are exclusively from the
Firmicutes and Bacteroidetes phyla. Notably, an inverse relation
between the Bacteroidetes and Firmicutes was found, where all
taxonomic groups within the phylum Firmicutes show a positive
correlation with carbohydrates oxidation whereas all taxonomic
groups within the phylum Bacteroidetes show a negative correlation.
In addition, the Firmicute genus Clostridium and order Clostridiales
were found to correlate positively with carbohydrate oxidation, but
negatively with fat oxidation and the respiratory quotient (an index
indicating the substrate use by the body ranging from 1.0,
representing pure carbohydrate oxidation, to B0.7, representing
pure fat oxidation), but negatively with fat oxidation, total non-
esterified fatty acid levels and long-chain polyunsaturated fatty acids.

The second largest network component consists mainly of
correlations with the SCFAs (four out of six parameters are SCFAs).
For all SCFAs, a correlation with at least one microbial parameter
was found (Figure 3b). All the identified correlations are positive
(except for i-Valerate with Clostridium cluster XIV), implying a
relative increase of these taxonomic groups with increasing SCFA
concentrations. Both Porphyromonadaceae and Sutterellaceae
correlate with multiple SCFAs (acetate, n-Butyrate, and propionate
for both, and n-Valerate for Sutterellaceae only), whereas the other
taxa (Collinsella, Sutterela, Phascolarctobacterium and Clostridium
cluster XIVa) correlate to only a single specific SCFA. In addition,
the ratio between Bacteroides and Prevotella abundance correlates
with i-Butyrate.

The dietary intervention did not result in drastic changes in the
Prevotella/Bacteroides ratio, as no significant change could be
found in a groupwise comparison (t-test, P¼ 0.843). Nevertheless,
two host parameters related to energy balance, energy expendi-
ture and resting metabolic rate, and blood platelet count were
found to be positively correlated to the Prevotella/Bacteroides ratio
(Figure 3c). In addition, the abundance of Prevotellaceae, a family
within the phylum Bacteroidetes, shows positive correlation to
energy expenditure, resting metabolic rate and platelets.

For two of the three calculated microbial diversity indices,
correlations with two inflammation-related host parameters were
found (Figure 3d). The Shannon diversity index33 increases with
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increasing biodiversity, and negatively correlates with interferon-g
and 11,12-DiHETrE, an anti-inflammatory eicosanoid. The Simpson
diversity index34 decreases with increasing diversity, and
positively correlates with 11,12-DiHETrE, but not significantly
with interferon-g (r¼ 0.31).

Multivariate analysis of relations between changes in the
microbiota and host parameters
To further investigate the identified groups of correlations
between changes in microbiota composition and host parameters,
partial least squares (PLS) models for selected correlations of
interest were created. Five PLS models were created to investigate
the relation between (1) Bacteroides and host parameters,
(2) carbohydrates (mg min� 1) and microbiota parameters,
(3) Clostridiales and host parameters, (4) fat oxidation (%) and
microbiota parameters, (5) energy expenditure and microbiota
parameters, (6) Prevotella/Bacteroidetes ratio and host parameters
and (7) the Shannon diversity index and host parameters.
A valid fit could be obtained for 4 out of the 7 models,
namely Clostridiales (R2¼ 0.78), energy expenditure (R2¼ 0.57),
Prevotella/Bacteroidetes ratio (R2¼ 0.89) and Shannon diversity
index (R2¼ 0.58). The regression values for the selected variables
in each PLS model can be found in the Supplementary Data.

