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Chapter 1

Introduction

Figure from a patent for a Piezo-Electric Signalling Apparatus filed by

Paul Langevin in 1923 [1]



2 CHAPTER 1. INTRODUCTION

”Here there be monsters” The fascination of the undersea world: The Leviathan
(Gustave Doré)

Despite being more naturally adapted to walking on land, mankind has always

been attracted to travelling on or in water for several purposes: feeding, travelling,

harvesting resources, hiding, or, of course, just out of sheer curiosity. In any case,

the underwater environment is very mysterious and therefore fascinating to us for

various reasons. Most of Earth’s surface is covered by water and holds many riches

of different kinds the quantity of which we can only suspect. It is an environment

with very varied and dynamic flora, fauna and physics that we are only beginning to

grasp. The depths of the sea are remotely accessible and difficult to monitor, which

makes them even more intriguing for us, but also the perfect hiding place for someone

who wishes to keep a secret agenda.

1.1 The enemy below

The fact that one cannot see very far underwater made it attractive for amateurs of

clandestine operations to make use of the underwater concealing properties. The use
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Figure 1.1: Cornelis van Drebbel’s oar propelled underwater craft (Lithography by
G. W. Tweedale, 1626).

of underwater crafts was imagined very early and first put in application around 1620

in the Thames river by Cornelius van Drebbel (see figure 1.1), a Dutch inventor. Sub-

marine development has progressed ever since, evolving from propulsion with oars,

via propellers powered by compressed air, diesel electrics and nuclear power plant to

finally air independent propulsion. Modern submarines come in all sizes ranging from

the 175 m long Russian Typhoon SSBN (Submersible Ship Ballistic Nuclear, Ballistic

Missile Submarine) to the Iranian midget submarine Ghadir, which can accommodate

a crew of two, see figure 1.2. Submarines are mostly used for military purposes, such

as anti-submarine warfare (ASW) missile delivery, anti-surface warfare, intelligence

gathering, mine-laying or special forces delivery but also in criminal or terrorist en-

terprises. Drug dealers in South America as well as armed groups in Sri-Lanka have

been reported to design small submarines for drug and weapons trafficking [2, 3].

The progress of technology and the diffusion of knowledge has made it possible for

any small country or wealthy organisation to build its own submarine. All these sub-

marines have always represented a potential threat to national security in one way or

another. During World War I, and World War II, German submarines would attack

Allied convoys to prevent transport of goods across the Atlantic. During the cold

war, the major concern was to be able to track all Soviet SSBNs at all times in the

event of a nuclear exchange. Recently the most likely threat is judged to be either
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175 m 

25 m 

Figure 1.2: Russian Typhoon class ballistic missile submarine and Iranian “Ghadir”
coastal submarine.

small countries operating very silent diesel-electric submarines or a terrorist attack

from a midget submarine.

The ability to detect and localise a hostile underwater vehicle reduces the potential

of destruction it can inflict. More concretely, it is in the interest of any government

that wishes to protect its assets, routes of communications and civilian population to

have the dissuasive capability to deter such an attack.

1.2 Peering through the depths

While most of what is happening all over the globe in the atmosphere can be dis-

creetly observed by means of countless satellites sensing the whole electromagnetic

spectrum, the physical properties of water in general, and seawater in particular,

make it so that most electromagnetic waves are too strongly attenuated after even a

few centimetres of propagation underwater to measure anything. For that reason, un-

derwater observation by means of electromagnetic waves is very difficult, in particular

from a satellite. There are a few marginal exceptions. Indeed, the electromagnetic

absorption spectrum of seawater shown in figure 1.3, allows limited propagation for

blue-green light (wavelength in air of 300 nm to 400 nm). This opportunity has been

investigated for a few applications. For instance, blue-green lasers are used for the

detection of mines in the surf zone1 [4] or for tactical undersea communication [5].

1The surf zone is the area of the sea where surface waves break against the coast.
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It was considered to use the same lasers to detect submarines [6], but the latter can

submerge at depths for which the signal to noise ratio (SNR) of such systems is not

sufficient to achieve detection, due to the increased propagation loss. Moreover, the

beam of such a laser can only cover a very small area compared to the total surface

to be searched. Another remarkable, yet mildly successful, application is the use of

bio-luminescence to detect submarines. Some species of phytoplankton liberate pho-

tonic energy when shaken [7]. This light can be observed when one waves one’s hand

underwater at night or in the wake of a submarine. However this indiscretion is rarely

strong enough to allow detection of a submarine from a satellite.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
5

10
10

10
15

Wavelength in air [nm]

O
p
ti
ca
l
A
b
so
rp
ti
on

[d
B
/k

m
]

(a) Measured EM absorption

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Frequency [kHz]

A
co
u
st
ic
al

A
b
so
rp
ti
on

[d
B
/k

m
]

(b) Empirical sound absorption in seawater, the
thick line denotes usual ASW frequencies

Figure 1.3: Measured electromagnetic [8, 9] at optical wavelengths and empirical
acoustic absorption [10,11] of waves in seawater.

While electro-magnetic waves propagate poorly underwater, acoustic waves prop-

agate very well and are much less attenuated, depending on their wavelength (see

figure 1.3). One of the first practical scientific applications of acoustic propagation

was the measurement of the bulk modulus of water by Colladon and Sturm in 1826

(see pages 125 and 129). A first attempt at acoustic localisation was a navigation

acoustic system for lightships at night or in dense fog in the beginning of the 1900s [12].

A pulse would be emitted by an underwater gong at the same time as a foghorn would

be blown. Other ships would be fitted with a hydrophone and the operator would

estimate the range of the remote transmitter by comparing the time difference be-

tween the underwater and airborne sound arrivals, the speed of sound in air being
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four times slower than in water.

As soon as submarines started to represent a real threat in a conflict and as soon

the current state of the art allowed it, acoustic waves were used to detect, localise

and classify submarines. These same waves are used by submarines to find their prey

or evade their hunter. A major breakthrough in the field of underwater acoustics

transmission and measurement was the invention of a piezoelectric transducer by Paul

Langevin (figure 1.4) assisted by Constantin Chilowsky2 during World War I [13–15].

Figure 1.4: Paul Langevin (1872-1946), one of the inventors of the quartz sandwich
transducer.

He used the work of the Curie brothers [16] and Gabriel Lippmann [17] on piezo-

electricity as well as his own research results to design a device using the electro-

mechanic conversion due to the piezoelectric effect of quartz crystals. This design

2The system performance became operationally relevant with the addition of an amplifying device
by Beauvais and Brillouin. This amplifier could not have been designed without the contribution of
P. Pichon who faced a potential firing squad for desertion to bring triods back to France to support
the war effort [13].
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Electrodes 

Pre-stress bolt 

Piezoelectric ceramic 
elements 

Pre-stressed rod 

Pre-stress bolt 

Pavilion 

Figure 1.5: Schematics of a Tonpilz transducer.

offered a much better efficiency than the electromagnetic technology used in any un-

derwater transducers that far. While natural crystals such as Quartz were used by

Langevin in his pioneering experiments, modern transducers are mostly built with

baked ceramics (such as lead-zirconium-titanate (PZT) or PolyVinylidine DiFluoride

(PVDF)) or grown crystals (such as lead-magnesium-niobate-lead-titanate, PMN-

PT), which offer better electro-mechanic properties and are easier to shape. A typical

arrangement of such ceramics is the Tonpilz transducer, shown in figure 1.5, invented

by Langevin [18]. Hollowed ceramics cylinders are arranged on a pre-constraint rod

that maintains stress on the ceramics. The electrodes convey the desired electromag-

netic wave that is converted into a mechanic wave by the piezoelectric ceramics.

The principles discovered by Langevin and other scientists led to the develop-

ment of a paraphernalia of submarine detecting devices worldwide. However, it is

only after World War II, through the race to arms during the Cold War, that the

submarine reached its full terrifying potential of destruction. A number of nations

acquired or developed SSBNs that can stay submerged virtually indefinitely. A single

of these submarines, if undetected, could bring cataclysmic annihilation to a whole

continent at once. It became a crucial concern for navies around the world to track

these Leviathans at all time, and preferably from as far as possible. Moreover, the

accumulated experience in underwater acoustics of the time clearly pointed to the ne-

cessity of taking the complexity of propagation of sound in the ever varying oceanic

medium into account. This prompted the further development of an already existing

device, the towed hydrophone array.
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1.3 A versatile sensor: the towed hydrophone ar-

ray

To allow sensing of the wave propagated from a source at a great distance, in a

noisy environment, one must have a sensor that gathers many wavelengths of the

propagated wave [19]. In water, acoustic wavelengths that are relevant for the sensing

of submarines are of the order of one metre3. Therefore, ASW sensors, such as passive

arrays towed by surface ships or the Sound Surveillance System (SOSUS) [20], can

reach dimensions of several kilometres.

Mounting such a sensor on the hull of a ship poses limits to the maximum size

of the sensor. Some of these sensors, like SOSUS, are deployed at fixed locations,

but this is not always operationally convenient. A technological solution that allows

deploying an underwater acoustic sensor of long aperture, at virtually any depth so

as to make the best of the propagation conditions, while sweeping through an area

or pursuing a target, is the towed hydrophone array. A towed hydrophone array is

a collection of hydrophones arranged in a line, most often in a hose as it offers the

best hydrodynamic behaviour, meant to be towed behind a platform (surface ship or

submarine, autonomous or manned). The hose is usually filled with oil so as to have

neutral buoyancy, while protecting the electronics from the conducting sea water.

Modern towed arrays are also fitted with non acoustic sensors that help ascertain

the attitude and position of the array at all times. Another advantage of towing a

sensor is that, instead of mounting it on the platform, the sensor is more isolated from

the noise radiated by its towing platform. Indeed, depending on the type of arrays,

these sensors can be towed at distances of the order of kilometres from the ship.

Finally the sonar can be towed at any depth, especially under the surface layer, often

present, shown in figure 1.6. Most of the energy transmitted by hull mounted sonars,

which were for a long time the main ASW sensor, is refracted directly downwards,

to the seafloor or trapped in the surface layer, thus leaving a shadow zone in which

submarines often seek acoustic shelter.

The first towed hydrophone array, known as “The Eel” was developed in the USA

3The sound speed in sea water is usually close to 1500m/s and the frequencies radiated by
submarines are usually lower than 1500Hz resulting in wavelengths of 1m or longer. Likewise
1500Hz is a typical frequency used with Low Frequency Active Sonars (LFAS).
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Figure 1.6: Typical North Atlantic sound speed profile and corresponding ray trace.
The grey area represents the shadow zone in which only a small amount of acoustic
energy propagates from a surface source.

as early as World War I [21]. It has known many developments since, adapting it-

self to the different challenges posed by the tactical requirements of the time. Its

use started to become widespread during the Cold War. NATO (North Atlantic

Treaty Organization) naval forces employed it to passively detect and track Soviet

submarines around the globe. These submarines lacked advanced silencing measures

and were usually detected passively, through their acoustic indiscretions, using very

long (over 1000m) towed arrays [21]. However, a few decades of cloak and dagger

spying and technological development [22,23] allowed the USSR to deploy much qui-

eter submarines by the end of the eighties. Around the same time, the collapse of

the Warsaw pact shifted the strategic objectives of NATO. The most immediate sub-

marine threat shifted from the less menacing Soviet nuclear submarines to modern

diesel electric submarines acquired by rogue nations around the globe. These cheaper

submarines have the potential to be quieter than their nuclear counterparts and op-

erate preferably in coastal and shallow waters, closer to their targets. This prompted

a change in towed array sonar development, as one could rely less and less on the

passive indiscretions of the enemy submarine. Towed arrays became smaller and were

used in both passive mode and active mode (in combination with a towed source as

shown in figure 1.7), although mostly in the latter. The long passive towed arrays of

the Cold War are impractical to deploy in shallow water for several reasons:
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Figure 1.7: Sketch of an LFAS sonar system (Towed array and source) towed by a
frigate (platform), pinging at a submarine (target).

- Shallow waters are plagued by much more noise than deeper waters, partly due

to increased human activity around the coasts, making passive detection more

challenging.

- Long arrays limit the manoeuvrability of the towing platform.

- They are dangerous to tow in waters shallower than their length, as they might

rake the bottom.

Therefore, LFAS systems became the sensors of choice to detect submarines in shallow

waters. The optimal frequency band to detect a submarine actively is slightly higher

than the frequency band4 used for passive detection, allowing a scaling down of the

towed array to a few tens of meters [24]. Passive sonar was still not abandoned for a

number of reasons. Some target, such as Go-Fast powerboats used in drug smuggling,

have a very low Target Strength [19] and are very difficult to detect actively but do

radiate strong noise. Broadcasting with an active sonar does not only betray the

position of the platform but can also have an influence on the surrounding marine life,

making the use of passive sonar preferable in certain situations, despite the reduced

size of the towed array compared to the longer dedicated passive towed arrays.

4The frequency band used for LFAS is low enough to ensure low absorption losses and chosen at
a location of the spectrum where both shipping noise and ocean ambient noise are low.
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1.4 Advanced Signal processing for an advanced

sensor

The topic of this thesis is the development of advanced signal processing algorithms

for these shorter towed arrays, both in their active and passive mode of use. The

chapters have been structured according to three phases used in ASW: Detection,

Localisation and Classification.

1.4.1 Detection

In signal processing, detection is the process of making a decision concerning the

occurrence of an event. In the case of passive sonar, this event is the radiation of

sound by an acoustic source. The decision of the presence of a source is made when

the signal measured exceeds a certain threshold. In the case of passive towed array

sonar, data is collected by an array of hydrophones. In the past, an operator would

listen directly to the sound collected by the hydrophones and carry out detection

himself. The combination of the ear and brain of a trained operator is difficult

to outperform through signal processing, but there are processing operations that

an operator cannot handle. For instance, the data collected by a modern passive

towed array sonar consists of channels of acoustic time series originating from tens

of hydrophones that are too many for an operator. Modern sensor signal processing

strives to reduce the load of the operator as much as possible, possibly even replacing

him or her. The data collected by these hydrophones contains signal from sources

of interest, interfering sources (such as the towing platform or merchant traffic) and

ambient noise [19]. The purpose of this linear arrangement of hydrophones is to

directionally isolate the signal of interest from the ambient noise and the interfering

sources. The hydrophones need to sample the acoustic field with a spacing small

enough to respect the Nyquist criterion of spatial sampling 5 and long enough to

collect uncorrelated noise realisation, and offer a spatial aperture, at frequencies of

interest for passive sonar. The total length of the array determines the capacity to

spatially discriminate a given signal from another source and ambient sound [25]. This

5In order to avoid aliasing, the maximum spacing between sensors of an array sampling should
be no longer than half of the smallest wavelength measured by the sensor.
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is performed through a class of signal processing algorithms known as beamformers.

In Chapter 2, we concentrate on the problem of beamforming while considering

one method in particular. This method, known as Passive Synthetic Aperture Sonar

is specifically tailored to address the problem of using a short towed array designed

for active sonar in a passive mode, from the detection point of view. The problem of

detection for active sonar will not be treated in this thesis.

1.4.2 Localisation

Once a source has been detected, one must assert its location in order to make a

tactical decision. The bearing of the target is already inferred during the detection

stage, through beamforming. The range of the source remains to be estimated. This

estimation process is known as localisation. The estimation of range requires a sup-

plementary layer of processing. This problem is complicated by the fact that the

observed source itself may be moving during the observation time. Again, tradition-

ally, this task is performed by an operator. A skilled operator can use the variations in

observed bearings and frequency to assert a source area of likely position, applying ef-

ficient rules of thumb. This calculation, derived by Ekelund [26], requires manoeuvres

of the towing platform and a specially trained operator. Automating this operation,

or at least assisting an untrained operator in reaching a solution for a number of

targets would be of great added value. Furthermore, the required manoeuvre puts

the towing platform at a disadvantage and a ranging method that would make it

unnecessary is desirable.

Chapter 3 of this thesis explores a number of estimation methods designed to

improve the passive estimation of the range and kinematics of a source. Similar to

Chapter 2, these methods are designed to advantageously use the movement of the

towed array to increase passive sonar performance. The problem of localisation for

active sonar will not be treated in this thesis.

1.4.3 Classification

In signal processing, classification is the process of fitting a given entity in a prede-

termined class according to a number of criteria, or features. Again, this is usually
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performed by an operator, in both active and passive sonar. Here, we will concentrate

on active sonar classification. When a modern LFAS system emits a ping in shallow

water, the overwhelming majority of echoes it receives originates from the bottom.

These echoes are known as clutter and are very similar to the echoes of man-made ob-

jects. Recent technological developments made it possible to transmit low frequency

waveforms of long duration and wide bandwidth. The increased bandwidth allows the

sonar system to extract more information from a given echo. Examples of this are

broadband Doppler-sensitive waveforms. Long narrowband sonar pulses have long

been used to estimate the radial speed of a given scatterer, but they offer a poor

range resolution. The larger bandwidth allows the sonar to transmit waveforms that

exhibit both good Doppler and good range resolutions.

Chapter 4 concerns the analysis of a certain type of broadband Doppler-sensitive

pulse and the assessment of its performance on a dataset measured with an operational

sonar system.
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Figure 1.8: The CAPTAS array and the SOCRATES source being deployed from the
aft deck of HNLMS Mercuur. (Photo P.A. van Walree)

1.5 Towed array sonar experimental data

In the following three chapters of this thesis, we present signal processing algorithms

and apply them to data gathered at sea by TNO (Nederlandse Organisatie voor

Toegepast Natuurwetenschappelijk Onderzoek) with a towed array sonar. Collecting

data with a towed array at sea involves usually several warships, most often both

surface and sub-surface platform (figure 1.9). These ships and their crew are then

diverted from their operational tasks to participate in scientific experiments. This

is only made possible by the close cooperation between TNO and DMO (Defensie

Materieel Organisatie) and the good will of the Royal Netherlands Navy (RNlN).

This close relation and the availability of operational sensors data is a rare asset for

a scientific research organisation. This thesis benefited a great deal from this data.

The data presented in this thesis was collected using a Thales Combined Active
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Figure 1.9: A Walrus class submarine of the RNlN. (Photo M. van Spellen)

and Passive Towed Array Sonar (CAPTAS) in combination with the TNO SOCRATES

(Sound Calibration and Testing) source aboard the submarine tender HNLMS Mer-

cuur (figure 1.10). Deploying an LFAS source and towed array (figure 1.8) can take

up to several hours and can only be performed if the sea is not too rough for the safe

operation of the system. Due to the costs of the involved platforms and personnel,

experiments can usually not be repeated and every second of data is precious. Ex-

periments are therefore usually carried out round the clock unless the bad weather

increases the risk of losing the equipment.

Figure 1.10: HNLMS Mercuur towing the TNO Socrates source in heavy seas during
an LFAS trial. (Photo M. van Spellen)
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1.6 Contributions

In Chapter 2, a statistical analysis of the performance of two integration schemes

for passive sonar (incoherent integration and synthetic aperture) were proposed. An

existing method for passive synthetic aperture sonar was improved by the addition of

an interferer cancelling method. This improved method was applied to data measured

at sea with an operational sensor. These results were published in [27, 28].

In Chapter 3, a recursive passive localisation method was presented and applied to

both simulated and measured data. A novel batch method for localisation of targets

based on time delays was presented. Contrary to traditional algorithms, this method

was shown, through a theoretical analysis, to allow the passive localisation of a target

without requiring a platform turn.

In Chapter 4, the simulation study of an existing active sonar Doppler classification

method was carried out. This study allowed the quantification of the effect of sonar

motion on sonar performance. Furthermore, a statistical analysis of the classification

performance of the method was carried out on a dataset collected at sea. This analysis

helped putting in evidence the effect of topography on the apparent Doppler of clutter.

Chapter 4 was published in the IEEE Journal of Oceanic Engineering [29].



Chapter 2

Detection with Passive Synthetic
Aperture Sonar

Cornelis Jacobszoon Drebbel (Alkmaar 1572, London 1633), Dutch Inventor of a

submersible craft.

Parts of this chapter were published in the proceedings of the IEEE/MTS Oceans 2002 and 2004
conferences [27, 28].
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In this chapter, we will concentrate on a technique meant for the detection of a

narrowband acoustic source. The most common application for such a technique is

the tracking at sea of submarines or other platforms. The sensors are usually linear

horizontal arrays of uniformly spaced hydrophones that are towed in order to maintain

their attitude, optimise propagation, cover a search area, follow a target or protect an

asset. The most common spatial processing technique of data collected by an array in

order to detect and estimate the bearing of a source is the conventional beamformer

(CBF). Beamforming is the operation consisting of transferring data measured by an

array of spatially distributed sensors from sensor position domain to beam domain.

Beams in this context are a set of chosen directions around a reference point of the

array (such as the location of the first sensor). A beamformer can also be considered

as a spatial bandpass filter, filtering out all the signals that do not come from the

desired direction. In classical processing schemes, the motion of the array is only

taken into consideration after the signal processing, in analysis stages. For instance,

the range and speed of an already detected target are deduced by using its estimated

bearing and or frequency as well as the speed of the measuring platform by means of

estimation algorithms such as Target Motion Analysis, [30], see also Chapter 3. The

time elapsed while the array is being towed is usually used for incoherent1 integration

of beamformed data.

In normal operation mode, a towed array has a quasi-straight trajectory and the

aperture of the sound field it samples is actually larger than its own physical length.

In this chapter, we will consider a coherent integration method that strives to form a

synthetic aperture by collecting data along this straight trajectory and formatting it

in such a way that it appears to be recorded from a longer array. This method takes

the motion of the array into account. We will assess the improvement such a method

can bring and compare it to a conventional incoherent integration method, through

theoretical as well as experimental analysis.

Let us consider the following three stationary pressure types of acoustic energy,

shown in figure 2.1, in an unbounded water column of constant sound speed c. For

simplicity we will consider the problem only in the horizontal xy plane:

1By incoherent integration, we mean here that only the energy of the signal is used (as opposed
to coherent integration for which the phase is taken into account).
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• White isotropic incoherent centred Gaussian noise of standard deviation σν writ-

ten pν (r, tk), representing ambient acoustic noise, r being the position vector of

the location at which pν is evaluated and tk the time at which the kth sample

is collected.

• A plane wave incoming from bearing θI (with respect to the x axis)2 consisting

of white Gaussian noise uncorrelated in time of standard deviation σI written

pI (r, tk) and called the interferer. pI being a plane wave, we can write for any

r and tk:

pI (r, tk) = pI

(

0, tk +
1

c
(x cos θI + y sin θI)

)

. (2.1)

• A plane wave incoming from bearing θT (with respect to the x-axis) consisting of

a single tone at frequency fT and amplitude at any position AT written pT (r, tk)

(representing a target in the far field radiating a tonal). For simplicity we will

impose pT (0, 0) = 0; We can therefore write:

pT (r, tk) = AT sin

(

2πfT

(

tk +
1

c
(x cos θT + y sin θT )

))

. (2.2)

Both the interferer and target are signals of interest. The interferer can represent

the broadband part of the spectrum of the acoustic energy radiated by a source

of interest while the target signal will represent its narrowband components. By

considering these two signals, we can evaluate the performance for two different types

of sources that are often encountered in operational situations. Note that transient

sources are not considered in this thesis. These can be broadband, while exhibiting

correlation properties that could be used to generate a synthetic aperture in a way

very similar to that of active synthetic aperture methods [31]. In section 2.2, we will

depart from the stationary wave assumption and consider the more likely scenario of

a moving source.

