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ABSTRACT 

We discuss range and Doppler processing for FMCW radar using only a single pulse or frequency sweep. 
The first step is correlation processing, for which the range and Doppler resolution are limited by the 
ambiguity function. We show that this resolution can be optimized with an additional inverse filtering step. 
The method is demonstrated for sinusoidal FMCW radar measurements. Several regularized inverse 
filters were compared and the non-adaptive pseudo inverse filter gave the best results. 

1. INTRODUCTION 

In this paper we discuss a technique for simultaneously obtaining range and Doppler information with 
FMCW radar, using only a single pulse or frequency sweep. The single sweep approach contrasts with the 
multi sweep approach, where the range info is obtained from the pulse delay and the Doppler info from the 
phase changes in the range cells from pulse to pulse. 
 
An advantage of single sweep processing is that for a given observation time T the unambiguous range is 
considerably larger than for the multi sweep approach. The reason is that for multi sweep processing, N 
sweeps of duration T/N are required to obtain a Doppler axis with N different Doppler cells. A 
disadvantage of single sweep processing is that the range and Doppler resolutions are generally worse, as 
we discuss in chapter 2. In this paper we focus on the range and Doppler resolutions for single sweep 
radar, and in chapter 3 we show how these resolutions can be optimized using inverse filtering. The 
method is applied to actual measurements of a sinusoidal FMCW radar, as discussed in chapter 4. 
 

2. CORRELATION PROCESSING 

2.1 Transmitted and received signals 
The transmitted signal is an FM signal around a carrier frequency fc. The phase of the transmitted signal is 
given by 
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and the instantaneous frequency is found as 
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The boundaries of fm(t) determine the bandwidth B of the modulation. Ignoring the initial phase ϕ0, the 
complex transmitted signal reads: 
 
 )2exp()()2exp()](exp[)](exp[)( tfittfititit ccmT πµ≡πϕ=ϕ≡ψ . 
 
It follows that the transmitted signal can be written as a CW signal times a complex envelope µ(t). We 
also need an expression for the received signal of a number of targets k at ranges Rk and with radial 
velocities urk. We will use the following approximation, holding for most practical cases [1]: 
 
 ∑ ν+πτ−µ=ψ

k
kckkR tfitVt ])(2exp[)()( , 

 
where τk = 2Rk/c is the delay and νk = 2fcurk/c is the Doppler frequency. The complex factor Vk contains the 
attenuation and a possible phase shift. 
 

2.2 The ambiguity function 
The objective is to extract the amplitude |Vk|, the delay τk and the Doppler frequency νk for each target k 
from the received signal ψR(t). An ideal approach would be to perform such an operation on ψR(t) that we 
arrive at a function of the following form: 
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This would be ideal because this function Z(τ,ν) shows sharp peaks at τ = τk and ν = νk with amplitude |Vk| 
for all targets k. An attempt to arrive at this ideal Z(τ,ν) is to correlate ψR(t) with the following reference 
signal [1]: 
 
 ])(2exp[)(),( tfitt cF ν+πµ=νψ . 
 
This results in 
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where the function χ(τ,ν) is defined as 
 
 ∫ πν−τ−µµ=ντχ

t

dttitt )2exp()()(),( * . 

 
The function χ(τ,ν), which is completely determined by the modulation µ(t), is known as the ambiguity 
function [3]. In case χ(τ,ν) = δ(τ,ν), correlation processing would be perfect. Indeed for a (quasi) random 
modulation, the expectation of the ambiguity function is a delta function [1]. This for instance means that 
correlation processing is ideal for FM radio signals. More generally, the response Z(τ,ν) to a collection of 
point targets k contains a shifted copy χ(τ–τk,ν–νk) for every target k. The range and Doppler resolutions 
of the targets is described by the sharpness of the central peak at χ(0,0). 
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3. OPTIMIZING CORRELATION PROCESSING 

3.1 Inverse filtering 
The previous chapter may suggest that the ambiguity function χ(τ,ν) gives the ultimate range and Doppler 
resolution for a given modulation µ(t). However, correlation processing as described in chapter 2 is only 
optimal for (quasi) random signals. In this chapter we show how the resolution and the signal to noise 
ratio of the correlation result Z(τ,ν) can be improved using the well-known technique of inverse filtering 
[4]. We recall the correlation result: 
 
 ∑ ν−ντ−τχ=ντ

k
kkkVZ ),(),( . 

 
We now interpret χ(τ,ν) as a point spread or blurring function. Because χ(τ,ν) is exactly known from µ(t), 
the blurred shape can be focused to a point with an inverse filter derived from χ(τ,ν). The inverse filter is 
most conveniently described in the Fourier domain, and therefore we introduce the following Fourier 
transformations: 
 
 )},({),( ντ=ζ ZFqp pq , 
 )},({),( ντχ=ξ pqFqp . 
 
