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lmage processing is one of the areas which are known to be very computalional ¡ntensive. To ach¡eve ¡nteractive response of

imageprocessing systems usually dedicated systems or (minil supercomputers are necessary. lmageprocessing is also an area in which lhe

application of parallelism is very su¡table, because of the large amounts of (similar)data involved. ln this particular case, 3-D images (images

in 'voxel space') have to be processed interactively. Operations on the voxel space involve 3-D image process¡ng algorithms and

visualization ofthe data lrom arb¡trary viewing angles, and with several options lor the type of render¡ng. This paper descr¡bes an alternative

tor special hardware or supercomputers for a voxel processor, based on a nelwork of INMOS T800 Transputers.
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lntroduct¡on

The TNO Physics and Electronics Laboratory fiNO-FEL) in the Hague is a

part ol the TNO Divis¡on of National Delence Research (TNO-HDO).

The activities of TNO- FEL focus primarily on operational research, informa-

tion processing, commun¡cation and sensor systems. To support the fast

data-processing usually required in sensor systems applicat¡ons, research

was started into parallel processing techniques. This research has now

resulted in three major application areas : radar data process¡ng, real-time

computer generated imagery and 3D image analys¡s, processing and

visualizalion. 3D imago process¡ng and visualization is tho subject of this

paper. With the growing availability of 3D scanning devices, the need for h¡gh

perlormance processing and display systems increased sign¡ticantly. The

development ol an experimental parallel procsss¡ng system is described lor

the visualizat¡on of lhree dimensional voxol based images. The aim is the

visualization of the (unknown) object ¡n such a way that its spat¡al slructure

can be underslood. An additional demand is that the system ¡s last enough to

be used interactively. Because of the large number of voxels involved, a

considerable processing capacity is required. Processing the data in parallel

on a network of Transputers provides the necessary computing power. The

volume data may be visualized in several ways, involv¡ng operal¡ons like

objecl transformation, hidden-surface removal, depth-shading and cross-

sectioning The main advantages of the proposed architeclure over dedi-

cated hardware solutions are:

- cost/performance ratio

- flexibility

- expandability

The Voxel space

Volume images are normally represented as a series of parallel two

dimensional slices. These slices may have been obtained from several

possible sensor systems, examples are Compuler

Tomographic- (CT), Nuclear Magnetic Resonance- (NMR), Ultra Sounding or

Oplical- (LASER) scanners. Voxel representat¡ons are very suitable for

applications with 3D empirical data. However synthetic data may also be

used, examples are: solid modeling and fiuid dynamics simulations. Before

volume rendering became feasible, experts had to interpret every single slice

to deduce the 3D information. Until recently, computer assisted techniques to

visualize the volumes were based on displaying contours only, because of the

processing time involved. These contours otten had to be traced manually

from the actual data. Full use of the 3D data could only be made through

off-line computing.

Several architectures based on ded¡cated hardware have been proposed to

increase performance (Ref. 1, 2).Dedicated systems however have the

disadvantage of inflexibl¡ty to any change in rendering opt¡ons or object s¡zes

(also the costs are high). Other systems make use ol high pelormance

general purpose machines, which are always very expens¡ve and not always

su¡table. This explains the reason tor TNO-FEL to apply a system ol

programmable (low cost) processors operating in parallel. Prototype data for

the voxel processor was obtained from an experimental Cpnlocal LASEB

Scanning M¡croscope (CLSM). The GLSM can be focussed on several

consecutive layers of the objecl, producing a slice of data for each layer. A

slice typically consists o1256256 volume elemenls (voxels), with an intensity

resolution of I bits per voxel (FlG. 4). The number of slces may vary, bul a

typical value is 32 to 256 (FlG. 2). This dala structure is called the voxel space

Examples ol application areas lor the CLSM are medical-and biolog¡cal-

research and inspection (e.9. lntegrated C¡rcuits). Voxel space sizes depend

largely on the sensor type, in CT scans lor example it is possible to get

resolut¡ons ol 512'512'128 with 12 bits per voxel, and these numbers st¡ll

grow. The TNO-FEL voxel processor has the modularity to deal with varying

size-and performance-demands.