The three types of acoustic energy are sampled by a linear array of NH hy-

drophones spaced by δx (chosen according to the Nyquist-Shannon sampling theo-

rem [32], i.e. such that δx ≤ c/ (2fmax) where fmax is the maximum frequency of the

2All bearings in this thesis are expressed relative to the heading of the towed array.
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Figure 2.1: Collection by a translating linear array of three types of acoustic energy
generated by an interferer radiating directional noise, a target radiating a monochro-
matic signal, and random normal white pressure sequence originating from acoustic
ambient noise.

signals of interest.) and travelling at constant speed U along the x axis, as shown

in figure 2.1. The samples are collected at sampling rate fS (also chosen according

to the Nyquist-Shannon sampling theorem, i.e. fS ≥ 2fmax). We will neglect any

amplitude fluctuations such as propagation loss in this chapter. Note that, for the

purpose of derivations, we will also consider a plane wave incoming from bearing θ0

with unspecified spectrum or statistical properties.

2.1 Ideal case

Let us assume that the array is rigid and towed at a constant speed U along a straight

trajectory in the x direction. The position of the nth hydrophone is

rH,n (tk) =

[

Utk + (n− 1) δx

0

]

for n ∈ {1, 2, · · · , NH} . (2.3)

2.1.1 Conventional beamformer response

Let us consider a snapshot of acoustic data containing all three types acoustic energy

recorded by the afore-mentioned array. The measured signal for hydrophone n is
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then:

sn (tk) = p (rH,n (tk) , tk)

= pI (rH,n (tk) , tk) + pT (rH,n (tk) , tk) + pν (rH,n (tk) , tk) (2.4)

or, in a short notation:

sn (tk) = sI,n (tk) + sT,n (tk) + sν,n (tk) . (2.5)

We consider the Conventional Beamformer (CBF), also known as the delay and

sum beamformer. It can be formulated as:

s (θ, tk) =

NH∑

n=1

sn

(

tk −
δx
c
(n− 1) cos θ

)

. (2.6)

This “canonical” conventional beamformer assumes that the plane wave field is sam-

pled by a non moving array (i.e. rH,n (tk) = rH,n (0)). This implies that it does

not take into account the motion of the receiver. In this chapter, we do take the

movement of the receiver into account in the computation of the response but we do

not adapt the CBF to take it into account as this is usually not done in practical

implementations.

By writing equation (2.6) as:

s (θ, tk) =

NH∑

n=1

sn (tk) ∗ δ
(

tk −
δx
c
(n− 1) cos θ

)

, (2.7)

where δ : x 7→ δ (x) is the Dirac function and ∗ is the convolution operator. By

applying a temporal Discrete Fourier Transform (DFT) to equation (2.7) we obtain

the frequency equivalent of equation (2.6):

S (θ, fl) =

NH∑

n=1

Sn (fl) e
2πjfl

δx
c

(n−1) cos θ
, (2.8)

For simplicity, we choose the number of points for the DFT NDFT to be a power of
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two to allow the optimal use of the Fastest Fourier Transform in the West (FFTW)

algorithm [33, 34]. Both time and frequency representations will be used in this

thesis. Note that the formulation of the CBF according to equation (2.8) is actually

easier to implement and generates less computational load than its time domain ver-

sion, equation (2.6). Indeed, the implementation of equation (2.6) requires applying

delay in the time domain, which is usually performed by means of time-consuming in-

terpolations whereas the expression in equation (2.8) is just a complex multiplication

and moreover allows the selection of a frequency band of interest. Furthermore, one

might recognise in equation (2.8) the expression of a DFT applied in the hydrophone

direction. It is therefore possible to use a Fast Fourier Transform (FFT) algorithm to

compute S (θ, fl). The CBF is a linear operator so we can calculate the three terms

of the beamformed version of equation (2.4) separately.

2.1.1.1 Response of the ambient noise.

The ambient noise response to the CBF can be written as:

Sν (θ, fl) =

NH∑

n=1

Sν,n (fl) e
2πjfl

δx
c
(n−1) cos θ. (2.9)

If we consider only the positive frequency terms of the Fourier transform of sν,n, then

Sν,nis a NDFT/2 long complex sequence 3 . The DFT is a linear orthogonal trans-

formation from RNDFT to CNDFT /2 and, according to the ‘linear transform of normal

random vectors’ theorem [35], the real and imaginary part of Sν,n are independent

from each other, as well as both white and Gaussian. Similarly, the CBF is also a lin-

ear transform and Sν (θ, fl) is a complex centred Gaussian white sequence of variance

NDFTNHσ
2
ν represented in figure 2.2.

3Rigorously there are NDFT /2+1 terms in the positive frequencies of a DFT sequence, however,
two of these terms are real (the first and last positive frequencies representing the 0 Hz and Nyquist
frequency respectively). We will simplify the notations by considering these two real terms as a
single complex number.
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Figure 2.2: Frequency domain response in dB to a realisation of isotropic noise of
the conventional beamformer as a function of frequency and bearing with an array of
22.68m.

2.1.1.2 Response of the interferer.

By substituting the hydrophone positions expressed in equation (2.3) in the expression

of pI in equation (2.1) we can express the interferer contribution to the measured

signal as:

sI,n (tk) = pI

(

0, tk +
1

c
(Utk + (n− 1) δx) cos θI

)

= pI

(

0, tk

(

1 +
U

c
cos θI

)

+
δx
c
(n− 1) cos θI

)

. (2.10)

Applying the CBF to the latter yields:

sI (θ, tk) =

NH∑

n=1

pI

(

0, tk

(

1 +
U

c
cos θI

)

− δx
c
(n− 1) (cos θ − cos θI)

)

, (2.11)
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or expressed in the frequency domain:

SI (θ, fl) = PI

(

0,
fl

1 + U
c
cos θI

)
NH∑

n=1






e
2πj

fl

1 + U
c
cos θI

δx
c
(cos θ−cos θI)







n−1

= PI

(

0,
fl

1 + U
c
cos θI

)

×

1− e
2πjNH

fl

1 + U
c
cos θI

δx
c
(cos θ−cos θI)

1− e
2πj

fl

1 + U
c
cos θI

δx
c
(cos θ−cos θI)

. (2.12)

Note that all frequencies response are affected by a
(
1 + U

c
cos θI

)−1
factor which

corresponds to the Doppler effect due to the movement of the receiver. As this

measured plane wave is white, the effect is not directly observable.

The right hand side of equation (2.12) is the product of PI and of the frequency

domain response of the conventional beamformer to this particular array insonified

by a plane wave. For a plane wave incoming from bearing θ0 and for any frequency

f0, the impulse response will be written as:

INH
(θ, θ0, f0) =

1− e2πjf0
NHδx

c
(cos θ−cos θ0)

1− e2πjf0
δx
c
(cos θ−cos θ0)

. (2.13)

This expression is not defined for θ = θ0 or f0 = 0, but we have:

lim
θ→θ0

INH
(θ, θ0, f) = NH

lim
f0→0

INH
(θ, θ0, f0) = NH , (2.14)

We can then express SI (θI , fl) through its limit

lim
θ→θI

SI (θI , fl) = N2
HPI

(

0,
fl

1 + U
c
cos θI

)

(2.15)

which implies that SI (θI , fl) is a complex centred Gaussian white sequence of variance
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NDFTN
2
Hσ

2
I . This function is plotted in figure 2.3 for θ ∈ [0◦, 180◦] and θ0 = 75◦ .

The white feature in the figure is called the main lobe. Note the widening of the main

lobe towards the lower frequency, the red and yellow features are known as sidelobes;

the sidelobes of a louder target can cover the main lobe of a weaker target. This issue

is usually addressed by applying a taper window to the hydrophone measurements,

which can reduce sidelobes level, at the price of a wider main lobe, as described in [36]

. We will not consider any weighting technique in this thesis.
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Figure 2.3: Normalised frequency domain response of the conventional beamformer
in dB to a broadband plane wave as a function of frequency and bearing with an array
of 22.68m.

2.1.1.3 Response of the narrowband source.

Similarly, for the case of the narrowband source, we obtain:

ST (θ, fl) = INH

(

θ, θT ,
fl

1 + U
c
cos θT

)

PT

(

0,
fl

1 + U
c
cos θT

)

, (2.16)

with:

PT (0, fl) =

NDFT∑

k=1

AT sin (2πfT tk) e
−2πjl (k−1)

NDFT , (2.17)
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being the DFT of a sine. By writing:

sin (2πfT tk) =
1

2j

(
e2πjfT tk − e−2πjfT tk

)
, (2.18)

and recognising a geometric series, we obtain, after a few derivations:

PT (0, fl) = AT
1− e

2πjNDFT
fS

(fT−fl)

1− e
2πj
fS

(fT−fl)
. (2.19)

This response is plotted in figure 2.4 for θT = 75◦. Similarly to INH
(θ, θT , fl, ), the

fraction in equation (2.19) is not defined for fl = fT but its limit at that frequency is

NDFT . An example of PT is shown in figure 2.4.

One notices in equation (2.16) that the apparent frequency of the received signal

is affected by a 1+U/c cos θT factor. This factor represents the Doppler effect which

affects the received or apparent frequency with a bias. In the presence of a moving

point source, this factor is also a function of the source movement. It is therefore

impossible to compensate for it unless the range rate of the target is known. Most

systems do not take this effect into account at the beamforming stage, but use the

frequency variation to estimate the range of the target at a later stage [30]. We will

not consider it in this section of the thesis. However the use of the Doppler effect for

range-rate with active sonar is considered in Chapter 4.

If we consider the CBF response to the three types of acoustic energy, it appears

that the beamformer gain is equal to one for omni-directional white noise but that it

is equal to the number of hydrophones for any plane wave, at its bearing. In the case

of a narrowband source, a gain of NDFT is added if a DFT is performed. Figure 2.3

and 2.4 already give an idea of some of the performance criteria we will be looking

at for each beamformer or spatial technique. Indeed, in both figures, we can see that

the main lobe has a certain width. The wider the main lobe is, the more difficult it

will be to discriminate plane waves incoming from two very close bearings.

2.1.2 Integrating snapshots

In the CBF processing described in the previous, we have only considered the process-

ing of a single set of data. In an operational situation, data are recorded continuously.
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Figure 2.4: Normalised frequency domain response in dB of the conventional beam-
former to a 300 Hz harmonic plane wave incoming from bearing 75◦ as a function of
frequency and bearing with an array of 22.68m.

Rather than processing each snapshot of data individually, we can make use of the

stationary properties (slowly changing bearing and frequency) of the measured signal

to improve the performance by combining snapshots. Let us consider NS sets of data

of duration TB (with TB = NDFT/fS), referred to as snapshots, collected consecu-

tively at NS array positions along the ship track. We introduce here a notation to

represent this splitting of the data in snapshots. We will hence write:

ξb (tk) = s (tk + (b− 1)TB) for b ∈ {1, ..., NB} . (2.20)

The signal received by the nth hydrophone of the array during the bth snapshot as
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Figure 2.5: Splitting of data into snapshots.

a function of p (0, tk) (the acoustic pressure at the geometric origin) is:

ξb,n (tk) = p

(

0, tk +

(

n− 1

)
δx
c
cos θ0

︸ ︷︷ ︸

(1)

+

(

b− 1

)

TB
U

c
cos θ0

︸ ︷︷ ︸

(2)

+

(

b− 1

)

TB

︸ ︷︷ ︸

(3)

+

(
U

c
cos θ0

)

tk
︸ ︷︷ ︸

(4)

)

.

(2.21)

• The delay marked (1) is due to the spacing of hydrophones.

• (2) is the delay due to the displacement of the array between two snapshots.

• (3) is the delay due to the fact that ξb,n is recorded (b− 1)TB seconds later.

• (4) is the Doppler effect frequency shift (due to the displacement of the array

between two samples).

We can integrate these snapshots in two ways: incoherently (considering only the

amplitude of the beamformed output of each snapshot) or coherently (by also making

use of the phase).

2.1.2.1 Incoherent integration

By integrating these snapshots incoherently, we mean that we first apply the CBF

to each snapshot and then sum the energy of each snapshot in the frequency domain
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according to equation (2.22):

Sinco (θ, fl) =

NB∑

b=1

|Ξb (θ, fl)|2, (2.22)

where Ξ is the frequency equivalent of ξ. The phase of the signal, contained in the

argument of Ξb (θ, fl) disappears in the absolute value and is therefore not taken into

account. We will now derive the responses of the three considered types of acoustic

energy to this particular processing.

Response of the ambient noise Let us consider the incoherent sum of the am-

bient noise snapshots:

Sν,inco (θ, fl) =

NB∑

b=1

|Ξν,b,1 (θ, fl)|2. (2.23)

The term |Ξν,b (θ, fl)|2 is the sum of the square of the real and imaginary parts of

Ξν,b (θ, fl) which were found to be independent normal sequences of variance

NDFTNHσ
2
ν/2.
2

(NHNDFTσ2
ν)
Sν,inco (θ, fl) is therefore the sum of the square of 2NS centred nor-

mal sequences of variance 1 and, by definition, a random variable of central χ2
2NB

distribution. The Cumulative Distribution Function (CDF) of Sν,inco (θ, fl) is then:

F (x) =
γ (NB, x/ (NDFTNHσ

2
ν))

Γ (NB)
, (2.24)

in which Γ and γ are respectively the Γ-function [37]:

Γ : R+? → R
+, a 7→

∫ ∞

0

ta−1e−t dt (2.25)

and lower incomplete Γ-function:

γ : R2+? → R
2+, (a, x) 7→

∫ x

0

ta−1e−t dt. (2.26)

This CDF is that of a Γ-distributed random variable with scale NDFTNHσ
2
ν and
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shape NB. Sν,inco (θ, fl) has furthermore a variance of NBN
2
HN

2
DFTσ

4
ν and a mean of

NBNHNDFTσ
2
ν .

Response of the interferer We obtain for SI,inco (θ, fl):

SI,inco (θ, fl) = |INH
(θ, θI , fl)|2

NB∑

b=1

|ΞI,b (θ, fl)|2 . (2.27)

Similarly to the derivation of the ambient noise response, we obtain that

SI,inco (θI , fl) is also a Γ-distributed random variable with scale NDFTN
2
Hσ

2
I and shape

NB and has therefore a variance of NBN
4
HN

2
DFTσ

4
I and a mean of NBN

2
HNDFTσ

2
I .

Response of the target In the case of ST (θ, fl), we obtain:

ST,inco (θ, fl) = |INH
(θ, θT , fl)|2

NB∑

b=1

∣
∣
∣PT (0, fl) e

−2πjflTB(b−1)(1+U
c
cos θT )

∣
∣
∣

2

, (2.28)

which simplifies to:

ST,inco (θ, fl) = NB |INH
(θ, θT , fl)|2 |PT (0, fl)|2 . (2.29)

ST,inco (θT , fT/(1 + U/c cos θT )) is not defined but we have:

lim
(θ,fl)→(θT ,fT )

ST,inco (θ, fl) = NBN
2
HN

2
DFTA

2
T . (2.30)

We have now derived the responses of the three types of acoustic energy to the CBF

with incoherent integration of snapshots. We can now derive the same responses to a

coherent integration method, Passive Synthetic Aperture Sonar (PSAS) and compare

the effects of coherent and incoherent integration and their respective merits and

flaws.

2.1.2.2 Coherent integration : Synthetic aperture

We will now introduce the concept of synthetic aperture and derive the responses of

a typical synthetic aperture processor to the three types of acoustic energy. Passive
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Synthetic Aperture Sonar (PSAS) has been widely discussed in literature [38–43] and

most successful results have been obtained by Stergiopoulos [44]. A qualitative way

to explain synthetic aperture sonar is that through the translation of the receiving

array, we are able to collect information about a stationary plane wave at different

locations in space, so we spatially sample this wave along an aperture that is larger

than the physical aperture spanned by the array. Through appropriate processing,

we can coherently integrate the collected snapshots and make use of the increased

aperture. Indeed, when we consider the expression of a plane wave snapshot,

ξb,n (tk) = p

(

0, tk +

(

n− 1

)
δx
c
cos θ0

︸ ︷︷ ︸

(1)

+

(

b− 1

)

TB
U

c
cos θ0

︸ ︷︷ ︸

(2)

+

(

b− 1

)

TB

︸ ︷︷ ︸

(3)

+

(

1 +
U

c
cos θ0

)

tk
︸ ︷︷ ︸

(4)

)

,

(2.31)

term (2) contains essential spatial information about the measured signal s which is

neglected in the CBF. The idea of passive synthetic aperture processing is that if one

manages to compensate for term (3), one can make use of term (2) to generate a syn-

thetic or virtual aperture. Term (4) corresponds to Doppler and is not compensated

for at this stage.

The most intuitive way to apply the conventional beamformer to the synthetic

aperture constituted by the snapshots would be to compensate for term (3) in each

snapshot by applying a delay of (b− 1)TB, gather them side by side (i.e. transforming

NB matrices of size NH × NDFT into one matrix of size NBNH × NDFT ). We then

treat this matrix as data collected by one array of NBNH sensors and apply the CBF

to it. For simplicity we will assume here that for any k and b, U and TB are such that

the first hydrophone of the bth snapshot and the last hydrophone of (b−1)th snapshot

are spaced by δx, i.e.

TB =
NHδx
U

. (2.32)

This assumption is not a prerequisite for the method at all, but only meant for the

sake of simplifying the notations. If we compensate for delays (1), (2) and (3) of
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equation (2.31), we obtain:

ssynth (tk, θ) =

NH∑

n=1

NB∑

b=1

ξb,n

(

tk −
(

(n− 1)
δx
c
cos θ + (b− 1)

UTB

c
cos θ + (b− 1) TB

))

.

(2.33)

Note here that compensating for delay (1) only would correspond to applying the

CBF to the physical aperture, whereas compensating for (3) formats the snapshots

as if they were recorded by a single longer array and compensating for (1) and (2)

corresponds to applying the CBF to the whole synthetic aperture.

Combining with equation (2.32) yields:

ssynth (tk, θ) =

NH∑

n=1

NB∑

b=1

ξb,n

(

tk −
(

(n− 1 +NH (b− 1))
δx
c
cos θ + (b− 1)TB

))

(2.34)

If we define n′ = n+NH(b− 1) and s′n (tk) = ξb,n (tk − (b− 1)TB), we obtain:

ssynth (tk, θ) =

NHNB∑

n′=1

s′n

(

tk −
(

(n′ − 1)
δx
c
cos (θ)

))

. (2.35)

One recognises here an expression similar to equation (2.6) We have actually con-

structed here a virtual (or synthetic) array of NHNS sensors to which we are applying

the CBF. Before we analyse whether this synthetic aperture offers the same response

as a physical array of the same length, a short parenthesis on the implementation of

the algorithm and the computation time will be made. If we apply this method in an

on-line processing situation, we will have to form beams on an array of NSNH sensors

every time a snapshot becomes available.

A faster implementation consists of first forming beams on the real apertures, thus

obtaining virtual arrays of “directional hydrophones”, also known as sub-apertures.

A second beamformer can then be applied on these synthetic arrays. Practically, it

is based upon first compensating for term (1) of equation (2.31) on each snapshot

separately and then compensating for terms (2) and (3) to the complete set of snap-

shots. For a real-time implementation, compensating for term (1) is performed once

per iteration (every time a snapshot is measured, for the most recent snapshot) and
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compensation for delays related to terms (2) and (3) is applied on a sliding window

of snapshots of desired length (NS). While the theoretical results are the same for

both methods, the processing time is much smaller for the sub-aperture beamforming.

The computational load for beamforming on the NHNS sensor array is proportional

to TFullAperture ∼ NHNB, whereas one iteration of sub-aperture beamforming takes a

time proportional to TSubAperture ∼ NH +NB. Hence the ratio between the two is:

TSubAperture

TFullAperture
∼ NH +NB

NHNB
(2.36)

This implementation therefore brings considerable improvement to the processing

time. Typical values for NH and NB are 64 and 10, the time gain of using sub-

aperture processing for those values is more than eightfold [27].

To be able to compare the responses of this synthetic aperture beamformer or

coherent integration scheme with that of the CBF with incoherent integration, we

will consider the response of the synthetic aperture processor in energy values in the

frequency domain, i.e. |SSynth (fl, θ)|2.
Let us analyse the response of the three types of acoustic energy to this synthetic

aperture algorithm in the frequency domain.

Response of the ambient noise. |Sν,synth (θ, fl)|2 is the sum of the square of the

real and imaginary part of SI,synth which is a linear combination of non correlated

centred normal white processes and therefore a centred white gaussian process itself,

of variance NBNHNDFTσ
2
ν . |Sν,synth|2 is therefore a Γ-distributed sequence of scale

NBNHNDFTσ
2
ν and shape one, with a variance of N2

BN
2
HN

2
DFTσ

4
ν and a mean of

NBNHNDFTσ
2
ν .

Response of the interferer Let us consider two snapshots of duration TB taken at

TB interval, the PSAS processing would first consist in delaying the second snapshot

by TB. In digital signal processing, applying a delay to a set of samples means either

displacing them by the appropriate number of samples, or rotating the samples. The

first method assumes that the signal has a finite length, i.e all the samples before and

after the duration of that finite length sequence are null. Delaying the sequence of

samples by its duration means in this case replacing it by zeros. The second method
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assumes that the signal is periodic, and that therefore there exists a time after which

the signal repeats itself, and therefore applying a delay can be done by applying a

circular rotation to the samples. The interferer signal as we defined it is uncorrelated

in time; given a finite length snapshot, one cannot predict the value of the signal

after or before this snapshot. We therefore cannot delay it and there is no point in

applying PSAS to such a signal in this processing form.

However, when the PSAS processor is applied to a dataset containing broadband

(interferer in our notation) and narrowband sources, it is applied to all sources indis-

tinctively. Even though we know that there will be no improvement from PSAS on

the interferer, it is still interesting to observe its effect and any possible degradation

of performance compared to performing no integration at all.

If we apply the synthetic aperture processing by means of sub-apertures, we end

up summing uncorrelated sub-apertures, i.e. independent realisations of SI (θ, fl).We

therefore obtain for SI (fl, θ):

|SI,synth (θ, fl)|2 = |INH
(θ, θI , fl)|2

∣
∣
∣
∣
∣

NB∑

b=1

ΞI,b (fl, θ)

∣
∣
∣
∣
∣

2

. (2.37)

Reusing the derivations of the ambient noise response, we state that |SI,synth (θ, fl)|2 is
a random sequence of Γ-distribution with scaleNSNDFTσ

2
I and shape one. Its variance

is therefore N2
SN

4
HN

2
DFTσ

4
I and its mean NSN

2
HNDFTσ

2
I .

Response of the target Let us derive s′T,n with the simplifications used for equa-

tion (2.35):

s′T,n (tk) = AT sin (2πfT (tk + (n′ − 1) δx cos θT )) . (2.38)

If we apply the synthetic aperture beamformer detailed in equation (2.33) and use a

derivation similar to equation (2.19) we obtain:

|ST,synth (θ, fl)|2 = A2
T |INBNH

(θ, θT , fl)|2

×

∣
∣
∣
∣
∣
∣

1− e
2πjNDFT

fS
((1+U

c
cos θT )fT−fl)

1− e
2πj
fS
((1+U

c
cos θT )fT−fl)

∣
∣
∣
∣
∣
∣

2

.
(2.39)
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One notes that |ST,synth (tk, θ)|2 is maximum in (θT , fT/(1 + (U/c) cos θT )) and:

lim
(θ,fl)→(θT ,fT )

ST,synth (θ, fl) = N2
BN

2
HN

2
DFTA

2
T . (2.40)

We have now derived closed form solutions or complete statistics for the response

to three different kind of processing of three types of acoustic energy.

