

Durability based design of concrete

Dr. J.H.M. Visser

Workshop Durability of Concrete, FIB conference on 'Improving Performance of Concrete Structure, Mumbai 10-15 February 2014.

Performance based service life design: durability of concrete

Contents:

- 1. Introduction: what is durability?
- 2. Getting a grip on service life
- 3. Example of the importance of the environment tunnel example
- 4. Example of a mechanical degradation mechanism:
 - 1. Mechanical: freeze-thawing
 - 2. Chemical: carbonation
- 5. Conclusions

1. Introduction: what is durability

- > Durability is the resistance of concrete to degradation
- > Degradation is the decrease in properties of concrete under influence of loads, mostly from the outside
- > Loads include:
- > mechanical loads (e.g. self weight)
- > physical loads (e.g. T)
- > chemical loads (e.g. CO₂)

innovation for life

1. Introduction: why is durability important

- **Degradation** is most often due to attack of the cement stone but also the aggregates and / or rebars.
- Damage include spalling & cracking, loss of cover and loss of rebar diameter upto bending / shear and collapse
- This may lead to extensive repair & costs or even early end of service life

1. Introduction

Service life is that stage of a life of a structure when it is in use

1. Introduction

A **performance** is a **task** that is executed with a certain **quantified** result (limit state)

TNO innovation for life

1. Introduction

• The most often encountered durability issue is corrosion initiated by chloride or carbonation

1. Introduction

Why should you care about the performance?

TNO innovation for life

2. Performance in a service life design

- A performance consists of:
 - 1. A behaviour model Z(t) of which Z(t) = 0 the limit state describes
 - 2. A pre-defined, agreed upon, reliability index β
 - 3. A pre-defined, agreed upon service life L

2. Performance in service life design

innovation for life

(1) Question 1: which loads?

• First: try to assess which of the loads are of importance, now, or **DURING SERVICE LIFE** (e.g. make an event tree)

THO innovation for life

3. Performance in service life design

(1) Question 2: does it matter?

• Second: check the effect of the load (e.g. use a failure mode and effect analysis (FMEA)

innovation

3. Determining the performances to take into account

(1) Question 2: does it matter?

- Third, and last step (much later on in the process) will be to consider the consequence of the effects of failure (e.g. make a risk analysis):
 - loss of lives / health issues
 - Economical loss
 - Ecological loss etc.

• Risk = probability of an event x the consequences

• Most often, the risks are expressed as costs.

2. Performance in service life design

> Recap:

> Performance consists of:

- 1. A behaviour model Z(t) of which Z(t) = a the limit state describes
- 2. A pre-defined, agreed upon, reliability index β
- 3. A pre-defined, agreed upon service life L

> Its importance is determined from:

- 1. Failure Mode
- 2. And Effect

Analysis (BOWTIE MODEL)

innovation for life

innovation

3. Example of the importance of the environment: moisture distribution in a tunnel

> Importance of the structure and the moisture distribution

- Durability = transport + (chemical) reactions
- Transport rate / type depend on structure and related moisture distribution
- Transport examples:
- Water / ions at S> S_{crit}
- gasses at S < S_{crit}

16 Durability based design of concrete Dr. J.H.M. Visser innovation for life 3. Example of the importance of the environment: moisture distribution in a tunnel - tak & tak Max. moisture content a) Capillary area RH = 7%Water absorption by suction, Adsorption hydrostatic pressure, b) condensation Equilibrium Moisture content RH = 30%One Several Capillary molecular molecular condensation layers laver c) Hydroskopic moisture. RH = 60%Water absorption from air. Capillary condensation d) RH = 70% 0% 100% RHair

innovation for life **3. Example of the importance of the environment:** moisture distribution in a tunnel

Exterior = below ground water table:

- **)** pressure: 0.1 0.5 bar
- > temperature: 12 °C (from -20 m)
- > composition : sweet (< XA1),</pre> pH 6.0 - 7.1

0

3. Example of the importance of the environment: moisture distribution in a tunnel

Interior – different environments

air zone	average	st.dev	minimum	maximum	0.00.0
RH _{int} (%)	70-65	10	20	92	
RH _{out} (%)	80	10	24	100	1 8 1
T _{int} (°C)	12-14	6	-75	34-32	
T _{out} (°C)	12	6	-8	32	
CO ₂ (ppm)	400-580	20-50	400	650-1250	

3. Example of the importance of the environment: moisture distribution in a tunnel

Further assessment by modelling: Darcy flow

NO innovation for life

3. Example of the importance of the environment: moisture distribution in a tunnel

Conclusions:

- Moisture conditions are in equilibrium with the internal RH Water on the exterior functions as impervious Moisture conditions further constant throughout, about 85%
- Corrosion of the reinforcement at the interior due to carbonation is a risk;
- Corrosion of the reinforcement at the exterior due to chloride penetration is much less likely

4.1 Degradation mechanisms: Example freeze-thawing

> Mechanism 1: expansion of ice (compared to water approx. 10%)

- > Conditions:
- > High enough Sr
- Low enough temperature
- > Fast enough freezing

innovation for life

TNO innovation for life

- Mechanism 1: expansion of ice (compared to water approx. 10%)
- Mind: the freezing temperate increases with reduction in temperature and increase in salt concentration
 cementsteen

innovation for life

4.1 Degradation mechanisms: Freeze-thawing

> Mechanisms 2: hydraulic pressure (is why air entrainment works!)

