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Image processing is one of the areas which are known to be very computational intensive. To achieve interactive response of

imageprocessing systems usually dedicated systems or (mini-) supercomputers are necessary. Imageprocessing is also an area in which the

application of parailelism is very suitable, because of the large amounts of (similar) data involved. In this particular case, 3-D images (images

in 'voxel space’} have to be processed interactively. Operations on the voxel space involve 3-D image processing algorithms and

visualization of the data from arbitrary viewing angles, and with several options for the type of rendering. This paper describes an alternative

for special hardware or supercomputers for a voxe!l processor, based on a network of INMOS T800 Transputers.

introduction

The TNO Physics and Electronics Laboratory (TNO-FEL) in the Hague is a
part of the TNO Division of National Defence Research (TNO-HDO).

The activities of TNO- FEL focus primarily on operational research, informa-
tion processing, communication and sensor systems. To support the fast
data-processing usually required in sensor systems applications, research
was started into parallel processing techniques. This research has now
resulted in three major application areas : radar data processing, real-time
computer generated imagery and 3D image analysis, processing and
visualization. 3D image processing and visualization is the subject of this
paper. With the growing availability of 3D scanning devices, the need for high
performance processing and display systems increased significantly. The
development of an experimental parallel processing system is described for
the visualization of three dimensional voxel based images. The aim is the
visualization of the (unknown) object in such a way that its spatial structure
can be understood. An additional demand is that the system is fast enough to
be used interactively. Because of the large number of voxels involved, a
considerabie processing capacity is required. Processing the data in parallel
on a network of Transputers provides the necessary computing power. The
volume data may be visualized in several ways, involving operations like
object transformation, hidden-surface removal, depth-shading and cross-
sectioning. The main advantages of the proposed architecture over dedi-
cated hardware solutions are:

- cost/performance ratio

- flexibility

- expandability

The Voxel space

Volume images are normally represented as a series of parallel two
dimensional slices. These slices may have been obtained from several
possible sensor systems, examples are Computer

Tomographic- (CT), Nuclear Magnetic Resonance- (NMR), Ultra Sounding or
Optical- (LASER) scanners. Voxel representations are very suitable for
applications with 3D empirical data. However synthetic data may also be
used, examples are: solid modeling and fluid dynamics simuiations. Before
volume rendering became feasible, experts had to interpret every single slice
to deduce the 3D information. Until recently, computer assisted techniques to
visualize the volumes were based on displaying contours only, because of the
processing time involved. These contours often had to be traced manually
from the actual data. Full use of the 3D data could only be made through

of-line computing.
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Several architectures based on dedicated hardware have been proposed to
increase performance (Ref. 1, 2).Dedicated systems however have the
disadvantage of inflexiblity to any change in rendering options or object sizes
(also the costs are high). Other systems make use of high performance
general purpose machines, which are always very expensive and not always
suitable. This explains the reason for TNO-FEL to apply a system of
programmable (low cost) processors operating in parallel. Prototype data for
the voxel processor was obtained from an experimental Confocal LASER
Scanning Microscope (CLSM). The CLSM can be focussed on several
consecutive layers of the object, producing a slice of data for each layer. A
slice typically consists of 256256 volume elements (voxels), with an intensity
resolution of 8 bits per voxel (FIG. 4). The number of slices may vary, but a
typical value is 32 to 256 (FIG. 2). This data structure is called the voxel space.
Examples of application areas for the CLSM are medical-and biological-
research and inspection (e.g. Integrated Circuits). Voxel space sizes depend
largely on the sensor type, in CT scans for example it is possible to get
resolutions of 512'512°128 with 12 bits per voxel, and these numbers still
grow. The TNO-FEL voxel processor has the modularity to deal with varying

size-and performance-demands.

The 3-D Reconstruction

The Voxel space consists of a block in 3-D space (FIG. 3). Displaying this data
under different angies on a 2D screen involves a 3-D transformation of the
object space into the display space (FIG. 4). Basically such a transformation
consists of a vector-matrix multiplication on each voxel coordinate (i.e. a
vector). The matrices for a rotation around the X-, Y-, and Z - axis with rotation

angles A,B and C respectively are :

1 0 0
Rx = 0 cos A -sin A
sin A cos A
cos B 1] sin B
Ry = 0 1 0
-sin B 0 cos B
cosC -sin C 0
Rz = sinC cos C 1
0 o] 1

These matrices are concatenated into a single matrix before the actuai

multiplication:
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R=Rz "Ry Rx=
(cB*cC) (sA*sB*cC-cB*sC) (cA*sB'cC+sA*sC)
{cB*cC) (sA*sB*sC+cB'sC) (cA*sB*sC-sA*cC)
-sB (sA*cB) (cA*cB)

('c’ for cos, 's' for sin ).