2.1.3 Performance analysis

2.1.3.1 Performance criteria

We will now define some criteria on which the performance will be assessed. To choose

a relevant performance criterion, we must keep in mind the final application of the

signal processing technique and the use a potential operator will make of it. When

using a system including a beamformer, the specific functions of the beamforming

component and associated signal processing techniques (coherent or incoherent inte-

gration in the present case) are to allow the operator to detect a target, even if it

is in the proximity of another source, and once this target is detected, monitor its

properties with the least possible interference from noise or other contacts. We will

therefore define performance criteria that characterize the ability of the processing

chain to detect a target in noise and to discriminate it from another target.

Detection performance The detection performance is usually judged through the

probability of detection and the probability of false alarm. Deriving these quantities

requires choosing a detection threshold and other considerations which are not directly

in the scope of this thesis.

To simplify the performance indicators and concentrate on the parameters that

are relevant to a beamformer and an integration scheme, we will adapt these usual

criteria.

We chose two criteria that give a quantitative representation of the separation

between noise and signal:

• The probability that the noise is superior to the signal (Pr (Sν ≥ ST ) in the case

of the target and Pr (Sν ≥ SI) in the case of the interferer). These probabilities

are plotted in figure 2.8
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• The ratio of the mean of the signal to the mean of the noise after processing,

expressed in table 2.1a

Both these parameters quantify the separation between the noise and the signal while

taking into account the statistical properties of both4. We will therefore use them as

detection performance indicators.

Discrimination power As we mentioned above, a beamformer can be considered

as a spatial filter. One of its prime functions is to discriminate signals incoming from

one direction from omni-directional signals, or from signals incoming from another

direction. The capacity to isolate a source from another or discrimination capacity can

be quantified by measuring the width of the main lobe of the beamformer response.

A common approach is to measure or derive this width at 3 dB below the maximum

of the main lobe (figure 2.6). A common approximation for the beamwidth of the

response INH
(θ, θ0, f0) of an array ofNH hydrophones processed with the conventional

beamformer is [25]:

θ3dB = 0.886
c

f0NHδx sin θ0
. (2.41)

A smaller beamwidth means that two targets very close in bearing will be easier

to discriminate (figure 2.7). It also means that when one considers a signal within

one beam, (for instance for a LOFAR (Low Frequency Analysis and Recording) time

frequency display), signals incoming from other directions will interfere less with that

signal.

4One could also have used a Rice or one-dominant-plus-Rayleigh to describe the distribution of
the target signal added to the noise.
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Figure 2.6: 10 log |INH
(θ, θ0, f0)|2for two values of θ0. The main lobe clearly broadens

near the aft and forward bearings.
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Figure 2.7: (Left) CBF response to one source with two different array lengths. The
Longer array yields a higher level. (Right) CBF response to two sources close in bearing.
Thanks to its smaller beamwidth, the longer array can discriminate between the two
targets.
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2.1.3.2 Performance comparison

We will now compare the performance of the incoherent and coherent integration

algorithms in terms of the performance indicators mentioned previously.

Detection performance

Modified Probability of False Alarm (PFA) The probabilities

Pr (Sν,inco ≥ SI,inco) and Pr (Sν,synth ≥ SI,synth) are not trivial to compute and are

derived in appendix A.

In the case of the incoherent integration of the target signal, the probability that

the noise is superior to the signal (which we will hence call “modified probability of

false alarm”) can be written as:

Pr (Sν,inco ≥ ST,inco) = Pr
(
Sν ≥ NBN

2
HN

2
DFTA

2
T

)
, (2.42)

which is in fact one minus the CDF of Sν evaluated atNBN
2
HN

2
DFTA

2
T . By introducing

here the notation:

SNRT =
A2

T

σ2
ν

, (2.43)

(SNRT being the SNR of the target signal at hydrophone level). We can write it

as:

Pr (Sν,inco ≥ ST,inco) = 1− γ (NB, NBNHNDFTSNRT )

Γ (NB)
, (2.44)

and similarly, we obtain:

Pr (Sν,synth ≥ ST,synth) = 1− γ (1, NBNHNDFTSNRT ). (2.45)

The modified probabilities of false alarm for incoherent and synthetic aperture

processing of the target and the interferer are plotted in figure 2.8. One will notice

that for these plots, NH and NDFT are both set to one to emphasize the effect of

the integration scheme. However, one could also consider that these probabilities

are plotted as a function of NHNDFTSNR which would be the signal to noise ratio
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after conventional beamforming. This makes sense since the beamforming takes place

before either coherent or incoherent integration and beamforming and integration are

independent operations in this case.
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Figure 2.8: Probabilities of false alarm for coherent and incoherent integration
schemes as a function of Signal to Noise Ratio in dB. The different colours denote differ-
ent number of integrated snapshots. These values are calculated for NH = NDFT = 1
to emphasize the influence of the number of snapshots. The SNR in the absciss is the
signal to noise ratio before processing (i.e. A2

T /σν in the case of the target and σ2
I/σν

in the case of the target).

Let us consider the effects of incoherent and coherent integration on a broadband

source (the interferer, on the left hand side of figure 2.8):

• For negative SNRs, the modified PFA is increased by coherent integration.

This can be qualitatively explained by the fact that when NB increases, the

shape parameter of the signal Γ-distribution increases as well, while the distri-

bution of the noise loses its tail. As a result, the probability that the noise is

superior to the signal gets larger and larger. In any case, a broadband target

characterised by a negative SNR after beamforming is very difficult to detect.

Incoherent integration however does not affect the PFA at all.

• On the contrary, for positive SNRs, the PFA is decreased by incoherent

integration, the tail of the noise distribution being reduced by integration.

Incoherent integration is therefore beneficial in terms of detection performance for
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positive SNR targets, whereas coherent integration has no effect on detection perfor-

mance.

Let us now consider the effect of integration on the narrowband target (right hand

side of figure 2.8):

• Incoherent integration: Similarly to the case of the broadband source, in-

coherent integration reduces the PFA for targets with positive SNRs while in-

creasing it for negative SNR targets.

• Coherent integration however substantially decreases the PFA even if the

SNR of the target is negative. This means that coherent integration, or PSAS,

improves the response of the target even if its SNR is very negative to begin

with, as long as enough snapshots are integrated. We will see in section 2.2 that

this conclusion is only valid for this perfect case.

To put it in a nutshell, incoherent integration is beneficial to the detection perfor-

mance of both narrowband and broadband sources, provided they have positive SNRs

before integration, while emphcoherent integration drastically improves the detection

of narrowband targets whatever their SNR but does not bring anything to detection

of broadband sources.

SNR Let us now consider the SNR after integration for each method. It appears

clearly in table 2.1b that only coherent integration applied to the narrowband target

brings a gain to SNR. This means that using PSAS will bring a clearer LOFAR picture

and that the resulting signal will be better usable by post processing techniques, such

as classification, which are highly dependent on SNR.

Table 2.1a: SNR after integration and SNR gain for incoherent and coherent integra-
tion schemes.

Interferer Target

SNR (Incoherent) NHσ
2
I/σ

2
ν NHNDFTA

2
T/σ

2
ν

SNR (Coherent) NHσ
2
I/σ

2
ν NHNDFTNBA

2
T/σ

2
ν
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Table 2.1b: SNR after integration and SNR gain for incoherent and coherent integra-
tion schemes.

Interferer Target

SNR gain (Incoherent) 1 1

SNR gain (Coherent) 1 NB

Discrimination The responses of equations (2.27), (2.29), (2.37), and (2.39) are

all the product of a term related to the temporal spectrum of the signals radiated

by the target and the interferer, and a term related to the beam or spatial spectrum

of the response. The 3 dB beamwidth that gives an indication of the discrimination

power can be deduced from this beam spectrum or pattern as explained in 2.1.3.1. All

the responses mentioned above are a multiple of INH
(θ, θ0, fl) except |ST,synth (θ, fl)|2

which is a multiple of INBNH
(θ, θ0, fl). Its beamwidth is therefore NB times narrower

than the beamwidth of outputs of incoherent integration or no integration at all.

2.1.4 Summary and discussion

Table 2.2: Qualitative performance comparison between incoherent and coherent in-
tegration schemes for narrowband signals (NB) and broadband signals (BB)

Technique/Type of signal PFA SNR θ3dB
Incoherent NB ? - -
Incoherent BB ? - -
Coherent NB ?? ?? ??
Coherent BB - - -

We have derived the responses of incoherent and coherent integration schemes for

passive sonar in ideal conditions with different types of signal. From these responses,

we computed the performance indicators that are summed up in table 2.2. This

study of an ideal case showed that depending on the type of signal, both coherent

and incoherent methods bring improvement, and that in this ideal situation, they
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Figure 2.9: Combination of successive coherent and incoherent integration.

do not degrade the performance. Coherent integration brings drastic improvement to

narrowband signals such as that of the target but incoherent integration also improves

the detection performance of broadband signals (interferer).

By combining the two methods, their respective benefits will add up. If one has

generated a series of coherently integrated snapshots in, for instance, a sliding window

fashion, one can incoherently integrate this series of snapshots, again in a sliding

window fashion to add up the advantages of coherent and incoherent integration.

This type of processing is shown in figure 2.9.

2.2 Realistic case with perturbations

In the previous section we have derived the response of coherent and incoherent

integration schemes in ideal conditions. This was necessary to lay the basis for the

concept of passive synthetic aperture. In this section, we will consider a number of

perturbations and their effect on performance. A scheme to compensate for these

perturbations based on the extension of an existing algorithm will be proposed and

experimental results will be shown.

2.2.1 Description of the perturbations

In the previous section, we have considered the coherent summation of snapshots of

acoustic data. This coherent summation was performed in the assumption that only

phase shifts (3) and (4) in equation (2.31) needed to be compensated for. A number
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of known effects can cause phase perturbations that can compromise the successful

coherent summation of the snapshot:

• The source movement, which was not taken into account until now, is a major

source of phase perturbation. Not only does the movement of the source be-

tween two snapshots cause phase jumps between two successive snapshots, but

a change in course or speed can also cause a variation in doppler on the received

signal.

• Towed hydrophone arrays are long flexible tubes which shape and attitude can

be altered by currents as well as movements of the towing platform in heavy

weather or turns [45]. These arrays are often instrumented with non acoustic

sensors (heading, depth, roll) to offer the possibility to estimate their shape,

but the implementation of this shape in the processing adds a lot of complexity

to the algorithms.

• Some of the tonals radiated by ships and submarines depend on the engine

revolutions and as a result their phase is not always stable. If the helmsman

of the ship changes the throttle of the engine, the frequency of the tonal can

change dramatically.

• We have assumed until now propagation in a full space homogeneous medium,

but reflections against the surface and the seafloor as well as variations in sound

speed in the water can cause changes in sound travel times between the source

and receiver and interference between multiple paths [46].

Experience shows that in most cases, for low frequency ASW, these effects are small

enough to be ignored at the scale of one snapshot but will cause performance degra-

dations if ignored when combining several snapshots. These effects are too numerous

to examine each in details and therefore, we will consider the kinematic effects only

(source and receiver movement). These phase errors have no effect on incoherent

integration as it does not use the phase information of the individual snapshots.

We assume the target range is long enough for the bearing to be unchanged

between two snapshots. The receiver is however affected by a lateral movement.

Furthermore, the target is not stationary but its range is linearly varying in time
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with range rate ṙ 5. To derive the effect of these perturbations we will start by

expressing the perturbated received signals in the near field formulation and apply

the far field approximation, including the perturbations. The positions of the source

and receiver at the beginning of each snapshot are now respectively

rT =

[

rT (tk) cos θT (tk)

rT (tk) sin θT (tk)

]

rH,n =

[

U (b− 1) TB − (n− 1) δx

yT (b)

]

,

with

rT (tk) = rT,t0 + ṙtk. (2.46)

2.2.2 Effect of the perturbations

To improve the quality of our model, let us first consider a spherical wave, see fig-

ure 2.10. At the target position rT , it can be expressed by p (rT , tk) and then at the

receiver, the measured pressure is

p (rH,n, tk) = p

(

rT , tk −
1

c
|rH,n − rT |

)

(2.47)

= p

(

0, tk −
1

c
(|rH,n − rT | − |rT |)

)

= p

(

0, tk −
1

c

√

r2T + x2
H,k + y2H,k − 2rTxH,k cos θT − 2rTyH,k sin θT

)

.

As mentioned above, we assume a long range, i.e. that rT � xH,k and rT �
yH,k. We can therefore do a first order Taylor development of the square root in the

expression of the measured signal, noted ζb,n (tk) :

ζb,n (tk) = p

(

0, tk −
1

c
(rT − xH,k cos θT − yH,k sin θT )

)

. (2.48)

5 ˙{ } denotes the time derivative
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Figure 2.10: Effect of source and receiver movement on the measured travel time.
The bold line emphasizes the introduced travel time variation .

ζb,n (tk) only differs from ξb,n (tk), the “ideal” measured signal by a delay:

ζb,n (tk) = ξb,n

(

tk −
1

c
(rT − yH,k sin θT )

)

. (2.49)

The response of the synthetic aperture processor can therefore be written as

Ssynth (fl, θ) =

NH∑

n=1

NB∑

b=1

Zb,n (fl) exp

(

2πjfl

(

(n− 1)
δx
c
cos θ

))

×

exp

(

2πjfl

(

(b− 1)
UTB

c
cos θ + (b− 1)TB

))

=

NH∑

n=1

NB∑

b=1

Ξb,n (fl) exp

(

2πjfl

(

(n− 1)
δx
c
cos θ

))

×

exp

(

2πjfl

(

(b− 1)
UTB

c
cos θ + (b− 1)TB

))

×

exp

(

2πj
fl
c
(ṙT bTB + yH,k sin θT )

)

(2.50)

where Z is the Fourier transform of ζ and we assume for simplicity that

exp
(

2πjfl
rT,t0
c

)

= 1. (2.51)
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One recognizes here the expression for the Synthetic Aperture processor response

detailed in equation (2.39) with the difference that each snapshot is multiplied by the

complex term exp
(
2πj fl

c
(ṙT bTB + yH,k sin θT )

)
.

This factor represents a phase perturbation between the snapshots. It consists of a

term related to the unaccounted-for motion of the target (its range rate) and another

term related to the lateral movement of the receiver itself. However, one will notice

that both factors are affected by the target, as the part of the phase perturbation

related to the movement the array comprises a sin θT factor. This has consequences

for the eventual compensations of these errors as we will see in section 2.2.3.

To establish a general measure of the effect of these perturbations on the synthetic

aperture processor, we chose to assume that these perturbations were random from

one snapshot to the other and concentrated on the unwanted lateral motion of the

array. Closed-form solutions for the first and second moment of the beam pattern

of an array affected by amplitude, phase and shading errors are given by Nuttall et

al. in [47, 48] but do not directly apply to the specific case of synthetic aperture

considered here. Considering the complexity of the expressions derived by Nuttall

we chose to perform simulations to assess the performance reduction caused by the

phase perturbations described here.

We ran Monte Carlo simulations of these perturbations with a different number

of snapshots and modelled the lateral motion of the array as a Gaussian process,

constant within a snapshot and equal for each hydrophone. We then applied the

synthetic aperture processor to the resulting signal and observed the effect on the

beampattern and the gain. The target was simulated at broadside (90 ◦) without

noise for a tonal of frequency 250Hz. The array used is modelled after the Thales

CAPTAS array used throughout the thesis and consists of 64 hydrophones spaced by

0.36m. The results of these simulations are shown in figure 2.11 and figure 2.12.

Let us consider figure 2.11. This figure shows the evolution of the synthetic aper-

ture beampattern as the standard deviation of the perturbations increases. The

perturbed beampattern migrates from the ideal form corresponding to the synthetic

aperture, to the beampattern corresponding to the physical aperture, as the perturba-

tion standard deviation reaches half a wavelength. The side lobes of the beampattern
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Figure 2.11: Average synthetic aperture processor response (red line) for different
standard deviations of transversal motion perturbation, expressed in wavelengths at
the signal frequency. The dashed and mixed line represent the single aperture and ideal
synthetic aperture responses respectively.
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Figure 2.12: Synthetic Aperture gain for different number of snapshots, as a function
of the standard deviation of transversal motion perturbations expressed in wavelengths
at the signal frequency.

increase, while the main lobe decreases. This phenomenon is also observed in fig-

ure 2.12 in which the gain brought by the synthetic aperture is plotted against the

standard deviation of the perturbation. As the perturbation becomes more severe,

the gain diminishes until it reaches a minimum of 0 dB for a perturbation of half-

wavelength of standard deviation.

Figure 2.11 and figure 2.12 show average results for each configuration. The

effect on higher moments and the resulting degradation in probability of detection,

as defined in section 2.1.3.1 is not considered here. However, the distribution of the

noise after coherent integration is not affected by phase errors. One can therefore

deduce that when the perturbations are such that the synthetic aperture gain is 0 dB,

the performance in detection as defined in the previous chapter is the same as if

no integration had taken place. The last statement is true in the “average” case.

An exact derivation of the probability of false alarm requires a full analysis of the

distribution of the signal peak in presence of perturbations and we will not perform

it here.
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Figure 2.13: Overlap Correlator. A phase correction factor (Ψb) is estimated by
comparing the phases of overlapping hydrophones in successive snapshots (Top). The
snapshots are realigned using the phase correction factor as if to form a single, longer,
array.

2.2.3 Compensation of phase mismatch between snapshots

2.2.3.1 Description of the phase compensation

An algorithm to compensate for the phase perturbations as described in the former

section was developed by Stergiopoulos and Sullivan [38]. This algorithm, known

as Extended Towed Array Measurements (ETAM), or the more explicit overlap cor-

relator, uses the phase differences between signal from overlapping hydrophones to

estimate a phase correction factor as shown in figure 2.13. ETAM has been widely

used since its publication [27,28,49–51]. One of the advantages this algorithm brings

is that it does not require position sensors to compensate for motion perturbations.

ETAM relies on the assumption that if hydrophones of successive snapshots over-

lap, they should have the same phases, and that any phase disparity between two

snapshots is the same for all hydrophones. Furthermore, to get optimal results out

of ETAM, one should choose the snapshot length TB so that successive snapshots are

half overlapping in space, i.e.:

TB =
(NH − 1) δx

2U
(2.52)

A phase correction Ψb (fl) is derived as the weighted average of the phase differ-

ences between overlapping hydrophones, which is given as,
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Ψb (fl) = arg

(∑NH/2
n=1 Ξb,NH/2+n (fl) Ξ

?
b+1,n (fl)ρb,n (fl)

∑NH/2
n=1 ρb,n (fl)

)

. (2.53)

The weights ρb,n are the coherence of each overlapping pair of hydrophones calculated

over a number of frequency bins Q:

ρb,n (fl) =

∣
∣
∣
∑Q/2

i=−Q/2 Ξb,NH/2+n (fi+l) Ξ
?
b+1,n (fi+l)

∣
∣
∣

√
∑Q/2

i=−Q/2

∣
∣Ξb,NH/2+n (fi+l)

∣
∣2
∑Q/2

i=−Q/2 |Ξb+1,n (fi+l)|2
. (2.54)

ETAM was implemented and tested on experimental data collected at sea. The results

are shown in section 2.2.4.

2.2.3.2 Limitations of the phase compensation

Performance of ETAM in noise and the resulting bearing accuracy has been explored

in length by Edelson and Sullivan in [52] and we will therefore not elaborate on the

topic. However let us consider the case of ETAM being applied to a dataset containing

two sources at two different bearings, one of them being louder than the other. The

measured signal is a sum of signals of both sources and the estimated phase correction

factor will be a sum of terms related to one source, terms related to the other and

mixed terms. Let us consider the sum of two complex numbers z1 and z2 such that

z1 = r1 exp (jϕ1)

z2 = r2 exp (jϕ2), (2.55)

where ϕ1 and ϕ2 are their respective arguments, r1 r2 their modulus such that

r1 � r2. (2.56)

Then,

arg (z1 + z2) = arctan






sinϕ1 +
r2
r1

sinϕ2

cosϕ1 +
r2
r1

cosϕ2






' ϕ1. (2.57)
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This means that, in the case of two sources, the phase correction estimated by ETAM

will correspond to the source measured at the highest level, and, as we saw in section

2.2.2, the phase discrepancy between two snapshots corresponding to a given source

depends in most cases on the source itself, for instance on its bearing or range rate. We

can therefore expect ETAM to provide a phase correction that will bring improvement

only on the loudest target. In most cases with towed array systems, the loudest

measured target is often the closest, i.e. the towship, while targets of interest will be

much less loud. This issue is addressed in the following section.

2.2.3.3 Inverse beamforming in combination with ETAM

We propose here a solution to enable ETAM to improve results for a target that is not

necessarily the loudest. A solution consisting in applying ETAM in the beam domain

was proposed by Bee in [49] ulterior to the development of this method. The approach

we chose consists in “removing” the loudest target before applying ETAM. This has

to be performed at hydrophone level, since ETAM is applied to hydrophone signals.

An array signal processing designed by Wilson and Nuttall [53] known as Inverse

Beamforming (IBF) or the more explicit “coherent onion peeler” performs exactly

this task. The algorithm consists in forming beams on the array of hydrophones,

detecting the loudest target, estimating its phase and amplitude for each frequency

and subtracting a synthetic plane wave with the same phase, amplitude and direction

of arrival from the original hydrophone signals. This operation is repeated until

all targets have been registered and cancelled. The algorithm has the additional

advantage that when a source is removed from the array signals, its sidelobes are

cancelled as well.

Results of this approach are shown in the following section.

2.2.4 Experimental results

2.2.4.1 2001 Experiment

In order to test the algorithms described in section 2.2.3, an experiment was carried

out during a 2001 LFAS trial [54] in a Norwegian fjord near Bergen. It involved two

ships sailing parallel tracks at equal speeds (4 kn). One ship was towing a 22.68 m
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Thales CAPTAS (Combined Active Passive Towed Array Sonar) triplet array; the

other ship was towing the TNO broadband acoustic source Socrates. Socrates was

used as a target and radiated tonals. We concentrated our efforts on a narrow band

(10 Hz) around one of the tonals, at 1100 Hz. A ferry passing-by served as a target

of opportunity. A 75 m long array was synthesized with five overlapping snapshots.

The pictures in figure 2.14 are time-bearing plots of the measured signals, both us-

ing ETAM, but with (figure 2.14(c)) and without (figure 2.14(b)) the use of an IBF

module. Note that both these pictures were generated using a Port Starboard beam-

former [55] in combination with ETAM. More details are given for this implementation

in [27].

The target of interest (Socrates) is situated at a bearing of approximately 110 ◦.

