

Designing sustainable concrete on equivalence performance: assessment criteria for safety

Jeanette Visser and Agnieszka Bigaj, TNO The Netherlands

FIB conference on 'Improving Performance of Concrete Structure, Mumbai 10-15 February 2014.

Designing sustainable concrete on equivalence performance: assessment criteria for safety

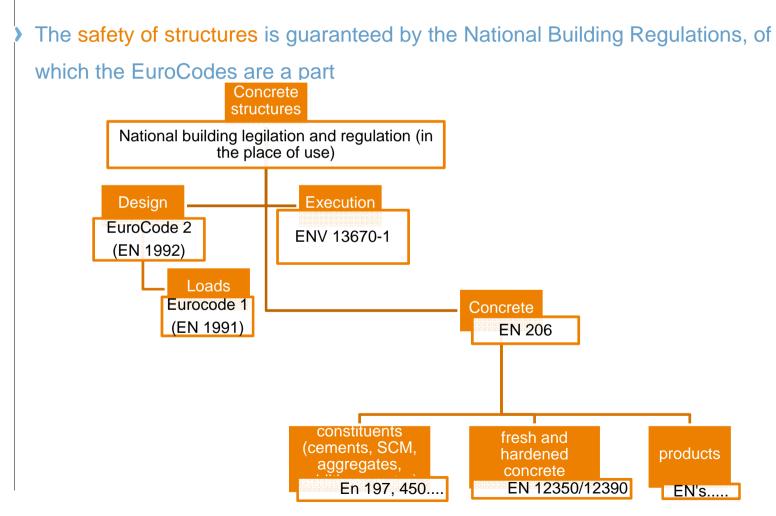
2

Contents:

- 1. Introduction: why equivalent performance?
- 2. Which equivalent performances to take into account
- 3. Criteria to assess the performance general principles
- 4. General set-up of the assessment criteria
- 5. Examples
- 6. Conclusions

1. Introduction: why equivalent performance

- When a new material is introduced, how do we prove that it is <u>as safe and</u> <u>durable</u> as the materials that are already used
- Most materials are already used for a long time plenty of experience, data from the field to set up models (e.g. model codes), etc.
- For new materials that want a fast introduction on the market a different approach has to be taken



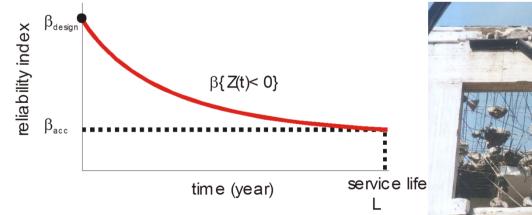
TNO innovation for life

1. Introduction: why equivalent performance

innovation

1. Introduction: why equivalent performance

- > Alternative approval routes within the standard framework:
 - Equivalent performance concept (within EN 206): for determining the contribution of alternative binders or additives to the performance but for limited combinations
 - Performance based design (within EN 206): to circumvent the use of deemed to satisfy rules for the concrete composition limited to durability issues
 - 3. Equivalence and equivalence solution (within NBR) : generic!



1. Introduction: why equivalent performance

6

- Performance demands form the basis of the NBRs (together with functionality demands)
- > Performance demands consist of clauses of the form:
 - > a **<u>quantified</u>** limit state (e.g. 1 toilet, resistance more than xx s/m²)
 - An <u>unambitious determination method</u> (preferable a EN standard)

(Trivial determination methods need not to be mentioned, e.g. toilets can be counted)

innovation

NO innovation for life

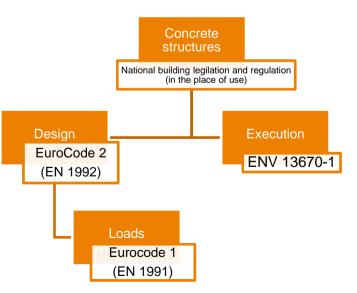
1. Introduction: why equivalent performance

7

> The equivalence solution principle states:

A clause in the NBR does not have to be fulfilled if the (building / component / concrete) or its use differs from the clause if THE SOLUTION IS OF AT LEAST THE SAME LEVEL OF SAFETY,

