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Performance based service life design: 
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1. Introduction: what is durability

Durability is the resistance of concrete to degradation

Degradation is the decrease in properties of concrete under influence 

of loads, mostly from the outside 

Loads include:

- mechanical loads (e.g. self weight)

- physical loads (e.g. T)

- chemical loads (e.g. CO2 )
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1. Introduction: why is durability important
• Degradation is most often due to attack of the cement stone but  

also the aggregates and / or rebars.

• Damage include spalling & cracking, loss of cover and loss of 

rebar diameter upto bending / shear and collapse

• This may lead to extensive repair & costs or even e arly end of 

service life
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1. Introduction

Service life is that stage of a life of a structure when it is in use
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1. Introduction

A performance is a task that is executed with a certain quantified

result (limit state)
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1. Introduction

• The most often encountered durability issue is corr osion 

initiated by chloride or carbonation 
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1. Introduction

Why should you care

about the performance?
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2. Performance in a service life design
A performance consists of:

1. A behaviour model Z(t) of which Z(t) = 0 the limit state describes

2. A pre-defined, agreed upon, reliability index β
3. A pre-defined, agreed upon service life L

Dr. J.H.M. Visser
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2. Performance in service life design

(1) Question 1: which loads?

• First: try to assess which of the loads are of importance, now, or 

DURING SERVICE LIFE (e.g. make an event tree)

Reminder : structures fail more often due to forgotten treats rather than 

identified treats!      
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3. Performance in service life design

(1) Question 2: does it matter?

• Second: check the effect of the load (e.g. use a failure mode and effect 

analysis (FMEA)
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3. Determining the performances to take into account

(1) Question 2: does it matter?

• Third, and last step (much later on in the process) will be to consider 

the consequence of the effects of failure (e.g. make a risk analysis):

• loss of lives / health issues

• Economical loss

• Ecological loss etc.      

• Risk = probability of an event x the consequences

• Most often, the risks are expressed as costs.
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2. Performance in service life design

Recap: 

Performance consists of:

1. A behaviour model Z(t) of which Z(t) = a the limit state describes

2. A pre-defined, agreed upon, reliability index β
3. A pre-defined, agreed upon service life L

Its importance is determined from:

1. Failure  Mode

2. And Effect

Analysis (BOWTIE MODEL)
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3. Example of the importance of the environment:     
moisture distribution in a tunnel

Problem statement: where is the moisture front?                                                                                                                            

E.g:

Reinforcement in saturated concrete: no corrosion

Reinforcement in dry concrete: no water, no corrosion
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3. Example of the importance of the environment:     
moisture distribution in a tunnel

Importance of the structure and the moisture distribution

Durability = transport + (chemical) reactions

Transport rate / type depend on structure and related moisture 

distribution 

Transport examples:

Water / ions at S> Scrit

gasses  at S < Scrit
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3. Example of the importance of the environment:     
moisture distribution in a tunnel
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3. Example of the importance of the environment:     
moisture distribution in a tunnel

Durability based design of concrete
Dr. J.H.M. Visser

17

Exterior = below ground water table:

pressure: 0.1 – 0.5 bar

temperature: 12 oC (from -20 m)

composition :    sweet (< XA1), 

pH 6.0 – 7.1

Exterior = below ground water table:

pressure: 0.1 – 0.5 bar

temperature: 12 oC (from -20 m)

composition :    sweet (< XA1), 

pH 6.0 – 7.1



3. Example of the importance of the environment:     
moisture distribution in a tunnel
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Interior – different environmentsInterior – different environments

air zone average st.dev minimum maximum

RHint (%) 70-65 10 20 92
RHout (%) 80 10 24 100
Tint (oC) 12-14 6 -7 - -5 34-32
Tout (oC) 12 6 -8 32

CO2 (ppm) 400-580 20-50 400 650-1250



3. Example of the importance of the environment:     
moisture distribution in a tunnel
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3. Example of the importance of the environment:     
moisture distribution in a tunnel
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Conclusions:
• Moisture conditions are in equilibrium with the internal RH

Water on the exterior functions as impervious 
Moisture conditions further constant throughout, about 85%

• Corrosion of the reinforcement at the interior due to carbonation is a 
risk;

• Corrosion of the reinforcement at the exterior due to chloride 
penetration  is much less likely



4.1 Degradation mechanisms: 
Example freeze-thawing

Mechanism 1: expansion of ice (compared to water approx. 10%)

Conditions:

High enough Sr

Low enough temperature

Fast enough freezing
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4.1 Degradation mechanisms: Freeze-thawing 

Mechanism 1: expansion of ice (compared to water approx. 10%)

Mind: the freezing temperate increases with reduction in temperature 

and increase in salt concentration
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4.1 Degradation mechanisms: Freeze-thawing 