One notices in figure 2.14(c) that the level after processing of both Socrates (especially

around 10min) and the target of opportunity in the first 4min is enhanced by the

addition of IBF.
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Figure 2.14: Time bearing plots of a dataset collected at sea processed with CBF,
ETAM and IBF. The colour represents the signal measured energy in dB. The dynamic
range of the picture is 20 dB.
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2.2.4.2 2003 Experiment

In an experiment taking place during a 2003 trial [56] off the coast of Sardinia, data

were collected with the same receiving triplet array towed by HNLMS Mercuur from

an unidentified target of opportunity for more than one hour. The exact frequency

of the source is concealed for security reasons but is lower than 100Hz. Results for

CBF and ETAM are displayed in figure 2.16 as time-bearing plots and time-frequency

plots. An average of the time-frequency plots is plotted in figure 2.15. One notices in

figure 2.16(b) the reduced beamwidth compared to figure 2.16(a). When processing

this experiment, a number of 10 half overlapping snapshots was integrated, thus

generating a synthetic aperture of 5.5 times the length of the physical aperture. The

theoretical SNR gain for such a synthetic aperture is

10 log10NB = 10 log10 5.5 ≈ 7.4 dB, (2.58)

(see table 2.1b) which is about the gain we observe in figure 2.15.
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Figure 2.15: Average of the CBF and ETAM time frequency plots collected during
the 2003 NL-LFAS trial. Each plot is normalised to its maximum. An unknown value
between 0 and 100Hz has been subtracted from the frequency axis for security reasons.

2.3 Summary and Conclusion

We have considered a method of coherent integration of beamformed data, known as

passive synthetic aperture sonar (PSAS), applicable to narrowband signals and com-

pared it with the usual method of incoherent integration. Our theoretical analysis has
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Figure 2.16: Time bearing and Time frequency plot of data collected during the 2003
NL-LFAS trial. All plots are normalised to the maximum energy value of the spectrum
at any instant. An unknown value between 0 and 100Hz has been subtracted from the
frequency axis for security reasons.
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shown that this method of coherent integration can bring a substantial improvement

in signal to noise ratio (SNR), probability of false alarm as well as discrimination

power compared to the conventional incoherent method. Application of this method

to field data has been found to require taking a number of additional steps to reach

comparable results. These steps consist of estimating and applying a phase correction

factor that compensates for a number of possible phase perturbations. This phase

correction factor is different for each target. A noise cancellation technique was used

in order to estimate this phase correction factor from targets that are not necessar-

ily the loudest in the acoustic picture. Using this set of techniques, we were able to

reach the theoretical gain (see table 2.1b) on a dataset measured from a low frequency

target of opportunity in operational conditions.

PSAS improves the narrowband passive sonar picture known as LOFAR. It allows

a better discrimination between different sources and increases the SNR for tonals.

This improvement relies on the successful coherent integration of acoustic data col-

lected at different locations, which in turn depends on the estimation of a phase

correction factor. Previous studies [52,57] have shown that, at low SNR, the estima-

tion of this factor becomes challenging and there is no improvement compared to the

conventional method.

In this work, we have considered only straight tracks, but it is also possible to

integrate a non straight array shape with the described synthetic aperture processing

similarly to the work of Groen [55].



Chapter 3

Localisation with Passive Sonar
using Model-Based Methods

Engraving of Captain Nemo viewing a giant squid from a porthole of the Nautilus

submarine, from Vingt Mille Lieues Sous les Mers by Jules Verne, [58].
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In the previous chapter we concentrated on a passive method for the detection of

a source with a towed hydrophone array. In this chapter we concern ourselves with

methods for the passive localisation of a similar source with the same sensor. In this

context, localisation means “estimation of the range and bearing of a source”. The

depth of the source is left aside as it is less critical to know from the operational

point of view and requires very different estimation methods. In the first section, we

present the problem of passive ranging applied to towed array sonars. The bearing of

a source measured with a linear array is usually straightforward to obtain while the

range requires a higher level of complexity in the estimating process. We consider a

Kalman based recursive method in the second section and two different batch methods

in the third section.

3.1 Considerations on passive ranging

 
 

 

Near field

Far field

Figure 3.1: Example of near and far field with a linear array: In the near field, the
array (red) intercepts a curved portion of the wavefront whereas in the far field, the
intercepted wavefront is almost linear.

Acoustic passive ranging consists of estimating the range of a source using the

acoustic signal it radiates. In most cases, this is done without prior knowledge of

the signal itself, in particular without knowing at what time the signal was trans-

mitted, contrary to active sonar. In a homogeneous unbounded medium, an acoustic

pressure wave propagates spherically, and the ranging array intercepts a portion of

the spherical wavefront, the radius of which is the range of the source. However, if

the array is far enough from the source or the array is small enough, the observed
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wave is very similar to a plane wave and the curvature of the intercepted wavefront is

difficult to measure and the range of the target difficult to deduce. This is illustrated

in figure 3.1. This can be quantified through Fresnel’s theory of near field and far

field [25]. A spherical wave can be approximately considered as a plane wave if the

range of the source with respect to the array is longer than four times the Fresnel

range Rf which is given by

Rf =
L2

4λ
=

fL2

4c
, (3.1)

where L is the length of the receive array and λ is the wavelength of the measured

signal. The source is then said to be in the far field of the receiver. The longer

an array or the higher the frequency, the larger its Fresnel range. For example, for

a source radiating a 50Hz tonal and an array of 22.68m (the length of the TNO

CAPTAS receive array), Fresnel’s range is 4.29m and the far field beyond 17.1m.

For the same array at 500Hz the far field is at 171m and further. Different methods

are used for the estimation of the range of a source depending on whether it is in the

near or the far field (figure 3.2).

For the applications we are considering, with the current array, the sources of

interest are almost always in the far field, as the detection range of the array is far

beyond the near field, and the platform is not inclined to approach what might be a

potential enemy. Let us first consider the case of far field.

In the far field, the wavefront curvature is more difficult to measure but the direc-

tion of arrival of the wave is straightforward to estimate by means of beamforming.

Measured at different locations, this direction of arrival may be used in certain situa-

tions to deduce the range, and even the course and speed of a source [59]. This type

of estimation, known as Target Motion Analysis (TMA) was and is still very often

performed by hand aboard submarines since the end of the 1950’s [26].

During the last thirty years, a number of automatic algorithms have been designed

to reduce the workload of sonar operators. Some of these algorithms are based on

Kalman filters [60,61], Maximum Likelihood techniques [62] or particle filters [63,64].

These methods are however all limited by the frequent poor observability1 of the TMA

1Observability is used here in the control theory sense as defined by Kalman [65], i.e. the ability
to uniquely estimate state variables of a system using a given measurement.
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Table 3.1a: Summary of recursive passive ranging methods for sonar.

Narrowband Broadband

Time-Hydrophone
Space (near field)

Section 3.2.1 Section 3.2.2

Frequency-Bearing
Space (far field)

Kalman-based
frequency-bearing
TMA [71]

Kalman-based bear-
ing only TMA [72]

problem [66] which either requires prior knowledge about the speed of the target or

a manoeuvre to provide a reliable estimate. Manoeuvres of the towing platform

interfere with the general operations of the ship and might even put the platform at

a disadvantage. A technique that would make it possible to passively estimate the

range of a source without a manoeuvre or a change of speed would be of great added

value from the operational point of view. As it is well known in the field of TMA,

this is impossible when using the bearings of a source.

As we said, most targets are in the far field, and one can neither get too close to

them, control their radiated signals nor wish to physically enlarge one’s sensor. In

Chapter 2, we have considered Synthetic Aperture methods which goal is to create a

virtual longer array. Such an array would have an extended Fresnel range and near

field methods might be more applicable to it. Near field methods for passive ranging

have been investigated in the past [67–69] before Low Frequency Active Sonars (LFAS)

were introduced. Passive sonar arrays were the main sensors and were much longer

than the current receiving arrays of LFAS suites. In this chapter we investigate similar

methods, using a synthetic aperture instead of an actual long physical array. When

the target is inside the near field, the wavefront curvature is easy to measure and

directly related to the range of the source. There exist different ways to analyse this

wavefront. Some are based on the analysis of the phase of the signal [70] while others

rely on the analysis of time delays between the different hydrophones of an array.

Both types of methods will be studied in this chapter (see tables 3.1a and 3.1b).

Finally, a distinction will be made between batch methods for which one has to

collect data for a duration before obtaining an estimate and recursive methods for

which one obtains an estimate every time a sample is collected.
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Table 3.1b: Summary of batch passive ranging methods for sonar.

Narrowband Broadband

Time-Hydrophone
Space (near field)

Not treated. MLE Time Delay
TMA Section 3.3.2

Frequency-Bearing
Space (far field)

MLE frequency-
bearing TMA [73]

MLE bearing only
TMA Section 3.3.1

     ∆t1∆t2∆t3
. . .

∆tNH

(a) Time delay based ranging

   θ1 θ2 θ3

(b) Bearing based ranging

Figure 3.2: Examples of ranging methods in near field (left) and far field (right).

3.2 Recursive estimation

One of the most frequently used recursive estimators is the Kalman filter. Invented

at the end of the 1950s by Rudolf Emil Kálmán, the Kalman filter emerged out of

control theory [74]. First developed for linear problems, the Kalman filter theory was

later extended to non linear problems [75]. One of the particularities of the Kalman

filter is its state-space description of a system which makes it easy for its user to

relate the estimator to the actual physical system. Let us consider briefly the concept

of the Kalman filter and how to apply it to the passive sonar localisation problem.

The concept of using a Kalman filter to provide range estimates from hydrophone

measurements has been put forward by Candy and Sullivan [70].

We first need to describe the problem with a state space model. A state space

model is a mathematical representation of a process used in control theory. Let us

consider the acoustic source as a system. The state of this system at any given time

is described by state-space variables or states. In our case, the states of the “acoustic

source” system can for instance be:
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• Its frequency fT and amplitude AT (in the case of a sinusoidal source).

• Its range rT and bearing θT or Cartesian position xT , yT and their derivatives

(depending on the choice of coordinates).

The temporal evolution of these states is driven by dynamics that can be described by

equations. For instance, the motion of the source in the x-direction could be modelled

by a uniformly accelerated linear motion,

xT,k+1 = xT,k + ẋT,kδt + ¨xT,k
δ2t
2

+Nx (0, σx)
δ2t
2

ẋT,k+1 = ẋT,k + ẍT,kδt +Nẋ (0, σx) δt

ẍT,k+1 = ẍT,k +Nẍ (0, σx) (3.2)

where {̇} is the time derivative, δt the sampling interval, and N. (0, σx) are Gaussian

noise terms that account for the incertitude of match between the model and the

actual system. The extension of the model to the y-direction is straightforward.

Similarly, we assume for instance that the source is transmitting a sinusoidal signal

(A sin (2πfT,ktk)) with constant or very slowly changing frequency and amplitude,

fT,k+1 = fT,k +Nf (0, σf ) .

AT,k+1 = AT,k +NA (0, σA) . (3.3)

The dynamics equations (3.2) and (3.3) can be written in a matrix form:

xk+1 = Φxk +wk, (3.4)

where xk is the state vector at time tk

xk =
[

xk ẋk ẍk yk ẏk ÿk fk Ak

]T

, (3.5)
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Φ is the state transition matrix,

Φ =




















1 δt
δ2t
2

0 0 0 0 0

0 1 δt 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 δt
δ2t
2

0 0

0 0 0 0 1 δt 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




















(3.6)

and wk is a random vector with covariance Q, a diagonal square matrix with

diagonal

diag (Q) =

[

σ2
x

δ4t
4

σ2
xδ

2
t σ2

x σ2
y

δ4t
4

σ2
yδ

2
t σ2

y σ2
f σ2

A

]

. (3.7)

Equation (3.4) describes the dynamics of the state variables, i.e. how they are

behaving along time. The better the model matches reality, the smaller the value

attributed to the standard deviations in Q can be chosen. The elements of this

matrix are often not measurable physically but are used as tuning parameters as we

see later in this section.

This system is measured or observed by the passive sonar array through its radi-

ated pressure. The signal measured by each hydrophone is

yn,k =
Ak

(xT,k − xH,n,k)
2 + (yT,k − yH,n,k)

2 ×

sin

(

2πfT,k

(

tk − 1
c

√

(xT,k − xH,n,k)
2 + (yT,k − yH,n,k)

2

))

+Ny,n (0, σR) , (3.8)

where (xH,n,k, yH,n,k) is the position of the nth hydrophone at time tk, Ny,n (0, σy)

the acoustic noise on the nth hydrophone, and c the speed of sound. The noise on each

hydrophone signal is assumed white, gaussian and uncorrelated between hydrophones
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but of same variance σ2
R for all hydrophones. By defining the function

hk : R8 → R
NH

xk 7→ Ak

(xT,k − xH,n,k)
2 + (yT,k − yH,n,k)

2 ×

sin

(

2πfT,k

(

tk −
1

c

√

(xT,k − xH,n,k)
2 + (yT,k − yH,n,k)

2

))

,

∀n, n ∈ [1, NH ] , (3.9)

we can write equation (3.8) in matrix form for all hydrophones

yk = hk (xk) + vk, (3.10)

where vk is a NH rows random vector of covariance

R = σ2
RINH

, (3.11)

where INH
is the NH identity matrix. Equation (3.10) is known as the measurement

equation and describes the measurement process including the array characteristics

(gain, inaccuracies, noise), but also in this particular case the sound propagation

between the source and the sonar. We have chosen in this example a spherical wave

propagation model, but this could be replaced by any propagation model such as a

plane wave model or a normal mode model. Contrary to the matrix Q, the values in

R are directly measurable (in this case, the noise level on each hydrophone).

The Kalman filter uses the elements defined in (3.4) and (3.10) to produce an

optimal estimate of x. The equations for the Kalman filter have been developed

extensively in literature [75]. We explain the idea behind the Kalman filter through

a simple example (figure 3.3). Let us assume we have specified a dynamics model for

the system of interest (3.4) and indicated how well this model fits reality by tuning

the covariance matrix Q [76]. We have also described the measurement process in

equation (3.10) and the precision of the instrument through the covariance matrix

R. The Kalman filter uses the previous estimate of x (x̂k−1|k−1) as well as the state

transition matrix Φ to produce a prediction of x̂k:

x̂k|k−1 = Φx̂k−1|k−1. (3.12)
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x̂k|k−1 (Prediction)
x̂k|k (New estimate)

yk (Measurement)

x̂k−1|k−1 (Previous estimate)

Figure 3.3: Illustration of a simple Kalman filter.

This prediction, shown as a green circle in figure 3.3, is combined with the measure-

ment yk, shown as a square, through the so called Kalman gain (Kk), also computed

from the filter input parameters (Q and R), to provide an estimate (red star in

figure 3.3)

x̂k|k = x̂k|k−1 +Kk

(
yk − h

(
x̂k|k−1

))
. (3.13)

with

Kk = Pk|k−1H
(
x̂k|k−1

)T
S−1
k , (3.14)

the Kalman filter gain and

Sk =
(

H
(
x̂k|k−1

)
Pk|k−1H

(
x̂k|k−1

)T
+R

)

, (3.15)

the innovation covariance and

Pk+1|k = ΦPk+1|kΦ
T
(
x̂k|k

)
+Q, (3.16)

the error covariance prediction. H is the Jacobian of the measurement function

evaluated at the state prediction:

H
(
x̂k+1|k

)
=

∂h

∂x

∣
∣
∣
∣
x̂k+1|k

. (3.17)
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To reach a basic understanding of the Kalman filter, let us consider the case of x

and y being scalars and h a linear application. In this very specific case, it appears

from (3.13) that x̂k|k is a linear combination of x̂k|k−1 and yk; The Kalman estimate is

a weighted average of the prediction and the measurement. One obviously wonders how

the prediction and the measurement are respectively weighted and this can be inferred

by considering the expression of the Kalman gain (3.14), the innovation covariance

(3.15) and error covariance prediction (3.16). Considering these equations, again in

the simple assumption of a linear observation of a scalar state, one will notice the

following:

• the higher the value of R or the lower that of Q, the closer the estimate is to

the prediction (which usually results in a smoother estimate).

• the higher the value of Q or the lower that of R, the closer the estimate is to

the measurement.

As mentioned before, R is a parameter representing a physical variable whereas Q

is a tuning parameter. By tuning the values in Q, we can therefore express our

higher confidence in either the precision of the dynamic model or the quality of the

measurement. In [76], guidelines for the tuning of a Kalman filter are given, using for

instance the analysis of the innovation sequence (yk − h
(
x̂k|k−1

)
).

Let us now consider the application of the Kalman filter to the estimation of

narrowband acoustic wave parameters.

3.2.1 Narrowband signals

We first concern ourselves with the estimation of frequency and bearing as a first

attempt at applying a Kalman filter to hydrophone data. Let us consider a linear

array of NH uniformly distributed hydrophones travelling along a straight trajectory

at speed Uk. It is measuring a sinusoidal plane wave arriving from bearing θT,k with

frequency fT,k. If the source is in the far field of the array, the measured signal (at

time tk) can be written

yk = sin

{

2πfT,k

(

1 +
Uk

c
cos θT,k

)(

tk +
δx
c
(n− 1) cos θT,k

)}

+ vk, (3.18)
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where δx and vk are the hydrophone spacing and the acoustic noise on each hy-

drophone, respectively. The vector

n =







1
...

NH







(3.19)

contains with the hydrophones indices.

The amplitude is omitted, as it is not included in the simulations and estimated

and compensated for by other means when processing measured data as is discussed

in section 3.2.1.3. We define the state vector as

xk =

[

θT,k

fT,k

]

. (3.20)

We can then define a function h such that (3.18) can be rewritten as a measurement

equation

hk : R2 → R
NH

xk 7→ sin

{

2πfT,k

(

1 +
Uk

c
cos θT,k

)(

tk +
δx
c
(n− 1) cos θT,k

)}

∀n, n ∈ [1, NH ] . (3.21)

Note here that this measurement equation is not linear and therefore requires the use

of an extended Kalman filter [75].

Furthermore, if we assume that the observed source is stable within the time span

of observation, we can assume fT and θT to be constant between two measurements

(disregarding the process noise). The dynamics are then given by

xk+1 = Φxk +wk, (3.22)

with Φ = I2 (see also equation (3.4)).

By implementing these expressions in an Extended Kalman Filter, we could test

this implementation with simulations.
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3.2.1.1 Design of a processor

To design and experiment with the Kalman filter, we used a matlab script capable of

handling a few seconds of simulated data. In order to process larger batches of data,

we designed an on line processor as shown in figure 3.4.
 
 
 
 
 
 

Read/Buffer Data 

Preprocess Data 

Kalman filter 

Display/save 
output 

Initialise 

Read/Buffer Data 

Preprocess Data 

Kalman filter 

Display/save output 

Read parameters 

Figure 3.4: Block diagram of the Kalman filter real time processor.

We detail here the most important blocks, i.e. the preprocessing and the Kalman

filter, as well as the Conventional Beamformer processor used for comparison.

Pre-processing The Kalman filter processes the data in the time domain sample

by sample. The data processed here are narrowband. It is therefore preferable to

“downsample” them to reduce the data rate and reduce the computational load.

This must be accomplished without affecting the integrity of the data while keeping

them real (i.e. not complex). We considered two methods for downsampling the data:

• Base band filtering: This classical scheme of bringing data to a smaller sampling

rate consists in multiplying them with a sinusoidal carrier whose frequency is

the centre frequency of the band of interest plus half of the bandwidth and then
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to apply a low-pass filter to the resulting data the bandwidth of which is that

of the data.

• DFT Filtering: This method consists in applying a Fourier transform to the

data, cutting out the band of interest with a Tukey window [77] and applying an

inverse Fourier transform to the data to bring it back to the time domain, while

making sure the output is real by properly mirroring the negative frequencies

to the positive frequencies.

Both methods reduce the sample rate effectively and keep the spectral properties of

the signal, but the DFT filtering brings the best results with the Kalman filter and

was therefore chosen.

Kalman Filter (KAL) In the first implementation of the real time processor, it

turned out that the Kalman filter would converge towards a value of the frequency

and stay fixed on that value without following the actual variations of the measured

data. After a few tens of seconds, the mismatch between the actual frequency of the

signal and the estimated frequency would make the filter diverge completely. The

cause of the problem was found in the derivative of the measurement equation by the

frequency used to compute the Kalman gain:

∂hk

∂f
= 2π

fD
f

(

tk +
(n− 1) δx

c
cos θ

)

× . . .

cos

(

2πfD

(

tk +
(n− 1) δx

c
cos θ

))

,

(3.23)

(with fD = f

(

1 +
U

c
cos θ

)

).

As time tk increases, this expression diverges as can be seen in figure 3.5.

The Kalman gain that weighs between the measurement and the prediction is

inversely proportional to this derivative. The result is that after a certain time, the

Kalman filter ignores the measurements and relies only on its prediction as far as

the frequency estimate is concerned. Several solutions were investigated to solve

this problem, such as the inclusion of a “forgetting” factor [75]. The forgetting factor

helped slow down the divergence of the Kalman filter but would eventually not prevent
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0

0

∂hk

∂f

tk

Figure 3.5: Derivative of the observation function by frequency as a function of time.
The divergence occurs after a few tens of seconds.

it. Regularly reinitialising the Kalman filter eventually appeared to be the best

solution.

The drawback is that every time the Kalman filter is reinitialised, even with the

right parameters, it systematically produces a “ripple” in the estimate (figure 3.6,

left). This can be prevented by running two Kalman filters in parallel and re-initialise

them at different times and use the output of one when the other is giving a ripple

and the other way around (figure 3.6, right).

 

tk 

fk 

fk 

True 
Estimate A 
Estimate B 
Combined error  
standard deviation 

tk 

True 
Estimate  
Error standard 
deviation 

Figure 3.6: Left: Ripple at the re-initialisation of the Kalman filter. Right: Efficient
arrangement of two concurrent Kalman filter initialisation ripples.

Conventional beamformer (CBF) We used the CBF as a baseline for the eval-

uation of the Kalman estimator. The conventional beamformer used here is the
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classical delay-and-sum beamformer [19]. It is commonly used in passive and active

ASW sonar suites. In passive sonar suites, it is mostly used for two applications:

• The broadband waterfall display that gives a bearing estimate calculated over a

wide bandwidth as a function of time, which is most appropriate for broadband

signals.

• The LOFAR (Low Frequency Analyser and Recorder) display that shows the

spectrum of a given beam as a function of time.

The latter is the one that is most appropriate to compare with the Kalman filter.

However, it makes use of FFTs (Fast Fourier Transforms) and therefore produces one

bearing estimate per block of FFT (about 2048 samples), contrary to the Kalman filter

that gives one bearing estimate per sample. To obtain a fair comparison, we modified

the CBF to give one estimate per sample as well by bringing the beamformed data

back to the time domain. The bearing is then estimated by applying an envelope filter

(magnitude of the analytic representation of the signal) and finding the maximum

beam. The number of beams was increased to minimise quantisation errors.

The resulting CBF bearing precision for these many samples is smaller than that of

the one bearing measurement if one would use an FFT, but the same precision could

be reached by averaging these samples to produce one bearing estimate. Furthermore,

the performance of a CBF algorithm is limited by the number of beams that are

computed. To obtain a sufficiently high performance with CBF we reduced the beam

size to 0.1 ◦. This allowed measuring the actual precision of the beamformer, which

can be smaller than the 3 dB beamwidth when the SNR is high. However, with such a

small beam size, the whole beam spectrum was too large to be computed. Therefore,

a number of beams was computed around the Kalman filter bearing estimate only.

This results in the effect that if the Kalman were to diverge, the CBF estimate used

here would be off-track, which is what happens in some of the cases studied here.

This is not representative of reality, as it is known that CBF is an unbiased method.

3.2.1.2 Simulation

We chose to test our method with two scenarios, modelled with a relatively simple

simulator rather than a very realistic but complicated one. In this way we were able
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to control all the aspects of the signal we feed into the Kalman filter. The simulator

produces a measurement of a spherical wave for any given moving source/receive

array position. Noise is added separately to be able to measure the effect of SNR on

the final estimate.