N.B. these are the six so-called 'pillars' or classes of performance demands in the NBR. Only safety is currently discussed



2. Which performances to take into account

In the safety class it is ensured that a structure is able to resist its loads during its design service life

8

- > The loads concern:
- 1. Mechanical loads (self weight, wind etc.)
- 2. Environmental loads (CO₂, acids etc.)
 - = Durability!
- 3. Fire

innovation for life

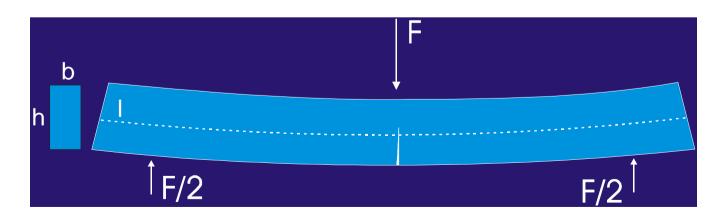
innovation

2. Which performances to take into account

9

> MATERIALS need to have a certain *resistance* against:

- > Mechanical loads, including minimum compressive strength, tensile strength, elastic deformation variables etc.
- > Environmental loads, including resistance against carbonation, chloride penetration freeze/thawing in the presence of de-icing salts etc.



TNO innovation for life

2. Which performances to take into account: mechanical loads

10

- The complete list of required ' resistances' against the mechanical loads is given in the Model Codes
- > They are correlated to the resistance of the concrete described by mostly its mechanical properties that determines the structural behaviour upon a load:

E.g beam: $Z = R-S = bh^2 f_c / 6 - IF / 4 > 0$

TNO innovation for life

2. Which performances to take into account: mechanical loads

> Mechanical properties that determines the structural behaviour upon a load:

- > Compressive strength f_c
- > Tensile strength f_t
- > Elasticity constants E, μ
- > Creep & shrinkage
- > Stress-strain relationship for non-elastic calculations
- There are several influences on these properties that have to be included as well: age (t), temperature (if cured under higher T), relative humidity (rh)

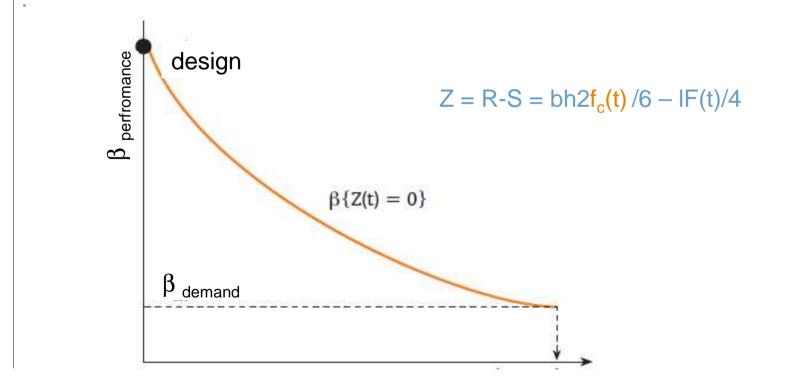
innovation

2. Which performances to take into account : mechanical loads

12

MATERIAL PROPERTY	Influence	S		
	test method	t	Т	rh
fc (cube, prism for E)	х	х	х	
ft, (uniax, splitting)	Х	Х	Х	Х
Ε, (μ)				
creep, shrinkage		х	х	х
stress-strain relation				

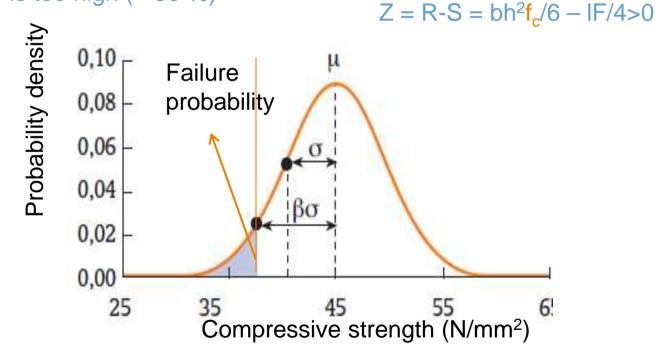
Is a material equivalence sufficiently proven if it is measured and the influences show the same type of behaviour as given in the Eurocode, for each variable?