Mechanisms 2: hydraulic pressure (is why air entrainment works!)
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water ijs

cementsteen

4.1 Degradation mechanisms: Freeze-thawing

3. Ice over pressure due to transport of vapour pressure and growth
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4.1 Degradation mechanisms: Freeze-thawing

Summary mechanisms

Fast freezing: 

expansion of ice 10%;                     fast pressure build up

Slow freezing (at modest T): transport of vapour to ice in larger pores 

– ice over pressure
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4.1 Degradation mechanisms: Freeze-thawing

Damage types:

Scaling

Top layer delamination

Total desintergration

(due to internal cracking)
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4.1 Degradation mechanisms: Freeze-thawing

Conditions:

Sufficient low T

Sufficient fast (or slow) freezing

High enough degree of saturation

(depends of rh, r and c(salt))
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4.1 Degradation mechanisms: Freeze-thawing
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4.1 Degradation mechanisms: Freeze-thawing

2. vorst- en dooizoutschade
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4.1 Degradation mechanisms: Freeze-thawing
2. Bordes woning
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4.2 Degradation mechanisms: chemical attack

formation of new chemical products:

volume increase / swelling

lower binding capacity

higher solubility 

consequences

cracking, scaling and spalling, debonding

loss of stress bearing capacity

reduction of service life
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4.2 Degradation mechanisms: chemical attack

Chemical equilibrium (carbonation example):

Transport of CO2  due to concentration difference

Dissolution of CO2 in pore water and formation carbonic acid 

and dissociated (H 2CO3, HCO3
-, CO3

2-)

Precipitation CaCO3 - dissolution Ca(OH) 2
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4.2 Carbonation
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• Carbonation lead to a change in the cement paste (e.g. 

Ca(OH)2 into CaCO 3)

• Carbonation leads to a change in the pore structure (e.g. 

more dense for OPC, more porous for BFSC)

• Carbonation leads to a change in the pH of the cement 

stone below pH< 9; this breaks the passivation of t he 

reinforcement when the carbonation front reaches it , 

leading to corrosion

non-carbonated BFSC                     carbonated BFSC
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4.2 Carbonation

Chemical equilibrium – in detail:

Dissociation is acidification process

Precipitation of Ca 2+ goes to completion:
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4.2 Carbonation

35

Dr. J.H.M. Visser
Durability based design of concrete



4.2 Carbonation

• Equilibrium pH depending on CO2 concentration
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4.2 Carbonation

• Stability & pH
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Stage pH stable phases

1 (non-

carbonated)

>12.6 Ca(OH)2, CSH (Ca/Si > 1.8 or at high

common ion effect), AFt, AFm

2 11.6 – 12.6 CSH ( Ca/Si< 1.8), AFt, AFm

3 10.5 – 11.6 CSH (Ca/Si< 1.05), AFt, Al(OH)3

4 10.0 – 10.5 CSH ( Ca/Si< 0.85), Fe(OH)3, Al(OH)3

5 (fully 

carbonated)

< 10 SiO2 with some CaO, Fe(OH)3, Al(OH)3

Data from literature, mostly from Lagerblad, 2005
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4.2 Carbonation

• Carbonation is a very slow process

• Testing taking often a year to obtain reliable resu lts

• In a design-by-testing a year is too long

• Acceleration of the test is required
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4.2 Carbonation

• Carbonation starts with diffusion of CO2-molecules

• At the carbonation front, it dissolves in the pore water

• It is instantly consumed by Ca2+ in the pore fluid

• Buffer capacity of cement phases releases new Ca2+ 

• First Ca(OH)2 & high Ca CSH, next the other phases a t succ. Lower pHs

• Concentration CO 2 at the front remains 0 until no more buffer

• CO2 concentration only effect = faster delivery CO2 molecules
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4.2 Carbonation

Carbonation of each cement phase occurs at phase stability pH

No cement phase is stable below pH = 7 (c(CO2) approx. 0)

All cement phases react in a neutral way so can go to completion

All calcium is consumed: buffer capacity =  Ca content of cement
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4.2 Carbonation: FMEA

Carbonation of each cement phase occurs at phase stability pH

No cement phase is stable below pH = 7 (c(CO2) approx. 0)

All cement phases react in a neutral way so can go to completion

All calcium is consumed: buffer capacity =  Ca content of cement
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4.2 Degradation mechanisms: carbonation

4. Constructieve gevolgen: verminderd draagvermogen constructie, 

afvallende delen enz.
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Performance based service life design: 
durability of concrete

Conclusions:

1. Understanding all successive steps in the degradation mechanism is 

of importance; also from the viewpoint of prevention

2. Manipulating the structure of the concrete / cement paste is also a 

good way to either prevent or slow down degradation

3. There is however not one type of degradation: freeze-thawing, 

corrosion due to carbonation or chloride, ASR, sulfate resistance and 

so on may be of importance – a good assessment of the environment 

thus is important
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