The 3-O Reconstruct¡on

TheVoxel spaceconsistsof ablockin 3-Dspace(FlG 3).Displayingth¡sdata

under ditferent angles on a 2D screen involves a 3-D transformat¡on ol the

object space into the display space (FlG. 4). Basically such a translormalion

consisls ol a vector-matrix multiplicalion on each voxel coordinate (i.e. a

vector). The matrices for a rotation around the X-, Y-, and Z - axis with rotation

angles A,B and C respectively are:
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These matrices are concatenated into a single malrix before the actual

multiplicat¡on:
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R= Rz' Ry -

(cB'cC)

(cB'cC)

-sB

Rx=

(sA'sB'cC-cB.sC) (cA'sB-cC*sA'sC)

(sA'sB'sC*cB'sC) (cA'sB'sC-sA'cC)

(sA.cB) (cA'cB)

e) Select a'Volume-Of-lnterest'within the available voxel space (lh¡s volume

musl be block-shaped). Through lhis opt¡on uninteresting or disturbing parts

ol the voxel image may be'peeled away'. (Photo 3)

0 Select a cutting plane through the obiect; voxels in front of this plane w¡ll not

be v¡sualized. Th¡s option will creale a cross-section through the object after

rotation. (Photo 4)

g) Select a threshold; voxels with a value below this threshold w¡ll become

transparent.

h) Edit and select different colour look-up tables. This feature enables the use

of pseudo-colours or grey-scale transforms for certa¡n intensity values,

thereby ¡ncreasing the visibility of interesting areas.

The or¡g¡nal images lrom the scanning device tend to be noisy in many cases,

so no¡se lilters are needed. Further image analys¡s operations (edge

detectors etc ) are also provided. Currently implemented 3D image proces-

sing algorithms are :

- Mean filter.

- Sobel and Roberts edge detectors.

- Laplace f¡lter.

- Median filler.

These filters are based on their 2D counterparts and operate on a (3'3'3)

space.

Parallel Processing

Compuler applicat¡ons tend to need increasing amounts of process¡ng

capacities. Single processor systems are reaching the limits of perlormance

improvements lt is obvious that using more processors running in parallel

should provide (theoretically) unlimited power. Many exisling mult¡-proces-

sor systems use a common communical¡ons channel (the bus) for inlercon-

nections Wilh a growing number of processors lhe bus capacity becomes a

bottleneck for system performance. Communicat¡on bandwidth of the net-

work should be increased also when processors are added. Provid¡ng

processors with direct (po¡nt to poinl) connections lor all data exchange will

supply lhis increased bandwidth.

Several classes of multi-processor systems may be defined A common way

to distinguish classes is between SIMD (Single lnstruction stream Multiple

Data stream) and MIMD (Multiple lnstruction stream Multiple Data stream )

type parallelism. ln SIMD parallelism each processor in the network will

execute the same instruct¡on (synchronously) on ditferent data. Array pro-

cessors fall ¡n this class. Examples are image processing applications where

each processor pelorms the same filter operation on a different part ol the

¡mage. When using MIMD parallelism processors can all be running different

programs, possibly sending results to others when they are finished

Examples are pipelined systems or multi-user applicalions.

Many existing sequenlial programs could benefit lrom being able to perform

more than one aclion at a l¡me. lt ¡s however generally not trivial to implement

a parallel program on a processor network. Problems arising are:

- Decomposing the problem in a number of processes running in parallel.

- Allocate processes lo processors and select lhe network topology.

- Load-balancing the processors.

- Distributing data across the processors.

- Eff¡cienl inter-processor communication.

- Synchronization between processors.

- Debugginq lhe software.

( 'c' for cos, 's' for s¡n ).