In the Fourier domain the correlation is given by 
 
 ∑ ξν−τ−=ζ
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Note that in this representation the blurring function ξ(p,q) can be taken out of the summation. This 
suggests elimination of the blurring with the following filtered version of ζ(p,q): 
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Here, H(p,q) is the inverse filter, which is the inverse of the Fourier transform of the ambiguity function. 
Via an inverse Fourier transform we obtain: 
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Thus we eventually arrive at the ideal point target response. 
 

3.2 Pseudo inverse filtering 
For the application of inverse filtering in practice, regularization of the inverse filter is necessary. One 
possibility is the pseudo inverse filter [4]: 
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Here σN is the noise level and K > 1 is a threshold parameter. We see that for (p,q) values where ζ(p,q) 
does not sufficiently dominate the noise, HP(p,q) is cleared. This means that for these (p,q) values, ζ(p,q) 
does not contribute to the resulting G(p,q) and g(τ,ν). 
 
For noisy signals, noise outliers will be more abundant, and this is particularly devastating at (p,q) values 
where |ξ(p,q)| is very small. The influence of such outliers can be largely suppressed with a non-adaptive 
approach, where the filter is cleared where |ξ(p,q)| is small rather than |ζ(p,q)|. This leads to the non-
adaptive pseudo inverse filter: 
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Here K' is a new threshold parameter. Possibly, one can avoid the discontinuities at the edges of the 
regions where the filter is cleared with the following modification: 
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This can be regarded as a smoothed version of the non-adaptive pseudo inverse filter. 
 

3.3 The Wiener filter 
Similar to the pseudo inverse filter is the Wiener filter [4], which is the optimal filter in the sense of 
minimizing the expected least square error in the resulting g(τ,ν): 
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The Wiener filter is also an adaptive filter requiring the estimation of σN. One can introduce an artificial 
threshold parameter by multiplying σN with a factor K, leading to a smoothed version of the pseudo 
inverse filter HP(p,q). 

4. APPLICATION TO SINUSOIDAL FMCW RADAR MEASUREMENTS 

4.1 Sinusoidal FMCW radar 
We have applied correlation processing and subsequent inverse filtering on actual measurements of a 
sinusoidal FMCW radar. For this modulation, we have the following transmitted signal [2]: 
 
 )2exp()2cosexp()2cos2exp()( tfitfiatfiatfit cmmcT ππ=π+π=ψ , 
 
with the following instantaneous frequency: 
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We see that the instantaneous frequency variation of the transmitted signal is sinusoidal with bandwidth B 
= 2afm. The ambiguity function is found as 
 
 ∫

><

πν−πτπ−πτπ−=ντχ
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Here the integral is only carried out over one modulation period T = 1/fm. Normally the delay τ will be 
small compared to the modulation period T, so that the latter expression can be simplified by a first order 
approximation of sin(2πfmτ) and cos(2πfmτ). This leads to 
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We now borrow the following expression from the theory of Bessel functions: 
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where s runs over all integers. Substitution in the previous expression gives 
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For the computation of Z(τ,ν) one can freely choose a set of ν values. Choosing ν = nfm with integer n, the 
integral in the latter expression simplifies to δns and we get 
 
 )()1()(),( τπ−=τπ−=τχ BJBJnf n

n
nm . 

 
This ambiguity function is shown in figure 1. The range, which is proportional to τ runs vertically. In this 
and all following image plots, darker pixels have higher values. The cross section χ(τ,0) is described by 
J0(πBτ), with its global maximum at τ = 0 and its oscillations along the τ axis. Cross sections for different 
ν = nfm are described by nth order Bessel functions. The general behaviour of Jn(x) for n ≠ 0 is that Jn(0) = 
0, and that Jn(x) slowly increases when x approaches n. Around n, it subsequently arrives at its global 
maximum and first non-trivial zero and then starts oscillating. This explains the bowtie shape of figure 1. 
 
The Fourier transform ξ(p,q) of the ambiguity function χ(τ,ν) is shown in figure 2. The non-adaptive 
pseudo inverse filter HPN(p,q) following from it is shown in figure 3. Note the interchange of darker and 
lighter regions between figures 2 and 3, illustrating that figure 3 is the inverse of figure 2. Also note the 
white regions with sharp edges where HPN(p,q) is cleared because |ξ(p,q)| < K'. Figure 4 shows the inverse 
filter hPN(τ,ν) in the range Doppler domain. 
 