The array parameters used in the simulator are the same as those of the Thales

CAPTAS receive array [24] (excluding the triplets), i.e. 64 hydrophones spaced by

0.36m and sampled at 5120Hz. The signal generated was a simple sinusoid at con-

stant frequency 697Hz. Note that the Doppler effect corresponding to the respective

movements of the platforms was taken into account in the simulation. Finally, addi-

tive white noise with a Gaussian distribution of various standard deviations, resulting

in SNRs of 0 dB, -20 dB and -100 dB was added to the received signal. Two scenar-

ios were considered (figure 3.7). In both scenarios, the array was travelling along a

straight line at a constant speed of 5m/s. In the first scenario (Stationary target),

the source was at a fixed position with a closest point of approach at 5000m. In the

second scenario (Moving target), the source was sailing in the direction opposite to

that of the array, at the same speed, along a parallel track. 

5000 m 

5 m/s 

Receiver 
Source 

5 m/s 

5 m/s 

Figure 3.7: Two simulation scenarios: Stationary target (red dot) (left) and Moving
target

We applied the Kalman processor to these two scenarios in the three afore-

mentioned SNR conditions (0 dB, -20 dB and -100 dB at hydrophone level). We

chose to present the results statistics through three different figures:

The time series gives a qualitative outlook on the resulting estimate quality.

The Empirical Cumulative Distribution Function (ECDF) of the bearing es-

timate error shows what proportion of the error is smaller than a certain value.
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The fact that the ECDF of one estimator error is superior to that of another is

a good quantitative indication that it is more accurate.

The Empirical Probability Density Function (EPDF) of the bearing estimate

error shows the statistical distribution of the error, especially whether the er-

ror standard deviation of one estimator is superior to the other. The error is

truncated to 2.5 ◦ to exclude the false alarms of CBF.
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(a) “Moving Target” scenario
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(b) “Stationary Target” scenario

Figure 3.8: Statistics (Time series, Empirical Cumulative Distribution Function, Em-
pirical Probability Density Function) for a SNR of 0 dB. The results of the Kalman
filter and the conventional beamformer are shown in red and black, respectively.

Let us consider the results of the 0 dB SNR simulation shown in figure 3.8. The

time series show that both the CBF and KAL (Kalman filter estimator) give a few
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(a) “Moving Target” scenario
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(b) “Stationary Target” scenario

Figure 3.9: Statistics (Time series, Empirical Cumulative Distribution Function, Em-
pirical Probability Density Function) for a SNR of -20 dB. The results of the Kalman
filter and the conventional beamformer are shown in red and black, respectively.

outliers. In the case of CBF, these are due to noise whereas the outliers of KAL are

due to the filter re-initialisation ripple (the double filter detailed in section figure 3.6

was not implemented for this performance study). The ECDF shows that KAL offers

slightly better performance with respect to small errors but gives more outliers than

CBF (this is the reason why the two ECDFs cross below 0.5 ◦). The EPDF does not

show much difference between the two estimators. If one compares the results of the

two scenario, one can notice that the performance for both estimators is slightly better

in the “Stationary target” scenario than in the “Moving Target” scenario. This is due

to the fact that the Moving Target scenario includes more aft and forward bearing
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(a) “Moving Target” scenario
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(b) “Stationary Target” scenario

Figure 3.10: Statistics (Time series, Empirical Cumulative Distribution Function,
Empirical Probability Density Function) for a SNR of -100 dB. The results of the
Kalman filter and the conventional beamformer are shown in red and black, respectively.

measurements than the other scenario; the performance of any bearing estimator is

worse in such end-fire bearings. The performance of KAL and CBF in this case are

practically the same, KAL giving a better precision but more outliers.

In figure 3.9, showing the results for the case of the -20 dB SNR, the outliers are

still present in the time series but the precision of KAL is clearly superior to that of

CBF as can be seen in all three curves. In particular the ECDF of CBF is always

under that of KAL (99 % of KALs error is smaller than 0.5 ◦ against 80 % for CBF

in the stationary target scenario) and its EPDF is much more spread than that of

KAL.



76 CHAPTER 3. LOCALISATION

The -100 dB case shown in figure 3.10 provides a good summary of the pros and

cons of Kalman filtering for bearing estimation. Until about 500 s, the estimate

provided by KAL is very accurate with 90 % of the samples with an error of less

than 1 ◦. At 500 s, the filter becomes unstable in both cases and loses the track

at broadside. The CBF estimate follows that of KAL, but as explained in section

3.2.1.1, this is an effect of the way we chose to measure the CBF estimate and not a

result of CBF instability.

3.2.1.3 Measured data

The data used in this section were taken from the same experiment of the 2003 trial

used in section 2.2.4.2 [56], carried out off the coast of Sardinia. A Royal Nether-

lands Navy submarine was fitted with a transducer transmitting a tonal at 697Hz.

For safety reasons, to allow the submarine to maintain an acoustic picture of the

surroundings, the tonal was not transmitted continuously, but during periods of two

minutes with a one minute interval. This data configuration makes processing and

analysis tedious, as no statistics can be done on the dataset as a whole, but only

on the individual segments separately. To generate a reference sequence, we used an

average of the CBF and KAL output and low pass filtered it with a moving average

filter of five samples. The amplitude was estimated and compensated for prior to the

Kalman filtering by using the magnitude of the analytic representation of the signal

. We selected four representative segments of the experiment (Segments 01 to 04).

Figure 3.11 displays the results of Segment 01 in which the bearing of the source is

varying from 100 ◦ to 130 ◦. The time series in this figure gives a good example of how

long KAL needs to converge, in this case about 5 s (about a hundred samples). The

wide spread of points in the CBF time series at the end of the dataset is due to the fact

that the source is actually not transmitting any more at that time. If one considers

the ECDF (middle plot), one can notice that the KAL ECDF is superior to that of

CBF until 0.5 ◦, denoting the presence of more outliers in the Kalman estimate than

in that of CBF. In this case the outliers are partly due to the initialisation ripple at

the beginning of the dataset as well as the fact that the “reference” computed at the

end of the dataset is not valid and provides bad statistics. Finally, the PDF (Right

plot) shows that the Kalman estimate is less noisy than that of CBF.
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Figure 3.11: Statistics (Time series, Empirical Cumulative Distribution Function,
Empirical Probability Density Function) for Segment 01 of the measured dataset. The
results of the Kalman filter and the conventional beamformer are shown in red and
black, respectively.

In Segment 02 (figure 3.12) and Segment 03 (figure 3.13), the performance of

the KAL filter is similar to that of Segment 01, while that of CBF is degraded in

comparison. KAL is not penalised by the initialisation ripple in the beginning, as it

was in the previous segment, since the source was not transmitting while the Kalman

filter was initialising. In Segment 01 the Kalman filter was initialising while CBF was

already giving the proper estimate.
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Figure 3.12: Statistics (Time series, Empirical Cumulative Distribution Function,
Empirical Probability Density Function) for Segment 02 of the measured dataset. The
results of the Kalman filter and the conventional beamformer are shown in red and
black, respectively.
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Figure 3.13: Statistics (Time series, Empirical Cumulative Distribution Function,
Empirical Probability Density Function) for Segment 03 of the measured dataset. The
results of the Kalman filter and the conventional beamformer are shown in red and
black, respectively.
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Figure 3.14: Statistics (Time series, Empirical Cumulative Distribution Function,
Empirical Probability Density Function) for Segment 04 of the measured dataset. The
results of the Kalman filter and the conventional beamformer are shown in red and
black, respectively.

Segment 04 (figure 3.14) gives a good indication of the limitations of the Kalman

filter. Between 10 and 70 seconds, the KAL performance is better than that of CBF

as in the other segments, but around 100 s, the SNR decreases and the KAL processor

collapses around broadside as in figure 3.10. (It catches back with the true value later

in the experiment, but does lose the target for 10 s to 20 s). This instability results in

a overall degraded performance, for KAL especially if one considers the KAL EPDF

(right plot) whose right “tail” is increased due to the instability around broadside.

3.2.1.4 Summary

A Kalman-based narrowband bearing estimator was developed and tested on sim-

ulated as well as measured data. It provided improved performance compared to

conventional algorithms (CBF) in terms of precision of the bearing estimate and is

not limited by a chosen number of beams and frequency bins. However, it lacked the

robustness CBF offers, especially around broadside. Several steps could be taken to

make the estimator more robust and make the improvement it brings usable in an

operational context. For instance using the output of an FFT instead of time series

as an input could bring more stability [78]. Another possibility, suggested by Prof.

Pétillot, would be to combine several snapshots in order to remove the divergence of

the measurement Jacobian.
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The possibility of using a Kalman filter to estimate the range of a source using one

narrowband component of its spectrum was considered. Unfortunately, the algorithm

was not robust enough to cope with noise and long ranges. The range estimation

relies on measuring phase differences that decrease with target range and are too

small to observe in presence of noise. However, the approach described in section

3.2.2, applied to more than one narrowband component used to estimate time delay

of arrivals, could be a solution for narrowband processing as well.

3.2.2 Broadband signals

After considering narrowband signals in section 3.2.1, we now concentrate on broad-

band signals in order to estimate the position of the source transmitting these. In

section 3.2.2.1, we will show how broadband signals can be used to estimate time

delays between hydrophones. Then, in section 3.2.2.2, we use these time delays to

estimate the source position, using Kalman Filters.

3.2.2.1 Time delay estimation

The Kalman filter cannot produce a proper estimate without being fed with accurate

time delays between hydrophone signals. The time delay estimation is therefore a

bottle neck in the processing chain and requires special attention.

Let us consider a linear array of NH hydrophones spaced by δx at time tk travelling

at speed Uk along a straight line as defined in section 3.2.1. This array samples an

acoustic spherical wave radiated by a source at position (xT,k, yT,k) travelling at speed

(ẋT,k, ẏT,k). The spectrum of the signal radiated by the source is assumed white over

a bandwidth [fmin, fmax]. If pT (tk) is the pressure radiated by the source, the signal

received by hydrophone n of the array is (propagation loss and noise are not taken

into account):

sn,k = pT

(

tk −
1

c

√

(xT,k − xH,n,k)
2 + (yT,k − yH,n,k)

2

)

(3.24)

The time delay between the signal at the source and the signal received by the hy-

drophones cannot be estimated without knowledge of the radiated signal or the range.

We can however estimate the difference of time of arrivals between each hydrophone
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and the first hydrophone over an integration time T . Note that the target and hy-

drophone positions are assumed constant over the integration time T . Let us write

this time delay as:

τn =
1

c

√

(xT − xH,n)
2 + (yT − yH,n)

2

− 1

c

√

(xT − xH,1)
2 + (yT − yH,1)

2. (3.25)

We performed this estimation in two ways: by means of phase estimation and cross-

correlation. Note that both these methods are also applicable to narrowband signals.

Cross-correlation Cross correlation of two signals to estimate the delay of one

compared to the other is widely used, both in active and passive sonar [68, 79]. The

cross correlation estimate of the delay between pT,1 and pT,n is

τ̂n = max
tk

{
pT,n (tk) ? pT,1 (tk)

}
. (3.26)

It is common to use the convolution theorem to calculate the cross correlation:

pT,1 (tk) ? pT,n (tk) = DFT−1
(
PT,nP

∗
T,1

)
, (3.27)

where DFT−1 is the inverse Discrete Fourier Transform. Note that the precision of

the estimated delay is limited by the number of points on which the inverse DFT is

computed (sampling error). With a sufficiently high SNR or with enough bandwidth,

this precision is smaller than the sampling interval. It is therefore desirable to over-

sample the inverse DFT to make sure the precision is limited by estimation error and

not sampling. MatlabTM offers an FFT interpolation function (interpft.m) that allows

performing the interpolation around the maximum of the cross-correlation sequence

without having to oversample the whole inverse DFT (which is memory intensive).

Quazi [80] provides two expressions for the minimum attainable precision for time

delay estimation with a low SNR ,

στ =
1

SNR

√

3

8π2T (f 3
max − f 3

min)
, (3.28)
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and a high SNR,

στ =

√

3

4 SNR π2T (f 3
max − f 3

min)
. (3.29)

We subjected the cross correlation estimator to Monte Carlo tests to measure its

precision in the presence of gaussian white noise. These were performed with signals

of different bandwidths at different SNRs sampled at 5120 Hz. Each precision value

was averaged over the results of a thousand independent tests. Figure 3.15 shows

the results of these simulations. Note that the precision limit due to the sampling

rate shown in the figures (black line) is calculated after interpolation of the cross

correlation function. Without this interpolation, the precision limit would be of the

order of 1/5120Hz = 1.95ms.
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Figure 3.15: Standard deviation of Monte Carlo simulations of cross correlation time
delay estimation applied to signals of different bandwidths (W ) of about 1 s sampled
at 5120 Hz.

In each of these simulations, the processing collapses below a certain SNR and does

not follow the theoretical expectations (about 50 dB for W = 10Hz, around 20 dB

for W = 100Hz and around -10 dB for the other bandwidths). This is due to the

fact that the noise is so high that the maximum in the cross correlation function does

not correspond to the signal correlation peak. This could be improved with some
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prior knowledge of time delays, but the decrease in acceptable SNR would not be

significant. Apart from this collapsing, the simulations follow the theory rather well,

and seem to slightly outperform the theoretical bounds as the bandwidth increases.

Finally it seems that at a bandwidth of 1 kHZ, a SNR of 0 dB at hydrophone level

with an integration time of 1 s is sufficient to estimate time delays with the precision

necessary for the Kalman filter to function properly.

Phase estimation Let us consider the cross spectrum at frequency fl (with fl ∈
[fmin, fmax]) of s1,k and sn,k estimated over an integration time T 2:

SnS
∗
1 (fl) = PT (fl) exp

(
2πfl
c

√

(xT − xH,n)
2 + (yT − yH,n)

2

)

×

PT (fl) exp

(

−2πfl
c

√

(xT − xH,1)
2 + (yT − yH,1)

2

) (3.30)

The phase of this complex number is

ϕn,l =
2πfl
c

√

(xT − xH,n)
2 + (yT − yH,n)

2 −
2πfl
c

√

(xT − xH,1)
2 + (yT − yH,1)

2

= 2πflτn. (3.31)

One notices that ϕn,l is proportional to fl and therefore retrieving τn should be

relatively straightforward through linear regression. What does not appear in this

expression is the fact that when the phase of the cross spectrum is retrieved, it is so

with an ambiguity multiple of 2π, i.e. as a phase wrapped between 0 and 2π. The

“unwrapping” of this phase is a difficult step and many studies are found in literature

about phase unwrapping [81]. MatlabTM provides a phase unwrapping algorithm but

its results are insufficient for our application. We therefore propose an improvement

tailored to the application of time delay estimation.

As we can see in (3.31), the phase of the cross spectrum is proportional to the

2Sn denotes here the DFT of sn,k over an integration time T , {}∗ denotes the complex conjugate
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frequency. This a priori knowledge can improve the phase unwrapping process. Let

us consider that the phase has been properly unwrapped with a standard phase al-

gorithms. The phase values can be written as

ϕn,l = ϕn,1 + 2πflτn + εn,l, (3.32)

where εn,l is the phase error on the cross spectrum for the nth hydrophone at frequency

fl. The Linear Least Square (LLS) estimate of τn is then [35]:

τ̂n = 2πfl

∑N
l=1 (ϕn,l − ϕ̄n)
∑N

l=1

(
fl − f̄

)2 (3.33)

and

ϕ̂n,1 = ϕ̄n − f̄ τ̂n, (3.34)

with

f̄ =
1

NDFT

NDFT∑

l=1

fl (3.35)

and

ϕ̄n,l =
1

NDFT

NDFT∑

l=1

ϕn,l. (3.36)

A method for unwrapping the cross spectrum phase using the residues is proposed

in Appendix B.

Unwrapping for time delay estimation offers the main advantage against cross

correlation that its precision is not limited by any sampling rate. However, the

difficulty of unwrapping the phase in low SNR conditions makes it a method less

robust than cross-correlation. Furthermore, simulations showed that the theoretical

bound was not attainable with this method as visible in figure 3.16. The reason for

this is a too simplistic assumption in the modelling of the phase noise. We assumed

additive noise on the measured phase of the cross spectrum in (3.32) whereas the

noise is additive on the signal.

The cross correlation method was therefore chosen for estimating time delays.
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Figure 3.16: Results of Monte Carlo simulations of cross correlation and phase un-
wrapping time delay estimation applied to a signal of a bandwidth of 100Hz of about
1 s sampled at 5120 Hz.

3.2.2.2 Kalman estimator

A Kalman estimator for the position of a source was implemented by De Theije and

Colin [82]. We assumed that the target was not moving during the measurement

time. As a consequence, the state variables are the target position coordinates:

xk =

[

xT,k

yT,k

]

(3.37)

The measurement equation for this estimator is

hk : R
2 → R

NH

xk 7→
1

c

√

(xT − xH,n,b)
2 + (yT − yH,n,b)

2 − (3.38)

1

c

√

(xT − xH,1,b)
2 + (yT − yH,1,b)

2

∀n, n ∈ [1, NH] . (3.39)

The state transition equation is

xk+1 = Φxk +wk, (3.40)
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with Φ = I2.

This Kalman estimator was applied to simulated data with a 20m long array

(modelled after the TNO CAPTAS array) and provided good results on simulated

data with time delay accuracies up to 3.10−5 s and ranges up to 10 km [82]. During this

study, it was discovered that using a single snapshot of acoustic data was providing

much worse results than using a method in which the time delay snapshot were first

stitched together to form a synthetic aperture using the overlap between snapshots.

This prompted the conclusion that short arrays such as the CAPTAS array do not

allow ranging of sources at operationally relevant ranges if one uses a single snapshot.

However, the combination of several snapshots collected at different locations allowed

the formation of a longer synthetic array or aperture, thus extending the Fresnel

range and allowing the ranging of sources at longer distances. The method used for

extending the aperture consisted in using the delays of overlapping hydrophones to

reconstruct the wavefront similar to Stergiopoulos and Sullivan’s Extended Towed Ar-

ray Measurement [38]. The method provides good results with non-moving sources,

but the wavefront reconstruction is problematic with moving sources. Indeed, the

movement of the source together with the interval between measurements results in

the measured wavefront to be non continuous. Ideally, the wavefront reconstruction

process should be integrated into the estimation process, so that use can be made of

the estimated speed of the source to reconstruct the wavefront, and that the better

reconstruction of the wavefront can improve the estimated source position. How-

ever, this complication is likely to cause instabilities in the Extended Kalman Filter,

whereas it is much more simple and robust to use a batch method such as a Maximum

Likelihood Estimator (MLE), which is reputedly less sensitive to non linear problems.

3.3 Batch methods

In this section, we consider a selection of “batch methods”. In this context, by batch

method, we mean a method applied to possibly overlapping (in space or time) sets

of data, as opposed to a method applied to a single sample vector. Let us assume

having collected a set of data using the array described in the previous section. We

now consider two batch methods for source localisation using as input data at different
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levels of pre-processing: Bearing-Only Target Motion Analysis (BO-TMA) and Time

Delay Target Motion Analysis (TD-TMA).

3.3.1 Bearings-Only Target Motion Analysis

As mentioned in section 3.1, Target Motion Analysis is the process of estimating

an acoustic source position and its kinematic parameters using measurements of its

bearing and frequency (for a narrowband source). In this section we will consider a

broadband source and concentrate on “Bearing-Only” Target Motion Analysis. We

will furthermore consider a MLE method presented by Farina [62] as it promises to be

more stable than recursive methods and is shown to asymptotically reach the CRLB.

This method will be used as a baseline for evaluation of the method presented in

section 3.3.2.

We will repeat here Farina’s derivation of the MLE as it is used as well for the

derivation of the time delay method presented in section 3.3.2. Let us assume a batch

of NB measurements during which the source speed is constant. Its position is then

[

xT +
bTB

NB

ẋT yT +
bTB

NB

ẏT

]

, (3.41)

where TB is the total batch duration, b the measurement index, [xT , yT ] the position

of the source at the beginning of the batch.

Let us define the position and kinematic parameters of the source as state variable,

x =









xT

yT

ẋT

ẏT









. (3.42)

The measurements are a series of bearing estimates collected at different positions

according to the platform trajectory,

y =
[

θT,1 · · · θT,b · · · θT,NB

]

. (3.43)
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The CRLB for bearing estimate precision σθ is derived in Appendix C.1 as a func-

tion of the SNR as well as the corresponding time delay precision to allow comparison

with the time delay based method presented in Section 3.3.2. We assume that the

bearing estimator used prior to the BO-TMA algorithm reaches the CRLB (as is the

case for the commonly used CBF). σθ is therefore assumed to be the precision of the

bearing estimates. The bearing estimate error is furthermore assumed Gaussian.

Farina [62] proposes a two step method to remove outliers from the input bearing

sequence. He uses the MLE residues to pinpoint the outliers in the bearing sequence

and repeats the estimation process after removing these outliers. We simplified this

method by fitting a polynomial to the bearing estimates sequence and using the

residues to reject outliers.

The measured bearings are related to the state vector through the measurement

function h such that

h : R4 → R
NH

x 7→ hb (x) = arctan







xT + TB
b

NB
ẋT − xH,1,b

yT + TB
b

NB
ẏT − yH,1,b







,

∀b, b ∈ [1, NB] .

(3.44)

The MLE process consists in maximising the likelihood of the estimate given the

measurements. By likelihood is meant the conditional probability of the estimate,

given the measurement. This likelihood is expressed as

L (x|y) = Pr (x | y)

=

NB∏

b=1

1

σθ

√
2π

exp

(

−(yb − hb (x))
2

2σ2
θ

)

, (3.45)

where yb is the bth element of y. As is common in MLE, we introduce the log-

likelihood
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` (x|y) = lnL (x|y)

= −NB ln
(

σθ

√
2π
)

− 1

2σ2
θ

NB∑

b=1

(yb − hb (x))
2 (3.46)

whose maximisation is equivalent to the maximisation of L. The MLE of x is then

x̂ = max
x

` (x|y)
= min

x

−` (x|y)

= min
x

NB∑

b=1

(yb − hb (x))
2 . (3.47)

For the actual implementation of this algorithm, the standard Matlab local opti-

misation routine fminsearch.m was used initially but the Differential Evolutions (DE)

global optimisation method [83], kindly provided by Van Moll [84], was found to give

much better results.