Suppose a resolution of 128 is used in X-,Y- and Z-direction with t byte per

voxel. The voxel space then occupies 2 Megabytes. 2 Million vector-matrix

mult¡plicat¡ons of the kind described have to be performed to compute the

correct orientalion. Every vector-matrix multiplication consists of 9 mult¡plica-

tions and 6 additions. To compute a new project¡on therelore 18 million Mults

and 12 million Adds would be needed. And this is just the pure computational

load, without any overhead like instruction

fetches etc. Fortunately, there are possibilities for a simplification. Since

vector-matrix multipl¡cat¡on is á linear operation and basically all ol the voxel

coordinales have to be transformed, ¡t is not necessary to perform this

multipl¡cation for each and every coordinate. We may instead use previously

calculated results to compute the next. ln that case three simple additions are

needed to step from one transformed coordinate to lhe next This melhod

otfers a considerable reduct¡on in the computational load

The first step is to lransform the unit-vectors from object-space into display-

space, by mult¡plication with the previously calculated rotation matrix R
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The transformed coord¡nates (x',y',2') of voxel (x,y,z) are now lound w¡th :

,1.

nz x'

nz Y'

Itzx'nx.z'

By simply changing only 1 dimension at the time (i.e. moving along the X-, Y-or

Z-axis) a new coordinate is now generated by just three additions. The

proiection of the 3-D data onto a 2D surlace (lhe screen) involves the hidden

surface elimination: 'distant'voxels are obscured by'closer'voxels if they are

projected on lhe same location on the screen. Comparing the z-value of a

new pixel with the z-value of the pixel already present on that screen location

(Z-buffer algorithm), is avoided by traversing the voxel space in a back-to-

tront direction When generating the screen this way, new pixels can simply

overwrite any old value (Painters algorithm).

Several ways of rendering the transformed data on the screen are possible,

the available options are:

a) Display lhe object's intensity, as seen from the selected orientation ('front

view'). (Photo 1)

b) Display the object's 'distance' lrom the screen at eech location, result¡ng in

a realistic depth ¡llusion. ('depth shading').

c) Display the object's density at each screen location, ('¡ntegrate function').

d) Display an intensity related to the layer from which the visible voxel

originated. ('layer view'). (Photo 2)
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The INMOS T800 Transputer is a computer-on-a-chip, containing a 32 b¡t

RISC ALU, a 64 bit Floating-Point Unit, memory and four high-speed

(1.5 MByte/s) input/output links for point-to-point communication

(Fig I, Ref. 3). The Transputer was specifically designed tor etficient

parallel processing:it is a high performance component (1OMlpS, 1.s

MFLOPS), with an on-chip process scheduler and low-overhead communi-

calron facilities. A network ol Transputers may be constructed by connecting

them via links. Each Transputer in a network has (private) local memory to

store program and data. Transputers

may be programmed in high level languages like PASCAL, FORTRAN or C.

These languages must have facil¡ties added to ¡mplement the special

features of the Transputer (processes running in parallel, communication

etc.). OCCAM ¡s a language that was created by INMOS to descr¡be parallel

processing and communication via channels (Ref. 4) ln lact the Transputer

may be considered a hardware implementation of OCCAM

Transputer verslons without the float¡ng-po¡nt unit are also available : the

r414 132 bit) and the T21 2 (1 6 bit).

Transputer networks belong to the MIMD class of parallel processing

syslems, all nodes in a network are basically independent units, communi-

cating and synchronizing only

when necessary. A MIMD network is the most flexible solution to para¡lel

processing, since parl ol the network may actually be operat¡ng in SIMO-

mode , At TNO-FEL, research has concentrated on the Transputer as the

computalional element ¡n parallel processing applications, because of its

useful features, high performance and sottware support

Parallel¡sm may be accomplished in 3D ¡mage processing by splitting up the

computations in either display space or in object space :

Display space parallelism implies that each processor is assigned to a certain

area of lhe f inal image (e.9. a number ol scanlines). S¡nce views ol the rotated

voxel image will be generated, this solution means thal each processor must

have access to the complete voxel space.

Complete access is possible when a voxel ¡mage copy ¡s stored in each

processor (large memory requirement) or alternatively, processors could

request voxel data elemenls when needed from a central store (communi-

cat¡on overhead) Load-balancing may be a problem, since the most

computation intensive parts in the display-space will shift accord¡ng to the

rotation angle. Ray-tracing isa typical example where parallel processing in

display space is often used The load-balancing can be tackled by

implementing a processorfarm construction. ln lhis construction a controller

process "farms out" a new ptece of work (i.e. a part ol the display) to each

processor in the network as soon as this has finished work on a previous part.