Next, parameters contributing to the multivariate PLS models
were compared with the corresponding identified components in
the correlation networks. For the Clostridiales model, all 5 out of 6

(all except fat oxidation) direct neighbors (direct correlations) in
the correlation network were among the top 10 PLS model
parameters. In addition, 8 additional parameters contributed to
the PLS model, including 3 (9-HODE, 13-HODE and 12-HETE that
can be released by lipoprotein lipase on the endothelium), an
omega-3 fatty acid (EPA, synthesized from the essential fatty acid
a-linolenic acid), body weight, adiponectin, leptin and the
hematology parameters eosinophil counts and mean cell volume
(a measure of the average red blood cell volume). The energy
expenditure PLS model resulted in 85 selected microbiome
parameters including its neighbors in the correlation network
(Prevotellaceae and Prevotella/Bacteroides ratio), as well as
changes in abundances of Prevotella and Bacteroides. The
Prevotella/Bacteroides ratio PLS model resulted in 14 selected host
parameters, including platelets, one of its neighbors in the
correlation network. The PLS model on the Shannon diversity
index contained 17 selected parameters that included all 3 direct
neighbors in the correlation network. In addition, three para-
meters related to inflammation contributed to the PLS model
(Complement C3, blood platelet counts and monocyte counts) as
well as high-density lipoprotein cholesterol.

Study limitations
The present study has limitations that should be acknowledged.
Because of the absence of a control arm, we cannot exclude
occurrence of spontaneous variations in microbiota composition
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Figure 3. Four parts of the correlation network. (a) The largest connected component in the network. This component contains taxa within
the phylum Firmicutes (Clostridia, Clostridiales, Dorea, Veillonella and Firmicutes itself ), and taxa within the Bacteroidetes phylum (Bacteroides,
Bacteroidaceae). (b) All correlations in the network involving SFCAs. (c) Connected component containing correlations with the Prevotella/
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Black triangles represent host parameters and green circles represent microbial entities. Red and blue edges represent positive and negative
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and host parameters that were not related to the dietary
intervention. The small sample size of this study (n¼ 10) may
have limited our ability to identify microbiota and host parameter
features that could differentiate between subjects before and after
the intervention. Further investigations are needed to evaluate our
observed correlations between specific changes in microbiota
composition and host parameters.

DISCUSSION
Overall, the physiological and biochemical response to a dietary
perturbation is complex. By quantifying both a wide range of
metabolic parameters and the gut microbiota composition before
and after a 4-week HFHC dietary intervention, we generated a
data set that allows us to make a step toward elucidating relations
underlying this complexity. Using a correlation network approach,
complemented by multivariate statistics, we charted the relations
between changes in the microbiota and host parameters, and
identified specific groups of correlations relevant to different
aspects of metabolic health, such as substrate oxidation, energy
expenditure and inflammation.

We identified a group of correlations enriched with diet-
induced abundance changes of microbiota members. Specifi-
cally, we observed changes in the abundance of the phyla
Firmicutes and Bacteroidetes correlated to changes in carbohy-
drate and fat oxidation rates in the host. This observation
contributes to the ongoing debate on the balance between
Firmicutes and Bacteroidetes in obesity.5,10 Relations of this
balance with body mass index have been identified in static
conditions,10 and in response to long-term dietary restrictions.5

We report here a relation of changes in this balance with
metabolic health in context of body weight gain by short-term
(4 weeks) intervention. We did not observe a direct relation
between Bacteroidetes and Firmicutes and body weight, likely
because of the short time span of the intervention resulting in
less profound body weight changes (2–5%) compared with the
long-term intervention studies by Ley et al.,5 where correlations
were observed on the range of 6–30% for the fat-restricted
group. Nevertheless, we were able to detect relations with
substrate oxidation rates that are indicative of diminished
metabolic flexibility as a result of the intervention.35 This
indicates potential for further research on monitoring changes
in Bacteroidetes and Firmicutes balance as noninvasive marker
for reduction in metabolic flexibility to identify risks for later
stage disease phenotypes.

Arumugam et al.36 first articulated the concept of enterotypes
as robust clustering of human gut community compositions,
largely driven by the abundances of key bacterial genera.36

Although the distinction of enterotypes as either discrete clusters
or a continuum will remains under debate, numerous studies have
demonstrated the coexclusion of the closely related Prevotella and
Bacteroides genera in the human gut microbiota.37,38 Wu et al.12

suggest that this ratio is strongly associated with long-term diets,
particularly diets rich in protein and animal fat (Bacteroides) versus
carbohydrates (Prevotella). Our observed correlation between
energy expenditure and the Prevotella/Bacteroides ratio supports
this hypothesis and places this ratio in context of specific
physiological factors in the host.