3.3.2 Time delay based Target Motion Analysis

Let us now consider a time-delay based TMA (TD-TMA) algorithm. The measured

signals are the estimated time delays between the signal measured at the first hy-

drophone of the towed array and the other hydrophones. Cross-correlation is used to

estimate these delays, as described in section 3.2.2.1. The measured time delays are

then organised in the matrix y populated with

yn,b = max
tk

{
ξ1,b (tk) ? ξn,b (tk)

}
, (3.48)

for snapshot b and hydrophone n. Note that we reuse the notation ξ defined in

section 2.1.2, equation (2.20) to represent the splitting of data in snapshots. Here,

the measurement is a matrix. To make the following derivations as close as possible

to that of BO-TMA, we collapse this matrix into a vector by introducing
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m = n+ (b− 1)NH , (3.49)

and redefining y as a NBNH line vector such that

ym = max
tk

{
ξ1,b (tk) ? ξn,b (tk)

}
. (3.50)

The time delays are related to the state vector through the measurement function

h : R4 → RNH×NB

x 7→ hm (x) =
1

c

√
(

xT + TB
b

NB
ẋT − xH,n,b

)2

+
(

yT + TB
b

NB
ẏT − yH,n,b

)2

−

1

c

√
(

xT + TB
b

NB
ẋT − xH,1,b

)2

+
(

yT + TB
b

NB
ẏT − yH,1,b

)2

∀m,m ∈ [1, NHNB] . (3.51)

Similarly to the derivations in section 3.3.1, we define the log-likelihood, the max-

imisation of which results in the MLE of the state vector:

` (x|y) = lnL (x|y)

= −NHNB ln
(

στ

√
2π
)

− 1

2σ2
τ

NHNB∑

m=1

(ym − hm (x))2 . (3.52)

An example estimate using TD-TMA is shown in figure 3.17.
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Figure 3.17: Results of TD-TMA for a five minute scenario with a time delay precision
of 10−3 s: (a)Geographical display of the sailed track, the estimate and the ground truth.
The dots mark the first point of each track. (b) Measured and estimated time delays
for hydrophones 2 to 8. (c) and (d) Scatter plots of all energy function evaluations
used in the optimisation for the target position and speed, respectively. The colour
axis corresponds to a measure of the likelihood function. The ⊗ symbols mark the
estimated (red) and actual (black) target position and speed.
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3.3.3 Performance analysis and comparison

In order to evaluate the respective merits and limitations of each algorithm, we chose

to compare them from two angles: precision and observability which are the main

qualities expected from such estimators. These two criteria are examined in the first

two sections and the comparison is performed in the third one.

3.3.3.1 Precision

In theory, the MLE is unbiased and asymptotically reaches the CRLB for precision.

To verify that our estimators reach the CRLB, we compared Monte Carlo runs of

both the BO-TMA and TD-TMA MLE estimator with their respective CRLB. The

CRLB is derived through the inversion of the Fisher Information Matrix (FIM).

The latter is shown in [62] in this case to be

J (x) = E

(

∂` (x|y)
∂x

∂` (x|y)
∂x

T
)

=
1

σ2

∂h (x)

∂x

∂h (x)

∂x

T

, (3.53)

where σ is the standard deviation of the measurement (σθ in the case of BO-TMA

and στ for TD-TMA) and E () is the expectation operator. The CRLB is then the

matrix inverse of the FIM J−1 if J is indeed invertible. The FIM for BO-TMA is

derived in [62] and reproduced in Appendix C.2. That of TD-TMA is derived in the

same fashion in Appendix C.3.

We simulated time delay and bearing measurements for the scenario represented

in figure 3.18 using a time delay precision of στ = 10−4 s and a corresponding bearing

precision of σθ = 0.0306 ◦ following the derivations in Appendix C.1. The sensor

used in the simulations is a linear array of 128 hydrophones spaced by δx = 0.36m.

The hydrophone positions are assumed perfectly known and the array is straight at

all times. The same global inversion method (Differential Evolution) was used for

both methods with the same parameters. This scenario was run a hundred times and

the results of these simulations are shown in figure 3.19. There is a slight mismatch

between the CRLB and the precision of the BO-TMA method but the TD-TMA
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Figure 3.18: Simulation scenario for Monte-Carlo runs. The source initial position is
(2000m, 1000m).

method results match theory almost perfectly. The CRLB is used in the rest of the

section to represent the precision of each method. One should note that the CRLB is

only valid in situations for which the FIM is definite-positive, which is also a sufficient

condition for observability as is explained in the following section.
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Figure 3.19: Position error distribution for BO-TMA and TD-TMA for a hundred
Monte Carlo runs (Black) and the corresponding CRLB (Red)

3.3.3.2 Observability

As mentioned earlier, observability can be a problem for BO-TMA. A problem is

observable if and only if there exists a bijection between the sets of measurements

and system states. As suggested in [62] and [85], we use the FIM to investigate the

observability of BO-TMA.

The problem is observable if and only if the FIM matrix is positive-definite [85].

This implies that the FIM is invertible and that all its eigenvalues are positive. We

therefore use several measures to represent observability:

• The rank of the FIM : the system is not observable if the rank of the FIM is
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inferior to the number of states in the state vector (4 in this case).

• The condition number of the FIM : The condition number, defined as,

K (J) = ||J||2
∣
∣
∣
∣J−1

∣
∣
∣
∣
2

(3.54)

where ||J||2 is the highest singular value of J, gives a soft measure of how well

a matrix is invertible even if it is full rank, and therefore how observable the

problem is .

• The sign of the FIM eigenvalues : The system is not observable if one of the

eigenvalues of the system is null or negative.

3.3.4 Performance comparison

Two scenarios were chosen to compare these two methods, a typical TMA sce-

nario including a 45 ◦ turn of the measurement platform, see figure 3.20, and a low-

observability scenario for which we know BO-TMA algorithms struggle to provide a

solution, shown in figure 3.22. The receiver track was kept constant while the target

initial position was varied over several ranges and bearings; its course and speed were

kept constant. For each scenario, each algorithm and each target position, we plotted

a number of performance indicators related to precision and observability:

• The decadic logarithm of the Condition Number of the FIM.

• The initial range estimate error standard deviation which is computed according

to the variance propagation law [35] as

σr =
1

√

x2 + y2

√

xσ2
x + yσ2

y + 2xyσ2
xy, (3.55)

with σ2
x = J−1

1,1, σ
2
y = J−1

2,2 and σ2
xy = J−1

1,2. For each source initial position, this

value was blanked out whenever an eigenvalue of the FIM was negative or null.

Both these values are also plotted as a function of source range for a fixed bearing

of 45 ◦. Two representative scenarios were chosen to analyse the FIM of both BO-
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Figure 3.20: Simulation scenario for analysis of the FIM for BO-TMA and TD-TMA.
The source initial position is varied while the receiver trajectory is kept constant.

TMA and TD-TMA. The first scenario, represented in figure 3.20, featured a receiver

sailing two five minute straight legs separated by a 45 ◦ turn and a source following

a straight trajectory at constant speed, while its initial position was varied. The

results of these computations are shown in figure 3.21 and both methods seem to

give similar performance, both in terms of observability and precision, although TD-

TMA seems to be slightly more accurate than BO-TMA on the whole. At very short

ranges, BO-TMA seems to be more observable (lower K (J)) than TD-TMA, however

our simulations do not include the limitations of CBF at short ranges (near field),

namely the plane-wave assumption. CBF would give a biased bearing estimate at

these ranges and we do not expect BO-TMA to give a sensible answer.
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(d) Decadic logarithm of the range estimate
error standard deviation for TD-TMA

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

 

 

BO−TMA
TD−TMA

rT [m]

σ
r
[m

]

(e) Range estimate error standard deviation
at a bearing of 45 ◦

10
1

10
2

10
3

10
4

10
6

10
8

 

 

BO−TMA
TD−TMA

rT [m]

K
(J
)

(f) Condition number of the FIM at a bearing
of 45 ◦

Figure 3.21: Observability and precision parameters for BO-TMA and TD-TMA for
a manoeuvring scenario. The top plots (condition number) indicate, as a function of a
target initial position, whether its position and speed are observable. A low condition
number indicates a better observable scenario. The middle plot gives an indication of
the precision of the range estimate. The two lower plots are sections of the other plots
for a target of initial bearing 45◦
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The second scenario, represented in figure 3.22, was chosen to be especially chal-

lenging for BO-TMA, in order to show the added value of TD-TMA. In the second

scenario, the source and receiver are sailing parallel tracks for ten minutes, for differ-

ent initial positions of the receiver. The results are shown in figure 3.23. This type

of configuration is known not to be observable with BO-TMA, as the computations

confirm. With BO-TMA, the FIM condition number is very high for any initial po-

sition of the source, and the FIM is not definite-positive at any range. This scenario

is less observable for TD-TMA than the previous scenario, but the algorithm does

manage to provide an answer with acceptable precision.

 

6 m/s 

4 m/s 
Receiver 
Source 

 

 

2400 m 

3600 m 

x

y

Figure 3.22: Simulation scenario for analysis of the FIM for BO-TMA and TD-TMA.
The source initial position is varied while the receiver trajectory is kept constant.

This computation shows that one of the main shortcomings of BO-TMA, i.e. the

need for a manoeuvre, can be addressed by using the time delays between hydrophone

signals as input. The CRLB computed in this study did not take into account the

hydrophone position estimate inaccuracies that might degrade the performance of

TD-TMA. It was also noted that TD-TMA was much more computationally intensive

than BO-TMA, which is probably one of the reason it was not much considered in

the past. With the continuous advances in CPU design, this should no longer pose a

problem for an operational system.
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ber of the FIM for BO-TMA
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(b) Decadic logarithm of the condition num-
ber of the FIM for TD-TMA
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(c) Decadic logarithm of the range estimate
error standard deviation for BO-TMA in m
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(d) Decadic logarithm of the range estimate
error standard deviation for TD-TMA in m
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Figure 3.23: Observability and precision parameters for BO-TMA and TD-TMA for
a non-manoeuvring scenario. The empty frame (c) is the result of the non validity
of the computed CRLB due to the non invertibility of the FIM. Invalid CRLB are
displayed as white cells. The top plots (condition number) indicate, as a function of a
target initial position, whether its position and speed are observable. A low condition
number indicates a better observable scenario. The middle plot gives an indication of
the precision of the range estimate. The two lower plots are sections of the other plots
for a target of initial bearing 45◦
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3.4 Summary and conclusion

In this chapter, we have considered a number of algorithms for estimation of a source

location, for broadband sources as well as narrowband sources. Two main types of

algorithms were considered, recursive algorithms and batch algorithms. Narrowband

sources were found difficult to localise, unless one would use a number of narrowband

components to estimate time delays in a broadband fashion. We have however not

considered the technique of frequency and bearing TMA [73] which is applicable

in this particular case. Recursive algorithms were developed for the localisation of

broadband sources, using time delays between hydrophone signals as preprocessed

input. The algorithm performance was acceptable with non moving sources but the

Kalman filter had difficulties following moving sources. Finally two types of batch

algorithms were considered, a classic BO-TMA MLE estimator and an extension

thereof using time delays as input, TD-TMA. Neither batch methods suffered from

the well known stability issues of the Kalman filter, but they do have the disadvantage

to give a solution only after the integration of the full batch, while recursive methods

give a solution every time a measurement is collected.

We have shown through theoretical analysis that the TD-TMA method has the

potential to improve the observability of target kinematic parameters in the absence

of a manoeuvre, normally necessary for TMA. As mentioned earlier, the TD-TMA

method is likely to be sensitive to hydrophone position inaccuracies. Their effect on

performance could be examined with a theoretical study similar to that performed in

section 3.3.3. Furthermore, this method has been examined with theoretical measures

of performance (CRLB) but has not been tested with measured data. An experiment

at sea involving a towed array and a controlled source would validate the applicability

of this method. Finally, the theoretical measures of performance given in this thesis

can be used to verify the applicability of this method to other systems and configu-

rations such as intercept sonar ranging, localisation with a field of passive sonobuoys

localisation or towed array shape estimation.



Chapter 4

Classification with Active Sonar
using BPSK Waveforms

“Quatrième espèce de l’étoile de mer croissant en arbre” from Guillaume Rondelet,

La Seconde Partie de l’Histoire Entière des Poissons, [86].

This chapter has been published in IEEE Journal of Oceanic Engineering as False alarm reduc-

tion for Low Frequency Active Sonar with BPSK pulses: Experimental results [29].
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With the proliferation of smaller and quieter diesel-electric submarines, Anti-

Submarine Warfare (ASW) in shallow waters with active hull-mounted and passive

towed sonars has become increasingly difficult. However, with the recent introduc-

tion of a next generation of sonar, the Low-Frequency Active Sonar (LFAS) sys-

tems [24, 87], long-range detection of submarines has become feasible. These rela-

tively new systems combine the benefits of current passive systems (low frequencies

and the possibility to tow at favourable depth) with those of active systems (indepen-

dent of enemy’s radiated noise). The first LFAS systems have become operational in

the last couple of years. Although performing much better than their predecessors,

the shallow-water performance of LFAS can still be improved. The main problem in

shallow-water environments is the excessive false alarm rate. The sonar, designed to

detect objects in the water column at long ranges, will not only detect submarines,

but also objects on the bottom such as stones, wrecks and pipelines as well as objects

in the water column and at the surface like drifting containers, fish, whales or buoys.

A solution to reduce the number of false alarms while maintaining the systems

detection capability can be found in the analysis of contacts consistency over time

and their kinematics. Of all the contacts detected by the system, the most likely

to be in motion is an underwater craft, while any strong scatterer lying on the sea

bottom will remain still by definition. When Doppler insensitive pulses such has

Hyperbolic Frequency Modulated pulses (HFM) are used, the kinematics of each

persistent contact are often estimated by means of Multiple Target Tracking [88,89].

However, an excessive quantity of contacts, mostly due to clutter, will build up a

heavy load for the tracker. False alarms will lead to false associations and therefore

not only increase the chance of producing false tracks, but also reduce the probability

of constructing a true track. Ideally, as many false alarms as possible should be

removed before tracking.

A method contributing to the reduction of false alarm consists of analysing relevant

features of HFM echoes (such as shape or total energy) and applying a classifier to

these features [90].

Another method that can be used as a complementary and independent classifi-

cation technique consists of estimating the range rate of each detected scatterer by

measuring the Doppler shift of its echo [91,92]. The measured Doppler can be either
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used as an input to the tracker, or used to remove non moving contacts, at the risk of

losing detections of targets exhibiting no radial velocity. This approach requires the

sonar to transmit a Doppler sensitive waveform. The standard Doppler sensitive pulse

used in active sonar applications is the Continuous Wave (CW) pulse [25, p. 194]. It

offers an optimal Doppler resolution for a given pulse length, but its range resolution

and accuracy make the unambiguous association of CW contacts with HFM contacts

challenging.

Fusion schemes of HFM and CW contacts have been proposed in [93, 94]. These

studies show the added value of using a combination of Linear Frequency Modulated

(LFM) and CW pulses for both detection and estimation of the sources parameters.

Binary Phase Shift Keyed (BPSK) pulses offer both Doppler and range resolution

and are therefore well suited for contact association. The useful resolution properties

of BPSK come at an expense; the sidelobes both in range and in Doppler response

are relatively high, making detection difficult in areas with clutter. However, an

operational mode with HFM pulses for detection in combination with BPSK for

classification seems worthwhile. In this paper, we first consider a few Doppler sensitive

waveforms and discuss the properties of the BPSK pulse in detail. The influence of

Doppler spread on BPSK performance is then evaluated. An experiment at sea is

then presented and its results are analysed and interpreted.

4.1 Doppler sensitive waveforms

The resolution, accuracy and ambiguity properties of a given waveform with respect

to range and Doppler can be characterised through its wideband ambiguity function

[92,95]. An example of such a function is shown in figure 4.1; An extensive analysis of

a number of waveforms relevant to LFAS is presented by Collins [96]. He advises on

how to interpret an ambiguity function, especially in the presence of reverberation.

Experimental results for reverberation suppression using advanced pulses can be found

in [97].

The method we propose consists in transmitting a Doppler insensitive waveform

with a range resolution sufficient to collect a quantity of contacts; see also [98]. A

Doppler sensitive waveform is then transmitted and its echoes processed only within
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a range and bearing bracket around the location of the contacts. The HFM contacts

are then matched with the BPSK contacts and classified by means of their estimated

range rate. This method requires a Doppler sensitive pulse with a range resolution

sufficient to allow the matching of the contacts of the Doppler sensitive with those of

the Doppler insensitive waveform.

4.1.1 A zoo of pulses

The reference Doppler sensitive pulse in ASW is a long Continuous Wave (CW)

pulse [92], but its range resolution is insufficient for our application. Waveforms

performance in the presence of reverberation and noise is characterised by their

bandwidth-duration product (B T ) [91]. The possibility to send waveforms exhibiting

a high B T product at a high source level was limited by transducer technology, but

developments in sensor technology [99] allow to transmit such pulses at frequencies

relevant for LFAS.

Broadband Doppler sensitive pulses can be classified in two classes according to

their spectrum: comb spectrum pulses and smooth spectrum pulses.

4.1.1.1 Comb spectrum pulses

Pulses such as the Cox Comb (a sum of sinusoids) [92,100] or the PTFM (Pulse Train

of Frequency Modulation, a series of short FM pulses) [97,101] have a spiky spectrum

that can be engineered so that the sidelobes in the Doppler direction are pushed to

frequencies corresponding to a much higher Doppler than that of the reverberation

at usual tow speeds. Despite their large bandwidth and their reverberation rejecting

power, these pulses have a range resolution and accuracy only slightly better than

that of a CW pulse of the same duration and their contacts are similarly difficult

to associate with HFM contacts. Apart from Comb spectrum pulses, which have

CW-like properties although performing better in heavy reverberation, also smooth

spectrum wideband Doppler sensitive pulses exist.
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Figure 4.1: Theoretical wideband ambiguity surface (Range Doppler plot) of a typical
LFAS BPSK pulse (2047 bits, 480Hz bandwidth and 4 s pulse length). The abbreviation
kn indicates knots and nmi nautical miles.

4.1.1.2 Smooth spectrum pulses

Smooth spectrum pulses are attractive since they offer the “ideal” ambiguity function,

combining a high range resolution (comparable to HFM) and high Doppler resolution

(comparable to CW). However, the high sidelobe levels in their response functions

are a limiting factor to their performance in heavy clutter environments.

Examples of pulses in this class are Pseudo random pulses [92, 102, 103] such as

Costas pulses [104]. They consist of a collection of short CW pulses at different

frequencies cleverly arranged in “Costas arrays” [105] so as to minimise sidelobes

in the ambiguity function. Costas waveforms provide suitable range and Doppler

resolution for our application but their ambiguity surfaces have spurious sidelobes

that are problematic in heavy reverberant environments. Although these sidelobes

can be predicted [106], they are undesirable and might cause false detections.

Other pulses in this class are phase modulated waveforms such as the BPSK

pulse. They provide a high range and Doppler resolution, but feature a flat plateau of

sidelobes without outliers [106]. We will now examine the properties of this waveform

in detail.
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Figure 4.2: Construction of a BPSK signal : Top : Carrier, Middle: pseudo-random
bit sequences. Bottom: phase modulated carrier, the triangles and dashed lines denote
the phase jumps.

4.1.2 BPSK pulse

The characteristics and performance of BPSK pulses for sonar detection have been

developed by G. Jourdain in her founding work on semi random pulses and their

ambiguity surfaces [106–108]. BPSK pulses have been used for a variety of sonar

applications [109, 110] as well as for underwater communications [111].

A BPSK waveform is constructed by modulating the phase of a sinusoidal carrier

of frequency fc transmitted for a duration T . A pseudo-random binary sequence β (t)

of N bits of duration T/N with good auto-correlation properties such as a maximum

length pseudo noise sequence [108] is chosen. Every bit change is coded by applying

a phase jump of π to the carrier, as shown in figure 4.2,

w (t) = sin (2πfc t (2β (t)− 1)) . (4.1)

The 3 dB bandwidth of the resulting waveform is

B =
N

T
, (4.2)

and its B T product is therefore equal to the number of bits in the sequence.
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The full 3 dB Doppler resolution in m/s of such a pulse [107] is

δv ≈ 0.886
c

fcT
, (4.3)

where c is the speed of sound in water in m/s. This happens to be the same as that

of a CW waveform of the same length [25, p. 195]. Its full range resolution is

δr ≈ 0.886
c

2B
, (4.4)

which is the same as that of an HFM waveform of the same bandwidth. Hence, the

BPSK waveform combines the advantages of both the CW pulse and HFM pulse in

terms of Doppler and range resolutions. This benefit comes at the price of a high

sidelobe level (SLL), as can be seen in its wideband ambiguity function shown in

figure 4.1 (The BPSK waveform used to compute that function is representative of

the pulses used in LFAS sonars (Pulse length 4 s, Bandwidth 480Hz and number of

bits 2047)). However, the sidelobe level is relatively constant, without outliers, and

its average level is [107]

SLL = −10 log10 (N) . (4.5)

This constant level reduces the probability of false alarms due to sidelobes.

4.1.3 Limitations of the BPSK waveform

4.1.3.1 High data volume

From the previous it may appear that the BPSK is the “ideal” sonar pulse and since

it exists already quite some time, the question raises why it is not used more in sonar

applications. There appears to be practical limitations to the use of BPSK pulses.

The most evident ones are discussed below.

The high range and Doppler resolution for a given B T product of the waveform

mean that the range-Doppler cell subjected to detection, either by a computer aided

detection algorithm or an operator must be small. A typical 4 s LFAS BPSK waveform

with a centre frequency of 1500 Hz and a B T product of 2047 will provide a Doppler

and range resolution of 0.25 m/s and 1.5 m, respectively. With a pulse repetition

time of 30 s the maximum range of the sonar will be 22.5 km (15 · 103 range cells).
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With 60 Doppler channels from −15 m/s to +15 m/s and 360 beams, the data size

for a single ping will be 324 · 106 range-bearing-Doppler cells (about 1.2 Gbyte in

single precision). This signal processing produces a volume of data tedious to handle

with a desktop computer. Moreover, the detection process in the huge data cube is

very similar to that of the proverbial needle and the haystack.

4.1.3.2 Sensitivity to Doppler perturbation

As we saw in 4.1.2, the BPSK waveform is very Doppler sensitive. This implies that

its performance is likely to be affected by Doppler spreading. There are various causes

for Doppler spreading such as propagation through a time varying medium [112,113],

or a manoeuvring extended target. To give a representative example, we will consider

Doppler spreading due to movement between source and receiver.

Towed acoustic sources are very practical for LFAS operations because they can

be towed at any convenient depth depending on the environmental parameters at the

actual time and their effect on acoustic propagation performance. They are however

subjected to hydrodynamic constraints originated by sea state or high tow speed.

These can cause pendular oscillations of the towed body. In a dual tow configuration,

a high sea state might give way to motion between the source and towed array.

These oscillations result in a variation in the range between the source, a given

scatterer and the towed array, which translates into a distortion of the Doppler spec-

trum of a given echo. Depending on the nature of the distortion, the effect on the

performance can be a bias on the Doppler estimate but also a spreading of the echo

Doppler spectrum. The latter can reduce the Signal to Noise Ratio and therefore

affect the detection performance.

To assess the effect of such a perturbation, we simulated a worst case scenario in

which the received echoes are affected by a Doppler spread. We assume that the range

is affected by a sinusoidal perturbation (corresponding for instance to the pendular

movement of the source) such that a given echo contains both a positive and negative

Doppler shift. The period of this sinusoidal perturbation (4 s) is chosen equal to

the pulse length for simplicity and is close to a typical wave period (5 - 6 s [112]).

The amplitude of the oscillation of the source is expected to be around a metre or

less (observed through the equalisation of communication signals), corresponding to a
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Figure 4.3: Time distortion applied to a four second pulse with an amplitude of 0.5 s.

distortion amplitude (α) of about 0.7 ms. We simulated perturbations of an amplitude

up to 1 ms to obtain a worse case scenario. A complete modelling of the dynamics of

the source and towed array is beyond the scope of this thesis. We therefore used a

sine function weighted by a cosine at half the period of the sine. The weighting was

added to smooth the distortion at the edges of the pulse as a non zero derivative of

the distortion was causing problems with the simulations.