The controller does not need lo know which processor will actually perform

the job. Object space parallel¡sm is based on access of a limited part of the

original voxel image. This implies that each node is ass¡gned to a section of

the voxel image, which is stored locally. A node will produce the contribution

of the local data to the result The actual result will be available after

combin¡ng (merging) all the contributions. The advantages of this method

over the previous one are :

- Less memory requ¡rement.

- Fast access to the (local) voxel data

- Good load-balancing, all contribut¡ons will need the same computation

time, when the voxel data sizes are equal.

Disadvantages are: the overhead of the merging operat¡on and the fact that

some data calculated by the nodes may not be needed in the final result

The advantages of the second method where strong enough to use object

space parallelism in the voxel processor system.

System Architecture

Figure 5 shows a schematic representation of the voxel processor archi-

lecture.Ell¡psesareusedtorepresentmodulesrunninginparallel parallelism

was achieved in several ways, the most ¡mportant step is (as ment¡oned) to

d¡vide lhe object space into eight (equally sized) subspaces (FtG. 3), where

each subspace has been assigned to one Transputer. The modules will be

explained in more detail below.

The Controller

ln the controller the user-interface software and the graphtcs control unit

(send¡ng commands to the Graphics subsystem) are combined The operato¡

commun¡cates with the 'user-¡nterface'part, which interprets and executes

commands. The controller process is capable of sending commands to a

Transputer based framegrabber, which may be used to acquire voxel data

from some type of sensor. Alternatively, it is possible to read obiect dala from

subspace data, the object may be rotated and v¡ewed interaclively. The Voxel

processor will produce a new image within 1 second atter giving a command

(for a 256'256'32 object)

Continuous rotation is possible, since the subspace transformation and the

may run in parallel. The resulting images can be stored on disk, and read in

again at a later time.

The Subspace Processor

This module performs the object transformat¡on and generates a partial result

for its subspace. A subspace result will be of size 256'256 lor an object ol

256'256'32 voxels, while the complete resulting image will be 51 2.512 pixels

The dimension (D) ol a subspace Íesult is easily derived from the Voxel

.data-base dimensions (DX, DY, DZ) :

o = soRT( (DX' + DY2 + DZr) )

A subspace part¡al result represents the intensity value for each pixel on the

screen, except for the'¡ntegrate' funct¡on, in which case a voxel count will be

produced. The subspace data (the voxels) are loaded only once lor each new

object and will not be changed during the transtormations. The Transputer

will beg¡n processing its data after receiving a command, which includes the

transformed un¡t vectors and the selected type of rendering (e g front view,

depth shade etc ) Besides performing the voxel image transformation, this

modu¡e ¡s also used for lhe 3D image processing operations. For this end,

memory is reserved to store both the orig¡nal voxel image and a filtered

ve rs ton.

The Merger

All partial resulls must be combined (merged) jnto the complete resulting

image. Th¡s result is translerred to the controlling process where it will be

stored and displayed. The'merger'process receives eight 2D results from the

subspace processors. ln order to combine the partial results in a correct way,

the merger needs some additional data. This data consisls of :

a) A subspace offset. The offset is based on the x and y ccordinates ol the

subspace's transformed origin. This value is needed to place the subspace

resull on the correct position in the final image (FlG. 6).
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b) A subspace priority. The priority is based on the z-value of the subspace's

transformed origin. The lowest priority is lor the subspace w¡th the greatest

distance from the viewer. The partial results of th¡s subspace will be

obscured by any subspace result ol a higher priority (FlG. 7).

The merg¡ng operat¡on is mainly performed with the 2D block-move

instruction (DRAW2D) of the T800 Transputer, wh¡ch can be used when the

subspace results are combined into the final image in order of increasing

pr¡ority (the final image ¡s inilialized to zero first) The DRAW2D can not be

used for the'integrate'function, in which case the numbers in the subspace

results corresponding to the same p¡xel have to be added.