innovation for life

3. Assessment criteria for safety: general principles

A **performance** is a **task** that is executed with a certain **quantified** result (limit state)



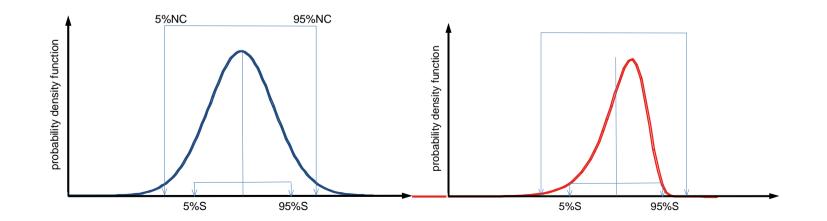
innovation for life

3. Assessment criteria for safety: general principles

14

Limit states cannot be calculated on the basis of average variables
 e.g. because the probability that the compressive strength is actually
 lower is too high (= 50 %)

> Normally full probabilistic calculations are made

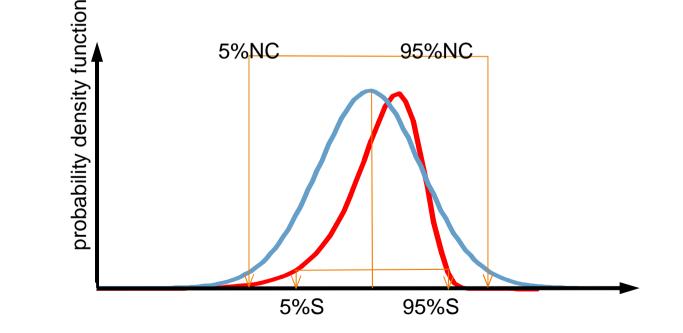

innovation

3. Assessment criteria for safety: general principles

15

- A way of avoiding full probabilistic calculation is on the basis of characteristic values, for which <u>equivalent or better properties</u> can be proven by means of:
- Characteristic values based on many measurements: real distribution, as given in model codes: $f'_{ck} = \mu \beta \sigma = \mu (1 \beta \nu)$

Characteristic values based on few measurements: student t. distribution: $f'_{ck} = \overline{x_n} - \frac{t_{n-1}}{\sqrt{n}} s_n$



innovation for life

3. Assessment criteria for safety: general principles

- How to prove <u>equivalence or better</u>?
 - Minimum fractile, maximum fractile or range
 - > Below or above which a certain percentage is not allowed to pass
- Very important = type of distribution!

innovation

4. General set-up for the assessment criteria

17

Restrictions

- Materials behaving mechanically the same (i.e. brittle, linear elastic)
- Most relationships are empirically so no application outside the range of application for which they have been tested.
- In the model codes, two classes are given, namely density and compressive strength CLASS e.g. C8-C88
- > Especially the mechanical strength will give the range of application

	Strength classes for concrete														Equation / explanation
<i>f_{ck}</i> (MPa)	12	6	20	25	30	35	40	45	50	55	60	70	80	90	
f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105	
<i>f_{cm}</i> (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98	$f_{cm} = f_{ck}$ +8(MPa)
<i>f_{ctm}</i> (MPa)	1.6	.9	2.2	2.6	2.9	3.2	3.5	3.8	4.1	4.2	4.4	4.6	4.8	5.0	$f_{ctm} = 0.30 x f_{ck}^{(2/3)} \le C50/60$ $f_{ctm} = 2.12 \cdot \ln(1 + (f_{cm}/10))$ > C50/60

> Single class / extreme class criteria:

5. Example

A producer of recycled aggregates noticed that the properties of his concrete varied depending on the sand-lime / brick fraction