The perturbation amounts to the transform

p (t) 7→ pα (t) = p

(

t+ α sin

(

2π
t

T

)(

1− cos 2π
t

T

))

, (4.6)

where p (t) is the pulse as a function of time, T is the pulse length, α the amplitude

of the distortion and pα the distorted pulse.

To simulate this effect, we interpolated a 4 s BPSK waveform (2047 bits, 480Hz

bandwidth) on a distorted time vector (shown in figure 4.3) using (4.6) and then

applied a Doppler sensitive matched filter (similar to that used in our sonar processing

chain) as follows,

χα (τ, d) =

∫ +T/2

−T/2

pα (t) p (d (t− τ)) dt, (4.7)



110 CHAPTER 4. CLASSIFICATION

where τ is the time lag, d is a Doppler time scale factor corresponding to a range rate

ṙ,

d =
c− ṙ

c+ ṙ
. (4.8)

The maximum energy value of the resulting time-Doppler matrix χα (τ, d) was

then determined and plotted against the amplitude of the time distortion in figure 4.4.

Range and Doppler cuts of the distorted pulses correlated with the clean replica are

represented for three representative values of α in figure 4.5. Furthermore we applied

the same distortion and a Doppler insensitive matched filter to a typical LFAS HFM

waveform of same duration and bandwidth and plotted the degradation in figure 4.4.

The cross correlation of the distorted HFM waveform with the clean replica is plotted

in figure 4.5 as well. This simulation shows that the level of a BPSK echo can be

heavily degraded (down to 6 dB) by a Doppler spread while the HFM echo remains

almost unaffected with a maximum loss around 3 dB. This result is far from surprising

as HFM pulses have been designed to be Doppler insensitive [114].

The effect of the perturbations can also be observed in the resulting Doppler

estimate. From the lower row of figure 4.5, one can see that these result in both a

spread in the main lobe and a bias in the Doppler estimate. This spread signifies

that the standard deviation of the accuracy of the Doppler estimate will most likely

be increased.

These deficiencies of the BPSK waveforms help emphasize the point that for an

application such as ASW, one cannot rely entirely on a highly range and Doppler-

sensitive waveform such as BPSK, as the volume of data is cumbersome, and the

pulse may be heavily affected by Doppler spreading. However, a BPSK echo pro-

vides an accurate measurement of a contact’s Doppler in one ping which can quickly

help classify many false alarms in an ASW sonar picture in heavily reverberating

environments.
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4.2 Experimental results

4.2.1 Experiment description

An experiment in which HFM and BPSK pulses were transmitted alternately was car-

ried out during the 2005 NL-LFAS trial in Norwegian waters near Stavanger. Hr.Ms.

Mercuur (MER) was towing the IRLFAS system [24], which has a wideband source

and a port-starboard ambiguity resolving receiver. The target was a Walrus class sub-

marine (SUB). MER was sailing a straight southward track while SUB was varying

its range at different rates as shown in figure 4.6.

The experiment was performed in an environment typical of the area. The mor-

phology and nature of the sea bottom were different on port and starboard. The

submarine on starboard was sailing over the flanks of a sandy hill. The area on port,

between this hill and the coastline, was a relatively flat muddy plain. The nautical

chart (figure 4.6) reports obstructions as well as a seamount with 150 m depth on

this side.

The sound speed profile was downward refracting, which means that heavy bottom

interaction was encountered for propagating sound.
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Figure 4.7: Measured ambiguity surface (Range Doppler plot) of a BPSK echo (2047
bits, 480Hz bandwidth and 4 s pulse length).
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Figure 4.8: Measured (red solid line) and ideal (black dashed line) Range and Doppler
responses measured as cross section of the ambiguity function of a measured echo of a
BPSK waveform.

4.2.2 Experimental ambiguity function

The quality of the measured data and processing chain was assessed by comparing

the measured range-Doppler surface of a given echo with the theoretical wideband

ambiguity function of the transmitted waveform. In figure 4.7, we show such a surface

and in figure 4.8, cross-sections in the Doppler and range directions. The echo is

affected by a Doppler spread that degrades the actual Doppler resolution of the echo

and the mainlobe to sidelobe ratio. Nevertheless, the main lobe to sidelobe ratio as

well as the signal to noise and reverberation ratios are more than sufficient to detect

and classify the target.
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4.2.3 Signal processing

HFM and BPSK pings were transmitted in turns. The HFM echoes were first nor-

malised in the range direction using a trend removal high-pass filter. A threshold

was then applied to the signal to form contacts. These contacts are then fed to a

classifier which rejects a number of contacts, based on features such as shape, size or

energy [90]. The location of the remaining HFM contacts was then stored and the

BPSK matched filtering of the following ping was only performed in a narrow sector

containing the location of these contacts.

A maximum search was then performed in a Range-Bearing-Doppler data cube

centred on the geographical location of each HFM contact. The BPSK contacts orig-

inating from SUB and clutter were stored separately (with the help of the measured

position of the submarine). The analysis described in the following section was per-

formed on these BPSK contacts. This way of processing is significantly less memory

and CPU demanding than applying the Doppler sensitive matched filter to the whole

ping data. Moreover, it reduces the volume of data in which the BPSK detection is

performed. This way of processing BPSK pulses is very similar to Alinat’s work [98].

4.2.4 Effect of topography on classification performance

In figure 4.11(a), the location of all BPSK LFAS contacts of the whole experiment is

shown in a Range-bearing plot. The target track (first sailing out and then closing

in) is visible on starboard bearings between 70◦ and 90◦. In figure 4.11(b), a cluster

of contacts indicated by a dashed contour is detached from the rest of the clutter

contacts. These contacts exhibit a Doppler value that would lead to think they

originated from a moving object. The presence of another moving large scatterer in

the area being improbable, this echo was very likely to be clutter related. The origin

of this structure is investigated in the following.

The position of this contact structure corresponds to the obstructions signalled

in the nautical chart by blue arrows and a steep ridge in this area. This ridge is

at an angle compared to the track of the platform. As explained in figure 4.9, a

strong extended scatterer positioned at an angle compared to the platform track can

generate a contact displaying a Doppler different from that of the clutter in that

bearing. The most likely explanation for this contact structure is then an angled
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Figure 4.9: Non specular reflection by an angled reflector. In (1), the reflector is
parallel to the transceiver path, the range of the scatterer does not change within the
pulse duration. In (2) the range of the scatterer changes between the instants the sonar
pulse begins and finishes to insonify the scatterer. The pulse received by the receiver
does not have the same length as the pulse it transmitted. Judging from the Doppler,
the echo appears to belong to a moving target.

ridge or an oil pipe. Such a structure can give very strong specular echo. As shown

in figure 4.9, this kind of configuration can result in an echo being affected by a time

stretch while the echo itself is not moving. A very trivial analogy is that of a car

driving along a continuous mirror surface; if the surface is parallel to the trajectory of

the car, it gives one the impression of observing a car driving side by side with itself;

However, if the surface is at an angle compared to the car trajectory, one will have

the impression that one’s reflection is driving away from or towards oneself. In sonar,

this kind of configuration results in an apparent Doppler and could not be resolved

with a multiple target tracker as the apparent range rate corresponds to the variation

in range of the reflector.

4.2.5 Classification results

To assess the classification performance with the BPSK waveform, we analysed the

statistics of the measured Doppler of clutter originated contacts. Let the “absolute

Doppler” of each contact be

ṙabs = ˜̇r − U (t) cos θ, (4.9)

where U (t) is the towship speed, ˜̇r and θ are the measured Doppler and bearing of

each contact respectively. If an object is still on a flat bottom, its “absolute Doppler”

will be null. The converse is not always true. Indeed a moving object might have a
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Figure 4.10: Empirical Cumulative Density Function of the absolute Doppler of all
the BPSK contacts exceeding a preset Signal to Noise Ratio threshold collected over
the whole experiment

zero “absolute Doppler” in certain conditions, for instance when the object is sailing

along side the sensor at the same speed and in a broadside bearing. Apart from

these particular configurations, the “absolute Doppler” is a good candidate feature

for determining whether an object is moving or not.

However, absolute Doppler estimates are corrupted by measurement errors, prop-

agation effects, unwanted sonar motion as well as the effect shown in figure 4.9.

To assess the performance of the transmitted waveform and its associated pro-

cessing as a classifier, we removed the contact corresponding to the submarine from

each ping and collected all the clutter-related contacts over the whole experiment.

The absolute Doppler of each contact was then computed, as well as the Empiri-

cal Cumulative Density Function (ECDF) of the absolute Doppler of all the BPSK

contacts collected over the whole experiment. The ECDF gives an a posteriori prob-

ability of correct classification as a non-moving object. This function for this dataset

is plotted in figure 4.10 for port, starboard and both sides. We see for instance that

with an absolute Doppler threshold of 2 kn, 68.4% of the contacts are correctly clas-

sified as non-moving object on the starboard side, 94.2% on port and 82.2% overall.

The difference in classification performance between port and starboard is due to the

topographic structure mentioned in section 4.2.4.
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Figure 4.11: BPSK contacts collected during the 2005 experiment.
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4.3 Summary and Conclusions

The Doppler sensitive Binary Phase Shift Keyed pulse for Low Frequency Active Sonar

(LFAS) was studied. BPSK is a pseudo random wideband pulse that originates from

communication applications. A conceptual comparison with other LFAS waveforms

in terms of performance shows that this pulse has potential for LFAS applications.

The BPSK’s response shows high resolution in range and Doppler, which means that

targets can be accurately localised and classified (based on Doppler) with one pulse.

This theoretical performance is formalised and confirmed with simulated results.

It gives the impression of a quasi ideal pulse. Its ambiguity surface shows both a

remarkably high resolution in range and Doppler. Moreover, the ambiguity surface

sidelobes levels are flat (though high), whereas other wideband Doppler sensitive

pulses show a more unpredictable sidelobe behaviour.

Several experiments at sea were performed with BPSK pulses insonifying sub-

marines. One of these experiments (off Norway) was analysed, in complicated propa-

gation conditions and high reverberation levels. A solution was found to avoid the fact

that the processing of these wideband pulses is computationally intensive to process,

leading to a robust implementation in the semi-operational IRLFAS system.

A simulation study confirmed the idea that Doppler spread due to sonar motion

and propagation may be the cause of the performance loss.

The accurate Doppler estimation of the BPSK pulse enables good classification

possibilities to separate clutter-like reverberation from moving submarines, and can

be used as a classification tool as long as detection is being performed with another

pulse (FM). Its false-alarm reduction capability by Doppler analysis is complemen-

tary to that of the echo-cluster analysis in FM only mode. This classification power

can substantially reduce the number of false contacts (82.2 % in the analysed exper-

iment) in LFAS applications in heavy clutter areas. It should be noted however that

the topography can have an influence on the measured clutter Doppler and that infor-

mation from a nautical chart or bathymetric map can help resolve more false alarms.

Further research that would bring even more insight on the performance of BPSK is

the evaluation of the performance of the FM-BPSK combination at the tracker level

as performed in [93,94] and compare it to the performance of FM-CW or FM-PTFM

combinations.



Chapter 5

Conclusion and perspective

Hippolyte Fizeau (1819-1896) and Christian Doppler (1803-1853). Doppler and

Fizeau both discovered independantly the Doppler effect in 1842 and 1848

respectively.
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In this Chapter we will first recall the essence of the work presented throughout

this thesis and provide an outlook on the future of signal processing for towed array.

5.1 Conclusion

5.1.1 Detection

In Chapter 2, we have considered a method of coherent integration of beamformed

data, known as passive synthetic aperture sonar (PSAS), applicable to sinusoidal

signals and compared it with the usual method of incoherent integration. We have

shown that this method of coherent integration can bring a substantial improvement

to signal to noise ratio, probability of false alarm as well as discrimination power

compared to the conventional incoherent method. We then analysed the effect of some

phase perturbations on the performance of the method. Application of this method to

measured data has been found to require taking a number of additional steps to reach

comparable results. These steps consist in estimating and applying a phase correction

factor that compensates for a number of possible phase perturbations. This phase

correction factor is different for each target. A noise cancelling technique was used

in order to estimate this phase correction factor from targets that are not necessarily

the loudest in the acoustic picture. Using this set of techniques, we were able to reach

the theoretical gain on an operational dataset measured from a target of opportunity.

PSAS improves the narrowband passive sonar picture known as Low Frequency

Analysis and Recording (LOFAR). It allows a better discrimination between different

sources and increases the signal to noise ratio (SNR) for tonals. This improvement

relies on the successful coherent integration of acoustic data collected at different

locations, which in turn depends on the estimation of a phase correction factor. At low

SNR, this phase correction becomes challenging [52,57] and there is no improvement

compared to conventional methods.

5.1.2 Localisation

In Chapter 3, we have considered a number of algorithms for estimation of a source

location, for broadband sources as well as narrow band sources. Two main types of
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algorithms were considered, recursive algorithms and batch algorithms. Narrowband

sources were found difficult to localise, unless one would use a number of narrow band

components to estimate time delays in a broadband fashion. We have however not

considered the technique of frequency and bearing Target Motion Analysis (TMA) [73]

which is applicable in this particular case. Recursive algorithms were developed for

the localisation of broadband sources, using time delays between hydrophone signals

as preprocessed input. The algorithm performance was acceptable with non moving

sources but the Kalman filter had difficulties following moving sources. Finally two

types of batch algorithms were considered, a classic Bearing Only-TMA (BO-TMA)

Maximum Likelihood Estimator (MLE) and an extension thereof using time delays as

input, Time Delay-TMA (TD-TMA). Neither batch methods suffered from the well

known stability issues of the Kalman filter, but they do have the disadvantage to give

a solution only after the integration of the full batch, while recursive methods give a

solution every time a measurement is collected.

We have shown through theoretical analysis that the TD-TMA method has the

potential to improve the observability of target kinematic parameters in the absence

of a manoeuvre, normally necessary for TMA. As mentioned earlier, the TD-TMA

method is likely to be sensitive to hydrophone position inaccuracies. Their effect on

performance could be examined with a theoretical study based on the analysis of the

Fisher Information Matrix, similar to that performed in Chapter 3. Furthermore, this

method has been examined with theoretical measures of performance (Cramèr Rao

Lower Bound ) but has not been tested with measured data. An experiment at sea

involving a towed array and a controlled source would validate the applicability of this

method. Finally, the theoretical measures of performance given in this thesis can be

used to verify the applicability of this method to other systems and configurations such

as intercept sonar ranging, localisation with a field of passive sonobuoys localisation

or towed array shape estimation.

5.1.3 Classification

In Chapter 4 we considered a technique for the classification of active sonar clutter

with broadband pulses. The Doppler sensitive Binary Phase Shift Keyed (BPSK)
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pulse for Low Frequency Active Sonar (LFAS) was studied. BPSK is a pseudo ran-

dom wideband pulse that originates from communication applications. A conceptual

comparison with other LFAS waveforms in terms of Doppler classification perfor-

mance shows that this pulse has potential for LFAS applications. The BPSK’s re-

sponse shows high resolution in range and Doppler, which means that targets can be

accurately localised and classified (based on Doppler) with one pulse. This theoret-

ical performance is formalised and confirmed with simulated and measured results.

The pulse ambiguity surface shows both remarkably high resolutions in range and

Doppler. Moreover, the ambiguity surface sidelobes levels are flat (though high),

whereas other wideband Doppler sensitive pulses show a more unpredictable sidelobe

behaviour. Several experiments at sea were performed with BPSK pulses insonifying

submarines. One of these experiments (off Norway) was analysed, in complicated

propagation conditions and high reverberation levels. A solution was realized to

avoid the fact that these wideband pulses are computationally expensive to process,

leading to a robust implementation in the semi-operational Interim Removable LFAS

system. The accurate Doppler estimation of the BPSK pulse enables good classifica-

tion possibilities to separate clutter-like reverberation from moving submarines, and

can be used as a single ping classification tool as long as detection is being performed

with another standard detection pulse, such as a Frequency Modulated (FM) pulse.

Its false-alarm reduction capability by Doppler analysis has more potential than the

echo-cluster analysis in FM only mode. This classification power can substantially

reduce the number of false contacts (82.2 % in the analysed experiment) in LFAS

applications in heavy clutter areas. It should be noted however that the topography

can have an influence on the measured clutter Doppler and that correlation with to-

pographical features from a nautical chart or bathymetric map can help resolve more

false alarms.

5.2 Perspective

This thesis was articulated around a sensor in particular, the towed array of Low

Frequency Active Sonar dedicated to Anti-Submarine Warfare. All the algorithms

presented in this thesis are applicable to other types of sonar arrays such as shorter
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towed arrays or submarine flank arrays and civilian equivalents.

However, we believe towed array systems will keep their value as the sea will re-

main a space of intense activity in the future. Productive activities at sea such as

transport and harvesting of resources will always come along with a spectrum of per-

nicious activities or unwanted by-products such as acoustic pollution, piracy, conflicts

and terrorism. Towed arrays are a useful tool in mitigating these disturbances, by

sensing over-noisy ships, detecting hostile crafts and carrying out census of sea life.

Finally, recent technological developments such as optical fibre hydrophones or

miniature sensors should allow the production of better performing and cheaper sen-

sors that can be deployed by small platforms such as autonomous vehicles and small

boats.
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Appendix A

Probability of False Alarm

The Colladon-Sturm experiment to measure the speed of sound in water. The

transmitter, moored near Thonon on lake Geneva uses a bell to transmit sound.

Reproduced from Guillemin 1869, Les Phénomènes de la Physique [115].
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In this appendix, we derive the probability of false alarm as defined in section 2.1.3.2

for a Gamma distributed signal in Gamma distributed noise. Let us consider two

Γ-distributed random variables Sa and Sb of shape N (with N ∈ N?)and respective

scale θa and θb The probability that Sa ≥ Sb can be expressed as the probability that

Sa − Sb ≥ 0, whose PDF is the convolution of the PDF of Sa and −Sb:

Pr
Sa≥Sb

=

∫ +∞

0

∫ +∞

−∞

(x− y)N−1 exp (− (x− y) /θa)

Γ (N) θNa
(−y)N−1 exp (−(−y)/θb)

Γ (N) θNb
dy dx.

(A.1)

This iterated integral being a probability, it is comprised between 0 and 1 and we

can therefore apply Fubini’s theorem [116] and switch the integral signs:

Pr
Sa≥Sb

=

∫ +∞

−∞

(−y)N−1 exp (−(−y)/θb)

Γ (N) θNb

∫ +∞

0

(x− y)N−1 exp (− (x− y) /θa)

Γ (N) θNa
dx dy.

(A.2)

This simplifies to:

Pr
Sa≥Sb

=

∫ +∞

−∞

(−y)N−1 exp (−(−y)/θb)

Γ (N) θNb

(

1− γ (N,−y/θa)

Γ (N)

)

dy. (A.3)

We chose to solve this equation numerically with the rectangle method, using an

adaptative discretisation step.

In the case of incoherent integration, we have:

θa = NDFTNHσ
2
ν (A.4)

θb = NDFTN
2
Hσ

2
I (A.5)

N = NB, (A.6)

and in the case of synthetic aperture, we have:

θa = NBNDFTNHσ
2
ν (A.7)

θb = NBNDFTN
2
Hσ

2
I (A.8)

N = 1. (A.9)
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By substituting these values in (A.3), one can easily numerically compute the values

for Pr (Sν,inco ≥ SI,inco) and Pr (Sν,synth ≥ SI,synth).
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Appendix B

Phase unwrapping algorithm

The Colladon-Sturm experiment to measure the speed of sound in water. The

observer, moored on the opposite bank from the transmitteron lake Geneva uses a

listening contraption to hear the transmitted bell sound. Reproduced from Guillemin

1869, Les Phénomènes de la Physique [115].
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In this appendix, we describe a phase unwrapping algorithm for time delay estimation

used in section 3.2.2.1 for passive source localisation.

The basic idea behind the phase unwrapping algorithm is that if an unwrapping

error remains after the running the MatlabTM unwrap function, this should be visible

in the residues time series. Let us generate a residues or error sequence:

ε̂n,l = −ϕ̂n,1 − 2πf̂lτn + ϕn,l. (B.1)

Such an error is visible in figure B.1 , in the top left plot (simulated data). The

LLS estimate is biased, but this is clearly showing in the value of the residues.In

figure B.2, such an algorithm is illustrated:
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Figure B.1: Top left: Blue: unwrapped measured phase, Red: linear least Square
fit, Black: true phase. Bottom left: corresponding residues. Top right: Blue: tuned
unwrapped measured phase, Red: linear least Square fit, Black: true phase. Bottom
right: corresponding residues. Note that the residues are much smaller when the phase
unwrapping does not fail.

(a) The wrapped phase of the cross spectrum is extracted. It is unwrapped with

Matlab, but a few unwrapping errors remain.

(b) A linear least square fit of the phase (red) is constructed and if the sum of the

squared residuals is above a certain threshold, a search for an unwrapping error
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Figure B.2: Illustration of a Linear Least Square unwrapping algorithm for time delay
estimation. (Green arrows: phase jumps, red line estimated phase).

is performed. The search for the unwrapping error consists in calculating LLS

fits for smaller local sliding windows along the whole spectrum, and calculating

a residue every time. We then obtain a sequence of local residues and its

maximum indicates a local difference between the unwrapped phase and the

expected linear phase.

(c) The unwrapping error is corrected by adding or subtracting 2π to the portion

of the phase situated at and after the unwrapped error.

(d) Step (b) and (c) are repeated until the sum of the residues gets under a certain

threshold. The value of this threshold is determined by experimenting with the

algorithm.
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Appendix C

Cramèr-Rao Lower Bounds

Drawing of the first French submarine Plongeur, designed by Siméon Bourgois et

Charles Brun and launched in 1873.
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In this appendix, we derive a number of Cramèr-Rao Lower Bounds (CRLB) used

to derive the theoretical performance of localisation algorithms (BO-TMA and TD-

TMA) described in Chapter 3.

C.1 CRLB for broadband bearing estimation

This CRLB is used to express the precision of the bearing estimate as a function of

the signal to noise ratio (SNR), the integration time (T ) and the frequency band used

for estimation ([fmin, fmax]). We assume that the bearing is deduced from the slope

of time delays measured on an array. Both signal and noise are supposed Gaussian

and white over the frequency band of interest. The CRLB for the time delays [80]

are

for a low SNR,

στ =
1

SNR

√

3

8π2T (f 3
max − f 3

min)
(C.1)

and for a high SNR,

στ =

√

3

4 SNR π2T (f 3
max − f 3

min)
. (C.2)

Let us define the state vector x and measurement yn:

x = θT

yn = max
tk

{
ξ1 (tk) ? ξn (tk)

}
. (C.3)

The measurement function of the bearing is then

h : [−π, π] → R
NH

hn : x 7→ (n− 1)
δx
c
cos θT (C.4)

and its Jacobian,
∂hn

∂x
= − (n− 1)

δx
c
sin θT . (C.5)
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We then deduce the Fisher Information Matrix (which in this case is a scalar):

J (x) =
1

σ2
τ

∂h

∂x

∂h

∂x

T

=
1

σ2
τ

NH∑

n=1

(
δx
c
(n− 1) sin θT

)2

=

(
δx sin θT

στc

)2
NH (NH − 1) (2NH − 1)

6
. (C.6)

The CRLB at high SNRs for the bearing estimate is then

σ2
θT

= J−1

=
(3c)2

(2π SNR δx sin θT )
2 T (f 3

max − f 3
min)NH (NH − 1) (2NH − 1) .

