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Introduction
The parameterization of the greenhouse gas fluxes between the atmosphere and oceans

as function of wind and sea state pafameters remains a challenging problem, of key
importance for climate modelling. It is well-known that exchange across the air-water
interface of gases of poor solubility as carbon dioxide, methane, is governed by the mixing
phenomena which affect the very upper water boundary layer in so far as this layer
concentrates most of the resistance to transfer. However, these phenomena, dependent on
various processes as momentum transfer from wind to waves and currents, turbulence
generation in water, wave interaction with shear, wave breaking, thermal stratification or
water surface contamination by surfactants, are complex and consequently, have been poorly
described up to now. Therefore, most attempts to parameterize gas transfer have consisted

essentially in measuring gas transfer rates over a large range of wind and wave conditions
both in laboratory and field experiments and then, searching for empirical relations
describing the gas flux evolution with wind speed (Liss et Merlivat, 1986; rWanninkhol

1992). However, the available experimental data exhibit large discrepancies, in particular at

high wind speeds, making these frst attempts fa¡ ftom being completely satisfactory.
The experiments planned within the framework of the LUMI¡IY project aimed at

providìng a btter description of the dynamics of the air-water interface observed at high

wind speeds when wave breaking is dominant, in order to identify more precisely the wind
and wave parameters which control gas transfer in such conditions (for a more detailed

presentation of the project, see De læeuw et al (1998)). This paper is devoted to the

observations performed during the gas transfer experiments in order to describe the "sea

state" and the wind stress at the water surface. The approach adopted to characterize wave

breaking is presented in detail and the first results obtained at high wind speeds are discussed

briefly.

Experimental procedure
The experiments were carried out in the large wind-wave facility of IRPHE-Luminy

Laboratory. This facility is composed of a water-recirculating tank 40 m long, 2.6 m wide and

I m deep about at the test section, and an air-recirculating tunnel, 3.2 m wide and 1.5 m high
(Fig.1). An axial fan and two water pumps allow to generate win(s of speed varying between

.5 and 14 m/s and water cunents of velocity up to 12 cm/s. This facility is also equipped with
a big submerged oscillating paddle controlled by an electrohydraulic system, and an
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Fig. l: schemadc view of the IRpFIE-Luminy wind wave facility with theinsrumentation set up for measuring wind and *"u. i.",*"rìong the tank.
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Fig. 2t Evolution witb fetcb of the ai¡ friction velocity u' estimated at l0 cm heigbt

above the water surfaæ by the inertio-dissipative method (here u.2 = rJp"), for
the thre¿ experiments made at l0 m/s wind speed.
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Fig, 3: Evolution with fetcb of the mean wave steepness observed at l0 and 13

nVs wind speeds in the large IRPÍIE wind wave trank.

In order to describe the main features of the wave field developing in the tank during

the gas transfer experiments, the signals from both wave probes were first analysed using

classical techniques. The evolution with fetch of the RMS wave amplitude, the RMS wave

steepness ak, the frequency no and the wave speed c of the dominant waves were detennined

for each experiment. Fig. 3 illustrates one of the most striking features of the wind-amplified
wave field observed at high wind speeds, which lies in the fact that the mean steepness of the

dominant waves keeps a constant value with fetch even when the wave amplitude increases

gradually with fetch. For pure wind waves, this value is quite small, of order of .17, and

seems to be independent on wind speed. This saturation in energy is reached at relatively
short fetches when the wind energy input to waves is balanced by wave dissipation due to

breaking or microbreaking. The fact that this equilibrium is achieved at the same steepness

for different wind conditions suggests that under both the action of wind and breaking, the

wave field evolves with fetch in a self-simila¡ manner.

The second stage of the analysis made on the wave field properties aimed at describing

wave breaking. To that end, a geometrical criterion, as lrst proposed by Longuet-Higgins and

Fox (1977) and later tested by Xu et al. (1986), has been chosen, looking the most

appropriate to characterize breaking of wind-amplified waves, i.e. breaking resulting from a

naturalwind-induced growth. This criterion was formulated for regular progressive Stokes

waves. It lies in the fact such waves are no longer stable, and so breaks, when the wave slope

at the crest exceeds 0.586.
In the Luminy experiments, the instantaneous slope of the waves s(t) can be evaluated

from the time derivative of the water surface heights n(t) using the relation:

s(Ð = l/c dtl/dt
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4: Time sequence of the time derivar.ive signar of the water surf'ace heights
measured by a capacitance wave gauge at 22 m fe¡ch for l0 m/s ùind
speed.
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However, wave breaking was detected directly from the time derivative signals of the wave
height when observed at any time between two successive zero down-irossings, values
higher than 0.586c (Fig. a).

Then, the features of the individual breaking waves as well as the breaking properties of
the whole wave field could be described by the use of specific parameters, as for instance:o the jump duration J¿, âs f,rst introduced by Longuet_Higgins and

Smdur ffi:Tï'.ïï#il*'"..it,îHï;,ï'trLT#iïä"îili:
critical value 0.586;

¡ the breaking rate R¡ defìned as the ratio between the sum of the breaking wave jump
duration IJa and the total duration D of the time sequence.

Thus, at this stage of analysis, the breaking rate R¡ was found as the most adequate
parameter to characterize the wave breaking inteniity during the gas transfer experiments. As
an illustration, Fig. 5 displays the evolution with fetóh of tñis quãntityfor t0 m/s and 13 m/s
wind speeds- It can be seen that Rd remains nearly constant wiitr fetc'n but srrongly increases
with wind speed. As previously for u*, this evolution allows to describe the wãv! breaking
conditions for each experiment only by the mean value of R¿.

At last, our investigation was devoted to the search for the relationship which may exist
þtween the breaking rate and the wind friction velocity. The idea is to describe the wave
breaking intensity by the smallest number of parametérs not only relevant from a basic
yiewpoint. but also easy to measure to be used fór modelling of gas exchange coefficients athigh wind speeds or heavy seas. on this hand, these exierirñents clearly show that thà
breaking rate and the air friction velocity evolve in a similar manner over the wide range of

_Q-.586.c
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Fig. 6: Evolution \Ã,ith u' of tbe breaking rate Rd observed for the different
g¡ts transfer experiments trtade at high wind speeds'

wind and wave conditions observed in the tank. Moreover, as seen in Fig. 6, the increase of
R¡ versus u. exhibits a linear trend. This close relationship between such parameters observed

at high wind speeds advocates that \ryave breaking is there directly controlled by wind forcing
as well as when viewed from the opposite side, the sea surface roughness is entirely
dependent on wave breaking, thus highlighting the strong couplings which must exist

between wind and wave motions in such breaking conditions.
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