Suppose a resolution of 128 is used in X-,Y- and Z-direction with 1 byte per
voxel. The voxel space then occupies 2 Megabytes. 2 Million vector-matrix
multiplications of the kind described have to be performed to compute the
correctorientation. Every vector-matrix multiplication consists of 9 multiplica-
tions and 6 additions. To compute a new projection therefore 18 million Mults
and 12 million Adds would be needed. And this is just the pure computational
load, without any overhead like instruction

fetches etc. Fortunately, there are possibilities for a simplification. Since
vector-matrix multiplication is a linear operation and basically all of the voxel
coordinates have to be transformed, it is not necessary to perform this
multiplication for each and every coordinate. We may instead use previously
calculated results to compute the next. In that case three simple additions are
needed to step from one transformed coordinate to the next. This method

offers a considerabie reduction in the computational ioad.

The first step is to transform the unit-vectors from object-space into display-

space, by multiplication with the previously calculated rotation matrix R.

nx.x’' 1
nx.y' = 0 "R
nx.z' 0
ny.x' 0
ny.y’ = 1 * R
ny.z' 0
nz.x' 0
nzy’ = 0 ‘R
nz.z' 1
The transformed coordinates (x'y',z') of voxel (x,y,z) are now found with :
x' nx.x' ny.x' nz.x'
y'|=x" ney' |[H+y* nyy'|+z* nzy'
z nx.z' ny.z' nz.x’

By simply changing only 1 dimension atthe time (i.e. moving along the X-, Y-or
Z-axis) a new coordinate is now generated by just three additions. The
projection of the 3-D data onto a 2D surface (the screen) involves the hidden
surface elimination: 'distant’ voxels are obscured by ‘closer’ voxels if they are
projected on the same location on the screen. Comparing the z-value of a
new pixel with the z-value of the pixel already present on that screen location
(Z-buffer algorithm), is avoided by traversing the voxel space in a back-to-
front direction. When generating the screen this way, new pixels can simply
overwrite any old value (Painters algorithm).

Several ways of rendering the transformed data on the screen are possible,
the available options are:

a) Display the object's intensity, as seen from the selected orientation (‘front
view'). (Photo 1)

b) Disptay the object's 'distance’ from the screen at each location, resultingin
a realistic depth illusion. ('depth shading’).

c¢) Display the object's density at each screen location, {'integrate function’).
d) Display an intensity related to the layer from which the visible voxel
originated. (‘layer view'). (Photo 2)

¢) Select a Volume-Of-Interest’ within the available voxel space (this volume
must be block-shaped). Through this option uninteresting or disturbing parts
of the voxel image may be ‘peeled away'. (Photo 3)

f) Selecta cutting plane through the object; voxels in front of this plane will not
be visualized. This option will create a cross-section through the object after
rotation. (Photo 4)

g) Select a threshold; voxels with a value below this threshold will become
transparent.

h) Edit and select different colour look-up tables. This feature enables the use
of pseudo-colours or grey-scale transforms for certain intensity values,

thereby increasing the visibility of interesting areas.

The original images from the scanning device tend to be noisy in many cases,
so0 noise filters are needed. Further image analysis operations (edge
detectors etc.) are also provided. Currently implemented 3D image proces-
sing algorithms are :

- Mean filter.

- Sobel and Roberts edge detectors.

- Laplace filter.

- Median filter.

These filters are based on their 2D counterparts and operate on a (3°33)

space.

Paralle! Processing.

Computer applications tend to need increasing amounts of processing
capacities. Single processor systems are reaching the limits of performance
improvements. It is obvious that using more processors running in paraliel
should provide (theoretically) unlimited power. Many existing mulli-proces-
sor systems use a common communications channel (the bus) for intercon-
nections. With a growing number of processors the bus capacity becomes a
bottleneck for system performance. Communication bandwidth of the net-
work should be increased also when processors are added. Providing
processors with direct (point to point) connections for alt data exchange will

supply this increased bandwidth.

Several classes of multi-processor systems may be defined. A common way
to distinguish classes is between SIMD (Single Instruction stream Multiple
Data stream) and MIMD (Multiple Instruction stream Multiple Data stream )
type paralielism. In SIMD parallelism each processor in the network will
execute the same instruction (synchronously) on different data. Array pro-
cessors fall in this class. Examples are image processing applications where
each processor performs the same filter operation on a different part of the
image. When using MIMD parallelism processors can all be running different
programs, possibly sending results to others when they are finished.

Examples are pipelined systems or multi-user applications.

Many existing sequential programs could benefit from being able to perform
more than one action ata time. It is however generally not trivial to implement
a parallel program on a processor network. Problems arising are:

- Decomposing the problem in a number of processes running in parallel.
- Allocate processes to processors and select the network topology.

- Load-balancing the processors.

- Distributing data across the processors.

- Efficient inter-processor communication.

- Synchronization between processors.