innovation for life

4.1 Degradation mechanisms: Freeze-thawing

Summary mechanisms

> Fast freezing:

expansion of ice 10%;

innovation for life

> Slow freezing (at modest T): transport of vapour to ice in larger pores

- ice over pressure

4.1 Degradation mechanisms: Freeze-thawing

Scaling

> Top layer delamination

Total desintergration(due to internal cracking)

innovation for life

innovation for life

4.1 Degradation mechanisms: Freeze-thawing

Conditions:

- Sufficient low T
- Sufficient fast (or slow) freezing
- High enough degree of saturation
- (depends of rh, r and c(salt))

TNO innovation for life

TNO innovation for life

innovation

4.2 Degradation mechanisms: chemical attack

- > formation of new chemical products:
 - > volume increase / swelling
 - Iower binding capacity
 - higher solubility
- consequences
 - > cracking, scaling and spalling, debonding
 - Ioss of stress bearing capacity
 - > reduction of service life

innovation

4.2 Degradation mechanisms: chemical attack

- > Chemical equilibrium (carbonation example):
 - > Transport of CO2 due to concentration difference
 - Dissolution of CO2 in pore water and formation carbonic acid and dissociated (H₂CO₃, HCO₃⁻, CO₃²⁻)
 - Precipitation CaCO₃ dissolution Ca(OH)₂

4.2 Carbonation

- Carbonation lead to a change in the cement paste (e.g. Ca(OH)₂ into CaCO₃)
- Carbonation leads to a change in the pore structure (e.g. more dense for OPC, more porous for BFSC)
- Carbonation leads to a change in the pH of the cement stone below pH< 9; this breaks the passivation of the reinforcement when the carbonation front reaches it, leading to corrosion

non-carbonated BFSC

4.2 Carbonation

- > Chemical equilibrium in detail:
 - > Dissociation is acidification process

 $H_2CO_3 + H_2O \Leftrightarrow H_3O^+ + HCO_3^-$

 $HCO_{3}^{-} + H_{2}O \Leftrightarrow H_{3}O^{+} + CO_{3}^{2-}$

> Precipitation of Ca²⁺ goes to completion:

$$CO_{3}^{2-} + Ca^{2+} \Leftrightarrow CaCO_{3}$$
 (s)

4.2 Carbonation

TNO innovation for life

4.2 Carbonation

• Equilibrium pH depending on CO2 concentration

4.2 Carbonation

• Stability & pH

Stage	рН	stable phases
1 (non-	>12.6	$Ca(OH)_2$, CSH (Ca/Si > 1.8 or at high
carbonated)		common ion effect), AFt, AFm
2	11.6 – 12.6	CSH (Ca/Si< 1.8), AFt, AFm
3	10.5 – 11.6	CSH (Ca/Si< 1.05), AFt, AI(OH) ₃
4	10.0 – 10.5	CSH (Ca/Si< 0.85), Fe(OH) ₃ , Al(OH) ₃
5 (fully	< 10	SiO_2 with some CaO, Fe(OH) ₃ , Al(OH) ₃
carbonated)		Data from literature, mostly from Lagerblad, 2005

TNO innovation for life

4.2 Carbonation

- Carbonation is a very slow process
- Testing taking often a year to obtain reliable results
- In a design-by-testing a year is too long
- Acceleration of the test is required

$$x_c = \sqrt{\frac{D}{a}}\sqrt{2ct} = \sqrt{1/R_{carb}}\sqrt{2ct}$$

E.g. Acceleration concentr.: c= 2 %Natural concentration: c = 0.04 %Acceleration = 2/0.04 = 50 x

4.2 Carbonation

- Carbonation starts with diffusion of CO2-molecules
- At the carbonation front, it dissolves in the pore water
- It is instantly consumed by Ca2+ in the pore fluid
- Buffer capacity of cement phases releases new Ca2+
 - First Ca(OH)2 & high Ca CSH, next the other phases at succ. Lower pHs
- Concentration CO₂ at the front remains 0 until no more buffer

innovation for life

4.2 Carbonation

- Carbonation of each cement phase occurs at phase stability pH
- No cement phase is stable below $pH = 7 (c(CO_2) approx. 0)$
- > All cement phases react in a neutral way so can go to completion

innovation for life

4.2 Carbonation: FMEA

- Carbonation of each cement phase occurs at phase stability pH
- No cement phase is stable below $pH = 7 (c(CO_2) approx. 0)$
- > All cement phases react in a neutral way so can go to completion
- > All calcium is consumed: buffer capacity = Ca content of cement

TNO innovation for life

4.2 Degradation mechanisms: carbonation

Performance based service life design: durability of concrete

Conclusions:

- Understanding all successive steps in the degradation mechanism is of importance; also from the viewpoint of prevention
- 2. Manipulating the structure of the concrete / cement paste is also a good way to either prevent or slow down degradation
- There is however not one type of degradation: freeze-thawing, corrosion due to carbonation or chloride, ASR, sulfate resistance and so on may be of importance – a good assessment of the environment thus is important