

CyclicCO₂R

Production of Cyclic Carbonates from CO₂ using Renewable Feedstocks

<u>E. Kimball</u>, C. Schuurbiers, J. Zevenbergen, *TNO*S.F. Håkonsen, R. Heyn, *SINTEF*W. Offermans, W. Leitner, T. Ostapowicz, T.E. Müller, *RWTH Aachen University*G. Mul, *University of Twente – MESA+ Institute for Nanotechnology*M. North, *Newcastle University*A-F. Ngomsik-Fanselow, *FeyeCon Carbon Dioxide Technology*E. Sarron, Ó. Sigurbjörnsson, *Carbon Recycling International*B. Schäffner, *Creavis Technologies & Innovation, Evonik Industries AG*

9th European Congress of Chemical Engineering 2nd European Congress of Applied Biotechnology Den Haag, The Netherlands April 21-25, 2013

Fine chemicals from CO,

Project objectives

The consortium behind $CyclicCO_2R$ wants to kick-start the implementation of CO_2 utilization technologies by converting CO_2 into a high value-added product, thus providing a showcase that inspires industry to further develop technologies utilizing CO_2 as a sustainable raw material and valorizing CO_2 in such a way that drives the market for CO_2 capture and utilization.

Several challenges for use of glycerol carbonate

Challenge for the use of glycerol carbonate (GC)

- > Cyclic carbonates are niche products only
- Glycerol carbonate is only used as an intermediate in the synthesis of special surfactants and fine chemicals
- > Current market for GC is a few kt per year

Major limitations for the use of GC today

- > High price > 6 € / kg
- > Purity is maximum 98% with impurities of glycerol
- Limited knowledge of subsequent chemistry with GC (e.g. esterification, etherification, alcohol exchange)
- Limited access to GC for researchers / academia (e.g. due to high catalogue prices)

$\textbf{Biodiesel} \rightarrow \textbf{glycerol} \rightarrow \textbf{glycerol carbonate}$

Opportunities for the use of glycerol carbonate

- Crude glycerol is available on very large scale from biodiesel (Europe approx. 800 – 1000 kt 2013)
- Price of crude glycerol is significantly lower (~ 300 € / t) than purified glycerol (~ 600 €/ t)
- > Limited use for crude glycerol due to impurities with H_2O (15 –20 %), salts (7 15 wt.%) and organics
- Some shares of glycerol from biodiesel are purified to serve the demand of chemical industry (~ 20%)

How will CyclicCO₂R improve the situation?

- Develop robust catalysts to use crude or pre-purified glycerol
- Lower the impurities of glycerol in the final product (< 0.5%)</p>
- Realize an efficient process with competing production costs for glycerol carbonate (< 6 €/ kg)

1) Glycerol prices for Europe Oct 2012; ICIS pricing (<u>www.icispricing.com</u>);

CO₂ in abundance

- From one power plant about 3 Mton CO₂ produced per year
- Global anthropogenic emissions are 33.4 Gton CO₂ per year
 - > 91% from fossil fuel usage and cement production Source: http://co2now.org/Current-CO2/CO2-Now/global-carbon-emissions.html
- > EU targets for sustainable growth include:
 - > Reducing GHG emissions by 20% w.r.t. 1990 levels
 - Increasing share of renewable energy in total consumption to 20%
 - > Moving towards 20% increase in energy efficiency Source: http://ec.europa.eu/europe2020/europe-2020-in-a-nutshell/targets/index_en.htm
- > Cost of CO_2 capture from power plants is $40 60 \in$
- Cost of CO₂ storage is 3 14 €/ton CO₂ Source: "The Costs of CO₂ Storage," ZEP report, 2011
 - > Political and public issues also a major factor

Key industrial drivers

Main activities of the project

Project partners

Knowledge organization partners

Project coordinator

Three routes to be investigated

Direct route

Glycerol carbonate directly from glycerol and CO₂

 Extensive catalyst development using high throughput testing and molecular modelling with novel reactor designs for *in-situ* water removal

Indirect route

Glycerol carbonate and other cyclic carbonates from glycidol or other epoxides and CO_2

 Ability to produce enantiomerically pure cyclic carbonates and use CO₂ directly from a flue gas source

Alternative technologies route

Photo- and electro-chemical routes to produce cyclic carbonates and intermediates from CO_2 and water

• Feeds state-of-the-art information from alternative technologies back into the rest of the project while assessing feasibility

Crack the code for equilibrium reactions involving CO₂ and alcohols or diols

SEVENTH FRAMEWORK

Tangible, long-term benefits for the development of commercially competitive industrial processes involving CO₂ (i.e. DMC, EC, PC, carbamates)

RWTHAACHEN

Newcastle

CyclicCOR 2

сат

C talvtic Center

Key tools include

- High throughput, high pressure screening
- > High pressure view cells
- State-of-the-art molecular modeling

Supported Ionic Liquid Phase catalysis

Org. Proc. Res. Dev. 2011, 15, 1275. - 0 scCO₂ scCO₂ tat 03 H_2 product substrate ee > 99% support material $STY = 0.3 \text{ kg/l} \times \text{h}$ > 0.1 t/g (Rh)ionic liquid film SCF chirality molecular catalyst

continuous flow process ChemCatChem, 2010, 2, 150.

Cycloaddition of epoxide and CO₂: A detailed molecular picture of an elementary reaction step

Alternative technologies route

Main activities

SEVENTH FRAMEWORK

- Exploration into electro- and photochemical production of inter-mediates (alkenes, epoxides) for cyclic carbonates with only CO₂ and water as raw materials.
- Evaluation of feasibility feeds into the environmental and techno-economic analysis

Process development

Novel reactor concept to be tested for the direct route: Membrane Slurry Reactor

Principle: Product can pass membrane while catalyst particles are retained in reactor

Advantages

- > Increased activity of catalysts
- > Mild mechanical treatment of catalyst
- > Continuous operation
- > Low hold up of catalyst in system

Contact: Mark Roelands, TNO mark.roelands@tno.nl

Novel reactor concept to be tested for the indirect route: Helix reactor

- Mixing behavior and plug flow: demonstration of production of mono disperse nano-particles
- Reaction time reduced from 4 hours in batch reactor to 15 minutes in Helix Reactor

(1) T.J. Hüttl, and R. Friedrich, Int. J. of Heat and fluid flow., 21(2000) 345-353.

Contact: Mark Roelands, TNO mark.roelands@tno.nl

innovation

for life

•

Environmental & Techno-economic analysis

Approach

- Use Aspen simulations of the process in development to feed into the Carbon Footprint Estimation (CFE)
- Use experimental data to validate calculations and allow for more complexity

Goals

- Ensure process meets project objectives
- Guide key decisions (i.e. between direct and indirect routes)
- Keep the project connected with the market

Summary

- > 4 year project started in January 2013
- Overall goal is to provide a showcase continuous, highly-efficient process for the conversion of CO₂ into fine chemicals
- Both the direct and indirect routes will be investigated until one proves to be more promising to take forward to the process demonstration
- > Alternative technologies will be explored throughout the entire project
- An environmental and techno-economic analysis will ensure the project objectives are met
- The website to be up and running soon! <u>http://www.cyclicco2r.eu/</u>

Acknowledgements

This research project has received funding from the European Union Seventh Framework Programme (FP7/2007 – 2013) under grant agreement n° 309497

Thanks for your attention!