- Debugging the software.



The INMOS T800 Transputer is a computer-on-a-chip, containing a 32 bit
RISC ALU, a 64 bit Floating-Point Unit, memory and four high-speed

(1.5 MByte/s) input/output links for point-to-point communication

(Fig. 8, Ref. 3). The Transputer was specifically designed for efficient
parallel processing : it is a high perforr;lance component (10MIPS, 1.5
MFLOPS), with an on-chip process scheduler and low-overhead communi-
cation facilities. A network of Transputers may be constructed by connecting
them via links. Each Transputer in a network has (private) local memory to
store program and data. Transputers

may be programmed in high level languages like PASCAL, FORTRAN or C.
These languages must have facilities added to implement the special
features of the Transputer (processes running in parallel, communication
etc.). OCCAM is a language that was created by INMOS to describe parallel
processing and communication via channels (Ref. 4). In fact the Transputer
may be considered a hardware implementation of OCCAM.

Transputer versions without the floating-point unit are aiso available : the
T414 (32 bit) and the T212 (16 bit).

Transputer networks belong to the MIMD class of parallel processing
systems, all nodes in a network are basically independent units, communi-
cating and synchronizing only

when necessary. A MIMD network is the most flexible solution to parallel
processing, since part of the network may actually be operating in SIMD-
mode . At TNO-FEL, research has concentrated on the Transputer as the
computational element in parallel processing applications, because of its

useful features, high performance and software support.

Parallelism may be accomplished in 3D image processing by splitting up the
computations in either display space or in object space :
Display space parallelism implies that each processor is assigned to a certain
area of the final image (e.g. a number of scanlines). Since views of the rotated
voxel image will be generated, this solution means that each processor must
have access to the complete voxel space.
Complete access is possible when a voxel image copy is stored in each
processor (large memory requirement) or alternatively, processors could
request voxel data elements when needed from a central store (communi-
cation overhead). Load-balancing may be a problem, since the most
computation intensive parts in the display-space will shift according to the
rotation angle. Ray-tracing is a typical example where parallel processing in
display space is often used. The load-balancing can be tackled by
implementing a processor farm construction. In this construction a controller
process "farms out” a new piece of work (i.e. a part of the display) to each
processor inthe network as soon as this has finished work on a previous part.
The controlier does not need to know which processor will actually perform
the job. Object space parallelism is based on access of a limited part of the
original voxel image. This implies that each node is assigned to a section of
the voxel image, which is stored locally. A node will produce the contribution
of the local data to the result. The actual result will be available after
combining (merging) all the contributions. The advantages of this method
over the previous one are :
- Less memory requirement.
- Fast access to the (local) voxel data.
- Good load-balancing, all contributions will need the same computation
time, when the voxel data sizes are equal.
Disadvantages are : the overhead of the merging operation and the fact that

some data calculated by the nodes may not be needed in the final resuit,

The advantages of the second method where strong enough to use object

space parallelism in the voxel processor system.

System Architecture

Figure 5 shows a schematic representation of the voxel processor archi-
tecture.Ellipses are used to represent modules running in parallel. Parallelism
was achieved in several ways, the most important step is (as mentioned) to
divide the object space into eight (equally sized) subspaces (FIG. 3), where
each subspace has been assigned to one Transputer. The modules will be

explained in more detail below.

The Controller

In the controller the user-interface software and the graphics control unit
(sending commands to the Graphics subsystem) are combined. The operator
communicates with the 'user-interface’ part, which interprets and executes
commands. The controller process is capable of sending commands to a
Transputer based framegrabber, which may be used to acquire voxel data
from some type of sensor. Alternatively, it is possible to read object data from
subspace data, the object may be rotated and viewed interactively. The Voxel
processor will produce a new image within 1 second after giving a command
(for a 25625632 object).

Continuous rotation is possible, since the subspace transformation and the
may run in parallel. The resulting images can be stored on disk, and read in

again at a later time.

The Subspace Processor

This module performs the object transformation and generates a partial result
for its subspace. A subspace resuit will be of size 256°256 for an object of
25625632 voxels, while the complete resulting image will be 5127512 pixels,
The dimension (D) of a subspace resuit is easily derived from the Voxel
data-base dimensions (DX, DY, DZ):

D = SQRT( (DX2 + DY2 + DZ?))

A subspace partial result represents the intensity value for each pixel on the
screen, exceptfor the 'integrate’ function, in which case a voxel count will be
produced. The subspace data (the voxels) are loaded only once for each new
object and will not be changed during the transformations. The Transputer
will begin processing its data after receiving a command, which includes the
transformed unit vectors and the selected type of rendering (e.g. front view,
depth shade etc.). Besides performing the voxel image transformation, this
module is also used for the 3D image processing operations. For this end,
memory is reserved to store both the original voxel image and a filtered

version.