- > A brick fraction of 50 % is already allowed
- > Because demolition of the next generation houses contain much more sand-lime brick (not allowed), he would like the to know the future consequences.
- > First assessment of the 5 major mechanical properties

MATERIAL PROPERTY	Influences			
	test method	t	т	rh
fc, cube		3, 7, 28, 92 days		
ft, split		3, 7, 28, 92 days		
fc (prism),Ε, (μ) & stress- strain	х	No (28 days)		
creep, shrinkage		From 7 days		50 %

19

TNO innovation for life

5. Example

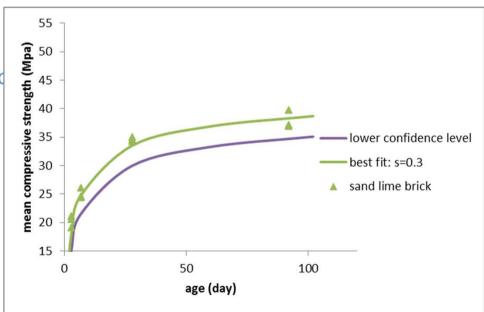
- Tested = extreme case recycled aggregates:
 - > 50 % recycled concrete/ 50 % clay brick
 - > 50 % recycled concrete / 50 % sand-lime brick
- Assessment with respect to compressive strength:
 - (1) The characteristic strength is determined at the strength class the producer want to use it (C35)
 - (2) Strength development as given by the codes

 $f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm}$ and $\beta_{cc}(t) = et$

 $\beta_{cc}(t) = exp\left\{s \cdot \left[1 - \left(\frac{28}{t}\right)^{0.5}\right]\right\}$

With s is determined for different cements:

Strength class	32.5 N	32.5 R	42.5 R
of cement		42.5 N	52.5 N
			52.5 R
S	0.38	0.25	0.20



5. Example

- > (1) strength class:
 - as determined

	sand lime	clay brick
Average		
strength	34.6	42.3
Char. strength	34.0	39.3
Strength class	C30	C35

- (2) strength development:
 95% of all measurements (12)
 within the 90% confidence region
 (with EuroCode's s=0.25)
- Conclusion:
 strength development is all right but
 <u>cost a strength class</u>

innovation

4. General set-up for the assessment criteria

21

Single class / extreme class criteria:

- Mostly concerns relationships at 28 days between compressive strength and another mechanical property
- > Boundaries of application given in the codes
- > For classes, extreme classes have to be validated
- > Within one class, different criteria may apply, e.g.:
 - The characteristic values of the measured property should fall within the 95 % confidence region of the calculate values
 - > All individual measurement should be larger than the 0.1 % probability

limit of the calculated value

Strength classes for concrete												Equation / explanation			
<i>f_{ck}</i> (MPa)	12	16	20	25	30	35	40	45	50	\$ 5	60	70	80	90	
f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105	
<i>f_{cm}</i> (MPa)	20	24	28	33	38	43	48	53	58	\$ 3	68	78	88	98	$f_{cm} = f_{ck}$ +8(MPa)
<i>f_{ctm} (</i> МРа)	1.6	1.9	2.2	2.6	2.9	3.2	3.5	3.8	4.1	4.2	4.4	4.6	4.8	5.0	$f_{ctm} = 0.30 x f_{ck}^{(2/3)} \le C50/60$ $f_{ctm} = 2.12 \cdot \ln(1 + (f_{cm}/10))$ > C50/60

innovation

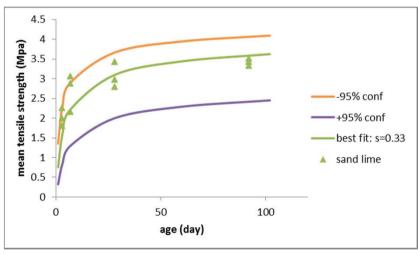
4. General set-up for the assessment criteria

22

Relationship assessment criteria:

- Mostly concerns simple, empirical models that contain fit constants
- > Boundaries of application also given in the codes
- Within one model, three criteria should be formulated:
 - 1. A model confidence criterion (e.g. goodness of fit > 95%)
 - 2. A 5-95% reliability model parameters (from measured) should be larger than the predefined limits for these variables
 - 3. All individual measurements should fall within a certain confidence region of the model (e.g. 0.1 % probability limit)