SCFAs, principally acetate, propionate and butyrate, are
produced in the colon by bacterial fermentation of complex
carbohydrates not digested in the small intestine.39 High fecal
concentrations of total or individual SCFAs might be the result of
increased microbial production, shifts in microbial cross-feeding
interactions or reduced mucosal absorption. Nevertheless, it has
been documented that changes in concentrations and proportions of
specific SCFAs are correlated with changes in bacterial taxa.10,40 In our
study, all measured SFCAs were found to correlate with at least one
microbial taxon, supporting a strong relation between diet-induced

changes in microbiota composition. We observed a strong correlation
between changes in the abundance of Porphyromonaceae and
changes in fecal butyrate, propionate and acetate. Interestingly,
some early studies from the early 1980s indicated butyrate
production by Porphyromonas (former Bacteroides) strains.41 The
observed correlation between Sutterellaceae and butyrate,
propionate, valerate and acetate was less clear as SCFA
production has not been documented for members of this family.

The identified correlations between two diversity indices and
several inflammation related host parameters may indicate a
relation between diet-induced changes in gut microbiota diversity
and inflammatory processes that alter the gut habitat. A similar
inverse correlation has been established in rats with 2,4,6-
trinitrobenzenesulfonic acid-induced chronic colitis and in human
subjects with Crohn’s disease.42,43 We observed that increasing
diversity is associated with decreasing concentrations of the
cytochrome P450 epoxygenase-derived eicosanoid 11–12-DiHE-
TrE. In general, cytochrome P450 epoxygenase products have
potent anti-inflammatory and vasodilatory effects that may
indicate that subjects with a higher microbial diversity have a
lower inflammatory response to the HCHF diet.

The HFHC intervention resulted in subtle and heterogeneous
shifts in microbiota composition in which the interindividual
variation in microbiota composition dominates over variation
introduced by the interventions. In addition, the overall correlation
in diet-induced changes between the total microbiota data set
with the total set of host parameters was low. Nevertheless, by
applying a correlation network approach we were able to identify
relationships between specific changes in microbiota composition
and host parameters such as substrate oxidation rates, energy
expenditure and colonic SCFA concentrations. These observations
highlight two strengths of the correlation network approach. First,
rather than treating individuals as homogeneous group and
looking for changes in mean parameter values, the correlations
take into account the interindividual variations and focus on
relations between parameters rather than requiring changes in
group-wise means. In addition, rather than listing individual tables
of correlations or correlating both data sets as a whole, visualizing
all univariate correlations together in a network made it possible
to identify and focus on smaller subsystems within the complete
microbiota. Using this approach, groups of biologically related
parameters emerge from the data, such as the immune/
inflammation parameters correlating with microbial diversity. This
provided a more integrated view on effects of dietary perturbation
and resulting interaction between two complex systems.

This study provides insight into the host–microbiota system in
the context of a short-term HFHC diet. Additional studies in
different types of interventions and dynamic host data focusing on
metabolic flexibility, such as time-resolved molecular measure-
ments during challenge tests, will help to map and understand this
system in a wider context of metabolic health. Network biology will
provide key platforms for integrating and understanding these
diverse types of data. On-going developments in this field focus on
making networks more specific and powerful, for example by
applying network deconvolution44 to limit the effect of spurious
edges by indirect links. This will facilitate identification of microbial
factors that may serve as early markers of changes in metabolic
health that are predictive for long-term complications of metabolic
syndrome. Network inference methods utilizing time-resolved
information, such as methods for gene-regulatory network
reconstruction,45,46 may be applied to provide directionality to
host–micriobiome interaction networks and discover causal links.
This will facilitate discovery of intervention targets in the gut
microbiota to improve human health.
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