4.2 Inverse filtering for actual measurements 
We now discuss the application of inverse filtering on measurements of a ground based sinusoidal FMCW 
radar observing airborne targets. The range and Doppler resolutions are about 1km and 200Hz 
respectively. Inverse filtering was carried out with |Z(τ,ν)| and |χ(τ,ν)|, which gave better results than 
when we worked with Z(τ,ν) and χ(τ,ν). We tried the three different regularized filters discussed in 
chapter 3 and we found that all of them worked very well for targets dominating the noise. Figure 5 shows 
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Z(τ,ν) for a strong target and figure 6 shows the resulting g(τ,ν) after successive inverse filtering. We only 
show one figure, because the different regularized filters performed equally well for this case. 
 
For noisy targets, we expected the non-adaptive pseudo inverse filter to work best. This is illustrated by 
figures 7-10. Figure 7 shows Z(τ,ν) for a weaker target, and figures 8 to 10 show g(τ,ν) for HPN(p,q), 
HP(p,q) and HW(p,q) respectively. For the pseudo inverse filter, the value K = 2 was chosen. The noise 
level σN was estimated from (p,q) regions where no target contribution to ζ(p,q) was expected. Clearly, the 
resulting g(τ,ν) is not extremely good for any of the inverse filters, but HPN(p,q) focuses most of the 
energy in a relatively small region. In addition, the background is smoother, containing fewer outliers. 
 
Figure 11 shows an interesting measurement with 2 targets. The range runs from about 0 to 100km and the 
Doppler frequency from about –20kHz to 20kHz. Ground clutter is suppressed with a band filter around 
0Hz, which is visible as a slight depression in the centre of the figure. The image shows two clear bowtie 
shapes with different range and different Doppler frequency. Apparently, one target is an incoming target, 
while the other is an outgoing target. Note that the target on the right hand side of the plot is accompanied 
by a bowtie at the same range, but with higher Doppler and with lower intensity. This may well be due to 
JEM (Jet Engine Modulation) of the main target. Figure 12 shows the compression achieved by inverse 
filtering using HPN(p,q). Figures 13 and 14 show the same information in surface plots. 
 

5. CONCLUSIONS 

In the above chapters we discussed the possibilities of optimizing the range and Doppler resolutions of 
single sweep FMCW radar processing by an additional inverse filtering step after correlation processing. 
As discussed, the inverse filter can be derived from the ambiguity function of the chosen modulation, and 
we have given a number of regularized inverse filters for application in practice. 
 
We have demonstrated the technique for actual measurements of a ground based sinusoidal FMCW radar 
observing airborne targets. We have compared the results of different regularized inverse filters, and found 
that all filters performed well for targets dominating the noise. For noisy targets the non-adaptive pseudo 
inverse filter performed best. 
 
For future research it would be interesting to compare the performance of deterministic modulations to 
(quasi) random modulations. For random modulations, the expectation of the ambiguity function is 
already a delta function without inverse filtering, but one may expect more noise outliers. 
 
It might be added that after inverse filtering, the range and Doppler resolutions of single sweep processing 
can in principle be as good as for multi sweep linear FMCW processing. Then, however, the single sweep 
radar will need a much high sampling frequency, a much larger data buffer and much faster data 
processing than the multi sweep FMCW radar. Instead, one will rather use single sweep radar for its 
potential of a large unambiguous range and Doppler frequency, while the observation time can be short. 
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Figure 1: Modulus of the ambiguity 

function χ(τ,ν). The centre of the plot 
is χ(0,0). 
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Figure 2: Modulus of ξ(p,q). The 

centre of the plot is ξ(0,0). 
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Figure 3: Modulus of HPN(p,q). The 

centre of the plot is HPN(0,0). 
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Figure 4: Modulus of hPN(τ,ν). The 

centre of the plot is hPN(0,0). 
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Figure 5: Modulus of Z(τ,ν) for a 

strong target. 
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Figure 6: Modulus of g(τ,ν) for the 

target of figure 5. 
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Figure 7: Modulus of Z(τ,ν) for a weak 

target. 
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Figure 8: Modulus of gPN(τ,ν) for the 

target of figure 7. 
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Figure 9: Modulus of gP(τ,ν) for the 

target of figure 7. 
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Figure 10: Modulus of gW(τ,ν) for the 

target of figure 7. 
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Figure 11: Modulus of Z(τ,ν) for a 

case of multiple targets. 
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Figure 12: Modulus of gPN(τ,ν) 

corresponding to figure 11. 
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Figure 13: Surface plot 

corresponding to figure 11. The 
range axis points towards the reader. 

 
Figure 14: Surface plot 

corresponding to figure 12. The 
range axis points towards the reader. 
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