	Strength classes for concrete													Equation / explanation	
<i>f_{ck}</i> (MPa)	12	16	20	25	30	35	40	45	50	55	60	70	80	90	
f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105	
<i>f_{cm}</i> (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98	$f_{cm} = f_{ck}$ +8(MPa)
<i>f_{ctm} (</i> МРа)	1.6	1.9	2.2	2.6	2.9	3.2	3.5	3.8	4.1	. 2	4.4	4.6	4.8	5.0	$f_{ctm} = 0.30 x f_{ck}^{(2/3)} \le C50/60$ $f_{ctm} = 2.12 \cdot \ln(1 + (f_{cm}/10))$ > C50/60


23

TNO innovation for life

5. Example

- > Assessment with respect to tensile splitting strength:
 - > the characteristic strength
 - compared to calc.value from fc:
 - in the 90% confidence range
 - Strength build up: model confidence is 87 % < 95 %</p>
 - Not all individuals in 0.1% 99.9% confidence boundaries from model
 - Conclusion:
 - tensile compressive strength
 remains the same
 (and both slower at s=0.3/0.32)
 but confidence for model fails

	sand lir	ne	clay bri	ck
	М	С	М	С
ftm=0.3*fck(2/3)	3.1	3.1	3.3	3.4
fctk(5%)=0.7*fctm	2.5	2.2	3.1	2.4
fctk (95%)=1.3*fctm	3.6	4.1	3.6	4.5

INO innovation for life

6. Summary and conclusions

> Assessment criteria – compressive strength

	characteristic (p=0.05)	lower boundary	upper boundary	used value for individuals
f _{cm} (cube)	determines strength class	-	-	
LQRfit ageing				
confidence	>0.95	-	-	
f _{cm} (best fit)	>char. value strength class	strength class	-	characteristic value strength class
S	from measurement	0	-	p=0.95 Student t best fit value

24

> Results for example

	mean	stdev	characteristic (p=0.05)	characteristic (p=0.95)	remark
ref.strength	34.6	0.40	33.9		strength class C25/30 (char. strength = 30)
LQRfit ageing					confidence =98.9 % >95%
f _{cm,28d}	33.5	1.20	32.9		char.best fit strength >30
S	0.30	0.06	0.27	0.33	char best fit > 0

NO innovation for life

6. Summary and conclusions

> Assessment criteria – tensile (splitting) strength overview

	relationship	lower boundary	upper boundary	boundary for individuals
f _{ctm,28d}	$f_{ctm} = 0.3 f_{ck}^{2/3}$	f _{ctk,m} (5%)>0.7*f _{ctm,c}	f _{ctk,m} (95%)<1.3*f _{ctm,c}	f _{ctk,m} =(0.44 – 1.56) *f _{ctm,c}
LQRfit ageing confidence	>95%	-	-	cump
f _{cm,28d} (best fit)		f _{ctk,m} (5%)>0.7*f _{ctm,c}	f _{ctk,m} (95%)<1.3*f _{ctm,c}	
S		s(5%)>0.7*f _{s,c}	s(95%)<1.3*f _{s,c}	
individuals		between 0.1% and 99.96 from model with for low s strengtl	0.1%: 0.44 99.9% 1.56	

25

> Results from example

	mean	stdev	characteris	tic values	boundaries	criteria	
			(p=0.05)	(p=0.95)	lower	upper	
individual meas.		Do not		FAIL			
model Confidence	86.9%						FAIL
f _{ctm,28d}	3.10	0.09	3.05	3.15	2.00	3.67	PASS
S	0.33	0.07	0.29	0.37	0.23	0.43	PASS

6. Summary and conclusions

innovation

An assessment procedure on the basis of equivalent performance is a fast and relative easy way to prove the suitability of new types of concretes.

- > The criteria are pretty strict, as they should be on the basis of the risks underlying them.
- > The procedure is based on proving that the new materials behave mechanically similar to the already accepted types of concrete.