The Merger

All partial results must be combined (merged) into the complete resulting

image. This result is transferred to the controlling process where it will be

stored and displayed. The 'merger’ process receives eight 2D results from the

subspace processors. in order to combine the partial resultsin a correct way,

the merger needs some additional data. This data consists of :

a) A subspace offset. The offset is based on the x and y ccordinates of the
subspace'’s transformed origin. This value is needed to place the subspace

result on the correct position in the final image (FIG. 6).
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b) Asubspace priority. The priority is based on the z-value of the subspace’s
transformed origin. The lowest priority is for the subspace with the greatest
distance from the viewer. The partial results of this subspace will be
obscured by any sgbspace result of a higher priority (FIG. 7).

The merging operation is mainly performed with the 2D block-move

instruction (DRAW2D) of the T800 Transputer, which can be used when the

subspace results are combined into the final image in order of increasing

priority {the final image is initialized to zero first}. The DRAW2D can not be

used for the "integrate’ function, in which case the numbers in the subspace

results corresponding to the same pixel have to be added.

The Graphic subsystem
This unit is used only for controlling a framebuffer in order to display the

resulting images.

Implementation Remarks

- Voxel coordinates are represented using an INT32 during transformation
time. This INT32 is in fact a fixed-point real (16 bit integer part, 16 bit
fraction). The accuracy is sufficient for this application and the performance

is slightly better than when using REAL32.

The object is translated to the centre of the screen, independent of the

object'’s orientation.

Whenever possible, special processes were assigned to communicationin
order to achieve maximum efficiency of the Transputer Links.

- Acommunication layer was integrated into the system. This layer provides
data and command transport to all processes, and it is also capable of

sending {debug) messages from each process to the operator screen.

The system is very flexible in the dimensions of the objects that are to be
transformed. Basically the only limitation is the memory size of each
Transputer (currently 1MB), At the moment these dimensions (and a few
derived values) are declared in a library. Changing this library and
recompiling the software will automatically generate a new version. (N.B.
The object dimensions do not have to be a power of two). Some other
possible sizes which will give the same performance are : 128°128°128,
256°256"32 or 64°128°256.

Because of the modular set-up, it is very easy to trade-off system
performance against cost (a version with 4 subspace processors is also
built).

Hardware

The Voxel processor is built up entirely with off-the-shelf hardware. Each
processor board offers two T800's with 1MByte of memory each. Other
boards used, are the Display System with a T800 and 1MByte of video-ram
and finally a framegrabber with an on-board T800. Physically the system
consists of a 19" cabinet with 7 single euro-sized boards installed. The host
system in the Voxe! processor is an IBM-AT. All the program code was written
in OCCAM. Forthis application, itis not strictly necessary to use T800's for all
processing modules (few floating-point operations are needed and only the
merger uses block-moves). However, their higher link-speed does increase

over-all system performance.

Current Activities

Work on the Voxel processor prototype is continued in a number of areas :

a) Addition of more 3D image-processing algorithms, An important feature
will be the computer assisted image segmentation (region growing) to

select interesting areas in the voxel image.
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b) Implementation of 3D geometrical measurements. For medical- and
biological- imaging geometrical data is very important. Surface computa
tions, distances and volume measurements have to be applied to the
objects in the voxel space.

¢) Increase system performance by further code improvement and

architecture optimization. For larger voxel space sizes a system with

16 Transputers will be developed. In this larger system the architecture will
be changed to a tree structure. The advantage of a tree overa pipelineisin
the shorter average length of the communication path between the PE's
and the merger.

d) Implement the computation of statistical level information over (part of)

the voxel data. Besides for user inspection, this has to be available to
specific image processing functions like automatic thresholding,
histogram equalization or edge detection.

Investigate (voxel) data-compression, determine effects on data transport

L)

times and implications on transform algorithms.

f) Feasibility study on stereoscopic display facilities.

Congclusions

The Voxel processor is a successful demonstration of the performance
improvement and flexibility that paralle! processing can deliver, It is shown
that at least in some applications transputer-type parallel processing may be
a good alternative for either supercomputers or dedicated hardware. Transpu-
ters have proved to be a very powerful tool. The development of the system
software was nottrivial butthe clear representation and support of parallelism

that OCCAM offers helped a lot.

The key features of the developed Voxel processor are :

- Fast, interactive system. Typical rendering speeds are 1 sec. for 2 Mbyte
voxel images. The speed may be increased by using more processors.

- Highly modular and easily adaptable software. The prototype is a general
purpose framework for 3D image processing.

- Low-cost, small-sized oft-the-shelf hardware. Transputers are general
purpose processors and the system may also be used for other
{computational intensive) applications.

- Flexible performance (linear cost/performance function).
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Fig. 1 Voxel Definition. Fig. 4 Display Space.

Fig. 2 Voxeilmage,
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