(C.7)

We compared this CRLB with the MLE error standard deviation of the error

calculated on 500 Monte Carlo runs for each bearing to verify it and the two standard

deviations were in excellent agreement as shown in figure C.1.
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Figure C.1: Comparison of the CRLB for bearing estimation with time delays with
the standard deviation of errors of 500 Monte Carlo run of a MLE for the same problem
(64 hydrophones separated by 0.36m and a time delay accuracy of 10−5 s).
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C.2 CRLB for Bearing-Only Target Motion Anal-

ysis

In this section, we reproduce the derivations of the CRLB for BO-TMA from [62].

The Fisher Information Matrix (FIM) for BO-TMA is equal to

J (x) = E

(

∂` (x|y)
∂x

∂` (x|y)
∂x

T
)

=
1

σ2
θ

∂h (x)

∂x

∂h (x)

∂x

T

. (C.8)

Let us consider the Jacobian of h (x),

∂h (x)

∂x
=









∂h1 (x) /∂xT · · · ∂hb (x) /∂xT · · · ∂hNB
(x) /∂xT

∂h1 (x) /∂yT · · · ∂hb (x) /∂yT · · · ∂hNB
(x) /∂yT

∂h1 (x) /∂ẋT · · · ∂hb (x) /∂ẋT · · · ∂hNB
(x) /∂ẋT

∂h1 (x) /∂ẏT · · · ∂hb (x) /∂ẏT · · · ∂hNB
(x) /∂ẏT









. (C.9)

We define the two intermediate variables

rx,n,b =

(

xT + TB
b

NB
ẋT − xH,n,b

)

ry,n,b =

(

yT + TB
b

NB
ẏT − yH,n,b

)

, (C.10)

and express the terms of the Jacobian, according to [62],

∂hb (x)

∂xT
=

rx,1,b

c
√

r2x,1,b + r2y,1,b

∂hb (x)

∂yT
= − ry,1,b

√

r2y,1,b + r2y,1,b

∂hb (x)

∂ẋT
= TB

b

NB

∂hb (x)

∂xT

∂hb (x)

∂ẏT
= TB

b

NB

∂hb (x)

∂yT
. (C.11)
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By injecting these expressions in equation (C.8), we easily obtain the FIM for BO-

TMA and the corresponding CRLB.

C.3 CRLB for Time Delay Target Motion Analysis

In this section, we reuse the derivations of the CRLB for BO-TMA from [62] to deduce

the CRLB for TD-TMA. The Fisher Information Matrix (FIM) for TD-TMA is equal

to

J (x) = E

(

∂` (x|y)
∂x

∂` (x|y)
∂x

T
)

=
1

σ2
τ

∂h (x)

∂x

∂h (x)

∂x

T

. (C.12)

Let us consider the Jacobian of h (x),

∂h (x)

∂x
=









∂h1 (x) /∂xT · · · ∂hm (x) /∂xT · · · ∂hNHNB
(x) /∂xT

∂h1 (x) /∂yT · · · ∂hm (x) /∂yT · · · ∂hNHNB
(x) /∂yT

∂h1 (x) /∂ẋT · · · ∂hm (x) /∂ẋT · · · ∂hNHNB
(x) /∂ẋT

∂h1 (x) /∂ẏT · · · ∂hm (x) /∂ẏT · · · ∂hNHNB
(x) /∂ẏT









. (C.13)

We define the two intermediate variables

rx,n,b =

(

xT + TB
b

NB
ẋT − xH,n,b

)

ry,n,b =

(

yT + TB
b

NB

ẏT − yH,n,b

)

(C.14)

and express the terms of the Jacobian, using the expression of h (x) in equation (3.51):
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∂hm (x)

∂xT

=
rx,n,b

c
√

r2x,n,b + r2y,n,b

− rx,1,b

c
√

r2x,1,b + r2y,1,b

∂hm (x)

∂yT
=

ry,n,b

c
√

r2y,n,b + r2y,n,b

− ry,1,b

c
√

r2y,1,b + r2y,1,b

∂hm (x)

∂ẋT
= TB

b

NB

∂hm (x)

∂xT

∂hm (x)

∂ẏT
= TB

b

NB

∂hm (x)

∂yT
. (C.15)

By injecting these expressions in equation (C.12), we easily obtain the FIM for TD-

TMA and the corresponding CRLB.



List of symbols and notations

In Identity matrix of dimension n, see equation (3.22), page 67

K Kalman gain, see equation (3.14), page 65

Q Covariance of the process noise, see equation (3.6), page 63

R Covariance of the measurement noise, see equation (3.11), page 64

S Covariance of the innovation, see equation (3.14), page 65

ν Subscript related to ambient acoustic noise, see equation (2.1), page 19

I Subscript related to the interferer, see equation (2.1), page 19

T Subscript related to the target, see equation (2.2), page 19

α Amplitude of a time distortion, see equation (4.6), page 109

∗ Convolution operator, see equation (2.7), page 21

β BPSK waveform bit sequence, see equation (4.1), page 106

χ2
N Chi-square (χ2) random distribution with N degrees of freedom, see equa-

tion (2.23), page 29

δ Dirac function, see equation (2.7), page 21

δt Sampling interval, see equation (3.2), page 62

δx Hydrophones spacing on the towed array, see equation (2.2), page 20
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{̇} Time derivative, see equation (3.2), page 62

ṙT Range rate of the target, see equation (2.46), page 44

` Log-likelihood function, see equation (3.46), page 89

Γ Γ-function [37], see equation (2.24), page 29

γ Lower incomplete γ-function [37], see equation (2.26), page 29

λ Signal wavelength in the considered medium, see equation (3.1), page 59

C Set of all complex numbers , see equation (2.9), page 22

R Set of all real numbers , see equation (2.9), page 22

Φ State transition matrix, see equation (3.4), page 62

w Process noise vector, see equation (3.4), page 62

x State vector, see equation (3.4), page 62

E Expectation operator, see equation (3.53), page 92

H Jacobian of h, see equation (3.17), page 66

h Measurement function, see equation (3.17), page 66

J Fisher Information Matrix, see equation (3.53), page 92

n Vector of hydrophone indices, see equation (3.19), page 67

P Error covariance, see equation (3.16), page 65

r Position vector, see equation (2.1), page 19

rH,n (tk) Position of the nth hydrophone at time tk, see equation (2.3), page 20

y Measurement vector, see equation (3.10), page 64

K Condition number, see equation (3.54), page 95

L Likelihood function, see equation (3.45), page 88
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SNR Signal to noise ratio, see equation (2.43), page 38

Pr Probability, see equation (2.45), page 38

Ψb (fl) ETAMPhase correction for the bth snapshot at frequency fl, see equation (2.53),

page 50

σν Standard deviation of the ambient noise, see equation (2.1), page 19

σA Standard deviation of the process noise on A, see equation (3.7), page 63

σf Standard deviation of the process noise on f , see equation (3.7), page 63

σI Standard deviation of the interferer signal, see equation (2.1), page 19

σR Standard deviation of the measurement noise, see equation (3.8), page 63

σr Range error standard deviation, see equation (3.55), page 95

σx Standard deviation of the process noise on x, see equation (3.7), page 63

σy Standard deviation of the process noise on y, see equation (3.7), page 63

στ Time delay precision standard deviation, see equation (3.29), page 82

τ Lag, time delay, see equation (4.8), page 110

τn Time delay between the signals of hydrophone n and 1, see equation (3.31),

page 83

θI Bearing of the interferer, see equation (2.1), page 19

θT Bearing of the target or source, see equation (2.2), page 19

ε Measurement error on the phase, see equation (3.32), page 84

ϕn,l Phase of the cross-spectrum of the signals of hydrophone n and 1 expressed at

frequency fl, see equation (3.31), page 83

Ξ Fourier transform of ξ, see equation (2.22), page 29

ξb,n Data of the nth hydrophone in the bth snapshot, see equation (2.21), page 28
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ζ Perturbated snapshot of acoustic data, see equation (2.49), page 45

AT Amplitude of the target’s signal, see equation (2.2), page 19

B Waveform bandwidth, see equation (4.2), page 106

b Snapshot index, see equation (2.21), page 28

c Speed of sound in water, see equation (2.1), page 19

d Doppler time scale factor, see equation (4.8), page 110

fc Waveform centre frequency, see equation (4.1), page 106

fl Value of the lth element of the frequency vector, frequency corresponding to

the lth element of the Digital Fourier Transforms., see equation (2.8), page 22

fS Sampling frequency., see equation (2.2), page 20

fmax Upper bound of the frequency band, see equation (3.29), page 82

fmin Lower bound of the frequency band, see equation (3.29), page 82

INH
(θ, θ0, f0) Response in the frequency-bearing domain of the conventional beam-

former applied to a linear array of NH hydrophones for a source at bearing θ0,

expressed at bearing θ and frequency f , see equation (2.13), page 24

L Length of the towed array, see equation (3.1), page 59

l Frequency vector index, see equation (2.8), page 22

m Measurement-hydrophone index, see equation (3.49), page 90

N Number of bits in a BPSK waveform, see equation (4.2), page 106

n Hydrophone index, see equation (2.3), page 20

NB Number of snapshots of acoustic data, numbers of measurements in a batch,

see equation (2.20), page 27

NH Number of hydrophones on the towed array, see equation (2.2), page 20
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N. (0, σ) Gaussian noise of variance σ, see equation (3.2), page 62

NDFT Number of points for the Digital Fourier Transform, see equation (2.8), page 22

p (r, tk) Pressure evaluated at position r and time tk, see equation (2.1), page 19

pν (r, tk) Pressure due to the ambient noise evaluated at position r and time tk, see

equation (2.1), page 19

pI (r, tk) Pressure due to the interferer evaluated at position r and time tk, see equa-

tion (2.1), page 19

pT (r, tk) Pressure due to the target evaluated at position r and time tk, see equa-

tion (2.2), page 19

Rf Fresnel Range, see equation (3.1), page 59

rT Range of the target, see equation (2.45), page 44

S (θ, fl) DFT of s (θ, tk) expressed at frequency fl, see equation (2.8), page 22

s (θ, tk) Output of the conventional beamformer expressed at bearing θ at time tk,

see equation (2.6), page 21

sν,n Pressure due to the noise measured at the nth hydrophone, see equation (2.5),

page 21

sI,n Pressure due to the interferer measured at the nth hydrophone, see equa-

tion (2.5), page 21

Sinco Response of the incoherent summation of acoustic snapshots, see equation (2.22),

page 29

ssynth Response of the coherent summation of acoustic snapshots, see equation (2.33),

page 32

sT,n Pressure due to the source measured at the nth hydrophone, see equation (2.5),

page 21

T Waveform duration, see equation (4.2), page 106
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t Time, see equation (2.1), page 19

TB Duration of a snapshot of acoustic data, see equation (2.20), page 27

tk Time at the kth sample, see equation (2.1), page 19

U Longitudinal speed of the towed array, see equation (2.2), page 20

w BPSK waveform time series, see equation (4.1), page 106

yb bth element of y, see equation (3.45), page 88



List of Acronyms

ASW Anti-Submarine Warfare, 2

BO-TMA Bearing-Only Target Motion Analysis, 86

BPSK Binary Phase Shift Keying, 103

CAPTAS Combined Active and Passive Towed Array

Sonar, 15

CBF Conventional Beamformer, 21

CDF Cumulative Distribution Function, 29

CRLB Cramèr Rao Lower Bound, 84

CW Continuous Wave, 102

DFT Discrete Fourier Transform, 21

DMO Defensie Materieel Organisatie, 15

ECDF Empirical Cumulative Distribution Function,

73

EPDF Empirical Probability Density Function, 73

FFT Fast Fourier Transform, 21

FIM Fisher Information Matrix, 92
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HFM Hyperbolic Frequency Modulated pulse, 102

KAL Kalman filter, 69

LFAS Low Frequency Active Sonar, 7

LFM Linear Frequency Modulated pulse, 103

MLE Maximum Likelihood Estimator or Estimate,

60

NATO North Atlantic Treaty Organisation, 48

NURC NATO Undersea Research Centre, 48

PMN-PT lead-magnesium-niobate-lead-titanate, 6

PVDF PolyVinylidine DiFluoride, 6

PZT lead-zirconium-titanate, 6

RNlN Royal Netherlands Navy, 15

SNR Signal to Noise Ratio, 4

SOCRATES Sound Calibration and Testing, 15

SOSUS Sound Surveillance System, 7

SSBN Submersible Ship Ballistic Nuclear, 2

TD-TMA Time Delay-Target Motion Analysis, 86

TMA Target Motion Analysis, 59

TNO Nederlandse Organisatie voor Toegepast

Natuurwetenschappelijk Onderzoek, 15
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[115] A. Guillemin. Les phénomènes de la physique. L. Hachette, 1869.

[116] G. Fubini. Sugli integrali multipli. Rend. Acc. Naz. Lincei, 16:608–614, 1907.



Summary

159



The end of the Cold War and the collapse of the Warsaw pact have resulted in

a change of operational theatre for the naval forces of the North Atlantic Treaty

Organisation (NATO). In particular, the focus of Anti Submarine Warfare forces has

shifted from tracking Soviet nuclear ballistic missile submarine in the deep waters of

the Atlantic ocean to hunting smaller and quieter Diesel electric submarines in coastal

water. In most scenarios, towed array sonars are the best sensor to detect, classify

and localise submarines. The long passive towed array sonars used during the Cold

war are more difficult to use in coastal waters and are being replaced by most Navies

by Low Frequency Active Sonars (LFAS) using a towed source and shorter towed

receiving array. These shorter towed arrays can be used in both active and passive

modes. In passive mode, their reduced size offer limited performance compared to

their longer equivalent. In active mode, they can detect submarines at long ranges in

shallow waters but are plagued by false alarms caused by echoes from features of the

seafloor. This thesis deals with algorithms improving Detection, Classification and

Localisation for towed sonar arrays, with a specific focus on LFAS sonars.

In Chapter 2, we derive, analyse and apply to measured data a method for im-

proving detection performance with short passive towed arrays. An important issue

in detection of quiet acoustic source with short towed arrays is the improvement in

signal-to-noise ratio (SNR) and bearing resolution for targets emitting low frequency

signals. One of the techniques believed to improve these characteristics is Synthetic

Aperture Sonar (SAS). The method is based on the artificial enlargement of a sonar

array by coherently integrating acoustic snapshots at different antenna positions. We

first derive theoretical measures of performance of passive SAS and report on its appli-

cation in combination with other signal-processing algorithms. Its theoretical perfor-

mance is compared with that of the frequently used incoherent integration. The used

passive SAS algorithm is the method known as Extended Towed Array Measurement

(ETAM) or the overlap correlator. It is based on the correlation of data snapshots

on overlapping hydrophones. Correlation is a key issue in this method and since it

is affected by noisy targets, some gain can be expected from noise cancellation. The

influence on the performance of ETAM of a method of tow ship noise cancelling at

hydrophone level (Inverse Beam Forming, IBF) is analysed. This approach increases

ETAM performance by removing a loud and highly correlated noise source, the tow
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ship, and thus enhancing the other targets in the beam pattern. The results of the al-

gorithms applied to two experimental datasets show that they bring an improvement

close to theoretical expectations. Port starboard discrimination and the successful

combination of IBF with ETAM make this approach innovative.

In Chapter 3, methods for improving the localisation of a source with a short

towed array are analysed and applied to data, both simulated and measured at sea.

Localisation performance with sonar towed array is related to the array length. The

knowledge of the position of a given acoustic source gives a critical tactical advantage

to a ship. There are a limited number of ways to estimate the range of a source with

a towed passive sonar, most requiring the towing platform to execute a manoeuvre.

These manoeuvres are undesirable as they take a lot of time, cause bending of the

towed array and can even put the towing platform in harm’s way. We present a

number of source position estimation methods for both broadband and narrowband

sources suitable for short towed arrays. Recursive methods based on the extended

Kalman filter are first examined. A new method based on the integration of time

delay of arrival measurements along the sonar path is described. We derive theoretical

performance indicators and show that this method gives the possibility to estimate

the position and speed of a source without a manoeuvre.

In Chapter 4, the Classification performance of a broadband waveform is anal-

ysed and measured on data collected at sea. Like any long-range active sonar system,

LFAS produces a large amount of unwanted sea bottom echoes or clutter. These

echoes give rise to false alarms that increase the computational load of target track-

ers and jeopardise the correct classification of each echo. The number of false alarms

due to clutter can be reduced either through echo classification techniques or through

Doppler filtering provided the targets of interest are in motion. Much research has

been carried out on waveform investigation for the efficient use of bandwidth ca-

pabilities of modern sonar transmitters. Among the quantity of waveforms, Binary

Phase Shift Keyed (BPSK) pulses have emerged as exhibiting cross-correlation prop-

erties relevant to Doppler filtering while maintaining a range resolution comparable

to Frequency Modulated (FM) pulses. We have successfully applied a false alarm re-

duction technique using contacts obtained with an FM pulse subsequently processed

by Doppler filtering with a BPSK pulse. The Doppler classification performance for
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this pulse is evaluated on an experimental dataset and a few limitations of BPSK are

identified.
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Het einde van de Koude Oorlog en de ontbinding van het Warschau Pact hebben

geleid tot een verandering van het operationele toneel voor de zeestrijdkrachten van de

Noord Atlantische Verdrags Organisatie (NAVO). In het bijzonder is de aandacht van

onderzeebootbestrijding verschoven van het volgen van de nucleaire onderzeeboten

van de Sovjet-Unie in de diepe Atlantische Oceaan naar het opsporen van kleinere

en stillere dieselelektrische onderzeeboten in ondiepe kustwateren. In de meeste sce-

nario’s is de gesleepte of “towed” array sonar de best geschikte sensor voor het de-

tecteren, classificeren en lokaliseren van onderzeeboten. De lange passieve towed array

sonars die tijdens de Koude Oorlog ingezet werden zijn minder geschikt voor kustwa-

teren en worden thans in de meeste marines vervangen door Lage-Frequentie Actieve

Sonars (LFAS) die uit een gesleepte bron en een korter ontvangstarray bestaan. Deze

kortere towed arrays kunnen zowel actief als passief ingezet worden. Als passieve

sensor wordt de effectiviteit van LFAS beperkt door de kleinere lengte vergeleken

met de (klassieke) langere versie. Bij gebruik als actieve sensor kunnen kunnen on-

derzeeboten op lange afstanden in ondiepe wateren gedetecteerd worden, maar de

grote aantallen valse alarmen door echo’s van de zeebodem speelt dit systeem parten.

Dit proefschrift handelt over algoritmen die detectie, classificatie en lokalisatie met

gesleepte sonararrays kunnen verbeteren, met een nadruk op de toepassing ervan op

LFAS.

In hoofdstuk 2 leiden we een methode af, en analyseren deze, voor verbeterde

detectie met korte passieve towed arrays; daarnaast passen we deze methode toe op

gemeten data. Een belangrijke kwestie bij het detecteren van stille akoestische bron-

nen met korte towed arrays is de verbetering van de signaal-ruis verhouding (ook wel

aangeduid met signal-to-noise ratio ofwel SNR) en de richtingsresolutie voor bronnen

die laagfrequent geluid uitstralen. Een van de technieken waarvan wordt aangenomen

dat die deze eigenschappen verbeteren is synthetische apertuur sonar (SAS). Deze

methode is gebaseerd op de kunstmatige verlenging van een sonar array door akoestis-

che opnamen op verschillende antenneposities coherent te combineren. We leiden eerst

een theoretische prestatiemaat af voor passieve SAS en passen deze toe in combinatie

met andere signaalverwerkingsalgoritmen. De theoretische prestatie is vergeleken

met die van de vaak toegepaste incoherente integratie. Het gebruikte passieve SAS-

algoritme staat bekend als ”Extended Towed Array Measurement” (ETAM) ofwel de

164



overlap correlator. Hij is gebaseerd op de correlatie van opnamen van overlappende

hydrofoons. Correlatie is de kern van deze methode en aangezien deze wordt benvloed

door ruis, kan er enige winst verwacht worden van ruisannulering. De invloed van tow

ship cancellation op hydrofoonniveau (inverse bundelvorming, IBF) op de prestaties

van ETAM is geanalyseerd. Deze benadering verhoogt de prestaties van ETAM door

het verwijderen van een luide en zeer gecorreleerde ruisbron - het sleepschip - en

brengt daarmee de andere doelen in het bundelpatroon naar voren. De resultaten

van de algoritmen, die zijn toegepast op twee experimentele datasets, laten zien dat

ze een verbetering met zich meebrengen die de theoretische verwachting benadert.

Bakboord-en-stuurboordonderscheid en de combinatie van IBF met ETAM maken

deze benadering vernieuwend.

In hoofdstuk 3 worden methoden voor de verbetering van de localisatie van een

bron met een kort towed array beschouwd en toegepast op data, zowel gesimuleerd

als op zee gemeten. Localisatieprestaties met sonar towed array wordt gerelateerd

aan de lengte van het array. Kennis van de positie van een bekende akoestische

bron verschaft een schip een belangrijk tactisch voordeel. Er zijn een beperkt aantal

manieren om de afstand van een bron te bepalen met een gesleepte passieve sonar en

de meesten vereisen dat het sleepschip een manoeuvre uitvoert. Deze manoeuvres zijn

onvoordelig omdat voor het uitvoeren ervan veel tijd nodig is, het array doen buigen,

en het schip zelfs in een gevaarlijke positie kunnen brengen. We beschouwen een aantal

methoden voor het schatten van bronposities, voor zowel breed- als smalbandige

bronnen, die bruikbaar zijn voor korte towed arrays. Als eerste wordt een recursieve

methode die gebaseerd is op een uitgebreid kalmanfilter onderzocht. Een nieuwe

benadering die gebruik maakt van de integratie van metingen van de tijdvertraging

van aankomsten op de achtereenvolgende posities van de sonar wordt beschreven.

We leiden theoretische prestatieindicatoren af en tonen aan dat deze methode de

mogelijkheid biedt om de positie en snelheid van een bron te schatten zonder gebruik

te hoeven maken van een scheepsmanoeuvre.

In hoofdstuk 4 worden de classificatieprestaties van een breedband golfvorm ge-

analyseerd en gemeten aan de hand van op zee opgenomen data. Net als alle actieve

sonarsystemen voor lange afstanden brengt LFAS een groot aantal ongewenste zee-

bodemecho’s (ook wel clutter genoemd) voort. Deze echo’s veroorzaken valse alarmen
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die een toegenomen rekenbelasting vormen voor doeltrackers en de correcte classifi-

catie van elke echo vertragen. Het aantal valse alarmen door clutter kan gereduceerd

worden door echo-classificatietechnieken of door gebruik te maken van dopplerfilter-

ing, in het geval van bewegende doelen. Veel onderzoek is uitgevoerd op het gebied

van signaalvormen voor het efficint gebruik van de bandbreedte die moderne sonar-

bronnen bieden. Van deze signaalvormen vertonen de Binary Phase Shift Keyed

(BPSK) pulsen kruiscorrelatie-eigenschappen die relevant zijn voor dopplerfiltering,

terwijl de afstandsresolutie vergelijkbaar is met die van Frequentie Modulatie (FM)

pulsen. We hebben met succes een vals-alarmreductietechniek toegepast op met een

FM-puls verkregen contacten die vervolgens verwerkt zijn door dopplerfiltering met

een BPSK-puls. De dopplerclassificatieprestaties van deze puls zijn gevalueerd aan

de hand van een experimentele dataset en een klein aantal beperkingen van BPSK

zijn vastgesteld.
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