The Graphic subsystem

This unit is used only for controlling a framebuffer in order to display the

resulting images.

lmplementation Remarks

- Voxel coordinates are represented using an lNT32 during transformation

time. This lNT32 is in fact a f¡xed-point real (16 bit integer part, 16 b¡t

traction). The accuracy is sutficientlorlhis application and the perlormance

is slightly better than when using REAL32.

- The obiect ¡s translated to the centre of the screen, independent of the

object's orientation.

- Whenever possible, special processes were assigned to communication in

order to ach¡eve maximum efficiency of the Transputer Links.

- A communicat¡on layer was intograted into the system. This layer provides

data and command transport to all processes, and it is also capable of

sending (debug) messages lrom each process to the operator screen.

- The system is very flexible in the dimensions of the objects that are to be

lransformed. Basically the only lim¡tat¡on is the memory size ol each

Transputer (currently l MB). At the moment these dimonsions (and a few

der¡ved values) are declared in a library. Changing th¡s library and

recompiling the sottware will automatically generate a new vers¡on. (N.8,

The object dimensions do not have lo be a power ol two). Some other

possible sizes which will give the same performance are : 128'128'128,

256'256'32 or 64'1 28'256.

- Because of the modular seþup, it ¡s very easy to trade-off system

perlormance against cost (a version with 4 subspace processors is also

built).

Hardware

The Voxel processor is built up ent¡rely w¡th off-the-shelf hardware Each

processor board otfers two T800's with lMByte of memory each. Other

boards used, are the Display System with a T800 and l MByte of v¡deo-ram

and finally a lramegrabber with an on-board T800. Physically the system

consists of a 1 9'' cabinet with 7 single euro-sized boards ¡nstalled. The host

system in the Voxel processor is an IBM-AT. All the program code was written

in OCCAM. Forthis application, it is not strictly necessary to use T800's for all

processing modules (few floating-point operations are needed and only the

merger uses block-moves). However, their higher link-speed does increase

over-all system performance.

Current Activities

Work on the Voxel processor prototype is continued in a number ol areas:

a) Addition of more 3D image-processing algorithms, An important feature

w¡ll be the computer assisted image segmentation (region grow¡ng)to

selecl interesting areas in the voxel image.

8t

b) lmplemenlation of 3D geometrical measurements. For med¡cal- and

biological- ¡maging geometrical data is very imporlant. Surface computa

t¡ons, distances and volume measurements have to be applied to the

objects ¡n the voxel space.

c) lncrease system perlormance by turther code improvement and

architecture optimization. For larger voxel space sizes a system with

16 Transputers will be developed. ln this larger system the arch¡tecture will

be changed lo a tree structure. The advantage of a tree over a p¡peline is in

the shorter average length of the communication path between the PE's

and the merger.

d) lmplement the computation of statistical level information over (part o0

the voxel data. Besides lor user inspection, this has to be available to

specific image processing functions l¡ke automalic thresholding'

histogram equalizalion or edge detection.

e) lnvestigate (voxel) dala-compression, determine effects on data transport

times and implicalions on lransform algorithms.

f) Feasibility study on stereoscop¡c d¡splay facilities.

Conclusions

The Voxel processor is a successful demonstral¡on ol the performance

¡mprovement and flexibil¡ty that parallel process¡ng can deliver lt is shown

that at least ¡n some applications transputer-type parallel processing may be

a good alternative for either supercomputers or dedicated hardware. Transpu-

ters have proved to be a very powerful tool The development ol the system

sottware was not trivial but the clear representation and support of parallelism

that OCCAM otfers helped a lot.

The key lealures ol the developed Voxel processor are :

- Fast, inleractive system. Typical render¡ng speods are 1 sec. for 2 Mbyte

voxel images. The speed may be ¡ncreasgd by using more processors.

- Highly modular and easily adaptable sotlware The prototype is a general

purpose framework for 3D image processing.

- Low-cost, small-sized otf-the-shelf hardware Transputers are general

purpose processors and the system may also be used lor other

(computal¡onal intensive) applications.

- Flexible performance (linear cost/performance function).
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Fig. 1 Voxel Definition

Fig. 2 Voxei lmage

Fig. 4 D¡splay Space.

Fig. 3 Object Space Fig 5 System Architeclure
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